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ABSTRACT

SAEED MOHAJERYAMI. An Improvement of The Load Reduction Evaluation
Methodologies Employed in Demand Response (DR) Programs Offered to

Residential Customers. (Under the direction of DR. VALENTINA CECCHI)

In current electricity market, demand side buys power indirectly through electric

utilities, and it makes the demand side inelastic to market’s price volatility and sig-

nificantly affects the efficiency of the market. To fix the problem, it is essential to

involve the demand side directly. One major step taken towards this goal is demand

response programs. These programs offer many benefits and can provide solutions to

many issues in the market. However, some challenges are facing their implementation,

chief among them is the estimation of load reduction. An accurate measurement of

the load reduction needs an accurate estimate of Customer Baseline Load (CBL). In

this dissertation, it is observed that the CBL methods developed for large industrial

and commercial customers are not satisfactorily accurate when applied to residential

customers. Residential customers have a variable load. Moreover, with increasing

penetration of distributed generation and storage devices, large industrial and com-

mercial loads are also becoming variable. Therefore, it is an imperative to explore new

methods to estimate the CBL for variable loads accurately. In this dissertation, the

challenges associated with the presence of CBL are studied carefully, and a k -means

clustering method based on the average load and a predictability index is proposed

to improve CBL estimation. The advantages of the proposed method are shown both

in theory and through an experiment. It is shown this proposed method can improve

the error performance of CBL estimation considerably.
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CHAPTER 1: INTRODUCTION

1.1 Overview

Traditionally, in the United States, electric utilities were vertically integrated with

transmission systems. In other words, one utility was responsible for the entire pro-

cess of generation, transmission, and distribution of electricity. However, in the 90s,

with deregulation in other industries, the electric industry came to the conclusion that

deregulation was inevitable. Accordingly, Independent System Operators (ISOs) and

Regional Transmission Organizations (RTOs) were established in the light of dereg-

ulation of the electric industry. These organizations were introduced to deal with

the expanding number of transactions in the electricity market, which is one of the

products of deregulation in the electric industry. Around a dozen states chose to

deregulate their electricity market. Yet after the California energy crisis of 2000-

2001, some pulled back.

Opening up the electricity market was a major step toward deregulation and free

markets in the electric industry. However, some parts of the market were not mature

enough to participate freely. For instance, the infrastructure that allowed the par-

ticipation of each individual electricity consumer was non-existent at the time. As a

result, smaller electric utilities that used to be only responsible for the distribution

of electricity, began to purchase electricity on behalf of their industrial, commercial,
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and residential customers[64].

In the current state of the electricity market, in a day-ahead market, the power

plants offer their electricity generation as a supply and utilities bid for it. The demand

in the day-ahead market is not an actual demand; it is a speculative amount based

on a demand forecast, which is run by the utilities. The price will be determined by

the predicted supply and demand curve. In case something out of order happens, e.g.

excess demand or supply shortage, the imbalance will be settled in the spot market.

After purchasing electricity for customers, the utilities charge them based on a fixed

tariff. In this system, the customers are shielded from the price fluctuations of the

wholesale market.

The fact that customers cannot feel the price fluctuations of the market can sig-

nificantly affect the efficiency of the market. In other words, the efficiency of the free

market depends on the elasticity of the supply and demand[9, 50, 10, 11]. In the

current wholesale market, the demand is somewhat inelastic to the sudden changes

in the supply side. For instance, many economists believe that this isolation is one

of the major contributing factors of the California energy crisis[26]. The presence

of this issue can lead to problems, including unstable wholesale prices and market

power of large electricity suppliers[8, 55]. In order to fix this problem, it is necessary

to build the infrastructure for demand-side participation. Part of this infrastructure

is technology, and the other part is policy and customer education.

The technological infrastructure of the demand-side participation including ad-

vanced smart meters, big data analytics, etc is in development. For example, ac-

cording to a Federal Energy Regulatory Commission (FERC) survey in 2010, the
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penetration of smart meters in the US reached a level of 8.7 percent[46]. Further-

more, many utilities are running pilot projects to test these infrastructures and the

feasibility of demand participation programs[27, 28, 61, 33, 69].

Another necessary part of the infrastructure is policy. In order to address the

inefficiency in the wholesale market, FERC is promoting the adoption of Demand

Response (DR) programs. In FERC No. 745, the permission to participate in the

wholesale market is granted to the DR owners[29]. In other words, in the wholesale

market, ISOs are commanded to treat the load reduction as a supply. DR programs

are designed to persuade customers to reduce their consumption in response to some

incentives temporarily. According to many researchers in the literature, DR programs

can temporarily bring elasticity to the demand side.

1.2 Motivation

Although DR programs can provide workable solutions to many issues in the mar-

ket, there are many challenges facing their implementation, chief among them is Eval-

uation, Measurement, and Verification (EM&V) of the load reduction. Measurement

of the customers’ load reduction is necessary for the purpose of payment settlement,

which is a critical part of the most of DR programs. An accurate measurement of

the load reduction depends upon the accurate estimation of Customer Baseline Load

(CBL). The CBL is the amount of electricity that a customer would have consumed

if there was not a DR event. Therefore, it is a ”counterfactual” load. Besides, it is

called ”baseline,” because it provides a baseline for computing the load reduction.

The difference between the actual load and the CBL is the ”curtailment” that DR
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programs are designed for[43].

The central topic of this dissertation is CBL. The EM&V of CBL and the ways

to enhance the accuracy of CBLs were extensively investigated in the literature in

recent years. Moreover, FERC 745 order commanded ISOs to develop a CBL for their

own DR programs[29]. Some of these methods are tabulated in Table 1. The full

description of each method is available in [51]. It is worth noting that the methods in

Table 1 were originally created for large Industrial and Commercial (I&C) customers.

Table 1: CBL calculation methods employed by different ISOs

Independent System Operator (ISO) CBL Calculation Method
PJM Averaging (High4of5)

NYISO Averaging (High5of10)
CAISO Averaging (Last10days)

Ontario,Canada Averaging (High15of20)
ISONE Exponential Moving Average
ERCOT Regression Models

In recent years, the high penetration of smart meters in the residential sector, which

provide granular hourly consumption data, has created unprecedented opportunities

for load aggregators to enter into a contract with residential customers. Load aggre-

gators can bundle the potential residential customers’ load reduction and offer it as a

supply source in the electricity market. Therefore, it is fair to say that the challenges

of CBL estimation are not exclusive to market operators anymore; they have also

become a load aggregator problem.

In contrast to ISOs’ DR programs that work with large industrial and commer-

cial customers, the load aggregators mainly deal with residential customers. This

requires them to establish CBL for each individual customer. The development of



5

CBL calculation methods for residential customers faces more challenges as the load

curves of these customers have much more random characteristics compared to large

industrial and commercial customers. This randomness is driven by multitudes of

non-correlated personal and household activities. By taking the fluctuations that ex-

ist in residential customers’ data into consideration, CBL calculation methods ought

to be improved in a way that the effect of such volatility is addressed. The authors

in [52, 54, 53, 72, 63] show that CBL methods developed for large industrial and

commercial customers are not satisfactorily accurate when applied to residential cus-

tomers. To date, developing CBL methods for residential customers have rarely been

seriously scrutinized in the literature.

Moreover, the nature of large industrial and commercial loads is also changing in

the current power industry. As more and more customers use Distributed Generation

(DG) and energy storage devices, the load shape of these customers is becoming

increasingly random and unstable. Therefore, it is possible to speculate that as the

nature of these customers changes over time, the old CBL estimation methods are

becoming obsolete.

All the aforementioned developments in the power industry make old CBL estima-

tion methods unreliable. Therefore, it is necessary to work on new ways by using

state-of-the-art machine learning techniques and sophisticated data analytics to cre-

ate more reliable and accurate CBL estimation methods.
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1.3 Objective

In order to improve the CBL accuracy for residential customers, it is critical to

study the nature of residential customers’ consumption. One way to examine the

nature of residential customers’ consumption is to treat it as a time-domain signal

and use the signal processing. In this dissertation, it is attempted to decompose the

residential customers’ hourly consumption data into its underlying frequency-domain

signal counterpart and separate the signal into two high and low-frequency compo-

nents. Then, these two high- and low-frequency components will be reconstructed

into their time-domain counterparts. Based on this operation, an index is proposed

to be utilized as a means for finding similarity among the customers. The index is

called the predictability index, and it reflects the share of low-frequency components

of the consumption signal, which is assumed to be predictable.

Another concern and challenge in using CBL as a measure for load reduction is the

gaming opportunities. Customers can game the system with inflating their baseline

to benefit on a speculated event day. This issue is extensively analyzed in a chapter

dedicated to the social welfare analysis. Social welfare is a microeconomics term

that explains how much a particular interference can change the dynamics of supply

and demand and cause inefficiencies. This analysis is necessary for developing a

comprehensive and improved CBL calculation method.

In this dissertation, the author has proposed two approaches to improve the error

performance of CBL calculation methods for residential customers. First, according

to an economic analysis (social welfare loss analysis,) it is proposed that the load
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aggregation is necessary to improve the gaming challenges presented by the presence

of the CBL as a tool for load reduction evaluation. Also, it is argued that load aggre-

gation has a significant impact on the improvement of error performance. Second, it

is proposed to use machine learning techniques such as k -means clustering to separate

customers based on the similarity (predictability index) and improve the error per-

formance of CBL calculation methods for residential customers. The data employed

in this study belongs to Australian Energy Market Operation (AEMO,) and is the

hourly consumption of 189 customers for the time span of a year (2012). In the end, it

is shown how the proposed approaches improve the estimation and error performance

of the CBLs.

1.4 Summary of contribution

In this section, the contributions of this dissertation are highlighted.

The key contributions are listed as follows:

• The error performance of the well-established CBL estimation methods are eval-

uated for residential customers.

• The challenges of CBL estimation methods are analyzed in theory by using

customers’ utility function.

• The impact of FERC 745 order on the current DR programs is evaluated in

theory. Moreover, the impact of the order is shown on the social welfare.

• The stochasticity of three categories of customers, i.e. large industrial, com-

mercial, and residential customers is evaluated.
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• A novel method is proposed to cluster customers in order to improve the error

performance of current CBL estimation methods.

• The impact of the proposed method is analyzed on the social welfare.

1.5 Organization of the dissertation

The rest of this dissertation is organized as follows. Chapter 2 reviews the lit-

erature of Evaluation, Measurement, and Verification (EM&V) of demand response

programs including the research works on CBL estimation methods for all categories

of customers. Moreover, this Chapter describes the challenges of CBL as a means of

load reduction evaluation. Furthermore, the Chapter explains how CBL is perceived

by customers and utilities. In Chapter 3, the issues with the current FERC 745 order

and CBL estimation methods are described. It is shown how this current approach

affects the social welfare. Moreover, it is shown that the residential customers have,

by far, the highest variability among the customers. In Chapter 4, the proposed

methodology of this dissertation is introduced, and the flowchart of its implementa-

tion is provided. In this Chapter, it is shown how the proposed method affects the

social welfare. In Chapter 5, some of the CBL calculation methods are explained.

Moreover, three error metrics are introduced to examine the error performance of

the CBL estimations, and also the dataset employed in this dissertation is described.

The results for the error performance of regular CBL, CBL with random load clus-

tering, and CBL with k-means clustering and predictability index are provided and

discussed. The conclusion along with recommendations for future works are provided

in Chapter 6.



CHAPTER 2: CUSTOMER BASELINE LOAD (CBL)

2.1 Overview

In this chapter, the concept of CBL is introduced along with its benefits and also the

challenges that it poses to a DR program. Moreover, different methods of Evaluation,

Measurement, and Verification (EM&V) used by various programs are investigated.

In this investigation, advantages and disadvantages of each method are identified. Be-

sides, to understand how to approach the problem of CBL estimation, it is important

to understand how CBL affects utilities and customers. For this reason, this chapter

also includes an explanation of how utilities and customers perceive CBL and how it

affects them.

2.2 Evaluation, Measurement and Verification (EM&V)

EM&V of DR programs is very important because, without accurate EM&V, it is

impossible to justify these programs. Accurate EM&V is also needed for the purpose

of payment settlement and customer selection. Moreover, since DR programs are in

their early stages of development, they need accurate EM&V to be able to recom-

mend proper policies to policymakers. As mentioned earlier, one of the main issues

with EM&V of DR programs is estimating the CBLs. Several studies have investi-

gated CBL methodologies extensively. In this chapter, these studies will be carefully

reviewed. CBL is the hypothetical power demand of a customer in the absence of
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a DR event. CBL is utilized by a utility to determine the level of load curtailment

for the customer and subsequently will be used to compensate the customer. Figure

1 illustrates the concepts of DR baseline, actual load, and estimated load reduction.

