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ABSTRACT
ROSARIO IVETTH CORONA DE LA FUENTE. Structural analysis of
protein-DNA binding specificity and its application to protein-DNA docking
assessment. (Under the direction of DR. JUN-TAO GUO)

DNA-binding proteins are involved in essential biological processes including gene
expression, DNA packaging and DNA repair. They bind to DNA target sequences
with different degrees of binding specificity, ranging from highly specific to non-
specific. Alterations of DNA-binding specificity, due to either genetic variation or
somatic mutations, can lead to various diseases. In this study, a comparative analy-
sis of protein-DNA complex structures was carried out to investigate the structural
features for binding specificity. The analysis was done using three curated datasets
of protein-DNA complexes with different degrees of DNA-binding specificity: highly
specific (HS), multi-specific (MS), and non-specific (NS). We found a clear trend of
structural features among these three classes, including amino acid binding propen-
sities, simple and complex hydrogen bonds, major groove and base contacts, DNA
shape, and conformational changes upon DNA-binding. These structural features
were then applied to assess the accuracy of TF-DNA docking predictions. A binary
classifier for evaluating the prediction accuracy was developed using a training dataset
and the structural features as well as three binding affinity scores. The results on a

test dataset show much improved prediction accuracy over previous methods.
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CHAPTER 1: INTRODUCTION

1.1  Background
1.1.1 DNA-Binding Proteins

DNA-binding proteins are involved in many important biological processes in all
living organisms. For example, DNA polymerase, DNA helicase, DNA topoisomerase,
and DNA primase among others, play key roles in DNA replication, repair and recom-
bination. Eukaryotes use histones, a family of basic DNA-binding proteins, to pack
the DNA tightly in the nucleus of the cell. Another key function of DNA-binding
proteins is to regulate gene expression, where DNA-binding proteins such as RNA
polymerase and transcription factors (TFs) work together to either down-regulate
or up-regulate gene expression. In bacteria, archea, and some viruses, restriction
enzymes, an important group of DNA-binding proteins, are involved in protecting
the organisms against foreign DNA, by identifying specific sequences in the invading

DNA and cleaving at defined sites within the recognition sequence.
Transcription Factors

One of the largest and most diverse class of DNA-binding proteins are the tran-
scription factors [82]. Transcription factors participate in regulating cell development,
differentiation, and cell growth by binding specifically to short DNA sequences, known

as transcription factor binding sites (TFBSs), and regulating gene expression. These
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Table 1: Position weight matrix (PWM) of transcription factor Zif268 (Source: Jaspar
[67]).

A [3 2 0 0 0 3 1 0 2 01|
c [ 4 1 13 0 0 0 0 10 0 0 |
G [ 1 12 0 15 3 12 14 15 0 15 7 |
T [ 7 0 2 012 0 0 0 3 0 7]

binding sites can be located in the promoter near the transcription start site, in an
enhancer or other stretch of regulatory DNA many base pairs away from the promoter
[84].

Transcription factors are key players in evolution. Changes affecting their func-
tion produce novel functions but they may also cause deleterious effects. Variations
often occur in cis-regulatory elements [93]. The majority (=93%) of disease- and
trait-associated variants emerging from genome wide association studies and related
strategies lie within noncoding sequence [70] that include transcription factor binding
sites.

A transcription factor can recognize a collection of similar DN A-binding sites, which
can be grouped together to define a DNA motif [95]. By assuming that each tran-
scription factor-DNA base interaction is independent, the DNA-binding specificity of
transcription factors can be expressed as a position weight matrix (PWM) (Table 1).
PWNMs describe the frequency of each nucleotide (A, C, G or T) at each position of
a DNA-binding site [118], and can be visualized as motif logos (Figure 1). Recently,
Yang et al. [118] demonstrated that augmenting existing motif databases with DNA
shape features provides new insights into the mechanisms used by transcription fac-

tors to achieve DNA-binding specificity.
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Figure 1: Motif logo of transcription factor Zif268 (Source: Jaspar [67]).
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TF-DNA binding specificity in vivo is very complex. For example, the human
genome consists of around 700,000 possible response elements, but only 3,000 tran-
scription factors [84]. Pan et al. [84] pointed out that by viewing the TF-DNA
recognition problem from the perspective of the sequence variability of the response
elements overlooks cellular effects. The cellular network also plays a role in selective
binding, by controlling the expression and post-translational states of the transcrip-
tion factors and its cofactors. They integrated observations on transcription factor
binding and activation with concepts of dynamic conformational ensembles to clas-
sify the mechanisms of transcription factor selectivity into three groups in the order
of transcription initiation events: (i) coregulator recruitment followed by response
element binding; (ii) response element binding followed by coregulator recruitment;
and (iii) enhanceosome-mediated response element binding. The mechanisms can
be differentiated by the affinity of the transcription factors to its response elements,
low affinity transcription factors use the first mechanism, while the high-affinity ones
use the second mechanism. Assigning each known transcription factor to one of the
mechanisms is not a simple task, because it requires the understanding of the tran-
scription initiation events, and studying the transcription factor-DNA interaction in

the context of the cell environment.
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Jolma et al. [45] recently analyzed binding specificities of most human transcription
factors using high-throughput SELEX. Comparison of 79 pairs of experiments for full-
length transcription factors and their DNA-binding domains revealed that in general,
the DNA-binding domains define the primary DNA-binding specificity, since position
weight matrices obtained for full-length transcription factors and its corresponding
DNA-binding domains were very similar. They investigated high-resolution DNA-
binding specificity for a large fraction of human transcription factors and found that
more than half of all binding models for transcription factors are more than 10 base
pairs in length. They also compared ortholog transcription factors from human and
mouse, and found no obvious changes in binding specificities. However, in paralog
transcription factors, the dimer orientation and spacing preferences were divergent,
suggesting that these features evolve faster than primary binding specificities. These
features can give rise to the multi-specificity nature of transcription factors, i.e., multi-
specificity is due to the ability of transcription factors to bind to both a monomeric
and a dimeric site, and/or multiple different dimeric configurations. Although binding
specificity models such as position weight matrices, assume position independency,
there are several cases where dependency is observed. In those cases, new models need
to be developed that can take into account the interdependency of base positions.
They developed two models to address the issues by using a first-order Markov chain
and taking the spacing and orientation into consideration for dimeric sites.

The structures and DNA-binding properties of the transcription factors can help
us understand how genetic information is utilized. Transcription factors are modular

in structure, consisting of independently functional protein domains. Transcription



5

factors consist of domains involved: (i) in specific DNA recognition (DNA-binding),
(ii) in formation of homodimeric or heterodimeric proteins (dimerization), and (iii)
in transcription initiation signaling (activation). There is no consensus in how to
classify DNA-binding domains, but a general grouping of the DNA-binding motifs
in known transcription factor families include: helix-turn-helix (e.g., homeodomain),
zinc finger (e.g., steroid and thyroid hormone receptor superfamily), leucine zipper
(e.g., C/EBP, c-Jun, and c-Fos), and helix-loop-helix (e.g., MyoD and myogenin).

The zinc finger DNA-binding motif was first observed in transcription factor TFIITA
from the oocytes of the African clawed toads Xenopus laevis. A single zinc finger is
approximately 30 residues in length, and may occur as monomers, dimers, or in
sets of up to 30 zinc fingers [41]. Zif268 is the prototypic member of a family of
immediate-early gene-encoded transcription factors that share highly similar Cys,-
Hisy zinc finger DNA-binding domains. The Cysy-Hisy zinc finger motif is one of the
most widely occurring eukaryotic DNA-binding domain structures. It folds into a
compact globular domain that is composed of an antiparallel S-sheet followed by an
a-helix and is stabilized by the coordination of a Zn?* ion through two cysteine and
two histidine residues (Figure 2a). [102]

GATA-binding proteins constitute a family of transcription factors that recognize
a discrete target site, WGATAR (W=A or T, and R=G or A) [36]. Members of this
family have been found in fungi, Caenorhabditis elegans, Drosophila melanogaster,
birds, amphibians, and mammals [16]. DNA recognition is achieved through zinc
fingers. In mammals, GATA-1, -2, -3, and -4, are expressed in distinct, yet often

overlapping, cell types. The abilities of various members of the GATA family to
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recognize closely related, but not identical, DNA sequence elements raises interesting
possibilities as to how differential gene expression is accomplished in cells expressing
more than one GATA protein. That is, differential regulation might be achieved by
selective high-affinity binding of one, but no other, GATA family member to a target
sequence because of subtle variations in their DNA-binding domains [72].

The basic helix-loop-helix (bHLH) transcription factors regulate gene expression
by binding to specific DNA sequences. The basic domain of these proteins controls
DNA binding to sites with the consensus sequence CANNTG (N=A or C or G or T),
the E-box motif and is present in the regulatory regions of many tissue-specific genes.
The various bHLH proteins can be divided into three groups: class A proteins (E12,
E47, E2-2, and daughterless), the tissue-specific class B proteins (MyoD (Figure 2b),
myogenin, MRF4, and achaete-scute), and class C proteins, which feature a tandem
arrangement of bHLH and leucine zipper motifs (c-Myc, Max, upstream stimulatory
factor [USF], AP4, TFE3, an TFEB).

The leucine zipper (bZip) proteins possess a distinctive structural motif that con-
sists of two sub-domains: a region of basic amino acids, which directly contacts DNA,
adjacent to a hydrophobic heptad repeat, and a leucine zipper dimerization domain.
CCAAT /enhancer-binding protein (C/EBP) family members (C/EBPa (Figure 2¢),
C/EBPg, C/EBP~, C/EBPJ, C/EBP¢, and CHOP 10) are among the basic leucine
zipper transcription factors, and they bind to specific DNA sequences as dimers.
C/EBP family members show similar sequence preferences, and the consensus se-
quence is RTTGCGYAAY (R=G or A, and Y=C or T). The specificity of C/EBP

family members may be derived from the characteristics of each factor, including the



(a) Transcription factor Zif268 with three
zinc finger motifs (dlaayal in cyan,
dlaaya2 in magenta, and dlaay3 in
green) in complex with DNA. Zn?* ion is
represented as a blue sphere. PDB iden-
tifier: laay

(¢) Transcription factor C/EBPa in com-
plex with cognate DNA showing a leucine
zipper (bZip) motif. DNA-binding
residues are represented as “spheres” and
the leucine residues that are part of the
“zipper” are shown in “stick representa-
tion”. PDB identifier: 1nwq

(b) Transcription factor MyoD with two
bHLH motifs (dlmdya_ in green and
dlmdyb_ in cyan) in complex with DNA.
PDB identifier: 1mdy

(d) Transcription factor PAX3 home-
odomain in complex with DNA (HTH
motif). DNA-binding residues are shown
in “stick representation” and water
molecules are represented as “spheres”.
PDB identifier: 3cmy

Figure 2: DNA-binding motifs of transcription factors.

expression profiles, the DNA binding affinities, the cofactors, and so on, in addition

to the DNA-binding specificities. [80]

Homeodomain is a highly conserved DNA-binding domain found in many tran-
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scription factors. The regulatory function of a homeodomain protein derives from the
specificity of its interactions with DNA and with other proteins such as RNA poly-
merase or accessory transcription factors. Homeodomains utilize a helix-turn-helix
(HTH) fold to contact DNA in the major groove, and utilize an N-terminal arm to
contact DNA in the minor groove (Figure 2d). This contact is sequence-specific and

contributes to the high affinity of homeodomains for DNA. [55]
Non-Specific DNA-Binding Proteins

All DNA-binding proteins show non-specific protein-DNA interactions [79]. How-
ever, some proteins, even though they interact with the DNA bases, are known to bind
indiscriminately to any DNA sequence. To define non-specific DNA-binding proteins
first we have to define what specificity is. Specificity involves binding one or several
DNA sequences with higher affinity than the other DNA sequences. Therefore, non-
specificity describes binding to any DNA sequence with practically the same affinity
[100].

Non-specific DNA-binding proteins are important in many biological processes,
such as DNA replication (Figure 3a), repair, and recombination (DNA polymerases,
DNA helicases, DNA topoisomerases, and DNA primases), gene regulation (RNA
polymerases), and cellular organization and metabolism (histones).

