
CLUSTERING AND RECOMMENDATION TECHNIQUES FOR ACCESS CONTROL
POLICY MANAGEMENT

by

Said M. Marouf

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Computing and Information Systems

Charlotte

2012

Approved by:

Dr. Mohamed Shehab

Dr. Bei-Tseng Chu

Dr. Cem Saydam

Dr. Taghi Mostafavi

ii

c©2012
Said M. Marouf

ALL RIGHTS RESERVED

iii

ABSTRACT

SAID M. MAROUF. Clustering and recommendation techniques for access control policy
management. (Under the direction of DR. MOHAMED SHEHAB)

Managing access control policies can be a daunting process,given the frequent policy

decisions that need to be made, and the potentially large number of policy rules involved.

Policy management includes, but is not limited to: policy optimization, configuration, and

analysis. Such tasks require a deep understanding of the policy and its building compo-

nents, especially in scenarios where it frequently changesand needs to adapt to different

environments. Assisting both administrators and users in performing these tasks is impor-

tant in avoiding policy misconfigurations and ill-informedpolicy decisions. We investigate

a number of clustering and recommendation techniques, and implement a set of tools that

assist administrators and users in managing their policies. First, we propose and imple-

ment an optimization technique, based on policy clusteringand adaptable rule ranking, to

achieve optimal request evaluation performance. Second, we implement a policy analysis

framework that simplifies and visualizes analysis results,based on a hierarchical cluster-

ing algorithm. The framework utilizes a similarity-based model that provides a basis of

risk analysis on newly introduced policy rules. In additionto administrators, we focus on

regular individuals whom nowadays manage their own access control polices on a regular

basis. Users are making frequent policy decisions, especially with the increasing popular-

ity of social network sites, such as Facebook and Twitter. For example, users are required

to allow/deny access to their private data on social sites each time they install a 3rd party

application. To make matters worse, 3rd party access requests are mostly uncustomizable

iv

by the user. We propose a framework that allows users to customize their policy decisions

on social sites, and provides a set of recommendations that assist users in making well-

informed decisions. Finally, as the browser has become the main medium for the users

online presence, we investigate the access control models for 3rd party browser extensions.

Even though, extensions enrich the browsing experience of users, they could potentially

represent a threat to their privacy. We propose and implement a framework that 1) mon-

itors 3rd party extension accesses, 2) provides fine-grained permission controls, and 3)

Provides detailed permission information to users in effort to increase their privacy aware-

ness. To evaluate the framework we conducted a within-subjects user study and found the

framework to effectively increase user awareness of requested permissions.

v

ACKNOWLEDGEMENTS

While at UNC-Charlotte, I was greatly fortunate to work witha group of outstanding

colleagues and friends. Therefore, it is my pleasure to dedicate this dissertation to those

who have contributed directly or indirectly to this dissertation.

First and foremost, I would like to express my many thanks andsincere gratitude to my

dear advisor Prof. Mohamed Shehab. His continuous guidanceand support have made

this work possible and have made for a great research experience throughout my time at

UNC-Charlotte.

My many thanks go out to those who have collaborated with me onvarious research pa-

pers and topics throughout the past few years, including Dr.Anna Squicciarini, Doan Minh

Phuong, Smitha Sundareswaran, Christopher Hudel, Dr. Moo Nam Ko, Hakim Touati, Ad-

harsh Desikan, and Gorrell Cheek. They were a great source ofinspiration and positive

criticism that was valuable to me and my research.

I would also like to express my great appreciation to my Ph.D.committee members, Prof.

Mohamed Shehab, Prof. Bei-Tseng Chu, Prof. Cem Saydam, and Prof. Taghi Mostafavi.

Their assistance, feedback, and guidance have been invaluable in preparing this work.

Last and not least, my deepest gratitude goes to my father andmother for everything they

have done for me throughout my journey to completing my Ph.D.Their infinite support,

encouragement, and love have been invaluable to me. My love goes to my lovely wife

Walaa Marouf for her continuous encouragement, patience and unconditional love that have

enabled me to successfully complete my Ph.D. I also send my love to my lovely princess

Fatma, my prince Mousa, and my younger prince Mohamed for being a continuous source

vi

of motivation. Finally, my thanks and love go to my 12 sistersand 2 brothers in Palestine

for their continuous good wishes and love.

vii

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION 1

1.1 Research Problem 5

1.2 Overview of proposed solution 7

1.2.1 Recommendation-Based Policy Management Tools 9

1.2.2 Clustering-Based Policy Management Tools 10

CHAPTER 2: PRELIMINARIES 12

2.1 XACML Policies and Access Requests 12

2.2 Third Party Application Authorization and APIs 15

2.2.1 OAuth Standard 16

2.2.2 OAuth and User Privacy 18

2.3 Collaborative Filtering in Recommendation Systems 19

2.4 Third Party Browser Extensions 20

2.4.1 Chrome Extensions 20

2.5 SELinux Policies 21

2.5.1 Custom SELinux Policy Modules 23

CHAPTER 3: ADAPTIVE REORDERING & CLUSTER BASED FRAMEWORK 25

3.1 Related Work 26

3.2 Policy and Rule Reordering Framework 27

3.2.1 Execution Vector and Policy Permutation 28

3.2.2 Computation of Rule Weights 30

3.2.3 Optimal Rule Reordering 32

viii

3.3 Categorization Based Optimization 35

3.4 Experimental Results 38

3.4.1 Real World-Based policies 39

3.4.2 Synthetic Policies 40

3.4.3 Adaptability of Reordering Approach 46

CHAPTER 4: RECOMMENDATION MODELS FOR OPEN AUTHORIZATION 50

4.1 Related Work 50

4.2 Proposed OAuth Flow 52

4.2.1 Permission Guide 53

4.2.2 Recommendation Model 55

4.2.3 Collaborative Filtering 56

4.2.3.1 Application-based Filtering 58

4.2.3.2 User-based Filtering 60

4.2.4 Prediction Model 60

4.2.4.1 Category-based Predictions 62

4.3 Experiments 64

4.3.1 User Study 67

4.3.1.1 Methedology 67

4.3.1.2 Study Results 68

CHAPTER 5: 3RD PARTY BROWSER EXTENSION POLICY MANAGEMENT 76

5.1 Related Work 77

ix

5.2 Chrome Extension Permissions 78

5.2.1 Permissions and Chrome APIs 79

5.2.2 User Awareness 79

5.2.3 Permission Dependency 81

5.3 User Privacy and Threats 82

5.3.1 Threats 82

5.3.2 Intrusiveness 86

5.4 Proposed Permission Framework 86

5.4.1 Extension Manager 88

5.4.2 Extension Monitor 91

5.5 Evaluation 93

5.5.1 Implementation 93

5.5.2 Permission Requests 94

5.5.3 Real World Evaluation 95

5.5.3.1 Performance Evaluation 95

5.5.3.2 Coverage and Limitations 95

5.6 User Study 96

5.6.1 Methodology 97

5.6.1.1 Study Tasks 97

5.6.1.2 Study Results 98

CHAPTER 6: VISUALIZED-BASED AND ASSISTED POLICY ANALYSIS 101

6.1 Related Work 102

x

6.2 SELinux Policy Analysis 103

6.2.1 Type Clustering 107

6.3 Assisted Policy Analysis 112

6.3.1 Similarity-Based Model 112

6.3.2 Nearest-Neighbor Rule Classification 115

6.4 Design and Implementation 116

6.4.1 Visualization and Interactivity 116

6.4.2 Focus-Graphs 116

6.4.3 Policy Analysis 119

6.4.4 Assisted Policy Analysis 120

6.5 User Study 121

6.5.1 Methodology 121

6.5.1.1 Policy Analysis Tasks 122

6.5.2 Study Results 122

6.5.2.1 Ease of Use 123

6.5.2.2 Overall Satisfaction 123

6.5.2.3 Browsing Policy Components 123

6.5.2.4 Composing Analysis Queries 123

6.5.2.5 Policy Type Interconnectivity 124

6.5.3 Assisted Policy Analysis 124

CHAPTER 7: CONCLUSIONS 126

7.1 Contributions 126

xi

7.2 Future Work 127

7.2.1 Recommendation-based Open Authorization 127

7.2.2 Third Party Browser Extension Policy Management 128

7.2.3 SELinux Policy Management 128

REFERENCES 130

CHAPTER 1: INTRODUCTION

Managing access control policies is a complex process, given the complex nature of pol-

icy languages and the large number of attributes and rules involved. Policies can involve

thousands of rules, leading to thousands of relations amongpolicy attributes. Interpret-

ing and understanding such a large number of relations is difficult, and the possibilities

of introducing policy misconfigurations is high. Another issue with large policies, is the

difficulty in optimizing them for optimal performance, thatis, if policy rules are configured

properly, potential performance bottlenecks can be removed. Adding to this complexity, is

the fact that not all administrators are well versed and proficient in all access control policy

languages. For example, a Linux-based server could incorporate both an operating system

(OS) level policy using SELinux [60], and a web service levelpolicy using XACML [49].

Both policies can easily involve tens of thousands of rules and attributes, which makes

it difficult for average administrators to manage without appropriate policy management

tools.

Access control policy management is no longer a task strictly assigned to administrators.

Nowadays, with the increase in privacy awareness [1, 10], and the wide adoption of third

party applications on social sites (e.g. 3rd party Facebookapps) and internet browsers (e.g.

3rd party Chrome extensions), regular individuals have become themselves admins on their

own privacy polices. Managing access control policies is anessential task in the daily lives

2

of individuals, who have to protect their private data (e.g., email address, location info,

birthday, etc.) and content (e.g., photos, videos, browserbookmarks, etc.), from unwanted

accesses by other online users and by third party applications. Security aware users will

manage their policies to the degree they can, that is, current privacy preserving mechanisms

do not provide users the capability to completely control their online privacy. For example,

at installation time, third party Facebook applications can request a set of permissions to

access a user’s Facebook profile data. At this point, users are given two options: 1) Grant

the application all requested permissions, or 2) Opt-out ofinstalling the application (all-

or-nothing). It is clear that there is space to improve, and that security aware users should

be given fine-grained controls over their access control policies. In regards to security

unaware users, new tools should be introduced to guide and assist them in understanding

privacy issues and in making well-informed policy decisions.

The challenges facing both administrators and individualscall for better privacy preserv-

ing mechanisms and better tools for managing access controlpolicies. Such tools should

provide the following:

• Simplified policy management: When access control policiesinvolve thousands of

attributes and rules, policy management tools need to simplify the way administrators

and users interact with a policy. This can be achieved by providing new presentation

layers that allow for easier interpretation of the policy, and the ability to focus on

relevant policy information without the need for a deep understanding of the policy

language. Simplifying policies, also allows administrators to easily and properly

analyze existing policies.

3

• Assisted policy management: Assisting users and administrators in understanding

the consequences of their policy decisions is important, especially given the large

number of attributes and rules within policies, and the complex nature of existing

policy languages. Guiding users and administrators is achievable by utilizing exist-

ing decisions made by other potentially well-informed parties. That is, tools should

make use of existing knowledge in providing guidance to those making new policy

decisions. Guiding users could also be achieved by providing simplified descriptions

of the various access permissions.

• Fine-grained policy controls: We believe, that users should be able to control their

privacy policies to the extent they wish. That is, controlling individual privacy at-

tributes should be possible without the need to limit the options to “grant all ac-

cesses” or “nothing”. To achieve this, new tools are required which extend upon

current authorization flows.

• Policy Optimization: Policies with large numbers of rules,can easily introduce per-

formance bottlenecks, especially when faced with a huge number of policy evalu-

ation requests. Configuring such large policies for optimalperformance outcomes,

requires knowledge of all policy rules, and the ability to understand the outcome of

each possible configuration. There is a need for tools that can take on this task, and

provide for configurations that lead to ideal performance.

XACML Policies: Many web services have adopted XACML (eXtensible Access Control

Markup Language) as the standard for specifying their access control policies. XACML

policies can introduce performance bottlenecks when a large number of policy rules are

4

involved. In our investigation, we found that existing XACML policy evaluation engines,

such as Sun’s Policy Decision Point Engine (PDP) [64], suffer from such performance

bottlenecks. For a 100,000 random policy evaluation requests, we found that a policy with

4000 rules, requires Sun’s PDP up to 1,152,460ms to evaluate. Even smaller policies, for

example of 75 rules, took up to 32,223 ms to evaluate. Such evaluation times are not

sufficient for running web services under high request loads. The bottleneck in existing

engines results from the sequential nature of evaluating policy rules. We believe that with

the proper policy structure optimization, i.e. the structure of its rules, we can achieve

improved performance outcomes.

Third Party Application Authorization: In our research we mainly focus on two types of

third party applications: 1) Social networking applications, and 2) Internet browser exten-

sions. Third party social networking applications run on social sites such as Facebook and

Twitter, and are widely adopted by users who wish to add new services on top of a site’s

core services. To do so, applications need to be authorized by users for a set of requested

accesses/permissions. For example, an application can request permission to access a user’s

birthday information on Facebook.

Third party browser extensions are also widely adopted and enrich the user browsing

experience. Extensions also request permissions that allow for performing privileged tasks

such as accessing a user’s browsing history, or executing custom scripts within certain

webpages visited.

The primary disadvantage of existing authorization mechanisms, is the lack of fine-

grained controls, that is, users have to authorize all requested accesses, or choose not to

5

install an application in the first place. Authorizing thirdparty applications can be prob-

lematic, if they are malicious, and seek to use a user’s private data inappropriately. For

this reason, it is important that existing authorization methods be extended to provide fine-

grained controls. We investigated third party applications on Facebook, and found that,

among popularly requested accesses, individuals - when given the choice - will, in the

majority of cases, deny the request.

SELinux Policies: The U.S. National Security Agency, introduced Security Enhanced

Linux (SELinux) for the purpose of incorporating a system-wide Mandatory Access Con-

trol (MAC) architecture into the Linux operating system. SELinux provides fine-grained

access control through its policy language, but in exchange, the language is very complex,

leading to complex policies that are hard to interpret and difficult to manage. SELinux

policies are mainly based ontypes, which represent labels on processes and files. That is,

policy rules are written in regards to these types. SELinux also comes with a set of de-

fault policies that potentially satisfy the needs of most Linux systems. When investigating

SELinux’s default policies, we found that thetargeteddefault policy contains over 1,780

types, and over 1,500,000 rules. Anotherstrict version of the default policy, contained over

2,300 types and 1,700,000 rules. With such a large number of types and rules, it’s clear

why many administrators face difficulties in managing SELinux policies [70, 44, 34].

1.1 Research Problem

The difficulty in managing access control policies can be dueto a number of factors:

• Complex Policy Language: Policy managers, whether normal individuals or admin-

istrators, are not well versed in existing complex policy languages. Because of this,

6

it is difficult to easily interpret policies which in many cases can lead to policy mis-

configurations.

• Complex Policy Structure: Access control policies can involve large numbers of

attributes and rules which lead to difficulties in understanding the relations among

policy attributes and rules. This also leads to difficultiesin optimizing policies for

optimal performance.

• Limited Policy Management Tools: The lack of proper policy management tools,

that are able to guide users and administrators in making better policy decisions.

This becomes essential when decisions need to be made on new policy attributes

and rules, that is, introducing unknown elements into an existing policy. Such new

elements, can compromise the overall security of a system.

In the light of the existing challenges facing both administrators and individuals, we

investigate a number of clustering and recommendation based techniques for managing

access control policies. Clustering access control policies could potentially optimize its

structure, leading to better performance outcomes. It can also simplify the policy presen-

tation, hence resulting in a policy that is easier to interpret and understand. On the other

hand, recommendation-based techniques could help in guiding users and administrators in

making well-informed policy decisions. These techniques can be based on the collective

collaboration of a community, and on existing knowledge regarding a policy.

We define our research problem as follows:

Problem Statement:The average administrator and individual face many challenges when

managing their access control policies. These challenges can lead to policy misconfigura-

7

tions, performance bottlenecks, and ill-informed policy decisions.

In this research proposal, we plan on overcoming existing challenges in access control

policy management. Our hypothesis is as follows:

Hypothesis Statement:Applying effective clustering and recommendation techniques onto

access control policies will allow for a simpler and more effective policy management pro-

cess that also guides users and administrators when making important policy decisions.

1.2 Overview of proposed solution

Managing access control policies is a complex and challenging process, which requires

executing a number of various tasks. We focus on three primary tasks:

Assisted Policy

Management

Configuration Tools

Optimization Tools

Visualization-based

Analysis Tools
Operating Systems

Web Services

Social Network Profiles

Usage Data

ToolBox

Internet Browsers

A
c
c
e
s
s
 C

o
n

tr
o

l
P

o
li
c
ie

s

Figure 1: Assisted Policy Management Model

1. Policy Configuration: Configuring an access control policy involves making a set of

decisions on what accesses should be allowed or denied. These decisions are what

define the policy, hence defining the overall security of the system under this policy.

If ill-informed decisions are made, they can easily compromise the security of a sys-

tem. Ill-informed decisions can be a result of: 1) complex policies that involve large

8

numbers of rules and relations that are difficult to interpret, 2) The lack of a deep un-

derstanding of the policy language, and the understanding of possible consequences

related to certain policy decisions. 3) The lack of fine-grained controls on the policy

decisions that need to be made.

2. Policy Optimization: Optimizing access control policies is an essential task that can

involve: 1) Removing out-dated policy components, 2) Prioritizing policy compo-

nents according to demand, and 3) Assessing a policy’s overall structure, and finding

optimal structures, that lead to enhanced access control request evaluations. By per-

forming these optimization tasks, the storage footprint decreases, and performance

bottlenecks can be avoided. Such tasks become very difficultwhen dealing with

large policies, or policies that need to rapidly adapt to different scenarios and envi-

ronments.

3. Policy Analysis: Analyzing access control policies is a fundamental task, and is a

basis for the previous two tasks mentioned above. That is, toproperly configure and

optimize a policy, proper analyses need to take place. By analyzing a policy, admin-

istrators are able to discover: potential misconfigurations, redundant policy rules,

out-dated components, and more. They are also able to get a deeper understanding

of existing relations within a policy, and how various policy components are able to

interact with each other. With large policies, the analysisprocess gets tricky, due to

the vast number of relations, and the difficulty in presenting large amounts of analysis

data in an easily and interpretable fashion.

9

In the light of these challenging tasks, and the fact that more usable and suitable tools are

needed to accommodate the needs of average administrators and individuals, we propose

a set of assisted policy management tools (see Figure 1), based on recommendation and

clustering techniques.

1.2.1 Recommendation-Based Policy Management Tools

The premise of these tools is to guide administrators and users in making better policy

decisions. Guidance is provided in the form of recommendations on new policy decisions.

Recommendations represent quantified indications of how common, or how risky, certain

decisions are. Recommendations are based on data collectedfrom various sources, such as

the collaborative decisions of communities, application behavior, existing stable policies,

and the nature of incoming access control policy requests. Based on provided recommenda-

tions, administrators and users can make more well-informed decisions when configuring

their policies.

The proposed tools are also able to optimize policies by generating recommendation val-

ues that are the basis of ranking/prioritizing policy components according to their demand.

That is, components that are most frequently used within a certain range of time, get prior-

ity over components less used. Components with higher priority are given more importance

when evaluating incoming requests, which potentially removes performance bottlenecks.

Another advantage of recommendation-based tools is the ability to provide recommenda-

tions on a fine-grained level. Our proposed tools provide thenecessary fine-grained policy

controls, accompanied with fine-grained recommendations.

10

1.2.2 Clustering-Based Policy Management Tools

Clustering-based tools analyze the properties of existingpolicy components. From these

properties, they are able to identify groups/clusters of tightly related components. Identified

clusters can then be used to: 1) provide abstractions on the components of a particular clus-

ter, that is, focus on what a cluster represents rather than what each single component does.

2) optimize a policy’s structure based on its identified clusters, which potentially results

in improved policy evaluation times, by redirecting incoming requests to their appropriate

clusters, rather than the whole policy.

Our proposed clustering-based tools also provide effective policy analysis capabilities.

This is achieved by utilizing identified clusters to discover new relations among policy

components, and to visualize the results of policy analyses. Visualization occurs at the

cluster level, which dramatically reduces the complexity of analysis results.

The remainder of this dissertation is organized as follows:Chapter 2 discusses some of

the preliminaries regarding our research. Chapter 3 proposes an adaptive and clustering-

based approach for evaluating XACML policies, and discusses the experimental results

done. In Chapter 4 we propose a recommendation-based open authorization framework

that provides user with recommendations on permissions requested by third party social

networking applications. It also discusses our fine-grained control mechanism. Chapter 5

proposes a framework that provides fine-grained controls onthird party browser extension

permissions, in addition to increased user privacy awareness. The results of a user study

on the effectiveness of the framework are also discussed. Chapter 6 proposes a visualized-

based approach for analyzing SELinux policies, and discusses a risk-based model for newly

11

added policy rules. Finally, in Chapter 7 we conclude the dissertation and discuss potential

future paths for extending upon this research.

CHAPTER 2: PRELIMINARIES

2.1 XACML Policies and Access Requests

In this section we provide the logic formalism adopted to denote XACML policies and

access requests. XACML policies are composed of five basic components, namely,Policy-

Set, Policy, Target, Rule, andPolicy and Rule Combining algorithmfor conflict resolution.

The root of the XACML policy is the PolicySet element, which is defined as follows:

Definition 1. PolicySet is a tuplePS = (id, t, P, PC), where:id is the PolicySet id,t

is the PolicySet Target element, and takes values from the set {Applicable, NotApplicable,

Indeterminate}, P = {p1, . . . , pn} is the set of policies, andPC is the policy combining

algorithm.

A Policyelement is a set of rules and conditions that control access to protected resources

which we refer to as objects. A policy contains atarget, a set ofrules, and arule combining

algorithm.

Definition 2. A policy is a tupleP = (id, t, R,RC), where:id is the policy id,t is the

policy target element, and takes values from the set{Applicable, NotApplicable, Indeter-

minate}, R = {r1, . . . , rn} is the set of rules, andRC is the rule combining algorithm.

The Target elementt specifies a set of predicates on the request attributes, which must

be met in a PolicySet, Policy or Rule to apply to a given request. The attributes in the target

element are categorized intoSubject, ResourceandAction. The attribute values in a request

13

are compared with those included in the Target, if all the attributes match then the Target’s

PolicySet, Policy or Rule is said to be Applicable. If the request and the Target attributes do

not match then the request is NotApplicable, and if the evaluation results in an error then

the request is said to be Indeterminate. If a request satisfies the target of a policy, then the

request is further checked against the rule set of the policy; otherwise, the policy is skipped

without further examining its rules. The Target predicatescan be quite complex, and can be

constructed using functions and attributes. The rule combining algorithmRC respectively

allows one to specify the approach to compute the decision result of a policy when the

policy contains rules evaluating to conflicting effects. The policy combining algorithmPC

follows the same logic but at the PolicySet level.

A Ruleidentifies a complete and atomic authorization constraint that can exist in isola-

tion with respect to the policy in which it has been created. We define rules as follows.

Definition 3. A Rule is a tupler = (id, t, e, c), where: id is the rule id,t is the rule

target element, and takes values from the set{Applicable, NotApplicable, Indeterminate},

e is the rule effect, wheree ∈ {Permit,Deny}, andc is a boolean condition against the

request attributes.