Indeed, these three concepts are repeatedly employed hereafter to explain the differ-

ent methodologies and their measurement and verification processes. In this figure,

the upper black line represents the estimated baseline, and the red line represents the

actual consumption. The difference between these two lines during the event hours

is the amount of load reduction, which is shaded in the blue color. The difference

between the black and red lines is shown by bar charts.

Figure 1: Illustration of CBL, actual load and estimated load reduction

Reference [31] has provided the most comprehensive review of CBL methods. It

describes all CBL estimation methodologies used by utilities and ISOs in the U.S.

for their large industrial and commercial customers. Here, the algorithms used by

the different ISOs are applied to a dataset (collected from California) and their error

performance, i.e. accuracy and bias, are compared. Specifics of the error performance
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metrics are explained in Chapter 5 of this dissertation. The paper concludes from the

analysis that:

1. Same-day ”additive” or ”multiplicative” adjustments have a superior perfor-

mance compared to an unadjusted CBL or a CBL using weather sensitive ad-

justment. Additive and multiplicative adjustments are based on the difference

and percentage difference between estimated CBL and the actual consumption

in the morning of event days, respectively.

2. The choice of ”multiplicative” or ”additive” adjustment does not change the

outcome noticeably.

3. This work shows that X of Y methods such as CAISO (used by California ISO),

PJM economic, mid 4 of 6, and regression approaches, with a same day additive

adjustment, produce similar satisfactory results.

4. The methods in the above item performed poorly for predicting the CBL for

variable load customers.

5. Regression approaches have higher administrative costs and associated com-

plexity compared to X of Y methods.

6. Weather-dependent models did not generally outperform the other models that

did not include weather. However, it is probable that this observation is due to

the weather stability of California State.

Y and X, in this context, refer to the number of non-DR days before the DR event

and the number of days selected out of these Y days, respectively. For instance,
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in HighXofY methods, X is the number of days with the highest consumption out

of Y days. For readers unfamiliar with the aforementioned methods, they are fully

described in chapter 5 of this dissertation.

Another study from California is [2]. It is part of the broader evaluation of Cali-

fornia’s 2004 DR programs. In this study, the impacts of load size (small, medium,

large, and extra-large), business type (commercial, industrial and institutional), event

day type (high demand, low demand, and consecutive high demand) and weather pa-

rameters are investigated on the performance of 3 CBL estimation methods of 3-day,

10-day and prior-day. In this paper, 10-day baseline with the same-day adjustment is

reported as the most accurate method. This finding is reaffirmed in [3, 13]. It is worth

highlighting that the analysis is performed on data from industrial and commercial

customers. In a similar attempt, [74] came to a similar conclusion by performing a

statistical analysis on the data from 10 industrial customers in South Korea.

Another study on non-residential buildings in California has been conducted by the

Lawrence Berkeley National Lab (LBNL) on sample data from 32 sites in California

[21, 20]. The methods investigated in this study overlap with [2, 3, 13]. According

to this paper, morning adjustment could significantly reduce the bias and improve

the accuracy of all CBL models. Moreover, the results of this paper suggest that

the characterization of building loads by variability and weather sensitivity could

serve as a useful screening indicator that could be used to predict which types of

CBL methods better suit each particular load. This paper also confirms one of the

findings of [31] that none of the examined CBL methods produce satisfactory results

for highly variable loads. On the contrary to [31], this work finds that incorporating
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temperature (e.g. explicit weather models) improves the accuracy of the estimated

CBL, and in cases where it does not improve the accuracy, it has relatively little

impact.

Another study about X of Y methods suggests that there is an optimal X for any

Y values[4]. According to this study, there is a range of X/Y values which minimizes

the bias. This study suggests that the error is minimized by 0.4 ≤ X
Y
≤ 0.8. However,

the study is empirical, and it does not provide any theoretical basis for the results.

Therefore, unless another independent study corroborates this finding, it must be

regarded with caution.

In a recent attempt to modify regression-based CBL estimation, the authors in [66]

have proposed a recursive Bayesian linear regression approach for baseline load anal-

ysis. In the paper, the simulation shows that this modified regression works slightly

better than the regular regression. Moreover, the modified method can be used as an

on-line learning algorithm. In [65], the author has proposed a Kernel adaptive filter

for on-line learning. In essence, the author treated the consumption load as a time

signal. An adaptive filter refers to a model that adapts the parameters of its transfer

function based on the property of incoming signals over time by minimizing a loss

(e.g. error) function, which is a deviation of filter output from a typical behavior (the

model output).

Besides the right estimation model for CBL, it is very important to understand

the sensitivity of the models to implementation choices. The sensitivity analyses

can help to improve the performance of CBL methods in an effective manner. The

authors in [6, 7] have studied the different implementation choices and their impact
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on baseline estimation. The study employed data from 38 large commercial buildings

and industrial facilities in the Pacific Gas and Electric Company (PG&E). These

studies conclude that:

1. The load reduction estimate is strongly sensitive to the source of the outdoor

air temperature data.

2. The choice of power outage filter strongly affects the load reduction estimate.

3. The load reduction estimate is less sensitive to data alignment choice. In other

words, if there is a time mismatch between temperature and load data, it would

not affect the estimate.

4. The load reduction estimate is almost insensitive to the choice of data intervals

less than an hour. In other words, three cases of 15-min, 30-min, and 60-min

data intervals lead to almost the same estimate.

In another study, the authors in [75] employ the similar data to [6, 7] to study

what explanatory variables are better to include in the regression models. They find

that outside air temperature and load patterns are good candidates for the regression

model. The load patterns could be found from a cluster analysis. Given the uncer-

tainty of business types, a cluster analysis could serve as a useful tool to categorize the

data into different types. In addition to the aforementioned attempts to determine the

proper implementation choices, there are several papers in the literature that tried to

modify the existing CBL methods in order to improve their error performance. The

authors in [71] have proposed an exponential smoothing model to calculate CBL. In
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a sense, this model is like averaging methods with the difference that it weighs past

observations with exponentially decreasing weights. This model allows the recent

changes to be better reflected in the estimated baseline. The proposed method shows

superiority over High5of10 and regression methods for both adjusted and unadjusted

cases. In another study about the regression modification, the authors in [62] indi-

cate that the Quantile Regression (QR) algorithm is more effective in reducing the

economic cost of the forecasting errors.

Moreover, the authors in [58, 59] have proposed a CBL calculation framework em-

ploying data mining techniques. These papers employ the real data from a large in-

dustrial building complex in Korea. Their proposed method utilizes two data mining

techniques of the Kohonen networks model (self-organizing map) and the unsuper-

vised learning algorithm (k -means clustering) to find the days with the most similar

load patterns. According to the results of these papers, the root mean square error is

reduced by 15-22% on average compared to the regular averaging methods, and the

mean absolute percentage error is reduced by 15-20% on average as well.

Almost all the research works mentioned so far are targeted to industrial and

commercial customers. However, in recent years, the technological infrastructure on

the distribution system side has become mature enough to allow DR programs to

offer their services to residential customers. For example, high penetration of smart

meters at the residential level has provided high-quality, high-resolution consumption

data [36, 37, 38]. The availability of the residential data has created unprecedented

opportunities for load aggregators to offer DR programs to customers. Moreover, it

has provided an opportunity for researchers to examine the strength of existing CBL
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methods for customers.

The calculation of CBL for residential customers has its unique challenges. The

load curves of residential loads is dependent upon multiple non-correlated personal

and household activities. Most of these activities do not follow any schedule. There-

fore, load curves of residential customers have much more random characteristics than

industrial and commercial customers. Addressing the randomness in loads of residen-

tial customers requires a completely different approach. Therefore, it is very critical

to review the findings of researchers in addressing the unique challenges of these cus-

tomers. The authors in [52, 51, 54, 53, 72, 70, 63] show that the conventional CBL

methods, which as previously mentioned are developed for large industrial and com-

mercial customers, make considerable amounts of error for residential customers. The

error in CBL estimation can lead to a poor distribution of rewards, poor reliability

management, and poor resource allocation. With inaccurate CBLs, some customers

will be over-compensated, whereas many others will be under-compensated. Insuffi-

cient demand reduction leads to emergency load shedding. Moreover, spinning reserve

allocation is inaccurate if CBLs over-estimate the capability of loads[76]. Therefore,

it is imperative to develop new methods for these customers.

The authors in [43] have reviewed the baseline methodologies for small scale residen-

tial DR programs to highlight the challenges of CBL calculation for these customers.

The paper has tested five CBL methodologies of High X of Y, Last Y days, Regres-

sion, Neural network, and polynomial extrapolation on the actual smart meter data

of 66 residential customers. According to the results, the authors found that machine

learning technique of neural network and polynomial extrapolation outperform the
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other methodologies. This research work comes from an electric utility in Australia

as they are trying to offer DR programs to residential customers. This work can be

regarded as evidence that interest in CBL for residential customers is not merely in

academia, but it is one of the current power industry needs.

Another method that is suggested for baseline estimation of residential customers

is the Randomized Controlled Trial (RCT) method. This method, unlike the other

available CBL calculation methods, is observed only to be utilized for residential cus-

tomers. This method is recommended by Lawrence Berkeley National Lab (LBNL)

as one of the methods that can be used to assess the effects of time-based rates,

enabling technologies, and various other treatments on customers’ consumption lev-

els and patterns of usage [14]. The RCT method assigns the households into two

groups of treatment and control randomly. These two groups are exposed to similar

conditions, and the difference between them could be attributed to the treatment

effect. RCTs rely on minimal assumptions about the nature of customers; therefore,

they can produce unbiased estimates of treatment effects [14]. Additionally, the RCT

method has a lower administrative cost compared to the other methods as it requires

no historical data for CBL calculation. Therefore, under equal conditions, the RCT

is a much better alternative, both regarding lower cost and lower complexity. The

authors in [68], have recommended using RCT for evaluating the energy efficiency

(i.e. load reduction) in behavior-based efficiency programs. They assert that the

RCT method, in comparison with the alternative methods, is more robust and unbi-

ased. Moreover, they acknowledge that due to the counterfactual nature of the real

load reduction, it is impossible to measure it, and it can only be estimated; therefore,
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the RCT estimates would contain inherent randomness. Many other energy saving

programs have utilized RCT for the estimation of load reduction. The most popular

ones are Statewide Pricing pilot[41], Anaheim CPP program[73], Olympic Peninsula

Project[39], Smart metering project, the Integral Energy trial, PowerCentsDC pro-

gram, Kyushu Electricity Pricing Experiment, and Energy Demand Research Project.

The authors in [40] propose a method to create a suitable control group to measure

the treatment effect. They argue that the electric utilities, with the introduction

of smart meters, have access to a large amount of quality data about residential

customers. This data can be used to select a very effective control group. They

propose a new method of control group selection according to individual load curves.

This selection aims to minimize the distance between the selected control group’s

load curve and the load curve of DR participants. The results show a significant

improvement compared to conventional methods. Moreover, they find that the greater

the size of the control group, the greater the accuracy. In other words, with increasing

the control group size, it is argued that the greater and more diversified sample of

individual load curves can improve the quality of the control group. The research

work is part of a pilot project in France. This DR program is offered to residential

customers in Britony, France.

In order to create a better control group, in general, it is necessary to select cus-

tomers with the same observable characteristics of the treatment group. Although

the RCT methods might seem easy and straightforward, they require many individual

characteristics to create the best control group, which typically utilities do not collect.

Moreover, many such characteristics only show a static view of electricity usage. They
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are unable to show a dynamic view of the ever-changing behavior of customers. As

a matter of fact, there are many major unobservable characteristics that determine

the propensity of customers to join DR programs, which are not available.

A clustering method has been proposed in [76]. In the paper, the groups are

selected by k -means clustering method. The proposed method clusters the customers

based on their power consumption profiles. It uses two criteria of 1) usage level,

and 2) usage pattern, to cluster customers into the same group. Then the baseline

is estimated by a simple average among the customers of each group. One of the

advantages of this method is that it uses the actual data of the event day. Additionally,

since it does not rely on historical data, it eliminates some of the moral hazards of

the conventional CBL methods such as baseline inflation. However, there are some

disadvantages associated with this method, especially when it is not possible to find

customers with similar characteristics in one group. For a subset of customers with

unique behavior patterns, finding a cluster to accurately replicate their loads is very

challenging. Moreover, it is hard to justify why the consumption of others is used

for creating a CBL for another customer. According to the results of the paper,

among all the methods considered in the article, including several conventional CBL

methods, the proposed inner-class-average method according to the k -means clusters

consistently show satisfactory results.

