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ABSTRACT

MANMOHAN CHAUBEY. Data Replication for coping with Uncertainty in
Scheduling. (Under the direction of DR. ERIK SAULE)

Scheduling theory is a common tool to analyze the performance of parallel and

distributed computing systems, such as their load balance. How to distribute the

input data to be able to execute a set of tasks in a minimum amount of time can be

modeled as a scheduling problem. Often these models assume that the computation

time required for each task is known accurately. However in many practical case, only

approximate values are available at the time of scheduling.

This thesis research investigates how replicating the data required by the tasks can

help coping with the inaccuracies of the processing times. In particular, it investigates

the problem of scheduling independent tasks to optimize the makespan on a parallel

system where the processing times of tasks are only known up to a multiplicative

factor. The problem is decomposed in two phases: a first offline phase where the

data of the tasks are placed and a second online phase where the tasks are actually

scheduled.

For this problem, this thesis investigates three different strategies, each allowing a

different degree of replication of jobs: a) No Replication b) Replication everywhere

and c) Replication in groups, and proposes approximation algorithms and theoretical

lower bound on achievable approximation ratios. This allows us to study the tradeoff

between the number of replication and the guarantee on the makespan. Replication

improves performance but incurs a cost in terms of memory consumption. The objec-
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tive is then to develop scheduling algorithm with good competitive ratio to minimize

both the makespan of the schedule and the memory consumption of the machines.
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CHAPTER 1: INTRODUCTION

This chapter provides the foundations for the principle objective of this dissertation,

which is to investigate the effect of task replication on scheduling under uncertainty of

processing times. The subject matter of this thesis falls in the intersection of several

areas of current research interest. These includes: (1) Scheduling under uncertainty,

(2) Data placement and Replication strategies to improve performance of a schedule,

and (3) Bi-objective optimization for simultaneously optimizing makespan as well as

memory consumption

1.1 Motivation

In real world scheduling problems often the parameters such as processing time of

a task is not known exactly in advance. The goal of an scheduling algorithm is to

generate robust schedule against uncertainty. Dealing with uncertainty is difficult as

in real world problems a task can be processed on particular computing systems, other

wise a task could be moved as system sees it fit without incurring extra cost and the

problem would be vastly alleviated. But in practice a task has to run on particular

machine especially in ‘out of core’ computing applications which involve very large

data sets. For example, solving systems of linear equations and computing eigenvalues

– where matrices involved are very large. When the data sets are too large to fit in the

main memory of a computer, it must be stored on any external memory source such
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as disks. Disk storage is significantly cheaper than main memory storage. However,

accessing data from a disk is relatively slower than accessing the main memory. So,

a scheduling algorithm in ‘out of core’ execution places data to main memory of

different systems such that data access from disk or any external storage is reduced.

That means a task is pinned to a particular computing unit. So handling uncertainty

in out of core execution is having added overhead. Hence, developing a scheduling

strategy which can guarantee performance under uncertainty of processing times of

the tasks with restriction that a task can be scheduled to particular set of machines

motivates this research.

Scheduling tasks on distributed memory is particularly prevalent in Hadoop. Hadoop-

MapReduce constitute a powerful Computation Model for processing large data sets

on distributed clusters [21]. Hadoop stores large amount of data across multiple

machines and processes them using MapReduce. Uncertainty in Hadoop system is

related to a node failure or tasks failure. To cope with these uncertainties Hadoop uses

data replication across multiple nodes. One of the main goal of a Hadoop system is

to maintain node locality which means running data on the node that contains it [32].

Therefore, a data intensive scheduling incorporating data location and choosing pop-

ular data sets to replicate would be beneficial [13]; and serves to provide motivation

for this research.

1.2 Scheduling Preliminaries

Parallel and distributed computing systems are often modeled using tasks that are

processed simultaneously on different machines. Studying the balance of the load of
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the various component of the system is often key in understanding the performance

one obtains in practice. A system typically schedules the set of tasks with the goal

of optimizing the load balance (or makespan) of the system or some other metric. A

key information these system use to plan the execution is the time tasks will take to

be processed. However, this information is typically not precisely known in practice:

because the user can only make a wild guess on the runtime of her task [18], because

prediction is hard in the general case [29], or because underlying models of a particular

algorithm can only predict runtime within a given range [8]. Whichever the reason is,

not knowing accurately the processing time can significantly impact the performance

obtained from the machine.

For instance in out-of-core sparse linear algebra, executing a task where the data

are not locally available would have a prohibitive overhead [34, 33].

One approach for dealing with the uncertainty of processing time is to build a

robust schedule [2, 10, 6], that is, building a schedule that can naturally cope with

variations in the processing times. These techniques often use sensitivity analysis to

determine the robustness of the schedule. However, a better approach would be to

be able to dynamically change the schedule.

The thesis pursues the idea of replicating the input data of the tasks onto multiple

machines. This way, when the actual processing times of the tasks are too different

from their estimations, the system will have some room to adapt at runtime. This

is certainly feasible in practice as many system have more memory than the compu-

tation use. For instance, most Hadoop system replicates the data for the purpose of

tolerating hardware faults [27]. And it has been shown that launching the same task
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multiple times can help cope with hardware differences [26] but increases resource

usage. The cost of replicating the data might be amortized in many applications

where the application will iterated over the data multiple times (e.g., in an iterative

solver [33, 34]). This research answer the question “can data replication help cope

with the uncertainty of processing time?” And the answer is that it can.

1.3 Research Contribution

This thesis proposes strategies and presents algorithms to cope with uncertainty

in processing times of the tasks. The research provides three replication strategies

and studies the tradeoff between the number of replication and the guarantee on the

makespan. The strategy No Replication investigates what can be done if the tasks

can only be deployed on a single machine, we provide a guaranteed algorithm and

provide a lower bound on the best guarantee that one can achieve in this case. The

strategy Replicate data everywhere takes the reverse case and investigates what can

be achieved if the data are replicated everywhere, leaving the maximum flexibility

at runtime. We investigate one algorithm in this case and analyze its performance

guarantee. The strategy Replication in groups investigates grouping processors to-

gether and replicating data in these groups as an intermediate between the previous

two strategies and provide a guaranteed algorithm in that case.