The rule target element is similar to the policy target instead it indicates the requests

applicable to the rule. The conditionc is a boolean function with respect to the request at-

tributes. The rule’s effecte, which can be Permit or Deny, is returned if the rule’s condition

c evaluates to true. The rule evaluation can also be Indeterminate in case of an error, or

NotApplicable if the rule’s target doesn’t apply to the request’s attributes. Access requests

are typically matched against a policy set. A policy set is the root of an XACML policy, it

holds policy elements and, possibly, other policy sets. We denote access requests accord-

14

<PolicySet PolicySetId="PSID"
PolicyCombiningAlgId="permit-overrides">
<Target/>
<Policy PolicyId="PID"

RuleCombiningAlgId="permit-overrides">
<Target/>
<Rule RuleId="RID1" Effect="Deny">

<Target>
<Subjects>
<Subject>Bob</Subject>
<Subject>John</Subject>

</Subjects>
<Resources>
<Resource>file2</Resource>

</Resources>
<Actions>
<Action>
<ActionMatch MatchId="string-equal">
<AttributeValue DataType ="string">

read
</AttributeValue>
<ActionAttributeDesignator
AttributeId ="AID1" DataType ="string"/>

</ActionMatch>
</Action>

</Actions>
</Target>

</Rule>
<Rule RuleId="RID2" Effect="Permit">

<Target>
<Subjects>
<Subject>Bob</Subject>

</Subjects>
<Resources>
<Resource>file1</Resource>

</Resources>
<Actions>
<Action>
<ActionMatch MatchId="string-equal">
<AttributeValue DataType ="string">

read
</AttributeValue>
<ActionAttributeDesignator
AttributeId ="AID2" DataType ="string"/>

</ActionMatch>
</Action>

</Actions>
</Target>

</Rule>
</Policy>

</PolicySet>

Figure 2: XACML Policy Set example

ing to the following notation. LetS, O, A andX denote all subjects, objects, actions and

context variables in an access control system respectively.

Definition 4. (Access Request) An access requestq is the tuple(s, o, a, x), wheres ∈ S

is the subject making the request,o ∈ O is the requested object,a ∈ A is the requested

action on objecto, andx ∈ X are the context attributes.

Let us consider the PolicySet listed in Figure 2 which contains one policy with 2 rules.

15

The first rule specifies that “Both Bob and John are denied readaccess to file2” where

each “Bob” and “John” is aSubject, “denied” is the ruleEffect, “read” is theAction, and

“file2” is the Object or Resource, whereas the second rule says “Bob has permission to

read file1”, “Bob” being theSubject, “has permission” theEffect, “read” theAction, and

“file1” the Object. Either rule could be accompanied with context parameters (Environment

Attributes) as part of a rule’s condition such as time, system variables, history, or location.

A target is a condition on subjects ∈ S, objecto ∈ O and the actiona ∈ A. If the

request satisfies the target conditions of a rule (policy) then we say that the rule (policy) is

applicableto the request, otherwise it isnot applicable. That is, if Bob makes a request to

read file1, his request would be applicable to the second rulewhich would return a Permit.

2.2 Third Party Application Authorization and APIs

Most of the major online platforms such as Facebook, Google,and Twitter, provide an

open API which allows third party applications to directly interact with their platform. APIs

provide a mechanism to read, write, or modify user information on these platforms through

other third party applications on behalf of users themselves. An API comes with a set of

methods, each representing a certain user interaction executed through a third party appli-

cation. For example, the FriendCameo [18] Facebook application is able to post content

(e.g. messages, photos) to a user’s Facebook feed/wall using Facebook’s/profile id/feed

API method, whereprofile id is the targeted Facebook user ID. It is important to note that

third party applications can potentially execute any API call on behalf of a user, relying

on the type and scope of permissions granted to these apps. Inthe previous example, the

FriendCameo application could only perform the/profile id/feedAPI call, given the user

16

has granted it the “publishstream” permission. The full set of permissions available to

third party apps are defined by the online platforms, and it isup to third party applications

to request the proper subset of permissions required. We believe users should have the final

decision on whether to grant requested permissions or not.

2.2.1 OAuth Standard

With an increasing trend towards offering online services that provide third party ap-

plications the ability to interact through open APIs and access user resources, OAuth was

introduced as a secure and efficient mechanism for authorizing third party applications

[52]. Traditional authentication models such as the client-server model require third party

applications to authenticate with online services using the resource owner’s private creden-

tials, typically a username and password. This requires users to present their credentials

to third party applications, hence granting them broad access to all their online resources

with no restrictions. A user may revoke access from a third party application by changing

her credentials, but doing so subsequently revokes access from all third party applications

that continue to use her previous credentials. These issuesare amplified given the high

number of third party applications that potentially get access to a user’s online resources.

OAuth uses a mechanism where the roles of third party applications and resource owners

are separated. It does not require users to share their private credentials with third party

applications, instead it issues a new set of credentials foreach application. These new set

of credentials are per application, and reflect a unique set of permissions to a user’s online

resources. In OAuth, these new credentials are representedvia anAccess Token. An Access

Token is a string which denotes a certain scope of permissions granted to an application,

17

it also denotes other attributes such as the duration the Access Token is considered valid.

We are mainly interested in the scope attribute within an Access Token. Access Tokens are

issued by an authorization server after the approval of the resource owner. In this research

we extend upon this authorization stage of the OAuth 2.0 protocol.

When a third party application needs to access a user’s protected resources, it presents its

Access Token to the service provider hosting the resource (e.g. Facebook, Twitter) which

in turn verifies the requested access against the scope of permissions denoted by the Token.

For example, Alice (resource owner) on Facebook (service provider and resource server)

can grant the FriendCameo application (client) access to her email address on her Face-

book profile without ever sharing her username & password with FriendCameo. Instead,

she authenticates the FriendCameo application with Facebook (authorization server) which

in turn provides FriendCameo with a proper Access Token thatdenotes permission to ac-

cess Alice’s email address.

OAuth provides multiple authorization flows depending on the client (third party applica-

tion) type (e.g. web server, native applications). We focuson theAuthorization Codeflow

shown in figure 3 and detailed in the OAuth 2.0 specification [52]. The authorization code

flow is used by third party applications that are able to interact with a user’s web browser,

and are able to receive incoming requests via redirection. The authorization flow process

consists of three parties: 1)End-user (resource owner) at browser, 2)Client (third party ap-

plication), and 3)Authorization server (e.g. Facebook). Our main focus is on steps “(A)”

and “(B)” within the authorization code flow [52]. Step “(A)”is where third party applica-

tions initiate the flow by redirecting a user’s browser to theauthorization server and pass

along the requested scope of permissions. In step “(B)”, theauthorization server authenti-

18

cates the end-user, and establishes her decision on whetherto grant or deny the third party

application’s access request.

End-User

at

Browser

Web

Client

Authorization

Server

(A) (C)

(A) Client Identifier &

 Redirect URI

(B) User authenticates

(C) Authorization Code

(D) Client Credentials,

Authorization Code,

& Redirect URI

(E) Access Token

(w/ Optional Refresh Token)

Figure 3: Authorization Code OAuth Flow

2.2.2 OAuth and User Privacy

One of the main reasons behind OAuth was to increase user privacy by separating the

role of users from that of third party applications. OAuth uses the concept of Access To-

kens, where a token denotes a set of credentials granted to third party applications by the

resource owners [52]. This avoids the need for users to sharetheir private credentials such

as their username & password. It also allows users to revoke access to a specific third party

application by revoking its Access Token.

OAuth 2.0 allows third party applications to request a set ofpermissions via thescope

attribute, and for users to grant/deny such requests. If a user grants a third party applica-

tion’s request, then an Access Token (denoting thescope) is issued for that application,

hence granting it the scope of permissions requested. Thescope attribute represents the

set of permissions requested by third party applications, and is our main focus in this work.

In the authorization code OAuth flow seen in figure 3, thescope parameter is part of

the request URI that is generated by third party applications (Step “(A)” in figure 3). The

19

scope is a list of space-delimited strings, each string mapped to acertain permission

or access level. For example, the FriendCameo application requests permission to post

to a user’s Facebook feed/wall, to log in to Facebook chat, toaccess her email address,

and to check her friend’s online/offline presence. FriendCameo requests these permis-

sions with ascope attribute value of “publish stream, xmpp login, email,

friends online presence”. The scope value becomes part of the OAuth request

URI sent to the authorization server (Facebook’s OAuth implementation uses commas

rather than spaces to separate each requested permission).Step “(B)” of figure 3 is where

users grant/deny the requestedscope value.

2.3 Collaborative Filtering in Recommendation Systems

Recommendation systems are systems that try to assist usersin evaluating and making

decisions on items by providing them opinions and prediction values as a set of recommen-

dations [55]. These set of recommendations are usually based on other people’s opinions

and the potential relevance of items to a target user. The first recommender system Tapestry

[19], followed the approach of “Collaborative Filtering” in which users collaborate towards

filtering documents via their individual reactions after reading certain documents. Since

then, the “Collaborative Filtering” approach has been widely adopted and is accepted as a

highly successful technique in recommender systems [38, 45, 39, 63].

In a context of access control and user privacy, items in a collaborative filtering model

can be mapped to individual privacy attributes or permissions. Users have to make deci-

sions on privacy attributes, i.e. grant them to third party applications or not. This is similar

to other recommendation systems in which users make decisions on items, e.g. to rent or

20

not rent a certain movie. Users can benefit from recommendations on privacy attributes

which are based on the collaborative decisions of all users.Similarly, users benefit from

movie ratings in making their decision to rent a movie.

2.4 Third Party Browser Extensions

Third party browser extensions are widely used within majorbrowsers such as Firefox,

Chrome, and Safari [50, 66]. Users can enhance their browsing experience by adding

new functionalities or modifying the core browser functionalities. To provide extended

functionaly, extensions request a set of permissions whichhave to be authorized by their

users. We focus on the permission model for Google Chrome extensions, where extensions

request permissions at install time but also have the ability to request optional permissions

after installation.

2.4.1 Chrome Extensions

Chrome extensions are built using a mix of required and optional components. Specif-

ically, a requiredmanifest.json, at least onehtml file (background.html or

popup.html), and other additional resources such as JavaScript files, images, and other

HTML files.

Manifest: Themanifest.json file is a required component for each extension, and

provides information on an extension’s properties, requested permissions, and other at-

tributes. In this paper, we focus on thepermissions,plugins, andcontent scripts

properties within the manifest. These are properties related to the privacy of the user when

using third party extensions.

Background Page: An optional HTML page that many extensionsuse for managing

21

background activities. This is used by extensions that needto stay active at all times or be

able to perform continuous tasks. Our proposed framework targets background pages when

adapting third party extensions to our model.

Content Scripts: These are scripts that run within the context of a webpage that exten-

sions want to interact with. That is, the content script can read and modify a webpage

and pass messages back to its parent extension. An example extension that uses content

scripts is the Google Dictionary extension which shows a popup with the description of

a selected word within a webpage. Extensions declare the hosts targeted by their content

scripts within themanifest.json. Note that extensions are also able to programmat-

ically inject custom scripts into webpages using thechrome.tabs.executeScript

API.

NPAPI Plugins: For purposes of supporting legacy code, Chrome allows for embedding

NPAPI plugins within newly developed extensions. NPAPI plugins allow for executing na-

tive code, i.e. calling native binary code from within an extension’s JavaScript. This gives

an extension user level access to the user’s machine. Such extensions, if compromised,

could highly risk the user’s privacy. iMacros [29] is a popular extension that uses NPAPI

plugins to store a user’s recorded macros on to the the file system.

2.5 SELinux Policies

SELinux policies are considered quite difficult to manage due to the granular level of

controls they provide [70, 44, 34]. Even though this is true,an SELinux policy at its core

is no different than other access control policies in which aset of rules are introduced to

enforce and achieve an overall security goal. A typical access control policy rule is built

22

around asubjectwhich is granted certainactionson a certainobject. For example, John

(subject) is allowed to play (action) all mp3 files (object) on a system. The same model is

applied in SELinux policy rules but with more elaborate and fine-grained levels of control.

SELinux labels each resource, such as files and processes within an SELinux-enabled sys-

tem with asecurity context. A security context is a label that usually incorporates three

fields: 1) SELinux User, 2) Role, and 3) Type. Our focus is on the “Type”, which repre-

sents the core of access control rules that determine whatsubject-typeshave what accesses

on whichobject-types. Object-types are defined to group file objects, whereas subject-

types are defined for processes. Objects that fall under the same object-type, are similar

in which subjects access them. Subjects or processes that are under the same subject-

type, are similar in which objects or files they access. An example of an object-type is the

user_home_t type, which is used to group files owned by a user and reside in his/her

home directory. Grouping here, is achieved by setting the type within each file’s security

context touser_home_t. An example subject-type is thehttpd_t type, which belongs

to the Apache HTTP server process.

We also focus on Access Vector (AV)allow rules within an SELinux policy. AVallow

rules are responsible for allowing accesses between types.A typical AV allow rule specifies

how a subject-type is allowed to interact with an object-type. The building blocks of any

AV allow rule are the following:

- Subject-type: The subject of the access control rule whichis granted certain accesses.

- Object-type: The object or resource to be accessible by thesubject of this rule.

- Object-class: Each object within SELinux falls under a certain class (object-class).

23

Each object-class has a corresponding set of applicable actions (permissions). For

example,file anddir are object-classes that respectively correspond to files and di-

rectories within a system. Having object-classes allows for easier management of

permissions on objects. For example, areadpermission has a different interpretation

when applied to files vs. directories, hence having an associated permission set for

each object-class allows for easier interpretation of the intended permission, i.e.read

on object-classfile is not the same asreadon object-classdir.

- Permissions: For each object-class there is an associatedset of permissions, i.e. a set

of actions that the subject can take on the object. For example, thefile class has the

permissionsread, write, create, renamean so forth.

Following is an example AV allow rule written in the SELinux AV rule syntax:

allow httpd_t httpd_log_files_t : file {read create}

this reads as: allow the subject-typehttpd_t to read and createfiles of object-type

httpd_log_files_t. Or in a more readable format this reads: Allow the Apache

HTTP process to read and create its log files.

2.5.1 Custom SELinux Policy Modules

Administrators (admins) are frequently required to write custom policy modules for new

services and applications that are installed onto a Linux system. Such modules contain a set

of new policy rules that are incorporated into the existing SELinux policy to allow the new

services to function properly. Given the nature of SELinux policies in respect to the large

number of types and rules they contain, admins rely on policytools [32, 27] for generating

new policy rules that can be used to adapt new services.

24

audit2allow [32] and SEEdit’saudit2spdl[74] are two of the most common tools for

generating new policy rules based on audit logs. It is then the admin’s responsibility to

either add these new rules to the existing policy directly, or tweak them before hand.

CHAPTER 3: ADAPTIVE REORDERING & CLUSTER-BASED FRAMEWORK FOR

EFFICIENT XACML POLICY EVALUATION

The adoption of XACML as the standard for specifying access control policies for var-

ious applications, especially web services is vastly increasing. This calls for high perfor-

mance XACML policy evaluation engines. A policy evaluationengine can easily become

a bottleneck when enforcing XACML policies with a large number of rules. We propose

an adaptive approach for XACML policy optimization. We apply a clustering technique to

policy sets based on the K-means algorithm. In addition to clustering we find that, since

a policy set has a variable number of policies and a policy hasa variable number of rules,

their ordering is important for efficient execution. By clustering policy sets and reordering

policies and rules in a policy set and policies respectively, we formulated and solved the

optimal policy execution problem. The proposed clusteringtechnique categorizes policies

and rules within a policy set and policy respectively in respect to target subjects. When

a request is received, it is redirected to applicable policies and rules that correspond to its

subjects; hence, avoiding unnecessary evaluations from occurring. We also propose a us-

age based framework that computes access request statistics to dynamically optimize the

ordering access control to policies within a policy set and rules within a policy. Reordering

is applied to categorized policies and rules from our proposed clustering technique.

26

3.1 Related Work

Much research has been done on optimizing XACML policy evaluation. In [40], Liu et

al. present one of the most interesting proposals on optimization of XACML policies so far.

Liu et al, focus on improving performance by numericalizingand normalizing XACML

Policies. The numericalization is used to convert the string policies into numbers as nu-

merical comparison is more efficient. Further, normalized policies are converted into a flat

policy structure. In doing this, the authors replace the different rule-combining algorithms

with only one, viz. First-Applicable. They then proceed to convert the numericalized,

normalized policies into tree data structures for efficientpolicy evaluation.

Miseldine [46] proposes to achieve policy optimization by minimizing the average cost

of finding a match at the rule level the target level and the policy level. The work assumes

no changes to the XACML specification, in that the Sun’s XACMLimplementation is

not altered. Miseldine approaches this problem by usingpolicy configurations. A policy

configuration is the relationship of policy and rule targetsto members of the set of rules

R, the set of subjects S and the set of actions A. Combinationsof sets are sought such that

policy targets are formed from S.R, R.A or S.A .

Kolovski [37] formalizes XACML policies using descriptionlogics (DL), and exploits

existing DL verifiers to conduct policy verification. Their policy verification framework

can detect redundant XACML rules. The idea of removing redundant policies is interesting

and may be useful to improve evaluation times. However, it isyet to be validated whether

the improvement will be worth the time needed to remove redundant policies, and how

significant the overall improvement would be.

27

One related area where similar optimization techniques areoften explored is Firewall

Filtering [23, 22]. In this respect, our work on optimization of XACML policies shares

some similarities to the optimization of firewall filtering approaches. Firewall optimization

is different from that of XACML policy optimization in that amajor portion of the traf-

fic packets match a small subset of the firewall rules, and the same distribution of traffic

is maintained over a significant period of time. This skewness is not experienced in the

incoming requests for an XACML policy. Also note that firewall rules have an order of

precedence defined, while rules in an XACML policy do not. These two properties of fire-

wall rules allow the authors to prove in [23] and [22] that theoptimal firewall rule ordering

problem is NP-Complete. Despite these differences betweenfirewall filtering optimization

and optimization of XACML policies, we can still draw from the body of work on firewalls,

specifically from [23].

3.2 Policy and Rule Reordering Framework

When a web server needs to enforce an XACML policy with a largenumber of rules, its

XACML policy evaluation engine may easily become the performance bottleneck for the

server. To enable an XACML policy evaluation engine to process simultaneous requests

of large quantities in real time, especially in face of a burst volume of requests, an effi-

cient XACML policy evaluation engine is necessary. In such environments the requests’

distribution is dynamic in terms of volume, types and type ofrequesters. Motivated by

such observation, we develop an adaptive framework that dynamically determines the best

ordering according to the incoming requests and the recently received history of requests

and executions.

28

3.2.1 Execution Vector and Policy Permutation

In what follows for the sake of presentation we focus on policy permutation where a

similar approach is adopted for PolicySet permutation. We define a policy permutation as

follows:

Definition 5. (Policy Permutation)Given a policyP with a rule setP.R = {r1, . . . , rn},

a policy permutationπ is a policyPπ generated by the following procedure:

(0) Pπ.R = {}, Pπ.id = P.id, Pπ.t = P.t, andPπ.RC = P.RC.

(1) P ′ is a copy of P.

(2) Select a random ruleri from P ′ and appendri to the end ofPπ.

(3) Repeat step2 until P ′ is empty.

Policy permutation may alter the correctness of a policy, and result in different evalua-

tions for a same set of requests. We are interested in policy permutations that do not alter

the policy evaluation results for any request.

Definition 6. (Safe Policy Permutation)A safe policy permutationπ of a policyP is safe

iff all requests permitted (denied) by the permuted policyPπ are also permitted (denied) by

P .

We assume all requests are well formed such that the policy evaluation returns PERMIT

or DENY by the PDP. Using such an assumption, we provide the below theorem:

Theorem 0.1. Safe Permit (Deny) Overrides Permutation. A policy P having a rule

combining algorithmP.RC set to Permit-Overrides or Deny-Overrides is safe with respect

to all possible policy permutations.

29

Proof. The semantics of the permit overrides is that if any rule evaluates to permit then

the final authorization decision is permit. Assuming each rule returns either permit or deny

then the policy evaluation of a policyP , with a permit overrides rule combing algorithm

is the disjunction of all the rule results represented by:E(P) = E(r1) ∨ · · · ∨ E(rn).

The disjunction operator is commutative wherea ∨ b = b ∨ a, and associative where

(a ∨ b) ∨ c = a ∨ (b ∨ c), thus the evaluation of the policyP and any permutationPπ are

equalE(P) = E(Pπ). The deny override follows similar semantics and follows a similar

proof.

Using Theorem 0.1, policies with permit override or deny override rule combining al-

gorithms can be permuted without affecting the policy semantics. This does not hold for

other rule combining algorithms such as First-Applicable.We focus our discussion on per-

mit and deny override combining algorithms for reordering optimization. As discussed in

the following sections, policy based categorization is independent of the rule combining

algorithm used.

Given a policy permutationπ and a given requestq, a subset of rules is of relevance. We

represent an ordering of such rules as theexecution vector.

Definition 7. (Execution vector)Γ = [r1, . . . , rn] is the execution vector representing

the set of applicable rules, where ruleri is executed before ruleri+1. π(i) refers to the

position for ruleri in execution vector.

According to Theorem 1, any policy execution vector for a policy P having permit over-

rides rule combining algorithm will evaluate to the same effect asP , the challenge is to

evaluate the execution vector that will provide the lowest latency. Hence, we need to define

30

the rule weights in order to present our optimal rule ordering approach.

3.2.2 Computation of Rule Weights

Our approach relies on statistics and metrics collected as PDP receives requests. Statis-

tics are collected at two separate levels:policy andrule level. At the policy level, we are

interested in understanding how often a policy applies, andby which class of users. At

the rule level, it is important to identify the class of efficient execution vectors. In order to

collect meaningful metrics, we assign to each rule (policy)weights that reflect the domi-

nance of this rule in the requests. The weights are based on the PDP returned values, and

constructed based on the 1) frequency and the 2) complexity of the rule (policy).

During a given time interval the number of times a policyPi or a rulerj gets evaluated is

referred to as the hit frequency. We refer to the hit frequency by f and use the dot notation

to refer to policy(Pi.f) and rule(rj.f) hit frequency. Statistics with respect to the hit

frequency are accumulated as follows:

• Policy (Rule) Permit Ratio:Records the ratio between the number of times a policy

(rule) returns a permit with respect to the number of times a policy (rule) gets evalu-

ated, wherePi.p andrj.p represent the policy and rule permit ratios respectively.

• Policy (Rule) Deny Ratio:Records the ratio between the number of times a policy

(rule) returns a deny with respect to the number of times a policy (rule) gets evaluated.

WherePi.d andrj.d represent the policy and rule deny ratios respectively.

• Policy (Rule) Hit Ratio: Records the ratio between the number of times a policy

(rule) is applicable with respect to the number of times a policy (rule) gets evaluated.

WherePi.a andrj .a represent the policy and rule hit ratios respectively.

31

Figure 4: Log Based XACML Policy Evaluation Framework

Note that all the above statistics are easily derived from the XACML execution log (see

Figure 4). In addition to the rule evaluation statistics we also consider the rule compu-

tational complexity. Rules vary from simple conditions to more complicated statements

that require the parsing of an XML document or querying a database. The rule complexity

metric is related to the number of operations required to execute the rule, we compute it

as the number of boolean atomic conditions appearing in a rule, both at target and at the

condition element. Letn(t) denote the number of conditions in the Target element (de-

noted ast according to Def. 3), and letn(c) be the number of conditions in the Condition

elementc. XACML supports over 100 standard functions that could be used in the boolean

conditions, for example theBelong to. We assign a costmi to each standard function

stdi appearing in the rule.mi is computed by estimating the average execution time of the

function. The simple atomic boolean conditions are assigned a constant costk. For a rule

rj the complexity metric is given by:

Ej = k ∗ (n(rj.t) + n(rj.c)) +
∑

stdi∈rj

mi

wherestdi represents a uniquely identified standard function appearing in rj . Using both

32

the accumulated rule statistics and the complexity metric for a rulerj we compute the rule

cost as follows:

cj = β ∗ Ej + α ∗ Fj

Here,β andα are weights that allow system administrators to tune the computation cost,

based on the local constraints, such as the available processing power and network band-

width.

The rule cost is designed to represent the cost of computing arule, the complexity metric

Ej easily represents the rule cost, however the other component is based on the rule’s

accumulated statisticsFj. The value ofFj is based on the rule combining algorithm, for

example if a rule combining algorithm is Permit-Overrides then the metricFj is based on

the decreasing function with respect to the rule permit ratio (rj .p) or an increasing function

with respect to the rule deny ratio (rj .d). Intuitively, this implies that the rules need to be

reordered such that for a policy with the permit overrides rule combining algorithm, the

rule rj with the lowestcj is to be evaluated first.