In recent years, it is shown that clustering can improve the accuracy of the short-

term load forecasting[18, 22], which estimation of CBL can be regarded as one of

these load forecasting endeavors. Furthermore, an increasing number of clustering

methods have been applied to residential data to identify the right candidates for
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different programs and planning[30, 47]. In other words, clustering these customers

based on their behavioral attributes collected from smart meter data gives a better

insight about how to target them in different programs. For example, customers

with regular high demand in evenings are not good candidates for DR programs; in

contrast, they are ideal candidates for peak shaving by storage devices. One of the

challenges of such endeavors is defining the right attributes to cluster the customers.

What makes this job more challenging is the high stochasticity and irregularities of

residential customers[35]. The authors in [34] have analyzed a case of residential

consumption data to better understand the peak demand and also identify major

sources of variability in residential customers’ behavior. In order to perform this

analysis, the authors have used Finite Mixture Model (FMM), which they argue to

be a better method compared to k -means clustering. The authors have checked the

reliability of the FMM outputs, and according to their results, the final clustering

is highly reliable. In other words, with the high degree of certainty, the customers

belonged to their appointed cluster.

Although CBL is best known in the context of DR programs, it may serve other

functions. [25] proposed a methodology that employs CBL to identify non-technical

losses of the system such as theft of electricity. This method utilizes historical demand

of a certain customer to estimate the future consumption. Then it compares the

estimate with the actual load to identify a suspicious reduction. Also, in a patent

application, authors of [44] provided a day-ahead load reduction system based on CBL

for inducing a user to manage his/her energy consumption efficiently. This system

applies an incentive to achieve the desired load reduction and load decentralization.
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The authors also filed another patent [45] to present a load forecasting analysis system

for calculating CBL based on the day-ahead reduction system mentioned before.

2.3 CBL challenges

Besides challenges related to the estimation of CBLs, there are some other chal-

lenges related to the application of CBL as a means of load reduction estimation.

These challenges originate from the rate design of DR programs and the consequent

economic incentive of such designs. The studies introduced so far neglected many of

these challenges. In what follows some of these issues are reviewed and discussed.

Since participation in DR programs is voluntary, customers have an information

advantage over the utilities regarding consumption. This asymmetric information im-

poses two possible challenges to utilities and consequently to CBL calculation. These

two challenges are an adverse selection and moral hazard problem. The adverse selec-

tion problem arises when customers with lower consumption anticipation have more

incentive to participate in the program. Therefore, their participation is more likely

to be disproportionate. The moral hazard problem arises when customers engage

in activities to change their CBL. This means customers might change their normal

consumption pattern to affect the future CBL [15]. In what follows, some of the

examples of these challenges are described.

1. Baseline manipulation: The improper methodology to determine CBL can

encourage customers to inflate their baselines to gain a higher payment from

the program. As discussed earlier, the moral hazard problem is a practical

challenge, and in the absence of an effective mechanism to handle such an issue,
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the customers have the incentive to change their CBL. Such manipulations are

observed and reported by ISO New England in [23].

2. Load shifting behind multiple meters: The customers who have large con-

sumption and several meters can game the system by changing the consumption

behind each meter in a way to create illusory demand reduction. The concept

is elaborated with a numerical example in [15].

3. Generation relocation and inefficient price formation: This problem is

better illustrated by an example. Assume that the utility offers the flat rate of

$70/MWh. It is also possible for the customer to sell her demand reduction as

an energy supply in the wholesale market. Suppose the customer bids $80/MWh

for demand reduction and the next cheapest generating unit offers $100/MWh

in the wholesale energy market. In this case, the customer’s bid will be cleared

in the market. Therefore, the customer has the incentive to use an on-site

backup generator that can produce $150/MWh or lower. In this case, each

MWh consumed by the customer from the backup generator costs $150 or less,

but she earns $80/MWh for the demand reduction; therefore, every MWh costs

her $70 or less. In this example, everything looks the same for the customer,

and she consumes energy still with $70/MWh. However, from society’s points

of view, it’s a big loss because the electricity cost increased to $150/MWh rather

than $100/MWh. This setup encourages an inefficient investment since energy

can often be produced more efficiently in the wholesale market [17].

Furthermore, there are some problems in practice that can challenge customers’
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decisions. For instance, poor accuracy performance of CBL can also undermine the

efficiency of DR programs that rely upon CBLs for payment settlement. This issue,

for some CBL methods, is explained and investigated in detail in [52]. Practical

challenges like what have been described so far could plague the effectiveness of CBL

methods. Indeed, the performance of some of DR programs hinges on their CBL

performance, and if CBL could not deliver what is expected of it, it will deteriorate

DR performance significantly. From an economic perspective, a properly established

customer baseline should meet the following two conditions. First, the customer

should be punished for excess consumption above her customer baseline. Second, the

customer should be rewarded for its load reduction. In essence, a properly designed

customer baseline is two-sided so that demand reduction and demand increase are

treated symmetrically.

If the first of the two conditions fails, the customer baseline becomes one-sided;

this means that the consumer would still be able to consume electricity above the

baseline as permitted in the retail tariff. If both conditions fail, then the customer

does not have any incentive to partake in the program effectively. Therefore, it could

create distorted incentives and gaming opportunities.

2.4 CBL from a customer’s perspective

CBL calculation and the consequent payment settlement have very significant ef-

fects on the customer’s decision. To start with, the fairness of a program, to some

extent, hinges on the accuracy of the CBL method employed by that program. There-

fore, if a CBL calculation methodology does not produce an accurate CBL, it can
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damage the efficiency of the DR programs employing such methodology. Although

fairness by itself does not guarantee any positive response, lack of fairness seriously

harms the customer’s response.

Another fact that can affect the fairness of a program is the potential gaming oppor-

tunities of a CBL method. Although this fact might excite a minority of customers,

for some behavioral reasons, it is very discouraging for the rest of customers. These

potential gaming opportunities create an incentive for some customers to speculate

about the possible event days and inflate their CBL in anticipation of higher gain in

the event days.

As a customer, load reduction is a means to gain financial rewards, either regarding

rebate or lower payment. Therefore, customers see load reduction in light of its

financial impact. For this reason, any CBL shortcoming which affects the perceived

financial reward of customers can affect the performance of the DR program employing

that CBL. Authors in [56] explain how the financial offering of DR programs is an

ultimate determinant of customers’ decisions. In this dissertation, the main focus

is on the impact of accuracy and bias of CBLs on the financial performance of DR

programs.

2.5 CBL from a utility’s perspective

Utilities are interested in CBL for different reasons. CBL is a tool for some DR

programs to calculate their payments to customers. However, their primary interest

is the load reduction. Due to the obligation of utilities to serve, they must make sure

that they are capable of serving customers in any situation. DR programs can assist in
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emergencies. One of these situations is peak time of some special days that electricity

in the wholesale market is either very expensive or unavailable. DR programs can

provide an incentive for customers to lower their peak consumption.

DR also plays a role in delaying investment for new infrastructures. In some ge-

ographical regions, peak demand has grown significantly while overall energy con-

sumption has not grown proportionally. This growing peak demand prompts the

utilities to take action and invest in new infrastructures, which can drive the elec-

tricity rate higher. DR can provide an alternative solution to maintaining reliability

without investing in additional infrastructure. This solution can keep rates low. In

a competitive market, even a single event of violation of the obligation to serve can

have irreversible negative consequences. For that reason, utilities are more interested

in the load reduction aspect of CBL and less interested in the financial side of it.

Another reason behind the fact that utilities are less interested in the financial side

of CBL is that utilities reflect their cost-of-service into their retail rates. Therefore,

ultimately the customers are the ones who feel most of the possible financial losses.

However, utilities are aware that CBL accuracy and fair payment settlement can

affect the customer’s load reduction. For this reason, utilities try to design CBL

calculation methods in a way to hinder any discouraging effect.



CHAPTER 3: PROBLEM STATEMENT

3.1 Overview

There are two major problems with CBL and available CBL estimation methods.

First, the application of CBL as a means for measurement of load reduction intro-

duces an economic incentive for gaming. Therefore, it is critical to investigate the

issue and to find a complementary way to eliminate the gaming incentive. Second,

although it is known that residential customers show stochasticity, it is not sure to

what degree. In this chapter, the first problem is explored theoretically. In order to

address the second problem, residential customers are compared to large industrial

and commercial customers to show the degree of difference between them. This study

will support the previously discussed argument that CBL estimations for residential

customers, due to their nature, needs separate analytical tools.

3.2 Social welfare loss analysis

As discussed earlier, another aspect of employing CBL is that it provides an oppor-

tunity for gaming and baseline inflation. Therefore, to improve the performance of

CBL calculation of residential customers, it is necessary to examine how CBL impacts

the social welfare.

In this chapter, by utilizing the customer’s utility function, social welfare loss is

investigated. Also, a model of consumer utility maximization is proposed to con-
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sider the possibility of gaming and inefficient consumption. The authors in [16] have

performed an analysis of the gaming possibilities of FERC Order 745. In this disser-

tation, the model of [16] is extended to include the effect of inherent inaccuracy of

CBLs. Moreover, later, the same analysis is employed to examine the impact of the

proposed clustering method on net benefit.

3.2.1 Customer’s utility function

In this section, it is shown how customers react to the probability of an event day.

For this analysis, a DR program with the compensation rate recommended by FERC

745 is employed. The event day refers to the day that DR program calls the customers

to curtail their consumption. Customers try to maximize their utility function at all

times. The term ”utility” in the economic literature refers to all benefits, tangible

or intangible, received by customers. The utility function is a tool to measure the

well-being or the level of ”satisfaction” or ”happiness” that a customer gains from

the consumption of various goods.

During a random period t, assuming λt for the probability of a DR event, the

expected utility of a customer is described as follows:

Max
cet ,c

n
t

(1− λt)[Ut(cnt )− pr.cnt ] + λt[Ut(c
e
t )− pr.cet + pπ(cBLt − cet )] (1)

where:

cnt Consumption during non-event period

cet Consumption during event period

Ut Utility function at random period t
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pr Retail rate

pπ Demand reduction credit

cBLt Customer baseline

CBL is regarded as a forecasting and no one knows the exact value of CBL before

its occurrence; therefore, it is subject to forecasting error, and this error ought to

be considered in every one of the mathematical statements. After this, CBL will be

utilized in the form described below.

cBLt = α.cnt (2)

where α is the accuracy coefficient for CBL calculation and is defined as:


α = 1 if CBL is accurate

α < 1 if CBL is inaccurate, and with negative bias

α > 1 if CBL is inaccurate, and with positive bias

In order to find the optimal electricity consumption during the event and non-

event periods, the first derivative of (1) should be taken with regards to cet and cnt ,

respectively, as in (3) and (4).

Ut
′(cet ) = pr + pπ (3)

Ut
′(cnt ) = pr − α(

λt
1− λt

)pπ (4)

On the event day, the customer’s electricity price is pr; it is therefore expected that

consumption would be driven by this price. However, the reward paid by the DR
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program changes the utility function of the customer. Consequently, the right hand

side of (3), i.e. the marginal utility price, changes to the higher value, i.e. pr + pπ.

The higher marginal utility price, according to the supply and demand curve, drives

down the consumption, cet , to a lower level. In other words, consumers consume less

power.

Similarly, the consumption on non-event days, cnt , would be affected by the DR

event because the rewards that are offered on event day are assessed by using the

non-event days’ consumption. Equation (4) represents the aforesaid argument math-

ematically.

In the absence of DR program (i.e. λt = 0) the marginal utility price is equal to

the retail rate (pr); nevertheless, when λt 6= 0 , the consumption level rises as the

marginal utility price drops below the retail rate by a fraction (i.e. α( λt
1−λt )) of the

load reduction compensation rate. In order to perform the ”welfare loss” analysis,

it is essential to find the aforementioned optimal points (marginal utility prices) on

the supply and demand curve, and to examine their relation to the equilibrium point.

For simplicity, it is assumed that the demand and supply curves are linear as follows:

Demand→ p = a1 − a2.c (5)

Supply→ p = a3 + a4.c (6)

As mentioned earlier, the ideal consumption in this hypothetical market is where

the two curves intersect, i.e. c∗. This point is calculated as (7) and illustrated in

Figure 2. This point is referred to in the next section to perform the social welfare
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analysis of FERC 745 order.

c∗ =
a3 − a1
a2 + a4

(7)

3.2.2 FERC 745 introduction

The policy proposed by FERC 745 states that the load reduction must be compen-

sated with a wholesale rate (i.e. LMP). This policy is unable to address incentives

for inefficient consumption (non-optimal points) during event period and baseline in-

flation during non-event period. However, it is argued by FERC that this rate takes

many externalities and practical considerations into account.

