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ABSTRACT 
 
 

LIANGYU HE. Optical surface characterization with the structure function. 
(Under the direction of DR. CHRISTOPHER J. EVANS and DR. ANGELA D. DAVIES) 

 
 

It is important to characterize surface and transmitted wavefront errors in terms of the 

spatial content. The errors are typically analyzed in three spatial domains: figure, ripple 

(or mid-spatial frequency) and roughness. These errors can affect optical system 

performance. For example, mid-spatial frequency errors can lead to self-focusing and 

power loss in a high-power laser system. Currently, power spectral density (PSD) is used 

for the spatial content characterization in high-end optics, although there are potential 

pitfalls. For example, the low spatial content is removed before calculation, only a small 

fraction of surface data are used, and the results are sensitive to details like the 

windowing. 

As an alternative, the structure function (SF) does not have such problems. It is the 

expectation of the squared height difference as a function of separation. The linear SF has 

been used in astronomy and captures data of all spatial frequencies. However, it does not 

capture anisotropy on the surface. The two-quadrant area SF introduced in this dissertation 

obviates this problem. It is computationally correct for any arbitrary aperture over all 

spatial content with anisotropic information.  

This dissertation discusses some computational issues of the SF, which includes the 

calculation of the linear / area SF, sliding sampling method for large numbers of points 

within the aperture, analysis of periodic errors, and connection between the linear SF and 

area SF.  

Moreover, the relationships between the SF and other surface characterization 
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techniques (Zernike polynomials, autocorrelation function (ACF), PSD, and RMS 

gradient) have been investigated. It turns out that the linear SF of the sum of the Zernike 

terms only equals to the sum of the linear SF of each of the Zernike polynomials with 

different azimuthal frequencies. However, this theorem does not apply to the area SF.  

For stationary surfaces, the SF contains similar information as ACF, but it provides 

better visualization. The SF is computationally correct for any arbitrary aperture shape 

without extra processing, while the PSD always needs additional mathematical 

processing. After connecting the SF to the RMS gradient, the SF slope at the origin has 

been evaluated. 

Use of a SF to specify optical surfaces over the full range of spatial frequencies of 

interest implies the combination of data from instruments with substantially different 

lateral resolutions. This research shows the combination of data from a Fizeau and a 

coherence scanning interferometer (CSI) for various precision surfaces. The investigation 

includes the connection method of the coordinate systems between the Fizeau data and the 

CSI sub-aperture data, the convergence of the averaged SF of sub-aperture samples, the 

uncertainty analysis, and the effect of the instrument transfer function (ITF).  

In addition, the SF was used to explore two typical noise contributions (electronic 

noise and air turbulence) in phase shifting interferometry. Based on dynamic 

measurements, the SF was used to analyze the spatial components of a diamond turned 

surface after the compensation machining.  

In summary, the SF is a useful tool to specify and characterize the spatial content of 

optical surfaces and wavefronts.        
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CHAPTER 1 : INTRODUCTION AND LITERATURE REVIEW 
 
 
1.1 Motivation 

Engineers and scientists have expended significant energy in recent decades trying to 

close the loop between surface specification, measurement, and functional performance 

(to predict tribological and heat transfer behaviors of surface contacts) [1,2]. Generally, 

the easily calculated amplitude parameters such as Ra or PV are insufficient, and a more 

complex characterization of the surface is required [3]. Methods such as fractal and 

scale-sensitive analysis [4], spatial functions of areal data [5], slopes, and asperity radius 

[6,7] have been applied in different circumstances. This evolution was motivated by the 

complementary needs of manufacturing process control and the surface topography 

connection to performance.  

In optics, in particular, it is often important to characterize surface and transmitted 

wavefront errors in terms of the spatial content. For traditional optical fabrication, the 

similar geometrical size between tool and optical part can generate long spatial scale 

surface undulations (figure or form errors), and the surface fracture mechanics can 

introduce short spatial scale undulations (roughness or scatter) [8]. In this case, optical 

surfaces can be specified by PV or RMS. More recently, a robust amplitude parameter, 

PVr, which combines the PV of a 36-term Zernike fit and RMS of the residual, has been 

introduced by Christopher. J. Evans [9,10]. However, For modern optical fabrication, the 

deterministic techniques such as diamond turning, magnetorheological finishing (MRF) 
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and computer-controlled polishing can easily generate mid-spatial scale surface 

undulations (ripples), which accumulate locally where the removal of material departs 

from the specified values and could lead to small-angle scatter that degrades optical 

performance [11,12]. 

Therefore, in modern optical fabrication, the surface errors are typically analyzed in 

three spatial domains [13,14,15]: figure (low spatial frequency), ripple (mid-spatial 

frequency [16,17,18,19,20]) and roughness (high spatial frequency), often with arbitrary 

cut-offs. (The choice of cut-offs can be derived from the aperture and function of the 

optical component. However, the available standards take a different approach. See ISO 

10110 and 25178.) These errors can affect optical system performance. For example, 

mid-spatial frequency errors can lead to self-focusing and power loss in a high-power laser 

system. 

Figure 1.1 shows a surface generated with a deterministic polishing method  

decomposed into three different spatial frequency domains. In the mid-spatial frequency 

component, the unidirectional scanning sub-aperture tool path (raster polishing) is clear [8, 

21].  

 

Figure 1.1 Deterministic polished surface analyzed in three different spatial frequency 
domains [8,21].  
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Currently, the power spectral density function (PSD) is used for analyzing the surface 

spatial frequency components [22] in high end optics. It is plotted in units of length cubed 

versus spatial frequency in inverse length units, and its relationship to functional 

performance was graphically captured by Harvey and Kotha [23], showing the optical 

consequences of different spatial frequencies (Figure 1.2).  

 

Figure 1.2 Effect of different spatial frequencies on the point spread function (PSF) (after 
[23]). 

 

The PSD has been used in characterization and specification [24] of X-ray optics, 

neutron and other advanced optics, as well as in the characterization of machined surfaces. 

PSDs, however, cannot be used to characterize all components of the surface error; errors 

with surface wavelengths of 3 cycles/aperture or longer must be treated separately. Only 

profiles or rectangular areas can be analyzed. In addition, the reported PSD is sensitive to 

computational details such as windowing and zero padding. This will be discussed in more 

detail in Chapter 3.  

Less often, the auto-correlation function (ACF) has also been used to characterize the 

spatial content of surfaces, but it has a number of limitations. As the calculation of ACF is 

based on the product of two amplitudes, it is strongly dependent on the mean plane and is 
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not intuitive. Moreover, the ACF cannot describe well a non-stationary mean, which is a 

common feature of engineering or optical surfaces [25].   

The structure function (SF) – the squared expectation of height difference as a function 

of separation – has some advantages compared with the other spatial representations. The 

computational details will be given in Chapter 2 along with some examples. Thus, it is an 

alternative of the PSD and ACF. The relationship among SF, PSD and ACF will be 

discussed in Chapter 3. The SF has been used in surface metrology since the 1970s [25, 

26], although not extensively, and in astronomy to specify the surface of large optics. A 

linear SF can be computed for profile or area data, with the loss of anisotropic detail. The 

area SF can be calculated without filtering, zero padding or restraints on aperture size or 

shape. Also, it retains information on anisotropy [27,28,29].  

This chapter starts with definitions, applications and limitations of the PSD and ACF 

in surface metrology. Next, the definition and current applications of SF will be described. 

Finally, the purpose and significance of this project will be discussed.  

1.2 Power Spectral Density (PSD) Function 

Basically, PSD is a mathematical concept based on the Fourier transform. It describes 

power of the variations as a function of spatial frequency. Conventionally, PSD has wide 

application in the electronic and mechanical engineering in signal analysis [30] and 

vibration estimation [31] in the frequency domain. Recently, it has been used for the 

optical characterization [32,33,34,35], especially for quantifying the spectrum of surface 

and wavefront quality in optical systems [22]. A typical application is the optical 

specifications of mid-spatial frequency analysis in the National Ignition Facility 
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[11,12,36,37] at Lawrence Livermore National Laboratory for which thousands of large 

optical components have been fabricated.  

1.2.1 Linear PSD 

1.2.1.1 Definition of Linear PSD 

(1) One-side linear PSD 

For a discrete profile, the PSD can be calculated based on the discrete Fourier 

transform (DFT):  

22
( ) ( ) ( ), (0 )

2m m

x N
PSD f DFT f K m m

N


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( 1.1 ) 

where DFT is usually evaluated with the fast Fourier transform (FFT) algorithm, which 

greatly increases the computational speed. Thus, the PSD can be expressed as: 

21
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where x is the sampling interval of the profile measurements, N is the total number of 

sampling points, n is the sampling index, ( )z n is the profile height data, and fm is the 

spatial frequency (reciprocal of the spatial wavelength) described as m

m
f

N x


 (m ranges 

from 0 to N/2).  

When / 2m N , the sampling frequency
1

2mf x


 . This frequency is the Nyquist 

frequency of the sampled measurement [38].  

The factor of 2 rises from the efficient FFT algorithm that only calculates the results 

for positive frequencies. In order to satify Parseval’s theorem, the factor 2 should be 

applied. Moreover, K(m) is a bookkeeping factor: K(m) = 1 except K(0) = K(N/2) = 1/2. It 

also ensures that the calculation is consistent with Parseval’s theorem:  
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1 1
2 2

0 0

1
( ) ( ) ,

N N

n k

x n X k
N

 

 

 
                       

( 1.3 ) 

where X(k) is the DFT of x(n), both of length N.  

In this case, Parseval’s theorem is expressed in the form as: 

21 1 / 2 1
2 22 2 /

2 2
0 0 0 0

/ 2 / 2

1
0 0

1 1 2
( ) ( ) ( ) ( )

1
( ) ( ).

N N N N
i mn N

n k m n

N N

m m
m m

RMS z n x DFT k e z n x K m
N N N

PSD f f PSD f
N x


  



   

 

    

 


   

 
 

( 1.4 ) 

In other words, the “area” under the PSD curve in any frequency interval is exactly the 

square of the RMS of the profile over the same frequency interval [12].  

 (2) Two-side linear PSD 

The linear PSD can also be defined on two sides: [32]  

2

21
2 /

0

( ) ( ) ( )

( ) ( ), ( )
2 2

m m

N
i mn N

n

x
PSD f DFT f K m

N

x N N
e z n K m m

N











   

            ( 1.5 ) 

where both results for positive and negative frequencies are considered and the factor of 2 

in the one-side linear PSD is not necessary. The K(m) is a bookkeeping factor: K(m) = 1 

except K(±N/2) = 1/2. When plotting the PSD curve, m usually ranges from 1 to N/2, 

which means the spatial frequency ranges from 1

1
f

N x


  to / 2

1

2Nf
x


 . However, 

when considering Parseval’s theorem, m should range from -N/2 to N/2, that is 

221 1 1
2 22 2 /

2 2
0 0 2 0

2 2

1
2 2

1 1 1
( ) ( ) ( ) ( )

1
( ) ( ).

NN N N
i mn N

n k m N n

N N

m m
m N m N

RMS z n DFT k e z n K m
N N N

PSD f f PSD f
N x


  



   

 

  

 


   

 
  ( 1.6 ) 
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These two definitions are the same in theory - they simply have different 

representations. The biggest difference is about the range of the fm. For the first definition, 

0 ;
2

N
m   while for the second definition,

 
.

2 2

N N
m    In other words, the first 

definition only contains zero and positive spatial frequencies, while the second definition 

contains all the possible frequencies ranging from negative to positive. In fact, the PSD of 

the negative frequencies are identical to that of the corresponding positive frequencies.  

1.2.1.2 Application of Linear PSD 

Here is an example of the linear PSD used for one of the national ignition facility 

(NIF) optics (J. H. Campbell et at, 2004).  

 

Figure 1.3 Transmitted wavefront spatial frequency specification for an NIF finished 
optic [39]. 
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As Figure 1.3 shows, the oblique straight line is the maximum allowable PSD for 

spatial frequencies from 33 mm to 0.12 mm (0.03 mm-1 to 8.5 mm-1). In other words, the 

PSD of the fabricated optics should not exceed this line. The other parameter for this 

specification is the RMS in terms of specific frequency ranges, that is, the area beneath the 

PSD curve with related spatial frequencies. For example, the RMS over the frequency 

domain from 1/33 mm-1 to 1/2.5 mm-1 (i.e. the area beneath the PSD-1 specification) 

should be less than the 1.8 nm required [12,39].  

Thus, the PSD specification is a good way to control spatial frequency errors on a 

transmitted wavefront.  

1.2.2 Area PSD 

With the development of 3-D surface measuring instruments such as the scanning 

white light interferometer (SWLI), the phase shifting interferometer (PSI) and the atomic 

force microscope (AFM), researchers have extended the linear analysis to areal 

investigations [40] in order to obtain a better and comprehensive representation of the 

surface.  

1.2.2.1 Calculation of Area PSD 

 (1) The definition of the area PSD 

Similar to the linear PSD, the calculation of area PSD is based on the 2 dimensional 

discrete Fourier transform (DFT):  

 

2

2
11

2

0 0

( , ) ( , )

( , ) ,
yx

x x y y

x y

x y x y
x y

NN
i f n x f n y

x y
n nx y

x y
PSD f f DFT f f

N N

x y
e z n x n y

N N



   

 

 


 
   

      ( 1.7 ) 



9 

where x and y are the sampling intervals of the surface measurements in x and y, Nx and 

Ny are the total number of sampling points, nx and ny are the sampling indices, 

( , )x yz n x n y  are the surface height data, and fx and fy are the spatial frequences 

(reciprocal of the spatial wavelength) described as x
x

m
f

N x


  (m ranges from -Nx/2 to 

Nx/2) and y
y

n
f

N y


  (n ranges from -Ny/2 to Ny/2), respectively.  

When / 2xm N , the sampling frequency
1

2xf
x


 . This frequency is the Nyquist 

frequency of the sampled measurement in x direction. So is fy.  

In fact, each PSD of the negative frequency is identical to that of the corresponding 

positive frequency. 

(2) Relationship between RMS2 and the area PSD 

For better demonstration, let xu f  and yv f , then 

( , ). (0 1; 0 1)i j x yPSD u v i N j N                  ( 1.8 ) 

According to Parseval’s theorem,  

1 11 1
222

0 0 0 0

11

0 0

11

0 0

1 1 1
( , ) ( , )

1
( , ).

( , )

y yx x

yx

yx

N NN N

m n i j
m n i jx y x y x y

NN

i j
i jx y

NN

i j
i j

RMS z x y DFT u v
N N N N N N

PSD u v
N x N y

u v PSD u v

  

   



 



 

     
  


 

  

   

 

   

( 1.9 ) 
In other words, the “volume” under the PSD curved surface in any frequency interval 

is exactly the square of the RMS of the measured surface over the same frequency interval 

[41].  
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(3) Relationship between the linear PSD and area PSD 

After integration [11,22], the area PSD can be transformed to the linear PSD: 

1 1

0 0

1
( ) ( , ) ( , ). (0 1)

y yN N

i i j i j x
j j

PSD u PSD u v v PSD u v i N
y

 

 

     
      ( 1.10 ) 

Eq. ( 1.10 ) shows the linear PSD in x direction.  

Note that the units of the linear and area PSD are different. For the linear PSD, it is 

length cubed; for the area PSD, it is length to the fourth power.  

If the surface is isotropic, the ( , )x yPSD f f can be expressed in polar coordinates [34]

( , )PSD f  , where 

2 2

1
.

tan

x y

y

x

f f f

f

f
 

  

  

  
  

                         ( 1.11 ) 

Then the linear PSD can be written 

2

0

( ) ( , ) .PSD f f PSD f d


                      ( 1.12 ) 

1.2.2.2 Application of Area PSD 

The calculation of PSD is based on the discrete Fourier transform (DFT) which always 

processes a profile/image as if it were part of a periodic function of identical 

curves/images extending to infinity. Thus, there are strong edge effects between the 

neighbors of such a periodic function. To solve this problem, it is important to multiply 

the data with a “window function” before applying the DFT. The window function starts 

around zero, then increases to a maximum at the center of the curve/image and decreases 

again [42]. Thus the impact of the edge discontinuity can be minimized. 
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Here is an example given by P. Z. Takacs using the area PSD. As Figure 1.4 (a) 

shows, P. Z. Takacs chose three representative sub-apertures from the wavefront map of a 

lens, detrended the low order forms, and calculated their area PSDs with a Blackman 

window. For example, Figure 1.4 (b) is the windowed area PSD of residual error from the 

rectangular sub-aperture below center in Figure 1.4 (a) after detrending  by removal of a 

4th order polynomial. It is obvious that there are some directional components.  

     

               (a)                              (b) 

Figure 1.4 Area PSD of optical surface [43]. (a) Wavefront map of a lens measured with a 
Fizeau interferometer. (b) Windowed area PSD of residual error from the rectangular 

sub-aperture below center in Figure 1.4 (a) after detrending 4th order polynomial. 
(Vertical color scale is log PSD in units of µm4.)  

 

To make extracting surface statistics easier, P. Z. Takacs integrated the area PSD over 

all azimuthal angles and generated a radial PSD. Figure 1.5 shows 2 sets of 3 radial PSD 

curves (corresponding to 3 sub-apertures in Figure 1.4 (a)), both with and without a 

Blackman window. In addition, the average of the 3 curves for each set is shown in heavy 

lines.  
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Figure 1.5 Radial PSD curves of each of the 3 sub-apertures in Figure 1.4 (a), both with 
and without a Blackman window [43].  

 

In this case, the RMS of mid-spatial frequency components from 5 mm to 100 µm is 

specified, which can be calculated from the area under the PSD curve over the specified 

bandwidth. The specification of the RMS for this surface is 0.5 nm. Based on the averaged 

curves, the related RMS is 0.38 nm for the Blackman windowed data and 0.74 nm for the 

non-windowed data. In order words, with the Blackman window, the RMS is within the 

tolerance and the lens passes; without the window, the RMS exceeds the specification and 

the lens fails. Thus, improper data processing could cause economic loss if a good part is 

rejected [43], assuming that the use of a Blackman window meets the designers intent.   

In summary, the PSD is a good tool for specifying optical surfaces, but it is sensitive 

to data processing such as windowing and sub-aperture choosing. Different calculation 

techniques may lead to different results.  
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1.3 Autocorrelation Function (ACF) 

A breakthrough in surface characterization was the use of stochastic techniques, for 

example, the ACF. It has been an important tool to characterize rough surfaces, especially 

for representing spatial variation (the rapidity with which the height varies with distance in 

a certain direction).   

The ACF was first used in surface metrology by J. R. Womersley and M. R. Hopkins 

in 1945 [44], but it was J. Peklenik [45] who used the ACF in terms of a typology for 

surfaces. Since then, the characterization of surfaces with the statistical analysis of height 

data has become more acceptable than the distribution of peaks and valleys [46]. 

However, the discrete analysis of the ACF was originated by D. J. Whitehouse [47] who, 

with J. F. Archard derived a functional significance from the distance over which it 

decays.  

1.3.1 Linear ACF 

The concept of correlation is well known in statistics, where it is used to analyze the 

influence between two sets of numbers. When calculating the linear ACF, the original 

profile should be duplicated, and the duplicated profile is shifted along the original profile 

with a separation τ, then the product of the two profiles in the overlapped region is 

obtained. By repeating this process, the whole linear ACF can be generated for every 

separation τ.  

1.3.1.1 Biased ACF 

The biased autocovariance function (ACV) is given as 

1

1
( ) ( ) ( ). 0 1

n

i

ACV z i z i n
n



  




                       ( 1.13 )
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The ACF is the surface height covariance normalized to the mean square 2 , which 

is defined as
 

2

( )
( ) ,

ACV
ACF





 
                          ( 1.14 ) 

where  

2

1

1
( ) ( ).

n

i

z i z i
n




                             ( 1.15 ) 

Figure 1.6 (a) is a simulated sinusoidal function with λ = 20 mm, and Figure 1.6 (b) is 

its biased ACF.  

         
                   (a)                                  (b) 

Figure 1.6 Calculation of biased ACF. (a) Sinusoidal function. (b) Biased ACF.  
 

An important parameter of the ACF is the correlation length. It is the length of a 

profile over which the ACF drops to a small fraction of its original value. In this case, as 

the profile is a periodic function, the correlation length can be defined as the length over 

which the ACF drops below the threshold value of zero [48], which is 5 mm here.  

The other important property of the ACF can be observed in Figure 1.6 (b) is the 

periodicity [48]. Although the amplitude of the ACF is linearly damped due to the 

calculation with smaller overlapped region and constant averaging number n, there are 

periodic peaks and valleys. When the duplicated profile is out of phase with the original 

profile by 2k , where k is an integer, the ACF shows the peaks. When they are out of 
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phase by (2 1)k  , the ACF shows the valleys. In brief, the ACF reflects the same period 

as the input profile (20 mm).  

1.3.1.2 Unbiased ACF 

The unbiased ACV is given as: 

1

1
( ) ( ) ( ), 0 1.

n

i

ACV z i z i n
n



  






    
                ( 1.16 ) 

Unless otherwise stated, we will use the unbiased ACV and ACF for the discussion in 

this dissertation.  

        
                   (a)                                 (b) 

Figure 1.7 Calculation of unbiased ACF. (a) Sinusoidal function. (b) Unbiased ACF. 
 

Figure 1.7 shows the calculation of unbiased ACF for the same profile in Figure 1.6 

(a). The biggest difference is that the unbiased ACF does not taper off, because the 

averaging number ( )n  exactly reflects the overlapped region. The large amplitude of 

the last valley stems from the calculation with only a few points from the profile, which 

can not reflect the real characteristics. In other words, the ACF with shorter separations is 

more accurate due to the calculation with more points.  