3.2.3 Optimal Rule Reordering

Using the rule cost metrics we present our optimal rule reordering problem. Given a

policy (Pi), the optimal request execution problem (REP) is to find an execution sequence

that requires the minimum number of rule evaluations. We assume that rules within policies

are evaluated sequentially. The policyPi, composed ofn rules{r1, . . . , rn}, whereπ(j)

refers to the position (depth) for rulerj in the policy execution vector. The cost associated

with rule rj as computed in Section 3.2.2 is referred to ascj. The expected cost (i.e.,

33

average search length) for a given permutationπ is given by:

Φi =

n
∑

j=1

cjπ(j)

The main challenge is to compute the optimal policy permutation π that will generate the

minimum expected policy execution cost. Additionally, among the possibly optimalπ, we

need to ensure the policy permutation to be safe, as defined inDefinition 6. By computing

Φi we are able to generate a cost metric for each policyPi.

A policy setPS is composed of a set of policies{P1, . . . , Pm}. We assume the policies

are executed sequentially. Using the minimum policy expected costΦi, and the collected

policy evaluation statistics, we compute the policy set execution sequence. The position

of policy Pi in the policy set execution sequence is referred to byξ(i). The expected cost

(average search length) for a given policy set(PSk) permutationξ is given by:

Ψk =

m
∑

i=1

Φiξ(i)

The costsΦi andΨk are minimized when policies and rules are ordered in ascending order

with respect to their costs [57]. Figure 5, shows the algorithm used at both the policyset

and policy levels.

For example, consider a school database. During certain time periods, the access re-

quests would be more uniform and from the same class of users (e.g. at the beginning of a

semester most requests would be from students needing to register for courses, whereas fac-

ulty requests will be much less), while during other time periods, more heterogeneous set

of requests may be submitted. In section 3.4 of this proposal, we show how our framework

adapts to the different types of requests received and how wecan benefit from policy/rule

34

Algorithm: optimize policyset
Input: Policy Set PS = {P1, . . . , Pm},
Output: Optimal Policy Set Permutation PS∗

1: if PS.PC = Permit-Overrides or Deny-Overrides
2: PS∗ ← {}
3: for each Pi ∈ PS
4: P ∗

i ← optimize policy(Pi)
5: if PS.alg = Permit-Overrides
6: P ∗

i .c = α ∗ P ∗

i .Φ+ β ∗ Pi.p−1

7: elseif PS.alg = Deny-Overrides
8: P ∗

i .c = α ∗ P ∗

i .Φ+ β ∗ Pi.d−1

9: PS∗.insert(P ∗

i) //Priority Queue on P ∗

i .c
10: return PS∗

11: return PS

Algorithm: optimize policy
Input: Policy P = {r1, . . . , rn},
Output: Optimal Policy Permutation P ∗

1: if P.RC = Permit-Overrides or Deny-Overrides
2: P ∗ ← {}
3: for each rj ∈ P
4: Ej = k ∗ (n(rj .t+ rj .c)) +

∑
stdi∈rj

mi

5: if P.RC = Permit-Overrides
6: Fj = rj .p−1

7: elseif P.RC = Deny-Overrides
8: Fj = rj .d

−1

9: cj = β ∗ Ej + α ∗ Fj

10: P ∗.insert(rj) //Priority Queue on cj
11: P ∗.Φ =

∑n
j=1

cjπ(j)
12: return P ∗

13: return P

Figure 5: Optimal PolicySet and Policy Reordering

reordering.

Weights can be updated according to two different strategies: 1) periodically, 2) based

on the lastρ received requests. In the first case, we update the weight values using the

latest statistics. New execution vectors are constructed using fresh rule weights in order

to boost up the hit performance close to its optimum level. The update period should be

based on the predictable incoming request (e.g., certain months of the year) flow changes.

In the latter case, the optimal execution vectors are constructed based on the computed

rule weights. The incoming access requests are then processed according to the ordering

determined. Intuitively, the maximal reduction is obtained when the incoming requests

perfectly match the requests’ distribution. Notice that more than one execution vector

could be optimal and safe. However, since not all rules have the same complexity, different

35

execution vectors may sensibly influence the overall evaluation time, even if a safe and

efficient policy permutation is found.

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13

P1 P2 P3

PS

sa sb all sc sa,sb sb se sd sa sd se all all

(a) PolicySetPS

PS

r1
sa

r4
all

r5
sa,sb

r10
sa

r13
all

r7
all

P1 P2 P3

(b) V iew(PS, sa)

PS

r2
sb

r4
all

r5
sa,sb

r6
sb

r13
all

r7
all

P1 P2 P3

(c) V iew(PS, sb)

P2

PS

r4
all

r3
sc

r13
all

r7
all

P1 P3

(d) V iew(PS, sc)

r4 r7 r8 r11 r13

PS

all sd sd all all

P1 P2 P3

(e) V iew(PS, sd)

r4 r7 r9 r12 r13

PS

all se se all all

P1 P2 P3

(f) V iew(PS, se)

Figure 6: Policy Set and Views

3.3 Categorization Based Optimization

The optimization problem minimizes the average request evaluation time. This approach

is ideal if the policy requests follow a uniform statistic. However, this approach is unlikely

to be satisfactory in scenarios where the requests’ distribution is dynamic in terms of vol-

ume and type of requesters. If we solely rely on reordering, assuming a role based access

control (RBAC) system of two roles, saystudentandfaculty, where there are on average

100 student requests for every faculty request, the computed statistics will be guided by the

student requests. As such, the optimization problem presented above will favor the student

role. Reordering rules and policies in these circumstancesis not sufficient, as the computa-

tional cost will not be given by the evaluation of the rules themselves, rather it will heavily

depend on the time spent on finding the applicable policies tothe given request.

Hence, in order to further improve the efficiency of the rule reordering, we resort to clus-

36

tering the policies. Building on execution vectors, an intuitive mechanism is to categorize

the policies based on the subjects. Starting from a set ofL[S] clusters, whereL[S] is the

number of subjects inS, the goal is first to reduce the number of categories in order to

allow the reordering to have a considerable effect on the execution time. Second, to reduce

the memory footprint needed for caching the categories. When the categorization is done

on a per-subject basis, to record an improvement in the execution time the policies must be

adequately large. This happens because, when there is a category for each subject, there is

essentially a unique execution vector for that subject. When large policies are evaluated,

the categorization helps provide a good match for the execution vector and hence fewer

rules are evaluated, thereby improving the evaluation time. In case of small policies, to

make categorization effective, we need to decrease the number of categories to be searched

in order to find the execution vector. In order to resolve thisissue, we resort to further clus-

tering the requests. Figure 6, shows a PolicySet and the different applicable views based

on the involved subject, where each view could serve as a subject based category.

To achieve these results, we propose adopting an algorithm based on theK-Means clus-

tering method [71]. Generally speaking, theK-Means algorithm is used to clusterm ob-

jects based on attributes intok partitions,k < m. Each cluster consists of a “center” around

which individual elements of the data set being clustered are grouped together. This group-

ing is done based on some measure of similarity to the other elements in that cluster. In

our domain, the number of clustersNc and the centers of these clusters, i.e.Nc subjects are

chosen at random from the set of subjectsS. The set of centers (or clusters) is referred to

asCs. Each subjectSi ∈ S is considered, and its similarityDi,k is calculated with respect

to each subjectSk ∈ Cs in the different clusters.Si will be added to that cluster where the

37

similarityDi,k is maximum. The strength of this simple algorithm lies in theway the sim-

ilarity metricDi,k is calculated. The similarity metric aims to cluster together the subjects

that share a large number of policies which are applicable toall of them. LetPi represents

the set of policies applicable to a given subjectSi and letL[Pi] be the number of policies

applicable to that subject. The number of policies shared between two subjects,Si andSk

is given byL[Pi ∩ Pk]. The fraction of the number of policies shared between the two

subjects that are a part ofL[Pi] is given byΘi,k, where:

Θi,k =
L[Pi ∩ Pk]

L[Pi]

The similarity metricDi,k between subjectSi andSk is calculated as followsDi,k = Θi,k+

Θk,i. The subjectSi is grouped with the cluster centering onSk whereDi,k is maximum.

This ensures that only those subjects which have a large number of policies in common are

grouped together. In general, the clustering is more effective when the number of shared

policies is large, i.e. whenL[Pi ∩ Pk] is large. The number of clustersNc should be

chosen carefully. The larger the valueNc, the lesser visible will the effect of reordering be.

This is more evident when we consider the fact that asNc approachesL[S], we essentially

experience the initial effect of havingL[S] unique categories for each of the subjects. On

the other hand, shouldNc be too small, the improvement obtained by categorization is

completely lost, because asNc approaches ’1’, all the subjects belong to the same cluster.

In other words, there are no clusters at all.

This algorithm allows us to tune our optimization approach such that we can either max-

imize the improvement due to clustering or due to reordering, or both, based on the specific

context.

38

3.4 Experimental Results

Our experiments were conducted on both synthetic policies and real world-based poli-

cies. The synthetic polices were divided into two sets of test suites. The first test suite

deals with XACML policy sets where subjects have a small number of applicable rules.

The second suite investigates policy sets where subjects have a large number of applicable

rules, and will show the significant effect of applying our reordering technique to large

policy sets. The real world-based policy sets are policies built using existing data sets, and

properly modified to fit our framework without changing the semantics -or the structure- of

the policies. Precisely, we tested the policies by Fisler etal. [17], which they used for their

Margrave tool. Our experiments ensure that all policies areloaded into memory before ex-

ecuting any request evaluations. This ensures that evaluation times are not skewed by any

policy loading time. All tests were conducted using 100,000randomly generated XACML

requests. All requests have a single value for the subject, resource, and action.

Our experimental process includes two main stages; First, the setup stage and, Second,

the request evaluations. The setup stage includes three sub-stages:

S1. Categorization of the experimental policy sets. Categorization is performed as ex-

plained in Section 3.3. The number of categories used for each policy set ranges

fromN toN/10, whereN is the number of unique subjects within a policy set,

S2. Training stage that collects the results of request evaluations (permit, deny, not-

applicable, indeterminate) subsequently used for the reordering stage,

S3. Reordering policies within the policy set and all rules within each policy according

to the statistics we gathered during the training stage.

39

The setup stage needs to be executed only once, however the sub-stages (S2) and (S3)

could be executed repeatedly to retrain and reorder the policies and rules to achieve better

performance. For our tests, we chose not to repeat the sub-stages, and thus measure the

performance in the worst case scenario. The results of categorization and reordering are

cached in memory. During the second stage the access requests are actually evaluated,

using the ordering and categories set up in the previous stage. The processing time is the

time needed to evaluate a request against a policy subjectedto our setup stage plus the time

to make a decision on that request. The preprocessing time isthe time needed to complete

the setup stage.

3.4.1 Real World-Based policies

The experiments on real world-based policies used the policy sets by Fisler et al. [17],

specifically CodeA, CodeB, CodeC, & CodeD. We also added another policy that we call

CodeDMod, which is an enlarged version of the policy CodeD. This policy set contains 11

policies and 75 rules in total. We include this policy in order to evaluate the performance

of our framework with larger real world policies. As highlighted by [36], it is difficult to

access large real world policies that are publicly available, due to the confidential informa-

tion these policies typically carry. Another issue highlighted by other authors [28] is the

fact that XACML policies tend to get larger and more complicated with time, hence we

introduced CodeDMod to represent such a large policy.

The results of the experiments done on the real world-based policies are summarized as

follows: In all cases we obtain at least a 78% performance improvement over Sun’s PDP.

Despite the nature of our framework which best suits large policies, our optimization engine

40

still provides a significant performance boost in the case ofsmaller policies, e.g. CodeA is

a policy set with only 2 rules. The policy CodeDMod which is a much larger policy, shows

a performance boost of over 91% over Sun’s PDP. We also noticethe difference between

using categorization only and the effect of adding reordering to the framework. Reordering

boosts the evaluation performance up to 22% over using categorization only. This is no-

ticeable in the case of CodeDMod where reordering has an effect on its 11 policies’ and 75

rules’ order. In the smaller policy sets CodeA, CodeB, CodeC, & CodeD, reordering does

not provide a big performance boost over categorization only, but still gives up to 8.5%

better performance in the case of CodeA.

3.4.2 Synthetic Policies

We test our framework against large synthetic policies to show the scalability of the

framework and the high performance that it provides in the case of very large policies.

We divide the synthetic policies into two test suites, each of which has policy sets of sizes

ranging from 400 to 4000 rules. The following sections explain the test suites’ results in

detail.

Test Suite I Results: This test suite deals with policy sets where, each subject has a few

number of applicable rules. This test case is used to emphasize the effect of our catego-

rization technique, whereas our reordering technique may have a minor effect. This test

suite uses policy sets of 4000, 2000, 1000, and 400 rules. Foreach policy set, rules are

divided evenly among 100 policies. For the sake of testing thePermit Overridescombining

algorithm is used for all the test policy sets and policies. Using this test suite our approach

is 1638 times faster than the Sun PDP.

41

0 500 1000 1500 2000 2500 3000
600

650

700

750

800

850

900

950

1000

Number of Categories

T
o
ta

l
P

ro
c
e
s
s
in

g
 t
im

e
 (

m
s
)

4000 Rule Policy

2000 Rule Policy

1000 Rule Policy

400 Rule Policy

(a) Effect of categorization on evaluation
time w.r.t # of categories used with no re-
ordering.

0 500 1000 1500 2000 2500 3000
600

650

700

750

800

850

900

950

1000

Number of Categories

T
o
ta

l
P

ro
c
e
s
s
in

g
 t
im

e
 (

m
s
)

4000 Rule Policy

2000 Rule Policy

1000 Rule Policy

400 Rule Policy

(b) Effect of categorization and reordering
on evaluation time w.r.t # categories used.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

2

10
3

10
4

10
5

10
6

10
7

Number of Rules

T
o

ta
l
P

ro
c
e

s
s
in

g
 t

im
e

 (
m

s
)

Sun PDP

Categorization + Reordering

(c) Evaluation times comparison between
our approach and Sun PDP.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3
x 10

4

P
re

p
ro

c
e

s
s
in

g
 t

im
e

 (
m

s
)

Number of Rules

(d) Preprocessing times including catego-
rization and reordering.

Figure 7: Experimental Results for Test Suite 1.

Results with Categorization Only: We carried out a first set of tests only applying the

categorization technique with no reordering. The number ofcategories used for each policy

set was varied fromN to N/10, whereN is the number of unique subjects within a policy

set. The preprocessing time for this approach is the time needed for categorizing a policy

set (sub-stage S1.). When usingN categories, results show that preprocessing a policy set

of 100 policies and 4000 rules takes about 25138 ms and a policy set of 100 policies and

400 rules takes about 913 ms. WhenN/10 categories are used, preprocessing times are

23464 ms and 487 ms for the 4000-rule and 400-rule policy setsrespectively.

42

The experimental results demonstrate that the total processing times for our approach

is at least 172 times faster than Sun’s PDP. For a policy set of100 policies and 4000

rules while usingN/10 categories, it takes 973.1 ms to evaluate 100,000 random requests,

whereas Sun’s PDP takes about 1152460 ms. A policy set with 400 rules takes 760.2 ms

and Sun’s PDP takes about 130421.3 ms. WhenN categories are used, total processing

times are 714.6 ms and 624.6 ms for the 4000-rule and 400-rulepolicy sets respectively.

Figure 7(a) shows the complete results when using categorization alone with respect to the

number of categories used, which range from 0 to 3000.

Results with Categorization plus Reordering: For this set of tests, we applied the catego-

rization technique, followed by our reordering technique.The number of categories used

also range fromN toN/10. We make use of all sub-stages within the setup stage. Prepro-

cessing time in this case is the time for both categorizationand reordering of rules. The

results for this set of tests are reported in Figure 7(b). Theexperimental results shows that

the total processing times for our approach is at least 171 times faster than Sun’s PDP. For

a policy set of 100 policies and 4000 rules while usingN/10 categories, it takes 967.5

ms to evaluate 100,000 random requests, whereas Sun’s PDP takes about 1152460 ms. A

policy set with 400 rules takes 763 ms and Sun’s PDP takes about 130421.3 ms. When

N categories are used, total processing times are 703.7 ms and616.2 ms for the 4000-rule

and 400-rule policy sets respectively. Figure 7(b) shows our complete results when using

categorization plus reordering with respect to the number of categories used. Figure 7(c)

is a comparison between our approach with categorization plus reordering and Sun’s PDP.

The plot representing our approach is an average of the best and worst case we obtained

43

from using different numbers of categories. The results obtained by this set of tests report

a very slight performance improvement due to the reordering.

Reordering rules is not a significant factor to performance because of the low number of

rules applicable to each subject. Reordering’s effect can be better appreciated for policy

sets with many rules applicable to each subject.

With regards to preprocessing, our results show that preprocessing time is proportional

to the number of rules, as reported in Figure 7(d). Preprocessing a policy set of 100 policies

and 4000 rules while usingN categories takes about 25158 ms, and a policy set with 100

policies and 400 rules takes about 925 ms. WhenN/10 categories are used, preprocessing

times are lower, 23472 ms and 491 ms for the 4000-rule and 400-rule policy sets respec-

tively. Our tests also show that the preprocessing times areproportional to the number of

categories used. More categories lead to higher preprocessing times due to the extra pro-

cessing needed to match similar subjects to a common category. Next, we present a second

test suite highlighting the advantages of the reordering effect.

Test Suite II Results: We generated a second test suite that could allow us to observe the

impact of reordering on performance. This suite simulates ascenario where each subject

within a policy set is guaranteed to have a significant numberof applicable rules. This case

might occur when a specific subject has high privileges and has access to a high number of

resources. In this case the subject will have a high number ofrules permitting him access

to these resources.

When reordering happens in such a scenario, there will be no need to go over all rules

within a subject’s category. As expected, this test suite showed a significant performance

44

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3
x 10

4

Number of Rules

P
re

pr
oc

es
si

ng
 ti

m
e

(m
s)

Categorization + Reordering

(a) Preprocessing times (categorization + re-
ordering).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

2

10
3

10
4

10
5

10
6

Number of Rules

T
o

ta
l
P

ro
c
e

s
s
in

g
 t

im
e

 (
m

s
)

Sun PDP

Categorization + Reordering

Categorization Only

(b) Sun PDP evaluation times compared to
categorization only and categorization + re-
ordering.

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
500

1000

1500

2000

2500

3000

Number of Categories

T
o
ta

l
P

ro
c
e
s
s
in

g
 t

im
e
 (

m
s
)

Categorization + Reordering

Categorization Only

(c) Performance boost from reordering w.r.t
the # of categories using a 4000-rule policy.

Figure 8: Experimental Results for Test Suite 2.

advantage for the categorization plus reordering approachover the categorization only ap-

proach. We used policy sets of 4000, 2000, 1000, and 400 rules(different from the ones

used in first test suite). For each policy set, rules are divided evenly among 100 policies.

Overall, our results for this test suite show that our approach is 949 times faster than Sun’s

PDP engine. Similar to the first test suite, we conducted experiments using categorization

only and categorization with reordering.

Results with Categorization Only: The preprocessing timesfor this case are inline with

the times for the analogous set of tests of the first test suite. Precisely, when usingN

45

categories, preprocessing a policy set of 100 policies and 4000 rules takes about 25397 ms

and a policy set of 100 policies and 400 rules takes about 978 ms. WhenN/10 categories

are used, preprocessing times are 28633 ms and 1075 ms for the4000-rule and 400-rule

policy sets respectively.

As in the previous test case, the results for total processing times show a very significant

improvement in performance over Sun’s PDP. Our results indicate that our mechanism

provides at least 48 times faster evaluation. For a policy set of 100 policies and 4000 rules

while usingN/10 categories, it takes 2437.2 ms to evaluate 100,000 random requests,

whereas Sun’s PDP takes about 851477 ms. A policy set with 400rules takes 2272.2 ms

and Sun’s PDP takes about 120230.3 ms. ForN categories, total processing times are

2517.6 ms and 2242.5 ms for the 4000-rule and 400-rule policysets respectively.

Results with Categorization plus Reordering: Figure 8(a) reports the preprocessing times

for this approach. Our results show that preprocessing a policy set of 100 policies and

4000 rules while usingN categories takes about 25902 ms and a policy set with 100 poli-

cies and 400 rules takes about 1007 ms. WhenN/10 categories are used, preprocessing

times are 31052 ms and 1061 ms for the 4000-rule and 400-rule policy sets respectively.

Although the policies are different, we notice that the gathered times are very similar to

the times recorded for preprocessing the set of policies used for the first test suite (reported

in Figure 7(d)). This observation leads to the conclusion that the preprocessing time is

not influenced by the type of policies used. The preprocessing times are almost negligi-

ble when compared to the highly significant performance improvement in total processing

times over Sun’s PDP, not to mention that preprocessing times correspond to the setup stage

46

of our framework which only occurs once within a policy set’slifetime or upon a client’s

request.

Figure 8(b) compares Sun’s PDP total evaluation times with our results from the second

test suite. The total processing time of our approach is at least 139 times faster than Sun’s

PDP. As shown, for a policy set of 100 policies and 4000 rules while usingN/10 cate-

gories, it takes 842.3 ms to evaluate 100,000 random requests, whereas Sun’s PDP takes

about 851477 ms. A policy set with 400 rules takes 867.5 ms andSun’s PDP takes about

120230.3 ms. WhenN categories are used, total processing times are 897.6 ms and830

ms for the 4000-rule and 400-rule policy sets respectively.

For the 4000-rule policy set used in this test suite, resultsindicate that categorization plus

reordering has a 65.4% performance improvement over using categorization alone. Figure

8(c) shows the performance boost reordering provides with respect to the number of cate-

gorizations used. The figure shows that adding reordering tocategorization provides over

1.6 seconds of an advantage over the use of categorization only.

We notice a slight improvement in performance when the number of categories is re-

duced. This result is explained by the fact that the policy set we used has many rules that

are applicable to all subjects, which means the resulting categories are not much different

from the original categories.

3.4.3 Adaptability of Reordering Approach

Figure 9, demonstrates how our reordering approach adapts to the incoming requests

received by the PDP. As mentioned earlier in the reordering approach, we have a reordering

process that reorders both policies within a PolicySet and rules within all policies. The

47

t_0 t_1 t_2 t_3 t_4 t_5 t_6 t_7 t_8 t_9 t_10
0

1

2

3

4

5

6

7

8

9

10

Reordering Cycles

P
o

lic
y
 O

rd
e

r

P
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

Figure 9: Policy Order and Reordering Cycles

reordering happens according to the number of Permits/Denies a policy or rule triggers.

Figure 9 shows how the order of 10 policies within a PolicySetchanges with respect to

time. The orders of policies ranges from 0 toL[Pi], whereL[Pi] is the number of applicable

policies for subjectSi (The size of a subject’s policy execution vector). Order 0 reflects the

highest ranked policy (the policy most requested). Figure 9shows the policies within a

policy execution vector for a particular subject, in this case subjectS1. It is important to

notice that each reordering cycle (a single reordering process) is dependent on all previous

cycles. In Figure 9,t0 represents the initial time before reordering, andtn represents the

time at whichn reordering cycles have been executed (reordering of policies/rules based

on the evaluation results attn−1, tn−2, . . . , t0). As time passes and more reordering cycles

occur, one can notice how the order of some policies starts tosettle at a certain position.

For instance, if one looks at policyP7, it gets pushed to order 9 att1, this is due to the low

number of Permits/Denies returned by this policy. Whereas if one looks at policyP0, it gets

to order 1 and stays there as it is requested very frequently.PolicyP4 settles aftert7. Other

48

polices settle for a while and then get reordered as the incoming requests might influence

their order positions. The ordering of these policies depends on the incoming requests and

how they trigger the accumulated number of Permits/Denies apolicy evaluates to. Each

subject within a policy set will reflect a similar adaptationprocess to the one in Figure 9,

each of which prioritizes their applicable policies and rules according to the statistics from

previous reordering cycles.