As stated, this policy compensates the load reduction during the event period with

the wholesale market clearing price of the same period as shown in (8).

pπ = pwte (8)

This policy leads to formulation of the following marginal utility functions expressed

in (9) and (10).

Ut
′(cet ) = pr + pwte (9)

Ut
′(cnt ) = pr − α(

λt
1− λt

)pwte (10)

As discussed earlier, according to (9), the marginal utility price is higher than the

retail price. If marginal utility price is higher than actual payment of customers, there

would be an extra incentive payment, which is widely known as ”double payment”

incentive [15].

Furthermore, (10) indicates that customers, during non-event days, are encouraged
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to consume more electricity than the optimal consumption level (associated with pr)

to inflate their baseline (cn > cr).

3.2.3 Social welfare analysis of FERC 745

This section performs an analysis of the FERC 745 policy aimed at defining how

the policy impacts social welfare.

During regular hours, in the absence of any DR program, demand side is isolated

from the wholesale market, and it only responds to fixed retail price (pr). As it

is shown in (11), demand is independent from the supply in the wholesale market

(pr 6= pwn ).

pr = a1 − a2.cr (11)

pwn = a3 + a4.c
r (12)

The isolation of demand from market dynamics introduces a social welfare loss

known as dead-weight loss. In this subsection, the dead-weight loss is investigated.

According to (10), the marginal utility price on non-event days is smaller than the

retail price; therefore, the consumption would increase from cr to cn, which causes a

dead-weight loss. This is delineated in Figure 2 with the hatched triangles. Based on

Figure 2, the right hatched triangle (∆right) represents the dead-weight loss associated

with the difference between non-event day marginal utility price (i.e. the price that

customers respond to during non-event days) and equilibrium price. The area of

∆right is calculated as:
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∆right =
1

2
(cn − c∗)(pwn − pn) (13)

where

pn = pr − α(
λt

1− λt
)pwte (14)

To find the area of ∆right in terms of prices, consumption term (cn − c∗) should

be calculated in terms of prices. For this purpose, (11) and (12) are utilized. In

these two equation, according to the FERC 745 order, the marginal utility price of

non-event days, changes from pr to pn , and the consumption changes from cr to cn.

These two curves are intersected in order to find cn − c∗ in terms of price as in (15)

and (16).

pwn − pn = a3 + a4.c
n − a1 + a2.c

n = a3 − a1 + (a2 + a4)c
n (15)

dividing (15) by a2 + a4 and replacing (a3−a1
a2+a4

) term by c∗ yields (16)

Figure 2: The dynamics of supply and demand during event and non-event periods
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cn − c∗ =
pw − pn

a2 + a4
(16)

Using (13) and (16), the dead-weight loss associated with the difference between

the non-event day marginal utility price and equilibrium price is shown in (17).

∆right =
1

2

(pw − pn)2

a2 + a4
(17)

During an event day, the consumption is determined by the load reduction incentive

payment. The consumption during the event period (cet ) is illustrated in Figure 2.

As it is demonstrated in Figure 2, the left hatched triangle (∆left) represents the

dead-weight loss associated with the difference between the event day marginal utility

price and the equilibrium price. The area of the left triangle is calculated as in (18).

∆left =
1

2
(ce − c∗)(pr) (18)

Similar to the procedure followed to derive (16), ce − c∗ for event day is defined in

terms of price by using (11) and (12).

ce − c∗ =
pr

a2 + a4
(19)

Using (18) and (19), the dead-weight loss associated with the difference between

event day marginal utility price and equilibrium price is as in (20).

∆left =
1

2

(pr)2

a2 + a4
(20)
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The net dead-weight loss is defined as in (21).

∆net = λ∆left + (1− λ)∆right (21)

Replacing ∆left and ∆right by equations (20) and (17), respectively, and plugging

them into (21) yields (22).

∆net =
λ

2
.

(pr)2

a2 + a4
+

(1− λ)

2
.
(pw − pn)2

a2 + a4
(22)

According to (22), in order to eliminate the dead-weight loss (∆net = 0), both

terms must be zero. The first term points out to the ”double payment” incentive.

The second term indicates that ideally, the marginal utility price during non-event

days must be equal to the same period wholesale price (LMP).

If wholesale rate minus retail rate (pwte−pr) is adopted as a reward for each load re-

duction unit, the left-hand side dead-weight loss (∆left) could be eliminated. Besides,

to reduce the value of ∆right, policies and implementation tools must be adopted to

minimize the second term. In an ideal case, this second term must approach to zero

as shown in (23).

pw − pn → 0 (23)

plugging (14) into (23) yields

pwtn − pr + α(
λt

1− λt
)pwte → 0 (24)
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According to [16] , pwtn − pr is positive; hence, for (24) to hold:

λt → 0 or α→ 0 (25)

It is worth mentioning that λt = [0, 1] and α > 0 . The probability of having

an event-day (λt) depends on the weather, emergencies in the power system, and

other unexpected events; thus, this probability cannot be controlled by any exogenous

parameter. Also, α represents the accuracy, and it is preferable to have α = 1.

Nevertheless, if this level of accuracy is not obtainable, according to (25), methods

with a negative bias (α < 1) are more desirable than methods with positive bias

(α > 1). However, it is worth mentioning that this conclusion is a solution for a

short-run saving as this solution could affect the customers’ remuneration adversely

in the long run [72].

The discussion on cutting the aforementioned social welfare loss is beyond the

scope of this dissertation. Indeed, should CBL calculation methods fail to deliver

a satisfactory error performance, further discussion about the gaming incentives of

FERC 745 order would be irrelevant. Therefore, it is critical to study the error

performance to display the complete picture of the challenges FERC 745 order faces.

In chapter 5, the error performance is empirically investigated by examining some

well-established CBL calculation methods applied to the residential customers’ data.

3.3 Stochasticity of different sectors

As mentioned earlier, CBL methods that worked successfully for large industrial

and commercial customers fail to function satisfactorily for residential customers.
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This observation suggests that there must be a fundamental difference in the nature

of electricity consumption in customers of different sectors. Therefore, it is critical

to study these underlying differences. As a matter of fact, without understanding

the nature of these loads, it is impossible to determine the relationship between the

strength of the methods and their error performance. Similar studies on the nature

of loads have been performed for different purposes. For example, to determine

how much Commercial and Industrial (C&I) customers react to dynamic pricing,

the authors in [42] use the customers’ business type and load pattern characteristics

(e.g. Monday load ramp-up behavior, etc.). An extensive review of such attempts is

provided in [19]. Almost all of these studies are performed in the time-domain.

In this section, the heterogeneity of customer loads of different sectors, i.e. indus-

trial, commercial, and residential, are investigated in the frequency-domain. To carry

out this, Discrete Fourier Transform (DFT) is employed to decompose customer loads

into their underlying components. The DFT is a tool that transforms a time-domain

signal into a frequency-domain signal. By using DFT, it is possible to sort loads

based on the frequency of the repetition of its underlying components [57]. Each

frequency in the resultant frequency-domain signal could be regarded as a proxy for

certain activities. For example, low-frequency components represent activities that

repeat on a daily, weekly, or monthly basis. In order to compare the loads, an index

based on the underlying components of loads in frequency-domain is proposed and

used. The index is called ”predictability index” and can demonstrate the share of

high-frequency and random parts of the signal.
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3.3.1 Datasets

In this section, four datasets are introduced for the purpose of analysis, i.e. 1)

Industrial, 2) Commercial, 3) Residential, and 4) Aggregated residential datasets.

The aggregated residential category is made out of residential customers’ data. The

information of these datasets are provided in detail as follows.

Industrial customers

The industrial data are collected from 11 industrial customers in a multiple trans-

mission zones in the PJM interconnection.

Commercial customers

For commercial customers, the simulated hourly load datasets are used. These

datasets are published by OpenEI, which is a data center for energy information

and data. The simulation is performed by EnergyPlus software, which is one of the

products of the U.S. Department of Energy (DOE). In collaboration with three na-

tional laboratories, DOE developed some models for commercial reference buildings.

These models are used as a benchmark for pertinent studies conducted by DOE about

commercial buildings. These models play a significant role in providing complete de-

scriptions of commercial buildings for the purpose of energy analysis. There are 16

building types that represent approximately 70% of the commercial buildings in the

U.S. In this study, as mentioned earlier, the simulated hourly load datasets for these

buildings are employed. These data are available for the entire United States.

The 16 building types are as follows: 1) large office, 2) medium office, 3) small office,
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4) warehouse, 5) stand-alone retail, 6) strip mall, 7) primary school, 8) secondary

school, 9) supermarket, 10) quick service restaurant, 11) full-service restaurant, 12)

hospital, 13) outpatient health care, 14) small hotel, 15) large hotel, 16) midrise

apartment.

Residential customers

For residential customers, a dataset collected by Australian Energy Market Opera-

tion (AEMO) for 200 residential customers has been employed [1]. The dataset is for

the leap year of 2012 (366 days). In this dataset, the information for 11 customers

was incomplete; therefore, they are excluded from the study, and the data for the

remaining 189 customers are used in this dissertation.

3.3.2 Frequency response analysis

In this section, the elements required for the frequency-domain analysis are elab-

orated. The steps required for decomposing a signal into its underlying components

are illustrated in Figure 3.

3.3.2.1 DFT introduction

The discrete Fourier transform is a tool to transform a finite sequence of data

(N samples separated by the sampling time) into coefficients of sinusoids, which are

ordered by the complex-valued function of frequencies. In other words, the DFT could

be regarded as a frequency domain representative of the original time-domain input

sequence. After decomposing a time-domain signal into its underlying components,

then it is possible to search for any recurring pattern or periodicity in the original time-

domain data. Moreover, DFT determines the magnitude of each periodic component,
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Discrete Fourier Transform (DFT)

Figure 3: Implementation of DFT and separating time-domain high- and low-
frequency components

thereby showing the relative strength of the components. In this section, hourly

electricity consumption of each customer for the course of one year is treated as a

signal, and by utilizing the DFT and two filters, they are separated into high- and

low-frequency signals. The equations for DFT and inverse DFT are shown in (26)

and (27).

Xk =
N−1∑
t=0

s[t].e
−i2πkt
N , k = 0, 1, ..., N − 1 (26)
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X[t] =
1

N

N−1∑
t=0

Xk.e
+i2πkt
N , t = 0, 1, ..., N − 1 (27)

where N is the number of samples in the signal. The outcome of DFT is another sig-

nal with N components in which each component has a different frequency, and these

frequencies are listed in monotonically increasing order. An important note about

the outcome of DFT is that the real parts in the outcome signal are mirrored over

half of the data points. Therefore, only the information of half the signal is relevant;

the other half is a repetition of the first. The previous sentence is mathematically

expressed in (28).

Xk = X∗N−k 1 < k < N − 1 (28)

where operator (*) refers to the conjugation operator. In the DFT outcome signal,

the frequency resolution can be calculated as (29).

fr =
1

NTs
(29)

Where fr refers to the frequency resolution and Ts refers to the time resolution in

seconds. In this dissertation, the time resolution is 3600 seconds (1 hour) and the

frequency resolution, given the 8784 sample points, is 31.6 nHz.

3.3.2.2 Filters

In this dissertation, for the purpose of decomposing the consumption signals into

their underlying components, two filters of high and low pass frequency are created

around a cut-off frequency (fc). These two filters separate a frequency-domain signal

into high and low-frequency components. The cut-off frequency is the frequency
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that is assumed to separate the predictable and unpredictable components of the

consumption signal. Figure 4 illustrates the filters. fc is the cut-off frequency, and fs

is the sampling frequency, which is 277.7 microHz. Since the frequency domain signal

mirrors itself in a symmetrical way, low- and high-frequency filters must imitate this

characteristic too. As a result, both filters look like bandpass filters.

Figure 4: (a) Low pass filter (b) High pass filter

The cut-off frequency differs for different sectors; however, in this dissertation, two

cut-off frequencies of 23.1 microHz, equivalent of 12 hours in the time domain, and

11.5 microHz, equivalent of 24 hours in the time domain, are selected. The rationale

behind choosing 12 hours is that the frequency of almost all the spontaneous day-

time activities is under 12 hours. On the other hand, since industrial activities are

different from residential and commercial activities, 24 hours is selected to separate

the unscheduled industrial activities that last under 24 hours.
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3.3.2.3 Reconstruction

By applying the filters to the frequency-domain consumption signal, two high- and

low-frequency signals could be obtained. Then, an inverse DFT could be applied to

these frequency-domain signals to reconstruct their high and low-frequency counter-

parts in the time-domain.

