CLUSTERING AND RECOMMENDATION TECHNIQUES FOR ACCESS CONTR
POLICY MANAGEMENT

by

Said M. Marouf

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in
Computing and Information Systems

Charlotte

2012

Approved by:

Dr. Mohamed Shehab

Dr. Bei-Tseng Chu

Dr. Cem Saydam

Dr. Taghi Mostafavi

©2012
Said M. Marouf
ALL RIGHTS RESERVED

il
ABSTRACT
SAID M. MAROUF. Clustering and recommendation techniquersaiccess control policy
management. (Under the direction of DR. MOHAMED SHEHAB)

Managing access control policies can be a daunting progess) the frequent policy
decisions that need to be made, and the potentially largdbauof policy rules involved.
Policy management includes, but is not limited to: policyilmization, configuration, and
analysis. Such tasks require a deep understanding of they @old its building compo-
nents, especially in scenarios where it frequently chaagesneeds to adapt to different
environments. Assisting both administrators and usergifopming these tasks is impor-
tant in avoiding policy misconfigurations and ill-informpdlicy decisions. We investigate
a number of clustering and recommendation techniques,mapkment a set of tools that
assist administrators and users in managing their polidi&st, we propose and imple-
ment an optimization technique, based on policy clustesimgj adaptable rule ranking, to
achieve optimal request evaluation performance. Secoadimplement a policy analysis
framework that simplifies and visualizes analysis resblésed on a hierarchical cluster-
ing algorithm. The framework utilizes a similarity-baseaade! that provides a basis of
risk analysis on newly introduced policy rules. In addittoradministrators, we focus on
regular individuals whom nowadays manage their own acoassat polices on a regular
basis. Users are making frequent policy decisions, edpewidh the increasing popular-
ity of social network sites, such as Facebook and Twitter.dxample, users are required
to allow/deny access to their private data on social siteb @me they install a 3rd party

application. To make matters worse, 3rd party access ré&sjass mostly uncustomizable

v
by the user. We propose a framework that allows users to misaheir policy decisions
on social sites, and provides a set of recommendations sis&taisers in making well-
informed decisions. Finally, as the browser has become thie medium for the users
online presence, we investigate the access control mantedsd party browser extensions.
Even though, extensions enrich the browsing experienceserfsy they could potentially
represent a threat to their privacy. We propose and implemé&@amework that 1) mon-
itors 3rd party extension accesses, 2) provides fine-gigm@emission controls, and 3)
Provides detailed permission information to users in etfmincrease their privacy aware-
ness. To evaluate the framework we conducted a within-steojeser study and found the

framework to effectively increase user awareness of reqdgeermissions.

ACKNOWLEDGEMENTS

While at UNC-Charlotte, | was greatly fortunate to work walgroup of outstanding
colleagues and friends. Therefore, it is my pleasure tocdeelithis dissertation to those
who have contributed directly or indirectly to this disseidn.

First and foremost, | would like to express my many thankssindere gratitude to my
dear advisor Prof. Mohamed Shehab. His continuous guidandesupport have made
this work possible and have made for a great research erpertroughout my time at
UNC-Charlotte.

My many thanks go out to those who have collaborated with meaoious research pa-
pers and topics throughout the past few years, includind\Bina Squicciarini, Doan Minh
Phuong, Smitha Sundareswaran, Christopher Hudel, Dr. Mwu Ko, Hakim Touati, Ad-
harsh Desikan, and Gorrell Cheek. They were a great sourgespifation and positive
criticism that was valuable to me and my research.

| would also like to express my great appreciation to my Phdinmittee members, Prof.
Mohamed Shehab, Prof. Bei-Tseng Chu, Prof. Cem Saydam, rahdTaghi Mostafavi.
Their assistance, feedback, and guidance have been ibl@ingreparing this work.

Last and not least, my deepest gratitude goes to my fathenattter for everything they
have done for me throughout my journey to completing my Pflieir infinite support,
encouragement, and love have been invaluable to me. My logs tp my lovely wife
Walaa Marouf for her continuous encouragement, patiend@aconditional love that have
enabled me to successfully complete my Ph.D. | also send weyttomy lovely princess

Fatma, my prince Mousa, and my younger prince Mohamed forgogicontinuous source

Vi
of motivation. Finally, my thanks and love go to my 12 sistensl 2 brothers in Palestine

for their continuous good wishes and love.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

1.1 Research Problem

1.2 Overview of proposed solution
1.2.1 Recommendation-Based Policy Management Tools
1.2.2 Clustering-Based Policy Management Tools

CHAPTER 2: PRELIMINARIES

2.1 XACML Policies and Access Requests
2.2 Third Party Application Authorization and APIs
2.2.1 OAuth Standard
2.2.2 OAuth and User Privacy
2.3 Collaborative Filtering in Recommendation Systems
2.4 Third Party Browser Extensions
24.1 Chrome Extensions
2.5 SELinux Policies

2.5.1 Custom SELinux Policy Modules

CHAPTER 3: ADAPTIVE REORDERING & CLUSTER BASED FRAMEWORK

3.1 Related Work

3.2 Policy and Rule Reordering Framework
3.2.1 Execution Vector and Policy Permutation
3.2.2 Computation of Rule Weights

3.2.3 Optimal Rule Reordering

Vii

10

12

12

15

16

18

19

20

20

21

23

25

26

27

28

30

32

3.3 Categorization Based Optimization
3.4 Experimental Results
3.4.1 Real World-Based policies

3.4.2 Synthetic Policies

3.4.3 Adaptability of Reordering Approach

CHAPTER 4: RECOMMENDATION MODELS FOR OPEN AUTHORIZATION

4.1 Related Work
4.2 Proposed OAuth Flow
421 Permission Guide
4.2.2 Recommendation Model
4.2.3 Collaborative Filtering
4.2.3.1 Application-based Filtering
4.2.3.2 User-based Filtering
4.2.4 Prediction Model
4.2.4.1 Category-based Predictions
4.3 Experiments
4.3.1 User Study
4.3.1.1 Methedology

4.3.1.2 Study Results

viii

35

38

39

40

46

50

50

52

53

55

56

58

60

60

62

64

67

67

68

CHAPTER 5: 3RD PARTY BROWSER EXTENSION POLICY MANAGEMENT 76

5.1 Related Work

77

5.2 Chrome Extension Permissions
5.2.1 Permissions and Chrome APIs
5.2.2 User Awareness
5.2.3 Permission Dependency
5.3 User Privacy and Threats
531 Threats
5.3.2 Intrusiveness
5.4 Proposed Permission Framework
54.1 Extension Manager
5.4.2 Extension Monitor
5.5 Evaluation
551 Implementation
5.5.2 Permission Requests
5.5.3 Real World Evaluation
5.5.3.1 Performance Evaluation
5.5.3.2 Coverage and Limitations
5.6 User Study
5.6.1 Methodology
5.6.1.1 Study Tasks

5.6.1.2 Study Results

CHAPTER 6: VISUALIZED-BASED AND ASSISTED POLICY ANALYSIS

6.1 Related Work

78

79

79

81

82

82

86

86

88

91

93

93

94

95

95

95

96

97

97

98

01

102

6.2 SELinux Policy Analysis
6.2.1 Type Clustering
6.3 Assisted Policy Analysis
6.3.1 Similarity-Based Model
6.3.2 Nearest-Neighbor Rule Classification
6.4 Design and Implementation
6.4.1 Visualization and Interactivity
6.4.2 Focus-Graphs
6.4.3 Policy Analysis
6.4.4 Assisted Policy Analysis
6.5 User Study
6.5.1 Methodology
6.5.1.1 Policy Analysis Tasks
6.5.2 Study Results
6.5.2.1 Ease of Use
6.5.2.2 Overall Satisfaction
6.5.2.3 Browsing Policy Components
6.5.2.4 Composing Analysis Queries
6.5.2.5 Policy Type Interconnectivity
6.5.3 Assisted Policy Analysis

CHAPTER 7: CONCLUSIONS

7.1 Contributions

103

107

112

112

115

116

116

116

119

120

121

121

122

122

123

123

123

123

124

124

126

126

7.2 Future Work

7.2.1

71.2.2

7.2.3

REFERENCES

Recommendation-based Open Authorization
Third Party Browser Extension Policy Management

SELinux Policy Management

Xi

127

127

128

128

130

CHAPTER 1: INTRODUCTION

Managing access control policies is a complex processndghecomplex nature of pol-
icy languages and the large number of attributes and ruledvied. Policies can involve
thousands of rules, leading to thousands of relations anpotigy attributes. Interpret-
ing and understanding such a large number of relations figulif and the possibilities
of introducing policy misconfigurations is high. Anothesu® with large policies, is the
difficulty in optimizing them for optimal performance, that if policy rules are configured
properly, potential performance bottlenecks can be recha&dding to this complexity, is
the fact that not all administrators are well versed and piggit in all access control policy
languages. For example, a Linux-based server could incatgboth an operating system
(OS) level policy using SELinux [60], and a web service lgyelicy using XACML [49].
Both policies can easily involve tens of thousands of ruled attributes, which makes
it difficult for average administrators to manage withoupgpriate policy management
tools.

Access control policy management is no longer a task stiassigned to administrators.
Nowadays, with the increase in privacy awareness [1, 1@ ,the wide adoption of third
party applications on social sites (e.g. 3rd party Facelapps) and internet browsers (e.qg.
3rd party Chrome extensions), regular individuals haveberthemselves admins on their

own privacy polices. Managing access control policies isgsential task in the daily lives

2

of individuals, who have to protect their private data (eegmail address, location info,
birthday, etc.) and content (e.g., photos, videos, brolwsekmarks, etc.), from unwanted
accesses by other online users and by third party applicati8ecurity aware users will
manage their policies to the degree they can, that is, dysramcy preserving mechanisms
do not provide users the capability to completely contrelrtbnline privacy. For example,
at installation time, third party Facebook applicatione caquest a set of permissions to
access a user’'s Facebook profile data. At this point, usergiaen two options: 1) Grant
the application all requested permissions, or 2) Opt-ouhstalling the application (all-
or-nothing). It is clear that there is space to improve, dvad $ecurity aware users should
be given fine-grained controls over their access contracigsl. In regards to security
unaware users, new tools should be introduced to guide aist #sem in understanding
privacy issues and in making well-informed policy decision

The challenges facing both administrators and individaallor better privacy preserv-
ing mechanisms and better tools for managing access cqutlioles. Such tools should

provide the following:

e Simplified policy management: When access control policieslve thousands of
attributes and rules, policy management tools need to gynpé way administrators
and users interact with a policy. This can be achieved byighoy new presentation
layers that allow for easier interpretation of the policgdahe ability to focus on
relevant policy information without the need for a deep ustinding of the policy
language. Simplifying policies, also allows administratto easily and properly

analyze existing policies.

3

e Assisted policy management: Assisting users and admanist in understanding
the consequences of their policy decisions is importaqte@ally given the large
number of attributes and rules within policies, and the dempature of existing
policy languages. Guiding users and administrators ise&ebie by utilizing exist-
ing decisions made by other potentially well-informed @&t That is, tools should
make use of existing knowledge in providing guidance to ¢éhmsking new policy
decisions. Guiding users could also be achieved by proyisimplified descriptions
of the various access permissions.

e Fine-grained policy controls: We believe, that users sthénd able to control their
privacy policies to the extent they wish. That is, contralindividual privacy at-
tributes should be possible without the need to limit theor® to “grant all ac-
cesses” or “nothing”. To achieve this, new tools are reqluishich extend upon
current authorization flows.

e Policy Optimization: Policies with large numbers of rulean easily introduce per-
formance bottlenecks, especially when faced with a hugebeuraf policy evalu-
ation requests. Configuring such large policies for optipgaformance outcomes,
requires knowledge of all policy rules, and the ability talarstand the outcome of
each possible configuration. There is a need for tools thataiee on this task, and

provide for configurations that lead to ideal performance.

XACML Policies: Many web services have adopted XACML (eX&date Access Control
Markup Language) as the standard for specifying their acceatrol policies. XACML

policies can introduce performance bottlenecks when alatgnber of policy rules are

4

involved. In our investigation, we found that existing XACNpolicy evaluation engines,
such as Sun’s Policy Decision Point Engine (PDP) [64], suifem such performance
bottlenecks. For a 100,000 random policy evaluation regyes found that a policy with
4000 rules, requires Sun’s PDP up to 1,152,460ms to evaltatn smaller policies, for
example of 75 rules, took up to 32,223 ms to evaluate. Sucluaian times are not
sufficient for running web services under high request loaldse bottleneck in existing
engines results from the sequential nature of evaluatifigyples. We believe that with
the proper policy structure optimization, i.e. the struetof its rules, we can achieve

improved performance outcomes.

Third Party Application Authorization: In our research wainly focus on two types of
third party applications: 1) Social networking applicasoand 2) Internet browser exten-
sions. Third party social networking applications run oniabsites such as Facebook and
Twitter, and are widely adopted by users who wish to add newicss on top of a site’s
core services. To do so, applications need to be authorigeddrs for a set of requested
accesses/permissions. For example, an application caasggermission to access a user’s
birthday information on Facebook.

Third party browser extensions are also widely adopted amitle the user browsing
experience. Extensions also request permissions that fdlgperforming privileged tasks
such as accessing a user’s browsing history, or executispruscripts within certain
webpages visited.

The primary disadvantage of existing authorization merdmas, is the lack of fine-

grained controls, that is, users have to authorize all retgdeaccesses, or choose not to

5

install an application in the first place. Authorizing thpdrty applications can be prob-
lematic, if they are malicious, and seek to use a user’s fgrigata inappropriately. For
this reason, it is important that existing authorizatiortimes be extended to provide fine-
grained controls. We investigated third party applicatiom Facebook, and found that,
among popularly requested accesses, individuals - wheangive choice - will, in the

majority of cases, deny the request.

SELinux Policies: The U.S. National Security Agency, inlmoed Security Enhanced
Linux (SELinux) for the purpose of incorporating a systenadeMandatory Access Con-
trol (MAC) architecture into the Linux operating system. L3ttix provides fine-grained
access control through its policy language, but in exchatigelanguage is very complex,
leading to complex policies that are hard to interpret arfficdlt to manage. SELinux
policies are mainly based dypes which represent labels on processes and files. That is,
policy rules are written in regards to these types. SELingg aomes with a set of de-
fault policies that potentially satisfy the needs of mostux systems. When investigating
SELinux’s default policies, we found that th@geteddefault policy contains over 1,780
types, and over 1,500,000 rules. Anothkeict version of the default policy, contained over
2,300 types and 1,700,000 rules. With such a large numbsmektand rules, it's clear

why many administrators face difficulties in managing Skixipolicies [70, 44, 34].
1.1 Research Problem

The difficulty in managing access control policies can betduenumber of factors:

e Complex Policy Language: Policy managers, whether norntividuals or admin-

istrators, are not well versed in existing complex poliaygaages. Because of this,

6

it is difficult to easily interpret policies which in many &sscan lead to policy mis-
configurations.

e Complex Policy Structure: Access control policies can imedarge numbers of
attributes and rules which lead to difficulties in underdtag the relations among
policy attributes and rules. This also leads to difficulilre®ptimizing policies for
optimal performance.

e Limited Policy Management Tools: The lack of proper policamagement tools,
that are able to guide users and administrators in makintgropolicy decisions.
This becomes essential when decisions need to be made onatiey gittributes
and rules, that is, introducing unknown elements into astag policy. Such new

elements, can compromise the overall security of a system.

In the light of the existing challenges facing both admmaigirs and individuals, we
investigate a number of clustering and recommendationdosghniques for managing
access control policies. Clustering access control gdiciould potentially optimize its
structure, leading to better performance outcomes. It smsamplify the policy presen-
tation, hence resulting in a policy that is easier to interjand understand. On the other
hand, recommendation-based techniques could help inrguidiers and administrators in
making well-informed policy decisions. These techniquas be based on the collective
collaboration of a community, and on existing knowledgeardgnhg a policy.

We define our research problem as follows:

Problem Statementhe average administrator and individual face many chajeswhen

managing their access control policies. These challengadead to policy misconfigura-

tions, performance bottlenecks, and ill-informed poliegidions.

In this research proposal, we plan on overcoming existiraglehges in access control
policy management. Our hypothesis is as follows:
Hypothesis Statemen&pplying effective clustering and recommendation teaescpnto
access control policies will allow for a simpler and moreeetive policy management pro-

cess that also guides users and administrators when makipgritant policy decisions.
1.2 Overview of proposed solution

Managing access control policies is a complex and chalhgngrocess, which requires

executing a number of various tasks. We focus on three pyitasks:

™

Visualization-based Usage Data

Analysis Tools

0 oo . .
Social Network Profiles .g | ToolBox ' Assisted Policy
= | 1 Management
g /\‘: ' . | g
|
Internet Browsers 3 | Configuration Tools !
£ | |
c ! T I
o ! Optimization Tools i
Web Services (&) A ™
» _/ :
() |
() |
(3] I
(3 |
< \

Operating Systems

)

Figure 1. Assisted Policy Management Model

1. Policy Configuration: Configuring an access control poinwolves making a set of
decisions on what accesses should be allowed or deniede Heessions are what
define the policy, hence defining the overall security of tystesm under this policy.
If ill-informed decisions are made, they can easily compeanthe security of a sys-

tem. lll-informed decisions can be a result of: 1) complekgoes that involve large

8

numbers of rules and relations that are difficult to intet;®2¢The lack of a deep un-
derstanding of the policy language, and the understandipgssible consequences
related to certain policy decisions. 3) The lack of fine-geai controls on the policy

decisions that need to be made.

. Policy Optimization: Optimizing access control poliis an essential task that can
involve: 1) Removing out-dated policy components, 2) Rtiming policy compo-
nents according to demand, and 3) Assessing a policy’s bgénacture, and finding
optimal structures, that lead to enhanced access contoést evaluations. By per-
forming these optimization tasks, the storage footprimrel@ses, and performance
bottlenecks can be avoided. Such tasks become very diffihdin dealing with
large policies, or policies that need to rapidly adapt téedént scenarios and envi-

ronments.

. Policy Analysis: Analyzing access control policies isuadamental task, and is a
basis for the previous two tasks mentioned above. That @dperly configure and

optimize a policy, proper analyses need to take place. Blyaing a policy, admin-

istrators are able to discover: potential misconfigurajaedundant policy rules,
out-dated components, and more. They are also able to gefpeidenderstanding
of existing relations within a policy, and how various pglmomponents are able to
interact with each other. With large policies, the analys@cess gets tricky, due to
the vast number of relations, and the difficulty in preseptamge amounts of analysis

data in an easily and interpretable fashion.

9

In the light of these challenging tasks, and the fact thatenusable and suitable tools are
needed to accommodate the needs of average administratbnsdviduals, we propose
a set of assisted policy management tools (see Figure 1gdhasrecommendation and

clustering techniques.
1.2.1 Recommendation-Based Policy Management Tools

The premise of these tools is to guide administrators ancsusanaking better policy
decisions. Guidance is provided in the form of recommendaton new policy decisions.
Recommendations represent quantified indications of hawnoon, or how risky, certain
decisions are. Recommendations are based on data colfemtesarious sources, such as
the collaborative decisions of communities, applicatiehdwior, existing stable policies,
and the nature of incoming access control policy requestse@on provided recommenda-
tions, administrators and users can make more well-infdrdeeisions when configuring
their policies.

The proposed tools are also able to optimize policies by rge¢ing recommendation val-
ues that are the basis of ranking/prioritizing policy comguats according to their demand.
That is, components that are most frequently used withintaicerange of time, get prior-
ity over components less used. Components with higherifyreme given more importance
when evaluating incoming requests, which potentially reesqerformance bottlenecks.

Another advantage of recommendation-based tools is thgydbiprovide recommenda-
tions on a fine-grained level. Our proposed tools providengwessary fine-grained policy

controls, accompanied with fine-grained recommendations.

10
1.2.2 Clustering-Based Policy Management Tools

Clustering-based tools analyze the properties of exigtoligy components. From these
properties, they are able to identify groups/clustersghftty related components. Identified
clusters can then be used to: 1) provide abstractions orothpa@nents of a particular clus-
ter, that is, focus on what a cluster represents rather tiat @ach single component does.
2) optimize a policy’s structure based on its identified ®us, which potentially results
in improved policy evaluation times, by redirecting incoigpirequests to their appropriate
clusters, rather than the whole policy.

Our proposed clustering-based tools also provide effeglicy analysis capabilities.
This is achieved by utilizing identified clusters to disconew relations among policy
components, and to visualize the results of policy analy3ésualization occurs at the
cluster level, which dramatically reduces the complexitgmalysis results.

The remainder of this dissertation is organized as folloBlsapter 2 discusses some of
the preliminaries regarding our research. Chapter 3 pexgpas adaptive and clustering-
based approach for evaluating XACML policies, and discsighe experimental results
done. In Chapter 4 we propose a recommendation-based offeoriaation framework
that provides user with recommendations on permissionsestgd by third party social
networking applications. It also discusses our fine-gihicentrol mechanism. Chapter 5
proposes a framework that provides fine-grained controlhiod party browser extension
permissions, in addition to increased user privacy awaené&he results of a user study
on the effectiveness of the framework are also discussea@pt€éh6 proposes a visualized-

based approach for analyzing SELinux policies, and dissigsisk-based model for newly

11

added policy rules. Finally, in Chapter 7 we conclude thsetimtion and discuss potential

future paths for extending upon this research.

CHAPTER 2: PRELIMINARIES

2.1 XACML Policies and Access Requests

In this section we provide the logic formalism adopted toatelKACML policies and
access requests. XACML policies are composed of five basnpoaents, namelyrolicy-
Set Policy, Target Rule andPolicy and Rule Combining algorithifor conflict resolution.
The root of the XACML policy is the PolicySet element, whichdefined as follows:

Definition 1. PolicySet is a tuplé®S = (id,t, P, PC'), where:id is the PolicySet id{
is the PolicySet Target element, and takes values from theAgmplicable, NotApplicable,
Indeterminaté, P = {p1,...,p,} Iis the set of policies, anBC' is the policy combining
algorithm.

A Policyelement is a set of rules and conditions that control acoga®tected resources
which we refer to as objects. A policy containtagget a set ofrules and arule combining
algorithm.

Definition 2. A policy is a tupleP = (id,t, R, RC'), where:id is the policy idt is the
policy target element, and takes values from the{ ggiplicable, NotApplicable, Indeter-
minatg, R = {ry,...,r,} is the set of rules, anBC' is the rule combining algorithm.

The Target elemeritspecifies a set of predicates on the request attributeshvaicst
be metin a PolicySet, Policy or Rule to apply to a given retjulse attributes in the target

element are categorized infwubject, Resoura@ndAction The attribute values in a request

13

are compared with those included in the Target, if all thetattes match then the Target’s
PolicySet, Policy or Rule is said to be Applicable. If theuesgt and the Target attributes do
not match then the request is NotApplicable, and if the et#da results in an error then
the request is said to be Indeterminate. If a request satisigetarget of a policy, then the
request is further checked against the rule set of the paityerwise, the policy is skipped
without further examining its rules. The Target predicai@s be quite complex, and can be
constructed using functions and attributes. The rule camgialgorithmRC' respectively
allows one to specify the approach to compute the decisisultref a policy when the
policy contains rules evaluating to conflicting effects eTgolicy combining algorithnC
follows the same logic but at the PolicySet level.

A Ruleidentifies a complete and atomic authorization constraiat tan exist in isola-
tion with respect to the policy in which it has been createé. d&fine rules as follows.

Definition 3. A Rule is a tupler = (id,t, e, c), where:id is the rule id,t is the rule
target element, and takes values from the{ggiplicable, NotApplicable, Indetermingte
e Is the rule effect, where € {Permit, Deny}, andc is a boolean condition against the
request attributes.