To alleviate the cost of replication in terms of memory consumption the thesis

presents two memory-aware algorithms to optimize the makespan as well as the mem-

ory consumption. The proposed algorithms divides the tasks into two sets: memory

intensive tasks and processing time intensive tasks and schedule differently to mini-
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mize both the objectives.

1.4 Thesis Outline

The remaining of this thesis is organized as follows: we describe system model and

notations in Chapter 2. Related works are presented in Chapter 3. Chapter 4 investi-

gates the effect of replication on processing time uncertainty through three strategies

which offer different degree of replication of the tasks. The chapter summarizes the

various results derived for each strategy and studies the tradeoff between performance

guarantee and data replication. Chapter 5 investigates bi-objective problem of mini-

mizing the makespan as well as the memory usage and proposes two memory-aware

algorithms which simultaneously optimizes both the objectives. Chapter 6 concludes

the thesis with remarks and raises few challenging questions which could be future

research topics.



CHAPTER 2: PROBLEM DEFINITION

Let J be a set of n jobs which need to be scheduled onto a set M of m machines.

We will use interchangeably the terms machines and processors. Also we will use

interchangeably the terms jobs and tasks. Each task j occupies sj space in memory.

We are considering the problem where the scheduler does not know the processing

time pj of task j exactly before the task completes. But the scheduler has access

to some estimation of the processing time p̃j of task j before making any scheduling

decisions. We assume that the actual processing time pj of a task j is within a

multiplicative factor α of the estimated processing time p̃j. α is a quantity known to

the scheduler. In other words the scheduler knows that:

p̃j
α
≤ pj ≤ αp̃j (1)

Assuming that the processing time of the tasks is known to be in an interval is

reasonable in many application scenarios. One could derive bounds experimentally

using machine learning techniques: for instance [31] used Support Vector Machines

to predict the time it will take to run graph traversal algorithms. Models of runtime

of algorithms can also be derived analytically: in [8] the authors provide bounds for

the performance of various sparse linear algebra operations using only the size of the

matrices and vectors involved.

The scheduling for the problem is performed in two phases. Phase 1 chooses where
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data are replicated using the estimated processing time p̃j, for each of the task j.

The phase takes p̃j, m and α as inputs and outputs sets of machines, Mj ⊆M where

each task j can be scheduled. This phase is purely offline and corresponds to the

operations performed to prepare the execution of the application.

Phase 2 takes the output of phase 1 as its input and maps each task j to a machine

within the set of machines Mj. For each machine i, let Ei ⊆ J be the set of tasks

assigned to machine i. This phase chooses the actual schedule following an an online

semi-clairvoyant process. Only the approximate processing time is known when a

task is placed, but the scheduler can wait for a machine to become idle, to place the

next one. Therefore, can dynamically schedule the tasks and the actual processing

time of the tasks are known once they complete.

The parallel system scheduling can be modeled into different objective functions

with different parameters to optimize. A makespan minimization problem has ob-

jective to minimize completion time of last task of the system. Memory is another

parameter for objective function. A memory aware scheduling aims at minimizing

total memory consumption
∑

j sj or memory consumption of most occupied machine

maxi
∑

j∈Ei si. Replication improves processing of tasks but increases memory con-

sumption in the system. So, objective function attached with replication can be where

to replicate tasks and which tasks to replicate so that performance can improve with-

out violating any memory constraint or with bi-objective to minimize memory also

along with improving processing time of the tasks.

In Chapter 4, the problem is to optimize the makespan, Cmax = maxi
∑

j∈Ei pj

which is the completion time of the last task of the system. C∗max denotes the optimal
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makespan of an instance of the problem (knowing the actual processing times). The

memory objective is constrained by allowing different degree of replication by choosing

where (on which set of machines) a task to be replicated. An offline algorithm is said

to be a ρ-approximation algorithm (or to have an approximation ratio of ρ) if it

guarantees for all the instances that Cmax ≤ ρC∗max. When the problem is online, we

are talking about competitive ratios.

In Chapter 5, we tackle the bi-objective problem of simultaneously minimizing

makespan Cmax as well as memory usage, Mmax = maxi
∑

j∈Ei sj which denotes the

maximum memory usage of a machine. As a task occupies fixed amount of memory

but its processing time is uncertain, both objectives are asymmetrical. M∗
max denotes

optimal maximum memory consumption of a machine. An algorithm generates a

schedule which is ρC-approximated on makespan and ρM -approximated on memory.

There are two ways to deal with multi objective optimization [23] [7]:

1. Epsilon-constraint method: This approach optimizes the primary objective setting

the other objective within some constraint . We use this approach in chapter 4

to optimize makespan setting the memory objective by allowing different degree of

replication of the tasks.

2. Zenith approximation: This approach optimizes both the objective at the same

time. We use this approach to optimize both makespan and memory usage in chapter

5.



CHAPTER 3: RELATED WORK

This chapter provides the literature review on related research areas such as uncer-

tainty in scheduling, data placement and replication. For better understanding the

core concept of this thesis research proofs of some classical scheduling algorithms is

presented along with a brief introduction in the context they appear while literature

review.

3.1 Classical Scheduling Problem

When α = 1, the problem is exactly the classical independent tasks scheduling

problem on identical machines, which is known to be NP-Hard [9]. We use Graham’s

List Scheduling (LS) [11] and Largest Processing Time (LPT) algorithms [12] to derive

approximation ratios in different scenarios. The LS algorithm takes tasks one at a

time and assigns them to the processor having the least load at that time. LS is a

2-approximation algorithm and is widely used in online scheduling problems. LPT

sorts the tasks in a non-increasing order of processing time and assigns them one at a

time in this order to the processor with the smallest current load. The LPT algorithm

has a worst case approximation ratio of 4
3
− 1

3m
in the offline setting. One can even

obtain an arbitrarily good approximation algorithm for this problem by increasing its

complexity with a dual approximation algorithm [14].

We begin with by recalling the formal proofs of the guarantees of LS and LPT
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algorithms:

• Property 1. [11] List Scheduling has an approximation ratio of 2− 1
m

.

Proof: Let l be the last task in the system which is processed on machine r and

it starts on r at time t. Clearly, the makespan Cmax of the schedule is t + pl. As

in LS a new task is scheduled on the least loaded machine at that time, for each

machine i, we have t ≤ ∑
j∈Ei

pj. Adding this for all the machines including r, we get

mt ≤ ∑
i∈M−{r}

∑
j∈Ei

pj +
∑
j∈Er

pj− pl ⇒ t ≤ (
∑
j

pj− pl)/m. Hence, Cmax ≤
∑
j pj+(m−1)pl

m
.