3.3.2.4 Implementation and results

In order to show the frequency components of the consumption signals, one cus-

tomer is randomly selected from each sector. After normalizing the data, the DFT

is applied to them. Figure 5 shows the results. In this figure, green and red verti-

cal lines represent two cut-off points of hours 12 and 24, respectively. According to

this figure, it is understood that the residential customers have the highest amount

of high-frequency components compared to the customers from other sectors. It is

shown that load aggregation removed the high-frequency components of residential

customers significantly. Moreover, it is shown that the industrial customers have a

relatively small high-frequency contents compared to the other customers. In a case

of commercial customers, a customer from the ”medium office” building category is

selected. In the following sections, all commercial buildings will be analyzed in detail.

In Figure 6, the same frequency-domain signals are illustrated. There are two main

differences from figure 5: the horizontal axis is in logarithmic scale, and the results

are separated for two cut-off points. The figures on the left side are for the cut-off

point of hour 12, and the figures on the right side are for the cut-off point of hour 24.

In this figure, the high and low-frequency points are shown with red and blue color,



43

Figure 5: Frequency-domain signals of annual electricity consumption for customers
of different sectors

respectively. All plots are on the same horizontal and vertical axises, allowing for easy

visual comparison. Again, it is seen that the industrial and residential customers have

the lowest and highest contents of high-frequency points.

The filters are applied to the frequency domain signals, and the low and high-

frequency components for two cut-off points of hours 12 and 24 are reconstructed.

In Figure 7, the low and high-frequency components of the industrial customer in
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Figure 6: Frequency-domain signals of annual electricity consumption for customers
of different sectors (Figures in left are for cut-off point of hour 12 and figures in right
are for cut-off point of hour 24. The horizontal axis in each figure has logarithmic
scale)

time-domain are illustrated. In this figure, the low and high-frequency signals are

shown with blue and red colors, respectively. Industrial customers follow a schedule

in their daily operation, and it is preferable not to deviate from the schedule. Since

industrial schedules follow a certain pattern, analysis of these signals is expected to

result in low-frequency components and few high-frequency components. As shown in

this figure, the high-frequency signal is in fact very small and insignificant compared

to the low-frequency signal. Another important observation in this figure is that the

high-frequency components for these customers did not change for the cut-off hour
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of 24 compared to the cut-off hour of 12. This means that the amount of electricity

consumed by activities with the frequency of 13-24 hours is almost zero. In other

words, the spontaneous activities for this industrial customer have a frequency of

fewer than 12 hours.

Figure 7: Time-domain electricity consumption signals for industrial customers

Figure 8 shows the time-domain signals of the aggregated residential customers.

In comparison to industrial customers, this type of consumption signal has higher
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high-frequency components. Moreover, the low-frequency components show more

fluctuation, which can be attributed to the nature of residential customers’ electric-

ity consumption. Due to the diversity and spontaneity of residential households’

activities, the consumption signal has more fluctuations. Unlike for the industrial

customers, the high-frequency components for aggregated residential customers al-

most double for the cut-off hour of 24 compared to the cut-off hour of 12. This means

that the amount of electricity consumed by activities with the frequency of 1-12 hours

is approximately equal to the amount of electricity consumed by activities with the

frequency of 13-24 hours.

The time-domain signals of commercial customers are shown in figure 9. As

is shown, the share of high-frequency components is much smaller than the low-

frequency components. There are some hours in which the low-frequency compo-

nents are close to zero. Those hours belong to weekends. In weekends, almost all

medium office buildings are closed. With ignoring the weekend-related fluctuations,

as expected, it is seen that commercial customers show less fluctuation than the ag-

gregated residential. Commercial customers, similar to industrial customers, follow

certain schedules; however, the schedule of commercials customers are not as strict as

industrial customers. The strictness of schedules varies for different commercial build-

ings. Similar to aggregated residential customers, the high-frequency components for

commercial customers become almost double for the cut-off hour of 24 compared to

the cut-off hour of 12. Again, this means that the amount of electricity consumed by

activities with the frequency of 1-12 hours is almost equal to the amount of electricity

consumed by activities with the frequency of 13-24 hours.
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Figure 8: Time-domain electricity consumption signals for aggregated residential cus-
tomers

Residential customers show different characteristics, as can be seen in figure 10.

The share of high-frequency components is much higher than that of low-frequency

components. As it is discussed earlier, residential customers, due to diversity and

spontaneity of their household activities have highly fluctuating consumption signal.

Besides, it can be understood from the signals that the weekends do not have a signifi-

cant impact on the customers’ routines. This observation is critical because, typically,
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Figure 9: Time-domain electricity consumption signals for commercial customers

many load reduction calculation methods exclude weekends from their process. As

is shown, the exclusion of weekends may not be necessary for residential customers.

However, further investigation is necessary to examine how the inclusion or exclusion

of weekends affect the CBL estimation.

For residential customers, the high-frequency components for the cut-off hour of 24

have a small increase compared to the cut-off hour of 12, which shows that most of
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the high-frequency activities of residential customers lie in the range of 1-12 hours.

Moreover, comparing the low and high-frequency of the customer for the cut-off of

hour 24, it is seen that the low-frequency component is very small compared to the

high-frequency one. It can be concluded that most of the residential activities have

frequency ranges of less than 24 hours. It is because residential customers do not

follow a specific schedule for their daily activities, and their consumption is mostly

Figure 10: Time-domain electricity consumption signals for residential customers
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governed by spontaneity.

3.3.3 Predictability analysis

In this section, first, an index is defined for evaluating the level of predictability.

Then, this index is calculated for all the different types of customers, and the results

are presented and discussed.

3.3.3.1 Predictability index

In order to determine how predictable a signal is, an index is defined as the pre-

dictability index. The rationale behind this index is that if the high-frequency portion

of the signal is assumed to be random and hard to predict, then by subtracting that

portion from the original signal, the rest of the signal is predictable. In other words,

this index demonstrates the share of low-frequency components of the original signal.

In order to carry this out, the index sums the share of high-frequency signal and then

subtracts this value from one, as shown in (30).

Pindex = 1−
∑N

i=1 abs(c
hf
i )∑N

i=1 ci
(30)

3.3.3.2 Commercial buildings

The values of predictability index for commercial buildings are shown in Table 2.

The results are for both cut-off hours of 12 and 24. The results are sorted from small

value to large value, and the results for both cut-off hours follow almost the same

order. As is shown, there is a huge gap between the results of the least predictable

building (Strip mall) and the highest predictable building (Hospital). For cut-off

hours of 24, the gap is 0.39 points. In other words, commercial buildings are not
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Table 2: Pindex based on annual data for different commercial buildings

Cut off
Building type Hour 12 Hour 24

Strip mall 0.74 0.55
Stand-alone retail 0.76 0.56
Secondary school 0.78 0.61

Quick-service restaurant 0.83 0.73
Full-service restaurant 0.83 0.73

Primary school 0.83 0.68
Warehouse 0.84 0.70
Small office 0.85 0.71

Super market 0.85 0.69
Large hotel 0.85 0.74
Large office 0.86 0.71

Medium office 0.86 0.71
Midrise apartment 0.89 0.79

Small hotel 0.90 0.82
Outpatient health-care 0.92 0.84

Hospital 0.97 0.94

similar, and each one has its characteristics. According to the results, hospitals are

almost close to perfect predictability. On the other hand, strip malls have the least

predictability among these buildings.

The results of Table 2 are illustrated in figure 11. The difference between the results

of cut-off hours of 12 and 24 is more clear in this figure. These results could be used

by utilities in determining the effective EM&V methods for DR programs offered to

customers of each building.

3.3.3.3 Comparison of different sectors

The predictability index for customers of different sectors is presented in Tables 3

and 4. Table 3 shows the predictability index of different sectors based on annual

data, and Table 4 shows the similar results for monthly data. Comparing these two
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Figure 11: Predictability index (P index) based on annual data for different commer-
cial buildings

tables, it is understood that the results are very close. In other words, only with

having monthly data, it is possible to determine the predictability of each sector and

group. The results of Table 4 are illustrated in Figure 12. As it is shown, there

is a huge gap between the results of large industrial and commercial customers and

residential customers. On the other hand, the aggregated residential customers show

a lot of similarity with large industrial and commercial customers. According to these

results, it is possible to claim that residential customers have a significant randomness

element. Moreover, it is not comparable to the other sectors. As a matter of fact, since

the large portion of the residential customers’ load signal is random, it is impossible

to estimate CBL accurately from historical data of the customers.
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Table 3: Pindex based on annual data for different sectors

Customers’ Sector

Cut off Industrial
Aggregated
Residential

Commercial Residential

Hour 12 0.95 0.90 0.84 0.44
Hour 24 0.90 0.85 0.72 0.36

Table 4: Pindex based on monthly data for different sectors

Customers’ Sector

Cut off Industrial
Aggregated
Residential

Commercial Residential

Hour 12 0.95 0.90 0.85 0.44
Hour 24 0.90 0.85 0.72 0.36

Figure 12: Predictability index values for different sectors



CHAPTER 4: PROPOSED METHODOLOGY

4.1 Overview

As discussed in the previous chapter, residential customers’ household activities

are highly diverse compared to large industrial and commercial customers as many

random parameters influence their electricity consumption. Since randomness in load

consumption is a primary source of error in CBL calculation, it could negatively

affect the DR performance. This issue, was described in the previous chapter in

detail. One way to improve the DR performance is to reduce such randomness. In

this dissertation, load aggregation, i.e. grouping customers into different clusters, is

proposed to eliminate the randomness.

The underlying mechanism of reducing randomness by aggregating customers into

different clusters can be explained by the Central Limit Theorem. This theorem

maintains that the aggregation of a large number of mutually independent random

variables has a distribution function that can be well-approximated by a normal den-

sity function [60]. Residential loads are mutually independent and a large portion

of them are random; therefore, it could be claimed that the resultant aggregated

dataset exhibits more predictable traits and probabilities. Moreover, as shown ear-

lier, the idea of clustering customers to eliminate their randomness is experimentally

confirmed in multiple publications [18, 22, 30, 47].
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In the dataset used in this dissertation, the customers’ consumption is fairly random

and mutually independent; therefore, the proposed approach can be applied to address

the randomness problem. In other words, by grouping the customers into different

clusters, it is possible to make the consumption loads more predictable. Moreover, it

will be shown in this chapter that grouping customers can eliminate the incentive for

gaming, which is another critical aspect in the argument for aggregating loads.

If there is no information available on the customers’ behaviors, the customers

should be grouped randomly; however, if there is available information, one proposed

approach is to use k -means clustering for grouping customers [76]. In order to carry

this idea out, the P index, which was proposed and introduced in the previous chapter,

will be used in the clustering process. In this chapter, it will be demonstrated that

this index has a correlation with the CBL error performance. This correlation is

especially important for two reasons: 1. P index can be used as a means to show

the upper limits of the error performance of the CBL calculation for each individual

customer, 2. P index can be utilized as a feature for grouping customers based on

their error performance.

4.2 k -means clustering

k -means clustering has originated from signal processing and has been extensively

employed for creating different clusters in data analytics. It partitions the raw data

into k clusters. All observations are assigned to a specific cluster based on their

proximity to the cluster mean. In fact, k -means clustering is a tool for finding similar

groups in a dataset.
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In order to run a k -means algorithm, a few initial points must be randomly assigned.

These points are called cluster centroids. The number of these points are determined

based on the preferred number of clusters. k -means is an iterative algorithm, and its

two major functions are: 1) assigning a cluster, and 2) moving centroid to minimize

an objective function.

Given a set of observations (x1, x2, ..., xn), where each observation is a d -dimensional

real vector, k -means clustering aims to partition the n observations into k (� n) clus-

ters S = {s1, s2, ..., sk} so as to minimize the within-cluster sum of squares (WCSS)

(sum of distance functions of each point in the cluster to the K center). In other

words, its objective is to solve the optimization relationship explained by the follow-

ing equation (31).

arg min
S

k∑
i=1

∑
x∈Si

‖x− µi‖2 (31)

where µi is the mean of points in Si.

For the purpose of illustration, a simple k -means clustering is shown in Figure 13.

In this figure, the dataset is grouped into 2 clusters, red and blue stars. For each

cluster, the centroid is depicted with a crossed circle. Based on the algorithm of k -

means clustering, after making a decision about the number of clusters, in this case,

two clusters (k=2), these centroids move within the dataset to partition the dataset

into 2 clusters in a way to minimize the equation (31).
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Figure 13: An example of k-means clustering

4.3 Correlation of predictability index and error performance

In this section, the customers are clustered based on 1) P index values, and 2)

event day average hourly consumption. In order to group the customers, the k -means

algorithm is utilized. In this dissertation, by using ”the elbow criterion” shown in

Fig. 14, five cluster bins (k=5) are selected. However, it is worth mentioning that

this ”elbow” cannot always be unambiguously identified. For more information about

k-means clustering, refer to [67]. There are many other ways to cluster the customers

[12]; however, k -means clustering is proven to be very efficient. The results of the

clustering are shown in Fig. 15. The customers of each bin are shown with different

symbols. Customers in bin 1 to 5 are shown with purple stars, green circles, red

squares, blue arrows, and black crosses, respectively.