The rule target element is similar to the policy target iadt& indicates the requests
applicable to the rule. The conditieris a boolean function with respect to the request at-
tributes. The rule’s effeet, which can be Permit or Deny, is returned if the rule’s caodit
c evaluates to true. The rule evaluation can also be Indetetsnin case of an error, or
NotApplicable if the rule’s target doesn’t apply to the regtis attributes. Access requests
are typically matched against a policy set. A policy set esrbot of an XACML policy, it

holds policy elements and, possibly, other policy sets. Aotk access requests accord-

14

<Pol i cySet PolicySetl|d="PSID"
Pol i cyConbi ni ngAl gl d="pernit-overrides" >
<Target />
<Pol 1cy Policyld="PID
Rul eConbi ni ngAl gl d="permi t-overrides" >
<Target />
<Rul e Rul el d="RI D1" Effect="Deny' >
<Target >
<Subj ect s>
<Subj ect >Bob< /Subj ect >
<Subj ect >John</Subj ect >
<é$ubj ects>
<Resources>
<Resour ce>file2</Resour ce>
</Resour ces>
<Actions>
<Action>
<ActionMatch Matchl d="string-equal ">
<AttributeVal ue DataType ="string" >
read
</AttributeVal ue>
<ActionAttributeDesignator
Attributeld ="AlID1" DataType ="string" />
</Acti onMat ch>
</Action>
</Actions>
< /Tar get >
</Rul e>
<Rul e Rul el d="RI D2" Effect="Permit" >
<Tar get >
<Subj ect s>
<Subj ect >Bob< /Subj ect >
<é$ubj ects>
<Resources>
<Resour ce>filel</Resour ce>
</Resour ces>
<Actions>
<Action>
<ActionMatch Matchl d="string-equal ">
<AttributeVal ue DataType ="string" >
read
</AttributeVal ue>
<ActionAttributeDesignator
Attributeld ="Al D2" DataType ="string" />
</ActionMat ch>
</Action>
</Actions>
</Tar get >
</Rul e>
</Poli cy>
</Pol i cySet >

Figure 2: XACML Policy Set example

ing to the following notation. Leb, O, A and X denote all subjects, objects, actions and
context variables in an access control system respectively

Definition 4. (Access Request) An access requastthe tuple(s, o, a, x), wheres € S
is the subject making the requests O is the requested objeat, € A is the requested
action on object, andx € X are the context attributes.

Let us consider the PolicySet listed in Figure 2 which corgaine policy with 2 rules.

15

The first rule specifies that “Both Bob and John are denied aeadss to file2” where
each “Bob” and “John” is &ubject “denied” is the ruleEffect “read” is theAction, and
“file2” is the Object or Resourcewhereas the second rule says “Bob has permission to
read filel”, “Bob” being theSubject “has permission” thé&ffect “read” the Action and
“filel” the Object Either rule could be accompanied with context paramekargifonment
Attributes) as part of a rule’s condition such as time, systariables, history, or location.

A target is a condition on subjest € S, objecto € O and the actioru € A. If the
request satisfies the target conditions of a rule (policgihtive say that the rule (policy) is
applicableto the request, otherwise it it applicable That is, if Bob makes a request to

read filel, his request would be applicable to the secondahiieh would return a Permit.
2.2 Third Party Application Authorization and APIs

Most of the major online platforms such as Facebook, Goagld, Twitter, provide an
open API which allows third party applications to directiyaract with their platform. APIs
provide a mechanism to read, write, or modify user infororatin these platforms through
other third party applications on behalf of users themselvan API comes with a set of
methods, each representing a certain user interactiomtdkthrough a third party appli-
cation. For example, the FriendCameo [18] Facebook apjuit#s able to post content
(e.g. messages, photos) to a user’s Facebook feed/wat] Bsicebook’dprofile_id/feed
API method, whererofile_id is the targeted Facebook user ID. It is important to note that
third party applications can potentially execute any ARI oa behalf of a user, relying
on the type and scope of permissions granted to these apfise previous example, the

FriendCameo application could only perform tpeofile_id/feed API call, given the user

16

has granted it the “publisetream” permission. The full set of permissions available t
third party apps are defined by the online platforms, andupiso third party applications
to request the proper subset of permissions required. Wevbalsers should have the final

decision on whether to grant requested permissions or not.
2.2.1 OAuth Standard

With an increasing trend towards offering online servidest fprovide third party ap-
plications the ability to interact through open APIs andemsscuser resources, OAuth was
introduced as a secure and efficient mechanism for authgritiird party applications
[52]. Traditional authentication models such as the clsswer model require third party
applications to authenticate with online services usiggésource owner’s private creden-
tials, typically a username and password. This requiressusepresent their credentials
to third party applications, hence granting them broad ste all their online resources
with no restrictions. A user may revoke access from a thirtlypapplication by changing
her credentials, but doing so subsequently revokes acamssfl third party applications
that continue to use her previous credentials. These ismeeamplified given the high
number of third party applications that potentially getescto a user’s online resources.
OAuth uses a mechanism where the roles of third party agit®and resource owners
are separated. It does not require users to share theitguuvadentials with third party
applications, instead it issues a new set of credentialedoh application. These new set
of credentials are per application, and reflect a uniquefgatrmissions to a user’s online
resources. In OAuth, these new credentials are represeiatadAccess TokerAn Access

Token is a string which denotes a certain scope of permisgjaanted to an application,

17

it also denotes other attributes such as the duration thegsctoken is considered valid.
We are mainly interested in the scope attribute within ane&scToken. Access Tokens are
issued by an authorization server after the approval ofékeurce owner. In this research
we extend upon this authorization stage of the OAuth 2.0ogit

When a third party application needs to access a user'sqiesteesources, it presents its
Access Token to the service provider hosting the resourge f@cebook, Twitter) which
in turn verifies the requested access against the scoperoigstons denoted by the Token.
For example, Alice (resource owner) on Facebook (serviogiger and resource server)
can grant the FriendCameo application (client) access temmail address on her Face-
book profile without ever sharing her username & passwort witendCameo. Instead,
she authenticates the FriendCameo application with Fatefaaithorization server) which
in turn provides FriendCameo with a proper Access Tokendbabtes permission to ac-
cess Alice’s email address.

OAuth provides multiple authorization flows depending oa thient (third party applica-
tion) type (e.g. web server, native applications). We famusheAuthorization Coddlow
shown in figure 3 and detailed in the OAuth 2.0 specificatid].[3 he authorization code
flow is used by third party applications that are able to sxtewith a user’s web browser,
and are able to receive incoming requests via redirectidre aluthorization flow process
consists of three parties: 1)End-user (resource ownerpatder, 2)Client (third party ap-
plication), and 3)Authorization server (e.g. Facebookir @ain focus is on steps “(A)”
and “(B)” within the authorization code flow [52]. Step “(AlS where third party applica-
tions initiate the flow by redirecting a user’s browser to shughorization server and pass

along the requested scope of permissions. In step “(B) athborization server authenti-

18

cates the end-user, and establishes her decision on wheitiemnt or deny the third party

application’s access request.

(A) Client Identifier &

Redirect URI N
End;LtJSer _ (B) User authenticates Authorization
Browser izati . server
Qf . (C) Autharization Code facebook

Authorization Code,

4
(A) I (C) l (D) Client Credentials,

& Redirect URI
Web
Client (E) Access Token
. L (w/ Optional Refresh Token)

Figure 3: Authorization Code OAuth Flow
2.2.2 OAuth and User Privacy

One of the main reasons behind OAuth was to increase usexcgriy separating the
role of users from that of third party applications. OAutlesishe concept of Access To-
kens, where a token denotes a set of credentials granteddgtrty applications by the
resource owners [52]. This avoids the need for users to shaieprivate credentials such
as their username & password. It also allows users to revotesa to a specific third party
application by revoking its Access Token.

OAuth 2.0 allows third party applications to request a sgbeimissions via thecope

attribute, and for users to grant/deny such requests. leagrants a third party applica-
tion’s request, then an Access Token (denotingstbepe) is issued for that application,
hence granting it the scope of permissions requested.sTh@e attribute represents the
set of permissions requested by third party applicatiomd jsour main focus in this work.
In the authorization code OAuth flow seen in figure 3, sftwpe parameter is part of

the request URI that is generated by third party applicati@tep “(A)” in figure 3). The

19

scope is a list of space-delimited strings, each string mapped tergain permission
or access level. For example, the FriendCameo applicaéiquests permission to post
to a user’'s Facebook feed/wall, to log in to Facebook chasctess her email address,
and to check her friend’s online/offline presence. Friend€a requests these permis-
sions with ascope attribute value of publ i sh_stream xnppl ogin, email,
friends_online_presence”. Thescope value becomes part of the OAuth request
URI sent to the authorization server (Facebook’s OAuth en@ntation uses commas
rather than spaces to separate each requested permisiien).(B)” of figure 3 is where

users grant/deny the requeststbpe value.
2.3 Collaborative Filtering in Recommendation Systems

Recommendation systems are systems that try to assistinsaraluating and making
decisions on items by providing them opinions and predicti@ues as a set of recommen-
dations [55]. These set of recommendations are usuallydo@s@ther people’s opinions
and the potential relevance of items to a target user. Thedremmender system Tapestry
[19], followed the approach of “Collaborative Filteringi which users collaborate towards
filtering documents via their individual reactions afteadeng certain documents. Since
then, the “Collaborative Filtering” approach has been Widelopted and is accepted as a
highly successful technique in recommender systems [389%53].

In a context of access control and user privacy, items in klootative filtering model
can be mapped to individual privacy attributes or permissidJsers have to make deci-
sions on privacy attributes, i.e. grant them to third papglecations or not. This is similar

to other recommendation systems in which users make dasisio items, e.g. to rent or

20

not rent a certain movie. Users can benefit from recommemtatin privacy attributes
which are based on the collaborative decisions of all usensilarly, users benefit from

movie ratings in making their decision to rent a movie.
2.4 Third Party Browser Extensions

Third party browser extensions are widely used within majowsers such as Firefox,
Chrome, and Safari [50, 66]. Users can enhance their brgwesiperience by adding
new functionalities or modifying the core browser functtities. To provide extended
functionaly, extensions request a set of permissions whésie to be authorized by their
users. We focus on the permission model for Google Chronemsixins, where extensions
request permissions at install time but also have the glditequest optional permissions

after installation.
2.4.1 Chrome Extensions

Chrome extensions are built using a mix of required and optioomponents. Specif-
ically, a requiredmani f est . j son, at least onent nl file (background. ht m or
popup. ht m), and other additional resources such as JavaScript fitlegyes, and other
HTML files.

Manifest: Themani f est . j son file is a required component for each extension, and
provides information on an extension’s properties, retptepermissions, and other at-
tributes. In this paper, we focus on ther m ssi ons, pl ugi ns, andcont ent _scri pts
properties within the manifest. These are propertiesedltd the privacy of the user when
using third party extensions.

Background Page: An optional HTML page that many extensigesfor managing

21

background activities. This is used by extensions that h@sthy active at all times or be
able to perform continuous tasks. Our proposed framewaogletabackground pages when
adapting third party extensions to our model.

Content Scripts: These are scripts that run within the cardka webpage that exten-
sions want to interact with. That is, the content script caadrand modify a webpage
and pass messages back to its parent extension. An exanetesiex that uses content
scripts is the Google Dictionary extension which shows aupopith the description of
a selected word within a webpage. Extensions declare ths tergeted by their content
scripts within themani f est . j son. Note that extensions are also able to programmat-
ically inject custom scripts into webpages using the one. t abs. execut eScri pt
API.

NPAPI Plugins: For purposes of supporting legacy code, @krallows for embedding
NPAPI plugins within newly developed extensions. NPAPIgahs allow for executing na-
tive code, i.e. calling native binary code from within anendion’s JavaScript. This gives
an extension user level access to the user's machine. Stehsens, if compromised,
could highly risk the user’s privacy. iMacros [29] is a poguéxtension that uses NPAPI

plugins to store a user’s recorded macros on to the the fitersys
2.5 SELinux Policies

SELinux policies are considered quite difficult to manage thuthe granular level of
controls they provide [70, 44, 34]. Even though this is trare SELinux policy at its core
is no different than other access control policies in whigetof rules are introduced to

enforce and achieve an overall security goal. A typical ss@@ntrol policy rule is built

22

around asubjectwhich is granted certaiactionson a certairobject For example, John
(subject) is allowed to play (action) all mp3 files (objeat) @ system. The same model is
applied in SELinux policy rules but with more elaborate amefgrained levels of control.
SELinux labels each resource, such as files and procesdes ait SELinux-enabled sys-
tem with asecurity context A security context is a label that usually incorporategé¢hr
fields: 1) SELinux User, 2) Role, and 3) Type. Our focus is an‘ffiype”, which repre-
sents the core of access control rules that determine suigeéct-typetave what accesses
on which object-types Object-types are defined to group file objects, whereasestibj
types are defined for processes. Objects that fall underaime ®bject-type, are similar
in which subjects access them. Subjects or processes thaimder the same subject-
type, are similar in which objects or files they access. AnmgXda of an object-type is the
user hone_t type, which is used to group files owned by a user and residesihdr
home directory. Grouping here, is achieved by setting tpe tyithin each file’s security
contexttouser _hone_t . An example subject-type istie t pd_t type, which belongs
to the Apache HTTP server process.

We also focus on Access Vector (Ad)low rules within an SELinux policy. Avallow
rules are responsible for allowing accesses between tyagpical AV allow rule specifies
how a subject-type is allowed to interact with an objectetypphe building blocks of any

AV allow rule are the following:

- Subject-type: The subject of the access control rule wisighanted certain accesses.
- Object-type: The object or resource to be accessible bgubgect of this rule.

- Object-class: Each object within SELinux falls under aaierclass ¢bject-class

23

Each object-class has a corresponding set of applicalk@adipermissions). For
example file anddir are object-classes that respectively correspond to fildsdan
rectories within a system. Having object-classes allowsefsier management of
permissions on objects. For exampleead permission has a different interpretation
when applied to files vs. directories, hence having an aaatpermission set for
each object-class allows for easier interpretation oftitended permission, i.eead
on object-claséle is not the same agad on object-classlir.

- Permissions: For each object-class there is an assosiated permissions, i.e. a set
of actions that the subject can take on the object. For ex@nipdfile class has the

permissionsead, write, create, renaman so forth.

Following is an example AV allow rule written in the SELinuX¥Aule syntax:
allow httpd t httpd log files_t : file {read create}

this reads as: allow the subject-typét pd_t to read and createfiles of object-type
httpd_l og_files_t. Orin a more readable format this reads: Allow the Apache

HTTP process to read and create its log files.
2.5.1 Custom SELinux Policy Modules

Administrators (admins) are frequently required to writstom policy modules for new
services and applications that are installed onto a Linstesy. Such modules contain a set
of new policy rules that are incorporated into the existid.Bux policy to allow the new
services to function properly. Given the nature of SELinokqes in respect to the large
number of types and rules they contain, admins rely on paédiols [32, 27] for generating

new policy rules that can be used to adapt new services.

24

audit2allow[32] and SEEdit'saudit2spdl[74] are two of the most common tools for
generating new policy rules based on audit logs. It is thenatthmin’s responsibility to

either add these new rules to the existing policy directlypweak them before hand.

CHAPTER 3: ADAPTIVE REORDERING & CLUSTER-BASED FRAMEWORK®R

EFFICIENT XACML POLICY EVALUATION

The adoption of XACML as the standard for specifying accesgrol policies for var-
ious applications, especially web services is vastly iasirey. This calls for high perfor-
mance XACML policy evaluation engines. A policy evaluatiemgine can easily become
a bottleneck when enforcing XACML policies with a large nuenbf rules. We propose
an adaptive approach for XACML policy optimization. We applclustering technique to
policy sets based on the K-means algorithm. In additionasteking we find that, since
a policy set has a variable number of policies and a policyaheariable number of rules,
their ordering is important for efficient execution. By dietsng policy sets and reordering
policies and rules in a policy set and policies respectjwely formulated and solved the
optimal policy execution problem. The proposed clusteteahnique categorizes policies
and rules within a policy set and policy respectively in edpo target subjects. When
a request is received, it is redirected to applicable padieind rules that correspond to its
subjects; hence, avoiding unnecessary evaluations franrieg. We also propose a us-
age based framework that computes access request statistignamically optimize the
ordering access control to policies within a policy set arlds within a policy. Reordering

is applied to categorized policies and rules from our predadustering technique.

26
3.1 Related Work

Much research has been done on optimizing XACML policy extaun. In [40], Liu et
al. present one of the most interesting proposals on opdiiniz of XACML policies so far.
Liu et al, focus on improving performance by numericalizargd normalizing XACML
Policies. The numericalization is used to convert the gtgaolicies into numbers as nu-
merical comparison is more efficient. Further, normalizeliges are converted into a flat
policy structure. In doing this, the authors replace théed#nt rule-combining algorithms
with only one, viz. First-Applicable. They then proceed tineert the numericalized,
normalized policies into tree data structures for efficoltcy evaluation.

Miseldine [46] proposes to achieve policy optimization byimizing the average cost
of finding a match at the rule level the target level and thécgdével. The work assumes
no changes to the XACML specification, in that the Sun’s XACNMplementation is
not altered. Miseldine approaches this problem by upiolicy configurations A policy
configuration is the relationship of policy and rule targetsnembers of the set of rules
R, the set of subjects S and the set of actions A. Combinatibssts are sought such that
policy targets are formed from S.R, R.Aor S.A.

Kolovski [37] formalizes XACML policies using descriptidogics (DL), and exploits
existing DL verifiers to conduct policy verification. Theiolgy verification framework
can detect redundant XACML rules. The idea of removing reldumh policies is interesting
and may be useful to improve evaluation times. However,yeisto be validated whether
the improvement will be worth the time needed to remove rddah policies, and how

significant the overall improvement would be.

27

One related area where similar optimization techniquesofies explored is Firewall
Filtering [23, 22]. In this respect, our work on optimizatiof XACML policies shares
some similarities to the optimization of firewall filteringaroaches. Firewall optimization
is different from that of XACML policy optimization in that major portion of the traf-
fic packets match a small subset of the firewall rules, and dheeddistribution of traffic
is maintained over a significant period of time. This skewgriesnot experienced in the
incoming requests for an XACML policy. Also note that fireialles have an order of
precedence defined, while rules in an XACML policy do not. Séevo properties of fire-
wall rules allow the authors to prove in [23] and [22] that tpgimal firewall rule ordering
problem is NP-Complete. Despite these differences betviesmall filtering optimization
and optimization of XACML policies, we can still draw fromelbody of work on firewalls,

specifically from [23].
3.2 Policy and Rule Reordering Framework

When a web server needs to enforce an XACML policy with a langmber of rules, its
XACML policy evaluation engine may easily become the perfance bottleneck for the
server. To enable an XACML policy evaluation engine to pssceimultaneous requests
of large quantities in real time, especially in face of a burdume of requests, an effi-
cient XACML policy evaluation engine is necessary. In sunki®nments the requests’
distribution is dynamic in terms of volume, types and typeexuesters. Motivated by
such observation, we develop an adaptive framework thadrycally determines the best
ordering according to the incoming requests and the recemtkeived history of requests

and executions.

28
3.2.1 Execution Vector and Policy Permutation

In what follows for the sake of presentation we focus on popermutation where a
similar approach is adopted for PolicySet permutation. \&fne a policy permutation as
follows:

Definition 5. (Policy Permutation(iven a policyP with a rule set’.R = {ry, ... ,r,},

a policy permutatiom is a policy P, generated by the following procedure:

(0) P..R = {}, P,.id = P.id, P,.t = P.t, andP,.RC = P.RC.
(1) P’ is acopy of P.
(2) Select a random ruile from P’ and append; to the end ofP,.

(3) Repeat ste@ until P’ is empty.

Policy permutation may alter the correctness of a policy, @sult in different evalua-
tions for a same set of requests. We are interested in pafioyytations that do not alter
the policy evaluation results for any request.

Definition 6. (Safe Policy PermutatioA)safe policy permutation of a policyP is safe
iff all requests permitted (denied) by the permuted poligyare also permitted (denied) by
P.

We assume all requests are well formed such that the poladyation returns PERMIT
or DENY by the PDP. Using such an assumption, we provide tlenbiheorem:

Theorem 0.1. Safe Permit (Deny) Overrides Permutati@rpolicy P having a rule
combining algorithmP.RC' set to Permit-Overrides or Deny-Overrides is safe witheesp

to all possible policy permutations.

29

Proof. The semantics of the permit overrides is that if any rule ws&s to permit then
the final authorization decision is permit. Assuming eadé returns either permit or deny
then the policy evaluation of a polick, with a permit overrides rule combing algorithm
is the disjunction of all the rule results represented BY:P) = E(ry) V --- V E(ry).
The disjunction operator is commutative where/ b = b V a, and associative where
(aVvb)Ve=aV(bVc),thus the evaluation of the polidy and any permutatio®, are
equalE(P) = E(P,). The deny override follows similar semantics and followsnailgr

proof. O

Using Theorem 0.1, policies with permit override or denyrode rule combining al-
gorithms can be permuted without affecting the policy seiman This does not hold for
other rule combining algorithms such as First-Applicabl& focus our discussion on per-
mit and deny override combining algorithms for reorderipgimization. As discussed in
the following sections, policy based categorization isejpehdent of the rule combining
algorithm used.

Given a policy permutation and a given requesgt a subset of rules is of relevance. We
represent an ordering of such rules asekecution vector

Definition 7. (Execution vector]’ = [r1,...,r,] IS the execution vector representing
the set of applicable rules, where ruleis executed before rule.,. (i) refers to the
position for ruler; in execution vector.

According to Theorem 1, any policy execution vector for agoP having permit over-
rides rule combining algorithm will evaluate to the sameefffasP, the challenge is to

evaluate the execution vector that will provide the lowasthcy. Hence, we need to define

30

the rule weights in order to present our optimal rule ordgepproach.
3.2.2 Computation of Rule Weights

Our approach relies on statistics and metrics collected>ds iéceives requests. Statis-
tics are collected at two separate levgisiicy andrule level. At the policy level, we are
interested in understanding how often a policy applies, @navhich class of users. At
the rule level, it is important to identify the class of effint execution vectors. In order to
collect meaningful metrics, we assign to each rule (pohegjghts that reflect the domi-
nance of this rule in the requests. The weights are basededA® returned values, and
constructed based on the 1) frequency and the 2) compleiibheaule (policy).

During a given time interval the number of times a poligyor a ruler; gets evaluated is
referred to as the hit frequency. We refer to the hit freqydrcf and use the dot notation
to refer to policy(P;.f) and rule(r;.f) hit frequency. Statistics with respect to the hit

frequency are accumulated as follows:

e Policy (Rule) Permit RatioRecords the ratio between the number of times a policy
(rule) returns a permit with respect to the number of timeslay (rule) gets evalu-
ated, whereP;.p andr;.p represent the policy and rule permit ratios respectively.

e Policy (Rule) Deny RatioRecords the ratio between the number of times a policy
(rule) returns a deny with respect to the number of timesiay(iule) gets evaluated.
WhereP,.d andr;.d represent the policy and rule deny ratios respectively.

e Policy (Rule) Hit Ratio: Records the ratio between the number of times a policy
(rule) is applicable with respect to the number of times acydfule) gets evaluated.

WherePF,.a andr;.a represent the policy and rule hit ratios respectively.

31

Access
Request

Figure 4: Log Based XACML Policy Evaluation Framework

Note that all the above statistics are easily derived frommXACML execution log (see
Figure 4). In addition to the rule evaluation statistics M@aconsider the rule compu-
tational complexity. Rules vary from simple conditions tone complicated statements
that require the parsing of an XML document or querying alida. The rule complexity
metric is related to the number of operations required tacaecthe rule, we compute it
as the number of boolean atomic conditions appearing ineg bdth at target and at the
condition element. Let(t) denote the number of conditions in the Target element (de-
noted ag according to Def. 3), and let(c) be the number of conditions in the Condition
element. XACML supports over 100 standard functions that could ketlus the boolean
conditions, for example th&elong_to. We assign a cost; to each standard function
std; appearing in the rulen; is computed by estimating the average execution time of the
function. The simple atomic boolean conditions are assigneonstant cost. For a rule

r; the complexity metric is given by:

E; =k (n(rj.t) +n(rj.c)) + Z m;

std; €r;

wherestd; represents a uniquely identified standard function appeganir;. Using both

32

the accumulated rule statistics and the complexity metr@fruler; we compute the rule
cost as follows:

Cjzﬁ*Ej—i-Oé*Fj

Here,5 anda are weights that allow system administrators to tune thepedation cost,
based on the local constraints, such as the available mioggsower and network band-
width.