To clarify how the adaptation process would actually occur,let us look into a case sce-

nario e.g. a school. At the beginning of a semester, most access requests would be driven

by students wanting to register for their courses. The adaptation process would move poli-

cies/rules that are applicable to students and favor their incoming requests to the top of

a policy set, which will result in faster evaluation times for such similar future requests.

Within a semester, where most midterms are given, many faculty requests for inserting or

updating student grades will be recorded. In this case, the adaptation process will favor

faculty requests by moving policies/rules within a policy set to the top, and hence favoring

these requests. Whenever there is a flow of similar requests from different subjects within

the school, the policy set will adapt to the best configuration that will result in the best

evaluation results.

Figure 10, demonstrates the average request evaluation times for subjectS1 with respect

to time. As the time proceeds, a number of reordering cycles occur, hence influencing the

order of subjectS1’s policies within its policy execution vector and rules within its rule

execution vector. The reordering process will push the mostrequested policies and rules

that evaluate to Permit/Deny up to the front of the corresponding execution vectors. This

will result in faster evaluation times as depicted by our test results in Figure 10. Note

49

t_0 t_1 t_2 t_3 t_4 t_5 t_6 t_7 t_8 t_9 t_10
1

2

3

4

5

6

7

8

9

10
x 10

6

Reordering Cycles

A
v

er
ag

e
E

v
al

u
at

io
n

 T
im

e
(n

s)

Figure 10: Average Request Evaluation Time and Reordering Cycles.

that the average request evaluation time gradually decreases as more reordering cycles are

executed and thus adapt to the incoming different request trends.

CHAPTER 4: RECOMMENDATION MODELS FOR OPEN AUTHORIZATION

The Open Authorization protocol (OAuth) was introduced as asecure and efficient

method for authorizing third party applications without releasing a user’s access creden-

tials. However, OAuth implementations don’t provide the necessary fine-grained access

control, nor any recommendations i.e. which access controldecisions are most appropri-

ate. We propose an extension to the OAuth 2.0 authorization that enables the provision-

ing of fine-grained authorization recommendations to userswhen granting permissions to

third party applications. We propose a multi-criteria recommendation model that utilizes

application-based, user-based, and category-based collaborative filtering mechanisms. Our

collaborative filtering mechanisms are based on previous user decisions, and application

permission requests to enhance the privacy of the overall site’s user population. We imple-

mented our proposed OAuth extension as a browser extension that allows users to easily

configure their privacy settings at application installation time, provides recommendations

on requested privacy permissions, and collects data regarding user decisions.

4.1 Related Work

Developing usable tools that provide fine-grained control over user private data is an

emerging problem in online platforms especially within social networks [20, 2, 7, 24].

Studies such as the one by Acquisti and Gross [21, 2] indicateuser concern over their

privacy on social networks while most users did not apply strict privacy settings on their

51

online social profiles. This was mostly due to the lack or poorunderstanding of what pri-

vacy controls are available to them. Felt et al. [13] detail anovel solution for protecting

privacy within social networking platforms through the useof an application programming

interface to which independent application owners would agree to adhere to. The approach

requires developers to adopt a privacy proxy instead of utilizing already existing technolo-

gies such as the popular OAuth 2.0 authorization flow. Recently Felt et al. reviewed the

permissions requested by current applications [15]. Whilesome of their findings apply to

the context of Android applications, they confirm that up-front permission requirements

for installation may help APIs achieve their full potentialin a secure fashion, while still be

useful for end-users. Fang and LeFevre’s work asserts the value in providing highly accu-

rate privacy settings with reduced user input [12]. Using real user input, they infer a set of

privacy-preferences using a machine learning approach. While the authors’ study is based

on real users, they do not provide a technique that applies the inferred privacy settings onto

a user’s real online profile. Besmer et al. [6] demonstrated in their research the value of

social navigation cues in prompting users to make informed privacy decisions; where that

research was not concerned with the type of data and arbitrarily assigned a recommended

positive or negative cue for each item, our research is very specifically tied to data types and

our recommender model provides cues that are based on real user privacy decisions. While

much has been researched about the privacy impacts of recommender systems themselves

[56, 53, 8], little research appears to be available for the use of recommender systems in

aiding privacy and security systems. One notable exceptionis in the research of Kelly et

al. [33] where the authors demonstrated the benefit of combining collaboration among a

user population in the suggestion of an individual user’s privacy policy. They also propose

52

an incremental model for optimizing a user’s policy over time. This approach is not op-

timal when dealing with third party applications, that onceinstalled, can harvest a user’s

private social network data. Shehab et al. [61] proposed an access control framework that

allows users to specify the data attributes to share with applications and the degree of speci-

ficity. The framework requires many changes to existing authorization models and requires

developers to go through a cumbersome deployment process.

4.2 Proposed OAuth Flow

We propose an extension to the OAuth 2.0 authorization code flow, by introducing two

new modules into the flow: 1) A Permission Guide that guides users through the requested

permissions, and shows them a set of recommendations on eachof the requested permis-

sions, and 2) A Recommendation Service that retrieves a set of recommendations for the

requested permissions following a collaborative filteringmodel as seen in Section 4.2.2.

End-User

at

Browser

Web

Client

Authorization

Server

(C)

(A6) Client Identifier,

Redirect URI, & New Scope

(B) User authenticates

(C) Authorization Code

(D) Client Credentials,

Authorization Code, &

Redirect URI

(E) Access Token

(w/ Optional Refresh Token)

Permission

Guide

Extension

Recommendation

Service

Extension

(A2) Request URI

+ New Scope

(A3) Permissions

Requested (Scope)

(A5) Show

Recommendations

(A1)

Request URI

(A4) Permission

Recommendations

Figure 11: Proposed OAuth Flow

53

Our OAuth extension focuses on step “(A)” of the authorization code flow in OAuth

2.0 [52]. We revise step “(A)” to become a six stage process asshown in Figure 11 and

explained in the following steps:

A1: The client redirects the browser to the end-user authorization endpoint by initiating a

request URI that includes ascope parameter.

A2: The Permission Guide extension captures thescope value from the request URI and

parses the requested permissions. At this step the extension allows users to choose a subset

of the permissions requested.

A3: The Permission Guide extension requests a set of recommendations on the parsed

permissions. This is achieved by passing the set of permissions to our Recommendation

Service.

A4: The Recommendation Service returns a set of recommendations for the permissions

requested by the client.

A5: Using the set of returned recommendations, the extension presents the permissions

with their respective recommendations in a user friendly manner.

A6: The Permission Guide extension redirects the end-user’s browser to a new request

URI with a new scope (scope’), assuming the user chooses to modify the requested

permissions.

4.2.1 Permission Guide

The Permission Guide is represented by a browser extension that integrates into the au-

thorization process by capturing thescope parameter value within the request URI gen-

erated by a third party application. Once thescope is captured, the extension parses the

54

requested permissions and presents them in a user friendly manner as shown in Figure 16.

A readable label of each requested permission is shown to theend-user e.g. it shows “Face-

book Chat” rather thanxmpp login.

The extension also shows users a set of recommendations for the requested permissions.

For each permission there is a thumbs-up and thumbs-down recommendation value. These

recommendations represent prediction values that we calculate following our model in sec-

tion 4.2.2. These prediction values represent the likeliness of a user to grant or deny a

certain permission based on her previous decisions and on the collaborative decisions of

other users. Users who have not made any decisions yet, are shown recommendations

based on other user decisions.

The extension also allows users to customize the requested permissions by checking or

unchecking individual permissions, where a checked permission is one the user wishes to

grant to the third party application and an unchecked permission is one she wishes to deny

access to. Once a user decides on the permissions she wishes to grant and deny, she sim-

ply needs to click aSet Permissionsbutton on the extension (blue button in Figure 16).

This will trigger the extension to generate a new request URIwith a new scopescope’,

and forward the user’s browser to this new request URI.scope’ will always be a subset

of the original requested scope, i.e.scope’ ⊆ scope. An examplescope’ for the

FriendCameo application could be as follows:

scope’=publish stream

reflecting the user’s desire to allow FriendCameo to post to her feed/wall, but deny it ac-

cess to her email, Facebook chat and friend’s online/offlinepresence. Note that using a

55

subset of the permissions requested could potentially hinder the functionality of a third

party application once installed.

Our Permission Guide extension also collects the user’s decisions on the requested per-

missions, hence allows us to generate a data set of decisionsto be used in our recom-

mendation model explained in section 4.2.2. That is, our Recommendation Service as

seen in Figure 11 will utilize these decisions in making its recommendation predictions.

These decisions are uploaded to our servers once a user sets her desired permissions within

the extension, i.e. clicks theSet Permissionsbutton. The data uploaded to our servers in-

cludes:app id, requested perms, decisions, recommendations, where

theapp id is the application’s unique id which is assigned by the service provider (e.g.

Facebook), therequested perms is the scope of permissions requested by the third

party application, thedecisions are the individual user decisions (grant or deny) on

each of the requested permissions, and therecommendations are the recommendation

values at the time the user made her decisions.

Our goal is to provide a simple user interface for interacting with permission requests,

hence increasing user awareness and providing an easy mechanism for guiding users in

making their decisions.

4.2.2 Recommendation Model

We propose a Recommendation Service component that extendsupon our Permission

Guide extension. LetA, U andP represent the set of applications, users and permissions

respectively. A userui ∈ U can make a decisiondi ∈ {grant, deny} on a permissionpj ∈

P for an applicationak ∈ A. An applicationak which requests permissionsp1, · · · , pm is

56

mapped to a set of decisionsd1, · · · , dm made by the user installingak.

4.2.3 Collaborative Filtering

 a1 a2 . . an

u1 1 ? 0 1 0

u2 ?

. 1

. 1

um 0

0 ? 0 0 1

?

0

0

1

1 ? 0 1 0

? 1 1 0 ?

0 0 ? ? 1

1 0 0 ? ?

0 0 ? ? ?

Applications

U
s
e

rs

decisions

App/User

Similarities

sim (ai , aj)

sim (ui , uj)

 g11 g12 ! g1n

 g21

!

 gm1 gmn

Applications

P
e

rm
is

s
io

n
s

…
!

 g11 g12 ! g1n

 g21

!

 gm1 gmn

Users

P
e

rm
is

s
io

n
s

…
!

G
A

 =

G
U

 =

Recommendations

u
i
 , p

j

r

p
0

p
n

...

Figure 12: Collaborative-based model

Our model follows the multi-criteria recommendation modelwhere user recommenda-

tions are calculated per criterion [38, 3]. The model utilizes the set of permissionsP as

a set of criteria, i.e. each permissionpj ∈ P represents an individual criterion within the

model. The multi-criteria approach fits our model as decisions are made per permission

(criteria) rather than an application as a whole. We model a user’s utility for a given appli-

cation with the user’s decisionsd1, · · · , dm on each individual permissionp1, · · · , pm using

Function 1.

D : Users× Applications→ d1 × · · · × dm (1)

Function 1 represents a user’s overall decision on a certainapplication via the set of deci-

sions made on each individually requested permission. Thatis, a userui makes a decision

di on an applicationak with respect to an individual permission. For each permission pj,

there exists a matrixCpj representing user decisions onpj for each applicationak ∈ A, see

Figure 13. A matrix entrydi with a value of1 denotes a user hasgrantedak the permission

57

pj, whereas a0 denotes adeny. Entries with “?” values denote the user is yet to make

a decision on permissionpj for applicationak. Our model provides recommendations to

users that guide them in making these future decisions. Applications that do not request a

permissionpj have an empty entry inCpj and are handled properly in our implementation.

For example, letp1 = birthday, p2 = email, andp3 = location, where each represents

a single criterion within a three-criteria model. Letu1 = Alice who installed application

a1 that requests access to the permissionsbirthday, email, andlocation. As illustrated in

Figure 13, Alice has granteda1 the permissionsbirthdayand location (d1 = grant, d3 =

grant), whereas deniedemail (d3 = deny). Alice has yet to make a decision ona2 i.e.

a single decision on each requested permission∈ {birthday, email, location}. Our pro-

posed model utilizes the set of decisions for eachCpj , hence providing a recommendation

that fits each criterion.

 a1 a2 . . an

u1 1 ? 0 1 0

u2 ?

. 1

. 1

um 0

0 ? 0 0 1

?

0

0

1

1 ? 0 1 0

? 1 1 0 ?

0 0 ? ? 1

1 0 0 ? ?

0 0 ? ? ?

Applications

U
s
e

rs

p1 : birthday

p2 : email

p3 : location

Figure 13: A three-permission (criteria) model

Figure 12 illustrates our overall collaborative model. Themodel relies on decisions

made by the community users, and utilizes them in building the multi-criteria matricesC

for each permission. By utilizing theC matrices, we generate two probability matrices,GA

andGU , as seen in Figure 12.GA is app-based, whereasGU is user-based.GA captures

58

the probability of a certain application being granted a certain permission, whereasGU

captures the probability of a certain user granting a certain permission.

Figure 14 shows an exampleGA matrix, with a set of applications (a1, a2, a3, a4, a5),

permissions (birthday, email, location, sms, photos) and their corresponding

GA(j, k) values. For example,GA(location, a2) = 0.15, denotes a low probability of the

permissionlocation being granted to applicationa2 by users who installeda2. Our

proposed collaborative model adopts an item-based and user-based collaborative filtering

process. In our model, items are applications, hence we refer to item-based filtering as

application-based filtering. User-based filtering utilizes the user-based probability values

of GU , whereas application-based filtering utilizes the app-based probabilities ofGA as

seen in Figure 12.

 a1 a2 a3 a4 a5

birthday 0.6 0.75 1 0.2 0.3

email 0 0.9 0.25 0.7 0.1

location 1 0.15 0 0.35 0

sms 0 0.4 0 1 0.5

photos 0.2 0 0.6 0.25 0

Applications

P
e

rm
is

s
io

n
s

Figure 14: ExampleGA(j, k) values.

4.2.3.1 Application-based Filtering

Our application-based filtering process relies on the app-based probability values ofGA

shown in Figure 12. Each entryGA(j, k) in GA represents the overall probability of per-

missionpj being granted to applicationak.

To generate recommendations on the requested permissions,we first detect the nearest-

59

neighbors for the target application requesting the permissions. The nearest-neighbors in

app-based filtering are the applications most similar to thetarget application. Collabora-

tive filtering algorithms have mainly been based on one of twopopular similarity measures

namely the Pearson Correlation and Cosine-similarity [25,45]. We measure similarities

between applications using theGA values, and by calculating the Pearson correlation val-

ues between them. Equation 2 represents our application-based similarity measure, which

is the Pearson correlation value between applicationsai andaj , whereP is the set of all

permissions in our system andGA(ai) is the average probability for applicationai being

granted a permission inP.

sim(i, j) =
∑

∀p∈P

(GA(p, i)−GA(ai))(GA(p, j)−GA(aj))

√

∑

∀p∈P

(GA(p, i)−GA(ai))2
∑

∀p∈P

(GA(p, j)−GA(aj))2

(2)

Applications that don’t request a certain permissionpj have aGA(j, i) of zero. Appli-

cations which are similar and highly correlated, are those which request a similar set of

permissions, and have similarGA(j, i) values for each of their requested permissions. For

example, if both applicationsa1 anda2 requested the same set of permissions{p1, p2}, and

they have aGA(p1, a1) = GA(p1, a2) and aGA(p2, a1) = GA(p2, a2), thena1 anda2 are

considered highly correlated and their application-similarity valuesim(i, j) will be close to

1. When predicting recommendation values for permissions of applicationai, we make sure

they are based onai’s nearest neighbors, that is, the set of applications wheresim(ai, aj) is

highest. With application-based filtering, users collaborate towards increasing or decreas-

ing theGA(j, k) values, hence filtering applications according to the willingness of users

60

to grant them certain permissions.

4.2.3.2 User-based Filtering

User-based filtering relies on theGU values, where each entryGU(j, k) in GU represents

the overall probability of permissionpj being granted by a focus useruk. Permission

recommendations in this case are based on the focus user’s nearest-neighbors, that is, the

users most similar to the focus user. Similar to application-based filtering, we use the

Pearson correlation to measure similarities between users. Equation 3 represents our user-

based similarity measure, which in terms is the Pearson correlation value between usersui

anduj, whereGU(ui) is the average probability of userui granting a permission inP.

sim(i, j) =
∑

∀p∈P

(GU(p, i)−GU(ui))(GU(p, j)−GU(uj))

√

∑

∀p∈P

(GU(p, i)−GU(ui))2
∑

∀p∈P

(GU(p, j)−GU(uj))2

(3)

With user-based filtering, a focus userui is given recommendations based on those users

most similar to him/her. Users with more similar probabilities of granting a certain per-

mission will be more similar, hence, potentially reflect a similar willingness to grant/deny

a certain permission.

We use both application-based and user-based filtering to calculate a recommendation

value on permissions requested by applicationai on behalf of userui.

4.2.4 Prediction Model

When a userui, say Alice, wants to install applicationak, we calculate a setRk, where

ri,j ∈ Rk is a prediction value for permissionpj requested byak. ri,j ∈ Rk is a prediction

of how likely Alice would be willing to grantpj to ak.

61

The recommendation valueri,j is based on either our app-based filtering or user-based

filtering approaches. That is, the recommendations are either based onai’s nearest-neighbors

(most similar applications) orui’s nearest-neighbors (most similar users). Equations 4 and

5 show the recommendation value for app-based and user-based filtering respectively. Note

that we calculateri,j for eachpj requested by an applicationak.

ri,j = GA(pj) +

∑

a∈N sim(ak, a) ∗ dj,a
∑

a∈N |sim(ak, a)|
(4)

ri,j = GU(pj) +

∑

u∈N sim(ui, u) ∗ dj,ak
∑

u∈N |sim(ui, u)|
(5)

In Equation 4,GA(pj)) reflects the average probability that permissionpj is granted

over all applications inA, and is easily calculated via it’s corresponding row in theGA

matrix. Similarly, in Equation 5,GU(pj) represents the average probability that permission

pj is granted over all users inU , and is calculated via it’s corresponding row in theGU

matrix. Note that bothGA(pj)) andGU(pj) are driven by all users within our system. In

both equations,N represents the target application’s nearest-neighbors and the focus user’s

nearest-neighbors respectively. The size ofN depends on the similarity measures used, and

can be adjusted to follow a preset threshold within the implementation, e.g. only include

neighbors with a similarity above0.8.

Finally, dj,a in Equation 4 representsui’s (focus user) previous decisions on permission

pj for each applicationa ∈ N . In Equation 5,dj,ak is a neighboring user’s decision onpj

for the focus applicationak. Note that thesim(ui, u) value will either increase or decrease

the effect of a neighboring user’s decision, based on how similar the neighboring user is

62

to the focus user. Bothdj,a anddj,ai are captured via theCpj matrix explained earlier (see

Figure 13).

Notice that the prediction values calculated are based on a user’s previous decisions

and on the decisions of other users, hence capturing the essence of collaborative filtering.

In cases of insufficient data, prediction models could refrain from generating predictions,

or utilize collaborative filtering systems based on probabilistic, hybrid, or clustering ap-

proaches for generating predictions. We decided not to provide predictions in such cases.

4.2.4.1 Category-based Predictions

To further enhance the results of our recommendation predictions, we propose a category-

based model that takes into consideration an application’scategory. Example application

categories include Games, Utilities, Entertainment, etc.Categories can increase the pre-

cision of our predictions especially for applications thatrequest similar permissions for

different purposes. For example, two applications might request access to a user’s email

address, where the first application is a game and the second is a task manager. In this

example scenario, a user’s email could be used for differentpurposes, i.e. a task manager

could use it for sending reminder emails, whereas a game could use it to send promotions

for other games. A user would probably be more willing to grant email permission to the

task manager as it could be of more benefit to the user. Granting or denying a certain

permission will be driven by the user’s perception of the requested permission. We be-

lieve that similar permissions requested by apps within thesame category will be perceived

similarly by users. Hence, by providing recommendation predictions based on application

categories, we can reflect more precise user perceptions within our recommendations.

63

 g11 g12 ! g1n

 g21

!

 gm1 gmn

All Applications

P
e

rm
is

s
io

n
s

…
!

g1j ! g1k

g2j

!

gmj gmk

{ aj, … , ak }

g1x ! g1y

g2x

!

gmx gmy

{ ax, … , ay }

...

ri,1

ri,m

...
rf,1

rf,m

...

Categories Recommendations

G
Ak
=

G
Aj
=

Figure 15: Application category probability matrices

When generating category-based predictions, we follow a modified version of our ap-

plication based filtering model for calculating similarities. To calculate the set of nearest

neighbors for a certain applicationai, we only consider other applications that fall into

the same category asai. Figure 15 shows two probability matricesGAk
andGAj

, which

are extracted from the overallGA matrix explained previously.GAk
andGAj

represent

the permission probabilities for applications within the categoriesk and j respectively.

Let Ak ⊆ A be the set of applications that belong to categoryk, andNi be ai’s nearest

neighbors whereNi ⊆ Ak. Note thatai’s nearest neighbors can be found by calculating

the similarities betweenai and applications withinAk rather than all applications inA.

For example, in Figure 15, the nearest neighbors foray are found among the set of apps

{ax . . . ay}, and the similarities are calculated usingGAj
. For applicationai ∈ A that

belongs to categoryk, we calculate recommendation predictions following Equation 6.

ri,j = GAk
(pj) +

∑

a∈Ni
sim(ai, a) ∗ dj,a

∑

a∈Ni
|sim(ai, a)|

(6)

WhereGAk
(pj) reflects the average probability that permissionpj is granted over applica-

64

tions inAk, i.e. apps that fall withinai’s category. Category-based predictions are more

efficient in that they do not rely on all applications within our system, but rather on a

smaller subset of categorized applications. This allows for faster prediction calculations, in

addition to the potentially more precise recommendations.

4.3 Experiments

We evaluate our proposed OAuth 2.0 extension using Facebookas our target platform.

Facebook is an ideal target given its large user base of over 800 million users, and its

extensive application directory of of over 7 million third party applications [11]. Facebook

is also one of the major platforms to adopt the OAuth 2.0 protocol, which makes it a good

fit for our evaluation process. The proposed extension is notlimited to Facebook and can be

extended to other OAuth 2.0 platforms. To evaluate our proposed OAuth 2.0 extension, we

implemented two main components: a Permission Guide, and a Recommendation Service.

Permission Guide: Our proposed Permission Guide in section4.2.1 was implemented

as a browser extension for both Firefox and Chrome browsers,using a combination of

Mozilla’s XML User Interface Language, the Google Chrome browser APIs and Javascript.

Figure 16 shows the extension user interface for both Firefox and Chrome. Javascript was

used to interact with our back-end recommendation service API. The extension was tested

on the latest Firefox and Chrome browsers on Mac OS X 10.6/10.7, Linux CentOS and

Windows (Vista, 7) machines.

Once installed, the extension resides within the user’s browser and begins monitoring,

waiting for a Facebook application installation process tocommence. The extension does

not otherwise interfere with a user’s browsing experience.Once a Facebook application

65

FireFox Extension UI Chrome Extension UI

Figure 16: Extension UI, Firefox and Chrome.

installation process is detected, the extension is activated and presented to the user.

An installation process is detected by parsing the URLs a user visits and searching for a

Permission Request. A Permission Requestfor Facebook applications can be identified by

locating the substringspermissions.requestand either offacebook.com/connect/uiserveror

facebook.com/dialog/permissions.request. If a request is detected, the extension looks for

the type of request issued, i.e. Basic permission vs. Extended permission access. A basic

permission access request is identified by a missing or emptyscope attribute within the

URL. Otherwise, if thescope attribute is located, the extension recognizes that an extended

permission access request is in progress.

