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Abstract

Background: Rabies is a significant public health problem in China. Previous spatial epidemiological studies have helped
understand the epidemiology of animal and human rabies in China. However, quantification of effects derived
from relevant factors was insufficient and complex spatial interactions were not well articulated, which may lead
to non-negligible bias. In this study, we aimed to quantify the role of socio-economic and climate factors in the
spatial distribution of human rabies to support decision making pertaining to rabies control in China.

Methods: We conducted a multivariate analysis of human rabies in China with explicit consideration for spatial
heterogeneity and spatial dependence effects. The panel of 20,368 cases reported between 2005 and 2013 and
their socio-economic and climate factors was implemented in regression models. Several significant covariates
were extracted, including the longitude, the average temperature, the distance to county center, the distance to
the road network and the distance to the nearest rabies case. The GMM was adopted to provide unbiased
estimation with respect to heterogeneity and spatial autocorrelation.

Results: The analysis explained the inferred relationships between the counts of cases aggregated to 271 spatially-
defined cells and the explanatory variables. The results suggested that temperature, longitude, the distance to county
centers and the distance to the road network are positively associated with the local incidence of human rabies while
the distance to newly occurred rabies cases has a negative correlation. With heterogeneity and spatial autocorrelation
taken into consideration, the estimation of regression models performed better.

Conclusions: It was found that climatic and socioeconomic factors have significant influence on the spread of
human rabies in China as they continuously affect the living environments of humans and animals, which
critically impacts on how timely local citizens can gain access to post-exposure prophylactic services. Moreover, through
comparisons between traditional regression models and the aggregation model that allows for heterogeneity and spatial
effects, we demonstrated the validity and advantage of the aggregation model. It outperformed the existing models and
decreased the estimation bias brought by omission of the spatial heterogeneity and spatial dependence effects. Statistical
results are readily translated into public health policy takeaways.
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Background
Rabies is a widely distributed zoonotic infectious disease.
The latest estimates indicate that a total of 55,000 hu-
man fatalities occur each year worldwide as a result of
rabies infection [1–3]. After India, China is the country
with the second highest annual incidence of human ra-
bies cases, where humans contract the infection from
rabid animals. The rabies virus mainly spreads from ani-
mal to animal or animal to human through bites and
scratches [4]. Among reservoirs animals, dogs play a piv-
otal role as a transmitter of rabies to humans in China
[5] and it is estimated that more than four fifths of all
human rabies infections in China are due to dogs [4].
Although the number of cases has decreased over the
past decade, the epidemic situation remains serious and
numerous cases have been reported in recent years: 924
cases in 2014 and 801 cases in 2015 [3, 6]. Unsuccessful
control of rabid animals and inadequate post-exposure
prophylaxis (PEP) of patients are thought to be the main
factors leading to the high incidence of human rabies in
China [7, 8].
Multiple studies have dug into the epidemiology and

transmission dynamics of rabies to humans in China
across various temporal and geographic scales [4, 7–14].
Phylogenetic analysis of Chinese rabies viruses from
1969 to 2009 illustrated that due to human-related activ-
ities infection transmission had been intra-provincial
and extra-provincial [9]. Time-series analysis of human
rabies has shown seasonal trends: the number of cases
in summer and autumn is higher than in spring and
winter [4, 12, 15]. In the only spatial epidemiological
study of rabies in dogs, it can be seen that the spatial
and temporal distribution of cases is not even across the
country [16]. Cases of rabies infection in areas where
there was no prior history of infection are reported
yearly [16]. Investigation of spatial patterns of rabies in
animals such as raccoons and skunks have shown obvi-
ous variations because of the diversity in geographic, cli-
matic and environmental attributes: distance from major
roads, presence of river, lake and land cover including
deciduous forest, average temperature and nearness to
enzootic zones have all been found to be covariates [17–
19]. More recently, surveillance data have been exploited
in spatial models to forecast the emergence of rabies in
raccoons [20, 21]. However, the impact of risk factors on
observed spatial distributions has so far not been studied
quantitatively.
The quantification of risk factors associated with the

occurrence of human rabies is critical for the epidemio-
logic analysis of rabies, as this knowledge crucially sup-
ports decision making for controlling and ultimately
preventing the disease. A significant goal of the analysis
is to predict the incidence of rabies or possibilities of ra-
bies cases for specific regions. In order to predict