DNA polymerases (pols) «, 3, v, §, and € are the key enzymes required to main-
tain the integrity of the genome. DNA polymerases synthesize DNA efficiently and
accurately, which is crucial to ensure the faithful transmission of genetic information

from parents to offspring. All free-living organisms encode several DNA polymerases,
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but there is a rich variety within the DNA polymerase family. The function of the
core polymerase activity is to add deoxynucleotides onto the growing end of a DNA
primer strand, although another important attribute of enzymes of this type, imply
that many of the physicochemical mechanisms used to discriminate between correct
and incorrect base pairs have been preserved throughout this family of enzymes. [47]

DNA helicases are enzymes that facilitate the unwinding of duplex DNA, which
is a prerequisite for DNA replication and repair, and provides the single-stranded
DNA template for DNA polymerase to copy. DNA helicases disrupt the hydrogen
bonds that hold the two strands of duplex DNA together [68]. DNA topoisomerases
are enzymes that also disentangle DNA strands or duplexes in a cell. They play
an important role in replication, transcription, chromosome condensation, and main-
tenance of genome stability. They function differently from DNA helicases, since
DNA topoisomerases alter the linking number of the duplex DNA molecule through
phosphodiester bond breakage and reunion.

DNA primases are enzymes involved in DNA replication. Most DNA primases
can be divided into two classes. The first class contains bacterial and bacteriophage
enzymes found to be associated with replicative DNA helicases. These prokaryotic
primases contain three distinct domains: an amino terminal domain with a zinc
ribbon motif involved in binding template DNA, a middle RNA polymerase domain,
and a carboxyl-terminal region that either is a DNA helicase or interacts with a DNA
helicase. The second major primase class comprises heterodimeric eukaryotic primases
that form a complex with DNA polymerase alpha and its accessory B subunit. The

small eukaryotic primase subunit contains the active site for DNA synthesis, and its
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activity correlates with DNA replication during cell cycle.

DNA-dependent RNA polymerases (Pol I, Pol II, and Pol III) are responsible for
the synthesis of all cellular RNA and play a central role in gene expression (Fig-
ure 3b). Pol I produces ribosomal RNA | Pol II synthesizes messenger RNAs and
small nuclear RNAs, and Pol III produces transfer RNAs and other RNAs. RNA
polymerases are large and complex enzymes composed of several polypeptide chain
subunits. Pol I, IT and III comprise 14, 12, and 17 subunits, respectively. Ten subunits
form a structurally conserved core, and additional subunits are located in the periph-
ery. The complexity and large size of multisubunit RNA polymerases have prevented
elucidation of their structure for a long time, but even with the structural informa-
tion available, many aspects of RNA polymerases remain unresolved. Among these
open issues are how these enzymes are regulated by coregulatory assemblies, e.g., the
mechanisms involved in the interactions with other molecules, including DNA. [19]

In eukaryotes, chromosomal DNA is complexed with many DNA-binding proteins
such as histones [10] that function as building blocks to package eukaryotic DNA
into repeating nucleosomal units that are folded into higher-order structures (Figure
3c). Histones are small basic proteins consisting of a globular domain and a more
flexible and charged NHa-terminus (histone tail) that protrudes from the nucleosome
[44]. Once thought of as static, non-participating structural elements, it is now clear
that histones are integral and dynamic components of the machinery responsible for

regulating gene transcription [101].
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Figure 3: Non-specific DNA-binding proteins.

Type II Restriction Enzymes

Restriction-modification systems [111] comprise pairs of opposing intracellular en-
zyme activities: an endodeoxyribonuclease (ENase) and a DNA-methyltransferase
(MTase). The enzymes interact with specific sequences of nucleotides in DNA and
recognize double-stranded DNA; a few also recognize single-stranded DNA. ENases
and MTases from the same system recognize the same sequences. In some restriction-
modification systems, the two activities are combined in a single, multi-subunit en-

zyme, but in most systems they are separate.
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Restriction endonucleases catalyze double-strand cleavage of DNA. Cleavage occurs
once for each occurrence of the recognition sequence, and is accomplished by hydroly-
sis of one phosphate-deoxyribose bond in the backbone of each DNA strand. In many
systems, cleavage occurs at a fixed position with respect to the recognition sequence,
either within the sequence or a few bases to one side of it. In others, hydrolysis takes
place at an indefinite distance from the recognition sequence.

Type II systems are the simplest and the most numerous. Type II endonucleases
and methyltransferases act independently and have simple requirements: the endonu-
cleases require Mg?", the methyltransferases require AdoMet.

Type II recognition sequences are mainly symmetric (Table 2). Some sequences
are continuous (e.g., BamHI, Bglll, and EcoRI) while others are interrupted. The
interruptions can be short (e.g., Benl, BsoBI, and EcoRII) or relatively long (e.g.,
Bgll and Sfil). The sequences comprise four to eight specific nucleotides, and they vary
in base composition. Symmetric sequences are economical sequences; one protein can
react with both strands of duplex since it appears the same regardless of orientation.
Type II endonucleases generally act as homodimers, an association that facilitates
the coordinated cleavage of both strands. Cleavage by type II endonucleases occurs
symmetrically within the recognition sequences. Some endonucleases cleave on the
5 side of the dyad axis (e.g., BamHI, Benl, and BglIl), producing fragments with 5’
single-stranded termini of various lengths; others cleave in the center (e.g., EcoRV,
Hincll, and Nael), producing flush termini; yet others cleave on the 3’ site (e.g., Bgll,
Hpy188I, and Pacl), producing 3’ single-stranded termini.

Due to its simplicity and its highly-specific DNA-binding nature, type II restriction



Table 2: Examples of recognition sequences of type II restriction enzymes.

Name Organism Recognition Sequence
BamHI Bacillus amyloliquefaciens H G "GATCC

Benl Bacillus centrosporus RFL1 CC"SGG

Bgll Bacillus globigii GCCNNNN"NGGC
Bglll Bacillus globigii A"GATCT

BpuJI Bacillus pumilus RFL1458 CCCGT

BsoBI Bacillus stearothermophilus JN2091 | C"YCGRG

BstYI Bacillus stearothermophilus Y406 R"GATCY

Ecl18kI Enterobacter cloaceae 18k "CCNGG
EcoO1091 | Escherichia coli HT09¢ RG"GNCCY
EcoRI Escherichia coli RY13 G AATTC

EcoRII Escherichia coli R245 "CCWGG

EcoRV Escherichia coli J62 pLGT4 GAT ATC

FokI Flavobacterium okeanokoites GGATG (9/13)
Hincll Haemophilus influenzae Rc GTY "RAC

HindIII Haemophilus influenzae Rd ATAGCTT

HinP11 Haemophilus influenzae P1 G CGC

Hpy1881 | Helicobacter pylori J188 TCN"GA

Hpy991 Helicobacter pylori J99 CGWCG~

Mspl Morazxella species C CGG

Mval Micrococcus varians RFL19 CC"WGG

Nael Nocardia aerocolonigenes GCC"GGC
NgoMIV | Neisseria gonorrhoeae MS11 G CCGGC

Notl Nocardia otitidis-caviarum GC"GGCCGC
Pacl Pseudomonas alcaligenes TTAAT"TAA
PspGI Pyrococcus species G1H "CCWGG

Pvull Proteus vulgaris CAG"CTG

Sfil Streptomyces fimbriatus GGCCNNNN"NGGCC
SegrAl Streptomyces griseus CR"CCGGYG
Thal Thermoplasma acidophilum CG CG

13

enzymes are a good model to study the mechanisms of DNA-binding specificity.

1.1.2  Protein-DNA Binding Specificity

Proteins that bind to specific recognition sequences on DNA do so against a back-
ground of a large number of more or less similar non-specific sequences in the genome.
To appreciate the functional specificity of a particular binding site, one must know not

only its specific binding affinity for the regulatory protein, but also the distribution of
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binding affinities for all possible competitive sites. The binding affinity of the protein
P for the sequence S can be defined by the dissociation constant K,, which is the
ratio of the off-rate k,s¢ to the on-rate k,, that governs the binding process of P and
S. Stormo and Zhao [100] define the term specificity as to “how well a protein can
distinguish between different sequences.” They suggest that the complete specificity
of a protein can be defined by the list of Kys to all possible binding sites. Therefore,
the terms affinity and specificity are not independent, the binding specificity of a
protein requires, ideally, the characterization of the binding affinities of the protein
against all possible DNA sequences.

The field of drug design is in need of understanding the forces that drive protein-
DNA interactions. The ability to design molecules that bind to specific DNA has
many potential applications including the directed control of gene expressions, for
example, the inhibition of the c-Myc transcription factor, which is over-expressed in
most human cancers [23].

DNA recognition is a key step of biological regulatory processes. The increase of
protein-DNA complexes in the Protein Data Bank (PDB) [9] has provided an insight
on how proteins interact with DNA. Protein-DNA binding specificity often involve
the formation of hydrogen bonds between protein side chains and DNA bases. It
is known that every DNA base pair has a unique hydrogen-bonding signature in
the major groove, but not in the minor groove. Thus, the recognition of specific
DNA sequences would be expected to take place primarily in the major groove by
the formation of a series of amino-acid- and base-specific hydrogen bonds [91]. This

“base readout” mechanism can explain most of the binding speificity, but it is not
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the entire story.

It has been suggested that the binding specificity is contributed by two mechanisms.
The first one, known as direct or base readout, invokes contact of protein moieties
with base-specific functional groups on the nucleic acid. Base readout interactions
involve the relative three-dimensional orientation of various contact points in a given
sequence. These interactions of amino acids side chains and the array of hydrogen-
binding and van der Waals contacts available on DNA comprise combinations of
charge and shape complementarity [29].

The second, the indirect or shape readout mechanism, has been proposed to ex-
plain cases in which the specificity observed in biochemical experiments cannot be
accounted for by direct hydrogen bonding interactions between the macromolecules.
In indirect or shape readout, the sequence-dependent conformation of nucleic acid
structure is recognized instead, via protein contacts with the sugar-phosphate back-
bone and/or with nonspecific portions of the base [37]. Shape recognition of nucleic
acid is being increasingly recognized as playing an equally important role in DNA
recognition [116]. In many complexes, the DNA assumes conformations that devi-
ate from the structure of an ideal B-form double helix, sometimes bending in such
a way to optimize the protein-DNA interaction, and in some cases undergoing large
conformational changes as in the opening of the minor groove in the complex formed
between TBP and the TATA box. The term “indirect readout” was first coined
to describe such recognition mechanisms that depend on the propensity of a given
sequence to assume a conformation that facilitates its binding to a particular pro-

tein. The bases involved in such mechanisms need not be in contact with the protein
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and, for example, can be found in linker sequences that connect two half-sites that
are themselves bound by individual protein subunits [91]. Proteins are able to per-
form DNA recognition by using both base readout and shape readout mechanisms,
the combination of which allows the protein great subtlety in sequence recognition
through an ensemble of non-covalent contacts.

Molecular interactions have been studied for several decades. Protein-protein in-
teractions have been studied in more depth than protein-nucleic acid interactions.
Nadassy et al. [78] showed that protein-protein interactions are different from protein-
DNA interactions, therefore, specialized protein-DNA models need to be developed,
in order to understand these complex interactions and ultimately being able to predict
the effect of mutations in DNA-binding proteins.

A simple protein-DNA recognition code does not exist, however, some proteins
present simple recognition mechanisms and can be modeled more easily. Mandel-
Gutfreund and Margalit [65] described a quantitative measure of base-amino acid
interactions obtained by computing the log odds of the observed pair frequencies
and those expected at random. The results reflect a correspondence between the
computed scores and results of binding experiments of the protein Zif268. The draw-
back of the study is that position independence needs to be assumed, and that the
correlation with the Zif268 protein might be due to the simple binding mechanism
of this particular protein. With the increasing number of protein-DNA complexes
in the PDB, quantitation of the different parameters, like position-dependent effects
and coupled interactions, as well as predictions of the DNA structure in the binding

site can be obtained. Still, the effects of each mechanism (direct or indirect readout)
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needs to be quantified as well.

Contreras-Moreira et al. [18] systematically explored the conservation of structural
features of binding interfaces, centering the study both at the protein and DNA
sides of docked complexes. They estimated that the average contribution of indirect
readout to specific binding is approximately of one every five DNA bases, with the
notable exception of restriction enzymes, which doubles its contribution. With respect
to direct readout, hydrogen bonds dominate DNA recognition, with a minor fraction
of hydrophobic interactions. Luscombe et al. [61] studied protein-DNA interactions
at an atomic level, and concluded that van der Waals contacts are mostly used to
stabilize the complex, water-mediated bonds are mostly used as gap fillers in the
protein-DNA interface, and complex interactions are expected to play an important
role in providing specificity.