Recommendation Service: The service is a PHP based solutionrunning on Apache

2.2.14 with MySQL 5.1.5 as the data store solution. We run theservice on a desktop

machine running Linux CentOS, with 2GB RAM and a 2.0 GHz IntelXeon CPU. The

recommendation service applies the recommendation based schema explained in section

4.2.2 by providing two private API methods which are used by our extension. The first API

method is thegetRecommendations method which accepts anapp id and a set of

requested permissions. It then returns a set of recommendations in a JSON format which

66

maps a recommendation value to each permission. The second API method provided is the

postDecisions method which is invoked by our extension when a user makes herde-

cision on the requested permissions. This API method takes an app id, a set of requested

permissions, a set of user decisions on these permissions, and the set of recommendation

values displayed at decision time. These values are stored onto our recommendation back-

end server and used later in our recommendation based schema.

For our evaluation purposes, we are primarily focused on extended permission requests

because those are the permissions which are customizable byusers on the targeted platform

(Facebook). For basic permission requests, our extension notifies users that basic access is

requested, and no customization is possible. Whereas for extended permission requests our

extension performs the following:

1. Extracts the permissions requested by parsing thescope value from within the re-

quest URI. For Facebook, thescope value is a list of comma-delimited strings, each

string representing a certain requested permission.

2. Asynchronously retrieves recommendations for the set ofrequested permissions by

calling our API methodgetRecommendations. Once the recommendations are

retrieved, the extension UI is updated properly.

3. Dynamically generates the user interface to be shown to the user based on the re-

quested permissions and their respective recommendation values. Figure 16 shows

an example interface for

scope = publish stream, offline access, email, birthday

Once the user makes a decision on the permissions she would like to grant/deny by

67

clicking the ”Set Permissions” button, the extension will perform two actions: 1)Invoke

our postDecisions API method passing along the user decisions. 2)Generate a new

scope value using the permissions granted by the user. Using this new scopescope’ the

user is then redirected to a customized application requestURI, resulting in a new Facebook

application permission request page. At this point the userhas defended herself against

unnecessary application accesses. Note that our approach prevents an application from

acquiring permissions before its actual installation. Thecurrent approach by Facebook

allows the removal of permissions only after applications are installed, which is realistically

not sufficient because applications have already acquired access to the data.

4.3.1 User Study

To evaluate our proposed framework, we perform a user study on our browser extension

FBSecure. The study’s main research questions were:1) Do permission recommenda-

tions (positive/negative) affect the user’s willingness to allow/deny permissions requested

by third party applications?and2) Are users more willing to share their friends’ privacy

attributes in comparison to their own?We use statistical measures to evaluate the success

of our proposed framework as discussed in Section 5.6.1.2.

4.3.1.1 Methedology

Our proposed browser extension is hosted under the name of FBSecure on the Mozilla

Add-Ons website (Firefox version) and, the Google Chrome web store website (Chrome

version). In addition, it was posted on our lab website (http://liisp.uncc.edu/

fbs). Twitter was also used as a means of recruiting participants for this study which was

approved by UNC Charlotte IRB (Protocol# 11-05-24). FBSecure was installed by over

68

3528 Facebook users who installed over 1561 unique Facebookapplications. The results

summarized in this section are based on the population of users who installed our browser

extension, use Facebook, and sought out privacy extensions. This user sample is mainly

biased towards privacy aware users, but also includes regular users recruited via Twitter,

whom did not specifically seek out privacy extensions.

4.3.1.2 Study Results

We gathered over 7200 user decisions on 56 different Facebook extended permissions.

We evaluate our recommendation model based on the user decisions collected during the

usage of the extension. For every application permission request, our extension enabled

the collection of the details of the requested permission, the generated recommendation,

and the user selected permission settings. Figure 19, showsthe probability of applications

requesting different permissions, for example we found that the most popular requested

permission is thepublish stream permission, which enables apps to post messages on

a user’s wall, and is requested by 42% of the Facebook apps. Other popular permissions

includeemail, offline access anduser birthday.

Over all our user population, Figure 17 shows how likely users were willing to grant

different permissions. Our results show that users have varying willingness towards dif-

ferent permissions, for example the likelihood of a user giving an application access to his

email is only 31%, while users are more likely to share their status (65%) with apps. Note

that some permissions requested give applications access to user’s friends’ information, for

examplefriends location permission. To investigate the permissions that users are

more willing to grant on their friends’ data compared to their own data we conducted a

69

manage_pages
email

user_birthday
user_location

offline_access
publish_stream

user_notes
friends_about_me

friends_photos
user_work_history

friends_activities
user_photos

friends_interests
friends_birthday

user_likes
user_events
friends_likes

user_about_me
read_friendlists

user_hometown
user_activities
user_interests

read_stream
friends_status

user_religion_politics
friends_location

friends_work_history
friends_events

friends_relationships
user_groups
user_videos

friends_videos
friends_hometown

user_status
friends_website

user_relationships
user_website

friends_religion_politics
read_mailbox

friends_groups
read_requests
friends_notes

Pr(Allow Requested Permission)
0 10 20 30 40 50 60 70 80 90 100

Figure 17: Probability of Allowing a Requested Permission

t-test on the likely of allow statistic collected when usersare asked for permission to access

both their data and their friends’ data. With a significance level of 5%, Figure 18 shows

the permissions for the hypothesis that users are more willing to share their friends data

is accepted. For example, it is statistically significant that users are more willing to share

with apps their friends’ birthday compared to their birthday.

Figure 20(a), summarizes the distribution of the number of permissions requested by

applications, with an average of 3.1 permissions requestedper application. Figure 20(b),

shows the average number of granted permissions for apps requesting permissions, and it

can be noted that on average applications are granted around44.7% of the permissions that

are requested. Figure 20(c), shows the distribution of number of applications by users who

installed the extension, on average the extension was used to install 5.2 applications.

70

Attribute User (µ, σ) Friend (µ, σ) p-value
notes (0.42, 0.50) (0.98, 0.21) 0.0019

birthday (0.38, 0.45) (0.48, 0.46) 0.0123
location (0.38, 0.44) (0.57, 0.45) 0.0144
groups (0.57, 0.47) (0.75, 0.42) 0.0253

work history (0.45, 0.43) (0.58, 0.44) 0.0313
religion politics (0.56, 0.48) (0.71, 0.50) 0.0377
online presence (0.38, 0.42) (0.56, 0.49) 0.0456

events (0.51, 0.51) (0.60, 0.58) 0.0475
videos (0.58, 0.41) (0.61, 0.44) 0.0491

Figure 18: T-test user and friend permissions

The extension provides users with recommendations for eachof the application re-

quested permissions. The recommendation is presented to the user as thumbs up and

thumbs down with their associated recommendation values based on the the recommender

models presented in previous sections. We are interested inevaluating whether the recom-

mender system properly predicts the user’s decision. Also we are interested in evaluating

what is the lowest (highest) recommendation value that willinfluence users into granting

(denying) a requested permission, we refer to this value as the thresholdT . Where users

said to be encouraged to grant the permission if the recommendation is higher thanT and

to deny otherwise. In this case we have four possible outcomes for the recommended and

decided value, see Figure 21.

In literature there are several proposed metrics for evaluating recommender system per-

formance, we focus on the most adopted metrics in literaturewhich are based on three

measures namely accuracy, precision and recall [26]. Accuracy of the recommender sys-

tem is the degree of closeness of the recommender system to the actual decision taken by

the user, which is calculated as TP+TN
TP+TN+FP+FN

. The precision or the repeatability of the

recommender system, is a measure of the degree to which repeated recommendations un-

71

manage_friendlists
user_relationship_details

friends_notes
friends_relationship_details

read_requests
friends_checkins

friends_groups
publish_checkins

friends_religion_politics
friends_website
friends_events
user_checkins

friends_activities
user_notes

friends_interests
friends_about_me

read_mailbox
user_religion_politics

friends_videos
friends_status

friends_hometown
user_website

friends_work_history
user_relationships

friends_relationships
read_friendlists

user_groups
user_activities

user_events
friends_likes
user_videos

friends_location
user_work_history

user_interests
user_status

user_hometown
manage_pages
friends_birthday
user_about_me
friends_photos

user_likes
user_location
read_stream
user_photos

user_birthday
offline_access

email
publish_stream

Pr(App. requests permssion)
0 5 10 15 20 25 30 35 40 45 50

Figure 19: Probability of Requesting a Permission

der the similar conditions generate the same results, whichis computed as TP
TP+FP

. The

recall or sensitivity is a measure of the ability of the recommender system to select in-

stances of either to recommend or not, which is computed as,TP
TP+FN

. Figure 22, shows

the accuracy, precision and recall calculated for different threshold values. The experiments

were conducted to evaluate the proposed application based,user based and category based

recommendation models. The application and category basedapproaches maintained an

accuracy of over 90%. The category based approach provided the highest accuracy, this is

due to the refined application similarity value as apps in a given category provide a better

context for providing recommendations for apps from the same category. The precision

and recall are inversely proportional with a break even region around the threshold value of

45%, which could explain that the recommendation value of 45% or higher is an indication

72

0 2 4 6 8 11 14 17 20 23 30
Number of requested permissions (N)

P
r(

A
pp

 r
eq

ue
st

in
g

N
 p

er
m

is
si

on
s)

0
10

20
30

40
50

(a) App. Requested Permissions

0 2 4 6 8 11 14 17 20 23 30
Number of requested permissions

A
ve

ra
ge

 n
um

be
r

of
 g

ra
nt

ed
 p

er
m

is
si

on
s

(%
)

0
20

40
60

80
10

0

(b) App. Granted Permissions

1 4 7 10 14 18 22 29 43 51
Number of Apps installed (M)

P
r(

U
se

rs
 in

st
al

lin
g

M
 A

pp
s)

0
10

20
30

40
50

(c) User Extension Usage Stats

Figure 20: Permission Probability Profiles

that the system is recommending to grant the requested permission, and lower than 45% is

recommending to deny the permission. Also note that the system achieves a precision and

recall values of 92-85% and 75-85% around this threshold.

In addition to investigating the accuracy, precision and recall measures we further inves-

tigated the causality of our recommendation scheme. That is, are users less likely to grant

permissions when using the recommendation based scheme. Toinvestigate, our browser

73

Used

Not Used

Recommended

True Positive (TP)

False Positive (FP)

Not Recommended

False Negative (FN)

True Negative (TN)

Figure 21: Classification based on user decisions

extension was designed to accommodate two groups of users. The first group (G1), are

users who were not shown the recommendation values (see Figure 23). The second group

(G2), are users who were shown the recommendation values generated by the recommenda-

tion system (see Figure 24). The extension randomly selected users who belonged in each

of the groups. For each group we recorded the users’openness, which is the percentage of

granted permissions for each application installed.

The average user openness of G1 and G2 were 66.5% and 30.7% respectively, which

indicates that users who were not presented with the recommendation were more likely to

grant permissions to applications. To compare the two groups we performed a T-test of the

hypothesis to investigate the following question, “on average, are users in G2 less open than

users in G1?”. Using the collected data, with a significance level of 5% this hypothesis was

accepted (P-Value of 0.0001). These results show that the users who were presented with

the recommendation values were less open to granting permissions to applications. The

results presented in this experiment are based on the average openness values calculated

over all installed apps in both groups. Figure 25, shows the expected openness for the two

groups for specific permissions for which the hypothesis wasaccepted.

74

0 20 40 60 80 100

40
50

60
70

80
90

10
0

Recommendation Value Threshold (T)

A
cc

ur
ac

y
(%

)

App Based
User Based
Category Based

(a) Accuracy

0 20 40 60 80 100

40
50

60
70

80
90

10
0

Recommendation Value Threshold (T)

P
re

ci
si

on
 (

%
)

App Based
User Based
Category Based

(b) Precision

0 20 40 60 80 100

40
50

60
70

80
90

10
0

Recommendation Value Threshold (T)

R
ec

al
l (

%
)

App Based
User Based
Category Based

(c) Recall

Figure 22: Recommendation system accuracy, precision and recall evaluation

Figure 23: Group (G1) with no recommendations shown

75

Figure 24: Group (G2) with recommendations shown

user_photos user_birthday publish_stream email overall

E
xp

ec
te

d
O

pe
nn

es
s

0
20

40
60

80

No−Recommendation (G1)
Recommendation (G2)

Figure 25: Groups (G1) and (G2) Expected Openness

CHAPTER 5: 3RD PARTY BROWSER EXTENSION POLICY MANAGEMENT

Today’s online activities such as social networking, banking and other daily online ac-

tivities have increased the users’ online presence and madethe browser a main portal for

users. Users are increasingly enriching their browsing experience with third party applica-

tions that provide new functionalities and improve upon existing ones. Third party browser

extensions are popularly used by millions of users [50, 66],especially with their wide

availability on online portals such as Google’s Chrome Web Store.

Regardless of the popularity and benefits of third party browser extensions, they could

potentially threat the privacy of their users. This lead platforms such as Google Chrome to

introducing permission models that control third party extension accesses, especially those

regrading sensitive user data. These models allow developers to declare the permissions

their extensions require. Extension users on the other handare responsible for making

their own access control decisions on requested permissions. Users are usually warned of

requested permissions and provided with brief descriptions on what they mean.

Existing browser permission models suffer from limitations when it comes to protecting

user privacy against 3rd party extensions. Limitations mainly involve insufficient access

control techniques, and limited user awareness. Some browsers provide an Incognito mode

that disables 3rd party extensions by default. For example,Google Chrome allows users

to enable/disable extensions in this mode, but lacks fine-grain permission customization.

77

In this work we analyze the Google Chrome permission model for 3rd party extensions

and discuss some of its limitations, in addition to some potential threats on user privacy

under Chrome. We propose a runtime framework that improves upon the existing Chrome

extension permission model. The framework contributes thefollowing:

• Runtime API Monitoring: Chrome extension APIs are monitored in runtime, which

increases the user’s awareness by informing them of API accesses at the moment

they occur.

• Fine-grained Runtime Access Control: The proposed framework gives users the ca-

pability to customize extension permissions. Users can deny/allow an individual

permission and its associated APIs. Users are also able to prevent APIs of specific

permissions from accessing certain webpages they visit. E.g., users can prevent ex-

tensions from reading the URL of their banking website, eventhough the extension

was originally granted permission to do so.

• A Chrome extension called “REM” that implements the proposed framework. The

extension provides users a simple user interface for monitoring extension accesses,

customizing their extension permissions, and getting details on requested permis-

sions as seen in Figure 28, 29, & 30.

• Finally, we conduct a user study that evaluates our Chrome extension “REM” and fo-

cuses on measuring REM’s effect on user awareness towards extension permissions.

5.1 Related Work

In the last few years several extension vulnerabilities have been discovered, which in-

clude stealing cookies, key logging, expose confidential information, and hijack the local

78

operating system [14, 75, 5, 65]. In a white paper, Freeman etal. [41] investigated the

possible security attacks on Firefox extensions.

Bandhakavi et al. [4], proposed applying static information-flow analysis to the JavaScript

code used in the third party applications. They described a set of unsafe flow patterns that

may lead to security vulnerabilities. This approach provides a mechanism to query the

extension code for the defined unsafe flows and does not provide a mechanism to enable

the user to monitor application behavior and control its access. Similarly static analysis

[42] has been proposed to address security of web applications such as identifying SQL

injection [72], and cross-site scripting [43, 69].

Dynamic analysis techniques have also been used to trace information flow properties of

JavaScript as it is being executed by the browser [35, 75]. Dhawan et al. [9] proposed a

memory tainting approach to trace propagation of tainted objects during JavaScript execu-

tion and to raise alerts if an object containing sensitive information is accessed in an unsafe

way. These approaches are effective in tracing dynamic program flow, however usually

require users to install a modified or recompiled browser or JavaScript engine.

5.2 Chrome Extension Permissions

Third party Chrome extension developers are able to declarepermissions needed by

their extensions to fulfill certain functionalities, and toaccess certain Chrome APIs. Such

permissions can be declared as required using thepermissions manifest property. For

example, an extension might request access to browser cookies, or a user’s browsing history

in order to interact with their associated Chrome APIs. The set of such possible permis-

sions are defined by Google within the Chrome extension API documentation. Developers

79

can also declare permissions as optional, which is ideal forpermissions not required imme-

diately by extensions. Additional permissions can also be requested by an extension when

updated.

5.2.1 Permissions and Chrome APIs

Once an extension acquires its requested permissions, it can access the Chrome APIs

associated with each permission, i.e, certain Chrome APIs require certain permissions to

execute successfully. For example, thechrome.cookies.get API call requires the

cookies permission. We look at each requested permission, and find all the reachable

API calls an extension can perform, which allows us to precisely monitor all potential ex-

tension accesses, as explained in our proposed framework inSection 5.4. The full permis-

sion to API mappings were generated by scanning the Chrome extension documentation,

specifically the manifest permissions and their associatedchrome modules. By mapping

each permission to a set of associated API calls, we can control and monitor an extension’s

specific accesses. The exception to this rule is any extension using an NPAPI plugin, which

allows for native code execution outside of the context of the Chrome browser. That is,

NPAPI accesses do not occur through the Chrome APIs.

5.2.2 User Awareness

Users are warned about some of the permissions that are requested at installation time,

and have the option to either continue installing an extension with the requested permis-

sions, or cancel the installation process. Warnings are also shown to users if a certain

extension is updated and requests additional permissions,or if an optional permission is

being requested. Note that not all permissions trigger a warning message. Such permis-

80

sions will be granted to an extension without the user’s explicit approval. An example of

such permissions iscookies. We think the rational behind this is that these permissions

rely on other requested permissions that do trigger warnings. For example, an extension

that requests thecookies permission can only access cookies for the hosts it has access

to. The list of hosts that can be accessed by a certain extension are listed within its mani-

fest file as part of the permissions attribute, and are shown to the user at install time. The

caveat here is that not all users will presume giving access to a certain host could also lead

to granting access to its cookies. For example, if a user grants access to<all urls>

(all urls), this could potentially mean access to all cookies in the user’s browser. Another

Figure 26: Permission details in the Standard method

issue involves warnings that do not reflect a precise description of what is being granted

to an extension. For example, an extension that requests thehistory permission will

trigger a warning that says “It can access: Your browsing history”, which could potentially

be misinterpreted as the list of all URLs a user has visited. But the matter of fact is that

thehistory permission also provides an extension with information regarding a user’s

browsing behavior, e.g. how the user reached a certain website (by typing the url, click-

ing a link, via a bookmark, etc.), the time they visited a website, and the number of visits

too. Such information can be valuable to third parties and could potentially be used for

undesired purposes from a user’s point of view. In our proposed framework, we provide

81

users with detailed information and feedback on the permissions and accesses granted to

an extension as seen in Figure 28 and 30. Currently, the “Standard” method for discovering

an extension’s permissions is to visit it’s page on the Chrome Web Store and looking at the

details tab as seen in Figure 26. From there, users have the option to discover more about

the permissions requested by visiting yet another webpage.In Section 5.6 we show that our

proposed extension REM performs better in increasing user awareness and understanding

of an extension’s permissions.

5.2.3 Permission Dependency

Extension permissions sometimes rely on other permissions, i.e. it is not sufficient

for an extension to request one permission without the other. Hence, certain functional-

ities within an extension will require a chain of permissions to execute successfully. A

Chrome API Direct Indirect
cookies.get

cookies host

cookies.remove
cookies.set
cookies.getAll
cookies.getAllCookieStores
cookies.onChanged
tabs.captureVisibleTab tabs host
tabs.executeScript

Table 1: API Direct and Indirect Permissions

popular permission requested by extensions is thehost permission, which is declared

within the manifest as a match pattern. The pattern dictatesthe hosts that are accessible

by extensions. Example patterns include:http://*/* (all hosts using the http scheme),

http://example.com/foo.htmlwhich matches that specific url, and<all urls>

which matches all urls. The importance of thehost permission emerges when extensions

82

use other permissions such as thecookies or tabs. For example, an extension may re-

questcookies permission and assume it can read all cookies using thecookies.getAll

API. This isn’t true, unless the extension requested ahost permission that covers all URLs

associated with the desired cookies. Figure 1 shows an example set of APIs and the various

permissions required to use them. Two types of permissions are shown, direct and indirect.

Direct permissions are immediately associated with the APImethod, whereas the indirect

ones are additional required permissions. By understanding these dependencies our pro-

posed framework can better monitor and control the specific accesses made by extensions.

5.3 User Privacy and Threats

Users have widely adopted browser extensions and have become acclimated to using

them on a regular basis. With this wide spread of extensions,especially ones developed

by third parties, the threats to user privacy have increased[14, 75, 5, 65]. The permission

model adopted by Google Chrome does provide some means for controlling the permis-

sions given to extensions, but there are still areas that canbe improved to provide for better

privacy and protection against potential threats.

5.3.1 Threats

Extensions with excessive permissions represent a higher threat to user privacy, espe-

cially those that are poorly written and include security vulnerabilities. Excessive per-

missions are those that are deemed inappropriate or unnecessary in certain privacy re-

lated scenarios. For example, granting ahost permission of<all urls> to a Twitter

client extension could be deemed excessive, as it most likely would only require access to

http://*.twitter.com/*. In the following, we discuss some potential threats when

83

extensions gain excessive Chrome permissions.

Host Permissions: Thehost permission is a popular permission requested by third

party extensions and is declared as a match pattern within the extension’s manifest. The

match pattern represents the webpages extensions would like to access, which could range

from a specific webpage (by specifying a specific URL) to all webpages with a schema of

http, https, file, or ftp (Using the<all urls>). Figure 2 shows the requested

host permission patterns requested by the top hundred ratedextensions on the Chrome Web

Store. The most popular patterns requested where thehttp://*/* andhttps://*/*

patterns. Note that the occurrences of match patterns do notsum up to 100, that is because

extensions can declare multiple patterns. Extensions withexcessive host permissions could

Host Pattern Occurrences (100)
<all urls> 5

:///* 4
https://*/* 38
http://*/* 46
Wild Card Subdomain 18
Specific Host 12

Table 2: Host permission patterns requested by the top 100 rated extensions

potentially succeed in performing attacks on user privacy,especially when combined with

other permissions such as thetabs or cookies permission. With thetabs permission,

extensions are able to programmatically execute their own custom JavaScript using the

chrome.tabs.executeScript API. Such scripts are allowed to run on webpages

that satisfy the extension’shost permission. Hence, with an excessivehost permission,

custom scripts are executed on a wider range of webpages. Thethreats on user privacy

arise when custom scripts are vulnerable to attacks such as Cross Site Scripting, that is, a

84

script could potentially execute malicious code embedded within webpages visited by the

user. Such a scenario would allow the malicious code to perform with the privileges of the

compromised extension. For example, malicious code could access all cookies accessible

to a compromised extension that hascookies permission. Limiting thehost permission

to a smaller subset of webpages would decrease the attack surface.

Thecookies permission combined with excessivehost permissions could also in-

troduce threats to user privacy. Access to cookies is based on thehost permission an

extension has, that is, access is allowed to any cookie that belongs to a host within the

match pattern declared by thehost permission. Hence, a match pattern of<all urls>

potentially means access to all user cookies. Extensions could abuse theirhost permis-

sion and access user cookies for malicious reasons such as hijacking a user’s online session.

Another threat scenario involves vulnerable extensions that have thecookie permission.

Such extensions, if attacked, could elevate the privilegesof malicious code and allow it

access to user cookies and other reachable resources.

The dependencies between thehost and bothtabs andcookie permissions makes

it important to monitor and control the specific accesses made by extensions, especially

when dealing with excessivehost permissions such ashttp://*/* or <all urls>.

The rationale is that extensions may need different host permissions for different types of

accesses. For example, executing a script using thetabs.executeScriptAPI may re-

quire certainhost permissions, whereas reading cookies via thechrome.cookies.get

API may require different ones. Currently, the samehost permission is used for both pur-

poses, which leads to unnecessary privileges and potentially unwanted accesses.