The rule cost is designed to represent the cost of computinig athe complexity metric
E; easily represents the rule cost, however the other compasidzased on the rule’s
accumulated statisticB;. The value off} is based on the rule combining algorithm, for
example if a rule combining algorithm is Permit-Overridesrt the metrid¥; is based on
the decreasing function with respect to the rule permibr@ti.p) or an increasing function
with respect to the rule deny ratio;(d). Intuitively, this implies that the rules need to be
reordered such that for a policy with the permit overridds rombining algorithm, the

rule r; with the lowest; is to be evaluated first.
3.2.3 Optimal Rule Reordering

Using the rule cost metrics we present our optimal rule rend problem. Given a
policy (P;), the optimal request execution problem (REP) is to find acetien sequence
that requires the minimum number of rule evaluations. Warasghat rules within policies
are evaluated sequentially. The poliy, composed of. rules{ry,...,r,}, wherer(j)
refers to the position (depth) for rute in the policy execution vector. The cost associated

with rule r; as computed in Section 3.2.2 is referred tocas The expected cost (i.e.,

33

average search length) for a given permutatios given by:

P, = Z ¢ (j)
j=1

The main challenge is to compute the optimal policy pernmutat that will generate the
minimum expected policy execution cost. Additionally, argdhe possibly optimat, we
need to ensure the policy permutation to be safe, as defirnBdfinition 6. By computing
®, we are able to generate a cost metric for each pdficy

A policy setPS is composed of a set of policids?, ..., P,,}. We assume the policies
are executed sequentially. Using the minimum policy exgecbstd;, and the collected
policy evaluation statistics, we compute the policy setcexen sequence. The position
of policy P; in the policy set execution sequence is referred t@ (3y. The expected cost

(average search length) for a given policy @5}) permutatiort is given by:
U= (i)
=1

The costsb; and¥,, are minimized when policies and rules are ordered in asngratider
with respect to their costs [57]. Figure 5, shows the alpariused at both the policyset
and policy levels.

For example, consider a school database. During certam pieniods, the access re-
guests would be more uniform and from the same class of usgrsdt the beginning of a
semester most requests would be from students needingsterdfigr courses, whereas fac-
ulty requests will be much less), while during other timeipés, more heterogeneous set
of requests may be submitted. In section 3.4 of this propasashow how our framework

adapts to the different types of requests received and hosawdenefit from policy/rule

34

Al gorithm optimize_policyset
Input: Policy Set PS={Pi,...,Pn},
Qutput: Optinmal Policy Set Pernutation PS*

if PS.PC= Pernmit-Overrides or Deny-Overrides
PS* «+
for each P, € PS
P* « optimize_policy(P;)
if PS.alg= Permt-Overrides
Prc=axPro4 % Pp !
el seif PS. alg = Deny-Overrides
P*c—a*P*Cb—i-B*P d~1
PS*. insert(P} 5 /IPriority Queue on Pr*.c
return PS*
return PS

RRoo~NoaArwhE

2Qe

Al gorithm optimize_policy
Input: Policy P={ri,...,mn},
Qutput: Optimal Policy Permutation P*

1: if PPRC = Permt-Overrides or Deny-Overrides
2: P*

3: for each r; € P

4: E; —k*(n(rjt+rjc))—|—2:§td67 m;
5: |f PRC_ Permt Overri des

6: Fj=r;

7: el se|f PRC Deny- Overri des

8: Fj =r;.d !

9: c —B*E'—FO&*F

10: P*.insert 7"]) [IPriority Queue on c;
11: P* o =31 eim(j)

12: return P*

13: return P

Figure 5: Optimal PolicySet and Policy Reordering

reordering.

Weights can be updated according to two different strasedi¢ periodically, 2) based
on the lastp received requests. In the first case, we update the weighévalsing the
latest statistics. New execution vectors are construcsgaguresh rule weights in order
to boost up the hit performance close to its optimum levele Tihdate period should be
based on the predictable incoming request (e.g., certanmthmmf the year) flow changes.
In the latter case, the optimal execution vectors are coctgld based on the computed
rule weights. The incoming access requests are then pextessording to the ordering
determined. Intuitively, the maximal reduction is obtalnghen the incoming requests
perfectly match the requests’ distribution. Notice thatrenthan one execution vector

could be optimal and safe. However, since not all rules Hawsame complexity, different

35

execution vectors may sensibly influence the overall ev@ndime, even if a safe and

efficient policy permutation is found.

!i:iil[%Emi:i-ﬁl i;

Sah S

Sa Sd Se Sarh <a

(a) PolicySetPS (b) View(P

on 60 0¢: CNCERG
R CRCRN RO iidi 0

Sp all su% Sd

(c) Vzew(PS, Sp) (d) View(PS, s.) (e) Vzew(PS, 54) (f) View(PS, s.)

Figure 6: Policy Set and Views

3.3 Categorization Based Optimization

The optimization problem minimizes the average requegtiatian time. This approach
is ideal if the policy requests follow a uniform statisticomever, this approach is unlikely
to be satisfactory in scenarios where the requests’ didtoib is dynamic in terms of vol-
ume and type of requesters. If we solely rely on reorderisguming a role based access
control (RBAC) system of two roles, sajudentandfaculty, where there are on average
100 student requests for every faculty request, the cordmt#istics will be guided by the
student requests. As such, the optimization problem ptedexbove will favor the student
role. Reordering rules and policies in these circumstaiscest sufficient, as the computa-
tional cost will not be given by the evaluation of the rulesrtiselves, rather it will heavily
depend on the time spent on finding the applicable policitlse@iven request.

Hence, in order to further improve the efficiency of the r@erdering, we resort to clus-

36

tering the policies. Building on execution vectors, anitite mechanism is to categorize
the policies based on the subjects. Starting from a sé{$f clusters, wherd.[S] is the
number of subjects iy, the goal is first to reduce the number of categories in oraler t
allow the reordering to have a considerable effect on thewdien time. Second, to reduce
the memory footprint needed for caching the categories. Nthe categorization is done
on a per-subject basis, to record an improvement in the @wedime the policies must be
adequately large. This happens because, when there isgpgater each subject, there is
essentially a unique execution vector for that subject. iMaege policies are evaluated,
the categorization helps provide a good match for the ei@twector and hence fewer
rules are evaluated, thereby improving the evaluation.tilnecase of small policies, to
make categorization effective, we need to decrease the elunhbategories to be searched
in order to find the execution vector. In order to resolve igssie, we resort to further clus-
tering the requests. Figure 6, shows a PolicySet and therdift applicable views based
on the involved subject, where each view could serve as @subased category.

To achieve these results, we propose adopting an algorigsecbon thé{-Means clus-
tering method [71]. Generally speaking, theMeans algorithm is used to clusterob-
jects based on attributes int@artitions,k < m. Each cluster consists of a “center” around
which individual elements of the data set being clusteredyamuped together. This group-
ing is done based on some measure of similarity to the otleenesits in that cluster. In
our domain, the number of clustef§ and the centers of these clusters, Ve .subjects are
chosen at random from the set of subje&t3he set of centers (or clusters) is referred to
asC;. Each subject; € S is considered, and its similarity; ;, is calculated with respect

to each subject, € C in the different clusterssS; will be added to that cluster where the

37

similarity D; ,, is maximum. The strength of this simple algorithm lies in thay the sim-
ilarity metric D, ; is calculated. The similarity metric aims to cluster togetthe subjects
that share a large number of policies which are applicabéd! f them. LetP; represents
the set of policies applicable to a given subjécand letZ[P;] be the number of policies
applicable to that subject. The number of policies sharéwden two subjectss; andSy

is given by L[IP; N P,]. The fraction of the number of policies shared between the tw

subjects that are a part &fPP;] is given by©, ;, where:

L[P; NPy
L[Pj]

Oik =

The similarity metricD; ,, between subject; andS;, is calculated as follow®, ,, = ©, ;. +
©y.i. The subjectS; is grouped with the cluster centering 6 where D, ;, is maximum.
This ensures that only those subjects which have a large @uofipolicies in common are
grouped together. In general, the clustering is more efieethen the number of shared
policies is large, i.e. whe[P; N Py is large. The number of clusters,. should be
chosen carefully. The larger the valiyg, the lesser visible will the effect of reordering be.
This is more evident when we consider the fact thavasapproached.[S], we essentially
experience the initial effect of having[.S] unique categories for each of the subjects. On
the other hand, should/. be too small, the improvement obtained by categorization is
completely lost, because &5 approaches '1’, all the subjects belong to the same cluster.
In other words, there are no clusters at all.

This algorithm allows us to tune our optimization approaaethsthat we can either max-

imize the improvement due to clustering or due to reordeeng@oth, based on the specific

context.

38

3.4 Experimental Results

Our experiments were conducted on both synthetic poligielsraal world-based poli-
cies. The synthetic polices were divided into two sets of $egtes. The first test suite
deals with XACML policy sets where subjects have a small neindd applicable rules.
The second suite investigates policy sets where subjeetsankarge number of applicable
rules, and will show the significant effect of applying ouomdering technique to large
policy sets. The real world-based policy sets are policigk bsing existing data sets, and
properly modified to fit our framework without changing thensatics -or the structure- of
the policies. Precisely, we tested the policies by Fislat.€tL7], which they used for their
Margrave tool. Our experiments ensure that all policied@aded into memory before ex-
ecuting any request evaluations. This ensures that el@uanes are not skewed by any
policy loading time. All tests were conducted using 100,08tomly generated XACML
requests. All requests have a single value for the subgsburce, and action.

Our experimental process includes two main stages; Hmstsétup stage and, Second,

the request evaluations. The setup stage includes threstagés:

S1. Categorization of the experimental policy sets. Categtion is performed as ex-
plained in Section 3.3. The number of categories used fdn paticy set ranges
from N to N/10, whereN is the number of unique subjects within a policy set,

S2. Training stage that collects the results of requestuatians (permit, deny, not-
applicable, indeterminate) subsequently used for thelezorg stage,

S3. Reordering policies within the policy set and all ruleghim each policy according

to the statistics we gathered during the training stage.

39

The setup stage needs to be executed only once, howeverlitstages (S2) and (S3)
could be executed repeatedly to retrain and reorder theipsland rules to achieve better
performance. For our tests, we chose not to repeat the agbsstand thus measure the
performance in the worst case scenario. The results of @ategion and reordering are
cached in memory. During the second stage the access requesactually evaluated,
using the ordering and categories set up in the previoug sfBige processing time is the
time needed to evaluate a request against a policy subjectent setup stage plus the time
to make a decision on that request. The preprocessing tithe iime needed to complete

the setup stage.
3.4.1 Real World-Based policies

The experiments on real world-based policies used theypséts by Fisler et al. [17],
specifically CodeA, CodeB, CodeC, & CodeD. We also addedhangdolicy that we call
CodeDMod, which is an enlarged version of the policy Codells policy set contains 11
policies and 75 rules in total. We include this policy in artie evaluate the performance
of our framework with larger real world policies. As hightiggd by [36], it is difficult to
access large real world policies that are publicly avadlable to the confidential informa-
tion these policies typically carry. Another issue hightigd by other authors [28] is the
fact that XACML policies tend to get larger and more comgkchwith time, hence we
introduced CodeDMod to represent such a large policy.

The results of the experiments done on the real world-baskcigs are summarized as
follows: In all cases we obtain at least a 78% performanceaorgment over Sun’s PDP.

Despite the nature of our framework which best suits lardieigs, our optimization engine

40

still provides a significant performance boost in the cassndller policies, e.g. CodeA is
a policy set with only 2 rules. The policy CodeDMod which is aah larger policy, shows
a performance boost of over 91% over Sun’s PDP. We also nibtecdifference between
using categorization only and the effect of adding reordgto the framework. Reordering
boosts the evaluation performance up to 22% over using @aregion only. This is no-

ticeable in the case of CodeDMod where reordering has aateffeits 11 policies’ and 75
rules’ order. In the smaller policy sets CodeA, CodeB, Cqd&CodeD, reordering does
not provide a big performance boost over categorization, dnit still gives up to 8.5%

better performance in the case of CodeA.
3.4.2 Synthetic Policies

We test our framework against large synthetic policies towsthe scalability of the
framework and the high performance that it provides in theeaaf very large policies.
We divide the synthetic policies into two test suites, edcltuch has policy sets of sizes
ranging from 400 to 4000 rules. The following sections ekpthe test suites’ results in

detail.

Test Suite | Results: This test suite deals with policy sdiene, each subject has a few
number of applicable rules. This test case is used to engshése effect of our catego-
rization technique, whereas our reordering technique naag la minor effect. This test
suite uses policy sets of 4000, 2000, 1000, and 400 rulese&ar policy set, rules are
divided evenly among 100 policies. For the sake of testiedrdrmit Overridesombining
algorithm is used for all the test policy sets and policiesing this test suite our approach

is 1638 times faster than the Sun PDP.

41

1000 : : 1000 : :
—s<— 4000 Rule Policy —s<— 4000 Rule Policy
L —+— 2000 Rule Policy | | L —+— 2000 Rule Policy | |
950 —=— 1000 Rule Policy 950 —=— 1000 Rule Policy
—=e— 400 Rule Policy —=e— 400 Rule Policy

@ 900t 4 @ 900
E E
[[}
E 8501 £ 850
(=2} (=2}
£ £
@ 800 : @ 800
(03 (03
S S
& 750 & 750
g g
2 7001 2 700

650 650

600 H H H H H 600 H H H H H

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Number of Categories Number of Categories

(a) Effect of categorization on evaluation (b) Effect of categorization and reordering
time w.r.t # of categories used with no re-on evaluation time w.r.t # categories used.
ordering.

107 . : - . : . x 10

—<— Sun PDP
Categorization + Reordering

m
E N
Y E Ll
£} g
) £
= o
@ £ 151
3 2
S 10't]
o 10 9]
o o
= g '
=} N N B A
2 a

10° SEIERIIS IS SESSEE TR E|

051
102 i i i il il i i i 0 i i i i i i i
0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 500 1000 1500 2000 2500 3000 3500 4000
Number of Rules Number of Rules

(c) Evaluation times comparison between(d) Preprocessing times including catego-
our approach and Sun PDP. rization and reordering.

Figure 7: Experimental Results for Test Suite 1.

Results with Categorization Only: We carried out a first detests only applying the
categorization technique with no reordering. The numbeatéggories used for each policy
set was varied fronV to N/10, whereN is the number of unique subjects within a policy
set. The preprocessing time for this approach is the timdete#or categorizing a policy
set (sub-stage S1.). When usiNgcategories, results show that preprocessing a policy set
of 100 policies and 4000 rules takes about 25138 ms and ayps#itcof 100 policies and
400 rules takes about 913 ms. WhaW10 categories are used, preprocessing times are

23464 ms and 487 ms for the 4000-rule and 400-rule policyrestsectively.

42

The experimental results demonstrate that the total psaogsimes for our approach
is at least 172 times faster than Sun’s PDP. For a policy séi06f policies and 4000
rules while usingV/10 categories, it takes 973.1 ms to evaluate 100,000 randonesés)
whereas Sun’s PDP takes about 1152460 ms. A policy set willr4lés takes 760.2 ms
and Sun’s PDP takes about 130421.3 ms. WNheoategories are used, total processing
times are 714.6 ms and 624.6 ms for the 4000-rule and 40(Qpuoliey sets respectively.
Figure 7(a) shows the complete results when using categmnizalone with respect to the

number of categories used, which range from 0 to 3000.

Results with Categorization plus Reordering: For this $&tsts, we applied the catego-
rization technique, followed by our reordering technigiiée number of categories used
also range fromV to N/10. We make use of all sub-stages within the setup stage. Rrepro
cessing time in this case is the time for both categorizaaioth reordering of rules. The
results for this set of tests are reported in Figure 7(b). &tperimental results shows that
the total processing times for our approach is at least hiidgifaster than Sun’s PDP. For
a policy set of 100 policies and 4000 rules while usiNgl0 categories, it takes 967.5
ms to evaluate 100,000 random requests, whereas Sun’s RBfabout 1152460 ms. A
policy set with 400 rules takes 763 ms and Sun’s PDP takestdl30421.3 ms. When

N categories are used, total processing times are 703.7 n&l&n2 ms for the 4000-rule

and 400-rule policy sets respectively. Figure 7(b) showscomplete results when using
categorization plus reordering with respect to the numlbeategories used. Figure 7(c)
is a comparison between our approach with categorizatiosinglordering and Sun’s PDP.

The plot representing our approach is an average of the hdsivarst case we obtained

43

from using different numbers of categories. The resultaioled by this set of tests report
a very slight performance improvement due to the reordering

Reordering rules is not a significant factor to performaneealnse of the low number of
rules applicable to each subject. Reordering’s effect @abditer appreciated for policy
sets with many rules applicable to each subject.

With regards to preprocessing, our results show that poegsing time is proportional
to the number of rules, as reported in Figure 7(d). Prepeicgs policy set of 100 policies
and 4000 rules while usingy categories takes about 25158 ms, and a policy set with 100
policies and 400 rules takes about 925 ms. WNg0 categories are used, preprocessing
times are lower, 23472 ms and 491 ms for the 4000-rule anddl@Qolicy sets respec-
tively. Our tests also show that the preprocessing timepmamgortional to the number of
categories used. More categories lead to higher prepriogetssies due to the extra pro-
cessing needed to match similar subjects to a common cgtégext, we present a second

test suite highlighting the advantages of the reorderiferef

Test Suite 1l Results: We generated a second test suitedbt allow us to observe the
impact of reordering on performance. This suite simulatesemario where each subject
within a policy set is guaranteed to have a significant nurobapplicable rules. This case
might occur when a specific subject has high privileges asdibaess to a high number of
resources. In this case the subject will have a high numberle$ permitting him access
to these resources.

When reordering happens in such a scenario, there will beeed to go over all rules

within a subject’s category. As expected, this test suitevat a significant performance

44

x 10" 10

—<— Categorization + Reordering

Preprocessing time (ms)
&
Total Processing time (|

—<v— Sun PDP
Categorization + Reordering
— — — Categorization Only

10 i i i i T T T
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000 4500
Number of Rules Number of Rules

(a) Preprocessing times (categorization + refb) Sun PDP evaluation times compared to
ordering). categorization only and categorization + re-
ordering.

3000

—sv— Categorization + Reordering
—o&— Categorization Only

2500 sy O

2000

1500 -

Total Processing time (ms)

1000 -

W—V—V—Vklvkgvi

ol i i i i i i i i i
200 400 600 800 1000 1200 1400 1600 1800 2000 2200
Number of Categories

(c) Performance boost from reordering w.r.t
the # of categories using a 4000-rule policy.

Figure 8: Experimental Results for Test Suite 2.

advantage for the categorization plus reordering approaehthe categorization only ap-
proach. We used policy sets of 4000, 2000, 1000, and 400 (disrent from the ones

used in first test suite). For each policy set, rules are divievenly among 100 policies.
Overall, our results for this test suite show that our apginaa 949 times faster than Sun’s
PDP engine. Similar to the first test suite, we conducted raxats using categorization

only and categorization with reordering.

Results with Categorization Only: The preprocessing tifoeshis case are inline with

the times for the analogous set of tests of the first test.sitecisely, when usingy

45

categories, preprocessing a policy set of 100 policies 808 4ules takes about 25397 ms
and a policy set of 100 policies and 400 rules takes about 97 8MienN /10 categories
are used, preprocessing times are 28633 ms and 1075 ms fé0@0erule and 400-rule
policy sets respectively.

As in the previous test case, the results for total procgdsimes show a very significant
improvement in performance over Sun’s PDP. Our resultscatdi that our mechanism
provides at least 48 times faster evaluation. For a politps&00 policies and 4000 rules
while using N/10 categories, it takes 2437.2 ms to evaluate 100,000 randqoeses,
whereas Sun’s PDP takes about 851477 ms. A policy set witlr4l@6 takes 2272.2 ms
and Sun’s PDP takes about 120230.3 ms. Kocategories, total processing times are

2517.6 ms and 2242.5 ms for the 4000-rule and 400-rule psétyrespectively.

Results with Categorization plus Reordering: Figure 8gpprts the preprocessing times
for this approach. Our results show that preprocessing iaypsét of 100 policies and
4000 rules while usingv categories takes about 25902 ms and a policy set with 100 poli
cies and 400 rules takes about 1007 ms. Whgn0 categories are used, preprocessing
times are 31052 ms and 1061 ms for the 4000-rule and 400-dlileysets respectively.
Although the policies are different, we notice that the gatl times are very similar to
the times recorded for preprocessing the set of policied imsehe first test suite (reported
in Figure 7(d)). This observation leads to the conclusiat the preprocessing time is
not influenced by the type of policies used. The preprocgdsines are almost negligi-
ble when compared to the highly significant performance owement in total processing

times over Sun’s PDP, not to mention that preprocessingstcoerespond to the setup stage

46

of our framework which only occurs once within a policy séifetime or upon a client’'s
request.

Figure 8(b) compares Sun’s PDP total evaluation times witlresults from the second

test suite. The total processing time of our approach isast [£39 times faster than Sun’s
PDP. As shown, for a policy set of 100 policies and 4000 rulbedeausing N/10 cate-
gories, it takes 842.3 ms to evaluate 100,000 random rexgjugbereas Sun’s PDP takes
about 851477 ms. A policy set with 400 rules takes 867.5 msSamds PDP takes about
120230.3 ms. WhelV categories are used, total processing times are 897.6 m83nd
ms for the 4000-rule and 400-rule policy sets respectively.
For the 4000-rule policy set used in this test suite, resntiEate that categorization plus
reordering has a 65.4% performance improvement over usitggorization alone. Figure
8(c) shows the performance boost reordering provides w#pect to the number of cate-
gorizations used. The figure shows that adding reorderimgtiegorization provides over
1.6 seconds of an advantage over the use of categorizatipn on

We notice a slight improvement in performance when the nurobeategories is re-
duced. This result is explained by the fact that the poli¢yseused has many rules that
are applicable to all subjects, which means the resultitgpcaies are not much different

from the original categories.
3.4.3 Adaptability of Reordering Approach

Figure 9, demonstrates how our reordering approach adapgtsetincoming requests
received by the PDP. As mentioned earlier in the reordenupgaach, we have a reordering

process that reorders both policies within a PolicySet ameksrwithin all policies. The

47

10+ _e_PO P1 P2 ._.._P3 _._P4 7V,P5 P6H;¢7P7 —x—PS 7F,P9 n
o
\

8%\

T -\ /(k S A———- ——— — —+——— —t——— ——— ———— —
B \ v \ /'/
° 7 A
(@] /) \ _/'/
& sf N A0
S ke \ e
o g4 \ a7

N\ \ -
34 \ \ /*//
v P
L \ ~ \ -~
2 * ad
e \
\T \/ \/ NP \/ \
08 \id w \y ‘ ‘ A
t 0 1 2 t3 t_4 t_S t_6 7 8 t9 t_10

Reordering Cycles

Figure 9: Policy Order and Reordering Cycles

reordering happens according to the number of Permitsé3emipolicy or rule triggers.
Figure 9 shows how the order of 10 policies within a Policy8®nges with respect to
time. The orders of policies ranges from O], whereL[P;] is the number of applicable
policies for subjech; (The size of a subject’s policy execution vector). Orderfleots the
highest ranked policy (the policy most requested). Figusth@®ws the policies within a
policy execution vector for a particular subject, in thiseaubjectS;. It is important to
notice that each reordering cycle (a single reorderinggseyris dependent on all previous
cycles. In Figure 9¢, represents the initial time before reordering, apdepresents the
time at whichn reordering cycles have been executed (reordering of psliciles based
on the evaluation results gf_1,t,_o,...,%y). As time passes and more reordering cycles
occur, one can notice how the order of some policies starsetite at a certain position.
For instance, if one looks at polidy;, it gets pushed to order 9 &t this is due to the low
number of Permits/Denies returned by this policy. Wherease looks at policy, it gets

to order 1 and stays there as it is requested very frequétdlicy P, settles aftet;. Other

48

polices settle for a while and then get reordered as the imgpnequests might influence

their order positions. The ordering of these policies degam the incoming requests and
how they trigger the accumulated number of Permits/Denigsliay evaluates to. Each

subject within a policy set will reflect a similar adaptatijorocess to the one in Figure 9,
each of which prioritizes their applicable policies andesuaccording to the statistics from
previous reordering cycles.

To clarify how the adaptation process would actually octatrus look into a case sce-
nario e.g. a school. At the beginning of a semester, mossaageguests would be driven
by students wanting to register for their courses. The adiapt process would move poli-
cies/rules that are applicable to students and favor themming requests to the top of
a policy set, which will result in faster evaluation times guch similar future requests.
Within a semester, where most midterms are given, manytiacedjuests for inserting or
updating student grades will be recorded. In this case, diaptation process will favor
faculty requests by moving policies/rules within a polieg ® the top, and hence favoring
these requests. Whenever there is a flow of similar requestsdifferent subjects within
the school, the policy set will adapt to the best configuratimat will result in the best
evaluation results.