To describe the effect of each protein-DNA interaction as specific or non-specific,
a study performed by Ashworth and Baker [4] utilize the atomic model developed
by Havranek et al. [38] of the energetics of amino acid-nucleotide interactions to
estimate the extent to which amino acids are optimal for affinity or specificity. The
correspondence with experimental results suggested the usefulness of the method for
rapidly formulating hypotheses about the roles of amino acids at protein-DNA inter-
faces, given a high-resolution structure of the protein-DNA complex. But still, the
method significantly underestimates the optimization of native amino acid sequence
for specificity in complexes in which sequence recognition is dominated by indirect
readout mechanisms.

Another interesting feature of DNA-binding proteins is the level of specificity. In
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that extent, Luscombe and Thorton [64] compared the conservation of amino acid
residue sequences in DNA-binding protein families with different levels of specificity.
The protein families were classified into one of three classes on the basis of their
DNA-binding specificities: (i) non-specific families, proteins that bind promiscuously
and have no requirement for any specific base sequence; (ii) highly specific families,
proteins that bind DNA specifically, and all members target a common base sequence;
and (iii) multi-specific families, proteins that bind specifically, but different members
bind distinct and different targets. The study shows a clear difference between DNA-
binding proteins with different levels of specificity in terms of residue conservation
patterns. However, we believe that DNA-binding proteins are different in other as-
pects besides residue conservation, like the combination of base and shape readout
mechanisms they use to perform DNA recognition.

In conclusion, very interesting results have been found so far by studying protein-
DNA complexes using a structural approach. A more detailed analysis that unveils
the protein-DNA interactions and structural features used by the proteins to achieve
DNA-binding specificity will be useful to out understanding of protein-DNA recogni-

tion.
1.1.3  Protein Flexibility and Intrinsic Disorder of DNA-Binding Proteins

It has been recently believed that numerous proteins lack intrinsic globular struc-
ture or contain long disordered segments and that disorder is their normal, func-
tional state [24]. Disordered segments appear to be common in proteins encoded by

higher eukaryote genomes [24]. The intrinsic lack of structure can confer functional
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advantages, including the ability to bind to several different targets [115]. Many
transcriptional activation domains are either unstructured or partly structured, and
their interactions with their targets involve coupled folding and binding events. Well-
characterized examples include the transactivation domain of p53, which undergoes
a coil-to-helix folding transition on binding to the cellular oncoprotein MDM2 [24].

Wild-type pb3 protein is commonly described as a tumor suppressor or an antionco-
gene product. Alteration or loss of p53 function is associated with a wide variety of
human tumor cells. Mutations in the p53 gene are the most frequently observed ge-
netic lesions in spontaneous human cancers. pb3 functions as a node in numerous
signaling pathways such that it regulates many important biological activities, from
fertility and development to maintaining genomic stability and cell death. As the
diversity of pbH3-dependent activities widens to include key roles in metabolism and
development, more questions arise, but it is clear that p53 is therapeutically impor-
tant and numerous approaches are being employed to reconstitute its expression in
tumors.

Fong et al. [27] used missing residues in PDB structures to define disordered
regions. Their analysis reveals a variety of categories where intrinsic disorder can play
an important functional role, the most frequent of them being nucleic acid binding
proteins, enzymes, ATP binding proteins, receptor binding proteins, and other ligand
binding proteins.

Since intrinsic disorder is important to out understanding of the mechanisms in-
volved in molecular interactions, it is desirable to predict disordered regions. A num-

ber of predictions have been developed based on the characteristics of disordered
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fragments of proteins. Linding et al. [57] developed a sequence-based tool to predict
the propensity of protein regions to be ordered or disordered. They compared their
results with Ca: B-factor values of a set of PDB structures, and achieved a specificity
of 88%. Radivojac et al. [88] concluded that high B-factor ordered regions are more
similar to disordered regions than to low B-factor ordered regions. This means that
high-B factor ordered regions and missing residues can be used to define disordered
regions in protein structures.

Liu et al. [58] examine the linkage between disorder and protein function from
a thermodynamics point of view. The results show that eukaryotic genomes have
more disordered residues than prokaryotic genomes. They also concluded that the
distribution of the amount of disorder depends strongly on protein function, e.g.,
proteins with “protein binding” function present a large range of disorder whereas
proteins involved in “catalytic activity” have a strong preference for a stable folded
state. A similar analysis can be performed to explore the propensity of disorder in
DNA-binding proteins, and look for a relationship of DNA-binding specificity and
intrinsic disorder.

Glinter et al. [35] analyzed conformational diversity within seven DNA-binding
proteins that have frequently been crystallized in DNA-complexed and free states.
The local structure of the DNA-binding sites of all seven proteins is influenced by
DNA. This constitutes a problem for protein-DNA docking prediction models, where
conformational space increases enormously when considering protein and DNA flex-
ibility. A more promising way of predicting protein-DNA interactions is to combine

geometric criteria with additional physical parameters to narrow down the conforma-
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tional space by several orders of magnitude.

Vuzman and Levy [110] studied the effect of disordered regions on protein-DNA
interactions. They showed that disordered tails have higher occurrence in DNA-
binding proteins than in non-DNA-binding proteins. In conclusion, they mentioned
that the composition and distribution of charges within intrinsically disordered re-
gions regulates the strength of protein-DNA interactions. Dunker and Uversky [23]
found that protein clouds (dynamic ensembles of intrinsically disordered regions) are
druggable, which is a desirable feature, since the transcription factors might contain
significant amounts of intrinsic disorder, according to computational analysis. Tran-
scription factors present a higher degree of disorder in the activation domains than in
the DNA-binding domains. However, Guo et al. [33] showed that the flanking regions
of DNA-binding domains in human transcription factors generally exhibit significant
disorder.

In summary, disorder has been studied extensively in the last decade, but its con-
tribution to DNA-binding specificity is still unknown. By comparing the level of
disorder in DNA-binding proteins we can measure if disorder or flexibility is directly
involved in DNA-binding specificity.

As described above, though previous studies have revealed many important char-
acteristics in protein-DNA recognition, it still not clear how the protein-DNA binding
specificity is determined. In my dissertation research, I carried out a statistical anal-
ysis on DNA-binding protein structures, and compare static and dynamic structural
features to identify major structural determinants of DNA-binding specificity. I ad-

dition, we applied these features for protein-DNA docking assessment and showed a



major improvement respect to the previous methods.
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CHAPTER 2: STATISTICAL ANALYSIS OF STRUCTURAL DETERMINANTS
FOR PROTEIN-DNA BINDING SPECIFICITY

2.1  Introduction

Specific interactions between proteins and their DNA target sequences are essential
in many fundamental biological processes and aberrant changes in binding specificity
can cause serious consequences [94, 26, 63, 54]. It has been demonstrated that altered
binding specificity between mutated transcription factors and their DNA target se-
quences plays a role in a broad variety of cancers [26, 34, 104, 17]. On the other side
of the specificity spectrum, many DNA-binding proteins can bind to a wide range
of DNA sequences. These non-specific DNA-binding proteins are also critical for
fundamental cellular functions, including processing and packaging of DNA [1].

DNA-binding specificity generally refers to two interrelated terms: “sequence speci-
ficity” and “degree of specificity” [98]. For example, type II restriction endonucleases
EcoRI and BamHI specifically recognize their DNA target sequences GAATTC and
GGATCC, respectively. Both enzymes show very high degrees of specificity towards
different DNA sequences. Some transcription factors, such as homeodomains Ubx
(from Drosophila melanogaster) and Nkx3-1 (from Homo sapiens), bind to different
DNA sequence patterns, but with similar, high sequence conservation [66]. On the
other hand, homeodomain Dbx1 (from Mus musculus) has a similar binding sequence

pattern to Ubx, but most positions allow more variations and are less conserved
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(98, 66]. Most experimental and computational studies have focused on identifying
sequence specificity or sequence patterns. No simple recognition rules between par-
ticular amino acids and specific DNA bases have been found, although some preferred
pairings were observed [69, 81, 62, 59, 103, 117]. In this study, we focus on analysing
structural determinants for different degrees of protein-DNA binding specificity.
Current structural studies range from individual cases to comparative analyses.
Homing endonucleases [6, 77, 108] and zinc fingers [83, 49, 96] are two widely studied
family proteins. Ashworth et al. developed a computational model and applied it
to redesign the specificity of a homing endonuclease, I-Msol [5]. In their model, the
specificity is described by packing, hydrogen bonding, solvation and electrostatic in-
teractions. Several comparative studies have also been conducted to examine DNA-
binding specificity. Luscombe and Thornton investigated the effects of individual
mutations on binding specificity using small datasets, due to limited availability
of protein-DNA complex structures at that time. They carried out a comparative
analysis on two groups of transcription factors (including highly specific and multi-
specific) and non-specific DNA-binding proteins [63]. Ashworth et al. predicted the
contribution of each interface residue to the binding affinity and binding specificity
of four types of DNA-binding proteins: a) helical-motif transcription factors, b) re-
striction endonucleases, ¢) homing endonucleases, and d) non-specific DNA-binding
enzymes [4]. Another comparative analysis was performed on nine SCOP superfami-
lies, including homing nucleases, ribbon-helix-helix, glucocorticoid receptor-like, zinc
fingers, homeodomain-like, winged helix, P53-like, lambda repressor-like, and restric-

tion endonuclease-like [18]. By comparing the ratio of indirect/direct readout and
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the frequency of atomic interactions, Contreras-Moreira et al. concluded that these
specificity features are generally conserved and superfamily-specific [18].

Two readout mechanisms are considered to contribute to the binding specificity
between proteins and DNA, base readout and shape readout (also called direct and
indirect readout, respectively) [63, 75, 91, 89, 121]. The base readout describes con-
tributions from direct interaction of protein side-chains with DNA bases. The shape
readout, on the other hand, describes the role of DNA shape and indirect contacts
between proteins and DNA [91, 89, 90]. The combination of base and shape readouts
provides a general picture for specific protein-DNA interactions. However, what con-
trols the degree of binding specificity, or why some proteins are highly selective on
binding sequences while others are less stringent, is still not clear.

Protein-DNA recognition is by nature a dynamic process that involves delicate
structural fitting between proteins and DNA [30, 42]. However, the exact role of
flexibility and intrinsic disorder to the binding specificity is not well understood. As
the specific interactions are mainly contributed by hydrogen bonding between proteins
and DNA, high specificity between proteins and their cognate binding sequences is
considered an optimized result of shape fit and binding thermodynamics. We have
demonstrated previously that a point mutation F10V in P22 Arc repressor, which
does not make direct DNA base contact, affects the degree of binding specificity by
altering the flexibility of residues involved in direct base contacts [98]. Therefore,
more complete description in terms of both static and dynamic features is needed to
fully understand the specificity in protein-DNA recognition. With the advancement of

structure determination techniques, the number of protein-DNA complex structures
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in Protein Data Bank (PDB) is increasing at a higher rate [9]. Currently there are over
3000 protein-DNA complex structures in PDB. The availability of a large number of
protein-DNA complexes and their corresponding unbound protein structures makes it
feasible to conduct a more comprehensive study of protein-DNA binding specificity.
In this paper, we carried out a comparative analysis to investigate the static and
dynamic structural features for protein-DNA binding specificity.

We first constructed datasets of protein-DNA complex structures and group these
DNA-binding proteins into three general classes based on decreasing degrees of DNA-
binding specificity: type II restriction enzymes (highly specific, HS), transcription
factors (multi-specific, MS), and non-specific (NS) DNA-binding proteins. It should
be noted that there are no distinct groups with respect to DNA-binding specificity;
rather, we consider that DNA-binding proteins run a gamut of specificities from very
specific (recognize exact sequences) to non-specific. For example, type II restriction
enzyme Mval recognizes CCWGG (W can be either A or T). On the other hand,
some transcription factors, such as some nuclear receptors, exhibit high specificity
[45, 32, 31]. Nevertheless, type II restriction enzymes, in general, have higher bind-
ing specificity than transcription factors. In this study, type II restriction enzymes
with lower binding specificity, such as Bgll (recognition sequence GCCNNNN"NGCC,
where N represents any base), are not included in the HS dataset to minimize the
potential specificity overlap between the HS and MS groups. In addition to the
three-class design, we used bound-unbound (or holo-apo) pairs for identifying dy-
namic structural features that contribute to binding specificity, such as the range of

conformational change upon DNA-binding [42]. Furthermore, to assess the relation-
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ship between protein flexibility and binding specificity, we compared the structural
diversity of DNA-binding proteins, by comparing multiple apo and holo structures of
the same DNA-binding protein.