Tabs Permission: Thetabs permission gives extensions access to the browser’s win-

85

dows and tabs within each open window. Extensions are able toaccessTab objects, which

contain information on the tab returned such as the associated URL. hence, extensions with

tabs permission have access to all URLs a user visits. Note that the tabs permission

is not dependent on thehost permission with the exception of content script execution,

hence, Chrome does not prevent access to tab URLs that are notwithin thehost match

pattern. With access to all URLs, a malicious extension can directly analyze any URL

and its query attributes, and potentially extract important information such as session IDs

and OAuth request tokens. Such information can be used in compromising the user’s pri-

vacy [51].

Another drawback of not bounding thetabs permission, is that it undermines the

history permissions defined by Chrome. That is, extensions can generate their own

history repository by keeping track of all URLs users visit.Note that thehistory permis-

sion provides additional accesses such as the methodology of reaching a certain webpage

(e.g. was a URL typed, clicked, etc.), hence we only considerthis a partial undermining.

We improve upon thetabs permission within our proposed framework by allowing users

to customize the URLs accessible by APIs associated to thetabs permission.

Other Permissions: Other Chrome permissions such as thehistory & bookmarks

permission could also be used to gain access to URL data, hence potentially executing

malicious attacks using extracted session IDs or OAuth request tokens. Such attacks may

frequently fail given history and bookmark URLs are potentially old, hence contain out-

dated information regarding a user’s session or request token. Note that both these permis-

sions are not bounded by thehost permissions. We also improve upon this within our

framework.

86

5.3.2 Intrusiveness

Third party extensions that request excessive permissionscan be quite intrusive. This

is mainly due to the relatively course-grain nature of Chrome permissions. For example,

extensions with thetabs permission are able to track all URLs a user visits, which in

many cases is undesirable, especially in scenarios where users visit webpages of highly

confidential matter, such as financial or health related webpages. Thetabs permission also

gives extensions access to the DOM, which gives it the ability to read and write data within

the DOM. Such data may be highly confidential. For example, anextension withtabs

permission can easily detect if a user has visitedhttps://online.wellsfargo.com/and extract

the user’s balance. With additional permissions, the extension could even pass it back

to a remote server. Such scenarios show the importance of giving the user the necessary

controls over which webpages certain extensions have access to. Other permissions such as

history andbookmarks could also reveal the browsing behaviors of users. We believe

users should have the option to control the accesses associated with these permissions. With

the potential threats and lack of sufficient user awareness within the Chrome extension

permission model, we propose a runtime framework that monitors and informs users of

extension accesses, in addition to providing them the meansfor controlling and customizing

the permissions granted to their installed extensions.

5.4 Proposed Permission Framework

We propose and implement a runtime permission framework that allows for fine grain

chrome permission monitoring and access control enforcement. The framework monitors

Chrome API calls made by third party extensions and collectsthe data processed by these

87

calls. For example, when the APIchrome.windows.getAll is called, an allocated

monitor within our framework collects the information relevant to the returned browser

windows, such as the set of all Tabs within each of the browserwindows. Given the runtime

Chrome
User data

Chrome API

Extension1

c1 c2 c3

Extension
Manager

M
1

P
1

Update

Activity

Interact

Figure 27: Framework Architecture

nature of the framework, it can inform users in realtime of the specific accesses made

by extensions (e.g. which specific URLs or cookies it has accessed), it can also enforce

fine-grain access control onto attempted accesses. Additionally, the proposed framework

allows for users to customize extension permissions, i.e. grant/deny permissions from the

original set requested by an extension. The framework consists of two main components,

the extension Manager, and extension Monitor. A single Monitor is allocated for each third

party extension installed on a user’s Chrome browser, and has its own associated access

control Policy. All Monitors report back and are managed by the framework’s extension

Manager. Figure 27 illustrates the overall architecture ofour framework.

88

5.4.1 Extension Manager

Our extension Manager is the main component within our framework that allows for

monitoring third party extensions. The extension manager itself is a Chrome extension with

NPAPI capabilities. NPAPI access allows us to adapt the behavior of third party extensions

and allow the extension manager to listen to Chrome API callsmade by these extensions,

in addition to enforcing fine-grain access controls on requested accesses. In the following

we discuss the tasks covered by the Manager.

Adapting Third Party Extensions: To monitor API calls made by third party extensions,

the manager modifies their default behavior by injecting a proposed Monitor component

that reports back to the manager. Figure 27 shows the MonitorM1 that is assigned to

Extension1. This is achieved by including a custom builtmonitor.js script file into

the extension’s bundle, then linking to it from within the extension’s HTML pages such

asbackground.html andpopup.html. When building the Monitor for a specific

extension, the manager can selectively choose which API calls the Monitor should monitor.

This allows for optimizing the monitoring process and avoiding unnecessary checks. For

example, in Figure 27, only API callsc2 andc3 are monitored forExtension1. We

explain the details of our Monitor component in Section 5.4.2.

Figure 28: API Call Notification Example

API Notifications and Logging: Once a Monitor is built and injected into an extension’s

bundle, the Manager starts listening to incoming message calls sent by the Monitor. These

89

messages hold information on the Chrome API calls made by third party extensions. Using

this information, the manager is able to keep users aware of the extension activities by

notifying them in real time of the API calls made as seen in Figure 28. The Manager also

logs all accesses for future reference and are accessible via the Manager’s UI.

Fine-Grain Permission Customization: The Manager allows for users to customize the

access control policy for each installed extension. Users are given fine-grain controls over

the permissions granted to extensions and are provided witha simple user interface to do

so as seen in Figure 29. There are mainly two types of permission controls provided:

1. Permission-based: These controls allow users to deny or allow a certain permission

as a whole. Doing so prevents any API associated with the permission from ex-

ecuting. For example, users can choose to deny the permission cookies for an

extension which will block all cookie associated Chrome APIs from executing.

2. Host-based: These controls allow/deny extensions from accessing certain hosts via

the APIs of a certain permission. That is, we keep track of apermission-to -host

dictionary that has all the hosts blocked for each permission of an extension. For

example, a user could prevent an extension withtabs permission from accessing a

Tab that is associated with a certain host such asonline.wellsfargo.com. We

provide host-based controls for thetabs, cookies,history, andbookmarks

permissions. Host-based controls allow for decreasing theeffect of excessivehost

permissions and the potential threats discussed in Section5.3.

Users are also given the option to fully enable/disable certain extensions.

Extension Policy: Each third party extension is allocated apolicy.js file which rep-

90

Figure 29: Permission Customization

resents its access control Policy. The policy contains the fine-grain decisions made by

users via thePermission-basedandHost-basedcontrols. That is, it contains a set of denied

Chrome permissions in addition to a set of deniedpermission-to-hostvalues. This Policy is

used by an extension’s Monitor to make the proper access control decisions whenever a cer-

tain API call is detected. Any customizations made by the user are immediately registered

by the Manager and written into the extension’s Policy. Notethat the Policy represents a

negative access control list (ACL−), hence if a Chrome permission orpermission-to-host

value does not exist within the Policy, it is considered allowed, otherwise it is denied. Also

note that thepolicy.js is embedded within an extension’s bundle. Figure 27 shows the

PolicyP1 that is assigned toExtension1.

Figure 30:tabs permission details

Permission Details: The Manager finally provides users witha detailed description on

each of the requested permissions. The detailed description for a specific permission also

91

contains a set of examples on popular accesses that map to theChrome APIs associated

to a permission. We manually prepared the descriptions and examples. We evaluate the

effectiveness of these detailed descriptions in our user study as explained in Section 5.6.

Figure 30 shows the detailed description for thetabs permission.

5.4.2 Extension Monitor

An extension Monitor is a custom built JavaScript file (monitor.js) that we use to

monitor the activities of third party extensions. When a Monitor is created for a specific ex-

tension, it is assigned a set of API methods to monitor. TheseAPIs are assigned by our ex-

tension Manager to suit the permissions requested by extensions. For example, if an exten-

sion requests thecookies permission, the monitor would be asked to monitor the corre-

sponding cookie API methods:chrome.cookies.[getAllCookieStores, get,

getAll, remove, set, onChanged]. Note that the Manager could select a subset

of these APIs, but we monitor all associated APIs by default.

The Monitor is also assigned a Policy (policy.js) which it uses in making access con-

trol decisions on the API calls it detects. When relevant APIcalls are detected by a Monitor,

the following steps occur:

1. The Monitor intercepts the API call, i.e. the execution ofthe API runs through the

Monitor. It then informs the Manager of this call.

2. An access control decision is made on the API call. This is decided based on two

factors. First, the Chrome permission the API is associatedto. If this permission is

in theACL− of the Monitor’s Policy, the decision is rendered as Deny. Second, the

host used within the API (if applicable). If apermission-to-hostvalue is found for the

92

associated permission of the API, the decision is rendered as Deny. If either factors

render a decision of Deny, then the final decision is Deny, otherwise it is Allow.

3. If the Policy decision retrieved is Allow, the Monitor executes the API call and returns

the relevant results. Otherwise, if the decision is Deny, then the API is blocked and if

appropriate returns an empty result (Some extension required an empty result to not

break).

Figure 31 illustrates the previous access control process flow. Note that in cases of APIs that

Extension Monitor

API Call

Execute API
API Result

[Decision == Permit]

Block/Empty Result

[Decision == Deny]

getPolicy

Decision
Policy

(ACL
-
)

Figure 31: Access Control Sequence

do not specify a specific host value such aschrome.windows.getAll, the Monitor

will filter the return values to not include any results associated with apermission-to-host

value. For example, if the user has denied the hostonline.wellsfargo.com and the

chrome.windows.getAll API results includes Tab objects associated with this host,

then the results returned will exclude these Tabs.

93

5.5 Evaluation

The framework was evaluated on a Windows 7 machine with a 2.4GHz i3 CPU, 4GB

of RAM, and was running the Chrome browser version16.0.912.75. In our evaluation, we

studied the 100 “top rated” Chrome extensions as listed on the official Chrome Web Store

at the time of evaluation. The extensions covered all categories on the Chrome Web Store.

5.5.1 Implementation

To evaluate the proposed framework, we implemented the framework as a Chrome exten-

sion with NPAPI capabilities and used the FireBreath NPAPI Framework [16] to develop

thedll plugin used for the extension. For parsing themanifest.json files of each

extension, we used the Cajun JSON parser. Our Monitor component of the framework

was implemented using the FunMon2.js function monitor [62], which allowed us to mon-

itor API calls from within an extension’smonitor.js file. We used Chrome’s message

passing APIs to establish the connections between the Manager and Monitor components,

specifically theonRequestExternal. addListener andsendRequest APIs.

When users install our implemented extension, they are required to restart their browser

to initiate the adaptation process on their installed extensions. At this point, the framework

starts the monitoring process and access control enforcement. The main user interface was

implemented via the extension’s browser action and itspopup.html. The browser action

button shows the user the number of recent API notifications.Thepopup.html will dis-

play the recent notifications and the permission customization controls as seen in Figure 28

and 29. Users can also see a detailed activity log when clicking the Activity button of an

extension, and can choose to enable/disable the extension.Finally, popup.html shows

94

users the list of originally requested host permissions.

5.5.2 Permission Requests

In Section 5.3, we discussed thehost permissions requested by the the evaluated exten-

sions as seen in Table 2. Table 3 shows the list of permissions(excludinghost) requested

by the evaluated extensions and the frequency of each. It also shows the permissions sup-

ported by our framework. We notice that thetabs permission is the most popular followed

by thecontextMenus andcookies permissions.

Permission Frequency (100) Supported
tabs 77 YES
contextMenus 22 YES
cookies 11 YES
notifications 10 NO
unlimitedStorage 9 NO
bookmarks 6 YES
plugin 4 NO
management 4 YES
idle 4 YES
geolocation 2 NO
history 2 YES
proxy 1 YES
clipboardWrite 1 YES

Table 3: Frequency of Requested Permissions

From the 100 extensions, we analyzed the combinations oftabs andhost permissions

requested. As discussed in Section 5.3, with both these permissions, extensions could rep-

resent a potential threat on user privacy. We found that 6.5%of extensions with thetabs

permission have requested a<all urls> host permission, 5% with*://*/*, 49%

with https://*/*, and 60% withhttp://*/*. Whereas, 12% have either requested

a specific host or ones with wild card subdomains. We also found that 11% have nohost

permissions. Note that the percentages do not add up to 100% because of extensions that

95

use multiple host match patterns.

5.5.3 Real World Evaluation

Using our proposed runtime framework, we were able to successfully monitor and en-

force our fine-grain permission controls in real time. This included all APIs for supported

permissions within our framework. We discuss unsupported permissions in Section 5.5.3.2.

To evaluate our framework on real world extensions, we installed and used the 100 top

rated extensions with our framework in place. We manually analyzed the JavaScript code

of each extension to make sure our usage covered all execution paths. The framework

was successful in monitoring the APIs excluding those of unsupported permissions. Note

that the framework was also capable of supporting event listeners, which was achieved via

monitoring the callback functions of events.

5.5.3.1 Performance Evaluation

As a runtime framework it was important to measure the monitoring overhead introduced

when adapting third party extensions to our framework. We measure the time to execute

some of the popular APIs with and without our framework in place. These APIs were

popular amongst the evaluated extensions. Table 4 shows theresults of the evaluation when

our framework is disabled and enabled. We believe the overhead is acceptable for most

chrome extension functionalities, and will not interfere with the usability of extensions.

5.5.3.2 Coverage and Limitations

The proposed framework was able to successfully monitor andenforce fine-grain access

controls onto 87% of the evaluated extensions. It failed in cases where extensions had

96

API Disabled Enabled (ms)
tabs.onUpdated.addListener 0.45 ms 2.7 ms
tabs.sendRequest 2.2 ms 6 ms
cookies.set 2 ms 4.5 ms
cookies.get 1 ms 4 ms

Table 4: Framework monitoring overhead for popular API calls

unusual manifest files, that is, not strictly following the traditional manifest guidelines. It

also failed in cases where JavaScript errors occurred within an extension’s code. As part of

our future work, we will further enhance the framework’s compatibility and error handling

in such non-traditional cases.

The framework is also limited to which Chrome permissions itcan monitor and control.

These permissions are mostly related to APIs that run outside the context of Chrome, e.g.

plugin APIs, and HTML5 APIs. The supported include:background, contentSettings,

experimental, fileBrowserHandler, geolocation, notifications, andunlimitedStorage. Note

that our framework only enforces theHost-basedcontrols on the following permissions:

tabs, bookmarks, cookies, and history. These are the permissions we believe are most

relevant to webpages a user visits. As part of our future work, we will further investigate

support for additional permissions.

5.6 User Study

To evaluate our proposed browser extension we conducted a user study that compares

the Standard permission discovery method (By visiting an extension’s detail page on the

Chrome Web Store) with our own browser extension REM. Participants in the study per-

formed a number of tasks related to third party Chrome extensions and answered a number

of questions on these tasks. The study was approved by UNC-Charlotte IRB (Protocol

97

#12-02-50).

5.6.1 Methodology

The study participants were recruited from UNC-Charlotte and were all UNC-Charlotte

students. Each participant was supplied with a $10 Amazon gift card. We recruited a

total of 20 participants to start the study, of which 18 successfully completed the study

and 2 dropped out. Of the 18 participants, 11 were females and7 were males. 88.2% of

the participants are at least familiar with Chrome extensions. Participants where given a

brief introduction to REM’s and to the existing Standard methods, and were also given a

few minutes to familiarize themselves with both techniques. We then performed a within-

subjects study comparison in which participants use eitherthe Standard method or REM

for performing the study tasks at first, then use the other method for performing the same

tasks once again. Assigning a method (REM or Standard) to users was random, and the

order of the methods assigned was counter balanced.

5.6.1.1 Study Tasks

Participants were given 8 different tasks and were asked to determine whether perform-

ing a certain action was permitted by a third party Chrome extension. For these tasks,

participants could answer with: Yes, No, or Uncertain. Notethat for each task a participant

had to answer in regards to four different third party extension.The tasks were categorized

into Social Networking related tasks and Online Shopping related ones. For each category

participants performed 4 different tasks. Examples of suchtasks are illustrated in Figure

32.

98

Category Task
Social Networking Do the installed browser extensions have permission

to read your private posts on social sites you visit?
Online Shopping Do the installed browser extensions have permission

to read your history of visited product pages?

Figure 32: Example Tasks

5.6.1.2 Study Results

To evaluate the performance of participants on tasks, we considered two measures: 1)Re-

sponse correctness, and 2)The time to finish a task measured in seconds. In Figure 33 we

summarize the different time intervals for finishing correctly answered tasks. Notice that

we consider only the correctly answered tasks as we are interested in the time it takes to

correctly determine permitted actions among third party Chrome extensions.

One can notice an overall higher accuracy rate when using REM, in addition to an overall

lower time-to-task intervals. For example, participants were able to answer 30 tasks cor-

rectly within a time interval of 0-25 seconds using REM, whereas with the Standard method

they were able to answer 12. Surprisingly, even when REM was the first tool option used

by participants, it was still able to perform relatively better than the Standard method.

To measure the significance of these results, we performed a t-test on the accuracy rate

of participants. In Figure 34 we report the mean accuracy with standard deviation for all 8

tasks when using the Standard method vs. REM. Note that the accuracy rate was significant

in tasks Social1, Social4, Shopping1, and Shopping4 with a p-valuep < 0.05.

In a post survey, participants were asked to assess our proposed browser extension REM

and the Standard method using three Likert scale questions.Participants responded to

each of the following statements on a scale from one (strongly disagree) to seven (strongly

99

0−25 26−50 51−75 76−100 >100

Time Intervals in Seconds

N
um

be
r

of
 O

cc
ur

re
nc

es

0
5

10
15

20
25

30

Standard
REM

Figure 33: Time distributions for correctly answered tasks

Task Standard (µ, σ) REM (µ, σ) p-value
Social1 (0.0, 0.0) (0.294, 0.469) 0.01003
Social2 (0.47, 0.51) (0.64, 0.49) 0.13469
Social3 (0.70, 0.469) (0.70, 0.469) 0.5
Social4 (0.11, 0.33) (0.41, 0.50) 0.02787

Shopping1 (0.0, 0.0) (0.41, 0.50) 0.002048
Shopping2 (0.235, 0.437) (0.352, 0.492) 0.16609
Shopping3 (0.176, 0.392) (0.235, 0.437) 0.33417
Shopping4 (0.235, 0.437) (0.58, 0.50) 0.014459

Figure 34: T-test Task Accuracy.

agree).

S1: I am satisfied with the tool

S2: I was able to easily identify the permissions requested by each third party Chrome

extension.

S3: I was confident in determining the permitted actions for installed third part Chrome

extensions.

Figure 35 illustrates the user responses using boxplots. The black band in the middle of

a box indicates the median. From the responses we observed that REM was rated signifi-

100

cantly higher (p < 0.05) for all three statements.

Standard REM

1
2

3
4

5
6

7

(a) Q1: Overall Satisfaction

Standard REM

1
2

3
4

5
6

7

(b) Q2: Identifying Permissions

Standard REM

1
2

3
4

5
6

7

(c) Q3: Confidence

Figure 35: Summary of Likert-Scale user responses

CHAPTER 6: VISUALIZED-BASED AND ASSISTED POLICY ANALYSIS

Performing SELinux policy analyses can be difficult, due to the complexity of the policy

language and the sheer number of policy rules and attributesinvolved. For example, the

default policy on most SELinux-enabled systems, has over 1,500,000 flat rules, involving

over 1,780types. Simple analyses betweentypescan result in a large amount of data, which

is poorly presented to administrators in existing analysistools. Furthermore, administrators

are required to add new policy rules on a regular basis, whichcan potentially compromise

the security of a system, if the consequences of adding such rules are nfot well-understood.

We propose and implement a policy analysis tool “SEGrapher”that addresses the above

challenges. SEGrapher visually presents analysis resultsas a simplified directed graph,

where nodes aretypes, and edges are corresponding rules betweentypes. Graphs are gener-

ated via a proposed clustering algorithm that clusterstypesbased on their accesses. Clusters

provide an abstraction layer that removes undesired data, and focuses on analysis attributes

specified by the administrator. Furthermore, SEGrapher assists administrators in evaluating

the risks associated with custom policy modules, based on a proposed similarity approach

that analyzes new rules within these modules. Visual cues are also provided to notify ad-

ministrators of various levels of potential risks.

102

6.1 Related Work

Well known SELinux policy analysis tools include APOL [67],SLAT [47], PAL [59],

and Gokyo [30]. Tresys Technology developed the APOL tool, which is used to analyze

SELinux policies. It provides a wide range of features including domain transition analysis,

direct and transitive information flow analysis, and type relationship analysis. APOL re-

quires a strong understanding of SELinux policies and the involved attributes, and requires

a fair set of skills to perform proper policy analyses. Results in APOL are text-based, and in

many cases unmanageable due to large result sets. SLAT (Security Enhanced Linux Anal-

ysis Tool) represents a policy as a directed graph, where nodes are security-contexts and

edges as the permissions on certain object-classes. The focus of SLAT is on information

flow, which can be detected by traversing the policy graph. PAL (Policy Analysis using

Logic-Programming) uses a logic-programming approach foranalyzing SELinux policies.

It follows the same model as SLAT, but provides a more extensive query set to admins.

Similar to SLAT, PAL does not provide visualized analysis results, and is not able to dis-

cover inherent relations between multiple types, but is rather limited to answering direct

queries.Both SLAT and PAL require a strong understanding ofSELinux to generate strong

queries that result in meaningful results.

Jaeger et al. [30], developed a tool called Gokyo, mainly used for checking the integrity

of a proposed trusted computing base (TCB) for SELinux. Integrity checks ensure that no

types outside the TCB can write to types within the TCB, and notypes inside the TCB can

read from those outside of it. Gokyo uses a graphical access control model for representing

policies. Gokyo is limited to the proposed TCB and does not provide “on the fly” policy

103

analysis, nor does it allow admins to interact with the resulting analysis results.

Xu et al. [73], proposed a visualization-based policy analysis framework for analyzing se-

curity policies using semantic substrates and adjacency matrices. The framework allows

admins to run visualization-based queries on a policy base to find possible policy viola-

tions. However, their framework is limited to a small set of queries, and the visualization

results can be difficult to interpret and understand.

MITRE [48], developed the Polgen tool, which provides semi-automated policy generation

for new applications. It relies on observing an application’s system calls, and inferring a

new policy. Polgen is well suited for new applications, but could require long observations

to generate robust policies. Polgen doesn’t utilize existing policy decisions in inferring

the new policy. Existing decisions are a valuable source foridentifying appropriate new

policies.

6.2 SELinux Policy Analysis

Let T be the set off all types within a SELinux policyP , O the set of all object-classes,

andA the set of all permissions. We propose a policy analysis tool“SEGrapher” which

allows for visualizing policy analysis results, by modeling a policy as a directed graph.

Given a policyP , SEGrapher builds a directed graphGp, where a node inGp maps to a

specific SELinux type, and an edge (out-edge) maps to the set of all AV allow rules Rij

connecting a typeti (subject-type) to a typetj (object-type). Figure 36 illustrates a simple

graph of three types,t1 (subject-type),t2 (object-type), andt3 (object-type). The figure

shows the corresponding AV rulesR12 for t1 andt2 with two allow rules, andR13 for t1

andt3 with one allow rule.

104

t
1

t
2

allow t
1
 t
2
 : file { write}

allow t
1
 t
2
 : dir { read write}

R
12

t
3

allow t
1
 t
3
 : tcp_socket { listen }

R
13

Figure 36: Allow rules for subject-typet1 and object-typest2 andt3.

SEGrapher usesGp to generate a directed focus-graphGf representing desired analysis

results, that is,Gf will indicate the accesses and relations amongst SELinux types analyzed

by admins.Gf is driven by a set of inputs that are checked against AV rules (edges) inGp.

These inputs are controlled and provided by admins and include the following:

1. Focus TypesTf : A set of typesTf ⊆ T which is the focus of the policy analysis and

the basis of extracting the focus-graphGf from Gp. An out-edge inGp is added to

Gf if the source-node (subject-type) of this out-edge exists in Tf .

2. Focus Object-Classof : An object-classof ∈ O, which is used to filter the out-edges

that already satisfy the focus-typesTf . SEGrapher allows admins to ignore checking

for of , henceof will be replaceable by any object-class inO.