Under ideal conditions, if the length of the input profile were infinite, neither the 

biased and unbiased ACFs would taper off.  
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1.3.1.3 Application of Linear ACF 

D. J. Whitehouse has applied the linear ACF to analyze mechanically ground surfaces 

[46]. Figure 1.8 shows the relationship between the ACF shape and the grinding process. 

For example, the randomness of the process (how the grains are distributed in the wheel 

surface) determines the envelope of the ACF of the surface texture. Moreover, the shape 

of the grains and how each grain interacts with the surface will determine the fine detail of 

the ACF as shown in Figure 1.8.  

 

Figure 1.8 Relationship between ACF shape and grinding process [46].  
 

1.3.2 Area ACF 

The area ACF is also an important tool to diagnose stochastic surfaces. Compared to 

the linear ACF, the area ACF contains more information, for example, the surface texture 

direction.  

1.3.2.1 Definition of Area ACF 

The area autocovariance function (ACV) is defined as: 
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1 1
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( , ) ( , ) ( , ), 0 1, 0 1.

( )( )

yx
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x y x y x y
i jx y
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 



 

        
     

( 1.17 ) 

The area ACF is the area ACV normalized to the surface height mean square 2 : 
 

2

( , ) ( , )
( , ) .

(0,0)
x y x y

x y

ACV ACV
ACF

ACV

   
 


 

              
 ( 1.18 ) 

1.3.2.2 Application of Area ACF 

X. Jiang and D. J. Whitehouse have demonstrated the area ACFs for two milled 

surfaces under different machining conditions [5]. As Figure 1.9 shows, from the area 

ACF, it is possible to analyze the chatter in the milling process, which is one of the  

important factors that determine the surface quality.  

 

Figure 1.9 Comparison of the area ACFs for two milled surfaces (early chatter and stable 
cutting) [5].  
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1.4 Structure Function (SF) 

Since the PSD and ACF have a number of disadvantages (PSD always needs 

additional mathematical processing such as windowing, zero padding and low order terms 

removal; ACF is strongly dependent on the mean plane and is not intuitive), the SF is a 

complementary method for analyzing the spatial frequency components.  

1.4.1 Linear Structure Function of Both Profile and Area Data 

The linear SF can be calculated from both profile data and areal data. It is the 

expectation of the squared height difference as a function of separation, which originates 

from the description of the astronomical seeing (atmospheric turbulence) by astronomers.  

1.4.1.1 Astronomy 

In astronomy, the image obtained by a telescope is affected by the atmospheric 

turbulence, the optics and the instrumentation. In order to achieve a high quality 

measurement, it is important to ensure that the telescope performance degradation arising 

from the optical errors is less than the best atmosphere from a statistical analysis [49]. 

Therefore, it is necessary to characterize the wavefront phase errors introduced by the 

atmospheric turbulence on various spatial scales; the SF is commonly chosen by the 

astronomers to do so.  

The SF is calculated in terms of the averaged phase difference over all pairs of points 

in the phase map of a given separation. In the 1960’s, it started with a model developed by 

Tatarski [50] and Fried [51] whose work was based on Kolmogorov [52] statistics. For 

Kolmogorov turbulence, the structure function, S(r), can be expressed as 

 
5

2 2 3

0

( ) [ ( ') ( ' )] ( ) 6.88( ) ,
2

r
S r z r z r r

r




                    ( 1.19 ) 
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where the angled brackets denote an average over r', z(r') is the phase at position r', z(r'+r) 

is the phase a distance r away from the point r', and r0 is the correlation length that 

depends on the wavelength and scales to the 6/5 power (for a default wavelength of 0.5 

μm) [49, 53]. The correlation length is also called the Fried parameter, indicating the 

strength of the atmospheric turbulence. The typical values are on the order of centimeters 

and larger values denote better images [49]. Figure 1.10 shows the SF for Kolmogorov 

turbulence with a correlation length of 0.1 m and a wavelength of 0.5 μm (given by R. E. 

Parks). If the spatial frequencies cover a wide range, it is usually plotted on a log/log 

scale. 

 

Figure 1.10 SF for Kolmogorov turbulence with a correlation length of 0.1 m and a 
wavelength of 0.5 μm (after [53]). 

 

In the past few decades, the SF has been used as the polishing or figuring specification 

for large astronomical optics on various spatial scales. In the 1980’s, it was first 

successfully applied as fabrication specifications for the William Herschel Telescope 

(WHT) [54,55]. Since then, the same specification strategy has been used for other large 

telescope mirrors, such as the Large Binocular Telescope (LBT) with two 8.4 meter 
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primary mirrors [56,57], the Giant Magellan Telescope [58,59,60,61,62], and the Thirty 

Meter Telescope (TMT) [63,64].  

Figure 1.11 shows the linear SF analysis for a GMT segment (given by J. H. Burge, et 

al.). The mirror specification was derived from an atmospheric SF with r0 = 92 cm. The 

allowable error after testing is given by the subtraction (in quadrature) of the optical test 

errors from the mirror specification. The result indicates that the optical test errors are 

smaller than the mirror specification, which means there is still room in the budget for 

errors on the mirror itself [49,58].  

 

Figure 1.11 Linear SF analysis for a GMT segment [49,58].  
 

1.4.1.2 Rough Surfaces 

The SF was first introduced in the surface metrology (for profile data) in D. J. 

Whitehouse’s PhD thesis [26] in 1971,  

  2
( ) ( ) ( ) ,S E z x z x   

                       ( 1.20 ) 
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where E is the statistical expectation and z(x) is the value of the surface profile height z at 

x. 

It is a rather brief appearance in a voluminous document written at a time when 

tribologists were focused on treating surfaces as random processes. D. J. Whitehouse 

pointed out that for a strictly stationary surface (rare in optics) the SF contains no more 

information than the ACF. Afterwards, many researchers (such as T. R. Thomas, C. A. 

Brown, and J. C. Russ) have applied the SF to surface finish characterization and fractal 

analysis [1,65,66,67,68,69]. For a fractal profile, the SF can be expressed as [65,66],  

2 2 2(2 )( ) ,D DSF                            ( 1.21 ) 

where τ is the shift, D is the fractal dimension (indicating how the roughness changes with 

sampling interval), and is the topothesy which is the distance along the profile for which 

the expected angle between two points is one radian [66]. Usually the distance is far below 

the resolution of the measuring instruments and smaller than the atoms [66].  

 

               (a)                                 (b) 

Figure 1.12 SF on log/log scale. (a) Estimation of fractal parameters using the SF [46]. (b) 
SF of a multifractal surface [71].  

 

From Eq. ( 1.21 ), it is clear that the SF can be plotted as a straight line on log/log 

scale. As Figure 1.12 shows, the fractal dimension D and the topothesy  can be  



22 

obtained easily from the slope and intercept of this straight SF line. These parameters are 

intrinsic properties of the surface, which means they are independent of the measured 

length and the filtering techniques [70,71].  

In practice, machined surfaces are often produced by several different processes each 

with its fractal properties in different spectral bands. Thus, they are called multifractal [66] 

surfaces, which usually depict a SF in the form of several straight lines with different 

slopes meeting at a discontinuity. The wavelength associated with the discontinuity can 

indicate the transition from one mechanism to another for the surface formation. As shown 

in Figure 1.12 (b), the transition point is called corner frequency [72,73].  

T. R. Thomas, B.-G. Rosén and their coworkers have applied the SF to a cylinder liner. 

As Figure 1.13 shows, the data are based on the stylus and AFM measurements of worn 

and unworn cylinder linear surfaces with different sampling intervals, indicating 

multifractal characteristics and corner frequencies. When τ is approximately 20 µm, there 

is a transition which indicates the dimensions of the largest honing grits. The smaller 

features are generated by a single and continuous fractal process, corresponding to the 

fracture of the grits. Moreover, as a dimensionless number connecting roughness 

properties to the material property ratio, the plasticity index [74] can be obtained to 

identify different surfaces according to their wear resistance [71].  
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Figure 1.13 SF of a cylinder liner in worn and unworn conditions (MID=midpoint of 
piston stroke, TDC=top dead center) [75][76]. 

 

Besides the man-made surfaces, the SF has been applied to some naturally occuring 

surfaces. For example, C Y Poon has used the SF to analyze the surface of naturally 

fractured rocks [77]. Figure 1.14 depicts the SF against the delay length τ for limestone, 

sandstone, chert and carbonate. The results indicate that the SFs for all types of rock 

surfaces are consistent with Eq. ( 1.21 ) for the self-affine fractals. Thus, the 

characterization of the naturally fracture rocks requires two parameters - the fractal 

dimension D and the topothesy , which can be calculated from the SF.  
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Figure 1.14 SF of surface profiles of limestone, sandstone, chert and carbonate [77].  
 

1.4.1.3 General Optical Surfaces 

Recently, R. E. Parks has applied the linear SF to a general optical surface [53]. Figure 

1.15 (a) is the height map of an optical surface with a diameter of 100 mm, and Figure 

1.15 (b) is the related linear SF calculated by R. E. Parks. The high value in the linear SF 

at 30 mm separation is due to the central high in the input map of Figure 1.15 (a), 

dropping to the low zone at a radius of about 30 mm. In other words, during the 

calculation, the average of uniformly sampled point pairs at separation of 30 mm includes 

a large number where one of the point pairs is in the central high and the other is in the 

annular low zone. Similarly, the high value in the linear SF at around 80 mm separation is 

due to the annular low zone and the high edge.  
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                (a)                                  (b) 

Figure 1.15 Linear SF of the general optical surface [53]. (a) Height map. (b) Linear SF 
calculated by R. E. Parks.  

 

For better visualization over a wide spatial frequency range, the linear SF can be  

plotted on log/log scale in Figure 1.16. Note that the RMS of the linear SF (which can be 

interpreted as the RMS as a function of separation) is shown in green and the RMS slope, 

again as a function of separation, can easily be obtained from the SF [53]. Specifications 

can be plotted on the same axes in Figure 1.16. In this case, the optical part is better than 

the specification but not by a large margin.  

                

Figure 1.16 The linear SF, RMS and RMS slope of the wavefront in Figure 1.15 (a) and 
the respective specifications (after [53]).  
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1.4.2 Area Structure Function 

The linear SF compresses area height information (z(τx,τy) to 1D (z(τ)), thus losing 

information on anisotropy. Figure 1.17 and Figure 1.18 show the calculated linear SFs and 

area SFs for two different surfaces generated with unit coefficients for two different 

Zernike terms. The two surfaces in Figure 1.17 (a) and Figure 1.18 (a) have markedly 

different azimuthal frequencies, but the two linear SFs are almost indistinguishable. In 

contrast, there is significant difference between the two area SFs. The area SF retains 

information on surface anisotropy.  

 
           (a)                     (b)                     (c) 

Figure 1.17 The linear SF and area SF of simulated map 1. (a) Simulated map 1. (b) 
Linear SF of map 1. (c) Area SF of map 1.  

 

 
           (a)                     (b)                     (c) 

Figure 1.18 The linear SF and area SF of simulated map 2. (a) Simulated map 2. (b) 
Linear SF of map 2. (c) Area SF of map 2.  
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The area SF was first briefly introduced by R. S. Sayles and T. R. Thomas in 1977 in 

polar terms [25]. Two more recent publications show area SF in Cartesian coordinates for 

rough surfaces such as cylinder liners [70,71].  

 
        (a)                      (b)                      (c) 

 
        (d)                      (e)                      (f) 

Figure 1.19 Three machined surfaces and their area SFs (after [70,71]). (a) Grit-blasted. 
(b) Surface-ground. (c) Plateau-honed. (d) Area SF of grit-blasted surface. (e) Area SF of 

ground surface. (f) Area SF of plateau-honed surface.  
 

T. R. Thomas and his coworkers have demonstrated the area SFs for three different 

machined surfaces (Figure 1.19): grit-blasted, surface-ground and plateau-honed. As they 

pointed out, the fractal parameters are invariant with direction for an isotropic surface (e.g. 

grit-blasted surface). Highly anisotropic surfaces (e.g. ground surface) have a minimum in 

fractal dimension close to the lay, and the topothesy changes greatly in different directions 

of the surface [70,71]. 

1.5 Significance of This Project  

From the definitions and applications of the PSD, ACF and SF, it is clear that the PSD 

and ACF have limitations (PSD always needs additional mathematical processing such as 
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windowing, zero padding and low order terms removal; ACF is strongly dependent on the 

mean plane and is not intuitive) in characterizing the spatial frequency components. The 

SF solves some of these problems and may be an alternative or complementary way of 

specifying and characterizing optical surfaces.  

Although the linear SF has been used in surface metrology since the 1970s, most 

works are focused on the fractal characterization of surface roughness. We only found two 

papers [53,78] that discuss the application of linear SF to general optical surfaces. Thus, 

there are still enough opportunities to explore the linear SF for the optical surface 

characterization in spatial frequency domain.  

However, the linear SF does not capture anisotropy on the surface. It is necessary to 

apply the area SF, which has not been widely used in surface metrology. A typical 

application is the fractal characterization for some machined surfaces (T. R. Thomas et al 

[70,71]).  

Consequently, it is worthwhile to investigate both the linear and area SF for the optical 

surfaces characterization in the spatial frequency domain.  

1.6 Layout of Dissertation 

This dissertation investigates the structure function (SF) for optical surfaces 

characterization in spatial frequency domain.  

Chapter 1 has introduced the motivation of this project. For optical surfaces and 

transmitted wavefront, it is important to characterize errors in the spatial frequency 

domain. Currently, the power spectral density function (PSD) and, less often, the 

auto-correlation function (ACF) have been used to describe the spatial frequency 

characteristics. The SF, especially the area SF offers some advantages.  
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Chapter 2 describes the calculation of the linear SF and the area SF. For large numbers 

of points within the aperture, computational time increases rapidly, so sampling is 

required. Comparisons, show that the sliding sampling we developed is faster and more 

accurate than the conventional sampling strategies. A two-quadrant area SF is introduced 

because the one-quadrant area SF does not completely describe surfaces with certain 

asymmetries. Next, the relationship between the linear SF and the two-quadrant area SF is 

investigated for circular apertures, showing that the linear SF is the average over 

concentric semi-circles of the two-quadrant area SF. Based on the analysis of periodic 

errors with both the linear SF and area SF, the spatial frequency content of a diamond 

turned surface is evaluated.  

Chapter 3 investigates the relationship between the SF and other surface 

characterization techniques: Zernike polynomials, ACF, PSD, and RMS gradient.  

It turns out that the linear SF of the sum of the Zernike terms equals to the sum of the 

linear SF of each Zernike term only under certain conditions. 

For stationary surface, the SF contains similar information as ACF, but it provides 

better visualization of the surface characteristics than ACF, which is strongly dependent 

on the mean plane and is not intuitive. 

The SF is computationally “correct” for any arbitrary aperture shape without extra 

processing, while the PSD always needs additional mathematical processing, such as 

windowing, zero padding, low-order terms removal, and choice of sub-apertures for 

irregular apertures.  

After connecting the SF to the RMS gradient, the SF slope at the origin has been 

evaluated. 
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Chapter 4 demonstrates a methodology for area SF combination of data from 

instruments with substantially different lateral dynamic ranges. The area SF of the 

measured sub-aperture (representing the high spatial frequency content) depends on the 

measurement position in the full aperture, especially for anisotropic surfaces. To solve this 

problem, a sampling method of sub-aperture measurement has been developed. The 

correct ASF can be estimated by adding the correct tilt to each sampled sub-aperture, 

typically estimated from the large-area measurement with knowledge of the global 

coordinates of each sub-aperture measurement. Moreover, the effect of the instrument 

transfer function (ITF) of the instruments used has been analyzed.  

Chapter 5 investigates other applications of the SF. For the phase shifting 

interferometry (PSI), the analysis with the SF shows that the air turbulence has more 

influence than the electronic noise of the interferometer, and the long interference cavity 

introduces more environmental effect than the short cavity. Particularly, an instantaneous 

interferometer was used to make dynamic measurement of the air turbulence. In addition, 

the instantaneous interferometer was applied to implement an on-machine measurement 

for a diamond turning machine, which provides an effective feedback for the 

compensation machining. Finally, the analysis with SF gives a quantitative estimation in 

the spatial frequency domain – the accuracy of the diamond turned surface has been 

improved after the compensation machining. 

Chapter 6 presents the conclusions of this work and suggests some future work.  

  



CHAPTER 2 : CALCULATION AND INTERPRETATION OF STRUCTURE 
FUNCTION 

 
 

The structure function (SF) is the expectation of the squared height difference as a 

function of separation. A linear SF can be computed for profile or area data, as discussed 

in Chapter 1, with the loss of any detail of anisotropy in the surface. The area SF contains 

the anisotropic information of a surface and can be calculated without filtering, zero 

padding and restraints on aperture size or shape. Although the definition of the SF has 

been given, there are some different calculation techniques which lead to different 

computing speed. Especially for large numbers of points within the aperture, a variety of 

sampling methods may be used. Section 2.1 introduces the calculation of the linear SF and 

explores various sampling strategies. Section 2.2 develops a two-quadrant area SF because 

the one-quadrant area SF does not completely describe surfaces with certain asymmetries. 

Section 2.3 investigates the relationship between the linear SF and the area SF. Based on 

the analysis of periodic errors with both the linear SF and area SF, section 2.4 

demonstrates the analysis of the spatial content of a diamond turned surface.  

2.1 Linear Structure Function 

Figure 2.1 shows the calculation of the linear SF for simulated area data. Conceptually 

all possible point pairs of separation τ1 are selected, the squared height differences for 

each point pair calculated, and then averaged to obtain SF(τ1). This process is repeated for 

all separations τ. The SF can be computed over any chosen dynamic range for any 

aperture shape. Separation into figure, mid-spatial frequency and roughness can still be 
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done, but it is not necessary. For large numbers of points within the aperture, 

computational time increases rapidly, so sampling is required. 

 

Figure 2.1 Calculation of linear SF of area data.  
 

2.1.1 Paired Sampling 

The paired sampling is easy to compute. As shown is Figure 2.2 (a), the first step is to 

randomly pick two points within the aperture, compute the distance between these two 

points as the separation τ of the structure function and calculate the squared height 

difference [53]. This process is repeated the number of times required to provide 

acceptable convergence of the computed SF, as seen for example in the noisiness of the 

plot or more rigorously in the variance for each separation. The average of the squared 

height differences for each separation τ gives the linear SF.  

 
         (a)                     (b)                    (c) 

Figure 2.2 Sampling strategies. (a) Paired sampling. (b) Pure sampling. (c) Sliding 
sampling. 
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2.1.2 Pure Sampling 

Here the process is to randomly pick N points (choosing N for adequate convergence) 

within the aperture, calculate the height differences over the all pairs of points, bin 

separations according to the required resolution, average the height differences along with 

the corresponding separation τ, and plot the linear SF. Figure 2.2 (b) shows an example 

with N = 5. 

2.1.3 Sliding Sampling 

The sliding sampling we developed is shown in Figure 2.2 (c). Here the process is to 

duplicate the height map, randomly offset it with the separation vector v, pick the points in 

the overlap region, calculate the squared height difference between the two maps at each 

point, bin the magnitudes of the vectors according to the required resolution as the 

separations, average the squared height differences with related separation, and obtain the 

linear SF. 

2.1.4 Comparison 

In order to investigate the accuracy and speed of the sampling strategies, these three 

methods were respectively applied to the same height data (Figure 2.1). For a single 

calculation of the SF, the computational time of each sampling method was set to be 

identical. Then the SFs were calculated 100 times for each sampling method. Figure 2.3 

(a) shows the difference between the true value given by the full-data calculation and the 

mean value of 100 sampled SFs. Most of the differences of paired sampling and sliding 

sampling are limited to ± 2×10-3 µm2 (the range of the true SF values is from 0 to 0.607 

µm2), while the differences of pure sampling are greater. That is, paired sampling and 
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sliding sampling are more accurate than pure sampling. Moreover, as Figure 2.3 (b) 

shows, the sliding sampling has the lowest standard deviation of the 100 calculations.  

    

              (a)                                  (b)  

Figure 2.3 Comparison of sampling strategies. (a) Difference between the true value and 
the mean value of 100 sampled SFs. (b) Standard deviation of each sampling strategy.  

 

In this case, sliding sampling has the highest accuracy at the same computational time. 

In other words, sliding sampling is the fastest method to achieve a given accuracy when 

compared to the other two sampling methods. The reason is that all the points in the 

overlap region are related to only one separation when sliding the duplicated map, so it is 

unnecessary to calculate each separation of the point pairs. Calculation using all points 

with sliding method is faster than paired and pure sampling when the number of sampled 

points is large. Under the same condition, the sliding calculation with all points can be 

faster than the sliding sampling calculation, because picking of random points takes 

increasingly more time as the sampling rate is increased. Consequently, there is a 

threshold point at which it is faster to calculate all points than to sample. However, for 

non-circular aperture, the accuracy of sliding method may decrease, because the same 

separation can be related to different overlapped regions (the number of data point in the 

overlapped regions are different). Thus, when averaging the squared height differences 

from different overlapped regions (with the same separation), the deviation may increase.  
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2.2 Two-quadrant Area Structure Function 

The definition of area SF can be expressed as,  
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( 2.1 ) 

where there are m equally spaced points in the x direction and n equally spaced points in 

the y direction; τx and τy are two integers; and ( , )x yS    is the expectation of the squared 

height difference of points separated by τx and τy. Note that in Eq. ( 2.1 ) (given by Thomas 

et al. [71]) τx and τy are non-negative integers. Hence the computed SF represents only one 

“quadrant” in a Cartesian coordinate system (Figure 2.4). This is sufficient for surfaces 

which are rotationally invariant (or more generally are symmetric about either the x or y 

axis). 