Our results demonstrated a trend in several static structural features: amino acid
propensities, interface size, number of residue-base contacts, backbone to base con-
tact ratios, major to minor groove contact ratios, number of protein-DNA hydrogen
bonds, and DNA shape parameters, among the three groups. We found that neg-
atively charged aspartate is highly enriched in base interactions in highly specific
DNA-binding proteins while it is depleted in multi-specific and non-specific DNA-
binding proteins. Our data revealed a tight connection between aspartate and the
cytosine base. We also showed the importance of two aromatic residues, tyrosine
and histidine, in conferring specific protein-DNA binding. To our knowledge, this is
the first large-scale comparative study to demonstrate the critical role of aspartate,
tyrosine and histidine in specific protein-DNA recognition. In terms of dynamic fea-
tures, we analyzed the protein conformational changes upon DNA-binding and their
structural variations in both free form and bound state. We found that highly spe-
cific DNA-binding proteins show larger conformational changes upon DNA-binding
while the non-specific DNA-binding proteins have smaller structural variations and

conformational changes.



28
2.2  Materials and Methods
2.2.1 Datasets

Three different datasets were generated in this study for different comparative anal-
yses: (i) pdNR30, a non-redundant protein-DNA complex dataset, for investigation
of static structural features related to protein-DNA interactions; (i) pairNR30, a
non-redundant bound-unbound pairs of DNA-binding domains, for comparing con-
formational changes upon DNA-binding; and (iii) svSet, a dataset for comparison of
structural variations of DNA-binding domains.

A total of 3,098 protein-DNA complexes were selected from the PDB [9]. Of these
complexes, some contain only DNA-binding domains while others represent full-length
DNA-binding proteins, including signal-sensing domains or trans-activating domains
besides DNA-binding domains. In this work, we used DNA-binding domains in
protein-DNA complexes as comparison units to maintain consistency. For structural
domain annotation, we combined the two most widely used structural classification
databases, CATH [97] and SCOPe [28], with manual inspection if an annotation is
not available in either database (Figure 4). A DNA-binding domain was selected if
there are at least 4 protein-DNA contacts with a distance cutoff of 3.9A, and the
domain has 40 or more amino acids.

Figure 5 shows how pdNR30 was generated. First, all the X-ray crystal structures
of protein-DNA complexes were selected from PDB. A series of quality filtering steps
were then carried out. X-ray structures with resolution higher than 3A and R-factor

more than 0.3 were removed. Protein-DNA complexes with single-stranded DNA
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Figure 4: Flowchart of DNA-binding domain annotations.

(ssDNA) were also filtered out. For the false ssDNA complexes, in which coordinates
are provided for only one DNA chain of a double-stranded DNA, we used our in-
house program PDA (Protein-DNA complex structure Analyzer) to reconstruct these
protein-DNA complexes by calculating the positions of the missing complementary
DNA chain [51]. Since the main goal of this analysis is to study the structural features
that contribute to the degree of protein-DNA binding specificity, removing mutant
protein structures and non-cognate protein-DNA complexes is essential as it would
add noise to our analysis. For example, researchers often use protein and/or DNA
mutants to study the effects of mutations on protein-DNA binding specificity [92].
The DNA-binding domains that interact with double-stranded DNA in the com-
plex structures were then annotated as HS (highly specific), MS (multi-specific), or NS

(non-specific) DNA-binding proteins [63] based on their DNA-binding specificity and
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Figure 5: Flowchart for compiling the non-redundant datasets of DNA-binding do-
mains.

function. Type II restriction enzymes generally belong to the highly specific group
and were selected based on enzyme classification number 3.1.21.4 and keywords in the
PDB, combined with manual inspection of the recognition sequences to assure that
the bindings are highly specific. Transcription factors belong to the multi-specific
group, since they generally recognize multiple conserved sequences. Transcription
factors were selected using TFinDit, a data repository for known transcription factor-
DNA complex structures [105]. Except for histones, DNA polymerases and RNA
polymerases, the annotation of other non-specific DNA-binding proteins is not triv-
ial, which was done based on manual inspection of the PDB entry and related ref-
erences. After clustering with a sequence identity of 30% using CD-HIT [56], the
non-redundant set pdNR30, was generated by selecting one representative from each

cluster, based on resolution and the number of missing residues. The pdNR30 dataset
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has 28 HS, 115 MS and 52 NS DNA-binding domains in complex with DNA (Table

S1).

The second dataset, pairNR30, was generated in a similar way except that we
started with a list of DNA-binding domains with both bound and unbound structures
in PDB. The DNA-binding domains in free, unbound state were selected if they have
100% sequence identity and at least 80% coverage with their corresponding structure
in the dataset of bound structures (Figure 6). The pairNR30 dataset consists of 11

HS, 41 MS and 16 NS bound-unbound DNA-binding domain pairs (Table S2).

All free protein
structures from PDB

Quality filtering

Redundant highly Redundant multi- Redundant non-
specific DBDs specific DBDs specific DBDs
Search for Search for Search for

homologs (100%
sequence identity)

Select DBDs with at
least one apo structre

Remove redundancy
(maximum 30% of
sequence identity

homologs (100%
sequence identity)

Select DBDs with at
least one apo structre

Remove redundancy
(maximum 30% of
sequence identity

homologs (100%
sequence identity)

Select DBDs with at
least one apo structre

Remove redundancy
(maximum 30% of
sequence identity

Figure 6: Procedure to compile the non-redundant apo-holo pairs of DNA-binding
domains.

The third dataset, svSet has three components: (i) multiHolo, DNA-binding do-
mains with at least 6 PDB structures in complex with cognate DNA; (ii) multiApo,
DNA-binding domains with at least 6 structures in the unbound state; and (iii) multi-

ApoHolo, DNA-binding domains with at least 4 structures in both the unbound state
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and bound state with cognate DNA. This dataset was used to study the structural
variations of DNA-binding domains in free state and in complex with DNA. There are
6 HS, 32 MS, and 24 NS DNA-binding domains in multiHolo dataset (Table S3). Since
the number of cases for the HS is small in the multiApo and multiApoHolo sets, we
combined the HS and MS cases and compare specific (HS+MS) against non-specific
(NS) DNA-binding domains. The multiApo set consists of 9 specific (HS+MS) and 6
non-specific (NS) DNA-binding domains (Table S4) while the multiApoHolo set has

10 specific (HS+MS) and 4 non-specific (NS) DNA-binding domains (Table S5).
2.2.2  Comparison of Structural Features of Protein-DNA Interactions

A comparative analysis of structural features that contribute to DNA-binding speci-
ficity was first carried out with the pdNR30 dataset that consists of a non-redundant
dataset of DNA-binding domains in complex with DNA (28 HS, 115 MS and 52 NS
DNA-binding domains). The structural features for protein-DNA interactions in-
clude: 1) protein side-chain/DNA-base binding propensities, 2) protein-DNA contact
area (PDCA), 3) number of residue-base contacts (NRBC) [50], 4) the number and
geometry of hydrogen bonds, 5) backbone to base contact ratio, 6) minor to major
groove contact ratio, and 7) DNA shape.

The DNA binding propensity (p;;) for an amino acid 7 is calculated as the ratio of
the percentage of the amino acid in protein side-chain/DNA base contacts and the
percentage of the amino acid in the specific dataset j (Equation 1) [50]. Jackknife

resampling was used to estimate the variances and potential bias of the data.
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Fy

i Fy
Pij = Dzl'j ’ (1)

where Fj; is the total number of binding residues (whose side-chain atoms are within
3.94 of DNA base atoms) of type i in dataset j. D;; is the total number of residues
of type 7 in dataset j, including missing residues. If p;; > 1, residue ¢ in dataset j is
considered to be enriched in protein side-chain/DNA base contacts.

The PDCA is determined by calculating the difference in solvent accessible surface
area (SASA) between the individual protein (SASA,,stein), DNA structure (SASApna)
and the corresponding protein-DNA complexe (SASA ompiez) [50].The solvent acces-
sible surface areas were measured by Naccess with default parameters [39]. Protein-
DNA contacts were identified using a distance cutoff of 3.9A between side-chain heavy
atoms and all DNA heavy atoms. These residue-DNA interactions were divided in
two non-overlapping sets: (i) residues that are in contact with DNA base (NRBC:
number of residue-base contacts) and (ii) residues that are in contact with DNA back-

bone only. We also calculated the NRBC density, the ratio of NRBC over the PDCA,

which represents the number of residue-base contacts per A2.

SASAprotem + SASADNA - SASAcomplex (2)
2

PDCA =

Hydrogen bonds in protein-DNA complexes were identified with HBPLUS [71]. In
addition to simple hydrogen bonds, we also analyzed the differences among the three
specificity groups in terms of other types of hydrogen bond geometry, e.g., bidentate

hydrogen bond that is defined when a residue forms more than one hydrogen bond
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with different acceptor and/or donor atoms (Figure 7a).

(a) An example of bidentate hydrogen (b) An example of bifurcarted hydrogen
bond. An arginine (Arg) residue forms bond. An asparagine (Asn) residue forms
two different hydrogen bonds with gua- two hydrogen bonds by sharing one donor
nine (G). atom (ND2).

Figure 7: Hydrogen bond geometries [61].

The DNA shape features, such as shear, stretch, stagger, shift, slide, rise (Figure
8a), buckle, propeller (Figure 8b), opening (Figure 8c), tilt, roll (Figure 8d), and
twist, were measured using 3DNA [60]. We selected nucleotides that are in contact
with the protein, plus two more flanking nucleotides on each side, and compared the
distributions of the DNA shape features among the three groups of DNA-binding
domains. Major and minor groove width were also calculated using 3DNA, which
reports the refined P-P distances [60].

The conformational change upon DNA-binding was calculated with two approaches
using the pairNR30 dataset. The first approach is to calculate the C, RMSD (root
mean square deviation) (Equation 3) between the unbound (v) and bound (w) con-
formations for a given DNA-binding protein. The RMSD is calculated by minimizing

the C, RMSD when superimposing two DNA-binding domain structures. In addition
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(a) Base-pair step parameter: rise (b) Base-pair parameter: propeller
(c) Base-pair parameter: opening (d) Base-pair step parameter: roll

Figure 8: Parameters for describing DNA shape.

to calculating the C, RMSD for all the residues in the DNA-binding domain, which
is a useful measure to assess the overall conformational change, we also calculated the
C, RMSD in DNA-binding pocket, by selecting the binding residues in the bound
conformation, using a heavy atom distance cutoff of 3.9 A. The C, RMSD of the
binding residues can provide more detailed information of conformational adjustment

for the pocket residues upon binding to DNA.

1 n
RMSD(v,w) = | > || vi —wi |} (3)
=1

The second approach is to compare Ay, the change of side-chain torsion angle y;
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(the torsion angle for the C,-Cjg axis) between the bound and unbound conformations.
We compared the median Ay; and the median absolute deviation (MAD) of Ax; for

each domain among three groups. For residue 7, Ay is calculated by Equation 4.

Axai = min(|x3; — X131, 360 — [x3; — xi31) (4)

where ¥, and xY; are the y; angles of residue i for the holo (v) and apo (w) structures.
The structural variations of DNA-binding domains were compared in the multiHolo,
multiApo and multiApoHolo datasets based on RMSD differences. We calculated
the median RMSD and MAD RMSD per DNA-binding domain, and compared the

distributions among the three groups of DNA-binding proteins.
2.2.3  Statistical Tests

The Kruskal-Wallis test, a multi-sample non-parametric method, was employed to
test whether there are significant differences of each of the features among the three
specificity groups, HS, MS and NS. If the p-value of the Kruskal-Wallis test is lower
than 0.05, we would carry out a one-sided Mann-Whitney U test, to identify the

significant differences between any two of the HS, MS and NS distributions.
2.3 Results
2.3.1  Amino Acid Propensity for DNA-Binding

Arginine and lysine are the two dominant residues in overall protein-DNA con-
tacts (18.4% and 14.9% respectively) as both are positively charged and can bind
to negatively charged DNA backbone through electrostatic interactions (Figure 9).

Distributions of amino acids that are in contact with DNA, including both backbone
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contacts and base contacts, are similar among the three groups except for a relatively
higher number of aspartate in the HS group (Figure 9). The catalytic sites in type
IT restriction endonucleases usually contain aspartate, which may result in the high
prevalence of aspartate in the HS group (the percentage changed from 8.4% to 5.9%
after removing catalytic residues, which is still higher than those in the MS and NS
groups with 1.2% and 3.4%, respectively). Even though amino acid distributions are
similar, majority of the residues in the NS group are involved in DNA backbone con-
tacts, while residues in the HS and MS groups participate in more direct residue-base

interactions (Figure 10).
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Figure 9: Amino acid distribution of binding residues in the pdNR30 dataset.
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Figure 10: Comparison of DNA backbone/minor groove/major groove contacts. Per-
centage of DNA-backbone only (blue), minor (orange) and major (green) groove con-
tacts per amino acid for highly specific (HS), multi-specific (MS) and non-specific
(NS) DNA-binding proteins.