Figure 10, demonstrates the average request evaluaties fonsubject; with respect
to time. As the time proceeds, a number of reordering cyatesip hence influencing the
order of subjectS;’s policies within its policy execution vector and rules it its rule
execution vector. The reordering process will push the mexgiested policies and rules
that evaluate to Permit/Deny up to the front of the correslpumexecution vectors. This

will result in faster evaluation times as depicted by out tesults in Figure 10. Note

49

t.9 t_10

L L L L L L L L
(=} (=) =2} o~ o s} < o (o] —

(su) owiL], uoren[eAy 93eIAY

t7 t8 _

t0 t.1 t2 t3t4 t5¢t6
Reordering Cycles

Figure 10: Average Request Evaluation Time and Reordenules.

that the average request evaluation time gradually dezsessmore reordering cycles are
executed and thus adapt to the incoming different requexstls:.

CHAPTER 4: RECOMMENDATION MODELS FOR OPEN AUTHORIZATION

The Open Authorization protocol (OAuth) was introduced aseaure and efficient
method for authorizing third party applications withoukeigsing a user’s access creden-
tials. However, OAuth implementations don’t provide theessary fine-grained access
control, nor any recommendations i.e. which access codegoikions are most appropri-
ate. We propose an extension to the OAuth 2.0 authorizatianenables the provision-
ing of fine-grained authorization recommendations to ugérsn granting permissions to
third party applications. We propose a multi-criteria macoendation model that utilizes
application-based, user-based, and category-basetadlave filtering mechanisms. Our
collaborative filtering mechanisms are based on previoes dscisions, and application
permission requests to enhance the privacy of the ovetal siser population. We imple-
mented our proposed OAuth extension as a browser extertsabm@itows users to easily
configure their privacy settings at application instatlatiime, provides recommendations

on requested privacy permissions, and collects data riegauder decisions.
4.1 Related Work

Developing usable tools that provide fine-grained contrx@raiser private data is an
emerging problem in online platforms especially within isbmetworks [20, 2, 7, 24].
Studies such as the one by Acquisti and Gross [21, 2] indiesée concern over their

privacy on social networks while most users did not applictsprivacy settings on their

51

online social profiles. This was mostly due to the lack or pamderstanding of what pri-
vacy controls are available to them. Felt et al. [13] detaibael solution for protecting
privacy within social networking platforms through the usen application programming
interface to which independent application owners woulgéadgo adhere to. The approach
requires developers to adopt a privacy proxy instead akurg already existing technolo-
gies such as the popular OAuth 2.0 authorization flow. Récémit et al. reviewed the
permissions requested by current applications [15]. W8vlae of their findings apply to
the context of Android applications, they confirm that upAfr permission requirements
for installation may help APIs achieve their full potentiala secure fashion, while still be
useful for end-users. Fang and LeFevre’s work asserts the iraproviding highly accu-
rate privacy settings with reduced user input [12]. Usirg) teser input, they infer a set of
privacy-preferences using a machine learning approachleWte authors’ study is based
on real users, they do not provide a technique that applessmfarred privacy settings onto
a user’s real online profile. Besmer et al. [6] demonstrateitheir research the value of
social navigation cues in prompting users to make informadgpy decisions; where that
research was not concerned with the type of data and arlyiteasigned a recommended
positive or negative cue for each item, our research is \mayifically tied to data types and
our recommender model provides cues that are based on ezgdnivscy decisions. While
much has been researched about the privacy impacts of reendensystems themselves
[56, 53, 8], little research appears to be available for the af recommender systems in
aiding privacy and security systems. One notable exceiamthe research of Kelly et
al. [33] where the authors demonstrated the benefit of camdpicollaboration among a

user population in the suggestion of an individual useriggay policy. They also propose

52

an incremental model for optimizing a user’s policy overdinThis approach is not op-
timal when dealing with third party applications, that omestalled, can harvest a user’s
private social network data. Shehab et al. [61] proposedaeesa control framework that
allows users to specify the data attributes to share withiagimns and the degree of speci-
ficity. The framework requires many changes to existingatthtion models and requires

developers to go through a cumbersome deployment process.
4.2 Proposed OAuth Flow

We propose an extension to the OAuth 2.0 authorization cage By introducing two
new modules into the flow: 1) A Permission Guide that guidessughrough the requested
permissions, and shows them a set of recommendations oroé#uod requested permis-
sions, and 2) A Recommendation Service that retrieves af setommendations for the

requested permissions following a collaborative filtenngdel as seen in Section 4.2.2.

(A3) Permissions

Requested (Scope)
Permission
. Recommendation
Guide .)
. (A4) Permission Service
Extension Recommendations
T
(A5) Show
Recommendations .
Extension
(A2) Request URI l (A8) Client Identifier,
* w@ Redirect URI, & New Scope
Endwlther _ (B) User authenticates Authorization
a >
Browser c ization C SeIver
A » (C) Authorization Code P
4
(A1) (€) (D) Client Credentials,
Request URI v Authorization Code, &
' Redirect URI
Web
Client (E) Access Token
_ (w/ Optional Refresh Token)
<

Figure 11: Proposed OAuth Flow

53

Our OAuth extension focuses on step “(A)” of the authorimatcode flow in OAuth
2.0 [52]. We revise step “(A)” to become a six stage processhasvn in Figure 11 and
explained in the following steps:

Al: The client redirects the browser to the end-user authtidn endpoint by initiating a
request URI that includesscope parameter.

A2: The Permission Guide extension capturesstbepe value from the request URI and
parses the requested permissions. At this step the extesifiovs users to choose a subset
of the permissions requested.

A3: The Permission Guide extension requests a set of recoaatiens on the parsed
permissions. This is achieved by passing the set of peromssd our Recommendation
Service.

A4: The Recommendation Service returns a set of recommienddbr the permissions
requested by the client.

A5: Using the set of returned recommendations, the extansiesents the permissions
with their respective recommendations in a user friendlymnea.

A6: The Permission Guide extension redirects the endsfeowser to a new request
URI with a new scopedcope’), assuming the user chooses to modify the requested

permissions.
4.2.1 Permission Guide

The Permission Guide is represented by a browser exterfsaimtegrates into the au-
thorization process by capturing teeope parameter value within the request URI gen-

erated by a third party application. Once #heope is captured, the extension parses the

54

requested permissions and presents them in a user frieradipen as shown in Figure 16.
A readable label of each requested permission is shown eritheiser e.g. it shows “Face-
book Chat” rather tharnpp_l ogi n.

The extension also shows users a set of recommendationsefoequested permissions.
For each permission there is a thumbs-up and thumbs-dowmraendation value. These
recommendations represent prediction values that welegdciollowing our model in sec-
tion 4.2.2. These prediction values represent the likenaf a user to grant or deny a
certain permission based on her previous decisions andeoodlleborative decisions of
other users. Users who have not made any decisions yet, anenglecommendations
based on other user decisions.

The extension also allows users to customize the requestadigsions by checking or
unchecking individual permissions, where a checked pesionss one the user wishes to
grant to the third party application and an unchecked pesioriss one she wishes to deny
access to. Once a user decides on the permissions she wagiresit and deny, she sim-
ply needs to click é5et Permissionbutton on the extension (blue button in Figure 16).
This will trigger the extension to generate a new request Wil a new scopscope’,
and forward the user’s browser to this new request WRbpe’ will always be a subset
of the original requested scope, i.ecope’ C scope. An examplescope’ for the

FriendCameo application could be as follows:

scope’ =publ i sh_stream

reflecting the user’s desire to allow FriendCameo to posetdféed/wall, but deny it ac-

cess to her email, Facebook chat and friend’s online/offiressence. Note that using a

55

subset of the permissions requested could potentiallyenittte functionality of a third
party application once installed.

Our Permission Guide extension also collects the userisides on the requested per-
missions, hence allows us to generate a data set of decigidms used in our recom-
mendation model explained in section 4.2.2. That is, ouroReuendation Service as
seen in Figure 11 will utilize these decisions in making @sammendation predictions.
These decisions are uploaded to our servers once a useesdtsired permissions within
the extension, i.e. clicks theet Permissionbutton. The data uploaded to our servers in-
cludes:app.i d, requested_perns, decisions, recomendati ons,where
theapp.i d is the application’s unique id which is assigned by the seryrovider (e.g.
Facebook), the equest ed_per ns is the scope of permissions requested by the third
party application, theleci si ons are the individual user decisions (grant or deny) on
each of the requested permissions, and teseormendat i ons are the recommendation
values at the time the user made her decisions.

Our goal is to provide a simple user interface for interagtnth permission requests,
hence increasing user awareness and providing an easy msuhi@r guiding users in

making their decisions.
4.2.2 Recommendation Model

We propose a Recommendation Service component that extgasour Permission
Guide extension. Le#, I/ andP represent the set of applications, users and permissions
respectively. A uset; € U can make a decisiofy € {grant, deny} on a permissiop,; €

P for an applicationu;, € A. An applicationa; which requests permissiops, - - - , p,, iS

56

mapped to a set of decisions, - - - , d,,, made by the user installing,.
4.2.3 Collaborative Filtering

Applications

g g2 g

12}
Applications Gh= .5 921
a AT 8
1 @ . . an Py 4
E
us 1 ? 0 1 0 ‘ & Recommendations
r
& w |20 ? 0 0 1 ‘ Pn - o App/User Up» By
& g N B 0 4 0 L e Similarities
n - .
4 IR > Users 7| sim(3.)
& decisions ol o o 5 ” ; g gn gm sim (u;, u/-)
Um 0 .
1] 1 0 0 ? ? 5| 92
Gy= 9 e
0 0 ? ? ? E
E @ Pubioh
SetPermissions
Gm1 Gmn

Figure 12: Collaborative-based model

Our model follows the multi-criteria recommendation moaklere user recommenda-
tions are calculated per criterion [38, 3]. The model utdizhe set of permissior as
a set of criteria, i.e. each permissipne P represents an individual criterion within the
model. The multi-criteria approach fits our model as deoisiare made per permission
(criteria) rather than an application as a whole. We modelea’si utility for a given appli-
cation with the user’s decisioms, - - - , d,,, on each individual permissign, - - - , p,,, using
Function 1.

D : Users x Applications — dy X -+ X d,, Q)

Function 1 represents a user’s overall decision on a cesfgtication via the set of deci-
sions made on each individually requested permission. iShatuser:;; makes a decision
d; on an application, with respect to an individual permission. For each perroisgi,
there exists a matri&,, representing user decisions pnfor each application,, € A, see

Figure 13. A matrix entryl; with a value ofl denotes a user hgsanteda, the permission

57

p;, Whereas @ denotes adeny Entries with ‘?” values denote the user is yet to make
a decision on permissiap; for applicationa,. Our model provides recommendations to
users that guide them in making these future decisions. iggpins that do not request a
permissiorp; have an empty entry ii,. and are handled properly in our implementation.
For example, lep, = birthday, p» = email, andps = location, where each represents
a single criterion within a three-criteria model. ket = Alice who installed application
ay that requests access to the permissiontday, email andlocation As illustrated in
Figure 13, Alice has granted the permissionbirthdayandlocation(d; = grant,ds; =
grant), whereas deniedmail (d3 = deny). Alice has yet to make a decision an i.e.
a single decision on each requested permissidmirthday, email, location}. Our pro-
posed model utilizes the set of decisions for edgh hence providing a recommendation

that fits each criterion.

Applications
a1 az . . an
p1: birthday
U4 1 ? 0 1 0 .
p2 : email
0 ? 0 0 1
" uz ? ps * location
by 1 ? 1 ? 0 1 0
%)
o]
0 ? 1 1 0 ?
1
0 0 ? ? 1
Um 0 0
1 1 0 0 ? ?
0 0 ? ? ?

Figure 13: A three-permission (criteria) model

Figure 12 illustrates our overall collaborative model. Thedel relies on decisions
made by the community users, and utilizes them in buildirgrttulti-criteria matrice§
for each permission. By utilizing thé matrices, we generate two probability matric@s,

andGy, as seen in Figure 127, is app-based, whereds; is user-based(4, captures

58

the probability of a certain application being granted aaerpermission, whereas,,
captures the probability of a certain user granting a aegarmission.

Figure 14 shows an example, matrix, with a set of applications:{, as, as, a4, as),
permissionsi§i rt hday, emai | , | ocati on, sns, phot 0s) and their corresponding
G a(j, k) values. For exampl&; 4 (location, ay) = 0.15, denotes a low probability of the
permissionl ocat i on being granted to applicatiom, by users who installed,. Our
proposed collaborative model adopts an item-based anebased collaborative filtering
process. In our model, items are applications, hence we teféem-based filtering as
application-based filtering. User-based filtering utdizbe user-based probability values
of Gy, whereas application-based filtering utilizes the appebdgzobabilities oG4 as

seen in Figure 12.

Applications

a1 az as aq as

birthday | 0.6 0.75 1 0.2 0.3

@ email 0 0.9 0.25 0.7 0.1
Re]
7]

Ué location 1 0.15 0 0.35 0
@

& sms| 0 0.4 0 1 0.5

photos | 0.2 0 0.6 0.25 0

Figure 14: Examplé& 4 (7, k) values.

4.2.3.1 Application-based Filtering

Our application-based filtering process relies on the agged probability values @f 4
shown in Figure 12. Each entiy4(7, k) in G 4 represents the overall probability of per-
missionp; being granted to applicatiaz),.

To generate recommendations on the requested permissgieniirst detect the nearest-

59

neighbors for the target application requesting the pesions. The nearest-neighbors in
app-based filtering are the applications most similar totéinget application. Collabora-
tive filtering algorithms have mainly been based on one ofpiapular similarity measures
namely the Pearson Correlation and Cosine-similarity &, We measure similarities
between applications using tli&, values, and by calculating the Pearson correlation val-
ues between them. Equation 2 represents our applicatieedsmilarity measure, which

is the Pearson correlation value between applicatigrasida;, whereP is the set of all
permissions in our system arg, (a;) is the average probability for applicatian being

granted a permission iA.

sim(i, §) =
VZEIP(GA(Z% i) = Ga(a))(Ga(p, j) — Galay)))
> (Ga(p,i) = Gala)? 3 (Galp,j) — Galay))?
VpeP VpeP

Applications that don’t request a certain permissigmave aG 4(j,¢) of zero. Appli-
cations which are similar and highly correlated, are thob&lwrequest a similar set of
permissions, and have similét,(j,4) values for each of their requested permissions. For
example, if both applications, anda, requested the same set of permissigmis p, }, and
they have a7 4(p1,a1) = Ga(p1,a2) and aG 4(ps, a1) = Ga(pe, az), thena; anda, are
considered highly correlated and their application-sanity valuesim(z, j) will be close to
1. When predicting recommendation values for permissibapplicationa;, we make sure
they are based ony’s nearest neighborghat is, the set of applications whewen(a;, a;) is
highest. With application-based filtering, users collab@itowards increasing or decreas-

ing theG 4(4, k) values, hence filtering applications according to the mgjliess of users

60

to grant them certain permissions.
4.2.3.2 User-based Filtering

User-based filtering relies on tlig; values, where each entfy; (7, k) in Gy represents
the overall probability of permissiop; being granted by a focus usef. Permission
recommendations in this case are based on the focus usarsstaeighbors, that is, the
users most similar to the focus user. Similar to applicabased filtering, we use the
Pearson correlation to measure similarities between uggsation 3 represents our user-
based similarity measure, which in terms is the Pearsorledion value between users

andu;, whereGy (u;) is the average probability of user granting a permission i®.

sim(i, j) =
32 Golpi) ~ Golu)) (Gt 1) — Gty @
V%D(Gu(p, i) — Gu(u;))? VZEP(GU(Z?, 7) = Gu(uy))?

With user-based filtering, a focus useris given recommendations based on those users
most similar to him/her. Users with more similar probahgbtof granting a certain per-
mission will be more similar, hence, potentially reflect migr willingness to grant/deny
a certain permission.

We use both application-based and user-based filteringltalate a recommendation

value on permissions requested by applicatipan behalf of uset;.
4.2.4 Prediction Model

When a user;, say Alice, wants to install applicatian,, we calculate a sk, where
ri; € Ry is a prediction value for permissign requested byi,.. 7; ; € Ry, is a prediction

of how likely Alice would be willing to granp; to ay.

61

The recommendation valug; is based on either our app-based filtering or user-based
filtering approaches. Thatis, the recommendations arerddtised on;’s nearest-neighbors
(most similar applications) ar;’s nearest-neighbors (most similar users). Equations 4 and
5 show the recommendation value for app-based and used-biseng respectively. Note

that we calculate; ; for eachp; requested by an application.

ZaeN sim(ag, a) * d; 4
ZaeN |Sim<ak> a)‘

Tij = G—A(pj) + 4)

Zue./\/ stm(u;, u) * djq,
Zue/\/ |sim(u;, u)

Tij = G—U(pj) + %)

In Equation 4,G 4(p;)) reflects the average probability that permissjgris granted
over all applications in4, and is easily calculated via it's corresponding row in the
matrix. Similarly, in Equation 5(:7(p;) represents the average probability that permission
p; is granted over all users i, and is calculated via it's corresponding row in tig
matrix. Note that botfZ 4(p;)) and Gy (p,) are driven by all users within our system. In
both equationsV represents the target application’s nearest-neighbarth&focus user’s
nearest-neighbors respectively. The sizd/afiepends on the similarity measures used, and
can be adjusted to follow a preset threshold within the immgletation, e.g. only include
neighbors with a similarity aboves.

Finally, d; , in Equation 4 represents’s (focus user) previous decisions on permission
p; for each applicatiom € N. In Equation 54;,, is a neighboring user’s decision on
for the focus application,. Note that thesim (u;, u) value will either increase or decrease

the effect of a neighboring user’s decision, based on howiairtihe neighboring user is

62

to the focus user. Botll; , andd, ., are captured via th€,, matrix explained earlier (see
Figure 13).

Notice that the prediction values calculated are based osegsuprevious decisions
and on the decisions of other users, hence capturing thaassé collaborative filtering.
In cases of insufficient data, prediction models could reffeom generating predictions,
or utilize collaborative filtering systems based on prohlstig, hybrid, or clustering ap-

proaches for generating predictions. We decided not toigegwedictions in such cases.
4.2.4.1 Category-based Predictions

To further enhance the results of our recommendation preds; we propose a category-
based model that takes into consideration an applicataatsgory. Example application
categories include Games, Utilities, Entertainment, €ategories can increase the pre-
cision of our predictions especially for applications thequest similar permissions for
different purposes. For example, two applications mightiest access to a user’'s email
address, where the first application is a game and the sesamdaisk manager. In this
example scenario, a user’s email could be used for diffgrergoses, i.e. a task manager
could use it for sending reminder emails, whereas a gamel amd it to send promotions
for other games. A user would probably be more willing to ¢gemail permission to the
task manager as it could be of more benefit to the user. Grantirdenying a certain
permission will be driven by the user’s perception of theuesied permission. We be-
lieve that similar permissions requested by apps withirstimee category will be perceived
similarly by users. Hence, by providing recommendatiordfmtéons based on application

categories, we can reflect more precise user perceptiohgweitir recommendations.

Categories Recommendations

{ai,...

yak}

—91/' - gm- ri' 1
All Applications
= |93 »
r q A
g1 g2 ... gm k .
g 921 9mj Gmk ri,m
-ﬁ = -
1]
£ D> :
@ {ax, ..., ay}
* I T TE
gix ... Gy ’
9m1 gmn
L i _ gz
G= |7 =>
Gmx Gmy rf;m

Figure 15: Application category probability matrices

When generating category-based predictions, we follow dified version of our ap-
plication based filtering model for calculating similaggi To calculate the set of nearest
neighbors for a certain applicatian, we only consider other applications that fall into
the same category as. Figure 15 shows two probability matricés,, andG 4;, which
are extracted from the overalf 4 matrix explained previouslyG 4, and G4, represent
the permission probabilities for applications within thetegoriesk and j respectively.
Let A, C A be the set of applications that belong to categarand; be a;’s nearest
neighbors whereV; C A;,. Note thata;’s nearest neighbors can be found by calculating
the similarities between; and applications withind, rather than all applications inl.
For example, in Figure 15, the nearest neighbors:foare found among the set of apps
{a, ...a,}, and the similarities are calculated usi6g,. For applicationa; € A that

belongs to category, we calculate recommendation predictions following Eopre6.

Zaex\@- sim(a;, a) * dj,
> e, [sim(ai, a)l

i = Ga,(p;) + (6)

WhereG 4, (p,) reflects the average probability that permissipiis granted over applica-

64

tions in Ay, i.e. apps that fall withim;’s category. Category-based predictions are more
efficient in that they do not rely on all applications withinrosystem, but rather on a
smaller subset of categorized applications. This allowsafster prediction calculations, in

addition to the potentially more precise recommendations.
4.3 Experiments

We evaluate our proposed OAuth 2.0 extension using Faceb®okir target platform.
Facebook is an ideal target given its large user base of d@@mdllion users, and its
extensive application directory of of over 7 million thirdny applications [11]. Facebook
is also one of the major platforms to adopt the OAuth 2.0 moitovhich makes it a good
fit for our evaluation process. The proposed extension ismded to Facebook and can be
extended to other OAuth 2.0 platforms. To evaluate our pgedd@Auth 2.0 extension, we
implemented two main components: a Permission Guide, aretarRmendation Service.

Permission Guide: Our proposed Permission Guide in sedtidrd was implemented
as a browser extension for both Firefox and Chrome browseiag a combination of
Mozilla’s XML User Interface Language, the Google Chromeviser APls and Javascript.
Figure 16 shows the extension user interface for both Buraf@ Chrome. Javascript was
used to interact with our back-end recommendation serviee Fhe extension was tested
on the latest Firefox and Chrome browsers on Mac OS X 10.5/10nux CentOS and
Windows (Vista, 7) machines.

Once installed, the extension resides within the user'sibeo and begins monitoring,
waiting for a Facebook application installation processdmmence. The extension does

not otherwise interfere with a user’'s browsing experien©ace a Facebook application

65

Permissions Requested by this Facebok Application | asponse type=code&state=81e835372853bi 88 7%

W Publish to Stream 24% 9 76% This application is requesting the following extended

— permissions. Customize them below.

(] Offline Access 20% Q 80%

"] Email Address 20% Q 80% Customize Permissions ®

) H g oL o

_JBirthday with year 14% P 86% @ Email Address 1% 99%
Set Permissions @ Publish to Stream 8% 92%

[3

..: Configure Now! Set Permissions

FireFox Extension Ul Chrome Extension Ul
Figure 16: Extension Ul, Firefox and Chrome.
installation process is detected, the extension is aetivahd presented to the user.

An installation process is detected by parsing the URLs avisis and searching for a
Permission RequesA Permission Requetr Facebook applications can be identified by
locating the substringsermissions.requeand either ofacebook.com/connect/uisenar
facebook.com/dialog/permissions.requéka request is detected, the extension looks for
the type of request issued, i.e. Basic permission vs. Expermission access. A basic
permission access request is identified by a missing or esgye attribute within the
URL. Otherwise, if thescope attribute is located, the extension recognizes that amdgtk
permission access request is in progress.

Recommendation Service: The service is a PHP based solutioning on Apache
2.2.14 with MySQL 5.1.5 as the data store solution. We runstirwice on a desktop
machine running Linux CentOS, with 2GB RAM and a 2.0 GHz IrXebn CPU. The
recommendation service applies the recommendation babetns explained in section
4.2.2 by providing two private APl methods which are used layextension. The first API
method is theget Reconmendat i ons method which accepts app_i d and a set of

requested permissions. It then returns a set of recommendah a JSON format which

66

maps a recommendation value to each permission. The seddnadéthod provided is the
post Deci si ons method which is invoked by our extension when a user makeddier
cision on the requested permissions. This APl method takepp_i d, a set of requested
permissions, a set of user decisions on these permissiotisha set of recommendation
values displayed at decision time. These values are stortecbor recommendation back-
end server and used later in our recommendation based schema

For our evaluation purposes, we are primarily focused oereld¢d permission requests
because those are the permissions which are customizabtebyon the targeted platform
(Facebook). For basic permission requests, our extensitines users that basic access is
requested, and no customization is possible. Whereastiem@ésd permission requests our

extension performs the following:

1. Extracts the permissions requested by parsing ttape value from within the re-
guest URI. For Facebook, tls€ ope value is a list of comma-delimited strings, each
string representing a certain requested permission.

2. Asynchronously retrieves recommendations for the set¢quiested permissions by
calling our APl methodyet Recommendat i ons. Once the recommendations are
retrieved, the extension Ul is updated properly.