3. Focus PermissionsAf : A set of permissionsAf ⊆ A, which are used to further filter

the out-edges that already satisfy bothTf and the focus object-classof . SEGrapher

also allows admins to ignore checking forAf , henceAf will be equal toA.

With the providedTf , of , andAf , an out-edge inGp with an AV allow rule setRfn is added

toGf if for any ri ∈ Rfn the following conditions areall true:

1. The subject-type forri exists inTf .

105

2. The object-class forri = of

3. Af exists within the permissions forri.

For example, letTf = {t1}, of = dir, andAf = {write}. When applying these inputs

onto the graph in Figure 36, a new focus-graphGf is generated as illustrated in Figure 37.

Note that, only out-edges with AV rule sets fulfilling the above conditions make it toGf .

t
1

t
2

allow t
'

 t
(

 : file { write}

allow t
1

 t2 : dir { read write}

R
12

Figure 37: Filtered allow rules fort1 and object-typet2 as an edge inGf

With 1,517,130 AV allow rules, 1,785 types, 47 object-classes, and 167 different permis-

sions, the full SELinux reference policy graph is infeasible to analyze at once. Even when

applying the analysis inputsTf , of , andAf , a resulting focus-graphGf can be difficult to

analyze. In many cases, simply analyzing a single focus-type can result in a large number

of AV allow rules, hence a dense focus-graphGf . For example, to analyze theread ac-

cesses of the Samba Server [58] on directories within an SELinux-enabled Linux system,

let Tf = {smbd t}, of = {dir}, andAf = {read} wheresmbd_t is the subject-type (do-

main) corresponding to the Samba Server. This analysis results in 1,048 AV allow rules,

hence a denseGf of 1,048 edges and 1,049 nodes. If we add a second typeftpd_t (FTP

Server) toTf , and run a new analysis, we’ll find that the number of edges inGf almost

doubles to 2,095, leading to a very dense graph, whereas the number of nodes increases

just to 1,052. This is due to the fact that bothsmbd_t andftpd_t have a large overlap in

the object-types they access, i.e. their out-edges share a large set of end nodes withinGf .

106

Observation 1.Many subject-types in SELinux have a large overlap of object-types that

they access. In some cases they access the exact set of object-types, and in other cases there

is a hierarchical relation between the sets accessed.

Based on Observation 1, we define the following terms and relations between typesti

andtj in Tf :

Definition 8. (Object-Type Set) The object-type setToi ⊆ T for type ti is the set of

object-types in all AV allow rules, where an AV rule’s subject-type isti. That is, the set of

all types thatti can access.

Definition 9. (Matching Types) Typesti andtj arematchingif their respective object-

type setsToi andToj are equal. Formally,

tiℜmtj ⇐⇒ (Toi = Toj)

Definition 10. (Hierarchical, Parent-Child Types) Aparent-childrelation between types

ti (parent) andtj (child) exists whenti’s object-type setToi is a proper superset oftj ’s

object-type setToj . Formally,

tiℜhtj ⇐⇒ (Toi ⊃ Toj)

Definition 11. (Overlapping Types) Typesti andtj are overlappingif their respective

object-type setsToi andToj overlap and neithertiℜmtj or tiℜhtj holds . Formally,

tiℜotj ⇐⇒ (Toi ∩ Toj 6= φ) ∧ tiℜmtj ∧ tiℜhtj

Definition 12. (Disjoint Types) Typesti andtj aredisjoint if their respective object-type

setsToi andToj are disjoint. Formally,

tiℜdtj ⇐⇒ (Toi ∩ Toj = φ)

107

These relations can assist in discovering other interesting relations between typesti and

tj in Tf .

Note that our focus is not on one-to-one type relations, i.e.canti ∈ Tf accesstj ∈ Tf ,

but on more interesting relations that exist betweenti andtj which can eventually lead to

simpler policy configurations and an easier analysis process. One-to-one relations between

ti andtj can still easily be identified from the relations above. In SEGrapher we uniquely

visualize the focus-typesTf , this makes it easy to identify them and to identify any one-to-

one relations that may exist between them.

Based on the defined relationsℜm,ℜh,ℜo, andℜd, and our higher goal of discovering new

relations, we propose a clustering algorithm in section 6.2.1 that utilizes and exposes exist-

ing relations between types inTf . By exposing these relations and building a cluster-based

focus-graph reflecting these relations, the algorithm is able to visually simplify focus-

graphs, hence simplify the policy analysis process.

6.2.1 Type Clustering

We propose and implement a clustering algorithm that utilizes the relationsℜm,ℜh,ℜo,

andℜd identified above. Given focus-typesTf , object-classof , permissionsAf , and an

edge-reduction thresholdτe, we extract existing relations from a policy graphGp and gen-

erate a set of clustersC where each clusterCi ∈ C becomes a node within a new cluster-

based focus-graphGf .

The process of generatingGf is detailed in Algorithm 1. The algorithm starts by initial-

izing a set of cluster nodes from the object-type sets of the focus-typesTf . Lines 3 and 4

create a new cluster nodeCc for each of the focus-typestf ∈ Tf , and a new edge between

108

Algorithm 1: Generate Clustered Policy Focus-Graph
input : Policy graphGp, focus-typesTf , object-classof , permissionsAf , and

thresholdτe
output: Clustered Focus-GraphGf

1 Initialization:C ← {} ; // Candidate Cluster Nodes
2 foreach tf ∈ Tf do
3 create new cluster nodeCc;
4 add edgee(tf , Cc) toGf ;
5 foreach nodetn ∈ OutNodes(tf , Gp) do
6 Rfn = AV allow rule for edgee(tf , tn) in Gp;
7 if Rfn satisfiesof andAf then
8 add edgee(Cc, tn) toGf ;

9 insertCc intoC;

10 while optimization possibledo
11 for i← 0 to size(C) do
12 for j ← 0 to size(C) do
13 outnodesi = OutNodes(Ci, Gf);
14 outnodesj = OutNodes(Cj, Gf);
15 if outnodesi = outnodesj then
16 MergeMatching(Ci, Cj, Gf);

17 else ifoutnodesi ⊂ outnodesj then
18 MergeSuperset(Ci, Cj, τe, Gf);

19 else ifoutnodesj ⊂ outnodesi then
20 MergeSuperset(Cj, Ci, τe, Gf);

21 else ifoutnodesi ∩ outnodesj 6= φ then
22 MergeOverlap(Ci, Cj, τe, Gf);

tf andCc is added toGf . On lines 6 and 7, the AV allow rule corresponding to each edge

betweentf and its out-nodes inGp is evaluated against the givenof andAf . If of is the

same as the AV rule’s object-class, andAf is within the AV rule’s permissions, then a new

edge from the new clusterCc and the out-node is created inGf . Each new cluster is then

stored intoC, at line 9. Figure 38 shows an example of the initialization process (assuming

all AV rules are satisfyof andAf).

Lines 11 to 22 of Algorithm 1, involve discovering potentialrelations between pairs of

109

t
2

t
1

t
3

t
4

t
5

t
6

(a) Before Initialization

c
2

c
1

t
3

t
4

t
5

t
6

t
2

t
1

(b) After Initialization

Figure 38: Initialization of new node clusters for focus-typest1 andt2

focus-types, where each focus-type is represented by its corresponding cluster from the

initialization phase, that is, each cluster represents a type’s object-type set. At line 15 of

Algorithm 1, it checks if the relationℜm holds. In this scenario, Algorithm 2 is used to

merge the object-type sets into one set. Figure 39 illustrates this process. Note that the

number of both clusters and edges decreases, hence simplifying the resultingGf .

c
2

c
3

c
1

4
t
5

t
6

t
7

t
1

t
2

t
3

(a) Before Optimization

c
2

t
4

t
5

t
6

t
7

t
1

t
2

t
3

(b) After Optimization

Figure 39: Clusters with matching object-types

Algorithm 2: MergeMatching
input : Cluster NodesC1 & C2. Focus-GraphGf

1 foreachedgee(t, C1) ∈ Gf do
2 add edgee(t, C2) to Gf ;
3 remove edgee(t, C1) from Gf ;

4 removeC1 from C

At lines 17 and 19 of Algorithm 1, it checks if the relationℜh holds. In this scenario,

110

Algorithm 3 is used to establish a parent-child relationship within Gf . This is achieved

by removing the out-edges of a parent cluster that point to the object-type set of the child

cluster, then pointing the parent cluster to the child cluster. Figure 40 illustrates this pro-

cess. Note that the edge-reduction thresholdτe is passed to Algorithm 3, which allows it to

measure the feasibility of establishing the parent-child relation. That is, before Algorithm

3 makes any changes toGf , it checks if the resulting reduction in edge numbers is greater

thanτe. The edge reduction for anℜh relation is equal to (the number of out-edges of the

child cluster – 1).

c
2

c
3

c
1

t
4

t
5

t
6

t
7

t
1

t
2

t
3

(a) Before Optimization

c
2

c
3

c
1

t
4

t
5

t
6

t
7

t
1

t
2

t
3

(b) After Optimization

Figure 40: Clusters with superset object-types (parent-child)

Algorithm 3: MergeSuperset
input : Cluster NodesC1 & C2. Thresholdτe, and Focus-GraphGf

1 if C1 andC2 satisfyτe then
2 To ← OutNodes (C1, Gf);
3 foreach nodetn ∈ To do
4 remove edgee(C2, tn) fromGf ;

5 add edgee(C2, C1) to Gf ;

At line 21 of Algorithm 1, it checks if the relationℜo holds. In this case, Algorithm 4

is used to extract the overlapping object-types, and creates a new cluster that points to the

overlap. Figure 42 illustrates this scenario. The edge-reduction thresholdτe is passed to

111

Algorithm 4, which allows it to measure the feasibility of establishing theℜo relation. That

is, before Algorithm 4 makes any changes toGf , it checks if the resulting reduction in edge

numbers is greater thanτe. The edge reduction for anℜo relation is equal to (the number

of overlapping out-edges – 2). Also note that for this scenario, the number of clusters

increases by 1. In our implementation, we find that the increase of clusters for a reasonable

edge-reductionτe, is effective from a visualization point of view.

c
2

t
6

t
7

t
2

c
1

t
4

t
5

t
1

t
8

t
9

(a) Before Optimization

c
2

t
6

t
7

t
2

c
1

t
4

t
5

t
1

t
8

t
9

c
+

(b) After Optimization

Figure 41: Clusters with overlapping object-types

Algorithm 4: MergeOverlap
input : Candidate ClustersC1, C2, and thresholdτe

1 if C1 andC2 satisfyτe then
2 create new cluster nodeCo;
3 To ← OutNodes (C1, Gf) ∩ OutNodes (C2, Gf);
4 foreach nodetn ∈ To do
5 add edgee(Co, tn) toGf ;
6 remove edgee(C1, tn) fromGf ;
7 remove edgee(C2, tn) fromGf ;

8 add edgee(C1, Co) toGf ;
9 add edgee(C2, Co) toGf ;

Algorithm 1 continues to run until no more feasible relations are discoverable.

The results from applying Algorithm 1 are effective in both discovering interesting rela-

tions between focus-types, and in simplifying the visualization of analysis results.

112

6.3 Assisted Policy Analysis

Providing clustered visual analysis results to admins allows for a clearer understanding

of existing type relations, and provides a layer of abstraction that isolates unnecessary

analysis data, hence focusing on types that matter the most.But, admins do not only

deal with existing policy rules, but are also required to addnew rules for certain types

on a regular basis. This occurs when a certain service Addingnew rules can potentially

involve risks of compromising the security of a system, either by adding rules that are too

permissive, or by adding rules that are completely unnecessary [54, 74]. It is important to

provide a mechanism that analyzes the risks associated withintroducing new policy rules.

We propose an assisted analysis mechanism that is part of SEGrapher. The proposed

mechanism provides analysis data on newly introduced rules, which can guide the admins

in making better policy management decisions.

6.3.1 Similarity-Based Model

Let Rnew be the set of new AV allow rules for an existing typeti, andRold the set of

all existing AV rules for all existing typesT in the policyP . Our approach determines a

set of similar typesTs ∈ T , based on the existing rules forti. To measure the similarity

between types, we construct afeature-vectorfor each typeti ∈ T , based on its accesses in

P . To capture the accesses of each type inT , we generate two types of access-matrices,

each capturing different levels of granularity.

1. MT : A matrix that captures the accesses between each pair of types(ti, tj) ∈ T ×T ,

regardless of the object-classes or permissions involved.An entryeij ∈MT indicates

whetherti is allowed (eij = 1) or denied (eij = 0) access totj. That is, if there exists

113

 t1 t2 ! tn

t1 e11 e12 ! e1n

t2 e21

!

!

tn en1 enn

Types

T
y
p

e
s
 !

!

(a) MT matrix

 t1 1 t1 2 ! tnom

t1 e111 e112 ! e1nm

t2 e211

!

!

tn en11 ennm

Types X Object-classes

T
y
p

e
s
 !

!

(b) MTO matrix

Figure 42: Feature Vectors

a ruleri ∈ Rold that allowsti access totj, theneij = 1, regardless of the object-class

or permissions forri. Figure 42(a) illustrates theMT access-matrix forP .

2. MTO: A matrix that captures the accesses between a typeti ∈ T and pairs(tj, ok) ∈

T × O , whereO is the set of all object-classes inP . These accesses are regardless

of the permissions involved. An entryeijk ∈ MTO indicates whetherti is allowed

(eijk = 1) or denied (eijk = 0) access totj given the object-classok. That is, if there

exists a ruleri ∈ Rold that allowsti access totj , and its object-class is equal took,

theneijk = 1, regardless of the permissions forri. Figure 42(b) illustrates theMTO

access-matrix forP .

Based on the access-matricesMT , andMTO, we define the feature-vectorsVT , andVTO

respectively. Each feature-vector on a typeti is represented by theith row of its respective

access-matrix. For example, the typet1 has two feature-vectors:VT1
(1st row ofMT), and

VTO1
(1st row ofMTO).

The similarity between any two typesti and tj is based on how similar their feature-

vectors are, e.g. types that have identical accesses withinP , will have identical feature-

114

vectors. To calculate the similaritysim(ti, tj), we use the Pearson correlation coefficient

which is widely used for similarity measures [25, 45].sim(ti, tj) represents the similarity

between the feature-vectors ofti andtj . Equation 7 shows the Pearson correlation simi-

larity value betweenti andtj , using their correspondingVT feature-vectors. The value of

sim(ti, tj) is between−1 and1, where a−1 indicates a reverse correlation, a1 indicates a

perfect correlation, and0 indicates no correlation. Types with a Pearson correlationcoeffi-

cient value closest to1 are the most similar, and are referred to as thenearest-neighbors.

sim(ti, tj) =

∑n
k=1(VTik

− VTi
)(VTjk

− VTj
)

√

∑n
k=1(VTik

− VTi
)2
√

∑n
k=1(VTjk

− VTj
)2

(7)

SEGrapher determines the nearest-neighbors for typeti of the newly introduced rulesRnew,

by applying two stages of filtering:

1. Stage 1: At this stage, SEGrapher calculates the similarity valuessim(ti, tj) based

on feature-vectors of typeVT , which only takes type-to-type accesses into consider-

ation, and disregards object-classes. Once similarity values are calculated, nearest-

neighbors are selected such that theirsim(ti, tj) value is larger than the thresholdτ1,

which is set by admins within SEGrapher.

2. Stage 2: LetTn be the set of nearest-neighbor types resulting from Stage 1.SEGra-

pher generates a newMTO matrix based only onTn rather thanT . Similarity values

sim(ti, tj) are then calculated based on the feature-vectorsVTO from the newMTO.

Tn is then filtered to only contain types with asim(ti, tj) value larger than the thresh-

old τ2, which is also set by admins within SEGrapher.

115

6.3.2 Nearest-Neighbor Rule Classification

After applying our similarity model onto the subject-typeti of the new rulesRnew, we

are able to identify the nearest-neighbors setTn. Types inTn have similar accesses to

ti, and are used as a measure of how risky the rulesRnew are, compared to the nearest-

neighbors’ rulesRn. That is, rulesRnew could be considered safe if the admin observes

similar rules inRn. SEGrapher allows admins to easily observe rules inRn by classifying

them into different access-classes based on the object-typesTnew, object-classesOnew, and

permissionsAnew accessed within the rules ofRnew.

For a rulerj ∈ Rn, let tj be its object-type,on its object-class, andAn its permissions. We

define the following access-classes onrj:

• Non-Matching: Rulerj belongs to this class iftj /∈ Tnew, on /∈ Onew, or An 6⊂

Anew. This class is considered the strongest notification of potential risks. SEGrapher

visually highlights these rules in red color, to grasp the admin’s attention.

• Less Permissive: Rulerj belongs to this class iftj ∈ Tnew, on ∈ Onew, andAn ⊂

Anew. This class is also a strong notification of potential risks,because there are

shared accesses, but not as permissive as rules inRnew. This class is visually high-

lighted in orange color.

• Overlapping: Rulerj belongs to this class iftj ∈ Tnew, on ∈ Onew, andAn∩Anew 6=

φ. This is also considered a strong notification of potential risks, because there are

shared accesses, but not the same as rules inRnew. This class is visually highlighted

in yellow color.

• More Permissive: Rulerj belongs to this class iftj ∈ Tnew, on ∈ Onew, andAnew ⊂

116

An. Rules in this class are more permissive thanRnew, which indicates that rules of

Rnew are potentially less risky. These are highlighted in green.

• Matching: Rulerj belongs to this class iftj ∈ Tnew, on ∈ Onew, andAnew =

An. This class reflects rules with identical accesses to those of Rnew. These are

highlighted in green color.

6.4 Design and Implementation

We implement our proposed clustering algorithm and assisted custom policy analysis

module in a tool we call “SEGrapher”. SEGrapher is based on the Java JDK 1.6, and uses

the APIs provided by SETools [68] for parsing SELinux policies. Its graph drawing is

based on an extended version of the open source visualization toolkit Prefuse [31].

6.4.1 Visualization and Interactivity

SEGrapher’s GUI as shown in Figure 43, contains two main panels. First, the left panel

which allows the admin to control the analysis attributes, such as focus-types, object-

classes, and permissions. It also has the controls for starting the analysis, and searching

for types within resulting focus-graphs. Second, a right panel which shows the resulting

focus-graphs of the analysis. The right panel is also where the results of an assisted-policy

analysis appears.

6.4.2 Focus-Graphs

The components of a focus-graph are visually differentiated to provide for easier policy

analysis.

• Focus-type Nodes: Focus-types are shown as green nodes within the graph. SEGra-

117!

Type Profiles

Object-classes

Permissions

Start analysis.

Search Focus-graph

Assisted policy
analysis results.

Nearest-neighbors’
rules.

Assisted policy
analysis focus-graph

Figure 43: SEGrapher Interface

pher also creates a new version of a focus-type in cases whereit also plays the role

of an object-type. The reasoning behind this is to provide a simpler focus-graph with

less cycles, in cases where focus-types access other focus-types.

• Object-type Nodes: Object-types are shown as orange nodes in the focus-graph.

Object-type nodes are hidden by default, as they are not the focus of the analysis.

In cases where an object-type is also one of the focus-types,it is by default expanded

and visible.

• Cluster Nodes: The proposed clustering approach in Section6.2.1 results in cluster

nodes that become part of the focus-graph. A cluster node is shown in black color,

and shows a label which indicates the number of object-type nodes it points to. Ad-

mins can also expand/hide object-type nodes for a cluster node, by double-clicking

on the cluster node. Figure 44 shows the cluster nodeC1_0with 13 expanded object-

type nodes.

118

!

Figure 44: Overlapping relation (httpdconfig t ℜo httpd cachet)

An out-edge from a nodeni tonj indicates thatni can access the typenj (for the specified

object-classes and permissions). Ifnj is a cluster node, thenni can access all the object-

type nodes for the cluster nodenj, and all object-type nodes for clusters pointed to bynj .

For example, in Figure 45, the typehttpd_t can access all object-type nodes for cluster

C1 andC0, whereas the typehttpd_tmp_t can only access nodes ofC0. Note that edges

between clusters are visually differentiated as a dashed line.

Figure 45: Hierarchical relation (httpdt ℜh httpd tmp t)

119

6.4.3 Policy Analysis

To start a policy analysis, first, the admin loads a policy into SEGrapher, which is then

parsed into a graph and stored into memory for future analysis. Second, the admin needs

to select a set of focus-types to be analyzed, and can optionally select which object-class,

and permissions to be used for filtering policy AV rules. The left panel of SEGrapher, as

seen in Figure 43, shows some of the object-classes and permissions provided.

Focus-Types SEGrapher allows admins to select a set of focus-types from a set of profiles

we define. These profiles allow for a more intuitive method of selecting types according to

their functionality, rather than searching for a specific type from within a large list of types

(e.g. SELinux targeted-policy has over 1,780 types). For example, an admin can easily

find the typehttpd_t within the profileApachewhich itself is within the profileServers.

Other profile examples includeDatabases, Mail, Introsion Detection, etc. Figure 43 shows

some of the profiles SEGrapher provides.

Once the admin decides on the analysis attributes, she/he can start the analysis. Follow-

ing our proposed clustering algorithm in Section 6.2.1, SEGrapher produces a focus-graph

reflecting the analysis results.

Figure 45 shows a focus-graph for focus-typeshttpd_t andhttpd_tmp_t. This

focus-graph illustrates a hierarchical relation (httpd_t ℜh {httpd_tmp_t), that is,

httpd_t has access to all object-types that{httpd_tmp_t has access to. This is re-

flected through the cluster nodesC1 andC0, wherehttpd_t points toC1 which in turn

points toC0, whereas{httpd_tmp_t only points toC0.

Another example of a focus-graph is shown in Figure 44, whichshows an overlapping

120

relation (httpd_config_t ℜo httpd_cache_t). The overlapping accesses between

httpd_config_t andhttpd_cache_t are clearly captured within the clusterC1_0.

6.4.4 Assisted Policy Analysis

SEGrapher provides admins the ability to load their own custom policy modules. These

modules can either be ones resulting from a tool such as audit2allow [32], or manually

written by admins themselves and loaded as a text file. Once a custom module is loaded,

SEGrapher analyzes the new AV allow rules within the module,and applies our proposed

assisted policy analysis approach in Section 6.3. Considerthe following AV rule within a

loaded custom module:

allow httpd_t user_home_t : dir {write}

For this rule, SEGrapher will first, find the nearest-neighbors types forhttpd_t, using our

approach in Subsection 6.3.1, and based on the nearest-neighbors’ thresholdsτ1 andτ2 that

are set by the admin. The nearest-neighbors’ rules are then classified into their appropriate

access-classes. Figure 46 shows the resulting nearest-neighbors’ rules classifications, with

their corresponding color-codes. Note that the rule with subject-typemysqld_t shows a

strong potential risk of adding the new suggested rule, whereas the last rule in the figure

shows low risk. Finally, SEGrapher generates the focus-graph for the types involved in

Figure 46: Assisted policy analysis results. Classification of existing rules.

the new custom module, in this case the typeshttpd_t anduser_home_t as shown in

Figure 43.

121

6.5 User Study

In order to evaluate the effectiveness and usability of SEGrapher we conducted a user

study comparing it to the de-facto SELinux policy analysis tool “APOL”. Participants in the

study go through a number of tasks related to SELinux policy analysis, and then complete

a questionnaire on these tasks. The study was approved by UNC-Charlotte IRB (Protocol

#12-05-18).

6.5.1 Methodology

The study participants were recruited from UNC-Charlotte and other corporations. They

included both graduate students and IT professionals. We recruited a total of 19 participants

who all successfully completed the study and the accompanying survey. Of the partici-

pants, 63.1% were in the Information Security field, 15.8% were specialized in Computer

Networking, 5.3% in Computer Graphics & Visualization, and15.7% from other fields.