To study which residues are preferred in specific protein-DNA binding, we com-
pared the residue propensities for interacting with DNA bases among the three groups
(see Section 2.2). If the binding propensity of an amino acid is larger than 1, it would
suggest that the amino acid is enriched in protein-DNA base interactions. Figure 11A
shows that arginine is enriched in all three groups (parg is 3.3, 3.2 and 4.8 for the HS,
MS and NS groups respectively) while lysine is only highly enriched in the NS group
(prys is 1.2, 0.9 and 2.5 for the HS, MS and NS groups respectively). Both residues
have higher base interacting propensities in the NS group than those in the HS and
MS groups. The high propensities of DNA base contact for arginine and lysine in the
NS group are rather counter intuitive. A closer look at the data suggests that we need
to be careful when interpreting the high propensities of arginine and lysine in the NS

group in terms of their contributions to specific protein-DNA interactions. First of
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all, there are only 65 total residue-base contacts in the whole NS dataset. Among
those contacts, 19 ( 30%) are arginine-base contacts and 12 ( 18%) are lysine-base
contacts. Secondly, unlike the HS and MS groups, in which arginine and lysine bind
predominantly in the major groove, arginine and lysine in the NS group are mainly
involved in minor groove contacts (10 out of 19 for arginine and 10 out of 12 for
lysine) (Figures 11B and 10). As generally accepted, minor groove contacts do not
confer much specificity due to its lack of discriminative pattern for hydrogen bonds,
either directly or mediated by water [89, 76], although minor groove interactions with
residues may contribute to binding specificity in individual cases (more discussion
later) [46].

Asparagine, glutamine, serine, and threonine, which can form hydrogen bonds with
DNA bases, are enriched in the HS and MS groups, but not in the NS group, sug-
gesting their important roles in specific protein-DNA interactions. The hydrophobic
residues such as alanine, valine, proline, leucine, and isoleucine, are depleted in all
cases.

The two negatively charged residues, aspartate and glutamate, have low propen-
sities in protein-DNA base interactions except for aspartate in the HS group (pasp
is 1.37, 0.38 and 0.27 for HS, MS, and NS, respectively) (Figure 11A). In general,
negatively charged residues are not favourable in protein-DNA interactions due to
the negatively charged DNA backbone and electronegative groups on all the bases
except for cytosine [43]. In addition, unlike asparagine and glutamine that can act
as both hydrogen bond acceptor and donor, aspartate and glutamate can only serve

as hydrogen bond acceptors. Therefore, it is not surprising to see they are depleted
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Figure 11: Residue-base contacts in protein-DNA complexes. (A) Amino acid propen-
sities for DNA base interaction in HS (red), MS (green) and NS (blue) groups; (B)
Percentage of major (red) and minor groove (cyan) contacts.

in protein-DNA base interactions in general. One interesting exception is the high
enrichment of aspartate in the HS group (Figure 11A). Further analysis revealed a
striking pattern as shown in Table 3. All the aspartate residues that contact DNA
bases are involved in hydrogen bonding with major groove atoms in the highly spe-

cific DNA-binding domains. Out of the19 hydrogen bonds, 18 participate in hydrogen
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bonding with a cytosine. Though aspartate and glutamate have very low propensi-
ties in the MS group and NS group, their major groove contacts are primarily with
a cytosine as well. While both cytosine and adenine have one hydrogen bond donor
in the major groove, adenine has an electronegative surface, making it unfavourable
for interacting with aspartate when compared to cytosine (Figure 12). In the mi-
nor groove, except for one case, all other aspartates and glutamates form hydrogen
bonds with a guanine, which is not surprising since only guanine can serve as a hy-
drogen bond donor in the minor groove (Table 3, S6 and S7). More importantly,
for aspartate-cytosine specific interactions in the HS group, aspartate form bidentate
hydrogen bonds in 5 cases (accounting for 10 of the 19 total atom-level hydrogen
bonds) with two consecutive cytosines (Figure 13 and Table S6). The stereochem-
ical properties and hydrogen bond patterns of DNA bases and aspartate make the
aspartate-cytosine very specific (Figure 13). There are no bidentate hydrogen bonds
for glutamate found in our non-redundant dataset. However, Ecl18kI (PDB ID: 2fqz
with a recognition sequence “CCNGG), not included in the dataset due to similarity
with other enzymes, has a bidentate hydrogen bond between residue Glul87 and two
consecutive cytosines [14]. In general, aspartate is preferred over glutamate, probably
due to the shorter side-chain of aspartate. The observation of the specific hydrogen
bonding between aspartate and glutamate may explain why both amino acids are
rarely seen in the MS and NS groups as most transcription factors allow variations
at different sites and non-specific binding proteins are not sequence-specific.
Another interesting observation is the high enrichment of two aromatic residues,

histidine and tyrosine in the HS (pgyrs = 1.9, pryr = 1.8) and MS group (pgrs = 1.3,
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Major groove Major groove

Minor groove Minor groove

Figure 12: Diagram of hydrogen bond signatures in the DNA major and minor
grooves. Red arrows point towards acceptor atoms, and green arrows point away
from donor atoms.

Figure 13: Aspartate forms one bidentate hydrogen bond with two consecutive cy-
tosine bases and one single hydrogen bond with a distant cytosine, via the major
groove, in endonuclease NgoMIV (PDB ID: 4abt).

pryr = 2.6), but not in the NS group (purs = 0.6, pryr = 0.9). But histidine
and tyrosine may contribute to specific DNA-binding using different mechanisms.
Histidine residues in the HS and MS groups primarily forms hydrogen bonds with

guanine (Table S8). The difference between these two groups is that 9 of the 10
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histidine-base contacts in the HS group form hydrogen bonds while only half of the
histidine-base contacts in the MS group are involved in hydrogen bonding. As for
tyrosine, only a small percentage of the base contacts participate in hydrogen bond-
ing (data not shown), suggesting that unlike histidine, hydrogen bonding does not
play a major role in specific-protein-DNA binding for tyrosine. Previous studies have
shown the importance of aromatic residues and w-m-interactions in protein-DNA com-
plexes [113, 74]. m-interactions occur when the negatively charged electron cloud of an
aromatic compound interacts with positively charged atoms or cations [40]. While 7-
interactions are generally thought to add stability and affinity to macromolecule inter-
actions [113, 74], more recent studies have suggested that aromatic residues may play
a major role in determining binding specificity in molecular recognition, such as in-
teraction between carbohydrates and proteins [3]. Wilson et al. recently investigated
the abundance, structure and strength of m-interactions between aromatic residues
and DNA bases and demonstrated that protein-DNA m-interactions are more preva-
lent than previously thought [113, 112, 7]. Yet, very little is known about the critical
role of aromatic-base m-interactions in protein-DNA binding specificity [113, 112, 7].
Our results suggest that tyrosine may play more important roles in conferring specific
protein-DNA interactions through 7w-interactions due to its high propensities in the
HS and MS but low propensity in the NS group, and scant of hydrogen bonds. Tryp-
tophan has low occurrences with two residues in each of the three groups. Therefore
the high propensity of tryptophan in the NS group is not conclusive due to the small
sample size. Moreover, both tryptophan residues in the NS group interact with the

minor groove of the DNA (Figure 11B). As for phenylalanine, about 50% of the base
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contacts are in the minor groove in both HS and MS, therefore, it is not clear how

much contribution it provides for specific protein-DNA interactions.
2.3.2  Interaction Interface

Comparison of interaction surface among the three groups shows a similar trend
to their degree of binding specificity. The HS group has the largest protein-DNA
contact area (PDCA) while the NS group has the smallest contact area (one-sided
two-sample p-values < 0.0002) (Figure 14A). Since interaction surface represents the
total contact area between protein and DNA, a combination of both non-specific and
specific interactions, we also compared the number of residue-base contact (NRBC)
[50], which captures more of specific interactions. Results show a similar decreasing
trend for NRBCs to PDCA as the protein-DNA binding specificity decreases (one-
sided two-sample p-values < 0.0005) (Figure 14B). In terms of number of residue-
base contacts per A2 (NRBC density), we found that HS and MS groups have similar
NRBC density, while the NS group has much lower NRBC density (one-sided two-
sample p-values < 2 x 107%) (Figure 14C).

The percentage of DNA base contact is much higher in the HS and MS groups than
that in the NS group since the contacts between amino acids and DNA-backbone
atoms are mainly non-specific (Figure 15A). We also compared the major and minor
groove contacts, as major groove contacts represent primary contribution to binding
specificity due to the sequence-specific patterns for hydrogen bonds in the major
groove. The percentage of major groove contact in the HS and MS groups (81.1%

and 82.3% respectively) is more than twice the number in the NS group (35.4%)
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Figure 14: Comparison of protein-DNA interactions. (A) Protein-DNA contact area
(PDCA); (B) number of residue-base contacts (NRBC); and (C) NRBC density,
NRBC normalized to the total contact area (PDCA). *** for p < 0.001; ** for
p < 0.01; * for p < 0.05.

(Figure 15B). In terms of the number of major groove contacts, we observed a clear
trend similar to the binding specificity. The HS and MS groups have significantly
higher number of major groove contacts than that in the NS group (one-sided two-
sample p-values < 9 x 10712) (Figure 15C). The difference between the HS and MS
groups is also significant (one-sided two-sample p-values < 0.005).

The number of minor groove contacts does not have a trend as that in the major
groove contacts. Interestingly, there is a statistically significant difference between the
HS group and MS/NS groups with HS group having more minor groove contacts (Fig-
ure 15D). Even though minor groove contacts are generally considered non-specific,
it has been demonstrated that minor groove contacts can contribute to protein-DNA
binding specificity. Joshi R et al. previously reported that the functional specificity
of a Hox protein is mediated by minor groove contacts [46]. More specifically, the
minor groove contacts are a result of sequence-dependent DNA shape recognition. It
has been reported that the minor groove shape, which deviates from the canonical

B-type DNA structure, also plays a role in sequence specific recognition for BsoBI
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Figure 15: Comparison of DNA base/backbone and major/minor groove contacts.
(A) Percentage of DNA backbone-only and DNA base contacts; (B) percentage of
major and minor groove contacts; (C) number of major groove contacts; and (D)
number of minor groove contacts. *** for p < 0.001; ** for p < 0.01; * for p < 0.05.

endonuclease [114]. Therefore, the relatively large number of minor groove contacts

in the HS group may be the result of DNA shape (discussed in next section). Taken

together, the HS and MS groups have similar ratios of residue-base contacts and simi-

lar percentages of DNA base and major groove contacts, which are significantly larger

than those in the NS group. Between the HS and MS groups, HS has larger contact
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areas and higher number of DNA base and major groove contacts than those in the
MS group, which is consistent with the previous study that shows larger interface in
the restriction endonuclease superfamily than the transcription factor superfamilies
[18].

Hydrogen bonds have been considered a major factor in protein-DNA binding speci-
ficity [61]. Our analysis shows the decreasing pattern from the HS group to the NS
group in terms of the total number of hydrogen bonds between protein and DNA
(one-sided two-sample p-values < 0.0003) (Figure 16A) as well as between protein
and DNA bases (one-sided two-sample p-values < 8 x 107?) (Figure 16B). While
the formation of hydrogen bonds is important for specific protein-DNA binding, the
geometry of the hydrogen bonds can also help discern specific and non-specific in-
teractions. The number of bidentate hydrogen bonds between protein and DNA also
shows the same trend as the degree of binding specificity (one-sided two-sample p-

values < 2 x 107?) (Figure 16C).
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Figure 16: Hydrogen bonds between protein and DNA. (A) Number of hydrogen
bonds between protein side-chains and DNA (PDHB); (B) number of hydrogen bonds
between protein side-chains and DNA bases (PBHB); and (C) number of residues that
form bidentate hydrogen bonds. *** for p < 0.001; ** for p < 0.01; * for p < 0.05.
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2.3.3  DNA Shape

To compare the DNA shape in protein-DNA complexes, we used the program 3DNA
to derive a number of structural features, including shear, stretch, stagger, buckle,
propeller, opening, shift, slide, rise, tilt, roll and twist [60]. We computed the median
values for each domain, using only the nucleotides that are in contact with the protein
and two flanking bases on each side, and compared the distributions among the three
groups. The results show that the median values in each DNA for propeller, opening,
rise and roll have significant differences among the HS, MS, and NS groups (Kruskal-
Wallis test p-values < 0.02) (Figure 17). Further analysis using Mann-Whitney U test
shows that the DNA-binding domains in the HS group have larger propeller (one-sided
two-sample p-values < 0.02) and rise (one-sided two-sample p-values < 0.002) median
values, and lower opening (one-sided two-sample p-values < 0.05) and roll (one-sided
two-sample p-values < 0.004) median values than the MS and NS groups. We also
compared the distributions of these four features by pooling all the data within each
of the HS, MS, and NS groups and found similar significant differences (data not
shown). These results indicate that the HS group has distinct shape features when
compared with the other two groups, suggesting a key role of these shape features
in the high binding specificity. These shape differences may also explain the number
of minor groove contacts in the HS group. The high propeller and rise may make
the minor groove more accessible to residues and offer more distinctive patterns for
different DNA sequences, thus contributing more to binding specificity.