3. Dynamically generates the user interface to be showneadier based on the re-
guested permissions and their respective recommendadiars: Figure 16 shows

an example interface for

scope = publishstream offline.access, enmail, birthday

Once the user makes a decision on the permissions she wé&aldbligrant/deny by

67

clicking the "Set Permissions” button, the extension wékjprm two actions: 1)Invoke
our post Deci si ons APl method passing along the user decisions. 2)Generate/a ne
scope value using the permissions granted by the user. Using ¢hwsseopescope’ the
user is then redirected to a customized application rediiRktresulting in a new Facebook
application permission request page. At this point the hssrdefended herself against
unnecessary application accesses. Note that our approachnps an application from
acquiring permissions before its actual installation. Therent approach by Facebook
allows the removal of permissions only after applicatiorsiastalled, which is realistically

not sufficient because applications have already acquaesisa to the data.
4.3.1 User Study

To evaluate our proposed framework, we perform a user stasyuobrowser extension
FBSecure. The study’s main research questions wkyedo permission recommenda-
tions (positive/negative) affect the user’s willingnessilow/deny permissions requested
by third party applications?and2) Are users more willing to share their friends’ privacy
attributes in comparison to their own®/e use statistical measures to evaluate the success

of our proposed framework as discussed in Section 5.6.1.2.
4.3.1.1 Methedology

Our proposed browser extension is hosted under the nameS®édtBe on the Mozilla
Add-Ons website (Firefox version) and, the Google Chromb stere website (Chrome
version). In addition, it was posted on our lab webshtet(p: //1i i1 sp. uncc. edu/

f bs). Twitter was also used as a means of recruiting particgfmtthis study which was

approved by UNC Charlotte IRB (Protocol# 11-05-24). FBSeaonas installed by over

68

3528 Facebook users who installed over 1561 unique Facedquulications. The results
summarized in this section are based on the population of wdeo installed our browser
extension, use Facebook, and sought out privacy extensidms user sample is mainly
biased towards privacy aware users, but also includesaegskrs recruited via Twitter,

whom did not specifically seek out privacy extensions.
4.3.1.2 Study Results

We gathered over 7200 user decisions on 56 different Fakedxtended permissions.
We evaluate our recommendation model based on the useratecollected during the
usage of the extension. For every application permissiqunest, our extension enabled
the collection of the details of the requested permissiba,generated recommendation,
and the user selected permission settings. Figure 19, shewsobability of applications
requesting different permissions, for example we found the most popular requested
permission is th@ubl i sh_st r eampermission, which enables apps to post messages on
a user’s wall, and is requested by 42% of the Facebook apgeer @opular permissions
includeerai | , of fline_access anduser _bi rt hday.

Over all our user population, Figure 17 shows how likely asgere willing to grant
different permissions. Our results show that users hawangwillingness towards dif-
ferent permissions, for example the likelihood of a usemgjp\an application access to his
email is only 31%, while users are more likely to share thigitus (65%) with apps. Note
that some permissions requested give applications aazesst's friends’ information, for
examplef ri ends_| ocat i on permission. To investigate the permissions that users are

more willing to grant on their friends’ data compared to th@vn data we conducted a

69

friends_notes [
read_requests [
friends_groups [
read_mailbox [
friends_religion_politics [
user_website [
user_relationships [
friends_website [
user_status [
friends_hometown [1
friends_videos

user_videos
user_groups
friends_relationships
friends_events
friends_work_history
friends_location
user_religion_politics
friends_status
read_stream
user_interests
user_activities
user_hometown
read_friendlists
user_about_me
friends_likes
user_events
user_likes
friends_birthday
friends_interests
user_photos
friends_activities
user_work_history
friends_photos
friends_about_me
user_notes
publish_stream
offline_access
user_location
user_birthday [1
emall CCCPT—/777]
manage_pages

[T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100

Pr(Allow Requested Permission)

Figure 17: Probability of Allowing a Requested Permission

t-test on the likely of allow statistic collected when usams asked for permission to access
both their data and their friends’ data. With a significareeel of 5%, Figure 18 shows
the permissions for the hypothesis that users are morengith share their friends data
is accepted. For example, it is statistically significartt tiisers are more willing to share
with apps their friends’ birthday compared to their birtihida

Figure 20(a), summarizes the distribution of the numbereshpssions requested by
applications, with an average of 3.1 permissions requgste@pplication. Figure 20(b),
shows the average number of granted permissions for appestgg permissions, and it
can be noted that on average applications are granted addunt of the permissions that
are requested. Figure 20(c), shows the distribution of rermabapplications by users who

installed the extension, on average the extension was asestall 5.2 applications.

Attribute User (u,o) | Friend (i, o) | p-value
notes (0.42,0.50)| (0.98,0.21) | 0.0019
birthday (0.38,0.45)| (0.48,0.46) | 0.0123
location (0.38,0.44)| (0.57,0.45) | 0.0144
groups (0.57,0.47)| (0.75,0.42) | 0.0253
work_history | (0.45, 0.43)| (0.58, 0.44) | 0.0313
religion_politics | (0.56, 0.48)| (0.71, 0.50) | 0.0377
onlinepresenceg (0.38, 0.42)| (0.56, 0.49) | 0.0456
events (0.51,0.51)| (0.60,0.58) | 0.0475
videos (0.58, 0.41)| (0.61,0.44) | 0.0491

70

Figure 18: T-test user and friend permissions

The extension provides users with recommendations for ea¢he application re-
guested permissions. The recommendation is presentecetaseér as thumbs up and
thumbs down with their associated recommendation valussdoan the the recommender
models presented in previous sections. We are interest@dloating whether the recom-
mender system properly predicts the user’s decision. Als@se interested in evaluating
what is the lowest (highest) recommendation value thatinfilience users into granting
(denying) a requested permission, we refer to this valubashreshold’. Where users
said to be encouraged to grant the permission if the recomatiem is higher thafi” and
to deny otherwise. In this case we have four possible outedorehe recommended and
decided value, see Figure 21.

In literature there are several proposed metrics for etialgaecommender system per-
formance, we focus on the most adopted metrics in literattiveh are based on three
measures namely accuracy, precision and recall [26]. Aoyuof the recommender sys-
tem is the degree of closeness of the recommender systera &xtilial decision taken by

H H TP+TN
the user, which is calculated 3 TN FPIEN

The precision or the repeatability of the

recommender system, is a measure of the degree to whichtedpegaommendations un-

71

publish_stream [
. email [
offline_access L
user_birthday E——3
user_photos C—
read_stream C—2
user_Tocation C—3
. user_likes C—3
friends_photos T—2
user_about_ me C—J
friends_birthday =
manage_pages 3
user_hometown =3
User_status 3
user_interests 3
user_work_history 3
friends_Tocation =3
user_videos =3
friends_likes =
user_events 3
user_activities &1
user_groups O
read_friendlists O
friends_relationships &
user_relationships &
friends_work_history O
. user_website O
friends_hometown O
friends_status O
friends__videos O
user_religion_politics O
~ read_mailbox O
friends_about_me O
friends_interests O
_uSer_notes O
friends_acfivities 0
user_checkins 0
friends_events 0
. friends_website 0
friends_religion_politics 0
publish_checkins 10
friends_groups 0
friends_checkins 0
read_requests |
friends_relationship_details 1
friends_notes |
user_relationshitp_ﬂetails |
manage_fr

endlists |

[T T T T T T T T T 1
0 5 10 15 20 25 30 35 40 45 50

Pr(App. requests permssion)

Figure 19: Probability of Requesting a Permission

der the similar conditions generate the same results, whicomputed as[PTJF%. The
recall or sensitivity is a measure of the ability of the recoemder system to select in-
stances of either to recommend or not, which is computeqﬁgﬁ. Figure 22, shows
the accuracy, precision and recall calculated for diffetiereshold values. The experiments
were conducted to evaluate the proposed application basedpased and category based
recommendation models. The application and category bageaches maintained an
accuracy of over 90%. The category based approach provigegaighest accuracy, this is
due to the refined application similarity value as apps invamgcategory provide a better
context for providing recommendations for apps from the es@ategory. The precision
and recall are inversely proportional with a break evenaeground the threshold value of

45%, which could explain that the recommendation value &6 4% higher is an indication

72

50
100
]

\

40
80

30
60

20

Pr(App requesting N permissions)
40

10

Average number of granted permissions (%)
20
|
|
|

o HH’_H_‘V_U_U_U_U—U—\ o |7 H
2 4

0 2 4 6 8 11 14 17 20 23 30 0 6 8 11 14 17 20 23 30
Number of requested permissions (N) Number of requested permissions
(a) App. Requested Permissions (b) App. Granted Permissions
o_
L0
o
S
@
g
<
= o
U)m
£
e
g
2 &
2
2
a
=3
o) Hﬂﬂﬂﬂﬂﬂﬁmﬁw -

1 4 7 10 14 18 22 29 43 b1
Number of Apps installed (M)

(c) User Extension Usage Stats

Figure 20: Permission Probability Profiles

that the system is recommending to grant the requested g&onj and lower than 45% is
recommending to deny the permission. Also note that theesysichieves a precision and
recall values of 92-85% and 75-85% around this threshold.

In addition to investigating the accuracy, precision arhlieneasures we further inves-
tigated the causality of our recommendation scheme. Thatasusers less likely to grant

permissions when using the recommendation based schemiaveRtigate, our browser

73

Recommended Not Recommended
Used True Positive (TP) False Negative (FN)
Not Used False Positive (FP) True Negative (TN)

Figure 21: Classification based on user decisions

extension was designed to accommodate two groups of usées first group (G1), are
users who were not shown the recommendation values (seeeR28) The second group
(G2), are users who were shown the recommendation valuesaged by the recommenda-
tion system (see Figure 24). The extension randomly selerders who belonged in each
of the groups. For each group we recorded the usgrshnesswhich is the percentage of
granted permissions for each application installed.

The average user openness of G1 and G2 were 66.5% and 30.@éttresly, which
indicates that users who were not presented with the recoatien were more likely to
grant permissions to applications. To compare the two grougperformed a T-test of the
hypothesis to investigate the following question, “on agey, are users in G2 less open than
users in G1?”. Using the collected data, with a significageellof 5% this hypothesis was
accepted (P-Value of 0.0001). These results show that &rs wo were presented with
the recommendation values were less open to granting pgonssto applications. The
results presented in this experiment are based on the &aepenness values calculated
over all installed apps in both groups. Figure 25, shows xpe&ed openness for the two

groups for specific permissions for which the hypothesis aepted.

o o
o o
— —
o | o |
o o
o | o |
@ @

Accuracy (%)
70
L
Precision (%)
70
L

o o |
© ©
3 A App Based 3 A App Based

. User Based : : : «+++ UserBased
Q -—-— CategoryBased | @ . Q| -—-— Category Based

T T T T T T T T T T T T

0 20 40 60 80 100 0 20 40 60 80 100

Recommendation Value Threshold (T) Recommendation Value Threshold (T)
(a) Accuracy (b) Precision

Recall (%)

8 4 App Based
.. User Based : : :
e T~ Category Based | : i %

T T T \ \
0 20 40 60 80 100
Recommendation Value Threshold (T)

(c) Recall

Figure 22: Recommendation system accuracy, precisioneanadl evaluation

Request for Permission

Top Friends is requesting permission to do the following:

? .Access my basic information ToP
— 3 FRIENDS™

[y Send me email Top rinds
o %k ok

[zi ‘Post to my ‘W;l.l j

’E Access my data any time

Permissi by this Facebok

[¥] Publish to Stream

V| Offline Access
[¥] Email Address
<o Privsey Poliy Repot Ape | [V] Birthday with year

;/ Access my profile information

Sl—
Logged in as Mohamed Shehab (Mot You?) m Leave App | §etPgm|l

:ﬁi Configure Now!

Figure 23: Group (G1) with no recommendations shown

Request for Permission

Top Friends is requesting permission to do the following:

? Access my basic information ToP
— - FRIENDS™

[j!@ Send me email ; Top Friends

* ok ok
[2 Post to my Wall

Permissi by this Facebok
[Z] Publish to Stream 2% @ 78%
[¥] Offline Access 18% @ 8%
[¥] Email Address 2% P 78%
Poliy ' RepatApe | [] Birthday with year 13% @8
Logged in as Mohamed Shehab (Not You?) m m %W

&% Configure Now!

Figure 24: Group (G2) with recommendations shown

B No-Recommendation (G1)
B Recommendation (G2)

Expected Openness
40 60
Il Il

20

user_photos user_birthday publish_stream email overall

Figure 25: Groups (G1) and (G2) Expected Openness

75

CHAPTER 5: 3RD PARTY BROWSER EXTENSION POLICY MANAGEMENT

Today'’s online activities such as social networking, bagkand other daily online ac-
tivities have increased the users’ online presence and mhadgrowser a main portal for
users. Users are increasingly enriching their browsingegpce with third party applica-
tions that provide new functionalities and improve uporsgrg ones. Third party browser
extensions are popularly used by millions of users [50, @8hecially with their wide
availability on online portals such as Google’s Chrome WelreS

Regardless of the popularity and benefits of third party lsewvextensions, they could
potentially threat the privacy of their users. This leadfplans such as Google Chrome to
introducing permission models that control third partyegsion accesses, especially those
regrading sensitive user data. These models allow devaldapealeclare the permissions
their extensions require. Extension users on the other hamdesponsible for making
their own access control decisions on requested permissidsers are usually warned of
requested permissions and provided with brief descript@nwhat they mean.

Existing browser permission models suffer from limitasamhen it comes to protecting
user privacy against 3rd party extensions. Limitationsniyainvolve insufficient access
control techniques, and limited user awareness. Some breypsovide an Incognito mode
that disables 3rd party extensions by default. For exantpd®gle Chrome allows users

to enable/disable extensions in this mode, but lacks fiagxgrermission customization.

77

In this work we analyze the Google Chrome permission modeBfd party extensions
and discuss some of its limitations, in addition to some ik threats on user privacy
under Chrome. We propose a runtime framework that impropes the existing Chrome

extension permission model. The framework contributesdghewing:

¢ Runtime API Monitoring: Chrome extension APIs are monitbire runtime, which
increases the user’s awareness by informing them of APIsaeseat the moment
they occur.

e Fine-grained Runtime Access Control: The proposed framegives users the ca-
pability to customize extension permissions. Users cary/ddow an individual
permission and its associated APIs. Users are also ablevemrAPIs of specific
permissions from accessing certain webpages they vigt, &sers can prevent ex-
tensions from reading the URL of their banking website, eemigh the extension
was originally granted permission to do so.

e A Chrome extension called “REM” that implements the progosamework. The
extension provides users a simple user interface for mong@xtension accesses,
customizing their extension permissions, and gettingildeten requested permis-
sions as seen in Figure 28, 29, & 30.

e Finally, we conduct a user study that evaluates our Chronemsion “REM” and fo-

cuses on measuring REM’s effect on user awareness towakssean permissions.

5.1 Related Work

In the last few years several extension vulnerabilitiesehasen discovered, which in-

clude stealing cookies, key logging, expose confidentfarmation, and hijack the local

78

operating system [14, 75, 5, 65]. In a white paper, Freemal. ef41] investigated the
possible security attacks on Firefox extensions.

Bandhakavi et al. [4], proposed applying static informatitow analysis to the JavaScript
code used in the third party applications. They describest afsunsafe flow patterns that
may lead to security vulnerabilities. This approach presi@ mechanism to query the
extension code for the defined unsafe flows and does not gavidechanism to enable
the user to monitor application behavior and control itseasc Similarly static analysis
[42] has been proposed to address security of web applitsasoch as identifying SQL
injection [72], and cross-site scripting [43, 69].

Dynamic analysis techniques have also been used to tramenafion flow properties of
JavaScript as it is being executed by the browser [35, 75awR2im et al. [9] proposed a
memory tainting approach to trace propagation of taintgdab during JavaScript execu-
tion and to raise alerts if an object containing sensitifermation is accessed in an unsafe
way. These approaches are effective in tracing dynamicranodlow, however usually

require users to install a modified or recompiled browseawa3cript engine.
5.2 Chrome Extension Permissions

Third party Chrome extension developers are able to degarmissions needed by
their extensions to fulfill certain functionalities, andaocess certain Chrome APIs. Such
permissions can be declared as required using#rer ssi ons manifest property. For
example, an extension might request access to browserasyakia user’s browsing history
in order to interact with their associated Chrome APIs. Téteo$ such possible permis-

sions are defined by Google within the Chrome extension ABUnh@ntation. Developers

79

can also declare permissions as optional, which is idegdanissions not required imme-
diately by extensions. Additional permissions can alsodogiested by an extension when

updated.
5.2.1 Permissions and Chrome APlIs

Once an extension acquires its requested permissions; id@azess the Chrome APIs
associated with each permission, i.e, certain Chrome Ad®jgire certain permissions to
execute successfully. For example, thier one. cooki es. get API call requires the
cooki es permission. We look at each requested permission, and firldeateachable
API calls an extension can perform, which allows us to pedgimonitor all potential ex-
tension accesses, as explained in our proposed framew8gction 5.4. The full permis-
sion to APl mappings were generated by scanning the Chroteas®n documentation,
specifically the manifest permissions and their associatedme modules. By mapping
each permission to a set of associated API calls, we canat@md monitor an extension’s
specific accesses. The exception to this rule is any extensiag an NPAPI plugin, which
allows for native code execution outside of the context ef @hrome browser. That is,

NPAPI accesses do not occur through the Chrome APIs.
5.2.2 User Awareness

Users are warned about some of the permissions that arestedus installation time,
and have the option to either continue installing an extensiith the requested permis-
sions, or cancel the installation process. Warnings ame sii®wn to users if a certain
extension is updated and requests additional permisstwrian optional permission is

being requested. Note that not all permissions trigger awgrmessage. Such permis-

80

sions will be granted to an extension without the user'siexr@pproval. An example of
such permissions isooki es. We think the rational behind this is that these permissions
rely on other requested permissions that do trigger wamigr example, an extension
that requests theooki es permission can only access cookies for the hosts it hasscces
to. The list of hosts that can be accessed by a certain egteast listed within its mani-
fest file as part of the permissions attribute, and are shovtine user at install time. The
caveat here is that not all users will presume giving acaeascertain host could also lead
to granting access to its cookies. For example, if a usertgarcess t&al | _ur| s>

(all urls), this could potentially mean access to all coekiethe user’'s browser. Another

fi This extension can access:

* Your data on all websites
¢ Your tabs and browsing activity

Learn more

Figure 26: Permission details in the Standard method

issue involves warnings that do not reflect a precise ddasmmipf what is being granted
to an extension. For example, an extension that requestsi theor y permission will
trigger a warning that says “It can access: Your browsintgphys, which could potentially
be misinterpreted as the list of all URLs a user has visitedt tBe matter of fact is that
thehi st ory permission also provides an extension with informatiorardog a user’s
browsing behavior, e.g. how the user reached a certain teeftsi typing the url, click-
ing a link, via a bookmark, etc.), the time they visited a wiehsand the number of visits
too. Such information can be valuable to third parties anddpotentially be used for

undesired purposes from a user’s point of view. In our pregddsamework, we provide

81

users with detailed information and feedback on the peromssand accesses granted to
an extension as seen in Figure 28 and 30. Currently, the datdihmethod for discovering
an extension’s permissions is to visit it's page on the Claddeb Store and looking at the
details tab as seen in Figure 26. From there, users have tioe &p discover more about
the permissions requested by visiting yet another webgadgection 5.6 we show that our
proposed extension REM performs better in increasing usaremess and understanding

of an extension’s permissions.
5.2.3 Permission Dependency

Extension permissions sometimes rely on other permissiags it is not sufficient
for an extension to request one permission without the otHence, certain functional-

ities within an extension will require a chain of permissdn execute successfully. A

Chrome API Direct Indirect
cooki es. get

cooki es. renmove

cooki es. set

cooki es. get Al

cooki es. get Al | Cooki eSt ores
cooki es. onChanged

t abs. capt ureVisi bl eTab t abs host
t abs. execut eScri pt

cooki es | host

Table 1: API Direct and Indirect Permissions

popular permission requested by extensions ishitbet permission, which is declared
within the manifest as a match pattern. The pattern dictiesosts that are accessible
by extensions. Example patterns inclutiét p: / / =/ * (all hosts using the http scheme),
http:// exanpl e. com f 0oo. ht M which matches that specific url, ardl | _ur | s>

which matches all urls. The importance of thest permission emerges when extensions

82

use other permissions such as twoki es ort abs. For example, an extension may re-
guesttooki es permission and assume it can read all cookies usingdlo&i es. get Al |
API. Thisisn’t true, unless the extension requestbdst permission that covers all URLs
associated with the desired cookies. Figure 1 shows an dga@iof APIs and the various
permissions required to use them. Two types of permissiansteown, direct and indirect.
Direct permissions are immediately associated with the ABthod, whereas the indirect
ones are additional required permissions. By understgriti@se dependencies our pro-

posed framework can better monitor and control the speaifiesses made by extensions.
5.3 User Privacy and Threats

Users have widely adopted browser extensions and have lgeaoclimated to using
them on a regular basis. With this wide spread of extensiesyecially ones developed
by third parties, the threats to user privacy have increfks&dr5, 5, 65]. The permission
model adopted by Google Chrome does provide some meansritollimg the permis-
sions given to extensions, but there are still areas thabeamproved to provide for better

privacy and protection against potential threats.
5.3.1 Threats

Extensions with excessive permissions represent a higiheattto user privacy, espe-
cially those that are poorly written and include securitynewabilities. Excessive per-
missions are those that are deemed inappropriate or urgagges certain privacy re-
lated scenarios. For example, granting@st permission okal | _ur | s> to a Twitter
client extension could be deemed excessive, as it mosy M«euld only require access to

http://*.twitter.com *. Inthe following, we discuss some potential threats when

83

extensions gain excessive Chrome permissions.

Host Permissions: Thhost permission is a popular permission requested by third
party extensions and is declared as a match pattern witkiextension’s manifest. The
match pattern represents the webpages extensions woeltthl&ccess, which could range
from a specific webpage (by specifying a specific URL) to albpages with a schema of
http, https,file,orftp (Using the<al | _url s>). Figure 2 shows the requested
host permission patterns requested by the top hundredesatedsions on the Chrome Web
Store. The most popular patterns requested wherktth@: / / =/ = andht t ps: // */ *
patterns. Note that the occurrences of match patterns deunoup to 100, that is because

extensions can declare multiple patterns. Extensionsexitbssive host permissions could

Host Pattern Occurrences (100)
<all _url s> 5
*] x] * 4
https://*/* 38
http://*/+* 46
Wild Card Subdomain 18
Specific Host 12

Table 2: Host permission patterns requested by the top 160 extensions

potentially succeed in performing attacks on user privaspgcially when combined with
other permissions such as thabs or cooki es permission. With thé abs permission,
extensions are able to programmatically execute their awgtoen JavaScript using the
chrone. t abs. execut eScri pt API. Such scripts are allowed to run on webpages
that satisfy the extensionfsost permission. Hence, with an excesshvest permission,
custom scripts are executed on a wider range of webpagesthidsts on user privacy

arise when custom scripts are vulnerable to attacks suchass Site Scripting, that is, a

84

script could potentially execute malicious code embeddgdimawebpages visited by the
user. Such a scenario would allow the malicious code to parfaith the privileges of the
compromised extension. For example, malicious code caddss all cookies accessible
to a compromised extension that ltasoki es permission. Limiting thénost permission
to a smaller subset of webpages would decrease the attdakeur

The cooki es permission combined with excessikiest permissions could also in-
troduce threats to user privacy. Access to cookies is basdtlehost permission an
extension has, that is, access is allowed to any cookie #lahgs to a host within the
match pattern declared by the@st permission. Hence, a match patterr<aefl | _ur | s>
potentially means access to all user cookies. Extensiomsl @buse theihost permis-
sion and access user cookies for malicious reasons sudadlsihg a user’s online session.
Another threat scenario involves vulnerable extensioashhve the&eooki e permission.
Such extensions, if attacked, could elevate the privilefesalicious code and allow it
access to user cookies and other reachable resources.

The dependencies between tihest and botht abs andcooki e permissions makes
it important to monitor and control the specific accessesargdextensions, especially
when dealing with excessiveost permissions suchdgtp://*/* or<al | _url s>.
The rationale is that extensions may need different hoshissions for different types of
accesses. For example, executing a script usingalhe . execut eScri pt API may re-
quire certairhost permissions, whereas reading cookies viactheone. cooki es. get
API may require different ones. Currently, the samost permission is used for both pur-
poses, which leads to unnecessary privileges and potgntiabanted accesses.