The predictability index is calculated for all customers. Then, the customers are
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Figure 14: Elbow criterion analysis

Figure 15: The relationship between average consumption level and predictability
index (different clustering bins are coded with different colors)

clustered by k-means clustering into five bins. Later, the CBL for all customers in

each bin is calculated, and the average Mean Absolute Error (MAE) for each bin

is computed. The information of each bin including the number of customers, the

average P index, the average of CBL calculation’s MAE, and the average hourly
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consumption are provided in columns 1-5 in Tables 5 and 6. Moreover, in order to

show the relationship between P index and accuracy, the error is normalized by the

event-day average hourly consumption of each bin. As it is demonstrated in column

5, the average hourly consumption is different for the customers in each bin; hence,

merely comparing the average MAE values of each bin (column 4) without considering

the difference in the average hourly consumption would be misleading. As a result,

for each bin, the value of MAE in column 4 is divided by the value of the event-day

average hourly consumption in column 5, and the normalized value for each bin is

calculated and enlisted in the 6th column in the aforementioned Tables.

As shown in Table 5, the normalized MAE (last column) is decreasing as the average

predictability index is increasing. In other words, a higher predictability index means

that the CBL can deliver a better error performance. Moreover, it is shown in this

Table that the correlation between P index and normalized MAE (i.e. MAE divided

by the event-day average hourly consumption) is -0.98. This value indicates that

there is a strong correlation between P index value and the MAE of the CAISO’s

CBL calculation method.

The same analysis is performed for the RCT method. a a relatively high correlation

of -0.88 is found between P index and normalized accuracy MAE in this case.

Almost all studies on the EM&V of CBL calculation methods rely upon two metrics

of accuracy and bias to evaluate different CBL calculation performance. However,

the strong correlation between P index and the metric of accuracy suggests that

P index could be utilized as an alternative or complementary metric. Furthermore,

P index can be used as a feature to demonstrate the limitation of the CBL calculation
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Table 5: The accuracy results of the CAISO CBL calculation method

Bin# #Cust.
Average
P index

Accuracy
MAE

Event-day
Average

Load
MAE/Normalized Accuracy

Bin 1 35 0.19 0.53 0.80 0.66
Bin 2 57 0.39 0.61 1.16 0.52
Bin 3 48 0.50 0.91 1.94 0.47
Bin 4 28 0.64 0.64 1.51 0.42
Bin 5 21 0.58 1.30 3.26 0.40
Correlation between P index and MAE/Average -0.98

Table 6: The accuracy results of the RCT CBL calculation method

Bin# #Cust.
Average
P index

Accuracy
MAE

Event-day
Average

Load
MAE/Normalized Accuracy

Bin 1 35 0.19 0.75 0.80 0.94
Bin 2 57 0.39 0.87 1.16 0.74
Bin 3 48 0.50 1.16 1.94 0.60
Bin 4 28 0.64 1.00 1.51 0.66
Bin 5 21 0.58 2.18 3.26 0.67
Correlation between P index and MAE/Average -0.88

methods. If P index of a customer is low, it would suggest that no CBL calculation

method can work properly to estimate the CBL. On the other hand, if the P index

is high and the CBL method does not deliver a satisfactory performance, it is highly

likely that the employed CBL method is a problem. Hence, change of CBL calculation

method may prove to be an effective way to improve the error performance.

4.4 Flowchart of the proposed CBL estimation method

In what follows, the structure of the proposed method will be delineated. The tech-

nical flow chart of the proposed CBL estimation method is provided in Figure 16. The

flow chart starts with the data. The data refers to time series of load consumption of

customers, which is collected by residential smart meters (with time increments equal
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to or less than an hour). Data cleansing (eliminating the incomplete data, etc) is the

first step of the process. After detaining an acceptable data set, the data for the target

year is extracted, and the signal processing section of the flowchart begins. In order

to create a frequency-domain signal, Discrete Fourier Transform (DFT), as described

in chapter 3, is applied to the time-domain signal. Two filters of low- and high-pass

are then applied to the signal to extract low- and high-frequency components of the

signal. Based on the contents of the signal low- and high-frequency components, the

predictability index (P index) is calculated. The process and the formula for calcu-

lating predictability index were discussed in chapter 3. After collecting all indexes,

data analytics is applied. P index and average hourly consumption load are used to

group customers by k -means clustering as a data analytics tool. After clustering is

performed, members of each group are used to create a common CBL for the group.

This proposed CBL estimation method will be implemented in the next chapter for

evaluation and demonstration purposes.

4.5 Social welfare analysis of the proposed clustering method

One way to reduce the non-event day deadweight loss is to reduce baseline inflation.

One method introduced by [54] decouples the customers’ individual consumption

from CBL. It proposes that similar customers be grouped together by employing

matching techniques to establish a common CBL. Utilizing this approach to calculate

a common CBL for all individuals in the group decouples the customers’ individual

activities from the calculated common CBL. Likewise, the proposed CBL method in

this dissertation establishes a common CBL. In what follows, it is explained how this



62

Load Data

START

END

Create a time series for each 
customer for a target year

Perform DFT for all signals

Apply low and high pass filter

Calculate predictability index 
for each signal

Cluster customers into k bins by 
k-means clustering based on 

predictability index

Create a CBL for each group by 
averaging CBLs of members of 

the group

Si
gn

al
 P

ro
ce

ss
in

g
D

at
a 

A
na

ly
tic

s

Figure 16: Flowchart of the proposed CBL estimation method

method can remove the economic incentive for inflating the baseline. In addition to

proposing a baseline estimation method, a pricing structure is recommended for DR

programs. In order to eliminate the deadweight loss associated with the event period,
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the wholesale rate minus the retail rate is used as a reward. This rate is recommended

by almost all the opponents of FERC 745 [16].

pπ = pwte − pr (32)

In what follows, the impacts of employing the proposed method on CBL calculation

and new event period rate are investigated.

The calculation of a common CBL for a cluster of customers is as follows:

cBLt =
1

N

N∑
i=1

cBLt,i (33)

where:

cBLt,i CBL for individual i before clustering

cBLt Common CBL of the cluster after clustering

N Number of individuals in the cluster

It is assumed that the number of individuals in each cluster is large enough such that

the impact of each individual’s CBL on the common CBL is negligible.

With the aforementioned modifications in the FERC 745 policy, the problem of

maximization of the expected utility of the customer can be expressed as:

Max
cet ,c

n
t

(1− λt)[Ut(cnt )− pr.cnt ] + λt[Ut(c
e
t )− pr.cet + pπ(cBLt − cet )] (34)

FOCs for cnt and cet for (34) are:

Ut
′(cet ) = pwte (35)

Ut
′(cnt ) = pr (36)
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Now the marginal utility prices during the event and non-event periods are equal

to the wholesale and retail rates, respectively. With these marginal prices, the cus-

tomers have no incentive to under-consume during event periods or to inflate the

baseline during non-event periods. As a result, based on this theoretical analysis, it

is understood that the proposed CBL estimation method is capable of eliminating

the economic incentive for gaming, which can be regarded as another benefit of the

proposed method. In the next chapter of this dissertation, it will be shown that the

proposed method is capable of considerably improving the error performance .



CHAPTER 5: IMPLEMENTATION AND RESULTS

5.1 Overview

In this chapter, the CBL estimation methods and metrics used for error analysis are

explained. First, the established CBL calculation methods, popular in the industry,

are introduced. Then, the metrics necessary for the CBL calculation error analysis

are presented. The dataset used in this dissertation is described afterward. Finally,

the proposed approach is applied to the dataset, and the results are provided.

5.2 CBL calculation methods

In this section, popular methods for CBL calculation, i.e. HighXofY, Exponential

Moving Average, Regression, Randomized Controlled Trial (RCT) are explained in

detail. These methods will be used in this dissertation for comparison purposes and

to evaluate the performance of the proposed method. As discussed earlier, CBL is

the amount of load that is estimated to be consumed by customers in the absence of

a DR curtailment signal.

5.2.1 HighXofY method

The HighXofY method involves several steps. First, it selects Y non-DR days.

In the absence of a DR event, the days are called non-DR days. Also, weekends are

excluded from these non-DR days. Multiple types of day are used in this dissertation,

weekdays (Monday to Friday), weekends (Saturday and Sunday), and holidays. Sec-
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ond, X days are chosen from the aforesaid Y days based on the level of consumption.

Finally, the baseline is defined as the average load of these X days. If HighXofY is

defined as High (X, Y, d) ⊆ D (Y, d), then the HighXofY baseline of customer i ⊆ C

for timeslot t ⊆ T on day d is as follows:

bi (d, t) =
1

X
×

∑
d∈High(X,Y,d)

li (d, t) (37)

where:

C is a set of customers;

T =
{
t0, ..., t|T |

}
is timeslot division within a day;

li (d, t) is actual load for customer i ⊆ C on day d at timeslot t ⊆ T ;

bi (d, t) is a predicted baseline for customer i ⊆ C on day d at timeslot

t ⊆ T ;

D (Y, d) is a set of Y non-DR days preceding the day d having the

same day type as d;

li (d) =
∑

t∈T li (d, t) is total load for customer i ⊆ C on day d.

New York ISO uses this method with X=5 and Y=10 which is employed in this dis-

sertation as well. The algorithm of NYISO is adequately described in [32]. Moreover,

another method from this family is the California ISO (CAISO) method that employs

X=10 and Y=10. In the literature, the CAISO method is also known as Last10days.

Nevertheless, it is considered as a member of the HighXofY family. In this work, the

CAISO is used with one modification. In this study, the weekends, also, are included

in the process of the CBL calculation. Another method used in this dissertation is

the PJM method with X=4 and Y=5 [49, 48].
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5.2.2 Exponential moving average method

This method is a weighted average of customers’ historical data from the beginning

of their subscription. This method begins with computing an initial average load of

the customer. Then, it continues with calculating an exponential moving average

using the initial average load. The baseline for the customer is achieved at the end.

Let D (∞, d) = {d1, ..., dk}; also, 1 ≤ τ ≤ k be a constant. This constant is

the number of days used to determine si (dτ , t) which is the initial average load for

customer i ⊆ C for timeslot t ⊆ T .

si (dτ , t) =
1

τ

τ∑
j=1

li (dj, t) (38)

The exponential moving average for τ ≤ j ≤ k is

si (dj, t) = (λ.si (dj−1, t)) + ((1− λ) .li (dj, t)) (39)

where λ ∈ [0, 1] . It is understood that the weight of each day decreases exponentially

with time.

Finally, the baseline for customer i ⊆ C on day d for timeslot t ⊆ T could be

calculated as follows:

bi (d, t) = si (dk, t) (40)

In this method, the baseline for days earlier than dτ+1 is undefined. Indeed, if a

DR event happens during this short interval, the CBL for this customer cannot be

calculated by this method. DR programs using this method do not include these

customers in the program unless they access enough days to build the initial average
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load.

New England ISO (ISONE) employs this methodology, which is used in this dis-

sertation as well. The algorithm of ISONE is as follows. If a customer is a new

participant in a DR program, the calculation of the baseline is the hourly average of

the previous five business days, Monday through Friday, excluding holidays and other

event days. This average is known as ”Customer Baseline 6”. The ”6” refers to the

day following the previous five business days or the sixth day. The equation for this

baseline calculation is defined by (41)

Φ6 =

∑5
i=1 kWhi,h

5
(41)

Once the ”Customer Baseline 6” is calculated, that new customer is now considered as

a current customer and her next baseline could be calculated using (39) with λ = 0.9.

This baseline is calculated every day except for weekends, holidays and event days.

Furthermore, the baseline has a weighting factor of 90% for the previous day’s CBL

and a weighting factor of 10% for the current day consumption [32].

5.2.3 Regression method

This method uses multiple linear regression to calculate the baseline. According to

this method, the baseline for customer i ⊆ C on day d for timeslot t ⊆ T is

bi (d, t) = (θi,t)
T xi,t + εi,t (42)

where:

xi,t is the feature vector;

θi,t is the vector of regression coefficients;
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εi,t is the error term.

The feature vector could consist of explanatory variables including historical load,

temperature, humidity or sunrise/sunset time. In this dissertation, this vector is

comprised of the consumption data of different days of the week. The regression

method algorithm is fully described in [7].