 
          (a)                      (b)                      (c) 

Figure 2.4 One-quadrant area SF. (a) Power surface. (b) One-quadrant area SF in 
2-dimension. (c) One-quadrant area SF in 3-dimension.  

 

However, for the asymmetric surfaces, the one quadrant representation of area SF is 

not sufficient. Thus, we developed the area SF in the second quadrant:  
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Figure 2.5 shows conceptually the calculation of the area SF according to Eqns. ( 2.1 ) 

and ( 2.2 ). The steps are: (1) duplicate the height map; (2) offset the duplicate map by 

( , )x y   or ( , )x y  , and overlay on the original map; (3) calculate the squared height 

differences in the overlap region; and (4) average to obtain the expectation, ( , )x yS    or 

( , )x yS   . 

 

Figure 2.5 Calculation of the area SF. (a) Move the duplicated symmetric surface in 2 
directions. (b) Move the duplicated asymmetric surface in 2 directions. (c) Area SF for 

the symmetric surface. (d) Area SF for the asymmetric surface. 
 

Figure 2.5 (a), shows the calculation of the area SF in two directions (move the 

duplicated map in the upper-right and upper-left directions, respectively), and the result is 

shown in Figure 2.5 (c). Because of the symmetry of the surface, the area SF in the first 

quadrant contains the same information as that in the second quadrant             

( ( , ) ( , )x y x yS S     ).  
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However, for asymmetric surfaces, Thomas’ equation is insufficient, because in 

general ( , )x yS   is not equal to ( , )x yS    (the second quadrant SF). For example, in 

Figure 2.5 (b) and (d), the area SF in the first quadrant is not the same as that in the second 

quadrant ( ( , ) ( , )x y x yS S     ). Because SF is the squared value, we can find 

( , ) ( , )x y x yS S      and ( , ) ( , )x y x yS S      . Therefore, for rotationally varying 

surfaces that are asymmetric about both x and y axes, the two-quadrant area SF is required 

for a complete description of the spatial characteristics of the surface.  

By definition, the SF at the origin ( 0, 0)x y   is always identically zero – that is 

the expectation of the squared height difference between the surface map and itself with 

no separation is zero. At small separations, the SF of a measured optical surface will 

represent three components; the measurement noise and the surface form and finish. 

Consider the case where the measurement noise is dominated by electronic noise (i.e. 

random noise at each pixel). The SF (squared expectation of the phase difference) of this 

noise is independent of separation. If the surface contains high spatial frequency 

components, this will be represented by all positive harmonics of that frequency (e.g. the 

SF of the sinusoidal surface). If the surface is dominated by low frequency components 

(Figure 2.5), the SF will be non-zero for small separations, increasing as the separation 

increases.  

The SF analysis of a surface with figure error (e.g. low-order Zernike components) is 

useful for building physical understanding, as shown in Figure 2.5. Consider the 

two-quadrant SF graphs in Figure 2.5 (a) and (c). The input map to the SF calculation 

(Figure 2.5 (a)) is third order spherical aberration. At a separation equal to the radius, the 

SF tends toward zero since the majority of the calculable separations compare the central 
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peak with the edge. The annular high values in the area SF of Figure 2.5 (c) at 70 mm and 

170 mm separation are due to the central high in the input map of Figure 2.5 (a), dropping 

to the low zone at a radius of about 70 mm and then the edge that is again high. 

Figure 2.5 (b) and (d) represent a more realistic scenario in which the surface under 

test contains asymmetric components. In the first quadrant of Figure 2.5 (d), the SF value 

is high at the edge (large separation), indicating a significant height difference between the 

upper-right and lower-left edges of the surface. But for the same separation in the second 

quadrant, the SF values are relatively low on the edge, showing the similarity in the 

surface heights at the upper-left and lower-right. Clearly, the long spatial wavelength 

components of this surface have a strong directional component. The two quadrant area 

SF shows this directionality for all spatial wavelengths.  

Also, the SF values are directly connected to height errors, a useful intuitive aspect for 

the optics manufacturer. The values are the surface variance as a function of separation, 

and the square root of the SF is the surface RMS as a function of separation.   

As with all parametric descriptions of surface data, the area SF is biased in the 

presence of noise. The number of points averaged is a function of separation. For small τ, 

there is a large amount of averaging and the uncertainty from this source is relatively 

small. For larger separations, the uncertainty increases.  

The area SF in two quadrants takes the shape of the half-aperture of regular optical 

apertures when x  and y  are plotted on linear axes. The two quadrants are symmetric 

for some but not all surface symmetries.  

For better physical interpretation in some cases, a four-quadrant representation may be 

used (Figure 2.6). Quadrant three contains exactly the same information as quadrant one, 
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and it can be computed by flipping quadrant one about x- and y- axes. The same applies to 

quadrants two and four.  

     

                  (a)                              (b) 

Figure 2.6 The area SFs in four quadrants. (a) Four-quadrant area SF of the symmetric 
surface in Figure 2.5 (a). (b) Four-quadrant area SF of the asymmetric surface in Figure 

2.5 (b). 
 

For large numbers of points within the aperture, computational time increases rapidly, 

so sampling is required. Similar to the linear SF, the sliding sampling method is used for 

the area SF: Duplicate the height map, randomly offset it with the separation vector 

( , )x y 
 or ( , )x y  , pick the points in the overlap region, calculate the squared height 

difference between the two maps at each point, bin the vectors according to the required 

resolution as the separations, average the squared height differences with related 

separation vectors, and obtain the area SF. 

2.3 Relationship between Linear Structure Function and Area Structure Function 

For circular aperture, the linear SF can always be calculated from the area SF 

calculated for both quadrants, although the inverse is clearly not true. Conceptually, 

2 2
x y    for all values of x and y. Expressed differently, the linear SF is the average 

over concentric semi-circles of the two-quadrant area SF. 
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       (a)                     (b)                           (c)  

Figure 2.7 Relationship between the linear SF and the area SF. (a) Input height map. (b) 
Area SF of the map. (c) Linear SF of the map.  

 

For example, Figure 2.7 shows the area SF and Linear SF for a surface (coma). The 

point (τ1, SF1) in the linear SF curve is related to the average SF over a concentric 

semi-circle with a radius of τ1 in the area SF. So is the point (τ2, SF2).  

Particularly, if the input map is rotationally invariant, the related area SF is also 

rotationally invariant. That is, the SF values are constant for values of τx and τy for which 

2 2
x y     is constant. Because the linear SF value is based on the corresponding 

separation in every possible direction, any profile in this area SF from the center to the 

edge is identical to the linear SF. For example, a radial profile extracted from the area SF 

in Figure 2.8 (b) is equal to the linear SF in Figure 2.8 (c). 

 
       (a)                    (b)                           (c) 

Figure 2.8 Relationship between the linear SF and the area SF. (a) Input height map. (b) 
Area SF of the map. (c) Linear SF of the map. 
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2.4 Spatial Frequency Interpretation with Structure Function 

In modern precision surface fabrication, a variety of processes can lead to periodic 

errors. For example, in single point diamond turning or small tool polishing, slideway 

error motions and misalignment, tool wear, and vibrations can generate periodic errors 

over a broad range of frequencies. The SF provides an alternative way of representing 

spatial frequency content compared to the PSD and ACF. The SF of a periodic surface is 

also periodic, although not exactly so for sampled data. Maxima and minima occur in the 

SF at harmonics of the periodic height information. This effect can easily be seen in SF 

calculations of simulated height data that is sinusoidal.  

2.4.1 Simulated Periodic Errors 

2.4.1.1 Sinusoidal Profile 

Figure 2.9 (a) shows 1D simulated height data that is a sinusoidal function with the 

spatial wavelength of 10000 pixels, and Figure 2.9 (b) shows the calculated linear SF.  

 
(a) 

 
(b) 

Figure 2.9 Linear SF for 1D sinusoidal height data. (a) Simulated 1D sinusoidal height 
data. (b) Linear SF of the simulated data.  
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Because the SF is the average of the squared height differences, the periodic maximum 

SF values are close to the separation values with the maximum height differences (Table 

2.1). The maxima are not exactly separated by the spatial wavelength because of finite 

sampling and averaging effects. The periodic minimum SF values are, however, exactly 

separated by the spatial wavelength, because SF values are identically zero when the 

separation is exactly an integral multiple of the wavelength.  

Table 2.1 Parameters of the linear SF in Figure 2.9.  
 
 1 2 3 4 5 6 7 8 9  10 

λ (nm) 10007 10008 10010 10014 10021 10032 10057 10135 10662  
w (nm) 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 
SF(nm2) 2.0006 2.0007 2.0009 2.0012 2.0017 2.0025 2.0041 2.0081 2.0228 2.2321 

 
 

If the spatial wavelength is calculated from the periodic minimum SF values, it is clear 

that the SF oscillates with the same spatial frequency as the raw data. This can be useful 

for extracting the average periodic length scale on a surface. 

 
(a) 

 
(b) 

Figure 2.10 Linear SF for 1D combined sinusoidal height data. (a) 1D combined 
sinusoidal height data. (b) Linear SF of the height data.  
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Since the SF is not an orthogonal representation of the spatial content of a surface, 

some computational issues should be taken into consideration. For example, in Figure 

2.10, after combining another low-frequency sinusoidal profile (wavelength = 30000 

pixels, amplitude = 0.2 nm, initial phase = 2/3 π) to the sinusoidal profile in Figure 2.9 (a), 

the SF shows that even the wavelengths calculated from the periodic minimum SF values 

are not exactly the same. In such cases, the average high-frequency periodic length scale is 

best calculated by first removing the low frequency component (e.g. form) before 

calculating the SF.  

2.4.1.2 Sinusoidal Surface 

 

       (a)                    (b)                      (c) 

Figure 2.11 SFs for 2D linear sinusoidal height data. (a) Simulated 2D linear sinusoidal 
height data. (b) Linear SF of the simulated data. (c) Area SF of the simulated data.  
 

Figure 2.11 shows the SFs of a linear sinusoidal surface. Note that the linear SF in 

Figure 2.11 (b) contains significant noise when the separation is greater than 200 pixels. 

This is because the number of points available to calculate the average SF value at these 

large separations dramatically decreases. Unlike the profile data, the linear SF maxima 

values, based on the areal data, gradually decrease because of the averaging in different 

directions of the surface. In contrast, the area SF in Figure 2.11 (c) is not impacted by this 
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effect because the directional information is not averaged – the area SF includes spatial 

frequency data in all directions.  

 
         (a)                     (b)                   (c) 

Figure 2.12 SFs for 2D radial sinusoidal height data. (a) Simulated 2D radial sinusoidal 
height data. (b) Linear SF of the simulated data. (c) Area SF of the simulated data. 
 

Figure 2.12 shows the SFs of a simulated radial sinusoidal surface. Similar to Figure 

2.11 (b), the maxima SF values also change with the separation values. With a round 

aperture, the linear SF is only calculated for separations less than 200 pixels, so the noise 

impact of few points at very large separations seen in Figure 2.11 (b) is not present.  

The ripple of the area SF in Figure 2.12 (c) is rotationally invariant, as discussed in 

Figure 2.8, any profile in this area SF from the center to the edge is identical to the linear 

SF in Figure 2.12 (b). 

2.4.2 Diamond Turned Aluminum 

 
                 (a)                      (b) 

Figure 2.13 Analysis for diamond turned aluminum surface. (a) Measured surface height 
map. (b) Area SF of the surface height map. 
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Figure 2.13 (a) shows the analysis for a Fizeau interferometer measurement of a 

diamond-turned aluminum flat. The area SF of the input map (Figure 2.13 (b)) is 

dominated by 2 features: an orientation-independent peak at a separation of approximately 

25 mm, and an asymmetry due to astigmatism in the part. The 25 mm peak is due to the 

conical shape to the part, a common form error when there is a squareness error in the 

machine. The astigmatism is probably not caused by a machine error, and more likely the 

result of mount-induced deformations.  

 
                (a)                      (b) 

Figure 2.14 Analysis for diamond turned aluminum surface. (a) Residual error after 
removing the first 36 Zernike terms. (b) Area SF of the residual error.  

 

If mid-spatial frequency error is the primary concern, the SF analysis is best carried 

out after removing the form error. Here 36 Zernike terms are removed to obtain the 

residual error, as shown in Figure 2.14 (a). The area SF calculation for the residual error is 

shown in Figure 2.14 (b). The annuli in the area SF at 10 mm and 22 mm separation are 

primarily due to the central high in the residual error (Zernikes do not fit a cone well), 

dropping to the low zone at a radius of about 10 mm, and then the edge that is low again.  

Note the presence of a high frequency “ripple” in the area SF with a separation repeat 

length of about 4 mm. Like the sinusoidal example, this indicates a dominant mid-spatial 

frequency component in the surface at approximately 4 mm. Furthermore, the “ripple” is 
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most clearly seen in the region of the area SF plot corresponding to large separation. This 

can be appreciated from the linear SF analysis shown in Figure 2.12 (b), where the SF 

peak values are large for large separations. On the other hand, the SF peak values are also 

large for small separations in Figure 2.12 (b), but these SF peaks are not clear in the area 

SF in Figure 2.14 (b). This is because there are also two high spatial frequency 

periodicities on the surface and these lead to strong annuli peaks in the area SF at small 

separations. This shadows the high-frequency “ripple” that is also in the area SF data at 

these separations.  

 
          (a)                    (b)                    (c)          

Figure 2.15 Analysis for diamond turned aluminum surface. (a) Area SF of the residual 
error map. (b) Area ACF of the residual error map. (c) Area PSD of the residual error 

map. 
 

Figure 2.15 shows the analysis of the diamond-turned aluminum flat after removing 

the 36 Zernike terms. Comparison of Figure 2.15 (a) and (b) suggests that the area SF 

provides a clear visualization of the spatial content of the surface as a function of 

separation and orientation compared to the ACF, perhaps a result of a product vs. a 

difference as a function of separation. As Sayles and Thomas [25] point out, because the 

area ACF is the sum of terms each of which is the product of two amplitudes, it is less 

intuitive. Figure 2.15 (c) shows a PSD analysis of the data. The values between different 

spatial frequencies are not as clear as the area SF. Moreover, the PSD analysis is sensitive 

to computational details such as filtering, windowing and zero padding. 
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2.5 Summary 

This chapter describes the calculation of the linear SF and the area SF. For large 

numbers of points within the aperture, computational time increases rapidly, so sampling 

is required. Comparisons show that the sliding sampling we developed is faster and more 

accurate than the conventional sampling strategies. A two-quadrant area SF is introduced 

because the one-quadrant area SF does not completely describe surfaces with certain 

asymmetries. Afterwards, the relationship between the linear SF and the two-quadrant area 

SF is investigated for circular apertures, showing that the linear SF is the average over 

concentric semi-circles of the two-quadrant area SF. Based on the analysis of periodic 

errors with both the linear SF and area SF, the spatial content of a diamond turned surface 

is evaluated.  

 



CHAPTER 3 : CHARACTERISTICS OF STRUCTURE FUNCTION AND 
RELATIONSHIP TO OTHER PARAMETERS 

 
 

As noted in Chapter 1, the spatial content of surface topography over broad spatial 

scales has been characterized by techniques derived from signal processing – for example 

PSDs and ACFs. In addition, specific descriptors such as the Abbott-Firestone (bearing 

area) curve and scale sensitive (tiling) analyses have been developed. This chapter 

explores in more detail the relationship among SFs, PSDs and ACFs. In the specific case 

of optical surfaces, low order aberrations can be related to appropriate combinations of 

Zernike polynomials, while the scattering from the surface is related to slope. These 

surface descriptions are also considered in terms of the SF. Section 3.1 defines the Zernike 

polynomials used in this dissertation, shows the SF of the individual Zernike polynomial 

terms, and investigates the SF of a surface described by multiple Zernike polynomials. It 

turns out that the linear SF of the sum of the Zernikes equals to the sum of the linear SF of 

each of Zernikes with different azimuthal frequencies. This theorem does not apply to area 

SFs. Section 3.2 describes the relationship between the SF and the ACF. Section 3.3 

compares the SF to the PSD. Section 3.4 connects the SF to the RMS gradient and 

evaluates the SF slope at the origin.  

3.1 Structure Function and Zernike Polynomials 

Zernike polynomials [79,80,81] are commonly used to characterize and visualize 

circular apertures on optical surfaces [82], and are being used for the specification and 

tolerancing for some optics. Note, for example, that the Thirty Meter Telescope (TMT) 
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[63,64] optical specification uses a SF, but allows for removal of specified amounts of 

power, coma and astigmatism, etc (defined as combinations of Zernikes). Therefore, it is 

useful to explore the total SF for a surface described by Zernike polynomials. Burge et al 

have made some investigation on this topic [49,83], and their analysis is updated here and 

extended to the ASF. Other polynomial sets (see ISO 14999) may be used for other 

aperture shapes (rectangular, annuli, etc) [84], but such applications are rarer and will not 

be considered further here.  

3.1.1 Zernike Polynomials 

The Zernike polynomials are a sequence of polynomials that are orthogonal over the 

interior of the unit disk[85], which can be expressed as  

( , ) ( )cos( ),m m
n nZ R m   

                   ( 3.1 ) 

( , ) ( )sin( ),m m
n nZ R m    

                   ( 3.2 ) 

for the sine-cosine pairs of non-rotationally symmetric terms [82] and, for the rotationally 

symmetric terms 

0 0( , ) ( ),n nZ R  
                        ( 3.3 ) 

where n and m are nonnegative integers ( 0n m  and even). The index n is the radial 

degree or the order of the polynomial because it indicates the highest power of  in the 

polynomial [86], and m is related the azimuthal frequency.  is the radial distance 

( 0 1  ), and  is the azimuthal angle between 0 and 2π radians. The radial 

polynomials ( )m
nR   are defined as 

( ) / 2
2

0

( 1) ( )!
( ) .

!( )!( )!
2 2

kn m
m n k
n

k

n k
R

n m n m
k k k

 






 


 
 


           

( 3.4 ) 
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Table 3.1 Zernike polynomials in Polar coordinates (the Fringe set (Loomis) [87]) 

 
# Sets Orthogonal polynomials Aberration 

names 

0 Z(0,0) 1 Piston 
1 Z(1,1) ρ cosθ Tilt x 
2 Z(1,-1) ρ sinθ Tilt y 
3 Z(2,0) 2ρ2- 1 Power 
4 Z(2,2) ρ2  cos 2θ Astigmatism at 0º 
5 Z(2,-2) ρ2  sin 2θ Astigmatism at 45º 
6 Z(3,1) (3ρ2- 2)ρ cosθ Coma x 
7 Z(3,-1) (3ρ2- 2)ρ sin θ Coma y 
8 Z(4,0) 6ρ4- 6ρ2+ 1 Spherical 
9 Z(3,3) ρ3  cos 3θ Trefoil 

10 Z(3,-3) ρ3  sin 3θ Trefoil 
11 Z(4,2) (4ρ2- 3)ρ2  cos 2θ  
12 Z(4,-2) (4ρ2- 3)ρ2  sin 2θ  
13 Z(5,1) (10ρ4- 12ρ2+ 3)ρ cosθ  
14 Z(5,-1) (10ρ4- 12ρ2+ 3)ρ sin θ  
15 Z(6,0) 20ρ6- 30ρ4+ 12ρ2- 1  
16 Z(4,4) ρ4  cos 4θ  
17 Z(4,-4) ρ4  sin 4θ   
18 Z(5,3) (5ρ2- 4)ρ3 cos 3θ  
19 Z(5,-3) (5ρ2- 4)ρ3 sin 3θ  
20 Z(6,2) (15ρ4- 20ρ2+ 6)ρ2 cos 2θ  
21 Z(6,-2) (15ρ4- 20ρ2+ 6)ρ2 sin 2θ  
22 Z(7,1) (35ρ6- 60ρ4+ 30ρ2- 4)ρ cos θ  
23 Z(7,-1) (35ρ6- 60ρ4+ 30ρ2- 4)ρ sin θ  
24 Z(8,0) 70ρ8- 140ρ6+ 90ρ4- 20ρ2+ 1  
25 Z(5,5) ρ5  cos 5θ  
26 Z(5,-5) ρ5  sin 5θ  
27 Z(6,4) (6ρ2- 5)ρ4  cos 4θ  
28 Z(6,-4) (6ρ2- 5)ρ4  sin 4θ  
29 Z(7,3) (21ρ4- 30ρ2+ 10)ρ3 cos 3θ  
30 Z(7,-3) (21ρ4- 30ρ2+ 10)ρ3 sin 3θ  
31 Z(8,2) (56ρ6- 105ρ4+ 60ρ2- 10)ρ2 cos 2θ  
32 Z(8,-2) (56ρ6- 105ρ4+ 60ρ2- 10)ρ2 sin 2θ  
33 Z(9,1) (126ρ8- 280ρ6+ 210ρ4- 60ρ2+ 5)ρ cosθ  
34 Z(9,-1) (126ρ8- 280ρ6+ 210ρ4- 60ρ 2+ 5)ρ sin θ  
35 Z(10,0) 252ρ10- 630ρ6+ 560ρ6- 210ρ4+ 30ρ2- 1  
36 Z(12,0) 924 ρ12 - 2772r10 + 3150r8 - 1680r6 + 420r4 - 42r2 + 1  
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There are various ordering rules of the Zernike polynomials [88,89,90], while the most 

commonly used set is that adopted by Loomis [87] (as shown in Table 3.1). In Table 3.1, 

the term m
nZ

 is described in the form of Z(n,±m). 