The optimal makespan of a schedule C∗max must be greater or equal to the average

load over all the m machines, C∗max ≥
∑
j pj

m
. Also, C∗max cannot be smaller than any

task in the system, hence C∗max ≥Maxpj ≥ pl. Therefore, Cmax ≤ C∗max +C∗max(m−

1)/m. Hence, Cmax/C
∗
max ≤ 2− 1/m. �

• Property 2. [12] The LPT algorithm has an approximation ratio of 4
3
− 1

3m
.

Proof: LPT always generates an optimal schedule if no machine has more than 2

tasks. So to derive an approximation ratio we can assume that there are at least 3

tasks in a machine. As LPT assigns tasks to machines in non-increasing order of their

processing times, the last task l is the smallest task in the machine. Since there are at

least 3 tasks in a machine C∗max ≥ 3pl. Also, C∗max ≥
∑
j pj

m
and Cmax ≤

∑
j pj+(m−1)pl

m

as shown in previous proof. Therefore, Cmax ≤ C∗max + C∗max(m − 1)/3m. Hence,

Cmax/C
∗
max ≤ 4/3− 1/3m. �

3.2 Uncertainty and Robustness

Based on various models for describing the uncertain input parameter, various

methodologies can be used including reactive, stochastic, fuzzy and robust approach [16].
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We are using the bounded uncertainty model which assumes that an input parameter

have value between a lower and upper bound. Wierman and Nuyens [28] intro-

duce SMART, a classification to understand size-based policies and draw analytic

co-relation between response time and estimated job size in single server problem.

Robust approaches to deal with uncertainty are widely used on MapReduce sys-

tems [15] [25], in Hadoop [30] [27], on databases [17] and on web servers [3]. The

HSFS and FLEX schedulers provide robustness in scheduling against uncertain job

size [30, 19]. Cannon and Jeannot [2] analyzed the correlation between various met-

rics used to measure robustness and provided scheduling heuristics that optimizes

both makespan and robustness for scheduling task graph on heterogeneous system.

Most of the work on robust scheduling use scenarios to structure the variability of

uncertain parameters. Daniels and Kouvelis [5] used them to optimize the flow-time

using a single machine. Davenport, Gefflot, and Bek analyzed slack based technique

(adding extra idle time) to cope with uncertainty [6]. Gatto and Widmayer derives

bounds on competitive ratio of Graham’s online algorithm in scenario where pro-

cessing times of jobs either increase or decrease arbitrarily due to perturbations [10].

These works considered augmenting or decreasing of job processing times as different

problem scenario that need to be optimized. We approach the problem using worst

case analysis where some tasks may increase and some may decrease within the same

schedule.
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3.3 Data Placement and Replication

Data placement and replication methodologies are highly used in distributed sys-

tems including peer-to-peer and Grid systems to achieve effective data management

and improve performance [4][1][20]. Tse [24] used selective replication of documents

to increase the available bandwidth to serve files using web servers and study the

problem through bi-criteria optimization techniques to maximize the quality of ser-

vice and minimize the memory occupation. Our approach for bi- criteria optimization

of makespan and memory consumption is based on the SBO4 Algorithm proposed by

Saule, Dutot and Mounie [22]. The algorithm uses ρ1 and ρ2 approximated indepen-

dent schedules on makespan and memory consumption respectively, and it computes a

((1+4)ρ1, (1+ 1
4)ρ2)- approximated schedule with4 as a parameter of the algorithm.

• Property 3. [22] The SBO4 Algorithm generates a (1+4)ρ1-approximated schedule

on makespan.

Proof: The algorithm schedules a task j according to a π2 schedule generated by the

ρ2-approximated algorithm on memory if it satisfies this condition:
pj

C
π1
max
≤ 4 sj

M
π2
max

.

Where Cπ1
max is the makespan obtained using a π1 schedule generated by the ρ1-

approximated algorithm on makespan, and Mπ1
max is the memory consumption of the

most occupied machine obtained using π2. If this condition is not satisfied the task

is scheduled according π1. Let k be the machine reaching makespan Cmax of the

schedule generated by the SBO4 algorithm. Let S1 be the set of tasks scheduled

according π1 and S2 be the set of tasks scheduled according π2 schedule. Cmax can be

decomposed as the sum of the processing times of the tasks in set S1 and S2 scheduled
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on machine k.

Cmax =
∑

j∈S1∩Ek

pj +
∑

j∈S2∩Ek

pj

Since Cπ1
max ≥

∑
j∈S1∩Ek

pj and
∑

j∈S2∩Ek
4Cπ1

max
sj

M
π2
max
≥ ∑

j∈S2∩Ek
pj by definition of S2, we

have

Cmax ≤ Cπ1
max +

∑
j∈S2∩Ek

4Cπ1
max

sj
Mπ2

max

Since
∑

j∈S2∩Ek

sj
M
π2
max
≤ 1, we have

Cmax ≤ (1 +4)Cπ1
max

Since Cπ1
max ≤ ρ1C

∗
max, the algorithm has an approximation ratio of (1 +4)ρ1 on the

makespan. �

• Property 4. [22] The SBO4 Algorithm generates a (1+ 1
4)ρ2-approximated schedule

on memory.

Proof: Let k be the machine with most memory consumption. Similar to the previ-

ous proof, Mmax can be written as the sum of memory usage of the tasks in sets S1

and S2 scheduled on machine k,
∑

j∈S1∩Ek
sj +

∑
j∈s2∩Ek

pj. Since,
∑

j∈S2∩Ek
sj ≤Mπ1

max and

by definition of S1,
∑

j∈S1∩Ek
sj ≤ M

π1
max

4Cπ2max

∑
j∈S2∩Ek

pj ≤ M
π1
max

4 , we have

Mmax ≤ (1 +
1

4)Mπ1
max

Since Mπ1
max ≤ ρ2M

∗
max, the algorithm has an approximation ratio of (1 + 1

4)ρ2 on

memory. �



CHAPTER 4: REPLICATED DATA PLACEMENT STRATEGIES

This chapter provides three strategies, each offering different degree of replication

to study the tradeoff between the number of replication and the guarantee on the

makespan. The strategy No Replication restricts that each task can be scheduled to

only one machine and allows no replication of the tasks. The strategy Replicate data

everywhere replicates data everywhere and studies what can be achieved in doing so.