5.26% of the participants change their operating system configuration on a daily basis,

15.8% weekly, 47.4% monthly, and 26.3% never. 10.5% of them configure their operating

system security policy on a weekly basis, 52.6% monthly, whereas 36.8% never do so. Par-

ticipants where given an introduction to both APOL and SEGrapher and were familiarized

with their user interfaces. We then performed a within-subjects study comparison in which

participants go through a number of policy analysis tasks using both tools. The order of

using each tool was randomized and counter balanced.

122

6.5.1.1 Policy Analysis Tasks

The analysis tasks in the study involved 6 main tasks as seen in Figure 47. The tasks were

performed both on APOL and SEGrapher. The target SELinux policy that was analyzed

was the SELinux reference policy in targeted mode.

Analysis Task
Browse the policy components (types, object classes, and permissions).
Locate types belonging to Apache.
Identify the rules betweenhttpd t andftpd t.
Identify if the typehttpd t haswrite permission onftpd t.
Identify relations between the set of types accessed byhttpd t andhttpd tmp t.
Identify the policy rules amonghttpd t, mysqld t, andpostgresql t.

Figure 47: Policy Analysis Tasks

6.5.2 Study Results

After completing the analysis tasks, the participants wereasked to complete a question-

naire which covered 5 main aspects of using APOL and SEGrapher. The 5 aspects in-

clude:Ease of Use, Overall Satisfaction, Browsing Policy Components, Composing Analy-

sis Queries, and finallyPolicy Type Interconnectivity. For each of the aspects we perform a

Wilcoxon Signed Rank test (paired by participant and p< 0.05) to observe the significance

of using SEGrapher vs. APOL. The results are summarized in Figure 48.

APOL (µ, σ) SEGrapher (µ, σ) p-value
Ease of Use (2.736, 0.871) (4.578, 0.507) 0.00001526
Overall Satisfaction (2.84, 0.95) (4.63, 0.59) 0.00001526
Browsing Policy Components (2.89, 1.19) (4.47, 0.51) 0.0003662
Composing Analysis Queries (2.736, 0.933) (4.57, 0.692) 0.01562
Policy Type Interconnectivity (2.89, 1.19) (4.47, 0.51) 0.00001526

Figure 48: SEGrapher vs. APOL

123

6.5.2.1 Ease of Use

Participants were asked to rank the ease of using each of APOLand SEGrapher using

a Likert Scale from 1 to 5, where 1 isVery Complicatedand 5 isVery Easy. We observed

that SEGrapher was ranked significantly higher than APOL with (Z=-3.79, p=0.00001526,

r=0.614).

6.5.2.2 Overall Satisfaction

Participants ranked their overall satisfaction of APOL andSEGrapher using a Likert

Scale from 1 to 5, where 1 isStrongly Disagreeand 5 isStrongly Agree. We observed that

SEGrapher was ranked significantly higher than APOL in user satisfaction with (Z=-3.8,

p=0.00001526, r=0.616).

6.5.2.3 Browsing Policy Components

Participants ranked their satisfaction with browsing the policy components on APOL

and SEGrapher using a Likert Scale from 1 to 5, where 1 isStrongly Disagreeand 5 is

Strongly Agree. We observed that SEGrapher was ranked significantly higherthan APOL

with (Z=-3.3779, p=0.0003662, r=0.547).

6.5.2.4 Composing Analysis Queries

Participants ranked their satisfaction with composing analysis queries within APOL and

SEGrapher using a Likert Scale from 1 to 5, where 1 isStrongly Disagreeand 5 isStrongly

Agree. We observed that SEGrapher was ranked significantly higherthan APOL with (Z=-

3.7376, p=0.0000305, r=0.606).

124

6.5.2.5 Policy Type Interconnectivity

Participants ranked their satisfaction with identifying policy type interconnections using

APOL and SEGrapher on a Likert Scale from 1 to 5, where 1 isStrongly Disagreeand 5 is

Strongly Agree. We observed that SEGrapher was ranked significantly higherthan APOL

with (Z=-3.796, p=0.00001526, r=0.615).

6.5.3 Assisted Policy Analysis

Participants also went through 3 tasks related to SEGrapher’s assisted policy analysis

module. These tasks are listed in Figure 49. From these taskswe evaluate the partici-

pants’ satisfaction level with SEGrapher’s assisted policy analysis module’sease of use,

presentation, resulting statistics, andresulting risk analysis graph. Participants rate their

satisfaction with each aspect on a Likert scale from 1 to 5, where 1 is strongly disagree

and 5 is strongly agree. Figures 50(a) and 50(b) illustrate the responses using boxplots. In

summary participants were overall satisfied with the various elements in the assisted policy

module.

Analysis Task
Identify the existing policy rules similar to the new ones.
Identify the number ofNon-Matching, Less Permissive, Overlapping, More Permissive,
andMatchingpolicy rules.
Identify the overall risk of adding the new rules.

Figure 49: Assisted Policy Analysis Tasks

125

Statistics Graph

1
2

3
4

5

(a) Satisfaction with resulting statistics
and analysis graph

Presentation Ease of Use

1
2

3
4

5

(b) Satisfaction with presentation and
overall ease of use

Figure 50: Summary of Likert scale responses

CHAPTER 7: CONCLUSIONS

This chapter reiterates and clearly defines the contributions of this dissertation work, and

also discusses potential future paths for extending upon this research.

7.1 Contributions

In this work we have proposed and implemented a set of policy management frame-

works which are motivated by the need to guide and enhance theoverall policy manage-

ment process. The frameworks are mainly based on two techniques: recommendations and

clustering.

First, we propose an enhanced version of the Sun PDP engine which improved policy

evaluation performance by orders of magnitude. This was possible by analyzing previous

access control request data, and the policy structure. We then adapted the policy to suit

various scenarios of high access control requests.

Second, a recommendation-based open authorization framework that was incorporated

within a browser (Chrome and Firefox) extension called FBSecure. The framework extends

upon the existing OAuth mechanism and provided the following: 1) Recommendations per

requested permissions, which are based on the collaborative community decisions, 2) Fine-

grained control over the privacy attributes requested by third party applications.

Third, we propose a framework for guiding users towards enhancing their policy deci-

sions on third party browser extension permissions. The framework provides fine-grained

127

controls over the requested permissions in addition to extended permission descriptions.

We conducted a user-study to evaluate the effectiveness of the framework, which showed

a significant improvement in the user awareness towards the permissions requested by ex-

tensions. The framework is also capable of monitoring the accesses made by third party

extensions at run-time.

Finally, we propose “SEGrapher”, a visualized-based policy analysis tool for SELinux

policies. SEGrapher uses a clustering technique that clusters SELinuxtypesbased on their

policy accesses. Using these clusters it is able to present simplified analyses results in

the form of a directed graph. The cluster-based results provide a powerful approach for

discovering inherited relations between various SELinux policy types. SEGrapher also has

the ability to measure the potential risks of adding new policy rules. The risks are based on

previous knowledge of the policy and discovering the similarities between the types in the

new rules and those already within the policy.

7.2 Future Work

This dissertation contributes a number of frameworks for enhancing the policy manage-

ment process for both administrators and users. In the following we discuss future work

that could further improve upon this research.

7.2.1 Recommendation-based Open Authorization

The proposed recommendation-based open authorization canfurther be integrated with

existing social networking sites. This integration can enrich the recommendation models

by utilizing extended user data (e.g. profile information and friendship network). This

would also reduce the effect of cold start recommendations.Another potential path would

128

involve incorporating the functionalities of the framework directly into the browser and

adopt a wider range of social sites. Further user studies would verify the effectiveness of

such integration.

7.2.2 Third Party Browser Extension Policy Management

The current state of the framework allows for fine-grained permission controls and run-

time monitoring of extension accesses. To further improve the framework, recommendation

models such as those in Section 4 should be adopted. Next to the permission descriptions

provided in the framework, users would also be able to utilize recommendations based on

the community inputs.

The monitoring of extension accesses was mainly based on Chrome API calls. Accesses

out of the Chrome API scope could still possibly occur. To mitigate the possibility of so,

additional methods of detecting extension access should beadopted, e.g. static analysis of

extension source code could potentially help, in addition to identifying certain attack paths

or unsafe javascript methods.

As Chrome extensions already have a dedicated settings window within Chrome itself,

it would be interesting to study the potential integration of the framework into Chrome’s

existing settings window rather than being a stand alone extension. This could change the

users perception towards customizing permissions and enhance their experience.

7.2.3 SELinux Policy Management

The proposed tool “SEGrapher” can be further improved by adding better user interac-

tion capabilities with the resulting analysis graphs. Suchinteractions could provide faster

feedback on specific relations amongst the analyzed policy types. For example, clicking on

129

an edge could provide extra details on a relationship.

The risk analysis module within SEGrapher could be extend upon to accommodate new

types that do not already exist within the policy. This mightrequire some additional infor-

mation to be provided by the administrator in an effort to better understand the new types.

SEGrapher could provide a set of usage profiles that can be assigned to newly introduced

rules and from those profiles infer possible recommendations. Such profiles could be gen-

erated by analyzing and monitoring the behaviors of different applications within various

domains. For example, a profile could be generated for we servers in general, hence any

new rules that are assigned to a web server could potentiallybe compared to its associated

profile. Finally, additional user studies could be conducted to further evaluate the effective-

ness of SEGrapher.

130

REFERENCES

[1] Alessandro Acquisti and Ralph Gross. Imagined communities: Awareness, informa-
tion sharing, and privacy on the facebook. InPrivacy Enhancing Technologies, pages
36–58, 2006.

[2] Alessandro Acquisti and Ralph Gross. Imagined communities: Awareness, informa-
tion sharing, and privacy on the facebook. InPrivacy Enhancing Technologies, pages
36–58, 2006.

[3] Gediminas Adomavicius and YoungOk Kwon.In Recommender Systems Handbook:
A Complete Guide for Research Scientists and Practitioners, chapter Multi-Criteria
Recommender Systems - Forthcoming. Springer, 2010.

[4] Sruthi Bandhakavi, Samuel T. King, P. Madhusudan, and Marianne Winslett. Vex:
vetting browser extensions for security vulnerabilities.In Proceedings of the 19th
USENIX conference on Security, USENIX Security’10, pages 22–22, Berkeley, CA,
USA, 2010. USENIX Association.

[5] Adam Barth, Adrienne Porter Felt, Prateek Saxena, and Aaron Boodman. Protect-
ing browsers from extension vulnerabilities.17th Network and Distributed System
Security Symposium, 2010.

[6] Andrew Besmer, Jason Watson, and Heather Richter Lipford. The impact of social
navigation on privacy policy configuration. In Lorrie FaithCranor, editor,SOUPS,
volume 485 ofACM International Conference Proceeding Series. ACM, 2010.

[7] Dr. Carrie and E. Gates. Access control requirements forweb 2.0 security and privacy.
In Proc. of Workshop on Web 2.0 Security & Privacy (W2SP 2007), 2007.

[8] Shan Chen and Mary-Anne Williams. Towards a comprehensive requirements archi-
tecture for privacy-aware social recommender systems. InAPCCM ’10: Proceedings
of the Seventh Asia-Pacific Conference on Conceptual Modelling, pages 33–42, Dar-
linghurst, Australia, Australia, 2010. Australian Computer Society, Inc.

[9] Mohan Dhawan and Vinod Ganapathy. Analyzing information flow in javascript-
based browser extensions. InProceedings of the 2009 Annual Computer Security
Applications Conference, ACSAC ’09, pages 382–391, Washington, DC, USA, 2009.
IEEE Computer Society.

[10] Catherine Dwyer, Starr Roxanne Hiltz, and Katia Passerini. Trust and privacy concern
within social networking sites: A comparison of facebook and myspace. InProceed-
ings of the Thirteenth Americas Conference on Information Systems (AMCIS 2007),
2007. Paper 339.

[11] Facebook. Facebook Press Room.http://www.facebook.com/press/info.php?statistics,
2011.

131

[12] Lujun Fang and Kristen LeFevre. Privacy wizards for social networking sites. In
Michael Rappa, Paul Jones, Juliana Freire, and Soumen Chakrabarti, editors,WWW,
pages 351–360. ACM, 2010.

[13] Adrienne Felt and David Evans. Workshop on web 2.0 security and privacy. oakland,
ca. 22 may 2008. privacy protection for social networking platforms, 2008.

[14] Adrienne Porter Felt, Kate Greenwood, and David Wagner. The effectiveness of appli-
cation permissions. InProceedings of the 2nd USENIX conference on Web application
development, WebApps’11, Berkeley, CA, USA.

[15] Adrienne Porter Felt, Kate Greenwood, and David Wagner. The effectiveness of ap-
plication permissions. InProceedings of the 2nd USENIX conference on Web appli-
cation development, WebApps’11, pages 7–7, Berkeley, CA, USA, 2011. USENIX
Association.

[16] FireBreath. FireBreath.http://www.firebreath.org/.

[17] Kathi Fisler, Shriram Krishnamurthi, Leo A. Meyerovich, and Michael Carl Tschantz.
Verification and change-impact analysis of access-controlpolicies. InICSE ’05: Pro-
ceedings of the 27th international conference on Software engineering, pages 196–
205, New York, NY, USA, 2005. ACM.

[18] FriendCameo, Inc. FriendCameo.http://friendcameo.com, 2010.

[19] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using collabora-
tive filtering to weave an information tapestry.Commun. ACM, 35(12):61–70, 1992.

[20] Kiran K. Gollu, Stefan Saroiu, and Alec Wolman. A socialnetworking-based ac-
cess control scheme for personal content.Proc. 21st ACM Symposium on Operating
Systems Principles (SOSP ’07). Work in progress, 2007.

[21] Ralph Gross and Alessandro Acquisti. Information revelation and privacy in online
social networks. InProceedings of the 2005 ACM workshop on Privacy in the elec-
tronic society, WPES ’05, pages 71–80, New York, NY, USA, 2005. ACM.

[22] H. Hamed, A. El-Atawy, and E. Al-Shaer. Adaptive statistical optimization techniques
for firewall packet filtering. InINFOCOM 2006: Proceedings of the 25th IEEE Inter-
national Conference on Computer Communications, pages 1–12, April 2006.

[23] Hazem Hamed and Ehab Al-Shaer. Dynamic rule-ordering optimization for high-
speed firewall filtering. InProceedings of the 2006 ACM Symposium on Information,
computer and communications security, pages 332–342, New York, NY, USA, 2006.
ACM.

[24] Michael Hart, Rob Johnson, and Amanda Stent. More content - less control: Access
control in the Web 2.0.Web 2.0 Security & Privacy, 2003.

132

[25] Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers,and John Riedl. An algo-
rithmic framework for performing collaborative filtering.In Proceedings of the inter-
national ACM SIGIR conference, SIGIR ’99, pages 230–237, New York, NY, USA,
1999. ACM.

[26] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl.
Evaluating collaborative filtering recommender systems.ACM Trans. Inf. Syst., 22:5–
53, January 2004.

[27] Hitachi Software. Seedit: Selinux policy editorhttp://seedit.
sourceforge.net.

[28] Graham Hughes and Tevfik Bultan. Automated verificationof xacml policies using a
sat solver. InProceedings of the Workshop on Web Quality, Verification andValidation
(WQVV 07), pages 378–392, 2007.

[29] iOpus. iMacros.http://www.iopus.com/imacros/chrome/.

[30] Trent Jaeger, Reiner Sailer, and Xiaolan Zhang. Analyzing integrity protection in the
selinux example policy. InProceedings of the 12th conference on USENIX Security
Symposium - Volume 12, pages 5–5, Berkeley, CA, USA, 2003. USENIX Association.

[31] Jeffrey Heer . Prefuse (Java).http://prefuse.org.

[32] Justin R. Smith, Yuichi Nakamura, and Dan Walsh. audit2allow. http://linux.
die.net/man/1/audit2allow .

[33] Patrick Gage Kelley, Paul Hankes Drielsma, Norman Sadeh, and Lorrie Faith Cranor.
User-controllable learning of security and privacy policies. InAISec ’08: Proceedings
of the 1st ACM workshop on Workshop on AISec, pages 11–18, New York, NY, USA,
2008. ACM.

[34] Kernel Trap. SELinux vs. OpenBSD’s Default Security.http://kerneltrap.
org/OpenBSD/SELinux_vs_OpenBSDs_Default_Security.

[35] Haruka Kikuchi, Dachuan Yu, Ajay Chander, Hiroshi Inamura, and Igor Serikov.
Javascript instrumentation in practice. InProceedings of the 6th Asian Symposium on
Programming Languages and Systems, APLAS ’08, pages 326–341, Berlin, Heidel-
berg, 2008. Springer-Verlag.

[36] Vladimir Kolovski and James Hendler. XACML policy analysis using de-
scription logics. Submitted to Journal of Computer Security (JCS) available
at http://www.mindswap.org/∼kolovski/KolovskiXACMLAnalysisJCSSubmission.pdf,
2008.

[37] Vladimir Kolovski, James Hendler, and Bijan Parsia. Analyzing web access control
policies. InWWW ’07: Proceedings of the 16th international conference on World
Wide Web, pages 677–686, New York, NY, USA, 2007. ACM.

133

[38] Hsin-Hsien Lee and Wei-Guang Teng. Incorporating multi-criteria ratings in recom-
mendation systems. InIRI’07, pages 273–278, 2007.

[39] Ming Li, Benjamin Dias, Wael El-Deredy, and Paulo J. G. Lisboa. A probabilistic
model for item-based recommender systems. InProceedings of the 2007 ACM con-
ference on Recommender systems, RecSys ’07, pages 129–132, New York, NY, USA,
2007. ACM.

[40] Alex X. Liu, Fei Chen, JeeHyun Hwang, and Tao Xie. Xengine: a fast and scalable
xacml policy evaluation engine. InProceedings of the ACM SIGMETRICS interna-
tional conference on Measurement and modeling of computer systems, pages 265–
276, New York, NY, USA, 2008. ACM.

[41] R. S. Liverani and N. Freeman. Abusing Firefox Extensions. InDefcon, July 2009.

[42] V. Benjamin Livshits and Monica S. Lam. Finding security vulnerabilities in java
applications with static analysis. InProceedings of the 14th conference on USENIX
Security Symposium - Volume 14, pages 18–18, Berkeley, CA, USA, 2005. USENIX
Association.

[43] G. A. Di Lucca, A. R. Fasolino, M. Mastoianni, and P. Tramontana. Identifying
cross site scripting vulnerabilities in web applications.In Proceedings of the Web Site
Evolution, Sixth IEEE International Workshop, pages 71–80, Washington, DC, 2004.
IEEE Computer Society.

[44] LWN.net. Quotes of the week.http://lwn.net/Articles/179829/.

[45] Matthew R. McLaughlin and Jonathan L. Herlocker. A collaborative filtering algo-
rithm and evaluation metric that accurately model the user experience. InProceed-
ings of the 27th annual international ACM SIGIR conference on Research and devel-
opment in information retrieval, SIGIR ’04, pages 329–336, New York, NY, USA,
2004. ACM.

[46] Philip L. Miseldine. Automated xacml policy reconfiguration for evaluation optimi-
sation. InProceedings of the 4th International Workshop on Software Engineering
for Secure Systems, pages 1–8, New York, NY, USA, 2008. ACM.

[47] MITRE . SELinux Analysis Tools (SLAT).http://www.mitre.org/tech/
selinux/.

[48] MITRE. Polgen: Guided auto-mated policy development.http://www.mitre.
org/tech/selinux.

[49] T. Moses. Extensible access control markup language (XACML). Technical Report,
OASIS, 2003.

[50] Mozilla Add-Ons Blog. How many Firefox users have add-ons in-
stalled? 85%! http://blog.mozilla.com/addons/2011/06/21/
firefox-4-add-on-users/.

134

[51] OAuth. Security Advisory:2009.1. http://oauth.net/advisories/
2009-1/.

[52] OAuth 2.0. The OAuth 2.0 Protocol.http://tools.ietf.org/html/draft-ietf-oauth-v2-10,
2010.

[53] N. Ramakrishnan, B.J. Keller, B.J. Mirza, A.Y. Grama, and G. Karypis. Privacy risks
in recommender systems.Internet Computing, IEEE, 5(6):54 –63, 2001.

[54] Red Hat, Inc. Red Hat SELinux Guide, Chapter 8. Customizing and Writing Pol-
icy. http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_
Linux/4/html/SELinux_Guide/selg-section-0120.html.

[55] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, PeterBergstrom, and John Riedl.
Grouplens: an open architecture for collaborative filtering of netnews. InCSCW ’94:
Proceedings of the 1994 ACM conference on Computer supported cooperative work,
pages 175–186, New York, NY, USA, 1994. ACM.

[56] J. Riedl. Personalization and privacy.Internet Computing, IEEE, 5(6):29 –31, 2001.

[57] Ronald Rivest. On self-organizing sequential search heuristics. Commun. ACM,
19(2):63–67, 1976.

[58] Samba. Samba Server.http://www.samba.org/samba.

[59] Beata Sarna-Starosta and Scott D. Stoller. Policy analysis for security-enhanced linux.
In In Proceedings of the 2004 Workshop on Issues in the Theory ofSecurity (WITS,
pages 1–12, 2004.

[60] Security Enhanced Linux.http://www.nsa.gov/research/selinux.

[61] Mohamed Shehab, Anna Cinzia Squicciarini, and Gail-Joon Ahn. Beyond user-to-
user access control for online social networks. InProceedings of the 10th Interna-
tional Conference on Information and Communications Security, ICICS ’08, pages
174–189, Berlin, Heidelberg, 2008. Springer-Verlag.

[62] Stephen W. Cote. FunMon2.js.http://www.imnmotion.com/documents/
html/technical/dhtml/funmon.html.

[63] Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of collaborative filtering tech-
niques.Adv. in Artif. Intell., 2009:4:2–4:2, January 2009.

[64] Sun XACML Policy Engine. http://sunxacml.sourceforge.net/guide.html.

[65] Mike Ter Louw, Jin Lim, and V. Venkatakrishnan. Enhancing web browser security
against malware extensions.Journal in Computer Virology, 4:179–195, 2008.

[66] The Chromium Blog. A Year of Extensions.http://blog.chromium.org/
2010/12/year-of-extensions.html.

135

[67] Tresys Technology. APOL. http://oss.tresys.com/projects/
setools.

[68] Tresys Technology. Setools: Policy analysis tools forselinux http://oss.
tresys.com/projects/setools.

[69] V. N. Venkatakrishnan, Prithvi Bisht, Mike Ter Louw, Michelle Zhou, Kalpana Gondi,
and Karthik Thotta Ganesh. Webapparmor: a framework for robust prevention of
attacks on web applications. InProceedings of the 6th international conference
on Information systems security, ICISS’10, pages 3–26, Berlin, Heidelberg, 2010.
Springer-Verlag.

[70] Vincent Danen. Introduction to SELinux: Don’t let complexity scare
you off. http://www.techrepublic.com/blog/opensource/
introduction-to-selinux-dont-let-complexity-scare-you-off/
2447.

[71] Ian H. Witten and Eibe Frank.Data Mining: Practical Machine Learning Tools and
Techniques. 2 edition, 2005.

[72] Yichen Xie and Alex Aiken. Static detection of securityvulnerabilities in scripting
languages. InProceedings of the 15th conference on USENIX Security Symposium -
Volume 15, Berkeley, CA, USA, 2006. USENIX Association.

[73] Wenjuan Xu, Mohamed Shehab, and Gail-Joon Ahn. Visualization based policy anal-
ysis: case study in selinux. InProceedings of the 13th ACM symposium on Access
control models and technologies, SACMAT ’08, pages 165–174, New York, NY,
USA, 2008. ACM.

[74] Yuichi Nakamura. SELinux Policy Editor(SEEdit) Administration Guide
2.1. http://seedit.sourceforge.net/doc/2.1/tutorial/node9.
html, February 2007.

[75] Yuchen Zhou and David Evans. Protecting private web content from embedded
scripts. InProceedings of the 16th European conference on Research in computer
security, ESORICS’11, pages 60–79, Berlin, Heidelberg, 2011. Springer-Verlag.