If the Zernike polynomials are defined as normalized, the normalization term is given 

as 

   02 1 ,m
n mN n                        ( 3.5 ) 

where 

0

0, if 0
.

1, if 0m

m

m



  

                     ( 3.6 ) 

Because the Zernikes have an important property - orthogonality, the normalized 

Zernikes can also be called as orthonormal Zernikes.  

In the radial part, the orthogonality reads 

1

0 '0 ' '

0

(2 )( 1) ( ) (2 )( ' 1) ( ) ,m m
m n m n nnn R n R d          

          
( 3.7 ) 

where 'nn is the Kronecker delta 

'

0, if '
.

1, if 'nn

n n

n n



                      

( 3.8 ) 

In the angular part ( 0m  ), the orthogonality can be represented as follows 

2

0 '

0

cos( )cos( ' ) (1 ) ,m mmm m d


      
          

( 3.9 ) 

2

'

0

sin( )sin( ' ) ,mmm m d


   
                

( 3.10 ) 

2

0

cos( )sin( ' ) 0,m m d


   
                   

( 3.11 ) 

2

0

sin( )cos( ' ) 0.m m d


   
                   

( 3.12 ) 
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When it is integrated over the unit disk with both indices  and , the product of the 

radial and angular parts represents the orthogonality of the Zernike polynomials: 

1 2
'

0 '0 ' '

0 0

(2 )( 1) (2 )( ' 1) ( , ) ( , ) ,m m
m m n n jjn n Z Z d d



              
  

( 3.13 ) 

where j and j' are the ordering numbers of the Zernike polynomials.  

The optical surface, or the aberrations, may be described as the summation of 

orthonormal Zernikes 

0 0 0

1 1 1 1 0

( , ) ( , ) ( , ) ( , ),
n n

m m m m m m
n n n n n n n n n

n m n m n

W c N Z c N Z c N Z       
  

  

    

    
   

 ( 3.14 ) 

where m
nc is the coefficient associated with a particular term.  

Because of the orthogonality and Eq. ( 3.14 ), the coefficients of the normalized 

Zernike polynomials fitted to the form represent the RMS of that term. Thus, the RMS of 

a surface constructed from a sum of normalized Zernike polynomials can be obtained 

when the coefficients are added in quadrature. Moreover, if some Zernike terms are 

subtracted or added from the surface, the values of other coefficients are not affected. 

In addition to the definition in Polar coordinates ( , )m
nZ   , the Zernike polynomials 

can be described in Cartesian coordinates ( ( , )m
nZ x y ), where cos ,x   sin ,y  

2 2 2 ,x y   and 0 1.   

3.1.2 Linear SF of Zernike Polynomials 

Since Zernike polynomials are widely used in optical system, it is useful to investigate 

the SFs for surface errors in terms of Zernike polynomials. Figure 3.1shows the Zernike 

polynomials as defined in Eqns. ( 3.1 ), ( 3.2 ) and ( 3.3 ) without normalization. And their 

linear SFs are discussed in the following section.   
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Figure 3.1 Zernike polynomials (n≤7, m≤7). 

 

3.1.2.1 Linear SF of Individual Zernike Polynomial 

Figure 3.2 describes the linear SFs of the Zernike polynomials in Figure 3.1. Because 

the linear SF is based on all possible pairs of points in the aperture, it is not affected by the 

rotation of the surface. As Figure 3.1 shows, all the rotationally variant Zernikes terms 

come in pairs only with a difference of rotation, thus both of them can be described by one 

linear SF since the linear SF averages azimuthally.   
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(a)                                (b) 

 

  
(c)                                (d) 

Figure 3.2 Linear SFs of the Zernikes. (a) Linear SFs of the rotationally invariant terms. 
(b) Linear SFs of the rotationally variant terms with even m values. (c) and (d) Linear SFs 

of the rotationally variant terms with odd m values. 
 

With unit coefficients of the Zernikes (i. e. without normalization), all the even terms 

((n,0), ( n,2), (n,4) …) have a zero linear SF at maximum separation ( 1  ):  

 
2 2

2

0 0

1 1
cos( ) cos( ( )) 0 0, ( 0,2,4,6...)

2 2
SF m m d d m

 

    
 

         ( 3.15 ) 

or 

 
2 2

2

0 0

1 1
sin( ) sin( ( )) 0 0. ( 0,2,4,6...)

2 2
SF m m d d m

 

    
 

          ( 3.16 ) 

With unit coefficients of the Zernikes, all the odd terms ((n,1), ( n,3), (n,5) …) have 

the same linear SF (SF=2) at maximum separation ( 1  ): 
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   
2 2

2 2

0 0

1 1
cos( ) cos( ( )) 2cos( ) 2, ( 1,3,5,7...)

2 2
SF m m d m d m

 

     
 

        

( 3.17 ) 

or 

   
2 2

2 2

0 0

1 1
sin( ) sin( ( )) 2sin( ) 2. ( 1,3,5,7...)

2 2
SF m m d m d m

 

     
 

        

( 3.18 ) 

However, in Figure 3.2, the linear SFs are not exactly equal to 2 at maximum 

separation. That is because the calculation here is based on the discrete data, and only a 

few points are used at the edge (maximum separation). If the pixels density of the Zernikes 

matrix are increased, the linear SF at maximum separation will approach 2.  

3.1.2.2 Total Linear SF of a Surface Described by Zernike Polynomials 

The surface errors are usually described by a set of Zernike polynomials, therefore, it 

is necessary to explore the total linear SF of the surface errors.  

Assume a surface is described by two different Zernike polynomials  

1 2( , ) ( , ) ( , ),Z x y Z x y Z x y                      ( 3.19 ) 

which can also be expressed as 

1 2( ) ( ) ( ). ( , )Z P Z P Z P P x y                  ( 3.20 ) 

Therefore, the linear SF is given as 

     22

1 2 1 2( ) ( ) ( ) [ ( ) ( )] [ ( ) ( )] ,S E Z P Z P E Z P Z P Z P Z P           
 
( 3.21 ) 

where Z(P+ τ) is the surface height at a distance τ from the position P.  

  2

1 1 2 2( ) [ ( ) ( )] [ ( ) ( )]S E Z P Z P Z P Z P       
            

( 3.22 ) 

   
 

2 2
1 1 2 2

1 1 2 2

( ) [ ( ) ( )] [ ( ) ( )]

2 [ ( ) ( )][ ( ) ( )]

S E Z P Z P E Z P Z P

E Z P Z P Z P Z P

  

 

     

    
           

( 3.23 ) 
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       
1 2

1 2 1 2 1 2 1 2

( ) ( ) ( )

2 ( ) ( ) 2 ( ) ( ) 2 ( ) ( ) 2 ( ) ( )

S S S

E Z P Z P E Z P Z P E Z P Z P E Z P Z P

  
   

 

         

( 3.24 ) 

Because of the orthogonality of the Zernike polynomials in Eq. ( 3.13 ), that is, the integral 

of the product of two different Zernike polynomials is equal to zero: 

   1 2 1 2( ) ( ) ( ) ( ) 0.E Z P Z P E Z P Z P                    ( 3.25 ) 

For  1 2( ) ( )E Z P Z P  , the radial part is  

1 2

1 2

1

1 2

0

1
2( 1) ( ) 2( 1) ( ) 0,m m

n nn R n R l d
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      
           

( 3.26 ) 

The angular part can be 

2 2

1 2 1 2 2 2 2

0 0

2 2

2 1 2 2 1 2 1 2

0 0

cos( ) cos( ( )) cos( )[cos( ) cos( ) sin( ) sin( )]
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 

 

         

       

  

   

 

   

( 3.27 )
 or 

2

1 2 1 2

0

sin( )sin( ( )) 0, ( )m m d if m m


     
              

( 3.28 )
 

or 
2

1 2 1 2

0

cos( )sin( ( )) 0, ( )m m d if m m


     
             

( 3.29 )
 

or 
2

1 2 1 2

0

sin( )cos( ( )) 0, ( )m m d if m m


     
             

( 3.30 )
 

The product of the radial part and angular part is equal to zero when 1 2m m . In other 

words, the term  1 2( ) ( )E Z P Z P   is equal to zero when 1 2m m . And the term 

 1 2( ) ( )E Z P Z P  is in the same situation.  
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Therefore, the total linear SF is the sum of the individual linear SFs of each of the 

Zernike polynomials with different azimuthal frequencies: 

1 2( ) ( ) ( ).S S S                           ( 3.31 ) 

Figure 3.3, Figure 3.4, and Figure 3.5 give a demonstration of the total lineal SF of 

two Zernike polynomials with different azimuthal frequencies. The result is consistent 

with the Eq. ( 3.31 ).  

 

Figure 3.3 Sum of the two linear SFs of each of the Zernikes with different azimuthal 
frequencies. 

 

As Figure 3.3 shows, Z(2, -2) and Z(3, -1) have different azimuthal frequencies. After 

calculating the linear SFs of Z(2, -2) and Z(3, -1) respectively, the sum of the two SFs is 

obtained.  
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Figure 3.4 Linear SF of the sum of Zernikes. 
 

Figure 3.4 shows the linear SF of the total Zernikes  Z(2, -2) +Z(3, -1) . When 

differencing the SF of the total surface to the sum of the two SFs, the result is almost equal 

to zero ( Figure 3.5 ). In theory, the difference is zero. In this case, because the calculation 

is based on the discrete data, the difference is not exactly equal to zero, but the values are 

so small that they can be ignored.  

 

Figure 3.5 Difference between the SF of the total Zernikes and the sum of the two SFs.  
 

If the Zernike polynomials are scaled by some factor, for example, ( ) ( )totalZ P cZ P , 

then the SF can be described as 

  2 2( ) ( ) ( ) ( ).totalS E cZ P cZ P c S     
             

( 3.32 ) 

In conclusion, if the surface is described by the Zernikes (with different azimuthal 

frequencies) in the form of 

1 1 2 2 3 3( ) ( ) ( ) ( )+...,Z P c Z P c Z P c Z P                  ( 3.33 ) 
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then the total linear SF can be expressed as  

2 2 2
1 1 2 2 3 3( ) ( ) ( ) ( )... .S c S c S c S                     ( 3.34 ) 

For example, a surface is given as  

( ) 2 (2, 2) 3 (3, 1),Z P Z Z                       ( 3.35 ) 

where the two individual Zernikes have been shown in Figure 3.3, and the combined 

surface is shown in Figure 3.6 (a). Figure 3.6 (b) is the linear SF of the combined surface, 

and Figure 3.6 (c) is the sum of the individual SFs which have been scaled by the square 

of the related coefficients. The difference between Figure 3.6 (b) and (c) is approximately 

zero, the small values are due to the calculation which is based on the discrete data. Thus, 

the result is consistent with Eq. ( 3.34 ). 

 

                     (a)                             (b) 

 

                      (c)                           (d) 

Figure 3.6 Combination of the linear SFs with coefficients. (a) Combined surface. (b) 
Linear SF of the combined surface. (c) Sum of the individual SFs with scaled coefficients. 

(d) Difference between (b) and (c).   
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However, if the combined Zernikes have the same azimuthal frequency, Eqns. ( 3.31 ) 

and ( 3.34 ) do not apply.  

Figure 3.7, Figure 3.8, and Figure 3.9 give a demonstration of the total lineal SF of 

two Zernike polynomials with the same azimuthal frequency. The result shows that the 

sum of each linear SF is not equal to the linear SF of the sum of the Zernike polynomials.  

 

Figure 3.7 Sum of the two linear SFs of each of the Zernikes with the same azimuthal 
frequency. 

 

 

Figure 3.8 Linear SF of the total Zernikes. 
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Figure 3.9 Difference between the SF of the total Zernikes and the sum of the two SFs. 
 

3.1.3 Area SF of Zernike Polynomials 

Since the linear SF does not capture anisotropy on the surface, it is necessary to 

investigate the area SF which can be calculated for any aperture shape, for all spatial 

content and anisotropies. 

3.1.3.1 Area SF of Individual Zernike Polynomial 

Figure 3.10 to Figure 3.14 describe the area SFs for astigmatism, coma, trefoil, 

defocus and third order spherical respectively.  

 
                  (a)                          (b) 

 
                  (c)                          (d) 

Figure 3.10 Area SF of astigmatism.  
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                  (a)                          (b) 

 

 
                  (c)                          (d) 

Figure 3.11 Area SF of coma. 
 

 
                   (a)                         (b) 

 

 
                   (c)                        (d) 

Figure 3.12 Area SF of trefoil. 
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                   (a)                         (b) 

Figure 3.13 Area SF of defocus. 
 

 
                   (a)                         (b) 

Figure 3.14 Area SF of third order spherical. 
 

3.1.3.2 Total Area SF of a Surface Comprised of Zernike Polynomials 

Similar to the linear SF analysis above, assume that the surface error is composed of 

two different Zernike polynomials in Eq. ( 3.19 ) and Eq. ( 3.20 ). Then the area SF is 

given as 

      2 2
( , ) ( , ) ( cos , sin ) ( , ) ( ( )) ( ) ,S E Z x y Z x y E Z P Z P             ( 3.36 ) 

where  ( )Z P   is the surface height at a radial distance τ from the position P in a 

direction φ. 
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   
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S E Z P Z P Z P Z P

S S E Z P Z P E Z P Z P

E Z P Z P E Z P Z P

     

       

   

     

     

   

( 3.37 ) 
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In contrast to linear SF, each area SF ( , )S   corresponds to only one direction φ. 

Therefore, the integration from 0 to 2π is not applied, which means the cross terms cannot 

be cancelled. In short, even if the Zernike terms have different azimuthal frequencies, the 

area SF of the sum of the Zernike terms may not equal to the sum of the area SF of each 

Zernike term.  

Figure 3.15, Figure 3.16, and Figure 3.17 give a demonstration of the total area SF of 

two Zernike terms with different azimuthal frequencies (Z(2,2) and Z(4,4) ). The result 

shows that the area SF of the total Zernikes is not equal to the sum of two area SFs.  

 

Figure 3.15 Sum of two area SFs of each of the Zernike polynomials with different 
azimuthal frequencies. 

 

 

Figure 3.16 Area SF of the total Zernikes. 
 



65 

            

Figure 3.17 Difference between the SF of the total Zernikes and the sum of the two SFs.  
 

However, as Figure 3.17 shows, if we integrate the area SF along the same radius, the 

average SF will be 0. In other words, the deviation of the linear SF for each radius τ is 0, 

which agrees well with the result for the total linear SF in Eq. ( 3.31 ).  

3.2 Structure Function and Autocorrelation Function (ACF) 

As noted in Chapter 1, ACF is an important tool for surface characterization. The 

concept of correlation is well known in statistics, where it is used to analyze the influence 

between two sets of numbers. Typically, the ACF is used to investigate the repeatability of 

a profile or a surface. This section discusses the relationship between the SF and the ACF.  

3.2.1 Linear SF and Linear ACF 

The linear SF can be described as 

        
     

2 2

2 2

( ) ( ) ( ) ( ) ( )

( ) ( ) 2 ( ) ( ) ,

SF E z x h z x h E z x z x

E z x E z x E z x z x

  

 

       

    
      

( 3.38 )
 

where E{ }indicates an expectation, h is the mean of the surface, z(x) and z(x+τ) are the 

surface heights after removing the mean value (piston). The function  ( ) ( )E z x z x   is 

the autocovariance function ( )ACV  . 

For a stationary surface [25] that has the same sub-aperture statistical characteristics,   

   2 2 2( ) ( ) (0) ,E z x E z x ACV    
               

( 3.39 ) 
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where
2 is the mean square of the surface after removing the mean value. Therefore, 

 2( ) 2 ( ) .SF ACV   
                     

( 3.40 ) 

Considering the relationship between ACV and ACF in Eq. ( 1.14 ), the expression of 

the linear SF can be rewritten as 

   2 2 2( ) 2 ( ) 2 1 ( ) .SF ACF ACF                   ( 3.41 ) 

The ACF peaks at 1 for 0  and shows local maxima for τ length scale for which the 

surface has periodicity.  

Thus, the linear SF is closely related to the linear ACF for a stationary surface. The 

overall scales of the two functions are different, and the locations of the maxima and 

minima are inverted.  

3.2.2 Area SF and Area ACF 

3.2.2.1 Stationary Surface 

Similar to linear SF, the area SF can be described as, 

     
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( 3.42 ) 

where the function  ( , ) ( , )x yE z x y z x y    is the area autocovariance function 

( , )x yACV   . 

For a stationary surface that has the same sub-aperture statistical characteristics, 

   2 2 2( , ) ( , ) (0,0) .x yE z x y E z x y ACV      
          

( 3.43 ) 

Therefore, 
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     2 2 2 2( , ) 2 ( , ) 2 ( , ) 2 1 ( , ) .x y x y x y x ySF ACV ACF ACF                

( 3.44 ) 

The ACF peaks at 1 for 0x y    and shows local maxima for x and y length 

scale for which the surface has periodicity.  

Thus, the area SF is closely related to the ACF for a stationary surface. The overall 

scales of the two functions are different, and the locations of the maxima and minima are 

inverted.  

 
           (a)                      (b)                       (c) 

Figure 3.18 Zernikes fit of a polished surface. (a) Polished surface. (b) 36 Zernikes fit. (c) 
Residual surface error after 36 Zernikes removal.  

 

Figure 3.18 demonstrates the 36 Zernikes fit of a conventionally polished flat. As 

Figure 3.18 (c) shows, the residual surface error is, typically, stationary and characterized 

by a speckled or “orange peel” texture. Figure 3.19 (a) and (b) are the area SF and area 

ACF for the residual error in this large polished flat. Figure 3.19 (c) is the difference 

between SF and  22 1 ACF  , where the 
2 0.3966  nm2. As expected, most of the 

differences are zero except at the edges where there are only a few calculated points. 
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         (a)                       (b)                      (c) 

Figure 3.19 Relationship between area SF and area ACF for a polished surface after 
removing 36 Zernikes. (a) Area SF of the residual error. (b) Area ACF of the residual 

error. (c) Deviation=SF-2σ2(1-ACF). 
 

3.2.2.2 Non-stationary Surface 

Optical surfaces, particular when figure is considered, are typically not stationary 

because they vary with translation.  

 
         (a)                      (b)                      (c) 

Figure 3.20 Relationship between area SF and area ACF for a non-stationary surface.(a) 
Area SF of the polished surface in Figure 3.18 (a). (b) Area ACF of the same polished 

surface. (c) Deviation=SF-2σ2(1-ACF). 
 

In this non-stationary case, Eq. ( 3.44 ) is not correct. For example, Figure 3.20 shows 

the relationship between the area SF and area ACF for the polished surface in Figure 3.18 

(a). As Figure 3.20 (c) denotes, SF-2σ2(1-ACF)≠0. Hence the simple relationship 

between SF and ACF does not apply to non-stationary surface. 
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Figure 3.21 Analysis of a polished-silicon flat.(a) Input map from Fizeau interferometer. 
(b) Area SF. (c) Area ACF. 

 

Further insight into the difference between the area SF and the area ACF is obtained 

from an analysis of a polished-silicon flat measured with a Fizeau interferometer (Figure 

3.21). The area SF calculation is shown in Figure 3.21 (b). The astigmatic form in the 

surface leads to larger SF values in the first quadrant compared to the second. In Figure 

3.21 (c), the area ACF contains similar information as area SF, but it is not as distinct as 

area SF.  

Comparison between Figure 3.21 (b) and (c) indicates that the area SF provides a 

superior visualization of the spatial content of the surface as a function of separation and 

orientation. As Sayles and Thomas [25] point out, the area ACF is the sum of terms each 

of which is the product of two amplitudes, which is difficult to understand and not 

intuitive. From the definitions of SF and ACF, it is obvious that the area SF is independent 

of the mean plane, while the area ACF is strongly influenced by the mean plane. 

Moreover, because the area ACF is based on the product of two amplitudes and the area 

SF is based on the difference of two amplitudes, the computation speed of the area ACF is 

slower than area SF, especially for big arrays.  
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3.3 Structure Function and Power Spectral Density (PSD) Function 

Currently, PSD is commonly used for describing the spatial frequency characteristics. 

It is the square of the Fourier transform of the surface or profile, with appropriate 

normalization [48,91]. However, it has some disadvantages. This section discusses the 

relationship between the PSD and SF, and makes comparisons between these two 

representations.  

3.3.1 Linear SF and Linear PSD 

The linear SF is usually estimated over the whole surface, while the linear PSD is 

normally calculated along the profiles [24,91].   

3.3.1.1 Relationship between Linear SF and Linear PSD for Stationary Process 

(1) Linear PSD and Linear ACF 

In addition to the traditional calculation from the surface height data (introduced in 

Chapter 1), the linear PSD can also be evaluated from the ACF [92,93]. This method is 

based on the Wiener–Khinchin theorem [94] which states that the ACF of a well behaved 

stationary random process has a spectral decomposition defined by the power spectrum of 

that process: 
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where ( )mP f  is the description of PSD used in Wiener–Khinchin theorem: 
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Multiplying both sides of Eq. ( 3.45 ) with  , then 
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where  is the sampling separation for the ACV and PSD, and it is usually equal to the 

sampling interval x of the profile measurements or a multiple of it.  