We also looked at the major and minor groove width of nucleotides in contact with
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Figure 17: Comparison of DNA shape features. Median (A) propeller, (B) opening,
(C) rise, and (D) roll per structure. The shape features are calculated using 3DNA
69. *** for p < 0.001; ** for p < 0.01; * for p < 0.05.

the protein (+2 flanking bases on each side) using 3SDNA by comparing the minimum,
average, and maximum width for each DNA structure in the pdNR30 dataset. Our
analysis shows that there is a similar pattern to the binding specificity in terms of
the major groove width, where HS has the highest width, no matter which metric is

used (Figure 18A-C). As for the minor groove width, the DNA structures in complex
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with highly specific DNA-binding domains have wider minor grooves than those in
the multi-specific and non-specific DNA-binding domains (one-sided two sample p-
values < 0.05) with the MS group having the smallest minor groove width (Figure
18D-F). This is in part consistent with the observation by Contreras-Moreira et al.
that restriction endonuclease have a larger proportion of indirectly readout bases [18].

Our data confirms the importance of DNA shape in specific protein-DNA interactions
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Figure 18: Comparison of DNA major and minor groove width () of protein-contacting
DNA bases. Minimum (A), average (B) and maximum (C) major groove width

per domain. Minimum (D), average (E) and maximum (F) minor groove width per
domain.
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2.3.4  Conformational Changes Upon DNA-Binding

We calculated the conformational changes in terms of C, RMSD of all the residues
(Figure 19A) and the residues that are in contact with DNA base (Figure 19B) us-
ing pairNR30, a non-redundant dataset of bound/unbound DNA-binding domains.
Besides C, RMSD, which indicates the backbone conformational changes, we also
looked at side-chain conformational changes of the binding residues based on y; di-
hedral angle changes Ay, including the distribution of the median Ay; per domain
(Figure 19C), and the MAD of Ax;, which shows variances of Ay; (Figure 19D).
The conformational changes based on RMSDs show that changes are higher in the
highly specific group (Figure 19A and 19B). Statistical analysis revealed that the do-
mains in the HS group have significantly higher C, RMSD for all residues (p-values
< 0.02) and DNA-base contacting residues (p-value < 0.004). There is no significant
difference between the MS group and the NS group. As for the y; dihedral angle
changes, though the median values for the HS group are larger than those in the MS
and NS group, the differences are not statistically significant (Figure 19C and 19D).
The Ay, distributions for all DNA binding residues among the three groups were also
compared, but no statistical significant differences were found (data not shown).

Our results suggest that the DNA-binding proteins with higher degree of binding
specificity tend to have more conformational changes compared to the non-specific
DNA binding proteins and transcription factors. Since the protein-DNA interaction
interface for the highly specific proteins is larger, these proteins require backbone

flexibility in order to have a precise interface fit for high specificity [48].
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Figure 19: Conformational changes upon DNA-binding. C, RMSD between the
bound and unbound structures in the pairNR30 dataset using (A) all residues and
(B) binding residues only. Median Ax; (C) and MAD Ay; (D) per domain. *** for
p < 0.001; ** for p < 0.01; * for p < 0.05.

2.3.5  Structural Variations of DNA-Binding Domains

In addition to studying structural differences between the bound and unbound
structures, another way to explore the role of protein flexibility and dynamics to DNA

binding specificity is to compare the conformational diversity of DNA-binding proteins
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in free state and bound form. Our analysis on three datasets multiHolo, multiApo and
multiApoHolo revealed that highly specific and multi-specific DNA-binding domains
have a larger range of structural variations in both the bound (Figure 20A and 20B)
and free forms (Figure 20C and 20D), when compared to the non-specific DNA-
binding domains. The plots based on the multiApoHolo set also show that the NS
group has smaller structural variations in terms of median and MAD RMSD than
those in the HS and MS groups (Figure 20E and 20F). These results suggest that the
flexibility of DNA-binding proteins may contribute to their higher degree of binding

specificity, which is consistent with previous findings using different metrics [2].
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Figure 20: Structural variations in the multiHolo dataset in terms of median RMSD
(A) and MAD RMSD (B). Structural variations in the multiApo dataset in terms of
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bound states of the multiApoHolo dataset in terms of median RMSD (E) and MAD
RMSD (F). *** for p < 0.001; ** for p < 0.01; * for p < 0.05.
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2.4  Discussion

Knowledge of the structural basis of binding specificity is central to our understand-
ing of protein-DNA interactions, and the evolution and divergence of protein-DNA
binding specificity [8]. Such knowledge is also essential to practical applications in
rational design of new proteins with novel binding specificity in biotechnology and
medicine [5, 107, 87, 109]. Our comparative analyses show a clear trend in terms of
both static and dynamic structural features with the degree of protein-DNA binding
specificity.

Arginine and lysine have been known to be abundant in protein-DNA interfaces
(Figure 9). Though both arginine and lysine can form multiple types of hydrogen
bonds with DNA [61], which is a key factor in specific protein-DNA interactions, they
also represent two major residues for non-specific interaction between their positively
charged side-chains and the negatively charged DNA backbone. In NS group, majority
of arginine and lysine residues interact with the DNA backbone. For the residues in
the NS group that interact with the DNA bases, the contacts occur primarily in
the minor groove. Both the non-specific and specific interactions of arginine and
lysine may work together to achieve high specificity in the process of protein-DNA
recognition. For specific DNA-binding proteins, the non-specific interactions between
arginine/lysine and DNA backbone or minor groove can help search for the target sites
very quickly via non-specific electrostatic interactions [48]. Once the target sites are
identified, the hydrogen bonds can contribute to sequence-specificity through specific

residue-base hydrogen bonding in the major groove.
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One important finding from our analysis is the high enrichment of aspartate-base
contacts in the group of highly specific (HS) DNA-binding domains. Aspartate is a
negatively charged residue and its side-chain atoms can only serve as hydrogen bond
acceptor, which makes it unfavourable to interact with DNA due to the negatively
charged backbone and electronegative surface, except for cytosine. As such, aspartate
interacts with cytosine with high specificity, especially with two consecutive cytosine
bases through bidentate hydrogen bonds, as aspartate has two hydrogen bond ac-
ceptors (Figure 13). It may also explain why aspartate is rarely seen in DNA base
contacts in the MS and NS groups since DNA-binding proteins both groups allow
variations to different degrees. In case studies, Jantz and Berg used designed zinc
finger proteins and showed that when a residue in one of the fingers is changed from
asparagine to aspartate, though the overall affinity decreased, the contacting base
changed from adenine to cytosine with higher specificity [43]. Pingoud et al. studied
Ssoll and the evolutionary relationship between different subgroups related to this
protein and found that Glul87 in Ssoll is highly conserved when aligned to several
other restriction enzymes, which can be either an aspartate or a glutamate [86]. To
our knowledge, our comparative analysis is the first large-scale study to show the
specific recognition of cytosine by aspartate.

Histidine and tyrosine appear to be enriched in highly specific and multi-specific
DNA-binding proteins. In addition to their capability to form hydrogen bonds with
bases, both aromatic residues can contribute to protein-DNA binding through -
interactions. Our data revealed that histidine contribute to specific DNA binding

primarily through hydrogen bonding with guanines while tyrosine uses m-interactions
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to achieve the binding specificity. Recent studies demonstrated that w-interactions
are more prevalent in protein-DNA recognition than previously thought [113, 112, 7].
However, the role of m-interactions in specific protein-DNA recognition is still not
clear. Our data suggest that these two aromatic residues play key roles in specific
protein-DNA binding through hydrogen bonds and m-interactions. Based on these
results, we have developed an integrative energy function that adds two atomic-
level terms, m-interaction energy and hydrogen bond energy, to a knowledge-based
multi-body potential for structure-based prediction of transcription factor binding
sites. Our results showed that incorporating m-interaction and hydrogen bond energy
greatly improved the prediction accuracy of transcription factor binding sites [59, 25].

Not surprisingly, our data show that there are significantly larger base/backbone
and major/minor groove contact ratios for DNA-binding proteins in the HS and
MS groups when compared to the non-specific DNA-binding proteins. While the
contact ratios and density are similar between HS and MS proteins, the total contact
number and interaction interface in HS proteins are larger than those in the MS group
(Figures 14 and 15). This is consistent with previous results by Contreras-Moreira et
al. [18]. Similarly, the number of simple and complex hydrogen bonds is another key
contributing factor for the degree of DNA-binding specificity (Figure 16).

Since DNA shape has been implicated in protein-DNA binding specificity [91, 89,
90], we also looked for any shape differences among three groups by systematic anal-
ysis. However, comparison of the shape features is not as straightforward as exami-
nations of the contact features since there are local and global shape features. Never-

theless, our results showed that the highly specific DNA-binding domains have larger
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rise between bases, something that can contribute to more base contacts since the
bases can be more exposed [18]. The results on opening, propeller and roll parameters
as well as the major and minor groove width are also statistically significant. These
differences may be a result of the flexibility of both protein and DNA, which help
binding specificity through fitting and fine-tuning to achieve optimal interactions.
In addition to the “static” protein-DNA contact features and the difference in
DNA shape, we investigated the dynamic structural features in DNA-binding do-
mains. Currently, there are two widely accepted models for macromolecular recogni-
tion, induced-fit and conformational selection [20]. We compared both the conforma-
tional changes after DNA-binding (mimicking the induced-fit model) and structural
variations of each protein (mimicking the conformational selection model). Based on
a limited number of cases in the datasets, we showed that the highly specific and
multi-specific DNA-binding domains have larger degree of flexibility in the bound
and unbound states, and larger conformational change upon DNA-binding. This is in
accordance with the hypothesis that specific DNA-binding proteins need to explore
different conformations in order to optimize their binding to the target DNA recog-
nition sites [98, 120], whereas non-specific DNA-binding proteins are not required to
explore that many conformations in the process [76]. The flexibility involved in the
specific protein-DNA binding process could be a combination of structural variations
and induced conformational changes upon binding for both protein and DNA. For
example, a very recent work by Chen and Pettitt showed that the flexibility of a
specific DNA sequence is about 40% intrinsic and 60% induced while no appreciable

non-specific DNA bending is induced [15].
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Table 3: Number of hydrogen bonds between DNA base and aspartate (Asp) or
glutamate (Glu). In parenthesis, it shows the number of bases that are hydrogen
bonded with aspartate or glutamate. For example, there are 19 hydrogen bonds
between aspartate and DNA major groove atoms in the highly specific DNA-binding
domains with 18 interacting with cytosine (C) and 1 with guanine (G).

Amino Acid Asp Glu
Groove , ) ‘ ‘
Dataset Major Minor Major Minor
HS 19 (18C, 1G) | 5 (5G) 2 (20) 1(1G)
MS 4 (4C) 0 10 (7C, 3A)
NS 0 1 (1G) 0 1 (1T)

In conclusion, protein-DNA recognition is a complex mechanism that can be dis-
sected in terms of static and dynamic structural features that contribute to the de-
grees of binding specificity. Not only does the knowledge help us better understand
the possible mechanisms of specific protein-DNA interactions, these features can also

be used to assess the quality of protein-DNA docking predictions.



CHAPTER 3: ASSESSMENT OF PROTEIN-DNA DOCKING PREDICTIONS

3.1  Introduction

DNA-binding proteins play crucial roles in many biological processes. The mech-
anism of protein-DNA recognition, despite of decades of efforts, is still not fully un-
derstood. Protein-DNA complex structures can provide an insight into the molecular
mechanisms of DNA recognition and be used as a starting point for structure-based
transcription factor (TF) binding site prediction. Although the number of experimen-
tally determined structures in the PDB [9] increases at a higher rate, only a small
percentage of them (~3%) are proteins in complex with DNA.