Tabs Permission: Thieabs permission gives extensions access to the browser’s win-

85

dows and tabs within each open window. Extensions are alslecesd ab objects, which
contain information on the tab returned such as the asgddi#RL. hence, extensions with

t abs permission have access to all URLs a user visits. Note tlegt @fos permission

is not dependent on theost permission with the exception of content script execution,
hence, Chrome does not prevent access to tab URLs that avathot thehost match
pattern. With access to all URLs, a malicious extension deectly analyze any URL
and its query attributes, and potentially extract impdrtaformation such as session IDs
and OAuth request tokens. Such information can be used ipreonising the user’s pri-
vacy [51].

Another drawback of not bounding thteabs permission, is that it undermines the
hi st ory permissions defined by Chrome. That is, extensions can ggentreir own
history repository by keeping track of all URLs users vibltte that théni st or y permis-
sion provides additional accesses such as the methodofogpahing a certain webpage
(e.g. was a URL typed, clicked, etc.), hence we only condtiiera partial undermining.
We improve upon thé abs permission within our proposed framework by allowing users
to customize the URLs accessible by APIs associated tbdhe permission.

Other Permissions: Other Chrome permissions such aiteeory & booknar ks
permission could also be used to gain access to URL dataghmstentially executing
malicious attacks using extracted session IDs or OAuthasiokens. Such attacks may
frequently fail given history and bookmark URLs are potaltyiold, hence contain out-
dated information regarding a user’s session or requeshtdiote that both these permis-
sions are not bounded by tist permissions. We also improve upon this within our

framework.

86
5.3.2 Intrusiveness

Third party extensions that request excessive permissiande quite intrusive. This
is mainly due to the relatively course-grain nature of Cheqmermissions. For example,
extensions with thé abs permission are able to track all URLs a user visits, which in
many cases is undesirable, especially in scenarios whers uisit webpages of highly
confidential matter, such as financial or health related wgbp. The abs permission also
gives extensions access to the DOM, which gives it the gltditead and write data within
the DOM. Such data may be highly confidential. For examplegxansion witht abs
permission can easily detect if a user has visiteeds://online.wellsfargo.conand extract
the user’s balance. With additional permissions, the eéencould even pass it back
to a remote server. Such scenarios show the importance iofggive user the necessary
controls over which webpages certain extensions have sitwe®ther permissions such as
hi st or y andbookmar ks could also reveal the browsing behaviors of users. We believ
users should have the option to control the accesses aexbaigh these permissions. With
the potential threats and lack of sufficient user awarenagsnathe Chrome extension
permission model, we propose a runtime framework that maniénd informs users of
extension accesses, in addition to providing them the mfeanentrolling and customizing

the permissions granted to their installed extensions.
5.4 Proposed Permission Framework

We propose and implement a runtime permission framewortkal@wvs for fine grain
chrome permission monitoring and access control enfornenighe framework monitors

Chrome API calls made by third party extensions and colléeglata processed by these

87

calls. For example, when the ARRhr one. wi ndows. get Al | is called, an allocated
monitor within our framework collects the information red@t to the returned browser

windows, such as the set of all Tabs within each of the browgstows. Given the runtime

Extension1
€y Co C3
O Interact
A
i Activity
____________ *| Extension
1 Manager

Chrome API

Chrome

Figure 27: Framework Architecture

nature of the framework, it can inform users in realtime of #pecific accesses made
by extensions (e.g. which specific URLs or cookies it has ssz®), it can also enforce
fine-grain access control onto attempted accesses. Addilypthe proposed framework
allows for users to customize extension permissions, r&ntfeny permissions from the
original set requested by an extension. The framework stsef two main components,
the extension Manager, and extension Monitor. A single Mwris allocated for each third
party extension installed on a user's Chrome browser, asdthawn associated access
control Policy. All Monitors report back and are managed ly framework’s extension

Manager. Figure 27 illustrates the overall architecturewfframework.

88
5.4.1 Extension Manager

Our extension Manager is the main component within our fraomk that allows for
monitoring third party extensions. The extension mandagelfiis a Chrome extension with
NPAPI capabilities. NPAPI access allows us to adapt thewbehaf third party extensions
and allow the extension manager to listen to Chrome API cadlde by these extensions,
in addition to enforcing fine-grain access controls on retpskaccesses. In the following
we discuss the tasks covered by the Manager.

Adapting Third Party Extensions: To monitor API calls magsltrd party extensions,
the manager modifies their default behavior by injecting@psed Monitor component
that reports back to the manager. Figure 27 shows the Monitothat is assigned to
Ezxtension,. This is achieved by including a custom buibni t or . j s script file into
the extension’s bundle, then linking to it from within thetemxsion’s HTML pages such
asbackground. ht M andpopup. ht M . When building the Monitor for a specific
extension, the manager can selectively choose which ARl tted Monitor should monitor.
This allows for optimizing the monitoring process and avwgdunnecessary checks. For
example, in Figure 27, only API calls; andcs are monitored folExt ensi on;. We

explain the details of our Monitor component in Section®.4.
PriceGong accessed chrome.windows.getCurrent

Figure 28: API Call Notification Example

API Notifications and Logging: Once a Monitor is built anddofed into an extension’s

bundle, the Manager starts listening to incoming messalgesent by the Monitor. These

89

messages hold information on the Chrome API calls made by plairty extensions. Using
this information, the manager is able to keep users awarbeokxtension activities by
notifying them in real time of the API calls made as seen iruFeg28. The Manager also
logs all accesses for future reference and are accessibtheriManager’s Ul.

Fine-Grain Permission Customization: The Manager allavaigers to customize the
access control policy for each installed extension. Userg&en fine-grain controls over
the permissions granted to extensions and are providedanstimple user interface to do

S0 as seen in Figure 29. There are mainly two types of peromgsintrols provided:

1. Permission-based: These controls allow users to denjoar a certain permission
as a whole. Doing so prevents any API associated with the ipsion from ex-
ecuting. For example, users can choose to deny the permiseioki es for an

extension which will block all cookie associated Chrome $\ffbm executing.

2. Host-based: These controls allow/deny extensions froressing certain hosts via
the APIs of a certain permission. That is, we keep track peamission-to -host
dictionary that has all the hosts blocked for each permmssioan extension. For
example, a user could prevent an extension wabs permission from accessing a
Tab that is associated with a certain host suabrds ne. wel | sf ar go. com We
provide host-based controls for thabs, cooki es,hi st ory, andbookmar ks
permissions. Host-based controls allow for decreasingfieet of excessivbost

permissions and the potential threats discussed in SeatBon

Users are also given the option to fully enable/disableag@extensions.

Extension Policy: Each third party extension is allocat@abhi cy. j s file which rep-

90

Customize Permissions Can access this webpage
¥~ bookmarks v
& contextMenus
¥ tabs v

Install time host permissions:
http:/f**
https://*/*

Figure 29: Permission Customization

resents its access control Policy. The policy contains the-drain decisions made by
users via thé&ermission-basedndHost-basedontrols. That is, it contains a set of denied
Chrome permissions in addition to a set of derpedmission-to-hostalues. This Policy is
used by an extension’s Monitor to make the proper accessataleicisions whenever a cer-
tain API call is detected. Any customizations made by the aseimmediately registered
by the Manager and written into the extension’s Policy. Nt the Policy represents a
negative access control lisH(C'L~), hence if a Chrome permission permission-to-host
value does not exist within the Policy, it is consideredw#d, otherwise it is denied. Also
note that thgol i cy. j s is embedded within an extension’s bundle. Figure 27 showss th

Policy P, that is assigned t&'ztension;.

Tabs Permission
The tabs permission allows extensions to interact with your
browser's tabs. Popular permitied actions include:

+ Create, modify, and rearrange tabs.

« Read the URLs assoclated to tabs you open.

« Execute custom scripts (Needs appropriate host
permission too). Such scripts could potentially
compromise your privacy.

Figure 30:t abs permission details

Permission Details: The Manager finally provides users wittetailed description on

each of the requested permissions. The detailed deserifatiaa specific permission also

91

contains a set of examples on popular accesses that map @htbene APIs associated
to a permission. We manually prepared the descriptions aachples. We evaluate the
effectiveness of these detailed descriptions in our uselysas explained in Section 5.6.

Figure 30 shows the detailed description for tlebs permission.
5.4.2 Extension Monitor

An extension Monitor is a custom built JavaScript fil@(i t or . j s) that we use to
monitor the activities of third party extensions. When a Mamns created for a specific ex-
tension, it is assigned a set of APl methods to monitor. Té4e are assigned by our ex-
tension Manager to suit the permissions requested by egteng-or example, if an exten-
sion requests theooki es permission, the monitor would be asked to monitor the corre-
sponding cookie API methodshr one. cooki es. [get Al | Cooki eSt ores, get,
getAll, renove, set, onChanged]. Note thatthe Manager could select a subset
of these APIs, but we monitor all associated APIs by default.

The Monitor is also assigned a Poligydl i cy. j s) which it uses in making access con-
trol decisions on the API calls it detects. When relevant édils are detected by a Monitor,

the following steps occur:

1. The Monitor intercepts the API call, i.e. the executiortte API runs through the
Monitor. It then informs the Manager of this call.

2. An access control decision is made on the API call. Thiemded based on two
factors. First, the Chrome permission the API is associatedf this permission is
in the AC'L~ of the Monitor’s Policy, the decision is rendered as Denyddd, the

host used within the API (if applicable). Ifirmission-to-hostalue is found for the

92

associated permission of the API, the decision is rendesddeay. If either factors
render a decision of Deny, then the final decision is Denyemilse it is Allow.

3. Ifthe Policy decision retrieved is Allow, the Monitor exges the API call and returns
the relevant results. Otherwise, if the decision is Dergnttine APl is blocked and if
appropriate returns an empty result (Some extension redjain empty result to not

break).

Figure 31 illustrates the previous access control process Note that in cases of APIs that

| Extension | | Monitor |

API Call

getPolicy

[Decision == Permit]
I: Execute API
API| Result

[Decision == Deny]

Block/Empty Result

T L
\ |

Figure 31: Access Control Sequence

do not specify a specific host value suchcds onme. wi ndows. get Al | , the Monitor

will filter the return values to not include any results asated with apermission-to-host
value. For example, if the user has denied the basti ne. wel | sf ar go. comand the
chronme. wi ndows. get Al | API results includes Tab objects associated with this host,

then the results returned will exclude these Tabs.

93
5.5 Evaluation

The framework was evaluated on a Windows 7 machine with a 224G CPU, 4GB
of RAM, and was running the Chrome browser versl@n0.912.75In our evaluation, we
studied the 100 “top rated” Chrome extensions as listed emfficial Chrome Web Store

at the time of evaluation. The extensions covered all caiegon the Chrome Web Store.
5.5.1 Implementation

To evaluate the proposed framework, we implemented thedinark as a Chrome exten-
sion with NPAPI capabilities and used the FireBreath NPARIntework [16] to develop
thedl | plugin used for the extension. For parsing treni f est . j son files of each
extension, we used the Cajun JSON parser. Our Monitor coemarf the framework
was implemented using the FunMonZ2.js function monitor [6&jich allowed us to mon-
itor API calls from within an extensionsoni t or . | s file. We used Chrome’s message
passing APIs to establish the connections between the Mamag Monitor components,
specifically theonRequest Ext er nal . addLi st ener andsendRequest APIs.

When users install our implemented extension, they areinejto restart their browser
to initiate the adaptation process on their installed esitars. At this point, the framework
starts the monitoring process and access control enfortderfilee main user interface was
implemented via the extension’s browser action angagup. ht m . The browser action
button shows the user the number of recent API notificatidhspopup. ht m will dis-
play the recent notifications and the permission customeiz@bntrols as seen in Figure 28
and 29. Users can also see a detailed activity log when nlickie Activity button of an

extension, and can choose to enable/disable the exterisioaly, popup. ht ml shows

94

users the list of originally requested host permissions.
5.5.2 Permission Requests

In Section 5.3, we discussed thest permissions requested by the the evaluated exten-
sions as seen in Table 2. Table 3 shows the list of permisggxactudinghost) requested
by the evaluated extensions and the frequency of each.dshlews the permissions sup-
ported by our framework. We notice that thabs permission is the most popular followed

by thecont ext Menus andcooki es permissions.

Permission Frequency (100) | Supported
t abs 77 YES
cont ext Menus 22 YES
cooki es 11 YES
notifications 10 NO
unl i m tedStorage 9 NO
bookmar ks 6 YES
pl ugi n 4 NO
management 4 YES
idle 4 YES
geol ocati on 2 NO
hi story 2 YES
pr oxy 1 YES
clipboardWite 1 YES

Table 3: Frequency of Requested Permissions

From the 100 extensions, we analyzed the combinationsabt andhost permissions
requested. As discussed in Section 5.3, with both theseiggions, extensions could rep-
resent a potential threat on user privacy. We found that @bé&tensions with thé abs
permission have requestedkal | _ur | s> host permission, 5% withx: // x/ x, 49%
with htt ps: //*/*,and 60% withht t p: / / =/ ». Whereas, 12% have either requested
a specific host or ones with wild card subdomains. We alsodahat 11% have nbost

permissions. Note that the percentages do not add up to 1@08ube of extensions that

95

use multiple host match patterns.

5.5.3 Real World Evaluation

Using our proposed runtime framework, we were able to sstely monitor and en-
force our fine-grain permission controls in real time. Thiclided all APIs for supported
permissions within our framework. We discuss unsupporéthgssions in Section 5.5.3.2.
To evaluate our framework on real world extensions, we llestaand used the 100 top
rated extensions with our framework in place. We manualblymed the JavaScript code
of each extension to make sure our usage covered all exaqodiths. The framework
was successful in monitoring the APIs excluding those olippsrted permissions. Note
that the framework was also capable of supporting eveiiests, which was achieved via

monitoring the callback functions of events.
5.5.3.1 Performance Evaluation

As a runtime framework it was important to measure the moimigooverhead introduced
when adapting third party extensions to our framework. Weasuee the time to execute
some of the popular APIs with and without our framework incela These APIs were
popular amongst the evaluated extensions. Table 4 showsghlks of the evaluation when
our framework is disabled and enabled. We believe the oaerieeacceptable for most

chrome extension functionalities, and will not interferighithe usability of extensions.
5.5.3.2 Coverage and Limitations

The proposed framework was able to successfully monitoeafalce fine-grain access

controls onto 87% of the evaluated extensions. It faileddases where extensions had

96

API Disabled | Enabled (ms)
t abs. onUpdat ed. addLi st ener | 0.45ms 2.7ms

t abs. sendRequest 2.2ms 6 ms
cooki es. set 2ms 4.5ms
cooki es. get 1ms 4 ms

Table 4: Framework monitoring overhead for popular APIall

unusual manifest files, that is, not strictly following thiaditional manifest guidelines. It
also failed in cases where JavaScript errors occurredméthiextension’s code. As part of
our future work, we will further enhance the framework’s qaatibility and error handling
in such non-traditional cases.

The framework is also limited to which Chrome permissionsam monitor and control.
These permissions are mostly related to APIs that run caitkiel context of Chrome, e.g.
pl ugi n APIs, and HTML5 APIs. The supported includeackground contentSettings
experimentalfileBrowserHandlergeolocation notifications andunlimitedStorageNote
that our framework only enforces tht¢ost-basedcontrols on the following permissions:
tabs bookmarks cookies and history. These are the permissions we believe are most
relevant to webpages a user visits. As part of our future ywwekwill further investigate

support for additional permissions.
5.6 User Study

To evaluate our proposed browser extension we conductedrastigly that compares
the Standard permission discovery method (By visiting aeresion’s detail page on the
Chrome Web Store) with our own browser extension REM. Hp#dids in the study per-
formed a number of tasks related to third party Chrome exdass&ind answered a number

of questions on these tasks. The study was approved by UNfadie IRB (Protocol

97
#12-02-50).

5.6.1 Methodology

The study participants were recruited from UNC-Charlottd @were all UNC-Charlotte
students. Each participant was supplied with a $10 Amaztincgid. We recruited a
total of 20 participants to start the study, of which 18 sgsbaly completed the study
and 2 dropped out. Of the 18 participants, 11 were females7amere males. 88.2% of
the participants are at least familiar with Chrome extemsidParticipants where given a
brief introduction to REM’s and to the existing Standard Inogls, and were also given a
few minutes to familiarize themselves with both techniqu&® then performed a within-
subjects study comparison in which participants use eitieiStandard method or REM
for performing the study tasks at first, then use the othehatktor performing the same
tasks once again. Assigning a method (REM or Standard) s wees random, and the

order of the methods assigned was counter balanced.
5.6.1.1 Study Tasks

Participants were given 8 different tasks and were askeeéttrihine whether perform-
ing a certain action was permitted by a third party Chromemsion. For these tasks,
participants could answer with: Yes, No, or Uncertain. Nbtg for each task a participant
had to answer in regards to four different third party eximmd he tasks were categorized
into Social Networking related tasks and Online Shoppitatee ones. For each category
participants performed 4 different tasks. Examples of dasks are illustrated in Figure

32.

98

Category Task
Social Networking | Do the installed browser extensions have permission
to read your private posts on social sites you visit?
Online Shopping Do the installed browser extensions have permission
to read your history of visited product pages?

Figure 32: Example Tasks

5.6.1.2 Study Results

To evaluate the performance of participants on tasks, weidered two measures: 1)Re-
sponse correctness, and 2)The time to finish a task measusedaonds. In Figure 33 we
summarize the different time intervals for finishing cothe@answered tasks. Notice that
we consider only the correctly answered tasks as we areesttzt in the time it takes to
correctly determine permitted actions among third partyo@te extensions.

One can notice an overall higher accuracy rate when using,REadldition to an overall
lower time-to-task intervals. For example, participantyevable to answer 30 tasks cor-
rectly within a time interval of 0-25 seconds using REM, wdas with the Standard method
they were able to answer 12. Surprisingly, even when REM Waditst tool option used
by participants, it was still able to perform relatively tegtthan the Standard method.

To measure the significance of these results, we performedsi on the accuracy rate
of participants. In Figure 34 we report the mean accuracly stiandard deviation for all 8
tasks when using the Standard method vs. REM. Note that theaxy rate was significant
in tasks Social Social, Shopping, and Shoppingwith a p-valuep < 0.05.

In a post survey, participants were asked to assess ourgedpoowser extension REM
and the Standard method using three Likert scale questiBasticipants responded to

each of the following statements on a scale from one (styotighgree) to seven (strongly

99

W Standard
O REM

Number of Occurrences
15
1

] I:|
o- .] i:|
0-25 26-50 51-75 76-100 >100

Time Intervals in Seconds

Figure 33: Time distributions for correctly answered tasks

Task Standard (u,0) | REM (u,0) | p-value
Social (0.0,0.0) | (0.294, 0.469) 0.01003
Social, (0.47,0.51) | (0.64,0.49) | 0.13469
Socia} (0.70, 0.469) | (0.70, 0.469) 0.5
Social, (0.11,0.33) | (0.41,0.50) | 0.02787

Shopping (0.0, 0.0) (0.41, 0.50) | 0.002048
Shopping | (0.235, 0.437) | (0.352, 0.492) 0.16609
Shopping | (0.176, 0.392) | (0.235, 0.437) 0.33417
Shopping | (0.235, 0.437) | (0.58, 0.50) | 0.014459

Figure 34: T-test Task Accuracy.

agree).

S1: | am satisfied with the tool

S2: | was able to easily identify the permissions requestedath third party Chrome
extension.

S3: | was confident in determining the permitted actionsifigtalled third part Chrome

extensions.

Figure 35 illustrates the user responses using boxplots. bldck band in the middle of

a box indicates the median. From the responses we obseeREM was rated signifi-

100

cantly higher f < 0.05) for all three statements.

]

]

T
Standard

T T T
REM Standard REM

(a) Q1: Overall Satisfaction (b) Q2: Identifying Permissions

Figure 35:

~

i _ o

T T
Standard REM

(c) Q3: Confidence

Summary of Likert-Scale user responses

CHAPTER 6: VISUALIZED-BASED AND ASSISTED POLICY ANALYSIS

Performing SELinux policy analyses can be difficult, due® tcomplexity of the policy
language and the sheer number of policy rules and attrilboved/ed. For example, the
default policy on most SELinux-enabled systems, has o\&Q1000 flat rules, involving
over 1,78Qypes Simple analyses betwegrpescan result in a large amount of data, which
is poorly presented to administrators in existing analisis. Furthermore, administrators
are required to add new policy rules on a regular basis, wtachpotentially compromise
the security of a system, if the consequences of adding sies are nfot well-understood.
We propose and implement a policy analysis tool “SEGraph®at addresses the above
challenges. SEGrapher visually presents analysis reaslts simplified directed graph,
where nodes argypes and edges are corresponding rules betvigpas Graphs are gener-
ated via a proposed clustering algorithm that cludtgyzesbased on their accesses. Clusters
provide an abstraction layer that removes undesired dadifpguses on analysis attributes
specified by the administrator. Furthermore, SEGraphéstaggiministrators in evaluating
the risks associated with custom policy modules, based aomoped similarity approach
that analyzes new rules within these modules. Visual cueslap provided to notify ad-

ministrators of various levels of potential risks.

102
6.1 Related Work

Well known SELinux policy analysis tools include APOL [6GLAT [47], PAL [59],
and Gokyo [30]. Tresys Technology developed the APOL todilictvis used to analyze
SELinux policies. It provides a wide range of features idahg domain transition analysis,
direct and transitive information flow analysis, and typktienship analysis. APOL re-
quires a strong understanding of SELinux policies and thel\ed attributes, and requires
a fair set of skills to perform proper policy analyses. Resinl APOL are text-based, and in
many cases unmanageable due to large result sets. SLATri{gdtnhanced Linux Anal-
ysis Tool) represents a policy as a directed graph, whereshatk security-contexts and
edges as the permissions on certain object-classes. Tag 6dSLAT is on information
flow, which can be detected by traversing the policy graphL ARolicy Analysis using
Logic-Programming) uses a logic-programming approaclaf@alyzing SELinux policies.
It follows the same model as SLAT, but provides a more extenguery set to admins.
Similar to SLAT, PAL does not provide visualized analysisuks, and is not able to dis-
cover inherent relations between multiple types, but iseatimited to answering direct
gueries.Both SLAT and PAL require a strong understandirfgidfinux to generate strong
gueries that result in meaningful results.

Jaeger et al. [30], developed a tool called Gokyo, mainlyudee checking the integrity

of a proposed trusted computing base (TCB) for SELinux.driye checks ensure that no
types outside the TCB can write to types within the TCB, andipes inside the TCB can
read from those outside of it. Gokyo uses a graphical acasdsot model for representing

policies. Gokyo is limited to the proposed TCB and does novigle “on the fly” policy

103

analysis, nor does it allow admins to interact with the reisglanalysis results.

Xu et al. [73], proposed a visualization-based policy asiglframework for analyzing se-
curity policies using semantic substrates and adjacendsices. The framework allows
admins to run visualization-based queries on a policy bagmd possible policy viola-

tions. However, their framework is limited to a small set akges, and the visualization
results can be difficult to interpret and understand.

MITRE [48], developed the Polgen tool, which provides samiemated policy generation
for new applications. It relies on observing an applicds@ystem calls, and inferring a
new policy. Polgen is well suited for new applications, botild require long observations
to generate robust policies. Polgen doesn't utilize exigspolicy decisions in inferring

the new policy. Existing decisions are a valuable sourcedentifying appropriate new

policies.
6.2 SELinux Policy Analysis

Let 7" be the set off all types within a SELinux polidy, O the set of all object-classes,
and A the set of all permissions. We propose a policy analysis‘t®BIGrapher” which
allows for visualizing policy analysis results, by modelia policy as a directed graph.
Given a policyP, SEGrapher builds a directed graph, where a node irf7, maps to a
specific SELinux type, and an edge (out-edge) maps to thef sdit & allow rules R;;
connecting a type; (subject-type) to a typg (object-type). Figure 36 illustrates a simple
graph of three types; (subject-type)¢, (object-type), ands (object-type). The figure
shows the corresponding AV ruldg, for ¢; andt, with two allow rules, andR;; for ¢,

andts with one allow rule.

104

t
3
ORrs

’ allow t, t5 : tcp_socket { listen }

o>
allow t4 t, : file { write}
(&)

Figure 36: Allow rules for subject-typg and object-types, andts.

allow t4 t, : dir { read write}

SEGrapher uses,, to generate a directed focus-gra@h representing desired analysis
results, that is(¥, will indicate the accesses and relations amongst SELimestgnalyzed
by admins.GG; is driven by a set of inputs that are checked against AV rddggs) in-,,.