Since the ACV is an even function, the equation can be rewritten as [46]  

   
     

/ 2

0

2 cos 2 .
N

m m
n

PSD f ACV n f n   


   
            

( 3.48 ) 

In short, the PSD is the product of  and Fourier transform of the autocovariance 

function, 

( ) [ ( )].FPSD f ACV                       ( 3.49 ) 

In order to verify the relationship between PSD and ACV, a sinusoidal profile ( λ = 

400 µm ) was generated in Figure 3.22 (a). Then the PSD was calculated in two ways, 

respectively.  

The one computed directly from the profile data is shown in Figure 3.22 (b). Note that 

the spatial frequency spike in PSD at 0.0025 µm-1 is consistent with the wavelength of the 

sinusoidal profile (1 / 400µm = 0.0025µm-1).  

The other one is computed from the ACV. The two-side linear ACV is shown in 

Figure 3.22 (c). As discussed in section 1.3.1.2, the ACF with shorter separation is more 

accurate due to the calculation with more points. Therefore, the ACF with separation 

shorter than 2000 µm in both sides is chosen for computing the PSD. As a result, this PSD 

is shown in Figure 3.22 (d).  
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                     (a)                              (b) 

 

 
                     (c)                               (d) 

Figure 3.22 Comparison of PSD based on profile data and ACV. (a) A sinusoidal profile 
with λ= 400 µm. (b) The linear PSD calculated from the profile data. (c) The linear ACV 

of the profile data. (d) The linear PSD calculated from the ACV.  
 

It is clear that the two PSDs are almost identical. They both exactly indicate the 

periodicity of the sinusoidal profile. However, there may be some insignificant difference 

because the length of the profile is finite, which can cause two main problems: 

First, the points used for computing the ACV are different for different separation τ, 

which means the degree of accuracy of individual ACV value can vary. Consequently, the 

PSD based on the ACV is not perfect, because the statistical reliability of the information 

is limited.  
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Second, the finite length of the ACV may cause spurious edge effects for computing 

the PSD, because DFT always processes a profile as if it were part of a periodic function 

of identical curves extending to infinity. To solve this problem, it is important to multiply 

the data with a “window function” before applying the DFT. However, there is no strict 

standard for choosing the window. With different weighting windows, the PSD may be 

different. The details of the window function will be discussed in the following sections.  

Taking all the factors mentioned above into account, the PSD evaluated from the ACV 

can meet the requirement of application to some extent. In most cases, its accuracy is good 

enough since the computing points are at least thousands.  

Under ideal conditions, if the input profile were infinite, the PSD evaluated from the 

ACV would be identical to the PSD calculated directly from the profile data.  

(2) Linear PSD and linear SF 

Since the SF is related to ACV for stationary surface (Eq. ( 3.40 )), the relationship 

between SF and PSD for a stationary surface can be shown as 

2 1
( ) [ ( )] [ ( )].

2
F FPSD f ACV SF       

            
( 3.50 ) 

In order to verify the relationship between the linear PSD and linear SF, a simulation 

is shown in Figure 3.23. Figure 3.23 (a) is the two-side linear SF calculated from the same 

profile in Figure 3.22 (a). And the central part of the linear SF was chosen for computing 

the PSD. It is clear that the PSD based on the SF is almost identical to the PSD evaluated 

directly from the profile data in Figure 3.22 (b). Similar to that based on the ACV, the 

PSD based on the SF also has the problems of statistical reliability and the spurious edge 

effects when using the FFT, but its accuracy is good enough in most cases.  
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                    (a)                                  (b) 

Figure 3.23 Calculation of the linear PSD based on the SF. (a) The linear SF of the sine 
profile in Figure 3.22 (a). (b) The linear PSD calculated from the SF. 

 

3.3.1.2 Comparison between Linear SF and Linear PSD  

(1) Linear PSD uses small fraction of surface data 

To investigate the true linear PSD of a surface with random roughness, it is necessary 

to evaluate the ensemble average of some linear PSDs computed from profiles measured 

in different places of the surface [32]. Normally, analysis based on a single profile is 

insufficient because the curve may contain noise and lack reproducibility.  

Usually, there are two ways to get the ensemble average of linear PSDs [32]: 

The first way is to measure numbers of profiles in different places of the surface, 

compute the linear PSD for each profile, and average all the PSDs to a smooth and 

noise-free curve. The disadvantage of this method is that it is time consuming when 

measuring numbers of the profiles.   

The other way is to use only one profile. When the spatial frequency needed in the 

PSD is much higher than the lowest spatial frequency evaluated from the profile length, 

the profile can be divided into small segments. After computing the PSD of each 

sub-profile and getting the average, it will lead to a smooth and noise-free curve. 
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Apparently, the problem of this method is that it loses the low spatial frequency 

components in the original profile.  

If the surface comprises periodic or unidirectional structure instead of random or 

isotropic topography, the profiles should be measured in the parallel and perpendicular 

direction to the surface structure. If not, the analysis may contain spurious results.  

In order to compare the linear PSD to the linear SF, we simulated a sinusoidal surface 

with λ= 400 µm (Figure 3.24 ). 

 

Figure 3.24 Simulated sinusoidal surface with λ= 400 µm. (Two profiles were picked for 
following analysis.) 

 

Two profile were picked from the sinusoidal surface for analyzing the linear PSD. 

From Figure 3.25, it is clear that different profiles from the surface lead to different linear 

PSDs (both in the spatial frequency and magnitude).  

In other words, since the linear PSD only uses a small fraction of the surface data, we 

need to choose the appropriate profiles that represent the true characteristics of the surface. 

For example, when a Talysurf is used, the measuring trace should be exactly parallel to the 

sinusoidal direction. However, it is very difficult to find the exact direction in practice.  
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                  (a)                                (b) 

 

 
                  (c)                                (d) 

Figure 3.25 Calculation of linear PSD without window function. (a) Profile 1 from the 
sinusoidal surface. (b) Linear PSD of the profile 1 without window. (c) Profile 2 from the 

sinusoidal surface. (d) Linear PSD of the profile 2 without window. 
 

The other way to calculate the linear PSD here is to integrate the area PSD in x or y 

axis. For instance, if we measure the sinusoidal surface with a Fizeau interferometer, the 

area PSD can be calculated from the surface data. After integrating the area PSD in x or y 

direction, a linear PSD can be obtained. Particularly, during the measurement, the 

coordinate of the Fizeau interferometer should be consistent with that of the surface 

structure. In this case, the x or y axis should match well with the sinusoidal direction. In 

brief, it is difficult for the operation.  
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                 (a)                                    (b) 

Figure 3.26 Linear SF of the sinusoidal surface. (a) Simulated sinusoidal surface with λ= 
400 µm. (b) Linear SF of the whole sinusoidal surface. 

 

Unlike the linear PSD, the calculation of linear SF does not have the problems 

mentioned above. All the measured surface height data can be used to estimate the linear 

SF, it is unnecessary to pick profiles for analysis. Therefore, the calculation of linear SF is 

explicit and the result is definite.  

Moreover, the calculation of linear SF is not influenced by the coordinate system of 

the instrument, because the linear SF is based on the sampled paired-data in every 

direction. In this case, there is no need to match the x or y axis of the instrumental 

coordinate system to the sinusoidal direction in the surface.  

In brief, a surface is definitely corresponding to only one linear SF, regardless of the 

coordinate systems.  

(2) Linear PSD needs window functions 

During the calculation of PSD, the discrete Fourier transform (DFT) always processes 

a profile as if it were part of a periodic function of identical curves extending to infinity. In 

other words, there are strong edge effects between the neighbors of such a periodic 

function. The discontinuity at edges spreads power all across the spectrum. To solve this 
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problem, it is important to multiply the data with a “window function” before applying the 

DFT. The window function starts around zero, then increases to a maximum at the center 

of the image and decreases again [42,95]. Thus the discontinuity can be corrected. 

Therefore, the one-side linear PSD with window can be expressed as 
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where w(n) is the chosen window function.  

Under this condition, the values of ( )mPSD f are changed because of the application of 

w(n). Therefore, Eq. ( 1.4 ) is not satisfied, thus, 
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To solve this problem, a scaling factor S is adopted: 
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According to Eq. ( 1.4 ) 
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where 2
windowed is the mean square of the windowed data z(n) w(n), and 2

original is the mean 

square of the original data z(n). Thus, the scaling factor S is obtained: 
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Therefore, after the normalization, the first definition of linear PSD is 
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Thus, the area under this normalized PSD curve is equal to the RMS2 of the original 

profile data.  

Similarly, the two-side linear PSD with window can be expressed as 
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Its normalized expression is 
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( 3.57 ) 

The third definition of linear PSD (based on ACV) with window can be expressed as 
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The related normalization is 
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Figure 3.27 Hanning and Hamming windows in spatial domain. 

 

Taking the Hanning window as an example (Figure 3.27), which is defined as, 
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It has the following symmetry, 

i N iw w  .                            ( 3.61 ) 

      
                  (a)                                 (b) 

      

                  (c)                                 (d) 

     

                  (e)                                 (f) 

Figure 3.28 Calculation of linear PSD in different ways. (a) Sine profile with λ= 400 µm. 
(b) Linear PSD without window. (c) Sine profile adjusted by Hanning window. (d) Linear 

PSD with Hanning window. (e) Sine profile adjusted by Hamming window. (f) Linear 
PSD with Hamming window. 
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Figure 3.28 (a) is a profile from the sinusoidal surface in Figure 3.24. This sinusoidal 

profile contains 7.5 periods ( λ = 400 µm ). As shown in Figure 3.28 (a), when using the 

DFT to extend both sides of the sinusoidal function, there should be strong spurious edge 

effects, because 7.5 periods do not cover the integrated periodic phase. In other words, if 

the profile length satisfies l = kλ (k = 1, 2, 3...), the edge effects can be eliminated. Thus, 

the linear PSD (without using window) shown in Figure 3.28 (b) is not accurate.  

To reduce to edge effects, a Hanning window is applied in Figure 3.28 (c), and the 

windowed PSD is shown in Figure 3.28 (d). It is clear that both spiky frequency and 

magnitude are different from the PSD without using window. 

Moreover, a Hamming window is also applied in Figure 3.28 (e), and the windowed 

PSD is shown in Figure 3.28 (f). It is obvious that the result is different from the PSD with 

Hanning window.  

In fact, there are various windows, which may lead to different results. Thus, the linear 

PSD is strongly dependent on the choice of windows. Unfortunately, there is no strict 

standard for choosing the window. The best thing we can do is to use a window that has a 

highly concentrated central lobe and small side lobes with high decaying speed [96].  

(3) Low-order terms removal  

Figure 3.29 shows the combination of a simulated radial sinusoidal surface and a 

simulated defocus. Compared to the sinusoidal surface with 10 periods, the defocus can be 

taken as a low-order form.  
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         (a)                       (b)                       (c) 

Figure 3.29 Combination of two surfaces. (a) Simulated sinusoidal surface with λ= 400 
µm. (b) Defocus. (c) Combined surface.  

 

In order to investigate the spatial content with linear PSD, it is necessary to choose 

some profiles from the surface. Since it contains a radial sinusoidal surface, a diametric 

profile is chosen in Figure 3.30 (a). However, as Figure 3.30 (b) shows, it is not an exact 

sinusoidal profile because the discontinuity of the central part. Thus, we choose a radial 

profile instead in Figure 3.30 (c). As Figure 3.30 (d) shows, it contains 5 periods of the 

sinusoidal function. After adjusting with a Hanning window, the linear PSD is shown in 

Figure 3.30 (f). The spiky spatial frequency of 0.0025 µm-1 is consistent with the period of 

the sinusoidal function (1/400=0.0025). The frequency of 0.0005 µm-1 also corresponds to 

a spike, which means the surface contains a low-order term with period of 2000 µm 

(1/2000=0.0005). Apparently, this is unreasonable because the diameter of the defocus is 

4000 µm. Moreover, the low-order terms in the profile may reduce the accuracy of 

computing other spatial frequency components. Consequently, the low-order term should 

be removed before the calculation of the linear PSD [41,42,92,93].  
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                (a)                                    (b) 
 

       
                (c)                                     (d) 
 

    
                  (e)                                   (f) 

Figure 3.30 Calculation of linear PSD with Hanning window. (a) Combined surface. (b) 
Diametric profile from the combined surface. (c) Combined surface. (d) Radial profile 

from the combined surface. (e) The radial profile adjusted by Hanning window. (f) Linear 
PSD of the adjusted radial profile. 
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For the linear SF, it is not necessary to remove the low-order term before the 

calculation. Figure 3.31 shows a linear SF of the whole combined surface. It reflects the 

trend of the defocus and keeps the high spatial frequency components. In this rotationally 

invariant surface, the uneven value of the peaks is because the linear SF is calculated from 

every possible paired data. If the paired data are not in the radial direction, the related SF 

value will not represent the true spatial component.  

    
                  (a)                                (b) 

Figure 3.31 Linear SF of the combined surface. (a) Combined surface. (b) Linear SF of 
the combined surface. 

 

In fact, if the surface is rotationally invariant, the analysis with a radial profile 

represents all the characteristics. In this case, we picked the same radial profile as that for 

computing linear PSD, and calculated the linear SF in Figure 3.32 (b). It is clear that the 

linear SF indicates both the high spatial frequency and low-order trend.  
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                   (a)                                 (b) 

Figure 3.32 Linear SF of the combined profile. (a) Radial profile from the combined 
surface. (b) Linear SF of the profile. 

 

3.3.2 Area SF and Area PSD 

With the development of 3-D surface measuring instruments, researchers have 

extended the linear analysis to areal investigations in order to obtain a better and 

comprehensive representation of the surface. This section discusses the relationship 

between the area PSD and area SF, and makes comparisons between these two 

representations.  

3.3.2.1 Relationship between Area PSD and Area SF for Stationary Process 

Similar to the linear analysis, it is possible to connect the area PSD to the area ACV 

based on the Wiener–Khinchin theorem:   
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where ( , )x yP f f  is the description of PSD used in Wiener–Khinchin theorem: 
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Multiplying both sides of Eq. ( 3.63 ) with x y  , then 
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where x and y are the sampling separation for the ACV and PSD, and they are usually 

equal to the sampling interval of the surface measurements in x and y dirctions or a 

multiple of them.  

Since the ACV is an even function, the equation can be rewritten as  
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( 3.65 ) 

In short, the PSD is the product of x y  and Fourier transform of the autocovariance 

function, 

( , ) [ ( , )].Fx y x yPSD f f x y ACV    
                  ( 3.66 ) 

Therefore, the relationship between area SF and area PSD for a stationary surface can 

be shown as 

2 1
( , ) [ ( , )].

2
Fx y x yPSD f f x y SF                 ( 3.67 ) 

3.3.2.2 Comparison between Area SF and Area PSD 

(1) Window function 

The same as the linear PSD, it is also necessary to use the window functions for 

calculating the area PSD.  
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            (a)                     (b)                      (c) 

Figure 3.33 Analysis of the use of window. (a) Diamond-turned aluminum flat. (b) Area 
PSD of the flat without using window. (c) Area PSD with Hanning window.  

 

Figure 3.33 (a) shows a diamond-turned aluminum flat measured with a scanning 

white light interferometer (SWLI). Figure 3.33 (b) shows its area PSD without applying 

any windows. It is clear that there are strong spurious edge effects along the x and y spatial 

frequency axes. The DFT always processes an image as if it were part of a periodic matrix 

of identical images extending to infinity. However, for this input height map, both x and y 

edges cannot match their opposite edges to be a smooth surface. Consequently, this 

discontinuity leads to the spurious power on the axes.  

After applying the Hanning window, as shown in Figure 3.33 (c), the edge effects are 

eliminated. Because the window function starts around zero, then increases to a maximum 

at the center of the image and decreases again, therefore the discontinuity can be 

corrected.  

In a word, the PSD with window function provides a better estimate of the surface 

structure. However, as discussed in Figure 3.28, there are various windows, which may 

lead to different results. As a result, the area PSD is strongly dependent on the choice of 

windows. Unfortunately, there is no strict standard for choosing the window.  
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Figure 3.34 Analysis of a diamond-turned aluminum flat. (a) Input map from a SWLI 
measurement. (b) Area SF. (c) Area PSD. 

 

Figure 3.34 (a) shows an analysis of the diamond-turned aluminum flat with area SF 

and PSD. Figure 3.34 (b) shows the area SF, which contains all the information of linear 

scratches of the surface. Figure 3.34 (c) shows the area PSD calculation with the Hanning 

window. In order to compare to the area SF, only two quadrants of the area PSD are 

demonstrated. The third and fourth quadrants contain the same information as the first and 

second quadrants. The area PSD characterizes the scratch information, but not as 

intuitively as the area SF.  

In short, the area SF calculation is specific and correct, because it uses all the data and 

does not need any window functions. For the area PSD, the calculation varies with the 

choice of windows.  

(2) Zero padding and low-order terms removal 

Figure 3.35 shows the simulated surface map that is generated with a single Zernike 

term Z(2,-2), as well as its area SF and area PSD. Figure 3.35 (b) shows that the area SF 

captures the long spatial wavelength detail in a surface, while Figure 3.35 (c) exemplifies 

that the area PSD is inappropriate for representation of low order figure errors. Since the 
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2D DFT cannot cope well with the circular aperture shape, it is necessary to pad the 

circular shape to be rectangular.  

In brief, the result of area PSD is also strongly dependent on zero padding and 

low-order terms removal. 

 

Figure 3.35 Analysis of simulation data.(a) Input map. (b) Area SF. (c) Area PSD. 
 

(3) Arbitrary aperture shape 

A key advantage of the area SF is the computational correctness for any arbitrary 

aperture shape. Figure 3.36 (a) shows a simulated hexagonal shape, representing a 

segment of a primary mirror of a large telescope. It is easy to calculate the area SF with all 

the data. To calculate an area PSD, it is necessary first to remove the form. In addition, it 

is difficult to calculate the area PSD, because we need to mask the full data aperture and 

separate it into rectangular sub-apertures, which should be “representative” of the true 

surface characteristics [43]. But for many optical surfaces, it is difficult to get the 

sub-surfaces which are statistically the same as the full aperture. For Figure 3.36 (a), the 

choice of sub-apertures leads to varying PSD calculations.   
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Figure 3.36 Analysis of simulation data.(a) Input map. (b) Area SF in 2 quadrants. 
 

3.4 Root Mean Square (RMS) Gradient and Structure Function 

As the SF is used to analyze the spatial frequency components of a surface, it is very 

important to connect the SF to the RMS gradient. The RMS gradient is the RMS value of 

the surface slope within the sampling area: 
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( 3.68 ) 

where x and y are the sampling intervals of the surface measurements in x and y 

dirctions respectively, m and n are the total number of sampling points in x and y dirctions 

respectively, and ( , )z i j are the surface height data. 

Similar to the two-quadrant area SF, Eq. ( 3.68 ) only calculates the slope in the 

 ,x y  and  ,x y  directions. When calculated in the  ,x y  and  ,x y 

directions, the RMS gradient is given as: 
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Apparently, the values of these two RMS gradients are the same.  

In order to connect to the RMS gradient, the SF is expressed as [78]: 

 2

1 2 1 2

1 1
( ) ( ) ( ) ,SF r z P z P dPdP

A C
  

              
( 3.70 ) 

where 1( )z P is the surface height in the position P, A is the area of the surface, C is a 

circle with a radius 1 2P P r  and centered at P1, dP1 represents the averaging over the 

area A, and dP1 indicates the averaging along the circle C.  

For a small separation r, Eq. ( 3.70 ) can be transformed to 
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The SF can also be described in the square-root way: 

( ) ( ).S r SF r                           ( 3.72 ) 

Therefore, the SF slope at the origin [78] can be obtained with the RMS gradient of the 

surface: 
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( 3.73 ) 
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3.5 Summary 

This chapter investigates the relationship between the SF and other surface 

characterization techniques: Zernike polynomials, ACF, PSD, and RMS gradient.  

According to the orthogonality of the Zernike polynomials, the total linear SF is the 

sum of the individual linear SFs of each of the Zernike polynomials with different 

azimuthal frequencies. However, this theorem does not apply to the area SF, because each 

area SF ( , )S r  corresponds to only one direction φ, which means the orthogonality cannot 

be used.  

The relationship between linear/area SF and linear/area ACF has been built for 

stationary surface, respectively. The SF contains similar information as ACF, but it 

provides better visualization of the surface characteristics than ACF, which is strongly 

dependent on the mean plane and is not intuitive. 

Several important issues of the calculation of linear and area PSD have been 

discussed. Based on the relationship between the ACF and PSD, the SF was connected to 

the PSD in both linear and area domain.  

The comparison between the SF and the PSD has been made.  

Since the linear PSD is normally calculated along profiles, it uses only a small 

fraction of the surface data, which may not be the representative of the surface. While the 

linear SF is estimated over the whole surface, it reflects the true characteristics. Moreover, 

the linear PSD is sensitive to details of calculation methods, such as windowing, zero 

padding, and low-order terms removal, while the calculation of linear SF is definite and 

standardized.  
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Similar to linear PSD, the area PSD always needs additional mathematical processing, 

while the area SF is computationally “correct” for any arbitrary aperture shape without 

extra processing. There is no standardization of the mathematical treatment of PSDs for 

optical surfaces; different metrologists may compute different PSDs from the same 

starting data.  

After connecting the SF to the RMS gradient, the SF slope at the origin has been 

evaluated.  