The strategy Replication in groups replicates data in group of processors and act an

intermediate strategy between the previous two strategies.

4.1 Strategy 1: No Replication

This section considers the situation where the data of each task is restricted to be

on only one machine, i.e., ∀j, |Mj| = 1. We have a set J of n jobs, and a set M of m

machines. Let f : J 7→M be a function that assigns each job to exactly one machine.

The restriction that the data of each task is deployed on a single machine puts all the

decision in phase 1: each task can only be scheduled on one machine in phase 2.

• Theorem 5. When |Mj| = 1, there is no online algorithm having competitive ratio

better than α2m
α2+m−1 .

Proof: We use the adversary technique to prove the lower bound of this theorem. An

adversary discloses the input instance piece by piece. It analyzes the choices made by

the algorithm to change the part of the instance that has not been disclosed yet. That
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way it can build an instance that maximizes the competitive ratio of the algorithm.

Let us consider an instance with λm tasks of equal estimated processing time

∀j, p̃j = 1. After phase 1, let i be the most loaded processor which has B tasks.

Obviously, B ≥ λ. In phase 2 the adversary increases the processing time of the tasks

on processor i by a factor of α and changes the processing time of the other tasks by

a factor of 1
α

. So, Cmax = αB. C∗max will be no worse than any feasible solution. In

particular, the solution that distributes equally the jobs of size α and the jobs of size

1
α

. Therefore C∗max ≤ 1
α
dλm−B

m
e+ αdB

m
e. Figure 1 depicts the online solution and the

offline optimal. We have,

Cmax
C∗max

≥ α2B

dλm−B
m
e+ α2dB

m
e

Since λm−B
m

+ 1 ≥ dλm−B
m
e and B

m
+ 1 ≥ dB

m
e, we have

Cmax
C∗max

≥ α2B
λm−B
m

+ 1 + α2 B
m

+ α2

From above expression it is clear that the smaller the value of B, the more the value

of the expression decreases. So, any algorithm should minimize B to achieve better

performance. For a schedule to be feasible the condition B ≥ λ must be satisfied.

For B = λ the value of Cmax
C∗
max

is minimum and is equal to α2mλ
λ(α2+m−1)+m(α2+1)

. The

adversary can maximize the ratio of the algorithm by arbitrarily increasing λ. When

λ tends to ∞, we have

Cmax
C∗max

≥ α2m

α2 +m− 1

�
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C∗
max TimeTime

pj = αp̃j

C∗
max = (λ− 1) p̃jα + αp̃j

pj =
1
α p̃j

M
ac
h
in
e

M
ac
h
in
e

Online Solution Offline Optimal

Figure 1: Instance constructed by the adversary in the proof of theorem 5 with λ = 3
and m = 6. In the online solution, the adversary increases the processing time of a
task of the most loaded machine by a factor of α. If that information was available
beforehand, an optimal offline algorithm could have distributed these longer tasks to
other processors.
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• Corollary 5.1. When m goes to ∞ there is no online algorithm having competitive

ratio better than α2.

4.1.1 Algorithm

We present the algorithm LPT-No Choice. In phase 1, the algorithm distribute the

data of the tasks to the processor using their estimated processing times according to

Graham’s LPT algorithm [12]: The tasks are sorted in non-increasing order of their

processing time and are greedily scheduled on the processor that minimizes the sum

of p̃j of the tasks allocated on that processor. Since there is no replication, there is

no decision to take in phase 2.

The performance of the algorithm depends mostly on how much the actual process-

ing times of the tasks differ from their estimation. It also depends on the existence

of a better arrangement if the actual processing times were known. The following

theorem states the theoretical guarantee of the algorithm.

• Theorem 6. The LPT-No Choice has a competitive ratio of 2α2m
2α2+m−1 .

Proof: The algorithm assigns the jobs to processors based on their estimated process-

ing times using LPT in Phase 1. So, the planned makespan considering the estimated

processing times of tasks, C̃max have the following relation with the total estimated

processing time, p̃j and estimated processing time of the task l that reaches C̃max.

C̃max ≤
∑
p̃j + (m− 1)p̃l

m
(2)

The actual makespan of a schedule, Cmax, obtained using the actual processing

times of all the jobs, must be smaller than Cmax ≤ αC̃max (thanks to Equation 1).
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We have following inequality:

Cmax ≤ αC̃max ≤ α

(∑
p̃j + (m− 1)p̃l

m

)
(3)

The worst case situation is when the task of the processor where the sum of es-

timated processing time is C̃max sees the actual processing time of its task being α

times larger than their estimate; meanwhile the processing time of the task on the rest

of the processors is 1
α

times their estimation. The argument behind this statement is

that greater the value of ratio Cmax∑
pj

, the worse the algorithm approximation ratio will

be. So the total actual processing time is given by the following equation.

∑
pj =

∑
p̃j − ˜Cmax
α

+ αC̃max (4)

Also the actual optimal makespan have following constraint

C∗max ≥
∑
pj
m

Substituting for
∑
pj, we have

mC∗max ≥
∑
p̃j − ˜Cmax
α

+ αC̃max

mC∗max ≥
∑
p̃j −

(∑
p̃j+(m−1)p̃l

m

)
α

+ Cmax

mC∗max ≥
m− 1

αm

(∑
p̃j − p̃l

)
+ Cmax

By the property of LPT,
∑
p̃j − p̃l ≥ m(C̃max − p̃l), we have,

mC∗max ≥
m− 1

α

(
˜Cmax − p̃l

)
+ Cmax

All instances where there is only one task per processor is always optimal. There-
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fore, we can restrict our analysis without loss of generality to instances with at least

two jobs per processor. (Notice that in the original proof of Graham’s LPT [12], an

argument is made that all instances with two tasks per machine are optimal. How-

ever, the argument does not port in our case where only estimated processing times

are known.) For at least two jobs on the processor that reaches C̃max, the (estimated)

processing time of last job is smaller than half the estimated makespan, p̃l ≤ C̃max
2

.