Computational docking between a protein and DNA, on the other hand, has been
considered as a cost-efficient alternative to fill the void in the complex structure land-
scape. More importantly, it has great potentials in computer-aided drug design. Over
the last two decades, several protein-DNA docking algorithms have been developed
[52, 21, 50, 106]. They use energy functions, either knowledge- or physics-based, to
guide the docking process and ultimately select a protein-DNA complex with the low-
est energy. There are two major types of docking methods, rigid and flexible docking
algorithms [50]. Rigid docking algorithms do not change the initial conformation of
the protein and DNA molecules, they only change the relative position of the protein

with respect to the DNA. Flexible docking algorithms consider the conformational
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changes of protein and DNA, besides changing the relative positions between protein
and DNA. Rigid docking methods are useful to test the validity of energy functions
and serve as a staring point to develop flexible docking algorithms. The accuracy of a
method is usually reported as the percent of cases to which the algorithm selected a
good prediction (in terms of the root mean square deviation (RMSD) of the predicted
and the native structure).

Takeda et al. [103] developed a novel residue-level, knowledge-based potential and
applied it to benchmark dataset of 38 transcription factor-DNA complexes using a
rigid-docking algorithm. The algorithm is based on Monte Carlo (MC) simulations.
Usually for one protein-DNA docking prediction, 200 independent MC simulations are
carried out to increase the coverage of the sampling space. The one with the lowest
energy of the 200 simulated complex structures is selected as the predicted model.
In general, it is considered a good prediction if the model is within 3 A of the native
structure. The method has a reported accuracy of 55% (21 successful cases out of 38
protein-DNA complexes). However, there are two issues with the current prediction
method. First, there are predicted near native structures (RMSDput prea < 3A) in
13% of the cases (5 out of 38), but these complexes have higher energy, as such, they
are not selected as the predicted models. We call these false negative complexes.
Secondly, in 32% of the cases (12 out of 38 total cases), the docking algorithm could
not produce any good predictions. However, the program will always select the lowest
energy complex structure as a predicted model. This is a problem related to false
positives.

Model quality estimation is an essential component of protein-DNA docking pre-
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dictions, as the accuracy of a model will affect its usefulness for practical applications
[13]. To determine the accuracy of predicted complexes when the native complex
is unavailable still remains an open problem. The ability to evaluate the quality of
protein-DNA docking predictions is urgently needed. Previous docking methods have
relied merely on energy scores to rank the predictions [22, 103], however, energy scores
have failed to identify the correct from the incorrect solutions [99]. The energy scores
used for docking prediction are generally designed to be fast, due to the amount of
conformations the algorithms have to explore, and they are not accurate enough for
the specific task of identifying good/bad predictions.

In this study, we present a learning model to evaluate the quality of protein-DNA
docking solutions. The score indicates the probability of the protein-DNA complex
to be a native or near-native structure and is a useful indicator of the quality of the
prediction. The goal is to improve the protein-DNA docking prediction and to provide
the level of confidence of the prediction, i.e., it will select near native structures if
available, and discard bad predictions when the docking algorithm could not produce

any near-native structures.
3.2 Materials and Methods

To achieve the above goal, we developed a computational model by training a
binary classifier with positive (good predictions) and negative (bad predictions) sam-
ples. The good and bad predictions were obtained as follows. Based on a training
dataset of 160 native protein-DNA complex structures, we generated 64,000 (400

each) protein-DNA predictions using a rigid-docking algorithm with the orientation
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potential [103] and the multi-body potential [59]. Each predicted model is either
assigned as positive (or good) if the RM S Dyt prea < 3A or negative (or bad) to the
remaining predictions. Since only 7.6% of the predictions are near-native structures,
we implemented a balanced sampling strategy known as hard negative mining in order
to have an unbiased model.

After training a model, it is used to evaluate the quality of the predictions using
a testing dataset developed as a benchmark for protein-DNA docking algorithms.
We used the Matthews correlation coefficient to assess the quality of the model as
binary classifier, and also compare the performance of the docking algorithm with

and without the trained model.
3.2.1  The Scoring Function
Features

We applied two groups of features for the model. One consists of protein-DNA
interaction energies and the other contains static structural features as described in
Chapter 2. The first group includes three knowledge-based energy functions, the
multi-body potential (energyMB), the orientation potential (energyOR), and DDNA3
(ddna3). The multi-body potential [59] is a knowledge-based, residue-level potential
originally developed to guide the search of a TF-DNA docking algorithm. It was later
replaced by the orientation potential [103], another knowledge-based, residue-level
potential that takes into account not only the proximity of the nucleotides respect
to the protein side-chains, but also the angles between bases and amino acid side-

chains. DDNA3 [119] is an atom-level potential that estimates the interaction energy
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in a protein-DNA complex.

The static structural features used for this study are: interface size (pdca), number
of residue-base contacts (NRBC) divided in major (sc.major) and minor groove con-
tacts (sc.minor), side-chain/DNA backbone only contacts (sc.bb), protein backbone-
DNA contacts (bb), protein-DNA hydrogen bonds (pdhb), protein-DNA base hydro-
gen bonds (pbhb), bidentate hydrogen bonds (bidentateHB), bifurcated hydrogen
bonds (bifurcatedHB) and single hydrogen bonds(singleHB).

The interface size (PDCA: protein-DNA contact area) was determined by calculat-
ing the difference in solvent accessible surface area (SASA) between the individual
protein (SAS Ay otein), the DNA structure (SASAg,) and the corresponding protein-
DNA complex structure (SASAcompiez) (Equation 2). The solvent accessible surface
areas were measured by Naccess [39] v.2.1.1 with default parameters.

Protein-DNA contacts were identified using a distance cutoff of 3.9A between pro-
tein heavy atoms and DNA heavy atoms. The DNA-contacting residues were divided
into four non-overlapping sets according to the following hierarchy: (i) sc.major,
residues that have at least one contact between side-chain atoms and DNA major
groove; (ii) sc.minor, residues that have at least one contact between side-chain
atoms and DNA minor groove; (iii) sc.bb, residues that have at least one contact
between side-chain atoms and DNA backbone; and (iv) bb, all other DNA contacting
residues.

Hydrogen bonds (HBs) in protein-DNA complexes were identified with HBPLUS
[71] v.3.06. pdhb (protein-DNA hydrogen bonds) is the total number of hydrogen

bonds between any protein atom and any DNA atom, and pbhb (protein-base hy-
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drogen bonds) is the subset of hydrogen bonds between any protein atom and DNA
base atoms. We also counted residues forming protein-DNA hydrogen bonds by HB
geometry: (i) bidentateHB, residues that form at least two hydrogen bond with dif-
ferent acceptor and donor atoms (Figure 7a); (ii) bifurcatedHB, residues that form
two hydrogen bonds by sharing one atom (Figure 7b); and (iii) simpleHB, residues

that form only one hydrogen bond.
RBF Kernel SVM

Support vector machines (SVM) are supervised learning methods, widely used to
train binary classifiers in computational biology [11, 12, 53]. In this case, we trained a
non-linear SVM model using the radial basis function (RBF) kernel, with parameter
v = nic, where n, (=13) is the number of features selected to develop the model.
Platt scaling was used to transform the binary classifier into a scoring function, which
applies logistic regression on the SVM scores using the training dataset and cross-
validation. The score then, is a probability that estimates the likelihood of a protein-
DNA complex to be a near-native structure, or good prediction. We used the package
e1071 [73] in R, which has embedded the functionalities to implement the RBF kernel

and the Platt scaling while training an SVM model.
3.2.2  Model Training
Training Dataset

The training dataset was originally used to develop the orientation potential [103].
It consists of 160 TF-DNA complex structures (Table 4) from the Protein Data Bank

[9]. The DNA and protein of each native structure is separated first and 200 indepen-
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Table 4: Non-redundant dataset of 160 transcription factor-DNA complexes for train-
ing the scoring function.

1a02N 1a0aA 1a3gA 1laisA 1am9A 1an4A 1b72A 1b72B 1bdhA 1bdtA
1bf5A 1bglA 1bl10OA 1bvoA 1c9bA 1cf7A 1cf7B 1cqtl 1d3uB 1d5yA
1dh3A 1dp7P 1dszA 1lefaA 1fosF 1fzpB 1g2dC 1gd2E 1hOmA 1h88C
1h9dA 1h9tA 1hbxG 1hcgA 1hjbA 1hwtC 1if1A 1lignA 1ihfB 1imhC
1je8A 1jfiA 1jfiB 1k6oB 1k78A 1kb2A 1ku7A 11b2B 11qlA 1mdyA
ImjeA 1mjeB 1mnmC 1nkpA 1nlwA 1nvpC 1lodhA 1lozjA 1perlL 1pp8F
lpueE 1pyiA 1r4iA 1rmiA 1rmiC 1sknP 1svcP 1t2kD 1ttuA 1u8bA
1u8rA 1ubdC 1vtnC 1xbrA 1xsdA 1yo5C 1zlkA 2a07F 2aybA 2bopA
2bsqA 2bsqE 2c91Y 2caxA 2d5vA 2dgcA 2drpA 2er8A 2etwA 2£8xC
2folD 2folE 2gliA 2h27A 2h8rA 2hanB 2hosA 2hzvA 2i13A 2iieA
2nnyA 2o04aA 2061A 2p51C 2prtA 2qfjA 2ghbA 2ql2B 2r1jL 2rb5yA
2vz4A 2wbuA 2wt7A 2x6vA 2xroA 2xsdC 3a01A 3abtA 3bslA 3c2iA
3clzA 3co7C 3coqA 3crolL 3dinl 3d2wA 3d6yA 3dfvC 3do7A 3dzuA
3dzuD 3ereD 3f27D 3fdqA 3fmtA 3g73A 3gfiA 3h0OdA 3htsB 3igmA
3iktA 3ivbA 3jtgA 3ketA 31lspA 3m9eA 3mlpA 3mval 3mzhA 309xA
3odcA 3ogmA 3orcA 3osfA 3q05A 3q0aA 3qbfA 3gqmbA 3qgsvA 3qymA

dent predictions were generated using the rigid-docking algorithm with the orienta-
tion potential and 200 predictions were generated with the multi-body potential, with
the objective of obtaining different complex conformations. The core of the docking
program is a Monte Carlo (MC) simulation approach, which runs a maximum of
1.5 million steps or until it converges. The predictions are labeled “good” and “bad”
based on the RMSD, computed between the DNA backbone heavy atoms of the native
(v) and the predicted (w) structures, after superimposing the proteins (Equation 3).
If the RMSD is less or equal to 3A, we consider the prediction as “good” (or positive),

and if it is more than 3A, then it is labeled a “bad” (or negative) prediction.
Balanced Class Selection

After calculation of the RSMD of all the predictions from the training dataset, we

observed the small percentage of positive samples (7.6%) and a large percentage of
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negative samples (92.4%). Hard negative mining was implemented to address the
problem of an unbalanced training dataset. Hard negative mining is an iterative
training process that selects an initial training dataset combining all positive cases
and a random sample from the negative cases, then trains a model based on the
initial training dataset and adds to it the cases that resulted in false positives after

the previous training, until the training dataset remains unchanged (Figure 21).

ng;t;\;e Select all
7 6% n=4373
Incremental Trai del
training ra(lgvnl\1/|0) E
dataset
. Initial
Negative random
cases lection
92.4% >¢

n=4373

Add new
false
positives

Figure 21: Training of an SVM model using hard negative mining.

3.2.3  Model Performance
Testing Dataset

To test the performance of the scoring function we used a testing dataset consisting
of 38 transcription factor-DNA complex structures (Table 5), which was developed

as a benchmark for rigid-docking algorithms [50].
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Table 5: Non-redundant dataset of 38 transcription factor-DNA complexes for testing.

laay
11mb
1zs4d
2rbf

The performance of binary classifiers can be measured in multiple ways [85]. The

lan2
1qn4
2ac0
2yvh

1b01
1gpi
2bnw
2zhg

1by4
1r8d
2c6y
3clc

1cma
1rio
2cgp
3dnv

1gxp
1sax
2elc
3ebc

1h8a
1tro
2fio
3hdd

lhjc 1jj4 1jtO
1xpx 1z9c 1zme
2irf 2it0 2orl
3gz6

Matthews Correlation Coefficient (MCC)

selected measures can have a big impact on the development of the model, due to

the biases they present towards minimizing false positive or false negative cases. The

Matthews correlation coefficient (MCC) (Equation 5) is a widely used measure for

the quality of binary classifiers. It takes into account all cases, true positive (TP),

true negative (TN), false positive (FP) and false negative (FN) cases, in contrast with

other measures such as precision that are biased towards increasing the number of

true positive cases only. It also has the advantage of working in applications where

the number of positive and negative cases is unbalanced, which makes it particular

useful for this study.