CHAPTER 4 : COMBINATION OF AREA STRUCTURE FUNCTIONS FROM 
MULTIPLE INSTRUMENTS 

 
 

Modern optical surfaces usually contain features over a wide range of spatial 

frequencies. In order to obtain a thorough analysis, multiple instruments with different 

upper and lower spatial frequency bandwidth limits have to be used. For the past 25 years, 

scientists (J. M. Bennett, P. Z. Takacs, E. L. Church, etc) have made comparison and 

combination of measurements from various types of instruments [34,97].  

Currently, PSD is used to characterize spatial frequency component. The different 

PSDs of measurements from multiple instruments can be plotted on the same scale. 

However, the SF is not an orthogonal representation so combination of data from different 

instruments requires more than simply plotting on the same scale. This means, for 

example, a surface containing form error will have a non-zero SF for small separations 

[98]. Hence, higher magnification sub-aperture data must contain low order form for a 

correct ASF analysis.   

When looking at the combination of the SF from multiple instruments, within the 

overlapped region in the response (spatial terms) of two instruments, there is often a 

discrepancy between instruments greater than the noise in the measurements. One cause 

for this discrepancy in optical instruments is that the response may be non-linear, showing 

a decrease in fidelity of the measurement of height as the spatial wavelength decreases. 

For smooth surfaces, this response can be characterized by the instrument transfer function 

(ITF) [99, 100, 101, 102, 103, 104, 105].  
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This chapter investigates the combination of the area SF from multiple instruments 

and analyzes the discrepancy with the ITF. Section 4.1 defines the ITF. Section 4.2 

introduces the challenge of combination of SFs from multiple instruments: the area SF of 

the sub-aperture depends on the measured position. Section 4.3 discusses the convergence 

of sampling method based on simulated surfaces (both stationary and non-stationary 

surfaces). Section 4.4 describes the combination of area SFs from a Fizeau interferometer 

and a coherence scanning interferometer (CSI). Section 4.4.1 is based on a polished silicon 

(stationary surface), while section 4.4.2 is based on a diamond turned aluminum 

(non-stationary surface).  

4.1 Instrument Transfer Function (ITF) 

Basically speaking, the ITF is the ratio of the measured value to the true value. It 

represents the system response as a function of the input signal’s frequency component. In 

surface metrology, a typical ITF is the optical transfer function (OTF), which describes the 

optical system’s ability to reproduce images in terms of spatial frequency (reciprocal of 

lateral feature size).The modulus of the OTF is the well-known modulation transfer 

function (MTF) [99]. 

A convenient way to measure the ITF is to image a sharp reflectivity step [106, 107]. 

After setting imaging focus for the step and measuring it in a horizontal or vertical 

direction, the one-dimensional ITF can be estimated by taking the square root of the ratio 

of the PSD from the measured step to the PSD from the ideal step [101]: 
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ITF f
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( 4.1 ) 
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For example, Figure 4.1 shows the theoretical and experimental ITF curves for four 

objectives used in the interferometric microscope. The horizontal dashed line at 70℅ of 

the ITF indicates the highest spatial frequency accepted by each objective [100]. 

 

Figure 4.1 The theoretical (dashed lines) and experimental (solid lines) ITF for four 
objectives used in the interferometric microscope [100]. 

 

In general, the ITF shows the decreasing response as surface frequencies approach 

Nyquist, and the initial roll-off might begin at ~0.1 Nyquist with a well-designed 

instrument. If the surface contains high spatial frequency component, an instrument with 

higher lateral resolution is needed.  

4.2 Challenge of Combination of SFs from Multiple Instruments 

The main goal of this chapter is to demonstrate a methodology for combination of data 

from instruments with substantially different lateral dynamic ranges. Particularly, two 

instruments are discussed, a Zygo Verifire AT Fizeau interferometer in Figure 4.2 (for 

full-aperture measurement) and a Zygo ZeGage environmentally tolerant coherence 

scanning interferometer (CSI) in Figure 4.3 (for sub-aperture measurement).  

                                                 

Commercial products identified to fully specify the experimental procedure 
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Figure 4.2 Measurement with Zygo Verifire AT Fizeau interferometer. 
 

 

Figure 4.3 Measurement with Zygo ZeGage CSI.  
 

For stationary surface, each sub-aperture has the same statistical characteristics, it is 

relatively easy to combine the sub-aperture measurement (relative high spatial frequency) 

and the full-aperture measurement (relative low spatial frequency). Figure 4.4 (b) is the 

full-aperture of a silicon surface, and Figure 4.4 (a) and (c) are two sub-apertures from 

different positions of the surface.  
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         (a)                      (b)                       (c) 

Figure 4.4 Silicon surface measured with different instruments. (a) A sub-aperture 
measurement with CSI at 20x. (b) Full-aperture measurement with Fizeau interferometer. 

(c) The other sub-aperture measurement with CSI at 20x. 
 

Figure 4.5 depicts the RMS, skewness, and kurtosis of the two sub-apertures in Figure 

4.4 (a) and (c). The RMS of the two sub-apertures are almost the same, and the skewness 

and kurtosis are very close between these two sub-apertures.  

 
                 (a)                 (b)                 (c) 

Figure 4.5 Some parameters of the two sub-apertures. (a) RMS of the two sub-apertures. 
(b) Skewness of the two sub-apertures. (c) Kurtosis of the two sub-apertures. 

 

Figure 4.6 shows the area SFs of the two sub-apertures in Figure 4.4 (a) and (c). It is 

clear that the two area SFs contains similar spatial content.  
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                    (a)                            (b)  

Figure 4.6 Area SFs of the two sub-apertures. (a) Area SF of the sub-aperture in Figure 
4.4 (a). (b) Area SF of the sub-aperture in Figure 4.4 (c).  

 

For non-stationary surface, the statistical characteristics of any sub-aperture is position 

dependent. For example, Figure 4.7 (b) is the full-aperture of a diamond turned aluminum 

surface, and Figure 4.7 (a) and (c) are two sub-apertures from different positions of the 

surface. As the turning marks dominate surface characteristic, the two sub-apertures are 

totally different.  

 
         (a)                      (b)                       (c) 

Figure 4.7 Diamond turned aluminum measured with different instruments. (a) A 
sub-aperture measurement with CSI at 20x. (b) Full-aperture measurement with Fizeau 

interferometer. (c) The other sub-aperture measurement with CSI at 20x. 
 

Figure 4.8 shows the RMS, skewness, and kurtosis of the two sub-apertures in Figure 

4.7 (a) and (c). The RMS and kurtosis of the two sub-apertures are similar. However, the 

difference between the two skewness is significant. That is because the 

skewness quantifies the symmetry of the surface topography and the height distribution of 
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the two sub-apertures are totally different. In brief, the two sub-apertures do not contain 

the same statistical characteristic.  

 
                (a)                (b)                 (c) 

Figure 4.8 Some parameters of the two sub-apertures. (a) RMS of the two sub-apertures. 
(b) Skewness of the two sub-apertures. (c) Kurtosis of the two sub-apertures. 

 

As Figure 4.9 shows, the area SFs of the two sub-apertures are totally different. Thus, 

for non-stationary surfaces, the area SF of the sub-aperture depends on the measured 

position.  

 
                  (a)                            (b) 

Figure 4.9 Area SFs of the two sub-apertures. (a) Area SF of the sub-aperture in Figure 
4.7 (a). (b) Area SF of the sub-aperture in Figure 4.7 (c). 

 

The ‘brute force’ approach to calculating the area SF for small separations (high 

spatial frequency) would be to measure the entire part surface area with the high 

lateral-resolution instrument, stitch together the sub-apertures, and then compute the area 

SF. This may require thousands of measurements and is experimentally and 
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computationally impractical. More realistically, the area SF can be estimated from the 

average of the area SF for a number of sampled sub-apertures. The details are discussed in 

the following section.  

4.3 Convergence for Simulated Surfaces 

Based on the simulation of a non-stationary surface and a stationary surface, this 

section demonstrates that the averaged area SF for a number of sampled sub-apertures 

converges to the analytically correct area SF for the high frequency content.  

4.3.1 Non-stationary Surface 

Figure 4.10 (a) shows a simulated sinusoidal surface (1000 µm×1000 µm) with a 

radial wavelength of 20 µm, and Figure 4.10 (b) shows its area SF. When zooming in the 

area SF near the zero separation, the high spatial frequency component is shown in Figure 

4.10 (d).  
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Figure 4.10 Sampling method. (a) Simulated sinusoidal surface. (b) Area SF of the 

simulated surface. (c) Average of the SFs of the sub-apertures. (d) Zoom in the area SF. (e) 
Difference between (c) and (d).  

 

Fifty sub-apertures were picked randomly to simulate measurements taken with high 

magnification (100 µm×100 µm areas). Then, the area SFs were calculated for each 

sub-aperture and then averaged (shown in Figure 4.10 (c)). After comparing Figure 4.10 (c) 

and (d), the difference is shown in Figure 4.10 (e). It is clear that the averaged SF is an 

approximation of the exact SF in the high spatial frequency region shown in Figure 4.10 

(d), they both represent the most important characteristic of the surface (λ = 20 µm). Thus, 

averaging the area SFs from sub-aperture measurements using instruments with high 
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spatial frequency resolution may represent the area SF in the high spatial frequency region 

even for a non-stationary surface.  

In practice, the metrologist must estimate the number of sub-aperture samples needed 

to reach a given uncertainty. This convergence can be evaluated by looking at the 

difference between averaged sub-aperture SF and full-aperture SF as a function of N 

(number of sub-aperture samples). For example, Figure 4.10 (e) is the difference with 

N=50.  

For the simulated radial sinusoidal surface, Figure 4.11 shows the area SF 

convergence for the sub-apertures with two sizes (100 µm×100 µm and 50 µm×50 µm), 

respectively.  

 

 
 

Figure 4.11 Area SF convergence for simulated radial sinusoidal surface.  
 

For different values of the number of sub-apertures to be averaged (N), 10 independent 

groups of N sub-apertures were randomly selected and their area SFs were calculated and 

then averaged. The RMS of the difference between averaged sub-aperture area SF and 
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full-aperture area SF are plotted in Figure 4.11 as a function of N, showing the mean value 

for 10 groups and the standard deviation.  

As expected, the RMS of SF converges toward zero as N increases. For each 

sampling number of sub-aperture, the RMS of SF with size 100 µm×100 µm is less 

than that with size 50 µm×50 µm, because larger area contains more information during 

the calculation. In this case, the surface contains periodic data with only one spatial 

frequency. When the size of the sub-aperture is reduced from 100 µm×100 µm to 50 µm

×50 µm, the number of pixels is reduced by a factor of 4 and the number of cycles is 

reduced from 5 to 2.5 per sub-aperture. As noted in Chapter 2, the periodic maximum SF 

values are not exactly separated by the spatial wavelength because of finite sampling and 

averaging effects, especially for the values at the edge. Therefore, the SFs of sub-apertures 

containing fewer pixels and cycles have more noise and errors. Thus, the convergence to 

zero is faster when the area of the sub-aperture is increased.  

 
 

Figure 4.12 Area SF convergence indicates a dependence consistent with (N)-1/2 for 
simulated sinusoidal surface.  
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Replotting Figure 4.11, the convergence shows a dependence consistent with (N)-1/2 in 

Figure 4.12.  

4.3.2 Stationary Surface 

The convergence of stationary surface was also investigated.  

 

Figure 4.13 Simulated random noise.  
 

For the simulated random noise (Figure 4.13), Figure 4.14 and Figure 4.15 show the 

area SF convergence for the sub-apertures with two sizes (100 µm×100 µm and 50 µm×

50 µm), respectively.  

As with the non-stationary surface, the RMS of SF converges to zero for increasing 

N and converges faster for larger sub-apertures. 
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Figure 4.14 Area SF convergence for simulated random noise.   
 
 

 
 

Figure 4.15 Area SF convergence indicates a dependence consistent with (N)-1/2 for 
simulated random noise. 
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In general, the convergence for the stationary surface is faster than the non-stationary 

surface, because each sampled sub-aperture of the non-stationary surface may contain 

different statistical characteristics.  

4.3.3 Tilt Removal 

One important characteristic of an area SF is that it is not an orthogonal representation 

of the spatial content of the surface in terms of separation. This means, for example, a 

surface containing form error will have a non-zero SF for small separations. Hence, higher 

magnification sub-aperture data must contain low order form for a correct area SF 

analysis. Take the CSI measurement as an example, tilt is the only low order form 

contribution that is unknown for sub-aperture measurements. This is because the apparent 

tilt is assumed to be an alignment error and is usually removed [108]. The correct area SF 

can be estimated by adding the correct tilt to each sub-aperture measurement, perhaps 

estimated from the large-area measurement and knowledge of the global coordinates of 

each. For a purely quadratic parent surface, the sub-apertures will appear to have variable 

tilt as a function of position and the same power. Note that the ratio of the power in the 

parent and in each sub-aperture is proportional to the square of the aperture sizes and is 

independent of position. 

For example, Figure 4.16 (a) shows a simulated surface map that consists of power, 

coma and radial sine wave. Figure 4.16 (b) and (c) show its area SF. Figure 4.16 (d) shows 

the randomly picked sub-apertures (including the correct tilt), and Figure 4.16 (e) shows 

the averaged SF. We see that Figure 4.16 (e) is an estimate of Figure 4.16 (c).  
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Figure 4.16 Tilt analysis of a simulated surface. (a) Simulated surface map with power, 
coma and a sine wave. (b) Area SF of the simulated surface.(c) Zoom in on the area SF in 

the high-spatial frequency region. (d) Randomly picked sub-apertures with tilt. (e) 
Average of the SFs of the sub-apertures. 

 

However, if the tilt of the randomly picked sub-apertures is removed, the averaged SF 

would be similar to that shown in Figure 4.10 (d). Notice that the wavelength of the sine 

wave is still identifiable.  

4.4 Combination of Area Structure Functions 

Following the simulation, two real precision surfaces (a polished silicon flat and a 

diamond-turned aluminum flat) were analyzed.  
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4.4.1 Polished Silicon Flat 

4.4.1.1 Experimental Method 

Form error of the polished silicon flat was measured using the Zygo Verifire AT 

Fizeau interferometer with a ring source. The system was zoomed so the part fills the 

1000×1000 pixel detector array. Height data are exported for off-line computation. 

Three fiducials on the edge of the part can be identified in the Fizeau data and in 

measurements made using a Zygo ZeGage environmentally tolerant coherence scanning 

interferometer (CSI) [109] with a 20x objective and a (417 µm)2 field of view. Position 

and rotation of the fiducials allows the coordinate system of the Fizeau data to be 

connected to the coordinate system defined by the stages of the CSI. This is necessary 

because tilt in individual sub-aperture CSI measurements is alignment sensitive and not 

uniquely related to the form of the optic; so tilt in the raw CSI data must be replaced by 

the correct tilt associated with the specific position in the full aperture. The CSI 

measurements capture quadratic and higher order components of form; hence only tilt 

needs to be corrected. 

4.4.1.2 Uncertainty Associated with Tilt Correction 

Figure 4.17 (a) is the polished Si flat measured with the Fizeau interferometer. The 

small square represents a sub-aperture CSI measurement at 20x. In order to estimate the 

tilt of the sub-aperture, a fitted surface with 36 Zernikes was generated (Figure 4.17 (b)). 

Figure 4.17 (c) is the sub-aperture measured with the CSI. Figure 4.17 (d) shows the area 

SF for the Fizeau data. The figure error is dominated by a comatic term (cubic, 

approximately symmetric about the y-axis); the area SF shows peaks at separations of 
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approximately half the aperture size, as well as peaks near full aperture separation 

resulting from the high and low edges at 3 and 9 o’clock. 

 

Figure 4.17 Polished silicon flat. (a) Polished silicon flat measured with Fizeau 
interferometer. (b) Fitted surface with 36 Zernikes. (c) A sub-aperture measured with the 

CSI at 20x. (d) Area SF of the Fizeau data. 
 

With the fiducials, the coordinate system defined by the stages of the CSI can be 

connected to the coordinate system of the Fizeau measurement. During the CSI 

measurement, the stages are translated in x and y directions (recording the x and y scale). 

When comparing the recorded scale to the positions of the fiducials in the coordinate 

system of the Fizeau measurement, the position of the sub-aperture can be obtained.  

Error in the estimate of the sub-aperture position leads to error in the tilt correction and 

therefore error in the area SF calculation. An analysis shows that the dominant 

uncertainties in positioning include the x and y positioning uncertainty in connecting the 
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two coordinate systems (±0.1mm), x and y calibration uncertainty of the linear axes of the 

CSI (±0.1mm), and the x and y axes squareness (±0.04mm). Other contributions such as 

the straightness, angular error motions of the stages and distortion in the Fizeau 

interferometer are negligible. The dominant uncertainties are uncorrelated and the 

expanded uncertainty (k=2) in sub-aperture position in the Fizeau data coordinates is: 

2 2 2 2 22 (0.1) (0.1) (0.1) (0.1) (0.04) 0.4( )U mm       .       ( 4.2 ) 

Uncertainty in the tilt correction, for a given sub-aperture, arising from positioning 

uncertainty depends on the local curvature (ie change in slope). Figure 4.18 (a) is a 

curvature map for the fitted surface shown in Figure 4.17 (b). The uncertainty 

consequence for the area SF calculation was investigated by selecting sub-apertures on the 

surface at locations with different curvatures. For each nominal position, the area SF was 

computed using the nominal tilt and a modified area SF was computed using tilts for 

positions 0.4 mm away. The RMS of the difference between the area SF and the modified 

area SF was computed as this provides a reasonable metric to evaluate the effect. Figure 

4.18 (b) summarizes the analysis and shows that, for this surface, the difference rises 

rapidly for curvature above 4×10-3 m-1.  

The short period structure on the silicon surface is relatively insensitive to position 

(see Figure 4.17 (c)) and only a small fraction of the surface has curvature exceeding 

4×10-3 m-1. Therefore, it is reasonable to use sub-apertures only from positions on the 

surface which have curvatures lower than this limit.  
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Figure 4.18 Curvature. (a) Curvature map of the fitted surface. (b) RMS of SF vs. 
curvature. 

 

4.4.1.3 Area SF Convergence for CSI Measurements (20X) 

The purpose of combining data from two instruments is to provide robust estimates of 

the area SF from separations ranging from full aperture to the high spatial frequency limit 

of the CSI. As discussed in section 4.2, the area SF can be estimated from the average of 

the area SF for a number of sampled sub-apertures. Note that the average area SF is 

physically sensible, and has been shown in simulation to converge to the analytically 

correct area SF. 

The convergence of the averaged area SF with the number of sub-aperture samples 

must be estimated to decide on the number of sub-aperture measurements needed.  

In practice, because the lateral resolutions of sub-aperture measurement and 

full-aperture measurement are different, we cannot directly evaluate the convergence by 

looking at the difference between averaged sub-aperture SF and full-aperture SF.  

Instead, the convergence can be evaluated by looking at the difference of independent 

samples of N averages from a larger population of measurements. This is demonstrated for 

the Si flat where 100 sub-apertures were measured with the CSI (20x objective). The 
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position of each sub-aperture was recorded for subsequent tilt correction. For different 

values of the number of sub-apertures to be averaged (N), independent groups of N 

measurements were randomly selected from the population and their tilt-corrected area 

SFs were calculated and then averaged. Finally, the RMS of the difference between pairs 

were plotted as a function of N, showing individual trials and the mean. For example, 

Figure 4.19 shows the flow chart of calculating RMS of SF for N=25.  

 

Figure 4.19 Flow chart of calculating RMS of SF. 
 

Figure 4.20 shows the RMS of the difference between pairs as a function of N, 

including individual trials and the mean. Notably, the convergence shows a dependence 

consistent with (N)-1/2. 
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Figure 4.20 Area SF convergence for polished Si flat (CSI 20x objective). 
 

In fact, the selection of N will depend on the surface, the size of the sub-aperture, and 

the specification. Following the default decision rule of ISO 14253-2 [110], the expanded 

uncertainty in the area SF must be subtracted from the specification for a vendor to prove 

conformance. Reducing the uncertainty increases the manufacturing headroom. 

4.4.1.4 Combination of Area SFs from Two Instruments 

Figure 4.21 (top left) shows the area SF for the silicon flat computed from the Fizeau 

data. Zooming in (top right) the area SF trends asymptotically to zero for zero separation, 

as expected. For real interferometers, the ITF shows the decreasing response as surface 

frequencies approach Nyquist, and the initial roll-off might begin at ~0.1 Nyquist with a 

well-designed instrument. Consequently, the ITF impacts the Fizeau data over much of the 

range shown in the top right. The averaged area SF from the CSI measurements is 

computed (mid-left in Figure 4.21) and substituted for the data over the corresponding 

separation range in the Fizeau data (Figure 4.21 bottom). Comparison of Figure 4.21 

(bottom and top right) indicates the increased fidelity of the combined area SF. The 
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discontinuity between CSI and Fizeau data at the top corners of the CSI insert is a 

consequence of noise and low sampling and is not meaningful. 

 

Figure 4.21 Combination of area SF based on the Si flat measured with the Fizeau 
interferometer and the CSI (20x).  

 

4.4.1.5 Type A Uncertainty in Combined Area SF 

Figure 4.22 extracts data for a specific profile (combination of x and y separations) for 

the combined area SF based on Fizeau and CSI data. The resolution of the Fizeau 

measurement is 25 µm/pixel while the CSI data is approximately 0.4 µm/pixel. 
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Figure 4.22 Variation for a profile from the combined area SF. 
 

The uncertainty in the averaged area SF for the CSI data is dominated by the 

tilt-correction uncertainty and by the finite averaging uncertainty for larger values of tau. 