Substituting this expression in the above equation, we have

mC∗max ≥
m− 1

α

(
C̃max −

C̃max
2

)
+ Cmax

Using equation 3,

mC∗max ≥
m− 1

2α

Cmax
α

+ Cmax

mC∗max ≥
(
m− 1

2α2
+ 1

)
Cmax

Cmax
C∗max

≤ 2α2m

2α2 +m− 1

�

4.2 Strategy 2: Replicate Data Everywhere

With this strategy, we put no restriction on phase 2. The tasks are replicated ev-

erywhere i.e. ∀j, |Mj| = |M |. We introduce the LPT-No Restriction which replicates

the data of all the tasks on each machine in the first phase. In the second phase we

simply use the Longest Processing Time algorithm (LPT) in an online fashion using

the estimated processing time of the task. That is to say, the tasks are sorted in

non-increasing order of their estimated processing time. Then the task are greedily

allocated on the first processor that becomes available. Note that this is done in
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phase 2, the processor become available with when the actual processing time of the

task scheduled onto it elapse.

• Lemma 7. Let l be the task that reaches Cmax in the solution constructed by LPT-

No Restriction. If there are at least two tasks on the machine that executes l in

LPT-No Restriction, then C∗max ≥ 2
α2pl.

Proof: Since there are at least two tasks on the machine that executes l in LPT-No

Restriction, there are at least m + 1 tasks i such that p̃j ≥ p̃l. Therefore in any

solution at least one machine gets two tasks c and d, such that p̃c ≥ p̃l and p̃d ≥ p̃l.

C∗max must be greater than sum of the processing time of these two tasks.

C∗max ≥ pc + pd

As the actual processing time of a task must be greater than 1
α

times of its estimated

value, we have pc ≥ 1
α
p̃c and pd ≥ 1

α
p̃d. Using this

C∗max ≥
1

α
p̃c +

1

α
p̃d ≥

2

α
p̃l

Since, p̃l ≥ 1
α
pl, we have

C∗max ≥
2

α2
pl

�

• Theorem 8. LPT-No Restriction has a competitive ratio of Cmax
C∗
max
≤ 1 + (m−1

m
)α

2

2

Proof: The optimal makespan, C∗max must be at least equal to the average load on

the m machines. We have

C∗max ≥
∑
pj
m

(5)
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By the property of LPT (actually, it is a property of List Scheduling which LPT is

a refinement of) the load on each machine i is greater than the load on the machine

which reach Cmax before the last task l is scheduled. So for each machine i, Cmax ≤∑
j∈Ei pj + pl holds true. Summing for all the machines we have

mCmax ≤
∑

pj + (m− 1)pl

Cmax ≤
∑
pj
m

+
(m− 1)

m
pl (6)

Using 5 and 6, we have

Cmax
C∗max

≤ 1 +
m− 1

m

(
pl

C∗max

)

Using Lemma 7, we have

Cmax
C∗max

≤ 1 +

(
m− 1

m

)
α2

2

�

Graham’s List Scheduling algorithm always has a competitive ratio of 2 − 1
m

.

For α2 < 2, the LPT-No Restriction algorithm has better approximation than List

Scheduling. For α2 > 2 List Scheduling has better guarantee than the one expressed

in Theorem 8. Since LPT-No Restriction is a variant of List Scheduling, the algorithm

has a competitive ratio of min(1 + m−1
2m

α2, 2− 1
m

).

4.3 Strategy 3: Replication in Groups

This strategy partitions the processors into k groups G1,G2...Gk. The size of each

group is equal and have m
k

processors within each group. For the sake of simplicity,
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we assume that we will only use values of k such that k divides m. In the first phase,

the data of each task is replicated on all the processors of one of the k groups, i.e.

∀j, |Mj| = m
k

. In the second phase the tasks are scheduled within the group they are

assigned to in first phase. Figure 2 shows the construction of two phases.

We propose the LS-Group algorithm which is based on Graham’s List Scheduling

algorithm. In phase 1, we use List Scheduling to distribute the tasks to the k groups

of processors. In phase 2 each task is scheduled to a particular processor within the

group it was allocated in phase 1 using the online List Scheduling algorithm.

Time Time

Phase 1 Phase 2

M6

M5

M4

M3

M2

M1

G2

G1

G2

G1

M6

M5

M4

M3

M2

M1

Task Pool

≤ maxj∈J p̃j

Figure 2: An example of replication in groups with m = 6, k = 2. In phase 1, the
data of the tasks are assigned to one of the groups. Phase 2 schedules each task
assigned to a machine within its group.

• Theorem 9. With k groups, the competitive ratio of LS-Group is kα2

α2+k−1(1+ k−1
m

)+

m−k
m

Proof: We assume without loss of generality that Cmax comes from group G1. C∗max

must be greater than the average of the loads on the machines.

C∗max ≥
∑

j∈J pj

m
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j∈J pj can be written as sum of load on G1 and load on rest of groups.

C∗max ≥
∑

j∈G1 pj +
∑k

l=2

∑
j∈Gl pj

m
(7)

As in phase 1 tasks are allocated to different groups using List Scheduling with the

estimated processing times of the tasks, the (estimated) load difference between any

two groups cannot be greater than the estimated value of largest task maxj∈J p̃j. So,

for any group Gl 6= G1, We have

∀l ∈ {2, 3, . . . , k}, |
∑
j∈G1

p̃j −
∑
j∈Gl

p̃j| ≤ maxj∈J p̃j

Adding for all values of l leads to

|(k − 1)
∑
j∈G1

p̃j −
k∑
l=2

∑
j∈Gl

p̃j| ≤ (k − 1)maxj∈J p̃j

Case 1: If (k − 1)
∑

j∈G1 p̃j >
∑k

l=2

∑
j∈Gl p̃j.

k∑
l=2

∑
j∈Gl

p̃j ≥ (k − 1)

(∑
j∈G1

p̃j −maxj∈J p̃j
)

As the actual processing time of the tasks can vary within a factor α and 1
α

of their

estimated processing time, the following inequality holds

α
k∑
l=2

∑
j∈Gl

pj ≥ (k − 1)

(
1

α

∑
j∈G1

pj − αmaxj∈Jpj
)

k∑
l=2

∑
j∈Gl

pj ≥ (k − 1)

(
1

α2

∑
j∈G1

pj −maxj∈Jpj
)

(8)

Phase 2 applies List Scheduling in the online mode. We assumed that Cmax comes
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from G1. Using the guarantees of List Scheduling we can write,

Cmax ≤
∑

j∈G1 pj

m/k
+
m/k − 1

m/k
pmax (9)

where pmax is actual processing time of longest task in G1.