5.2.4 Randomized Controlled Trial (RCT)

RCTs are very popular and trustworthy as evaluation methods to the extent that,

as mentioned earlier, many regard them as the ”gold standard” of evaluation methods.

RCTs eliminate the selection effects by randomly assigning the households into two

groups of treatment and control. Since control and treatment groups are exposed to

similar conditions, other possible alternative explanations will be eliminated, and the

difference between these two groups could be attributed solely to the treatment. This

way, the internal validity would be assured by the construction of the design [24].

The process starts by random assignment of households of the dataset into two

groups. One group would serve as a basis for the calculation of CBL for the other

group. It is essential that the customers do not exert any control over the assignment

process (i.e. conscription) to ensure the internal and external validity of the results

[14].

RCTs could be enhanced by some procedures such as using extra information about

customers; however, the enhancement is prone to introduction of some factors af-

fecting the performance of such forms of RCTs adversely. RCTs rely on minimal

assumptions about the nature of customers; therefore, they can produce unbiased es-
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timates of treatment effects. On the other hand, if these methods are enhanced with

matching techniques like propensity score matching, nearest neighbor matching, etc.,

which require relying on some strong assumptions about the nature of customers. If

these assumptions are violated, RCT could produce biased results [14].

The RCT method has lower administrative cost compared to the other methods as

it requires no historical data for CBL calculation. Therefore, under equal conditions,

RCT is a much better alternative both in terms of lower cost and complexity.

5.2.5 Adjustment of CBL estimation methods

As explained in HighXofY method, a subset of X days is selected to collect the

days similar to the event day. Nevertheless, the conditions on the event day are often

different from the selected prior days. Therefore, X of Y baseline methods could

be adjusted by the event day data. In fact, according to North American Energy

Standards Board (NAESB) recommendation for large customers, an adjustment to

a high X of Y baseline is necessary to reflect load conditions of the event day more

accurately [5]. Figure 17 illustrates the concept of baseline adjustment. In this figure,

the actual load is the red line. As shown in this figure, the demand decreases on event

hours because of the curtailment call. However, on regular hours (non-event hours),

the demand is not affected. The green line is the initial baseline estimated by a CBL

estimation method. However, as it is illustrated, there is a discrepancy between the

actual load and initial baseline on non-event hours. This discrepancy can be adjusted

to create the black line, i.e. adjusted baseline.

The adjustment is defined by the time frame. This time frame is normally 2-
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Figure 17: Example baseline adjustment

4 hours before the start of the event. The difference between actual load and the

estimated baseline in the adjustment time frame can be employed for adjustment

purposes in two ways, multiplicative or additive. Multiplicative adjustment uses

the percentage change and applies it to the estimated baseline. Additive adjustment

utilizes the absolute change. It is reported that the choice of multiplicative or additive

adjustment does not change the outcome considerably [31]. In this dissertation, the

additive adjustment is used for adjusting CBL methods. This adjustment can be used

for all CBL estimation methods.

5.3 Error performance analysis

In this section, three error metrics of accuracy, bias, and Overall Performance Index

(OPI), which are utilized for the purpose of the error analysis, are introduced and

elaborated.
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5.3.1 Accuracy

The hourly accuracy represents the hourly difference between the estimation and

the real consumption. Let C be the set of all customers, D be the set of all days

in the data set, and T be the set of hourly timeslots in a day, Mean absolute error

(MAE) for measuring baseline accuracy is defined as shown in (43), and is shown

with α symbol. As shown, the lower the MAE, the higher the accuracy.

α =

∑
i∈C
∑

d∈D
∑

t∈T |bi (d, t)− li (d, t)|
|C| . |D| . |T |

(43)

5.3.2 Bias

Baseline bias is defined as shown in (44), and is shown with β symbol. The defi-

nition of bias is close to accuracy; however, it gives different information about the

performance of CBL.

β =

∑
i∈C
∑

d∈D
∑

t∈T (bi (d, t)− li (d, t))
|C| . |D| . |T |

(44)

The difference between accuracy and bias, as expressed in (43) and (44) is the

value of the difference between CBL and the actual consumption, where MAE uses

the absolute value of the difference, while bias uses the real value. According to (44),

baseline methods with positive bias overestimate the customers’ actual consumption

and vice versa.

5.3.3 Overall Performance Index (OPI)

The overall error performance of a method depends on both accuracy and bias.

Therefore, in this dissertation, another metrics is defined for measuring the overall
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performance. It is defined as the weighted sum of the absolute value of accuracy and

bias, and it is called Overall Performance Index (OPI) as shown in equation (45).

OPI = λ |α|+ (1− λ) |β| (45)

A lower OPI means that the CBL is more capable of measuring the customers

response to the price incentives in the pertinent DR program.

In this dissertation, the absolute value of accuracy and bias have the same weight

(λ= 0.5) as they are equally important for error analysis. However, for some in-

dustries, the accuracy value would have more weight than bias as loads are more

predictable and bias is more manageable than accuracy.

5.4 Dataset

This section provides a description of the dataset that is utilized to perform error

analysis. The data in this dataset is collected by the Australian Energy Market

Operation (AEMO) for 199 residential customers, in the leap year of 2012 (366 days).

Each electricity distributor in the AEMO market supplies raw data for a sample of

200 customers in each of their supply areas to the market operator to construct load

profiles [1]. The customers under study are charged based on a fixed tariff. The data

used in this study are broken down into four seasons. Seasons in Australia are as

follows:

• Spring: the three transition months September, October, and November.

• Summer: the three hottest months December, January, and February.
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• Fall: the transition months March, April, and May.

• Winter: the three coldest months June, July, and August.

In this dissertation, 12 event days (one for each month) are selected for the error

analysis, and the information about these days is as follows:

1. Event day = Sept. 8th (252nd day)

2. Event day = Oct. 13th (287th day)

3. Event day = Nov. 25th (330th day)

4. Event day = Dec. 19th (354th day)

5. Event day = Jan. 30th (30th day)

6. Event day = Feb. 22nd (53rd day)

7. Event day = Mar. 18th (78th day)

8. Event day = Apr. 28th (119th day)

9. Event day = May 25th (147th day)

10. Event day = Jun. 23rd (175th day)

11. Event day = Jul. 28th (210th day)

12. Event day = Aug. 11th (224th day)

The total consumption for the four seasons is illustrated in Figure 18. The event

is assumed to start from 3:00 p.m. and end at 9:00 p.m.
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Figure 18: Total daily consumption for the 199 customers in spring, summer, fall,
and winter of 2012 (orange for Sept., yellow for Oct., light green for Nov.) (orange
for Dec., yellow for Jan., light green for Feb.) (orange for Mar., yellow for Apr., light
green for May.) (orange for Jun., yellow for Jul., light green for Aug.)
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The scatter and box plots of all customers are illustrated in Figures 19 and 20,

respectively. The data is divided into four seasons to see the impact of seasonality. It

is shown that different seasons have different load patterns. Nevertheless, the overall

patterns are somewhat similar. It is worth mentioning that this figure is obtained

from the average of loads. Each individual load might have a completely different

shape. However, it is possible to claim that most of the time, individual residential

customers follow similar patterns. Furthermore, as shown, at noon, the loads show

the highest variability.
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Figure 19: Scatter plot of loads of all customers for 24 hours
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Figure 20: Box plot of loads of all customers for 24 hours

5.5 Results

In this section, the results of the proposed CBL estimation method are provided.

Before presenting the final results, setup and steps taken in the analysis are explained

in detail.

5.5.1 Setup

In order to examine how the load aggregation can improve the error performance

of CBL estimations, a simple and random load aggregation is applied to the dataset.

First, the clustering has been done randomly. Then, the clustering will be conducted

by using a k -means algorithm based on two features of average consumption and

predictability index. For carrying out the analysis for the former, the consumption
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data for 91 consecutive days of 199 customers are employed. The 91 days are from

Oct. 1st, 2012 to Dec. 31st, 2012. In this period, the consumers pay a fixed tariff.

Since the maximum consumption day in this partial dataset occurs on Dec. 24th

(Day 359), this day is selected as a proxy for an event day.

5.5.2 Error analysis before load aggregation

Table 7 applies the three metrics to the CBL calculations and their adjusted forms.

The calculated values are for event hours. According to the results, the morning

adjustment exerts a detrimental effect on the accuracy of each CBL method. However,

for OPI values, the adjustment improved it significantly for ISONE and regression

methods. Unlike the two aforementioned methods, adjustment did not improve the

OPI of NYISO.

5.5.3 Error analysis after simple load aggregation

In this section, a simple load aggregation is applied to the sample data to examine

how a load aggregation and random clustering can improve the accuracy, bias, and

OPI values of CBL calculation methods that were provided in Table 7. Furthermore,

a sensitivity analysis on the number of customers in each cluster is performed to show

Table 7: Accuracy MAE, bias, and OPI of classic CBL methods at event hours

CBL Methods
Accuracy MAE

(kWh/hr)
Bias

(kWh/hr)
OPI

(kWh/hr)
NYISO 1.1923 -0.0436 0.6179

Adjusted NYISO 1.4396 +0.3294 0.8845
ISONE 1.0656 -0.4552 0.7604

Adjusted ISONE 1.1814 +0.1846 0.6830
Regression 1.3341 -0.6232 0.9786

Adjusted Regression 1.3591 +0.1961 0.7776
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the impact of the number of customers in each cluster on error performance.

As discussed earlier, one of the potential benefits of load aggregation is harnessing

the randomness of individual customers. In order to show how aggregation can help

improve the predictability of the loads, four aggregated loads with different number

of customers in each one are illustrated in Figure 21. In this figure, the average

load for five days for four groups with 1, 5, 10, and 25 customers are shown for

comparison purposes. Moreover, a 20-degree polynomial is fitted to loads of each

group to illustrate that as the number of customers in each group increases, the

variability decreases and the group becomes more predictable.

In order to show more details about aggregation, and how it helps improve the

predictability, the box plots for the four groups with 1, 5, 10, and 20 customers

are illustrated in Figure 22. Moreover, in this figure, the outliers are shown. It

is understood that there are many outliers in the groups with one customer (no

grouping); however, as more customers are added to a group, the number of outliers

decreases significantly.

The 200 customers are grouped into 40 clusters of 5 households. Since the data is

only available for 199 customers, one customer’s data is repeated in the dataset to

create the artificial 200th customer. We treat the aggregated consumption of each

5-household cluster as an individual. Table 8 provides the accuracy, bias, and OPI

values of the new CBL calculations.

Figures 23 and 24 illustrate accuracy, bias, and OPI values of all CBL methods

before and after applying simple load aggregation and clustering. As shown in Figure

23, simple load aggregation and clustering clearly improve the accuracy while the bias
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Figure 21: (top) The average load for five days for groups with 1, 5, 10, and 25
customers, (bottom) The average load for five days for groups with 1, 5, 10, and 25
customers with 20 degree polynomial fitted to the graphs
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Figure 22: The average load for five days for groups with 1, 5, 10, and 20 customers.
The median load of all hours is connected with a line.

remains almost unchanged. Also, Figure 24 demonstrates that the OPI is markedly

improved after applying clustering. Unlike in the case before applying simple load

aggregation and clustering, the additive event-day adjustment applied to the clusters

has a positive effect on the accuracy of clustered methods of ISONE and regression.

Table 8: Accuracy MAE, bias, and OPI for clustered methods at event hours

CBL Methods
Accuracy MAE

(kWh/hr)
Bias

(kWh/hr)
OPI

(kWh/hr)
Clustered NYISO 0.6808 -0.2256 0.4532

Adjusted Clustered NYISO 0.7439 +0.2988 0.5213
Clustered ISONE 0.6846 -0.4571 0.5708

Adjusted Clustered ISONE 0.6172 0.1935 0.4053
Clustered Regression 0.9074 -0.6611 0.7842

Adjusted Clustered Regression 0.6921 0.1901 0.4411
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Moreover, the OPI of these two methods is improved significantly. On the other hand,

clustering has little effect on the accuracy and the OPI values of the NYISO method.

Figure 23: CBL method accuracy ”MAE” and bias for event hours

Figure 24: CBL method OPI (Clustered is green, traditional is blue, adjusted clus-
tered is light brown, and adjusted is red)

5.5.3.1 Sensitivity analysis

A sensitivity analysis on the number of customers in each cluster for three meth-

ods of NYISO, ISONE, and regression is performed to show how the variation in the

number of customers in each cluster would impact the error analysis. The results are

provided in Table 9 and Figure 25. The figure shows that as the number of customers



83

in each cluster increases, the OPI improves accordingly for all three methods. Ac-

cording to the results, even grouping two customers in a cluster can improve OPI by

13.99%, 12.73%, and 11.80% for NYISO, ISONE and regression method, respectively.