Both randomly vary among the N=50 samples in the population used for the average. 

Thus, a Type A uncertainty analysis can be used to give a good estimate of the combined 

standard uncertainty each τ as  
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Applying a coverage factor k=2 for each data point, the Type A analysis is shown as a 

red dashed curve above and below the CSI data in Figure 4.22.  

The results in Figure 4.21 and Figure 4.22 show that, at separations of approximately 

400 µm, there is reasonable agreement between the SFs computed using the two 

instruments. This is consistent with the analysis with ITF: the resolution of the Fizeau 

measurement is 25 µm / pixel, giving close to 0.1 Nyquist at τ = 400 µm. In this case, the 

ITF is expected to be essentially unity [111]. At smaller values of τ (greater than 0.1 
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Nyquist), the Fizeau data falls below the CSI data as the ITF of the Fizeau approaches 

zero at the Nyquist limit.   

4.4.1.6 Combination of Area SFs without Tilt Correction 

The combination of area SFs without tilt correction is shown in Figure 4.23. The 

averaged area SF from the CSI measurements is computed (no tilt correction) and 

substituted for the data over the corresponding separation range in the Fizeau data. 

     

Figure 4.23 Combination of area SF based on the Si flat measured with Fizeau 
interferometer and CSI 20x (no tilt-correction). 

 

Figure 4.24 extracts data for a specific profile (the same position as that in Figure 

4.21) for the combined area SF from Fizeau and CSI measurements. It is obvious that the 

CSI data does not match as well with the Fizeau data as when tilt correction is made. 

 

Figure 4.24 Variation for a profile from the combined area SF (no tilt-correction). 
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4.4.2 Diamond Turned Aluminum 

4.4.2.1 SF Convergence for CSI Data (20X) 

For nonstationary and highly anisotropic surfaces, it is possible to represent the area 

SF in the same way. A 50 mm diameter diamond turned aluminum flat was measured with 

both the Fizeau interferometer (Figure 4.25 (a)) and the CSI (20x objective).  

 

Figure 4.25 Diamond turned Al. (a) The whole surface measured with Fizeau 
interferometer. (b) A sub-aperture measured with the CSI 20x.  

 

Following the same procedure as with the polished Si, 100 sub-apertures were 

measured with the CSI. The same trend of decreasing RMS of area SF difference with the 

number of sub-aperture is observed (Figure 4.26), although the amplitudes are much 

greater, as expected. The convergence to zero is slower due to the anisotropy in the high 

spatial content regime of the diamond turned surface. 

By contrast, the polished silicon surface can be considered a stationary surface over 

the bandwidth of the CSI data, after removal of tilt. Thus the averaged area SF of the 

sub-apertures converges at a rate that appears to be a consequence of the low order form, 

which is faster than the diamond turned surface.  
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Figure 4.26 Area SF convergence for diamond turned Al and the comparison with 
polished Si flat (CSI 20x).    

 

4.4.2.2 SF Combination from CSI (20X) and Fizeau Data 

Similar to the polished Si, the area SF based on Fizeau data and the area SF based on 

CSI data are combined in the high spatial content region (small separation) in Figure 4.27 

and Figure 4.28. 
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Figure 4.27 Combination of area SF based on the diamond turned Al measured with 
Fizeau interferometer and CSI (20x objective). 

 

 

Figure 4.28 Variation for a profile from the combined area SF. 



121 

Figure 4.27 and Figure 4.28 show a significant difference between the Fizeau and CSI 

based area SFs for the diamond turned aluminum surface for τ values of order 0.4 mm. For 

the large τ values in the CSI data, the ITF of the instrument is essentially unity. For the 

Fizeau, in this case, each pixel is 50 µm square and so the Nyquist frequency is 1/100 

µm-1.  

From Figure 4.28, we observe that the ratio of CSI to Fizeau SF is approximately 

130nm2 / 200nm2 = 0.65 for τ= 400 µm, or 0.25 Nyquist. If the entire difference between 

the Fizeau and CSI SFs (nm2) is attributed to the ITF of the Fizeau, this implies an ITF of 

0.651/2 ≈ 0.8 at 0.25 Nyquist. The ITF of the specific Fizeau has not been measured at this 

zoom; however, this estimated value is consistent with the published literature [99, 111] 

and reasonable according to the instrument manufacturer [112]. 

As we have discussed, the ITF shows the decreasing response as surface frequencies 

approach Nyquist, and the initial roll-off might begin at ~0.1 Nyquist with a well-designed 

instrument. For the Fizeau measurement in this case, 0.1 Nyquist is related to the 

separation of 1000 µm. Thus, if the separation range is extended to some value greater 

than 1000 µm, we can obtain a comprehensive evaluation of the area SF combination.  

 

Figure 4.29 Combination of area SF based on the diamond turned Al measured with 
Fizeau interferometer and CSI (20x objective). 
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As Figure 4.29 shows, when the separation is greater than 1000 µm (less than 0.1 

Nyquist frequency), the ITF of Fizeau measurement is greater than 0.9, which means the 

Fizeau data in this region is reasonable. When the separation is less than 417 µm (greater 

than 0.25 Nyquist frequency), the Fizeau data should be replaced by the CSI (20x) data. 

Between the separation of 417 µm and 1000 µm, there are no reasonable data.  

 

Figure 4.30 Variation for a profile from the combined area SF. 
 

Figure 4.30 extracts data for a specific profile for the combined Fizeau and CSI (20x) 

area SF. If we want to cover the spatial frequency between 1/417 µm-1 and 1/1000 µm-1, a 

lower-magnification CSI is needed.  

4.4.2.3 SF Combination from CSI (5X and 20X) and Fizeau Data 

In order to make a better combination with Fizeau SF, a 5x objective was selected for 

the CSI measurement. In this case, the resolution of the Fizeau measurement is 50 

µm/pixel and the CSI (5x) measurement is approximately 1.6 µm/pixel. 

Similar to the procedure in last section, the area SF based Fizeau data and the area SF 

based on CSI (5x) are combined in the high spatial content region (small separation) in 

Figure 4.31.  
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Figure 4.31 Combination of area SF based on the diamond turned Al measured with 
Fizeau interferometer and CSI (5x objective). 

 

Figure 4.32 extracts data for a specific profile for the combined Fizeau and CSI (5x) 

SF. The result shows that the SFs computed using the two instruments have a reasonable 

agreement between the separations of approximately 1 mm (0.1 Nyquist) and 1.6 mm 

(0.06 Nyquist).  

At smaller values of τ, the Fizeau data falls below the CSI data as the ITF of the 

Fizeau approaches zero at the Nyquist limit.   
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Figure 4.32 Variation for a profile from the combined area SF. 
 

Furthermore, it is worthwhile to combine the SFs from CSI 20x, CSI 5x and Fizeau 

measurements. Figure 4.33 (b) shows the three SFs on the same scale.  

As Figure 4.33 (a) shows, there is a discrepancy between the SFs from CSI 5x and CSI 

20x, but the mean estimate SF for the 20x data falls with the Type A uncertainty 

(expanded at k=2). The uncertainties in the averaged area SFs for the CSI data are 

dominated by the tilt-correction uncertainty and by the finite averaging uncertainty for 

larger values of separation. Both randomly vary among the N=50 samples in the 

population used for the average.  

Therefore, to reduce the discrepancy between the two SFs, it is necessary to improve 

the tilt-correction (i.e. reduce the error in the estimate of the sub-aperture position) and 

increase the number of sub-aperture measurements.   
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Figure 4.33 Combination of the SF for Fizeau data and CSI data (at 5x and 20x). (a) 
Zoom in SF in the high spatial frequency region. (b) Variation for a profile from the 

combined area SF (Fizeau, CSI 5x, and CSI 20x). (c) Intersection of the CSI SFs (5x and 
20x).  

 

When zooming the SF in the high spatial frequency region (Figure 4.33 (c)), it is clear 

that the SF of CSI 5x falls below the SF of CSI 20x as the separation is less than 6 µm. 

This is because the ITF of the CSI 5x approaches zero at the Nyquist limit.  

Note also that Type B uncertainties have not been considered. In neither set of 

measurements has the reference surface of the objective been calibrated, nor distortion 

evaluated and corrected. 
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4.5 Summary 

The spatial content of surfaces over large dynamic ranges for arbitrary aperture shapes 

can be represented by an area SF constructed from data obtained from more than one 

instrument. Proper combination of area SFs from different instruments requires accounting 

for the effect of low order form on small separation SF values. The effect of the ITF of the 

instruments used must also be considered.  

A full uncertainty analysis on a combined area SF should include Type B uncertainties, 

such as the effect of an uncalibrated reference flat or retrace error, not considered here. 

 

 



CHAPTER 5 : APPLICATION OF STRUCTURE FUNCTION 
 
 

Besides the applications mentioned in Chapter 1, the structure function (SF) can also 

been used in other surface metrology applications. With the SF, this chapter explores two 

typical noise sources (electronic noise and air turbulence) for the phase shifting 

interferometry (PSI), and makes a quantitative estimation of a diamond turned surface 

after the compensation machining based on a dynamic measurement.  

5.1 Investigation of Electronic Noise and Air Turbulence with Structure Function 

In this section, measurements using a laser Fizeau interferometer are discussed. As 

Figure 5.1 shows, the laser Fizeau interferometer includes three functional sub-systems: 

the illumination system with spherical wave (or plane wave) illuminating reference 

surface at normal incidence, the interference cavity that encodes difference between 

reference and part under test, and the imaging system that reflects part under test onto 

detector [113].  

 

Figure 5.1 Laser Fizeau interferometer configuration [113]. 
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According to the Guide to the Expression of Uncertainty in Measurement (GUM), it is 

obligatory to give the quantitative indication of the quality of the measurement result of a 

physical quantity, that is, for evaluating and expressing its uncertainty. Without this, 

measurement results cannot be compared, either among themselves or with reference 

values indicated in a specification or standard [114].  

In the measurement using the Fizeau interferometer, various noise sources can affect 

the quality of the result. In this case, we analyzed the uncertainty of two typical sources 

(electronic noise and air turbulence) by taking a number of independent measurements and 

computing the averaged SF of the difference between each two adjacent measurements.  

5.1.1 Uncertainty Analysis for Electronic Noise by Linear SF 

In a temperature controlled lab, a Zygo Verifire Fizeau interferometer was set on a 

vibration isolated table. As Figure 5.2 shows, the interference cavity length was 5 mm and 

was insulated with a bubble wrap. This minimizes environmental effects such as the 

vibration, the temperature, and air turbulence in such a short cavity. 

 

Figure 5.2 Setup of the interferometer with a short insulated cavity. 
 

In this case, the measurements were completed in four groups without changing the 

setup of the instrument. The data in each group were obtained with the average number of 
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4, 8, 16, and 32, respectively. Figure 5.3 (a) is the measured surface with average number 

32 (Fizeau 1x). Figure 5.3 (b) is the same surface measured with average number 32 when 

the Fizeau interferometer is zoomed in from 1x to 6x. 

  

             (a)                                 (b) 

Figure 5.3 Measurement with Fizeau interferometer. (a) Surface data measured with 
Fizeau 1x (100mm×100mm). (b) Surface data measured with Fizeau 6x 

(16.7mm×16.7mm) 
 

With each average number (4, 8, 16, 32), ten measurements (M1, M2, ... M10) were 

made. After calculating the SF of the difference between each two adjacent measurements 

( SF(M2-M1), ... ), the average was computed. The procedure is: 

Group 1:  Avg. No. = 4:    M1, M2, M3, M4, M5, M6, M7, M8, M9, M10.  

         SF of difference = [SF(M2-M1) + SF(M3-M2) + … + SF(M10-M9)] / 9. 

Group 2:  Avg. No. = 8:    M1, M2, M3, M4, M5, M6, M7, M8, M9, M10.  

         SF of difference = [SF(M2-M1) + SF(M3-M2) + … + SF(M10-M9)] / 9. 

Group 3:  Avg. No. = 16:   M1, M2, M3, M4, M5, M6, M7, M8, M9, M10.  

         SF of difference = [SF(M2-M1) + SF(M3-M2) + … + SF(M10-M9)] / 9. 

Group 4:  Avg. No. = 32:   M1, M2, M3, M4, M5, M6, M7, M8, M9, M10.  

         SF of difference = [SF(M2-M1) + SF(M3-M2) + … + SF(M10-M9)] / 9. 
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As Figure 5.4 shows, the SF (representing the errors) decreases when the average 

number increases. And the SF increases when the Fizeau interferometer is zoomed in from 

1x to 6x. It may be because the intensity distribution in each pixel increases when 

zooming the interferometer.   

 

    

                   (a)                                    (b) 

Figure 5.4 SF of the difference. (a) SF of the difference (Fizeau 1x). (b) SF of the 
difference (Fizeau 6x).  

 

For the 1x data it is noticeable that there is some curvature in the linear SF which 

decreases with increased averaging. This may be because the intensity distribution 

decreases, and hence signal to noise ratio increases, toward the edge of the aperture. For 

the 6x data, it is obvious that most part of the SF is flat (except at separation where there 

are only a few calculated points). Over the central portion of the aperture, the intensity 

distribution is almost uniform.  
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                (a)                                    (b) 

Figure 5.5 SF analysis for random noise. (a) Random noise. (b) SF of random noise.  
 

Figure 5.5 (a) is a simulated surface with random noise, and Figure 5.5 (b) shows that 

the SF of the random noise is essentially be flat except that at large separations, due to the 

relatively small number of calculated points.  

Therefore, when comparing Figure 5.4 to Figure 5.5, it is clear that the dominant effect 

in this measurement is the randomly distributed electronic noise.  

5.1.2 Uncertainty Analysis for Air Turbulence by Linear SF 

 

Figure 5.6 Setup of the interferometer with different cavity lengths. 
 

In the same environment as last experiment (temperature controlled lab and vibration 

isolation table), the Fizeau interferometer was set with different interference cavity lengths 

(The return flat (RF) was moved to 35 mm, 60 mm, 110 mm, and 210 mm away from the 
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transmission flat, respectively). In this case, the major source of the environmental effects 

was the air turbulence.  

In each cavity, ten measurements (M1, M2, ... M10) were made. After calculating the 

SF of the difference between each two adjacent measurements ( SF(M2-M1), ... ), the 

average was computed. The procedure is similar to last experiment.  

Cavity 1:  Measurement:   M1, M2, M3, M4, M5, M6, M7, M8, M9, M10.  

         SF of difference = [SF(M2-M1) + SF(M3-M2) + … + SF(M10-M9)] / 9. 

Cavity2:  Measurement:    M1, M2, M3, M4, M5, M6, M7, M8, M9, M10.  

         SF of difference = [SF(M2-M1) + SF(M3-M2) + … + SF(M10-M9)] / 9. 

Cavity3:  Measurement:    M1, M2, M3, M4, M5, M6, M7, M8, M9, M10.  

         SF of difference = [SF(M2-M1) + SF(M3-M2) + … + SF(M10-M9)] / 9. 

Cavity4:  Measurement:    M1, M2, M3, M4, M5, M6, M7, M8, M9, M10.  

         SF of difference = [SF(M2-M1) + SF(M3-M2) + … + SF(M10-M9)] / 9. 

Figure 5.7 shows the SFs of the differences for Fizeau 1x (100 mm diameter) and 

Fizeau 6x (16 mm × 16 mm). Comparison between Figure 5.7 and Figure 5.4 indicates 

that the environmental effect (air turbulence) is more than an order of magnitude greater 

than the electronic noise.   

As Figure 5.7 shows, the SF (air turbulence) increases when the cavity length 

increases. Thus, in order to reduce the influence of the air turbulence, it is important to use 

a short cavity for the Fizeau interferometer, where possible.  
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                   (a)                                    (b) 

Figure 5.7 SFs of the differences. (a) SF of the difference (Fizeau 1x). (b) SF of the 
difference (Fizeau 6x). 

 

When comparing Figure 5.7 (a) to (b), it is obvious that the SF decreases when the 

Fizeau interferometer is zoomed in from 1x to 6x. That is, the influence of air turbulence 

is related to the size of the dimensions of the average turbulence “cell” sampled by the 

measurement which decreases when the measuring area decreases.  

Moreover, in Figure 5.7, the SF is small on the high frequency domain, because the 

separation is so small (pixel to pixel) that the influence of air turbulence can be negligible, 

consequently the dominant noise is the electronic noise.  

Figure 5.7 (b) is based on a square aperture (16 mm × 16 mm), then the SFs in the 

largest separations (near the 24 mm) are calculated from very limited data points and are 

not meaningful.  

Since the air turbulence is also related to thermal gradient (affecting the air refractive 

index [115,116,117,118]), it is necessary to investigate its distribution in the interference 

cavity.  
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               (a)                                   (b) 

Figure 5.11 Linear SF of the power. (a) Power. (b) Linear SF of the power.  
 

5.1.3 Uncertainty Analysis for Air Turbulence by Area SF 

The area SF can also be used to analyze the air turbulence. In this case, a Zygo 

DynaFiz interferometer is used (Figure 5.12). It is a phase measuring interferometer 

designed for performing accurate measurement in the environment of air turbulence and 

extreme vibrations [119].  

 
Figure 5.12 Zygo DynaFiz interferometer [119]. 

 

Different from the conventional time-based PSI (for example: Zygo Fizeau 

interferometer), the DynaFiz instantaneous interferometer is based on the carrier fringe 

method. It transfers the phase shift to the interference signal which can be measured 

within a time window of a single shuttered camera frame (for example: 1msec) [120, 
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121]. Therefore, it is possible to capture the dynamically-changing events (“freeze” the 

turbulence) with this method.  

 

Figure 5.13 Setup of the DynaFiz interferometer.  
 

The experiment was conducted in a temperature controlled lab. As Figure 5.13 shows, 

the return flat is set 500 mm away from the transmission flat. In this case, the major source 

of the environmental effects was the air turbulence. The camera shutter of the DynaFiz 

interferometer was set to 5% of the frame rate, which could reduce the exposure time to 

freeze the turbulence. Consequently, the frame exposure time was 0.983 msec.  

In this experiment, ten measurements were made. After calculating the area SF of the 

difference between each two adjacent measurements, the average was computed in Figure 

5.14 (a).  

Then, we lifted up the setup by 300 mm, and made the same measurements. The 

averaged area SF is shown in Figure 5.14 (b). Because we measured the same 

transmission and return flats with the same instrument in these two experiments, the only 

thing that introduced the difference between the two area SFs was the air turbulence. 

Comparison between Figure 5.14 (a) and (b) denotes that the air turbulence in the high 

cavity is stronger than that in the low cavity. This may be because of the stagnation at the 

table top. In both cavities, the air turbulence has more influences in the direction and 
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separation of (-τx, τy) and (τx, τy). In addition to the information of linear SF, the area SF 

indicates the direction of the air turbulence.  

 
                (a)                               (b) 

Figure 5.14 Area SF of turbulence. (a) Area SF of turbulence in low cavity. (b) Area SF of 
turbulence in high cavity.  

 

5.2 Dynamic Measurement on Diamond Turning Machine 

In the precision machining, it is possible to improve workpiece dimensional accuracy 

by correcting for repeatable errors of the machine tool. Usually the workpiece needs to be 

removed from the machine and taken to a metrology lab for measurement. After the 

measurement, the workpiece is set up to the machine again for the compensation 

machining.  

In this case, since the machining and the measurement are separated, it is easy to 

introduce repositioning errors. One of the solutions to this problem is on-machine 

measurement [122, 123]. In the case of optics manufacturing, the environment of the 

machine shop is not usually suitable for traditional interferometry. 

Since the Zygo DynaFiz interferometer can implement dynamic acquisition in bad 

environment, it was chosen to perform the on-machine measurement for diamond turning 

and the SF was used to analyze the surface in spatial domains. 
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As Figure 5.15 shows, a workpiece is fixed to the spindle (be able to move in x 

direction) of a Precitech diamond turning machine (DTM), a mirror is fixed to the 

precision stage which can move in z direction, and the DynaFiz interferometer is set up on 

a hydraulic cart beside the DTM. Then, the workpiece surface can be measured by 

adjusting the x and z axes, the position of the DynaFiz interferometer, the tilt of the mirror, 

etc.  

 

Figure 5.15 Measurement configuration.  
 

In this experiment a PMMA part was single point diamond machined to give a 

concave spherical surface with an effective diameter of 40 mm and a radius of curvature 

of 200 mm. Based on the part dimensions and the positioning ranges of the slides in the 

DTM, a transmission sphere with a diameter of 100 mm and a radius of curvature of 350 

mm was chosen for the DynaFiz interferometer.  
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Figure 5.16 Experiment setup after the first machining. 
 

Figure 5.16 shows the setup of the measurement after the first machining. It should be 

noted that the height data obtained by the DynaFiz interferometer are the departure of the 

measured spherical surface from a best fit spherical surface.  

When the interferometer completes the measurement of this spherical part, it is 

necessary to remove the tilt from the height data, because it is impacted by alignment 

uncertainty. Moreover, it is also necessary to remove the power since it is not possible to 

tell if the part is in the wrong place or the radius of curvature is incorrect. 

 

           (a)                     (b)                   (c) 

Figure 5.17 Measured height maps. (a) Height map measured after the initial machining. 
(b) Averaged radial profile. (c) Height map measured after the compensation machining.  
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Figure 5.17 (a) shows the height map measured after the initial machining. As 

discussed above, the piston, tilt and power of the raw data have already been removed. 

With this height map, we took 10 different radial profiles, interpolated to get a common 

data spacing, and averaged. Based on these averaged radial data (Figure 5.17 (b)), the 

compensated machine code was generated for the DTM. A height map measured after the 

compensation machining is shown in Figure 5.17 (c).  