From Equation 8 and 7, we derive

C∗max ≥
∑

j∈G1 pj + (k − 1)
(

1
α2

∑
j∈G1 pj −maxj∈Jpj

)
m

α2(mC∗max + (k − 1)maxj∈Jpj) ≥ (α2 + k − 1)
∑
j∈G1

pj

α2

α2 + k − 1
(mC∗max + (k − 1)maxj∈Jpj) ≥

∑
j∈G1

pj (10)

Using 9 and 10, We have

Cmax ≤
kα2

α2 + k − 1

(
C∗max +

k − 1

m
maxj∈Jpj

)
+
m/k − 1

m/k
pmax

As C∗max ≥ maxj∈Jpj ≥ pmax, we have

Cmax ≤
kα2

α2 + k − 1

(
C∗max +

k − 1

m
C∗max

)
+
m− k
m

C∗max

So, in Case 1 the algorithm has a competitive ratio of,

Cmax
C∗max

≤ kα2

α2 + k − 1

(
1 +

k − 1

m

)
+
m− k
m
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Case 2: If (k − 1)
∑

j∈G1 p̃j ≤
∑k

l=2

∑
j∈Gl p̃j.

Since the processing times of the tasks can vary within a factor α and 1
α

of their

estimated values, the expression for case 2 can be written as

k∑
l=2

∑
j∈Gl

pj ≥
1

α2
(k − 1)

∑
j∈G1

pj

Putting this value in Equation 7, we have

C∗max ≥
α2 + k − 1

mα2

∑
j∈G1

pj (11)

Using Equations 9 and 11, and as C∗max ≥ pmax, we have

Cmax ≤
kα2

α2 + k − 1
C∗max +

m− k
m

C∗max

So, in case 2 the algorithm has a competitive ratio of kα2

α2+k−1 + m−k
m

.

Clearly, the algorithm has a worst competitive ratio in case 1. So, the algorithm

has a competitive approximation ratio of Cmax
C∗
max
≤ kα2

α2+k−1

(
1 + k−1

m

)
+ m−k

m
. �

LS-Group uses List Scheduling in both its phases. A LPT-based algorithm may

have better guarantee. But without performing any replication, i.e. when k = m, the

LS-Group algorithm has a competitive ratio almost equal to LPT-No choice’s when

the number of machines m is large and the value of α is within practical range. This

indicates an LPT-based algorithm for strategy 3 would likely not have a much more

interesting guarantee.
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4.4 Summary

Table 1 summarizes the results of this chapter in term of approximation theory.

Based on adversary technique, Theorem 5 states that there is no algorithm which

can give performance better than α2m
α2+m−1 for the model where no replication is al-

lowed. LPT-No Choice is a 2α2m
2α2+m−1 -approximation that uses that strategy. For the

second strategy that replicates the data of all tasks everywhere ( |Mj| = |M |), LPT-

No Restriction achieves a competitive ratio of 1 + (m−1
m

)α
2

2
. The third strategy uses

replication within k groups of size m/k (i.e., |Mj| = m/k). Using this strategy, the

LS-Group algorithm has a competitive ratio of kα2

α2+k−1

(
1 + k−1

m

)
+ m−k

m
.

Table 1: Summary of the contribution of this chapter. Three proposed algorithms
have guaranteed performance. One lower bound on approximability has been estab-
lished.

Replication Approximation ratio

|Mj| = 1 Cmax
C∗
max
≤ 2α2m

2α2+m−1 (Th. 6)

No approximation better than α2m
α2+m−1 (Th. 5)

|Mj| = m Cmax
C∗
max
≤ 1 + (m−1

m
)α

2

2
(Th. 8)

Cmax
C∗
max
≤ 2− 1

m
[11]

|Mj| = m
k

Cmax
C∗
max
≤ kα2

α2+k−1

(
1 + k−1

m

)
+ m−k

m
(Th. 9)

Of course, there is an inherent tradeoff between replicating data and obtaining

good values for the makespan. To better understand the tradeoff we show in Figure 3

how the expressions of the guarantees (or impossibility)translate to actual values in

a approximation ratio / replication space. We picked 3 values of α while keeping the

number of machines fixed m = 210.

When α = 1.1, even with multiple groups LS-Group provides little improvement
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over LPT-No Choice. However there is a significant gap between the guarantee of

LPT-No Choice and the lower bound on possible approximation. When α is small,

there is a significant improvement in using LPT-No Restriction over using simply

LS-Group with only 1 group.

When α increases to 1.5, there is no more differences in the guarantees of LS-Group

with 1 group and LPT-No Restriction. Also LS-Group provides many intermediate

solution between deploying the data on a single machine and deploying them every-

where.

When α = 2, the range of the approximation ratios increase and the value of the

lower bound increases. Now LS-Group is able to get a better approximation using

less than 50 replications than is possible by deploying data on a single machine. Also,

the approximation ratio quickly improves from more than 7.5 with the data being

replicated on 1 machine to a ratio of less than 6 with only replicating the data on 3

machines.

Overall, when α is large, only few replication improve the performance significantly.
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(c) m = 210, α = 2

Figure 3: Ratio-Replication graph with m = 210 and α ∈ {1.1, 1.5, 2}.



CHAPTER 5: MEMORY AWARE REPLICATION UNDER UNCERTAINTY

Replication improves performance but incurs a cost in terms of memory consump-

tion. Replication allows to obtain a better load balancing by reducing the effect of

uncertainties in processing times of tasks. But each replica occupies memory, and

increases the memory consumption. So, replicating all the tasks is not possible in

real scenarios. This justify the need for an efficient replication strategy which allows

an algorithm to choose which tasks are to be replicated and where. In this chap-

ter we investigate the bi-objective problem of minimizing the makespan as well as

the memory consumption. A memory-aware replication strategy improves execution

times with little increase in memory consumption.

5.1 Preliminaries

The problem is to schedule a set J of n tasks on m machines such that both

makespan Cmax as well as memory usage Mmax is optimized. Let π1 be the schedule

which minimizes makespan and π2 be the memory-aware schedule. C̃π1
max and C̃∗max

are makespan and optimal makespan when all the tasks are scheduled according to

π1. Similarly, Mπ2
max is memory consumption of the most occupied machine and M∗

max

is its optimal value. The strategy is to divide tasks into two sets S1 and S2 such that

set S1 contains the processing time intensive tasks and set S2 contains the memory

intensive tasks, and schedule them differently and in such a way that it optimizes
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both the objectives.