MCcC

TP xTN —FPxFN

V(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Performance Evaluation

The main goal of the model developed in this study, is to improve the performance of

the protein-DNA docking algorithm by providing quality assessment of the predicted

models. Currently, the orientation potential can have a prediction accuracy of 55%.

However one of its biggest limitations of the current approach is its capability to
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recognize incorrect predictions.

The test cases are classified as true positive (TPogr), false negative (FNpg) and
false positive (FPog) according to the orientation potential. A case is TPog, if the
conformation with the lowest energy (out of 200 predicted conformations) is a “good”
prediction, i.e., has an RM S D41 prea < 3A. On the other hand, a case is FNgp if there
is a good prediction among the 200, but the conformation with the lowest energy is a
“bad” prediction, i.e., has an RM S Dyt prea > 3A. The third class (FPop) reprsents
the cases where all the docked conformations are bad predictions.

When the SVM model is used, the cases are classified as true positive (TPgy ),
true negative (TNgyas), false negative (FNgy /), and false positive (FPgyas). For
example, the score represents the probability (p) of the protein-DNA complex to be
a good prediction. We then set a probability cutoff of 0.5 to predict if the complex
is a good (p > 0.5) or a bad (p < 0.5) conformation. If the maximum probability
(out of the 200 predictions) is greater or equal than 0.5, and the RM .S D4t preq Of the
complex with the maximum probability (the “best” predicted conformation) is less
or equal than 3A, then the case is a TPgyay; if the maximum probability is greater
or equal than 0.5, but the RM S D, preq of the best prediction is greater than 3A,
the case is a FPgy . On the other hand, if the maximum probability is less than 0.5,
and the minimum RMSD,q preq is greater than 3A, i.e., the docking algorithm was
not able to find a good conformation, the case is classified as TNgy,,. However, if
the maximum probability is less than 0.5, but there is at least one good prediction,
then it is a FNgys case.

The improvement of the SVM model over the orientation potential on assessing
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Figure 22: Protein-DNA docking predictions are classified into true positive (TP),
false positive (FP), false negative (FN), and true negative (TN=0), using an energy
score to select the best conformation.

the quality of the protein-DNA docking predictions is estimated by comparing the

accuracy (Equation 6) of each method.

B TP+ TN
Y = rp L FP+ FN + TN
3.3  Results

The scoring function is trained using hard negative mining, which takes an initial

random sample from the training dataset. Due to the randomness of the selection
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Figure 23: Protein-DNA docking predictions are classified into true positive (TP),
true negative (TN), false positive (FP), and false negative (FN) using the SVM scoring
function to select the best conformation.

of the dataset to train the SVM model, 30 independent models were generated. The
SVM model, as a binary classifier, has an average Matthews correlation coefficient of
0.82 (s = 0.003) (Figure 24A).

The orientation potential has a reported accuracy of 0.55. With our implemen-
tation, the current accuracy for the orientation potential is 0.61 (=23/38), which is
much smaller than any accuracy obtained using either DDNA3, an all-atom potential,
or the SVM scoring function (Figure 24B). The median accuracy for the SVM model
is 0.79 (=30/38). It was able to consistently recover 21 out of 23 TPog cases, to
correctly predict up to 8 TNgy s cases from the 10 FPpgr, and to make the correct

selection on up to 3 out of the 5 FNppg.
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As shown in Figure 25, the DNA-binding unit of forkhead box protein K2 (FOXK2,

PDB ID: 2c6y) is a case where both, the orientation potential and the SVM model
selected a correct structure. The HTH-type transcriptional regulator QacR (PDB
IDL: 1jt0) is an example of a negative case (FPog), correctly predicted by the SVM
model (TNgyas). The omega transcriptional repressor (PDB ID: 2bnw), for which the
orientation potential failed to select a conformation with small RMSD (FNpg), is a
true positive case when ranked by the SVM score (TPgy /), which is another example
of the improvement made by the SVM model on classifying good and bad structures.

The remaining cases from the testing dataset can be found in Figure S1.

A B
~ 0.85 1.0
c
2
L
ug 0-84 ] 0_9 —]
c SVM
c >
o 0.83 o
e L 8
& 0.82
o <
o _ DDNA3
; — o7 _____DONAS |
2 0.81
b= 06 -~~~ """~~~ "
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Figure 24: Performance of the SVM model. (A) Distribution of the Matthews cor-
relation coefficient (MCC) of 30 independent SVM models on the testing dataset.
(B) Distribution of the accuracy of the SVM model (boxplot), compared to the accu-

racy of the orientation potential (red dashed line) and the accuracy of DDNA3 (blue
dashed line).
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Figure 25: Root mean square deviation (RMSD) vs. orientation potential, DDNA3
potential and predicted SVM quality score for 1jt0, 2bnw and 2c¢6y from the testing
dataset. The conformation with the lowest orientation potential (green), DDNA3
potential (orange) and highest quality score (blue) are highlighted across the three
selection methods. The RMSD cutoff is set at 3A (vertical gray dashed line) and the
quality score cutoff value is set at 0.5 (horizontal gray dashed line). False positive
and false negative samples, according to the scoring function (rightmost plot), fall in
the gray rectangles.

3.4  Discussion

We developed a scoring function that uses three energy functions and static struc-

tural features to estimate the quality of a protein-DNA docking prediction. The
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scoring function has an average Matthews correlation coefficient of 0.82 and a me-
dian accuracy of 0.79, which is a great improvement over the orientation potential
(accuracy=0.61) or DDNA3 (accuracy=0.68) to select the best model from a pool of
protein-DNA docking predictions.

This new SVM scoring function help us identify the true negatives by lowering
the number of false positives, where the docking algorithm failed to produce good
predictions, since any energy function by itself, is unable to detect true negative
cases. It can be applied as a selection strategy for any docking algorithm, either
rigid- or flexible-docking, and potentially to estimate the quality of any protein-DNA
complex structure, due to the simplicity of the features selected for the model.

In conclusion, we can envision a fully developed, efficient and accurate pipeline for
TF-DNA docking prediction, where the SVM model developed in this study will serve
as a confidence measure of the predicted conformations or clusters of conformations.
Other steps may include flexible-docking on the protein and DNA structures, and

side-chain packing or refinement.
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Table S6: List of protein-DNA hydrogen bonds between aspartate (Asp) and DNA
bases (major and minor groove) in highly specific (HS), multi-specific (MS) and non-
specific (NS) DNA-binding domains.

Dataset DNA HB Domain Donor Acceptor
groove | geometry ID
D0008- DC N4 | A0154-ASP O
IbhmAD0 5566650 N1 [ A0151-ASP OD2
LiawA01 F0008- DC N4 | A0146-ASP OD1
F0009- DC N4 | A0146-ASP OD2
. H0008- DC N4 | D0248-ASP OD1
Bidentate | 3dvoD00 15660 56N [ D0248-ASP OD2
H0005- DC N4 | A0193-ASP OD1
4abtA0  HaG06- DO N1 | AOI93-ASP OD2
rdrdmBO E0011- DC N4 | B0279-ASP OD2
Major B0279-ASP N | E0010- DG N7
liawA02 | DO008- DC N4 | A0226-ASP OD2
HS 4abtA00 | E0009- DC N4 | A0034-ASP OD2
h2e52D0 | HO007- DC N4 | D0123-ASP OD1
m2f13A0 | D0017- DC N4 | A0226-ASP OD1
Single m2o0aaA0 | D-001- DC N4 | A0207-ASP OD2
m2o0aaA0 | C-002- DC N4 | A0224-ASP O
m3c25A0 | D0012- DC N4 | A0187-ASP OD2
m3imbDO0 | L-001- DC N4 | D0200-ASP OD2
m3imbDO0 | K-002- DC N4 | D0215-ASP O
1bhmAO00 | D0005- DG N2 | A0196-ASP OD2
1pviA00 D0008- DG N2 | A0034-ASP OD1
Minor Single m3goxB2 | C0002- DG N2 | B0162-ASP OD1
m3imbD0 | K0O000- DG N2 | D0032-ASP OD1
m3imbD0 | K0O001- DG N2 | D0033-ASP OD2
1hjbC00 | HO008- DC N4 | C0171-ASP OD2
MS Major Single h3vebAO | N00OO7- DC N4 | A0108-ASP OD2
h4ix7A0 | D0004- DC N4 | A0351-ASP OD1
m4lmgDO0 | H0022- DC N4 | D0078-ASP OD2
NS Minor Single lcezAO1 | TO005- DG N2 | A0240-ASP OD2
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Table S7: List of protein-DNA hydrogen bonds between glutamate (Glu) and DNA
bases (major and minor groove) in highly specific (HS), multi-specific (MS) and non-
specific (NS) DNA-binding domains.

Dataset DNA HB Domain Donor Acceptor
groove | geometry ID
Major 1dc1A01 | W0006- DC N4 | A0252-GLU OE2
HS Single | 3hqfA00 | C-002- DC N4 | A0096-GLU OE1
Minor m3ndhA0O | D0006- DG N2 | A0048-GLU OE1
11ebF01 H0022- DC N4 | F0060-GLU OE1
1InkpDO00 | JO808- DC N4 | D0510-GLU OE1
lowrP01 | F5011- DC N4 | P0427-GLU OE1
1lzreA02 | X0006- DC N4 | A0181-GLU OE1
MS Major Single h4gclD0 | Z0034- DC N4 | D0045-GLU OE1
h4h10A0 | D0308- DC N4 | A0081-GLU OE2
h4hf1A0 | D0007- DC N4 | A0043-GLU OE2
1kb2A00 | D0431- DA N6 | A0042-GLU OE1
1rioHOO0 T0008- DA N6 | HO410-GLU OE2
m4lmgDO0 | H0020- DA N6 | D0075-GLU O
NS Minor Single | m208bB1 | F0023- DT N3 | B0434-GLU OE2
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Table S8: List of protein-DNA hydrogen bonds between histidine (His) and DNA
bases (major and minor groove) in highly specific (HS), multi-specific (MS) and non-
specific (NS) DNA-binding domains.

Dataset DNA HB Domain Donor Acceptor
groove | geometry ID
A0036-HIS N C0001- DG N7
3hqfA00 | B-002- DC N4 A0036-HIS O
Bidentate A0036-HIS ND1 | C0002- DG O6
12088A0 C-001- DC N4 A0225-HIS O
A0225-HIS ND1 | D0001- DG O6
HS Major 1dc1A01 | A0253-HIS NE2 | C0008- DG N7
1pviAOO | A0O084-HIS ND1 | C0008- DG O6
m2o0aaA0 | A0223-HIS NE2 | D0002- DG O6
Single m3c25A0 | A0189-HIS ND1 | C0008- DG O6
D0077-HIS NE2 | KO000- DG N7
m3imbDO0 | D0214-HIS NE2 | L0002- DG O6
D0219-HIS NE2 | K0000- DG O6
. G0002- DG N7
Bifurcated | 1le5F01 F0064-HIS ND1 C0002-DC 06
1k78A01 | A0O062-HIS NE2 | C0011- DG O6
InkpDO00 | D0506-HIS NE2 | HO613- DG O6
3coaC00 | C0215-HIS ND1 | A0005- DT O4
Major 3pvvB00 | B0470-HIS NE2 | F0204- DG N7
MS dlodha_ | A0067-HIS NE2 | C1009- DG O6
Single h3zplF0 | FOO77-HIS NE2 | HO008- DG O6
h4h10A0 | A0077-HIS NE2 | C0113- DG O6
m4jcyB0 | C0014- DC N4 | B0043-HIS NE2
m4ldxB2 | B0136-HIS ND1 | D0014- DG O6
3a01A00 | A0175-HIS NE2 | C0014- DG N3
Minor 3u2bC00 | C0029-HIS NE2 | B0012- DG N3
m4g92A0 | A0276-HIS NE2 | E0O011- DA N3
NS Minor Single d4klual T0005- DC N1 | A0034-HIS ND1
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APPENDIX B: SUPPLEMENTARY FIGURES

Figure S1: Root mean square deviation (RMSD) vs. orientation potential, DDNA3
potential and predicted SVM quality score for the testing dataset. The conformation
with the lowest orientation potential (green), DDNA3 potential (orange) and highest
quality score (blue) are highlighted across the three selection methods. The RMSD
cutoff is set at 3A (vertical gray dashed line) and the quality score cutoff value is
set at 0.5 (horizontal gray dashed line). False positive and false negative samples,
according to the scoring function (rightmost plot), fall in the gray rectangles.
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