 

           (a)                     (b)                   (c) 

Figure 5.18 Measured height maps. (a) Height map measured after the initial machining. 
(b) Height map measured after the compensation machining. (c) Difference between the 

two maps.  
 

Figure 5.18 shows the subtraction from the initial machined surface to the corrected 

surface. It is clear that the initial part has rotationally varying (astigmatism) and 

rotationally invariant components (Figure 5.18 (a)). The astigmatism is not likely caused 

by a machine error, and more likely the result of residual stresses in the sample and 

mount-induced deformations. After the compensation machining, the astigmatism is still 

existed, although the height values have been reduced (Figure 5.18 (b)). That is because 

the diamond turning machine only reduces the rotationally invariant error, in this case 

including the average rotationally varying error. 

Figure 5.18 (c) is the difference between the initial machined surface and the corrected 

surface. Note that the dominant part is rotationally invariant. However, there are some 
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rotationally varying components. For example, the high edge at the lower right. It is due to 

the high value of the astigmatism in this position. During the diamond turning, in the 

positions with the same radius, the high value can be reduced, while the low value may 

not be affected.  

Because the analysis of the form error (e.g. astigmatism) is not enough for the 

deterministic manufacturing process, the SF is used to estimate the full spatial frequency 

component. 

 

 

                (a)                          (b) 

Figure 5.19 Area SF in four quadrants. (a) Initial machining. (b) Compensation 
machining. 

 

Figure 5.19 shows the area SFs of the height maps in Figure 5.17. After the 

compensation machining, the SF decreases (especially in the dashed region which is at the 

large separation of approximately 30 mm) and the distribution of the SF on the entire 

surface becomes even. This low spatial frequency analysis is consistent with the form 

error interpretation in Figure 5.18. 

Note that the “ripple” in the area SF with a separation repeat length of about 6 mm in 

the upper-right and lower-left directions, indicating the directional mid spatial frequency 
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component on the diamond turned surface. However, this characteristic is difficult to be 

observed directly from the height map in Figure 5.18.  

As a result, the on-machine dynamic measurement with the DynaFiz interferometer 

provides reasonable feedback for the following compensation machining, which improves 

the accuracy of the workpiece surface. Moreover, the analysis with SF gives a quantitative 

estimation in the spatial frequency domain.  

5.3 Summary 

This section investigates the application of the SF. It can be used to estimate various 

noises for the PSI measurement. As the results show, for the precision measurement, the 

air turbulence has more influence than the electronic noise of the interferometer, and the 

long interference cavity introduces more environmental effect than the short cavity. 

Particularly, an instantaneous interferometer was used to make dynamic measurement of 

the air turbulence.  

In addition, the instantaneous interferometer was applied to implement an on-machine 

measurement for a diamond turning machine, which provides an effective feedback for the 

compensation machining. Finally, the analysis with SF gives a quantitative estimation in 

the spatial domains – the dimensional accuracy of the diamond turned surface has been 

improved after the compensation machining.  

 



CHAPTER 6 : CONCLUSIONS AND FUTURE WORK 
 
 
6.1 Conclusions 

The structure function (SF) is a useful tool to specify and characterize the spatial 

content of optical surfaces.  

The SF is the squared expectation of the height difference as a function of separation. 

A linear SF can be computed for profile or area data, with the loss of any detail of 

anisotropy information. The area SF can be calculated without filtering, zero padding and 

restraints on aperture size or shape and retains information on anisotropy. 

For large numbers of points within the aperture, computational time of the SF 

increases rapidly, so sampling is required. Comparisons show that the sliding sampling we 

developed is faster and more accurate than the conventional sampling strategies. For 

stationary surfaces, the area SF with positive values of separation in x and y is sufficient. 

However, for non-stationary surfaces, typical of optical surfaces when form is included, a 

second quadrant is required to fully describe the spatial content of the surface and its 

anisotropy. The relationship between the linear SF and the two-quadrant area SF has been 

investigated for circular apertures, showing that the linear SF is the average over 

concentric semi-circles of the two-quadrant area SF. 

The SF has some advantages when compared to other representations. The SF contains 

similar information as autocorrelation function (ACF) for stationary surface, but the SF 

provides better visualization of the surface characteristics, since the ACF is strongly 
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dependent on the mean plane and is not intuitive. The SF is computationally “correct” for 

any arbitrary aperture shape without extra processing, while the power spectral density 

(PSD) always needs additional mathematical processing, such as windowing, zero 

padding, low-order terms removal, and choice of sub-apertures for irregular apertures. 

There is no standardization of the mathematical treatment of PSDs for optical surfaces; 

different metrologists may compute different PSDs from the same starting data. 

Zernike polynomials are commonly used to characterize and specify circular 

apertures on optical surfaces. Note, some optical specifications use a SF, but allow for 

removal of specified amounts of power, coma and astigmatism, etc (defined as 

combinations of Zernikes). Therefore, it is useful to explore the total SF for a surface 

described by Zernike polynomials. According to the orthogonality of the Zernike 

polynomials, the total linear SF is the sum of the individual linear SFs of each of the 

Zernike polynomials with different azimuthal frequencies. However, this theorem does 

not apply to the area SF, because each area SF ( , )S r  corresponds to only one direction φ, 

which means the orthogonality cannot be used.  

The connection between SF and root mean square (RMS) gradient has been made. 

The spatial content of surfaces over large dynamic ranges for arbitrary aperture shapes 

can be represented by an area SF constructed from data obtained from more than one 

instrument. Proper combination of area SFs from different instruments requires accounting 

for the effect of low order form on small separation SF values. Generally speaking, the 

area SF of the measured sub-aperture (representing the high spatial frequency content) 

depends on the measurement position in the full aperture, especially for the anisotropic 

surfaces. To solve this problem, a sampling method of sub-aperture measurement has been 
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developed. The correct area SF can be estimated by adding the correct tilt to each sampled 

sub-aperture, typically estimated from the large-area measurement with knowledge of the 

global coordinates of each sub-aperture measurement. Moreover, the effect of the 

instrument transfer function (ITF) of the instruments used must also be considered.  

The SF can be used to estimate various noise sources for the phase shifting 

interferometry (PSI). The results confirm previous experience that, for the precision 

measurement, the air turbulence has more influence than the electronic noise of the 

interferometer, and the long interference cavity introduces more environmental effect than 

the short cavity.  

An instantaneous interferometer was used to implement on-machine measurement on a 

diamond turning machine, which provides an effective feedback for the compensation 

machining. An analysis with SF gives a quantitative estimation – in the spatial domain – 

of the dimensional accuracy of the diamond turned surface after the compensation 

machining.  

6.2 Future Work 

6.2.1 Analysis of Type B Uncertainty for SF Combination 

When looking at the combination of the SF from multiple instruments, within the 

overlapped region in the response (spatial terms) of two instruments, there is often a 

discrepancy between instruments greater than the noise in the measurements. Chapter 4 

has discussed the Type A uncertainty for this discrepancy. A full uncertainty analysis 

should include Type B uncertainty, such as the effect of an uncalibrated reference surface 

of the objective, distortion and retrace error. Typically, the full uncertainty evaluation of 

an area SF will be a matrix with the same size.  
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In short, doing a complete uncertainty evaluation in the area SF is a nontrivial problem, 

that is the direction for the future research.  

6.2.2 Extend the SF Combination from Flats to Spherical and Freeform Surfaces 

The combination of SFs from multiple instruments in this work is only focused on 

optical flats. It is necessary to extend the analysis to spherical, aspheric, and freeform 

surfaces.  

The first step for any analysis is always a background subtraction to establish the 

measurement result as the departure of the surface from the intended geometry. This must 

be done to look at surface errors over any spatial frequency range.  

With flat or spherical surfaces, this step is straightforward. The method introduced in 

Chapter 4 can be easily applied to spherical surfaces. For each sub-aperture measurement 

of the spherical surface, the x/y translation and the rotation of the measuring stage should 

be recorded. In other words, the position of the sub-aperture is the combination of the x/y 

translation and the rotation, which means it is easy to introduce the positioning error. 

Since error in the estimate of the sub-aperture position leads to error in the tilt correction 

and therefore error in the SF calculation, it is necessary to use an instrument with high 

positioning accuracy (e.g. a SWLI with calibrated scales of x and y translation and stage 

rotation). Besides the improvement of the instrument, other operations and algorithms 

should be explored to reduce the positioning error.  

For freeform surfaces, the measurement is more complicated and the combination of 

the SF from multiple instruments is more challenging. A freeform surface may not even 

have an axis of symmetry. Care must be taken in the design, fixturing and fabrication 
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stages in freeform manufacturing to clearly define a part coordinate system that will allow 

meaningful subtraction of the design geometry.  

Besides figure error and roughness, the mid-spatial error is also easily introduced by 

the small-tool fabrication for freeform surfaces. Consequently, it is nontrivial to 

investigate the SF combination for freeform surfaces, which can characterize the full 

spatial frequency content.  

6.2.3 Application of Two-quadrant Area SF in Astronomical Optics Specification 

As noted in Chapter 1, in order to make sure that the astronomical telescope 

performance degradation arising from the optical errors is less than the best atmosphere 

from the statistical analysis, the linear SF has been used to characterize the phase errors 

introduced by the atmospheric turbulence on various spatial scales. Since the area SF has 

some advantages compared to the linear SF, for example that it retains of anisotropic 

information of the surface, it has potential application to specify the astronomical optics in 

spatial domain. This section demonstrates two simulations to discuss the application of the 

two-quadrant area SF for Thirty Meter Telescope (TMT) segment.  

6.2.3.1 Linear and Area SF Specification of the TMT Segment 

Based on the atmospheric analysis, the linear SF specification of the TMT segment 

surface figure accuracy is defined as [64]: 

5 3 2 3 2( ) [10.60( / ) 13.75( / ) +3.42 ( / ) ] 2 .S A d d d B               ( 6.1 ) 

Where:   

( )S  is the SF in nanometers squared 
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A = leading coefficient = 2907 nm2 

B = high frequency surface roughness = 2 nm 

τ = separation between point pairs 

d = diameter of segment = 1.44 m 

r0 = Quasi-Fried’s parameter = 1.0 m 

This SF specification is in terms of surface errors (not wavefront) with piston and tilt 

removed from the phase map [64]. The curve is shown in Figure 6.1 (a). Thus, the SF of 

the measured surface errors (including both the measured aberrations and the 

measurement uncertainty) shall be less than the specification at all separation distances 

(spatial frequencies).  

     

                 (a)                                  (b) 

Figure 6.1 SF specification of TMT segment surface figure accuracy. (a) Linear SF 
specification of TMT segment. (b) Rotate the linear SF as an area SF.  

 

It can be assumed that the two-quadrant area SF specification is obtained by rotating 

the linear SF with 180° (Figure 6.1 (b)). In fact, the TMT segment is a hexagonal mirror. 

For simplicity, it is treated as a circular shape in this case. Because the calculation of the 

linear SF is based on the diameter of the hexagonal segment, it is reasonable to use the 

circular aperture with this diameter.  
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To investigate the application of the area SF for the TMT segment, two simulated 

surface errors are discussed in the following sections.  

6.2.3.2 Simulation NO. 1 

       

               (a)                                      (b) 

Figure 6.2 SF of the simulated surface error. (a) Simulated surface error. (b) Area SF of 
simulated surface error.  

 

Figure 6.2 (a) is a simulated rotationally invariant surface error of the TMT segment, 

and Figure 6.2 (b) is its two-quadrant area SF. In order to know if the simulated segment 

meets the requirement of the surface figure accuracy, it is necessary to compare the 

calculated area SF to the specification.  

As Figure 6.3 (a) shows, the two-quadrant area SFs of both the simulated surface error 

and the specification are plotted on the same scale. It is clear that all the simulated SFs are 

below the specification, which means the simulated part meet the requirement. Figure 6.3 

(b) is the linear SF analysis, which shows the same result as area SF.  
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                 (a)                                    (b) 

Figure 6.3 SF analysis with simulated surface error. (a) Area SF analysis. (b) Linear SF 
analysis. 

 

6.2.3.3 Simulation NO. 2 

      

              (a)                                    (b) 

Figure 6.4 SF of the simulated surface. (a) Simulated surface error. (b) Area SF of 
simulated surface error. 

 

Figure 6.4 (a) is a simulated rotationally variant surface error of the TMT segment, 

and Figure 6.4 (b) is its two-quadrant area SF. Note that the area SF is also rotationally 

varying.  
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                 (a)                                    (b) 

Figure 6.5 SF analysis with simulated surface error. (a) Area SF analysis. (b) Linear SF 
analysis.  

 

When plotting the two-quadrant area SFs of both the simulated surface error and the 

specification on the same scale (Figure 6.5 (a)), it is obvious that some peaks of the 

simulated area SF exceed the specification. That is, the simulated part does not meet the 

requirement. However, the analysis with the linear SF in Figure 6.5 (b) shows the 

simulated linear SF is below the specification, which means the simulated part meet the 

requirement. In brief, the simulated part passes the linear SF but fails the area SF. The 

reason is that the linear SF is the average over concentric semi-circles of the two-quadrant 

area SF. The impact of anisotropy has been reduced in the linear SF.   

Thus, when the surface error is rotationally varying, it is necessary to use the 

two-quadrant area SF as the specification. The analysis with linear SF could result in poor 

performance of the optics if a bad part is accepted because of the loss of the anisotropic 

specification.  

Therefore, in the future work, the two-quadrant area SF can be applied to specify the 

astronomical optics in spatial domain.  
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6.2.4 SF in General Optics Specification and Conformance Testing 

Since the SF has some advantages compared to PSD, it has potential application in 

optical specification and conformance testing. Similar to the PSD defined in ISO 10110 - 

8, the SF can be used as the specification of general optical surfaces.  

Following the default decision rule of ISO 14253-2, the expanded uncertainty in the 

SF must be subtracted from the specification for a vendor to prove conformance. 

Reducing the uncertainty increases the manufacturing headroom.  

Therefore, the future work should include the investigation of SF in general optics 

specification and conformance testing.  
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APPENDIX: MATLAB CODE 
 
 
% Calculate Two-quadrant Area Structure Function with sliding method 
function [X,Y,ASF]=ASF(map) 
 
close all;                % Delete all figures whose handles are not hidden 
clc;                    % Clear the display screen 
  
figure 
imagesc(map);           % Display input data as an image 
xlabel('x')               % Label the x-axis of the current axes 
ylabel('y')               % Label the y-axis of the current axes 
title('Input Map')          % Add title to current axes 
axis xy                  % Make the coordinate origin in the lower left corner 
axis square              % Make the current axes region square 
colorbar                 % Show color scale 
  
tic                     % Start a stopwatch timer 
  
[dimv,dimh]=size(map);    % Size of map 
map_flip=flipud(map);     % Flip input matrix up to down, for calculation in the second  
                       % quadrant 
Z1=nan(dimv,dimh);       % Preallocate matrix - set all Z1 to nan 
Z2=Z1;                   
  
parfor i=0:dimh-1        % Parallel for-loop 
    
    sf1=nan(dimv,1);     % Preallocate vector for Area SF in one column 
    sf2=nan(dimv,1); 
   
    for j=0:dimv-1 
        differ=map(j+1:dimv,i+1:dimh)-map(1:dimv-j,1:dimh-i);  % Subtract map  
                                          % from a translated version of itself 
        differ_flip=map_flip(j+1:dimv,i+1:dimh)-map_flip(1:dimv-j,1:dimh-i);  
                                          % Subtract map in the other direction 
         
        % Calculate area SF in first quadrant     
        k1=find(~isnan(differ));               % Find indices of numerical elements 
        diffout1=differ(k1);                  % Find numerical elements 
        Z=sum(diffout1.^2)/length(diffout1);    % Area SF for i, j 
         
        % Calculate area SF in second quadrant 
        k2=find(~isnan(differ_flip));  
        diffout2=differ_flip(k2);                                             
        Z_flip=sum(diffout2.^2)/length(diffout2);                          
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        sf1(j+1)=Z;     
        sf2(j+1)=Z_flip;  
    end 
  
    Z1(:,i+1)=sf1;             % Area SF in one direction 
    Z2(:,i+1)=sf2;             % Area SF in the other direction 
     
end 
  
SF1=Z1;                      % Area SF in the form of squared height difference 
SF2=Z2; 
% SF1=sqrt(Z1);               % Area SF in the form of RMS 
% SF2=sqrt(Z2); 
  
SF_Right=SF1;                % Area SF in the first quadrant 
SF2_flip=fliplr(SF2); 
SF_Left=SF2_flip(:,1:dimh-1);    % Area SF in the second quadrant 
  
  
[X,Y]=meshgrid(1-dimh:dimh-1,0:dimv-1);   
ASF=[SF_Left,SF_Right];        % Area SF in two quads 
  
figure; 
surf(X,Y,ASF);      % Draw area SF in two quadrants 
xlabel('x(pixels)')   
ylabel('y(pixels)')   
zlabel('SF(\mum^2)')  
title('Area SF (\mum^2) ')   
shading interp;       % Vary the color in each line segment and face by interpolating  
                   % the colormap index or true color value across the line or face 
axis normal  
  
toc                % Obtain the elapsed time since tic was used 
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% Calculate Linear Structure Function with sliding method. (For non-circular aperture, 
the deviation may increase.) 
 
% Main function 
function [r_final,SFr_final]=LSF(map) 
 
close all;          % Delete all figures whose handles are not hidden 
clc;              % Clear the display screen 
 
figure 
imagesc(map);     % Display input data as an image 
xlabel('x')         % Label the x-axis of the current axes 
ylabel('y')         % Label the y-axis of the current axes 
title('Input Map')    % Add title to current axes 
axis xy            % Make the coordinate origin in the lower left corner 
axis square        % Make the current axes region square (or cubed when                
                 % three-dimensional) 
colorbar           % Show color scale 
  
[r1,SFr1]=CalculationOneQuadrant(map);        % Use input matrix, call subfunction 
[r2,SFr2]=CalculationOneQuadrant(flipud(map));  % Flip input matrix up to down, and  
                                          % call subfunction 
 
r=[r1;r2]; 
SFr=[SFr1;SFr2]; 
  
% Compute each element of "SFr_final" by averaging the "SFr" with the same "r" 
[r_sort,IX]=sort(r);    % Return an array of indices IX, where size(IX) == size(r). As a  
                   % vector, r_sort = r(IX).  
SFr_sort=SFr(IX);    % SFr_sort is corresponding to r_sort 
     
d=diff([r_sort;max(r_sort)+1]); 
m=diff(find([1;d])) ;    % Obtain vectors m and n containing the frequency counts and  
n=r_sort(find(d));     % the bin locations. It is faster than command "hist". 
        
SFr_final=nan(length(n),1);          % Preallocation for "SFr_final" - set  
                                % each element to nan 
r_final=nan(length(n),1); 
  
ss(1)=m(1); 
SFr_final(1)=sum(SFr_sort(1:m(1)))/m(1); 
r_final(1)=n(1); 
for i=2:length(n) 
    ss(i)=ss(i-1)+m(i); 
    SFr_final(i)=sum(SFr_sort(ss(i-1)+1:ss(i)))/m(i); % "SFr_final" obtained by  
                           % averaging "SFr_sort" with the same "r_sort" 
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    r_final(i)=n(i);                      % "r_final" corresponding to "SFr_final" 
end 
  
figure 
plot(r_final,SFr_final)                    % Plot linear SF 
xlabel('Separation');  
ylabel('LSF') 
title('Linear Structure Function');  
  
 
% Subfunction 
function [r_sub,SFr_sub]=CalculationOneQuadrant(map)    
 
[dimv,dimh]=size(map);                   % Size of map 
SFr=nan(dimv*dimh,1);                   % Preallocation for linear SF 
r=nan(dimv*dimh,1);                      % Preallocation for the separation 
  
p=0; 
  
for i=0:dimh-1 
   for j=0:dimv-1 
      differ=map(j+1:dimv,i+1:dimh)-map(1:dimv-j,1:dimh-i); % Subtract map from a  
                                                % translated version of itself 
      k=find(~isnan(differ));              % Find indices of numerical elements 
      diffout=differ(k);                  % Find numerical elements  
      Z=sum(diffout.^2)/length(diffout);    % SF for i, j 
      p=p+1; 
      r(p)=sqrt((j)^2+(i)^2);               % Point separation, but different indices  
                                      % of "r" may indicate the same separation 
      SFr(p)=Z;                        %"SFr" corresponding to "r" 
   end 
end 
  
kk=find(~isnan(SFr));                    % Find numerical elements                      
r=r(kk); 
SFr=SFr(kk); 
r=round(r); 
 
% Compute each element of "SFr_sub" by averaging the "SFr" with the same "r".  
% The following part is similar as that in the main function. The computation speed is 
increased when we put it in the subfunction.  
[r_sort,IX]=sort(r);   
SFr_sort=SFr(IX);     
     
d=diff([r_sort;max(r_sort)+1]); 
m=diff(find([1;d])) ; 
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n=r_sort(find(d));              
         
SFr_sub=nan(length(n),1);     
r_sub=nan(length(n),1); 
     
ss(1)=m(1); 
SFr_sub(1)=sum(SFr_sort(1:m(1)))/m(1); 
r_sub(1)=n(1); 
 
for i=2:length(n) 
    ss(i)=ss(i-1)+m(i); 
    SFr_sub(i)=sum(SFr_sort(ss(i-1)+1:ss(i)))/m(i);  
    r_sub(i)=n(i);  
end 
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