These values increase as the number of customers in each cluster increases, except for

the case of two clusters with 100 customers per cluster.

Table 9: Sensitivity analysis on the number of clusters in each cluster’s impact on
overall performance index

No. of clusters (No. of customers)
Overall performance index (kWh/hour)
NYISO ISONE Regression

2 (100) 0.3704 0.4593 0.6385
4 (50) 0.3514 0.4609 0.6356
5 (40) 0.3597 0.4722 0.6524
8 (25) 0.3645 0.4854 0.6616
10 (20) 0.384 0.5008 0.6891
20 (10) 0.4140 0.5257 0.7161
25 (8) 0.4088 0.5288 0.7802
40 (5) 0.4532 0.5708 0.7842
50 (4) 0.4779 0.5979 0.8161
100 (2) 0.5314 0.6636 0.8631

No Cluster 0.6179 0.7604 0.9786

Figure 25: Sensitivity analysis on the number of customers in each cluster’s impact
on overall performance index



84

5.5.4 Error analysis for the proposed CBL estimation method

In this section, the proposed CBL estimation method is applied to the dataset.

As illustrated in the flowchart in chapter 3, the estimation starts with clustering

customers into different bins based on average consumption and predictability in-

dex. After obtaining the predictability index of all customers and applying k -means

clustering, five bins (k=5) are selected. These bins are shown in figure 15.

The box plot of customers in each bin is illustrated in figure 26. Similar to Figures

19 and 20, the data are divided into four seasons to see the impact of seasonality. As

shown in the figure, customers in bin 4 and 5 have the highest variability. On the

other hand, bin 1 has the lowest variability among the bins.

The next step is to randomly group the customers of each bin into different clusters

and estimate CBL for each cluster, and calculate the error performance. For carrying

out this analysis, two CBL methods of CAISO and PJM are selected. The error

performance results, i.e. MAE values for CAISO method, are listed in Table 10.

Likewise, the similar error results for PJM method are provided in Table 11. These

results are the average of MAE for 12 events. In order to claim that the presence of

customers in each group is random, five random combinations of customers in each

group are selected, and the value of MAE are averaged for each event.

The results of Tables 10 and 11 are illustrated in Figures 27 and 28. The trend

for CAISO is that as the number of customers in each group increases, the MAE

decreases. The similar trend is observed for PJM method. In CAISO, the highest

drop in MAE is observed in bin 1 (54.1%), and the lowest is observed for bin 4
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Figure 26: (top left) Box plot of loads of all customers in bin 1 for 24 hours
(top right) Box plot of loads of all customers in bin 2 for 24 hours
(middle left) Box plot of loads of all customers in bin 3 for 24 hours
(middle right) Box plot of loads of all customers in bin 4 for 24 hours
(bottom) Box plot of loads of all customers in bin 5 for 24 hours
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Table 10: Mean absolute error for CAISO method

No
cluster

k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

Bin 1 1.201 0.904 0.76 0.679 0.685 0.563 0.615 0.48 0.57 0.55
Bin 2 0.621 0.467 0.432 0.338 0.366 0.342 0.248 0.32 0.30 0.28
Bin 3 0.819 0.671 0.558 0.531 0.493 0.463 0.449 0.42 0.41 0.39
Bin 4 0.723 0.607 0.541 0.483 0.396 0.432 0.323 0.39 0.36 0.37
Bin 5 1.727 1.4 1.011 1.111 1.06 0.989 0.605 0.93 0.89 0.86

Table 11: Mean absolute error for PJM method

No
cluster

k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

Bin 1 1.17 0.878 0.739 0.654 0.669 0.533 0.584 0.45 0.55 0.53
Bin 2 0.64 0.46 0.462 0.337 0.385 0.354 0.244 0.32 0.31 0.3
Bin 3 0.801 0.661 0.556 0.531 0.501 0.479 0.458 0.42 0.42 0.39
Bin 4 0.712 0.613 0.544 0.49 0.378 0.426 0.313 0.40 0.37 0.38
Bin 5 1.718 1.407 0.992 1.16 1.084 0.971 0.566 0.92 0.92 0.93

(48.4%). Almost similar observation could be made for PJM. The highest drop in

MAE is observed in bin 1 (54.1%), and the lowest is observed for bin 5 (45.7%). As a

result, it could be asserted that the drop in MAE value is sensitive to the variability.

In fact, as the variability increases, the drop in MAE decreases as the number of

customers in a group decreases.
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Figure 27: Mean absolute error for customers of all bins in groups with k customers
obtained by the CAISO method
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Figure 28: Mean absolute error for customers of all bins in groups with k customers
obtained by the PJM method

Another metric for error performance is ”bias,” which its values for the CAISO

method are listed in Table 12. The similar bias results for the PJM method are listed

in Table 13. These results are the average of bias for 12 events. In order to claim

that the presence of customers in each group is random, five random combinations

of customers in each group are selected, and the value of MAE are averaged for each

event.

The results of Tables 12 and 13 are illustrated in Figures 29 and 30. In both CAISO

and PJM methods, it can be understood that the bias is not sensitive to the number of

customers in each cluster. Moreover, it can be seen that there is no relation between

variability and the bias value.

Table 12: Bias value for CAISO method

No
cluster

k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

Bin 1 -0.255 -0.23 -0.24 -0.23 -0.26 -0.21 -0.26 -0.19 -0.25 -0.25
Bin 2 -0.064 -0.06 -0.06 -0.05 -0.05 -0.05 -0.04 -0.06 -0.06 -0.06
Bin 3 -0.156 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15
Bin 4 -0.103 -0.10 -0.10 -0.10 -0.08 -0.11 -0.07 -0.10 -0.10 -0.10
Bin 5 -0.488 -0.48 -0.4 -0.48 -0.49 -0.48 -0.38 -0.46 -0.48 -0.48
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Table 13: Bias value for PJM method

No
cluster

k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

Bin 1 -0.256 -0.24 -0.23 -0.21 -0.25 -0.24 -0.25 -0.22 -0.25 -0.25
Bin 2 -0.071 -0.05 -0.07 -0.06 -0.07 -0.07 -0.05 -0.07 -0.07 -0.07
Bin 3 -0.154 -0.15 -0.14 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15
Bin 4 -0.105 -0.10 -0.10 -0.10 -0.08 -0.10 -0.07 -0.10 -0.10 -0.10
Bin 5 -0.532 -0.53 -0.44 -0.53 -0.53 -0.53 -0.41 -0.53 -0.53 -0.53

5.5.5 Comparing the proposed method with simple load aggregation

In this section, it is shown how the proposed approach successfully enhances the

simple load aggregation. As shown earlier, simple load aggregation improves the
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Figure 29: Bias value for customers of all bins in groups with k customers obtained
by the CAISO method
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Figure 30: Bias value for customers of all bins in groups with k customers obtained
by the PJM method
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Table 14: The accuracy MAE for simple load aggregation and the proposed method
for CAISO and PJM CBL estimation methods

k (Number of customers in a cluster)
1 2 3 4 5 6 7 8 9 10

CAISO

Simple
load

aggregation
1 0.83 0.68 0.64 0.58 0.56 0.52 0.51 0.52 0.52

Proposed
method

1 0.81 0.66 0.62 0.60 0.55 0.44 0.51 0.51 0.49

PJM

Simple
load

aggregation
1 0.83 0.73 0.66 0.62 0.58 0.54 0.53 0.52 0.49

Proposed
method

1 0.77 0.64 0.59 0.55 0.47 0.41 0.42 0.43 0.42

error performance of CBL estimation methods significantly. Moreover, the proposed

method builds upon that foundation and tries to improve it further. Table 14 lists

the results of both simple load aggregation and the proposed method for CAISO and

PJM cases. In this Table, k refers to the number of customers in a cluster. It is worth

mentioning that k equals one means that there is no cluster, and it is included in the

Table to give a reference for the future comparisons.

According to the results of Table 14, the average MAE for all k values for simple

load aggregation and the proposed method in CAISO case are 0.601 and 0.58, respec-

tively. These results indicate that the proposed method shows 3.43% improvement

in MAE value. Moreover, the average MAE for all k values for simple load aggrega-

tion and the proposed method in PJM case are 0.616 and 0.527, respectively, which

is equivalent to 14.42% improvement. The improvement is more significant in PJM

case. However, it is observed that the bulk of the improvement is because of the

load aggregation, while the clustering based on predictability index causes a small
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Figure 31: (top) Comparing the accuracy MAE of the proposed method and the
simple load aggregation for CAISO case, (bottom) Comparing the accuracy MAE of
the proposed method and the simple load aggregation for PJM case

extra improvement. Consequently, if the proposed clustering based on predictability

index incurs a large administrative cost, the utilities can use simple load aggrega-

tion and have a significant improvement. In large DR programs that even a small

improvement in accuracy can translate into a significant financial gain, the proposed

clustering method can be extremely beneficial. The results of Table 14 are illustrated

in figure 31.



CHAPTER 6: CONCLUSION AND FUTURE WORKS

6.1 Conclusion

In this dissertation, it is argued that demand response programs need reliable

Evaluation, Measurement, and Verification (EM&V) methods. One of the major

EM&V challenges in DR programs is an accurate estimation of the load reduction,

particularly for residential customers that show significant variability. To estimate

the load reduction for DR programs offered to residential customers, it is necessary

to estimate the Customer Baseline Load (CBL) accurately. The presence of CBL

introduces a lot of challenges to DR programs. In this dissertation, the challenges

associated with the presence of CBL, e.g. gaming and poor error performance, are

described in detail. In order to address these problems, a method is proposed to

improve the error performance of the CBL estimation. The merits of this proposed

methods are shown in theory. Moreover, by an analysis of residential dataset, it is

demonstrated that this proposed method can improve the error performance.

The key conclusions are:

• FERC 745 policy provides an incentive for over-consumption during non-event

days;

• FERC 745 policy provides an incentive for under-consumption during event

days;
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• If perfect accuracy is not obtainable, methods with negative bias deliver better

performance than methods with positive bias with regards to social welfare loss;

• The event-day additive morning adjustment has a detrimental effect on the

accuracy of each CBL method. However, it improves the OPI for ISONE and

regression methods, but not the OPI of NYISO;

• The simple load aggregation improves the accuracy significantly while the bias

stays almost unchanged;

• If the morning adjustment is applied to the simple load aggregation, it affects

the accuracy and bias values positively;

• OPI is noticeably improved after applying simple load aggregation;

• In both cases of individual and simple load aggregation, the morning adjustment

changes the negative sign of the bias to positive; consequently, it increases the

utility’s revenue loss;

• In the proposed clustering method, the drop in MAE value is sensitive to the

variability.

• In the proposed clustering method, as the variability increases, the drop in MAE

decreases as the number of customers in a group decreases.

• In the proposed clustering method, it is shown that there is no relation between

variability and the bias value.
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• The proposed method shows an improvement compared to the simple load ag-

gregation method.

6.2 Summary of contribution

The key contributions of this dissertation can be summarized as follows:

• The error performance of the well-established CBL estimation methods are eval-

uated for residential customers.

• The challenges of CBL estimation methods are analyzed in theory by using

customers’ utility function.

• The impact of FERC 745 order on the current DR programs is evaluated in

theory. Moreover, the impact of the order is shown on the social welfare.

• The stochasticity of three categories of customers, i.e. large industrial, com-

mercial, and residential customers is evaluated.

• A novel method is proposed to cluster customers in order to improve the error

performance of current CBL estimation methods.

• The impact of the proposed method is analyzed on the social welfare.

6.3 Future works

Based on the results of this dissertation, it is possible to suggest a few paths for

the future works. The key suggestions are as follows:

• There are other signal processing techniques such wavelet transform (WT) that

are better equipped to handle the time-domain data with variable frequency.
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It would be an interesting research to produce a different predictability index

according to WT outputs.

• Another interesting path is to apply the proposed methodology in RCT methods

to create a control group.

• It is very important to re-examine the results of this dissertation with a much

larger dataset, preferably on residential customers from multiple locations in

the US.

• If personal data from customers are available, it is possible to use them to see

the relation between predictability index and individual characteristics of each

customer. In other words, to examine how household income, education, and

house size can change the predictability index.

• With actual data from a DR program, it is possible to study the impact of the

proposed method on revenue stream of utilities.

• With actual data from a DR program, it is also possible to study temperature.

Temperature is another important feature that can be used to improve the error

performance of CBL estimation methods. In this dissertation, the author could

not find a good source of data with temperature information.

• Residential customers who use renewable energies, e.g. rooftop solar panels,

show different behaviors, another interesting direction is to examine the pro-

posed method for these customers.
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• Residential customers show many outliers. It is worth examining how eliminat-

ing such outliers would affect the error performance of CBL estimation methods.
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