We propose two algorithms SABO4 (stands for static asymmetric bi-objective) and

ABO4 (stands for asymmetric bi-objective), which are based on SBO4 algorithm.

SBO4 [22] is bi-objective algorithm for minimizing makespan and memory usage for

independent tasks by combining results of two symmetric schedules each dedicated

to a single objective.

5.2 The SABO4 Algorithm

We propose SABO4 Algorithm which is static in nature and restrict each task

to be scheduled to only one machine. Similar to SBO4 this algorithm assigns tasks

to all the machines in phase 1 such that it minimizes both the objectives. As each

task is restricted to only one machine, there is no task replication. Based on similar

condition as in SBO4, a processing-time intensive task is assigned to π1 schedule and

a memory intensive task is assigned to π2

In phase 2, the algorithm loads the tasks to the machines they were assigned in

phase 1.

C̃max Cmax
TimeTime

M
a
ch
in
e

M
a
ch
in
e

Phase 1 Phase 2

Figure 4: An example of two phases of the schedule generated by the SABO4. The
uncolored parts represent tasks scheduled according π2. The colored parts represents
tasks scheduled according π1
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Algorithm 1 SABO4

Input: m machines
Set J of n tasks
Let π1 be a ρ1-approximated schedule on makespan C̃max
Let π2 be a ρ2- approximated schedule on memory Mmax

Phase 1: [Uses SBO4]
for all j ∈ J do

if
p̃j

C̃
π1
max
≤ 4 sj

M
π2
max

then

Assign j to a machine according to π2 schedule
Add j to S2

else
Assign j to a machine according to π1 schedule
Add j to S1

end if
end for
End of Phase 1

Phase 2:
Schedule tasks to machines to which they were assigned during phase 1

End of Phase 2

• Theorem 10. The SABO4 Algorithm generates a (1+4)α2ρ1 - approximated sched-

ule on makespan.

Proof: Let k be the machine reaching the makespan Cmax of the schedule. Cmax

can be written as the sum of processing times of tasks in set S1 and S2 scheduled on

machine k.

Cmax =
∑

j∈S1∩Ek

pj +
∑

j∈S2∩Ek

pj

Since,
∑

j∈S2∩Ek
pj ≤ α

∑
j∈S2∩Ek

p̃j

Cmax ≤
∑

j∈S1∩Ek

pj + α
∑

j∈S2∩Ek

p̃j

Let Cπ1
max denotes the makespan obtained after phase 2 when tasks are loaded and

actual processing time of a task is known to scheduler. Since Cπ1
max ≥

∑
j∈S1∩Ek

pj and



32∑
j∈S2∩Ek

4C̃π1
max

sj
M
π2
max
≥ ∑

j∈S2∩Ek
p̃j by definition of S2, we have

Cmax ≤ Cπ1
max + α

∑
j∈S2∩Ek

4C̃π1
max

sj
Mπ2

max

Since, Cπ1
max ≤ αC̃π1

max and
∑

j∈S2∩Ek

sj
M
π2
max
≤ 1, we have

Cmax ≤ (1 +4)αC̃π1
max

Since C̃π1
max ≤ ρ1C̃

∗
max ≤ αρ1C

∗
max the algorithm has an approximation ratio of

(1 +4)α2ρ1 on makespan. �

• Theorem 11. The SABO4 Algorithm generates (1 + 1
4)ρ2- approximated schedule

on memory

Proof: The proof is identical to SBO4 algorithm and is presented in chapter 3. �

5.3 The ABO4 Algorithm

We propose a two phase algorithm. In phase 1 the algorithm assigns tasks to all the

machines such that it minimizes both the makespan as well as memory consumption.

The tasks having more memory value in comparison to its processing time are sched-

uled using memory intensive schedule which aim at minimizing memory. Similarly

tasks which incur more processing time cost compared to memory cost are assigned

to machines according to the makespan intensive schedule. These tasks are repli-

cated to all machines in order to provide better load balancing and hence minimized

makespan. The algorithm in its phase 1 assigns all the memory intensive tasks to

machines first, then chooses tasks having more processing time values compared to

memory they consume.
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In phase 2, the algorithm loads the memory intensive tasks to the machines they

were assigned in phase 1 respecting the tasks assignment during phase 1. The al-

gorithm schedule the time intensive tasks (replicated tasks) using Graham’s List

Scheduling after all the memory intensive tasks are scheduled. Figure 5 shows a

schedule instance using the algorithm.

Cmax Time

M
a
ch
in
e

Figure 5: An example of the schedule generated by the ABO4 algorithm. The
uncolored parts represent the memory intensive tasks scheduled according π2. The
colored parts represent the processing time intensive tasks and scheduled using LS
after replicated

• Theorem 12. The ABO4 Algorithm generates a (2 − 1
m

+4α2ρ1)- approximated

schedule on makespan.

Proof: Let k be the machine reaching the makespan Cmax of the schedule. Cmax can

be written as the sum of the processing times of tasks in sets S1 and S2 scheduled on

machine k.

Cmax =
∑

j∈S1∩Ek

pj +
∑

j∈S2∩Ek

pj



34

Algorithm 2 ABO4

Input: m machines
Set J of n tasks
Let π1 be a ρ1-approximated schedule on makespan C̃max
Let π2 be a ρ2- approximated schedule on memory Mmax

Phase 1:
for all j ∈ J do

if
p̃j

C̃
π1
max
≤ 4 sj

M
π2
max

then

Assign j to a machine according to π2 schedule
Add task j to set S2

end if
end for
for all j ∈ J do

if
p̃j

C̃
π1
max
≥ 4 sj

M
π2
max

then

Add j to set S1

Replicate j everywhere
end if

end for
End of Phase 1

Phase 2:
Schedule tasks from set S2 respecting job assignment during phase 1
Schedule all replicated tasks from set S1 using Graham’s LS Algorithm

End of Phase 2
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Since,
∑

j∈S2∩Ek
pj ≤ α

∑
j∈S2∩Ek

p̃j

Cmax ≤
∑

j∈S1∩Ek

pj + α
∑

j∈S2∩Ek

p̃j

Let CR
max denotes makespan obtained by scheduling the replicated tasks using LS.