These inputs are controlled and provided by admins anddediue following:

1. Focus Type§’;: A set of typesl’; C T which is the focus of the policy analysis and
the basis of extracting the focus-gra@h from G,. An out-edge inG,, is added to
G/ if the source-node (subject-type) of this out-edge exisis;i

2. Focus Object-Class:: An object-clas®; € O, which is used to filter the out-edges
that already satisfy the focus-typé€s. SEGrapher allows admins to ignore checking
for oy, henceo; will be replaceable by any object-classin

3. Focus Permissions;: A set of permissionsl; C A, which are used to further filter
the out-edges that already satisfy b@thand the focus object-class. SEGrapher

also allows admins to ignore checking fdy, henceA ; will be equal toA.

With the providedly, o, andAy, an out-edge iid7, with an AV allow rule set,, is added

to G if for any r; € Ry, the following conditions arall true:

1. The subject-type for; exists inT’.

105

2. The object-class far; = oy

3. Ay exists within the permissions fay.

For example, lefy = {t;}, o; = dir, andA; = {write}. When applying these inputs
onto the graph in Figure 36, a new focus-gr&phis generated as illustrated in Figure 37.

Note that, only out-edges with AV rule sets fulfilling the &kaonditions make it t6/;.

Ri2
allow tq to : file { write}

" | allow tq t, : dir { read write}

()

Figure 37: Filtered allow rules faf and object-typé, as an edge id;

With 1,517,130 AV allow rules, 1,785 types, 47 object-cissand 167 different permis-
sions, the full SELinux reference policy graph is infeasitd analyze at once. Even when
applying the analysis inputs;, o, and Ay, a resulting focus-grap&'; can be difficult to
analyze. In many cases, simply analyzing a single focus-tgm result in a large number
of AV allow rules, hence a dense focus-gra@lh. For example, to analyze thead ac-
cesses of the Samba Server [58] on directories within ani@Ekénabled Linux system,
letTy = {smbd_t}, oy = {dir}, andA; = {read} wheresnbd_t is the subject-type (do-
main) corresponding to the Samba Server. This analysistsaaul,048 AV allow rules,
hence a dens@', of 1,048 edges and 1,049 nodes. If we add a secondtypd_t (FTP
Server) toly, and run a new analysis, we'll find that the number of edges jiralmost
doubles to 2,095, leading to a very dense graph, whereasuthber of nodes increases
justto 1,052. This is due to the fact that betiibd_t andf t pd_t have a large overlap in

the object-types they access, i.e. their out-edges shargadet of end nodes withd#;,.

106

Observation 1.Many subject-types in SELinux have a large overlap of objgoés that
they access. In some cases they access the exact set oftgpgs;tand in other cases there
is a hierarchical relation between the sets accessed.

Based on Observation 1, we define the following terms andioels between types
andt; in T':

Definition 8. (Object-Type Set) The object-type seb; C T for typet; is the set of
object-types in all AV allow rules, where an AV rule’s sultjg¢gpe ist;. That is, the set of
all types that; can access.

Definition 9. (Matching Types) Typet andt; are matchingif their respective object-

type setd,, andT;, are equal. Formally,
tiRnt; = (1o, =1,)

Definition 10. (Hierarchical, Parent-Child Types) parent-childrelation between types
t; (parent) and; (child) exists when,’s object-type sef’,, is a proper superset of’s

object-type set,,. Formally,
tiéRht]’ < (TOi D) TO].)

Definition 11. (Overlapping Types) Types andt; are overlappingif their respective

object-type set$,, andT,, overlap and neithe;R,.t; ort;®,t; holds . Formally,

tﬁRotj < (Toi N Toj # ¢) A ti%mtj A ti%htj

Definition 12. (Disjoint Types) Types; andt; aredisjointif their respective object-type

setsI;, andT,, are disjoint. Formally,

tiéRdtj < (Toi N To]- = ¢)

107

These relations can assist in discovering other intergsélations between typeésand
t;inTy.

Note that our focus is not on one-to-one type relationsdegt; € 7, access; € T},
but on more interesting relations that exist betwgeand¢; which can eventually lead to
simpler policy configurations and an easier analysis pgd@ae-to-one relations between
t; andt; can still easily be identified from the relations above. IrGs&pher we uniquely
visualize the focus-typ€E;, this makes it easy to identify them and to identify any ome-t
one relations that may exist between them.

Based on the defined relatios,, &), %,, and®,, and our higher goal of discovering new
relations, we propose a clustering algorithm in sectionl@tzat utilizes and exposes exist-
ing relations between types iry. By exposing these relations and building a cluster-based
focus-graph reflecting these relations, the algorithm ig &b visually simplify focus-

graphs, hence simplify the policy analysis process.
6.2.1 Type Clustering

We propose and implement a clustering algorithm that eslithe relation®,,,%,,R,,
and X, identified above. Given focus-typ€$, object-class,, permissionsd;, and an
edge-reduction threshotd, we extract existing relations from a policy gra@gh and gen-
erate a set of clusters where each cluster; € C becomes a node within a new cluster-
based focus-grap®i;.

The process of generatirdg, is detailed in Algorithm 1. The algorithm starts by initial-
izing a set of cluster nodes from the object-type sets of tleeid-types;. Lines 3 and 4

create a new cluster node for each of the focus-types € 7}, and a new edge between

108

Algorithm 1: Generate Clustered Policy Focus-Graph
input : Policy graphG,,, focus-typed’s, object-clas®, permissionsi;, and
thresholdr,
output: Clustered Focus-GragHi,

Initialization: C' <— {} ;// Candi date Cl uster Nodes
foreacht; € Ty do
create new cluster nodé.;
add edge:(t;, C.) to Gy;
foreachnodet, € Qut Nodes(ty, G,) do

Ry, = AV allow rule for edgee(ty, t,,) in G,;

if Ry, satisfiesr; and A then

| add edge(C., ,) to Gy;

00 ~NO Ok WN PP

9 | insertC. into C;

10 while optimization possibldo
11 | for i< 0to size(C) do

12 for j < 0to size(C') do

13 outnodes; = Qut Nodes(C;, Gy) ;

14 outnodes; = Qut Nodes(C;, Gy) ;

15 if outnodes; = outnodes; then

16 | MergeMat chi ng(C;, Cj, Gy) ;

17 else ifoutnodes; C outnodes; then

18 | MergeSuperset (C;,Cj, 7, Gy) ;
19 else ifoutnodes; C outnodes; then

20 | MergeSuperset (C), C;, 7, Gy) ;
21 else ifoutnodes; N outnodes; # ¢ then
22 | MergeCQverl ap(C;, Cj, 7, Gy) ;

t; andC. is added ta&;. On lines 6 and 7, the AV allow rule corresponding to each edge
betweent; and its out-nodes ir, is evaluated against the given and A;. If oy is the
same as the AV rule’s object-class, atgis within the AV rule’s permissions, then a new
edge from the new clustér, and the out-node is created@y. Each new cluster is then
stored intoC, at line 9. Figure 38 shows an example of the initializatioogess (assuming

all AV rules are satisfy; and Ay).

Lines 11 to 22 of Algorithm 1, involve discovering potentialations between pairs of

109

(a) Before Initialization (b) After Initialization

Figure 38: Initialization of new node clusters for focupdgt; andt,

focus-types, where each focus-type is represented by itesponding cluster from the
initialization phase, that is, each cluster representpa’syobject-type set. At line 15 of
Algorithm 1, it checks if the relatioft,, holds. In this scenario, Algorithm 2 is used to

merge the object-type sets into one set. Figure 39 illiesrdtis process. Note that the

number of both clusters and edges decreases, hence simplifie resulting=.

N

(a) Before Optimization (b) After Optimization

Figure 39: Clusters with matching object-types

Algorithm 2: MergeMatching
input: Cluster Nodeg; & C,. Focus-Grapld

1 foreachedgee(t,Cy) € Gy do
2 add edge:(t, C,) to Gy;
3 remove edge(t, Cy) from Gy;

4 removeC; from C

At lines 17 and 19 of Algorithm 1, it checks if the relatiét), holds. In this scenario,

110

Algorithm 3 is used to establish a parent-child relatiopshithin G;. This is achieved

by removing the out-edges of a parent cluster that pointéathject-type set of the child
cluster, then pointing the parent cluster to the child @usFigure 40 illustrates this pro-
cess. Note that the edge-reduction threshpld passed to Algorithm 3, which allows it to
measure the feasibility of establishing the parent-cleldtron. That is, before Algorithm
3 makes any changes €9, it checks if the resulting reduction in edge numbers istgrea

thanr.. The edge reduction for &y, relation is equal to (the number of out-edges of the

P Y
o

233
0’{ 9‘9

(a) Before Optimization (b) After Optimization

child cluster — 1).

Figure 40: Clusters with superset object-types (pareitthch

Algorithm 3: MergeSuperset
input: Cluster Nodeg’; & C,. Thresholdr,, and Focus-Grap&';
1 if ¢ and (), satisfyr, then
2 T, < Qut Nodes (C1, Gy);
3 foreachnodet,, € T, do
4 L remove edge(Cy, t,) from G;
5

add edge:(Cy, Cy) to G;

At line 21 of Algorithm 1, it checks if the relatioft, holds. In this case, Algorithm 4
is used to extract the overlapping object-types, and csemteew cluster that points to the

overlap. Figure 42 illustrates this scenario. The edgegton thresholdr, is passed to

111

Algorithm 4, which allows it to measure the feasibility otaslishing theR, relation. That
is, before Algorithm 4 makes any changegitg it checks if the resulting reduction in edge
numbers is greater than. The edge reduction for ah, relation is equal to (the number
of overlapping out-edges — 2). Also note that for this scenahe number of clusters
increases by 1. In our implementation, we find that the ireed clusters for a reasonable

edge-reduction,, is effective from a visualization point of view.

(a) Before Optimization (b) After Optimization

Figure 41: Clusters with overlapping object-types

Algorithm 4: MergeOverlap
input: Candidate Clusters', C5, and threshold,

1 if ¢ and (), satisfyr, then
create new cluster node;
T, < Qut Nodes (C4, G) N Qut Nodes (Cy, Gy);
foreachnodet,, € T, do
add edge:(C,, t,) to Gy;
remove edge(C, t,) from Gy;
remove edge(Cy, t,) from G;

add edge(C1, C,,) to Gy;
| add edge(C», C,) to Giy;

© 0 N O 0o b~ WN

Algorithm 1 continues to run until no more feasible rela@me discoverable.
The results from applying Algorithm 1 are effective in boteabvering interesting rela-

tions between focus-types, and in simplifying the viswalan of analysis results.

112
6.3 Assisted Policy Analysis

Providing clustered visual analysis results to adminsaalfor a clearer understanding
of existing type relations, and provides a layer of absiwacthat isolates unnecessary
analysis data, hence focusing on types that matter the nfst, admins do not only
deal with existing policy rules, but are also required to agev rules for certain types
on a regular basis. This occurs when a certain service Adagngrules can potentially
involve risks of compromising the security of a system, eithy adding rules that are too
permissive, or by adding rules that are completely unnecg$s4, 74]. It is important to
provide a mechanism that analyzes the risks associatedntritieiucing new policy rules.

We propose an assisted analysis mechanism that is part ofape€. The proposed
mechanism provides analysis data on newly introduced,raleeh can guide the admins

in making better policy management decisions.
6.3.1 Similarity-Based Model

Let R,.., be the set of new AV allow rules for an existing type and R,;; the set of
all existing AV rules for all existing type$’ in the policy P. Our approach determines a
set of similar typed; € T, based on the existing rules for To measure the similarity
between types, we construcfeature-vectofor each type; € T', based on its accesses in
P. To capture the accesses of each typ&'jrwe generate two types of access-matrices,

each capturing different levels of granularity.

1. Mr: A matrix that captures the accesses between each paires(typt;) € 7' x T,
regardless of the object-classes or permissions involkeentrye;; € My indicates

whethert; is allowed ¢;; = 1) or denied ¢;; = 0) access t@,. That is, if there exists

113

Types

Types X Object-classes
t1 t2 . tn

tio4 tio2 ... tOm
b |en ez ... emn ti e em2 ... €1m|
| ez b |ean
» : o«
& g
s [
th €n1 €nn th €n11 €nnm
() M matrix (b) Mpo matrix

Figure 42: Feature Vectors

aruler; € R, that allowst; access te;, thene;; = 1, regardless of the object-class

or permissions for;. Figure 42(a) illustrates th&/; access-matrix foP.

2. Mro: A matrix that captures the accesses between attyp€el” and pairst;, o) €
T x O , whereO is the set of all object-classes in These accesses are regardless
of the permissions involved. An entey;;, € Mro indicates whethet; is allowed
(ei;x = 1) or denied ¢, = 0) access t@, given the object-class,. That is, if there
exists a ruler; € R4 that allowst; access td;, and its object-class is equal &g,
thene;;, = 1, regardless of the permissions for Figure 42(b) illustrates th&/,o

access-matrix foP.

Based on the access-matricds, and Mo, we define the feature-vectovs, andVyo
respectively. Each feature-vector on a types represented by thigh row of its respective
access-matrix. For example, the typdnas two feature-vectord7, (1st row of Mr), and
Vro, (1st row of Mrp).

The similarity between any two typeésandt; is based on how similar their feature-

vectors are, e.g. types that have identical accesses withwill have identical feature-

114

vectors. To calculate the similaritym(¢;,¢;), we use the Pearson correlation coefficient
which is widely used for similarity measures [25, 45]m(¢;, t;) represents the similarity
between the feature-vectors ©pfand¢;. Equation 7 shows the Pearson correlation simi-
larity value between, andt;, using their corresponding, feature-vectors. The value of
sim(t;, t;) is between-1 and1, where a1 indicates a reverse correlation] éndicates a
perfect correlation, andindicates no correlation. Types with a Pearson correlatosffi-
cient value closest tb are the most similar, and are referred to asrtearest-neighbors
D ¥ S (e ()
Vi Ve, = Vi)? /S Ve, — V)2

SEGrapher determines the nearest-neighbors foritygfehe newly introduced ruleB, ...,

(7)

sim(ti, tj

by applying two stages of filtering:

1. Stage 1: At this stage, SEGrapher calculates the sityilaluessim(¢;,t;) based
on feature-vectors of typer, which only takes type-to-type accesses into consider-
ation, and disregards object-classes. Once similarityegare calculated, nearest-
neighbors are selected such that thein(z;, ¢,;) value is larger than the threshaigd
which is set by admins within SEGrapher.

2. Stage 2: Lef, be the set of nearest-neighbor types resulting from StagEGra-
pher generates a neW o, matrix based only off;, rather tharil". Similarity values
sim(t;,t;) are then calculated based on the feature-vedtpssfrom the newM .

T,, is then filtered to only contain types withsan(¢;, t;) value larger than the thresh-

old 7, which is also set by admins within SEGrapher.

115
6.3.2 Nearest-Neighbor Rule Classification

After applying our similarity model onto the subject-tyfyeof the new rulesR,,..,, we
are able to identify the nearest-neighbors Bet Types inT,, have similar accesses to
t;, and are used as a measure of how risky the rilgs, are, compared to the nearest-
neighbors’ rulesk,,. That is, rulesR,,.,, could be considered safe if the admin observes
similar rules inR,,. SEGrapher allows admins to easily observe ruleB,jiby classifying
them into different access-classes based on the objees1yp,, object-classe®,,..,, and
permissions4,,.,, accessed within the rules &f,..,.
Foraruler; € R, lett; be its object-typey,, its object-class, and,, its permissions. We

define the following access-classesrgn

e Non-Matching: Ruler; belongs to this class if; ¢ e, 0n & Onew, Or A, &
Anew- This class is considered the strongest notification ofrg@tkrisks. SEGrapher
visually highlights these rules in red color, to grasp theiads attention.

e Less Permissive: Rule belongs to this class f; € T,.cu, 0, € Opew, @andA,, C
A,ew- This class is also a strong notification of potential ridkscause there are
shared accesses, but not as permissive as rulBs.in This class is visually high-
lighted in orange color.

e Overlapping: Rule; belongs to this classif € T,c., 05, € Opew, @aNAA, N A, #
¢. This is also considered a strong notification of potentgMs, because there are
shared accesses, but not the same as rulBs.n This class is visually highlighted
in yellow color.

e More Permissive: Rule; belongs to this class if € T),c.,, 0, € Opew, @NAdA, ., C

116

A,. Rules in this class are more permissive tl#&p,,, which indicates that rules of
R,.,, are potentially less risky. These are highlighted in green.

e Matching: Ruler; belongs to this class if; € Tcw, 0n € Opew, aNd A,y =
A,,. This class reflects rules with identical accesses to thbse,q,. These are

highlighted in green color.

6.4 Design and Implementation

We implement our proposed clustering algorithm and assistesstom policy analysis
module in a tool we call “SEGrapher”. SEGrapher is based edéiva JDK 1.6, and uses
the APIs provided by SETools [68] for parsing SELinux pai Its graph drawing is

based on an extended version of the open source visuafizatitkit Prefuse [31].
6.4.1 Visualization and Interactivity

SEGrapher’s GUI as shown in Figure 43, contains two mainIsaké@st, the left panel
which allows the admin to control the analysis attributag;hsas focus-types, object-
classes, and permissions. It also has the controls foirgjatte analysis, and searching
for types within resulting focus-graphs. Second, a rightgbavhich shows the resulting
focus-graphs of the analysis. The right panel is also wheredsults of an assisted-policy

analysis appears.
6.4.2 Focus-Graphs
The components of a focus-graph are visually differendigbeprovide for easier policy

analysis.

e Focus-type Nodes: Focus-types are shown as green nodes thighlgraph. SEGra-

117

Load Policy Forces Custom Policy Module

Type Profiles "“"‘Vg"“ =
¢ Database ed| . N
o T MysaL = httpd_t ASS'St?d policy
o [PostgresQL 1 . analysis focus-graph
9 [Servers 1
o7 Apache 1 C1[1494] -
- [Tomcat 1
- [CJFTP
o TFTP 8 1 httpd_t
o = Fila Sanvor = H
Select Object Class 1
Object-classes ANY OBJECT CLASS [1 user_home_t
appletalk_socket = ! v
association i 1 CO [15] -+
blk_file 1
capability \4
:::ﬁ::; user_home_t
dbus
dir I~
Select Assisted policy
Permissions |-+~ anvrersission B analysis results.
setopt = - g
fsetid Nearest-neighbors
getopt = rules.
quotaon
accept Nearest-Neighbors' Accesses
ipc_owner Subject-Type | Object-Type | Object Class | =
unlink winbind_t user_home t _|dir More Permissive —+ write

associate = spamd_t |user_home _t \dir More Permissive —+ write
Start analysis : S| it user_home_t _dir
: 1 Analyze Graph hitpd ¢ [user_home_t |dir i
Find & Highlight Filter fingerd_t luser_home_t __|dir

e
Figure 43: SEGrapher Interface

pher also creates a new version of a focus-type in cases wtadse plays the role
of an object-type. The reasoning behind this is to providenpker focus-graph with
less cycles, in cases where focus-types access other tfigoes-

e Object-type Nodes: Object-types are shown as orange nodgeeifocus-graph.
Object-type nodes are hidden by default, as they are notoithesfof the analysis.
In cases where an object-type is also one of the focus-titpesy default expanded
and visible.

e Cluster Nodes: The proposed clustering approach in Se6tia results in cluster
nodes that become part of the focus-graph. A cluster nodeowsrsin black color,
and shows a label which indicates the number of object-tyes it points to. Ad-
mins can also expand/hide object-type nodes for a clustde,ray double-clicking
on the cluster node. Figure 44 shows the cluster i@ided with 13 expanded object-

type nodes.

118
(hetpd_config_t) (hetpd_cache.t |

httpd_config_t | httpd_cache_t

Figure 44: Overlapping relation (httpzbnfig t &, httpd cachet)

An out-edge from a node; to n, indicates that,; can access the typg (for the specified
object-classes and permissions)nifis a cluster node, then; can access all the object-
type nodes for the cluster nodg, and all object-type nodes for clusters pointed taby
For example, in Figure 45, the tyjwt t pd_t can access all object-type nodes for cluster
C1 andC0, whereas the typlet t pd_t np_t can only access nodes©@d. Note that edges
between clusters are visually differentiated as a dashed li

httpd_t

C1[1494] - httpd_tmp_t

T o

Figure 45: Hierarchical relation (httpdR,, httpd tmp_t)

119
6.4.3 Policy Analysis

To start a policy analysis, first, the admin loads a policg IBEGrapher, which is then
parsed into a graph and stored into memory for future araly&econd, the admin needs
to select a set of focus-types to be analyzed, and can opjicedect which object-class,
and permissions to be used for filtering policy AV rules. Ték panel of SEGrapher, as

seen in Figure 43, shows some of the object-classes andgsoms provided.

Focus-Types SEGrapher allows admins to select a set of-typas from a set of profiles
we define. These profiles allow for a more intuitive methodedésting types according to
their functionality, rather than searching for a specifipetyrom within a large list of types
(e.g. SELinux targeted-policy has over 1,780 types). Fangde, an admin can easily
find the typeht t pd_t within the profileApachewhich itself is within the profilé&Servers
Other profile examples includ@atabasesMail, Introsion Detectionetc. Figure 43 shows
some of the profiles SEGrapher provides.

Once the admin decides on the analysis attributes, shefhstad the analysis. Follow-
ing our proposed clustering algorithm in Section 6.2.1, &fGer produces a focus-graph
reflecting the analysis results.

Figure 45 shows a focus-graph for focus-tyes pd_t andhttpd _tnp_t. This
focus-graph illustrates a hierarchical relatidnt { pd_t R, {httpd_tnp_t), that is,
htt pd_t has access to all object-types thdtt t pd_t np_t has access to. This is re-
flected through the cluster nod€s andC0, whereht t pd_t points toCl which in turn
points toCO, whereaq ht t pd_t np_t only points toCO.

Another example of a focus-graph is shown in Figure 44, wkiobws an overlapping

120

relation it t pd_confi g_t R, htt pd_cache_t). The overlapping accesses between

htt pd_config_t andhtt pd_cache_t are clearly captured within the clus&t_0.
6.4.4 Assisted Policy Analysis

SEGrapher provides admins the ability to load their ownamgbolicy modules. These
modules can either be ones resulting from a tool such asZaliditv [32], or manually
written by admins themselves and loaded as a text file. Oncstarm module is loaded,
SEGrapher analyzes the new AV allow rules within the modare, applies our proposed
assisted policy analysis approach in Section 6.3. Con#lidefollowing AV rule within a
loaded custom module:

allow httpd_t user_hone_t : dir {wite}

For this rule, SEGrapher will first, find the nearest-neigkligpes foit t pd_t , using our
approach in Subsection 6.3.1, and based on the nearesiboesjthresholds; andr, that
are set by the admin. The nearest-neighbors’ rules are thssifted into their appropriate
access-classes. Figure 46 shows the resulting neargsthoes’ rules classifications, with
their corresponding color-codes. Note that the rule withjestt-typennysql d_t shows a
strong potential risk of adding the new suggested rule, edmethe last rule in the figure

shows low risk. Finally, SEGrapher generates the focuptgfar the types involved in

Nearest-Neighbors' Accesses
Subject-Type | Object-Type | Object Class | Classification

httpd_t \user_home_t |dir
mysqld_t user_home_t |dir
winbind_t user_home_t |dir More Permissive — write

Figure 46: Assisted policy analysis results. Classificatibexisting rules.

the new custom module, in this case the typespd_t anduser _hone_t as shownin

Figure 43.

121
6.5 User Study

In order to evaluate the effectiveness and usability of SipGer we conducted a user
study comparing it to the de-facto SELinux policy analysig tAPOL”". Participants in the
study go through a number of tasks related to SELinux poli@hsis, and then complete
a questionnaire on these tasks. The study was approved byChé@otte IRB (Protocol

#12-05-18).
6.5.1 Methodology

The study participants were recruited from UNC-Charlotté ather corporations. They
included both graduate students and IT professionals. ¥vkited a total of 19 participants
who all successfully completed the study and the accompgrstirvey. Of the partici-
pants, 63.1% were in the Information Security field, 15.8%enspecialized in Computer
Networking, 5.3% in Computer Graphics & Visualization, at®l7% from other fields.
5.26% of the participants change their operating systenfigumation on a daily basis,
15.8% weekly, 47.4% monthly, and 26.3% never. 10.5% of thenfigure their operating
system security policy on a weekly basis, 52.6% monthly,r&ae 36.8% never do so. Par-
ticipants where given an introduction to both APOL and SEGex and were familiarized
with their user interfaces. We then performed a within-satg study comparison in which
participants go through a number of policy analysis tasksgulsoth tools. The order of

using each tool was randomized and counter balanced.

122
6.5.1.1 Policy Analysis Tasks

The analysis tasks in the study involved 6 main tasks as sdeguire 47. The tasks were
performed both on APOL and SEGrapher. The target SELinucythat was analyzed

was the SELinux reference policy in targeted mode.

Analysis Task

Browse the policy components (types, object classes, amliggons).

Locate types belonging to Apache.

Identify the rules betweent t pd_t andft pd._t.

Identify if the typeht t pd_t haswri t e permissionorit pd._t.

Identify relations between the set of types accessdutltypd t andht t pd_t np_t.
Identify the policy rules amonit t pd_t , mysql d_t, andpost gresql t.

Figure 47: Policy Analysis Tasks

6.5.2 Study Results

After completing the analysis tasks, the participants vesteed to complete a question-
naire which covered 5 main aspects of using APOL and SEGraphee 5 aspects in-
clude: Ease of UsgOverall SatisfactionBrowsing Policy Component€omposing Analy-
sis Queriesand finallyPolicy Type Interconnectivityror each of the aspects we perform a
Wilcoxon Signed Rank test (paired by participant and §.05) to observe the significance

of using SEGrapher vs. APOL. The results are summarizedyar€i48.

APOL (u,0) | SEGrapher (u,0) | p-value
Ease of Use (2.736,0.871) (4.578,0.507) | 0.00001526
Overall Satisfaction (2.84, 0.95) (4.63, 0.59) 0.00001526
Browsing Policy Components (2.89,1.19) (4.47,0.51) 0.0003662
Composing Analysis Queries (2.736,0.933) (4.57,0.692) 0.01562
Policy Type Interconnectivity (2.89,1.19) (4.47,0.51) 0.00001526

Figure 48: SEGrapher vs. APOL

123
6.5.2.1 Ease of Use

Participants were asked to rank the ease of using each of APOLSEGrapher using
a Likert Scale from 1 to 5, where 1 \&ery Complicatednd 5 isVery Easy We observed
that SEGrapher was ranked significantly higher than APOh yt=-3.79, p=0.00001526,

r=0.614).
6.5.2.2 Overall Satisfaction

Participants ranked their overall satisfaction of APOL &teiGrapher using a Likert
Scale from 1 to 5, where 1 Btrongly Disagreand 5 isStrongly AgreeWe observed that
SEGrapher was ranked significantly higher than APOL in uagsfaction with (Z=-3.8,

p=0.00001526, r=0.616).
6.5.2.3 Browsing Policy Components

Participants ranked their satisfaction with browsing tleigy components on APOL
and SEGrapher using a Likert Scale from 1 to 5, where $tiengly Disagreeand 5 is
Strongly Agree We observed that SEGrapher was ranked significantly hitlpizer APOL
with (Z=-3.3779, p=0.0003662, r=0.547).

6.5.2.4 Composing Analysis Queries

Participants ranked their satisfaction with composingdyasisiqueries within APOL and

SEGrapher using a Likert Scale from 1 to 5, where $tiengly Disagreand 5 isStrongly

Agree We observed that SEGrapher was ranked significantly hidpaer APOL with (Z=-

3.7376, p=0.0000305, r=0.606).

124
6.5.2.5 Policy Type Interconnectivity

Participants ranked their satisfaction with identifyiraipy type interconnections using
APOL and SEGrapher on a Likert Scale from 1 to 5, whereSQtiengly Disagre@nd 5 is
Strongly Agree We observed that SEGrapher was ranked significantly hitdjfaer APOL

with (Z=-3.796, p=0.00001526, r=0.615).
6.5.3 Assisted Policy Analysis

Participants also went through 3 tasks related to SEGrapassisted policy analysis
module. These tasks are listed in Figure 49. From these tasksvaluate the partici-
pants’ satisfaction level with SEGrapher’s assisted pddicalysis module’'®ase of use
presentationresulting statisticsandresulting risk analysis graphParticipants rate their
satisfaction with each aspect on a Likert scale from 1 to SereM is strongly disagree
and 5 is strongly agree. Figures 50(a) and 50(b) illustregeésponses using boxplots. In
summary participants were overall satisfied with the vazielements in the assisted policy

module.

Analysis Task

Identify the existing policy rules similar to the new ones.

Identify the number oNon-Matching Less PermissiveOverlapping More Permissive
andMatchingpolicy rules.

Identify the overall risk of adding the new rules.

Figure 49: Assisted Policy Analysis Tasks

125

- -
< - < -
o - o -
~N ~N
- -
T T T T
Statistics Graph Presentation Ease of Use

(a) Satisfaction with resulting statistics (b) Satisfaction with presentation and
and analysis graph overall ease of use

Figure 50: Summary of Likert scale responses

CHAPTER 7: CONCLUSIONS

This chapter reiterates and clearly defines the contribstid this dissertation work, and

also discusses potential future paths for extending upsnékearch.
7.1 Contributions

In this work we have proposed and implemented a set of poliapagement frame-
works which are motivated by the need to guide and enhancevérall policy manage-
ment process. The frameworks are mainly based on two tegbsiigecommendations and
clustering.

First, we propose an enhanced version of the Sun PDP engiicé wahproved policy
evaluation performance by orders of magnitude. This wasiplesby analyzing previous
access control request data, and the policy structure. Wfeddapted the policy to suit
various scenarios of high access control requests.

Second, a recommendation-based open authorization frarkehat was incorporated
within a browser (Chrome and Firefox) extension called F&8e. The framework extends
upon the existing OAuth mechanism and provided the follgwit) Recommendations per
requested permissions, which are based on the collabe@immunity decisions, 2) Fine-
grained control over the privacy attributes requested brg fharty applications.

Third, we propose a framework for guiding users towards eaing their policy deci-

sions on third party browser extension permissions. Thadwork provides fine-grained

127

controls over the requested permissions in addition tonebdd permission descriptions.
We conducted a user-study to evaluate the effectivenessedfamework, which showed
a significant improvement in the user awareness towardseimigsions requested by ex-
tensions. The framework is also capable of monitoring tleesges made by third party
extensions at run-time.

Finally, we propose “SEGrapher”, a visualized-based paicalysis tool for SELinux
policies. SEGrapher uses a clustering technique thatethISELinuxtypesbased on their
policy accesses. Using these clusters it is able to presmplied analyses results in
the form of a directed graph. The cluster-based resultsigeca powerful approach for
discovering inherited relations between various SELinolicy types. SEGrapher also has
the ability to measure the potential risks of adding newqyalules. The risks are based on
previous knowledge of the policy and discovering the sintiks between the types in the

new rules and those already within the policy.
7.2 Future Work

This dissertation contributes a number of frameworks féragicing the policy manage-
ment process for both administrators and users. In thewallp we discuss future work

that could further improve upon this research.
7.2.1 Recommendation-based Open Authorization

The proposed recommendation-based open authorizatiofuther be integrated with
existing social networking sites. This integration cani@nthe recommendation models
by utilizing extended user data (e.g. profile informationl dnendship network). This

would also reduce the effect of cold start recommendatidnsther potential path would

128

involve incorporating the functionalities of the framewatirectly into the browser and
adopt a wider range of social sites. Further user studiesdmarify the effectiveness of

such integration.
7.2.2 Third Party Browser Extension Policy Management

The current state of the framework allows for fine-graineapssion controls and run-
time monitoring of extension accesses. To further imprbeditamework, recommendation
models such as those in Section 4 should be adopted. Next fgetimission descriptions
provided in the framework, users would also be able to atitecommendations based on
the community inputs.

The monitoring of extension accesses was mainly based an@hAPI calls. Accesses
out of the Chrome API scope could still possibly occur. Toigaite the possibility of so,
additional methods of detecting extension access shouddibpted, e.g. static analysis of
extension source code could potentially help, in additeigéntifying certain attack paths
or unsafe javascript methods.

As Chrome extensions already have a dedicated settingowindgthin Chrome itself,
it would be interesting to study the potential integratidrilee framework into Chrome’s
existing settings window rather than being a stand alonensibn. This could change the

users perception towards customizing permissions ancherhtheir experience.
7.2.3 SELinux Policy Management

The proposed tool “SEGrapher” can be further improved byragldetter user interac-
tion capabilities with the resulting analysis graphs. Suntlractions could provide faster

feedback on specific relations amongst the analyzed pglpsst For example, clicking on

129

an edge could provide extra details on a relationship.

The risk analysis module within SEGrapher could be extermhup accommodate new
types that do not already exist within the policy. This migdquire some additional infor-
mation to be provided by the administrator in an effort tddretinderstand the new types.
SEGrapher could provide a set of usage profiles that can Igmnassto newly introduced
rules and from those profiles infer possible recommendsatiSach profiles could be gen-
erated by analyzing and monitoring the behaviors of diffeegpplications within various
domains. For example, a profile could be generated for weeseim general, hence any
new rules that are assigned to a web server could potenbi@lbpmpared to its associated
profile. Finally, additional user studies could be condd¢tefurther evaluate the effective-

ness of SEGrapher.

130
REFERENCES

[1] Alessandro Acquisti and Ralph Gross. Imagined commestitAwareness, informa-
tion sharing, and privacy on the facebook.Arnvacy Enhancing Technologigsages
36-58, 2006.

[2] Alessandro Acquisti and Ralph Gross. Imagined commestitAwareness, informa-
tion sharing, and privacy on the facebook.Anvacy Enhancing Technologigsages
36-58, 2006.

[3] Gediminas Adomavicius and YoungOk Kwolm Recommender Systems Handbook:
A Complete Guide for Research Scientists and Practitigradrapter Multi-Criteria
Recommender Systems - Forthcoming. Springer, 2010.

[4] Sruthi Bandhakavi, Samuel T. King, P. Madhusudan, andidhae Winslett. Vex:
vetting browser extensions for security vulnerabilitids. Proceedings of the 19th
USENIX conference on SecutitySENIX Security’10, pages 22—-22, Berkeley, CA,
USA, 2010. USENIX Association.

[5] Adam Barth, Adrienne Porter Felt, Prateek Saxena, ani8oodman. Protect-
ing browsers from extension vulnerabilitie4d.7th Network and Distributed System
Security Symposiu2010.

[6] Andrew Besmer, Jason Watson, and Heather Richter Lipfdihe impact of social
navigation on privacy policy configuration. In Lorrie Fai@iranor, editorSOUP$
volume 485 ofACM International Conference Proceeding Serig€M, 2010.

[7] Dr. Carrie and E. Gates. Access control requiremente/ér 2.0 security and privacy.
In Proc. of Workshop on Web 2.0 Security & Privacy (W2SP 20017 .

[8] Shan Chen and Mary-Anne Williams. Towards a comprehengquirements archi-
tecture for privacy-aware social recommender system8PIGCM '10: Proceedings
of the Seventh Asia-Pacific Conference on Conceptual Modepages 33—-42, Dar-
linghurst, Australia, Australia, 2010. Australian Comgu$ociety, Inc.

[9] Mohan Dhawan and Vinod Ganapathy. Analyzing informatftow in javascript-
based browser extensions. Rroceedings of the 2009 Annual Computer Security
Applications Conferen¢cCSAC '09, pages 382—-391, Washington, DC, USA, 2009.
IEEE Computer Society.

[10] Catherine Dwyer, Starr Roxanne Hiltz, and Katia Pasgerrust and privacy concern
within social networking sites: A comparison of facebookl amyspace. IfProceed-
ings of the Thirteenth Americas Conference on Informatigstesns (AMCIS 200y7)
2007. Paper 339.

[11] Facebook. Facebook Press Rodmtp://www.facebook.com/press/info.php?statistics
2011.

131

[12] Lujun Fang and Kristen LeFevre. Privacy wizards foriabaetworking sites. In
Michael Rappa, Paul Jones, Juliana Freire, and Soumen &jakir editors\WWW
pages 351-360. ACM, 2010.

[13] Adrienne Felt and David Evans. Workshop on web 2.0 sgcand privacy. oakland,
ca. 22 may 2008. privacy protection for social networkiratfairms, 2008.

[14] Adrienne Porter Felt, Kate Greenwood, and David Wagriee effectiveness of appli-
cation permissions. IRroceedings of the 2nd USENIX conference on Web application
developmentWebApps'11, Berkeley, CA, USA.

[15] Adrienne Porter Felt, Kate Greenwood, and David Wagiiée effectiveness of ap-
plication permissions. IRroceedings of the 2nd USENIX conference on Web appli-
cation developmenWebApps’'11, pages 7-7, Berkeley, CA, USA, 2011. USENIX
Association.

[16] FireBreath. FireBreatmttp://wwv. firebreath. org/.

[17] Kathi Fisler, Shriram Krishnamurthi, Leo A. Meyeroticand Michael Carl Tschantz.
Verification and change-impact analysis of access-copuiities. INICSE '05: Pro-
ceedings of the 27th international conference on Softwaggneering pages 196—
205, New York, NY, USA, 2005. ACM.

[18] FriendCameo, Inc. FriendCaméduttp://friendcameo.con2010.

[19] David Goldberg, David Nichols, Brian M. Oki, and Dougl&erry. Using collabora-
tive filtering to weave an information tapest@ommun. ACM35(12):61-70, 1992.

[20] Kiran K. Gollu, Stefan Saroiu, and Alec Wolman. A sociedtworking-based ac-
cess control scheme for personal contdfroc. 21st ACM Symposium on Operating
Systems Principles (SOSP '07). Work in progre@sg?7.

[21] Ralph Gross and Alessandro Acquisti. Information tatren and privacy in online
social networks. IProceedings of the 2005 ACM workshop on Privacy in the elec-
tronic society WPES '05, pages 71-80, New York, NY, USA, 2005. ACM.

[22] H.Hamed, A. El-Atawy, and E. Al-Shaer. Adaptive stitial optimization techniques
for firewall packet filtering. ITINFOCOM 2006: Proceedings of the 25th IEEE Inter-
national Conference on Computer Communicatjgages 1-12, April 2006.

[23] Hazem Hamed and Ehab Al-Shaer. Dynamic rule-orderipigmazation for high-
speed firewall filtering. IiProceedings of the 2006 ACM Symposium on Information,
computer and communications securages 332—-342, New York, NY, USA, 2006.
ACM.

[24] Michael Hart, Rob Johnson, and Amanda Stent. More cdntkess control: Access
control in the Web 2.0Web 2.0 Security & Privagy2003.

132

[25] Jonathan L. Herlocker, Joseph A. Konstan, Al Borcharg] John Riedl. An algo-
rithmic framework for performing collaborative filteringn Proceedings of the inter-
national ACM SIGIR conferenc&IGIR '99, pages 230-237, New York, NY, USA,
1999. ACM.

[26] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. deny and John T. Riedl.
Evaluating collaborative filtering recommender systeAGM Trans. Inf. Syst22:5—
53, January 2004.

[27] Hitachi Software. Seedit: Selinux policy editohttp://seedit.
sour cef or ge. net.

[28] Graham Hughes and Tevfik Bultan. Automated verificabbracml policies using a
sat solver. IProceedings of the Workshop on Web Quality, Verification\éalidiation
(WQVV 07) pages 378-392, 2007.

[29] iOpus. iMacroshtt p: // ww. i opus. com i macr os/ chr one/ .

[30] Trent Jaeger, Reiner Sailer, and Xiaolan Zhang. Anatymtegrity protection in the
selinux example policy. IfProceedings of the 12th conference on USENIX Security
Symposium - Volume 1@ages 5-5, Berkeley, CA, USA, 2003. USENIX Association.

[31] Jeffrey Heer . Prefuse (Javdjt t p: / / pr ef use. org.

[32] Justin R. Smith, Yuichi Nakamura, and Dan Walsh. awdit®v. ht t p: / /| i nux.
di e. net/ man/ 1/ audi t 2al | ow.

[33] Patrick Gage Kelley, Paul Hankes Drielsma, Norman 8aded Lorrie Faith Cranor.
User-controllable learning of security and privacy pagilnAlSec '08: Proceedings
of the 1st ACM workshop on Workshop on AlSeges 11-18, New York, NY, USA,
2008. ACM.

[34] Kernel Trap. SELinux vs. OpenBSD’s Default Securibt.t p: / / ker nel tr ap.
or g/ QpenBSDY SELi nux_vs_OpenBSDs_Default _Security.

[35] Haruka Kikuchi, Dachuan Yu, Ajay Chander, Hiroshi Inam, and Igor Serikov.
Javascript instrumentation in practice.Rroceedings of the 6th Asian Symposium on
Programming Languages and Syste®BLAS '08, pages 326—341, Berlin, Heidel-
berg, 2008. Springer-Verlag.

[36] Vladimir Kolovski and James Hendler. XACML policy awgals using de-
scription logics. Submitted to Journal of Computer Security (JCS) available
at http://www.mindswap.org/kolovski/KolovskiXACMLAnNalysisJCSSubmission.pdf
2008.

[37] VlIadimir Kolovski, James Hendler, and Bijan Parsia. alyzing web access control
policies. INnWWW ’07: Proceedings of the 16th international conferencé\@rld
Wide Webpages 677-686, New York, NY, USA, 2007. ACM.

133

[38] Hsin-Hsien Lee and Wei-Guang Teng. Incorporating rriteria ratings in recom-
mendation systems. IRI'07, pages 273-278, 2007.

[39] Ming Li, Benjamin Dias, Wael El-Deredy, and Paulo J. Gshoa. A probabilistic
model for item-based recommender systemsProceedings of the 2007 ACM con-
ference on Recommender systeRexSys '07, pages 129-132, New York, NY, USA,
2007. ACM.

[40] Alex X. Liu, Fei Chen, JeeHyun Hwang, and Tao Xie. Xergima fast and scalable
xacml policy evaluation engine. IRroceedings of the ACM SIGMETRICS interna-
tional conference on Measurement and modeling of compystems pages 265—
276, New York, NY, USA, 2008. ACM.

[41] R. S. Liverani and N. Freeman. Abusing Firefox ExtensiolnDefcon July 2009.

[42] V. Benjamin Livshits and Monica S. Lam. Finding secyntulnerabilities in java
applications with static analysis. Proceedings of the 14th conference on USENIX
Security Symposium - Volume, pages 18-18, Berkeley, CA, USA, 2005. USENIX
Association.

[43] G. A. Di Lucca, A. R. Fasolino, M. Mastoianni, and P. Tramtana. Identifying
cross site scripting vulnerabilities in web applicatiolmsProceedings of the Web Site
Evolution, Sixth IEEE International Workshgpages 71-80, Washington, DC, 2004.
IEEE Computer Society.

[44] LWN.net. Quotes of the weekttp: / /1 wn. net/ Articl es/ 179829/ .

[45] Matthew R. McLaughlin and Jonathan L. Herlocker. A ablbrative filtering algo-
rithm and evaluation metric that accurately model the ugpegence. InProceed-
ings of the 27th annual international ACM SIGIR conferencdresearch and devel-
opment in information retrievalSIGIR '04, pages 329-336, New York, NY, USA,
2004. ACM.

[46] Philip L. Miseldine. Automated xacml policy reconfiguion for evaluation optimi-
sation. InProceedings of the 4th International Workshop on Softwargieering
for Secure Systemgages 1-8, New York, NY, USA, 2008. ACM.

[47] MITRE . SELinux Analysis Tools (SLAT).http://ww. mtre. org/tech/
sel i nux/.

[48] MITRE. Polgen: Guided auto-mated policy developméntt p: / / www. mi tre.
org/tech/ sel i nux.

[49] T. Moses. Extensible access control markup language€CML). Technical Report,
OASIS 2003.

[50] Mozilla Add-Ons Blog. How many Firefox users have adtso in-
stalled? 85%! http://blog.nozilla.conl addons/ 2011/ 06/ 21/
firefox-4-add-on-users/.

134

[51] OAuth. Security Advisory:2009.1. htt p:// oaut h. net/ advi sori es/
2009- 1/.

[52] OAuth 2.0. The OAuth 2.0 Protocohttp://tools.ietf.org/html/draft-ietf-oauth-v2-10
2010.

[53] N. Ramakrishnan, B.J. Keller, B.J. Mirza, A.Y. Gramagdas. Karypis. Privacy risks
in recommender systembternet Computing, IEEE5(6):54 —63, 2001.

[54] Red Hat, Inc. Red Hat SELinux Guide, Chapter 8. Custamgiand Writing Pol-
icy. http://docs. redhat.com docs/ en-US/ Red Hat Enterprise_
Li nux/ 4/ ht m / SELi nux_Qui de/ sel g- secti on- 0120. ht nl.

[55] Paul Resnick, Neophytos lacovou, Mitesh Suchak, Fgtegstrom, and John Riedl.
Grouplens: an open architecture for collaborative fillgiwh netnews. ICSCW '94:
Proceedings of the 1994 ACM conference on Computer sugpooi@perative work
pages 175-186, New York, NY, USA, 1994. ACM.

[56] J. Riedl. Personalization and privadgternet Computing, IEEE5(6):29 —31, 2001.

[57] Ronald Rivest. On self-organizing sequential searebristics. Commun. ACM
19(2):63-67, 1976.

[58] Samba. Samba Servért t p: / / ww. sanba. or g/ sanba.

[59] Beata Sarna-Starosta and Scott D. Stoller. Policyyaisfor security-enhanced linux.
In In Proceedings of the 2004 Workshop on Issues in the Thed®gairity (WITS
pages 1-12, 2004.

[60] Security Enhanced Linwhtt p: // ww. nsa. gov/ resear ch/ sel i nux.

[61] Mohamed Shehab, Anna Cinzia Squicciarini, and GaidrJ&hn. Beyond user-to-
user access control for online social networks.Phoceedings of the 10th Interna-
tional Conference on Information and Communications SeguiCICS '08, pages
174-189, Berlin, Heidelberg, 2008. Springer-Verlag.

[62] Stephen W. Cote. FunMon2.jet t p: / / www. i mnot i on. coml docunent s/
ht m /techni cal / dht ml / f unnon. ht m .

[63] Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of dotieative filtering tech-
niques.Adv. in Artif. Intell, 2009:4:2—-4:2, January 2009.

[64] Sun XACML Policy Engine. http://sunxacml.sourceferget/guide.html.

[65] Mike Ter Louw, Jin Lim, and V. Venkatakrishnan. Enhargiweb browser security
against malware extension¥ournal in Computer Virology4:179-195, 2008.

[66] The Chromium Blog. A Year of Extensionsit t p: // bl og. chr om um or g/
2010/ 12/ year - of - ext ensi ons. ht m .

135

[67] Tresys Technology. APOL. http://oss.tresys. coni projects/
set ool s.

[68] Tresys Technology. Setools: Policy analysis tools $etinux htt p: // oss.
tresys. com proj ects/setool s.

[69] V.N. Venkatakrishnan, Prithvi Bisht, Mike Ter Louw, khelle Zhou, Kalpana Gondi,
and Karthik Thotta Ganesh. Webapparmor: a framework fousbprevention of
attacks on web applications. IAroceedings of the 6th international conference
on Information systems securitfCISS’10, pages 3—-26, Berlin, Heidelberg, 2010.

Springer-Verlag.
[70] Vincent Danen. Introduction to SELinux: Don't let cotepity scare
you off. http://ww.techrepublic.con bl og/ opensource/

i ntroduction-to-selinux-dont-1|et-conplexity-scare-you-off/
2447.

[71] lan H. Witten and Eibe FrankData Mining: Practical Machine Learning Tools and
Techniques?2 edition, 2005.

[72] Yichen Xie and Alex Aiken. Static detection of secuntylnerabilities in scripting
languages. IfProceedings of the 15th conference on USENIX Security Ssiome
Volume 15Berkeley, CA, USA, 2006. USENIX Association.

[73] Wenjuan Xu, Mohamed Shehab, and Gail-Joon Ahn. Vigatitn based policy anal-
ysis: case study in selinux. Rroceedings of the 13th ACM symposium on Access
control models and technologieSACMAT °'08, pages 165-174, New York, NY,
USA, 2008. ACM.

[74] Yuichi Nakamura. SELinux Policy Editor(SEEdit) Adntration Guide
2.1. http://seedit.sourceforge. net/doc/2.1/tutorial/node9.
ht m , February 2007.

[75] Yuchen Zhou and David Evans. Protecting private webt@unfrom embedded
scripts. InProceedings of the 16th European conference on Researcbniputer
security ESORICS’11, pages 60-79, Berlin, Heidelberg, 2011. $eriVerlag.