Since CR
max ≥

∑
j∈S1∩Ek

pj and
∑

j∈S2∩Ek
4C̃π1

max
sj

M
π2
max
≥ ∑

j∈S2∩Ek
p̃j by definition of S2, we

have

Cmax ≤ CR
max + α

∑
j∈S2∩Ek

4C̃π1
max

sj
Mπ2

max

Using the property of LS, the approximation ratio of the schedule incorporating only

replicated tasks is 2− 1
m

. So, CR
max ≤ (2− 1

m
)C∗max. Also,

∑
j∈S2∩Ek

sj
M
π2
max
≤ 1.

Cmax ≤ (2− 1

m
)C∗max + α4C̃π1

max

Also, C̃π1
max ≤ ρ1C̃

∗
max. Since C̃∗max is the optimal makespan obtained after phase 1

considering estimated processing times of the tasks, we have, C̃∗max ≤ αC∗max. So,

C̃π1
max ≤ αρ1C

∗
max. Using this, we have

Cmax ≤ (2− 1

m
)C∗max + α24ρ1C∗max

Hence, we proved that the algorithm generates a (2 − 1
m

+ 4α2ρ1)- approximated

schedule on makespan. �

• Theorem 13. The ABO4 Algorithm generates a (1 + m
4)ρ2- approximated schedule

on memory.

Proof: When a task is replicated all its replica occupies space in memory and increase

memory consumption. For m replicas the total memory consumption is m times of
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the replicated tasks. Similar to proof of previous theorem, the highest maximum

memory occupied by any machine k can be written as

Mmax =
∑

j∈S1∩Ek

sj +
∑

j∈S2∩Ek

sj

As each task in set S1 is replicated over all the machines,
∑

j∈S1∩Ek
sj =

∑
j∈S1

sj.

Mmax =
∑
j∈S1

sj +
∑

j∈S2∩Ek

sj

∑
j∈S2∩Ek

sj at most be equal to Mπ2
max and

∑
j∈S1

sj is bounded by
∑
j∈J

Mπ2
max

p̃j
4C̃π1max

as per

condition for π1 scheduling, using this we have

Mmax ≤
∑
j∈J

Mπ2
max

p̃j

4C̃π1
max

+Mπ2
max

Since
∑
j∈J

p̃j ≤ mC̃π1
max, we have

Mmax ≤
m

4M
π2
max +Mπ2

max

Also, Mπ2
max ≤ ρ2M

∗
max. Hence, The Algorithm generate (1 + m

4)ρ2- approximated

schedule on memory. �

5.4 Summary

Table 2 summarizes the results for SABO4 and ABO4 algorithms. SABO4 is

similar to SBO4 algorithm in its first phase and has a approximation ratio of [(1 +

4)α2ρ1, (1+ 1
4)ρ2] on makespan and memory. ABO4 is a [(2− 1

m
+4α2ρ1), (1+m

4)ρ2]-

approximated algorithm on makespan and memory and replicate processing time in-

tensive tasks to improve makespan.
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Table 2: Summary of the results of the algorithm SABO4 and the algorithm ABO4.

Algorithm Approx. on makespan Approx. on memory
SABO4 (1 +4)α2ρ1 (Th. 10) (1 + 1

4)ρ2 (Th. 11)

ABO4 (2− 1
m

+4α2ρ1) (Th. 12) (1 + m
4)ρ2 (Th. 13)

To better understand the tradeoff between memory consumption and makespan

Figure 6 shows memory-makespan guarantees for the two algorithms. The bold lines

shows impossibilities in the tradeoff between makespan and memory and means that

no algorithm can guarantee better tradeoff than this. [22] discusses about these

impossibilities in context of SBO4 algorithm.

The graph shows that for higher values for α the algorithm ABO4 have better

tradeoff between memory-makespan than that of SABO4. For αρ1 ≥ 2, ABO4

always have better guarantee on makespan than SABO4. So, a schedule more centric

to optimize makespan should followABO4 algorithm. And a memory centric schedule

should follow SABO4 as the algorithm always has better guarantee on memory.

As a system designer, one always want to pick the algorithm and parameters that is

best tradeoff between makespan and memory consumption. Depending on the guar-

antee, one should either pick ABO4 or SABO4 for scheduling tasks. For instance,

if you want to guarantee a makespan less than 3 as in the case depicted in Figure 6b,

you should use ABO4. However if you want a better guarantee on memory, you

should always use SABO4 for task scheduling.
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(c) m = 5, α2 = 3, ρ1 = ρ2 = 4/3

Figure 6: Memory-Makespan graph for SABO4 and ABO4. The bold lines represent
impossibilities in tradeoff between guarantees.



CHAPTER 6: CONCLUSION AND FUTURE WORK

This thesis studies the effect on uncertainty in the processing time of tasks on

scheduling for parallel and distributed machines. In particular, it investigates how

allowing tasks to execute on different machines can help dealing with not knowing

the processing time of tasks accurately. The thesis proposes three replication strate-

gies, provides approximation algorithm in each case and a lower bound on the best

achievable approximation in one of the case. Further to limit memory consumption

the thesis presents two memory-aware bi-objective algorithms, one of which chooses

only critical tasks to replicate and limits memory consumption.

The various strategies allow to trade the number of replication for a better guar-

antee. The results of these strategies show that a better guarantee can be achieved

with fewer replication than that can be achieved by putting the data of a task on

only one machine and even a small amount of replications can improve the guaran-

tee significantly. These observations concludes that deploying the data on multiple

machines can be an effective way of dealing with processing time uncertainties.

The bi-objective algorithms proposed in this thesis, schedule the memory intensive

tasks and the processing time intensive tasks differently and optimizes both the ob-

jectives. One of the algorithms, chooses processing time intensive tasks to replicate

and achieves better guarantee for higher values of α.

There are some open problems which can be explored further. Better lower bounds
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might help understanding the problem better: clearly when α is low, the problem

is no different than the offline problem,and when it is large, the problem converges

to the non-clairvoyant online problem. Having a clearer idea of where the boundary

is will certainly prove useful in understanding how much can be gained using data

replication. Also, while replicating data using groups of processor proved effective,

more general replication policies can certainly lead to better guarantees.
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