feasibly and reliably, quantification of the risk factors is
vital. A number of international studies have investigated
the contribution of risk factors in the spatial distribution
of rabies in humans [20, 22–24]. Some studies have
looked for a correlation between rabies exposure risk
and socioeconomic status using measurements derived
from the records of patient PEP [25, 26]. However, these
studies did not consider the spatio-temporal variation in
environmental factors. The heterogeneity of local regions
was also neglected. In addition, variations derived from
spatially lagged geographical variables was inadequately
accounted for in these models. Similarly designed stud-
ies have also been conducted for other infectious dis-
eases [27–29].
In China, the spatial analysis of human rabies has shown

that, while the overall number of rabies cases in humans
decreased from 2007 to 2011, the scope of infection is still
expanding [4]. It has been reported by numerous studies
that the transmission of rabies was not restricted by admin-
istrative boundaries and the history of occurrence of the
disease, but was impacted by surrounding environments,
economic conditions and human habits, which all exhibit
spatial heterogeneity [7, 30]. However, it remains unclear
what the socioeconomic and environmental cause of hu-
man rabies are.
It is necessary to analyze rabies risk at the case level in

order to accurately identify the influence of the geographic
environment and of socioeconomic determinants on ra-
bies distribution. The spatial pattern of human rabies has
strong relations with the distribution and movement of
animals like untied dogs and roaming dogs [24]. In this
paper, we analyze the space-time distribution of rabies
among humans, and conduct a large-scale study based on
cases of human rabies.
Besides the possibilities of risk factors mentioned

above, spatial heterogeneity and spatial dependence are
also important issues to account for. Spatial heterogen-
eity refers to the variability of environmental and social
factors across a study region, while spatial dependence
refers to attributes of a spatial entity or region being cor-
related to attributes of another nearby entity, and vice
versa. Few studies of human rabies have so far explicitly
considered these effects. Heterogeneity is present and
considerable, especially for a large country comprised of
numerous regions that may exhibit totally different natural
environments and socioeconomic complexions from one
another. Heterogeneity is the result of the complicated
aggregation of local factors, which may not be noted accur-
ately or completely recognized, and thus may be overlooked
in the inferential analysis. In addition, when the spatial ar-
rangement of regions is not neutral and when their neigh-
borhood relations interfere with epidemiologic processes,
an effective analysis has to consider the spatial autocorrel-
ation in the process under study, which reveals the
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interactions and interdependencies between events
and attributes based on their geographic proximity. A
biased estimation of effects of risk factors can result
from the omission of neighborhood-based spatial de-
pendence effects.
In this study, we aim to quantify the role of socioeco-

nomic and environmental factors of human rabies risk
in China. To this end, various regression models are
used to capture the relations between normalized annual
counts of rabies cases and relevant explanatory variables,
which are extracted from the quantitative measurement of
risk factors. To account for spatial heterogeneity and spatial
dependence, panel data that encompass cross-sectional in-
formation and longitudinal variation are needed for the re-
gression estimation. A spatially autoregressive error process
is integrated to handle the spatial dependence effects [31].
Spatial heterogeneity can be handled through the specifica-
tion of the error component. Then, seemingly unrelated re-
gression (SUR) estimators are used for the computation of
effects on the panel data. The estimation of effects from
risk factors is expected to contribute to the design of better
interventions in the context of public health decision mak-
ing, which is aimed at reducing cases of rabies.
In Section “Methods”, the theoretical model and econo-

metric specifications are introduced. Section “Modeling
Results” describes the data for the regression and relevant
processing. Estimation results of different regression
models are represented in Section “Discussion”. Section
“Conclusions” provides more detailed discussions of the
estimation results in relation to the epidemiology of rabies
infection. The last section summarizes the analysis and
presents our conclusions.

Methods
Our analysis aims to build a model that provides explan-
ation of the count of rabies cases and quantifies the re-
spective effects of explanatory variables. The count of
cases is used to present the degree of the incidence in
geographically referenced territories across time. The
model is built on panel data, which can output views
through the spatial dimension and the temporal dimen-
sion. As mentioned above, we incorporate spatial hetero-
geneity and spatial dependence effects into the model.
Before designing an appropriate model, the presence of
spatial autocorrelation in the distribution of rabies cases
is validated through Moran’s I statistic. When the spatial
autocorrelation is determined to be significant, we start
with a reduced form of rabies regression and proceed to
extend the model with the heterogeneity and spatial cor-
relations taken into consideration. Moreover, the inci-
dence may be influenced by unobserved variables and
random factors. Therefore, a random effects model is
adopted in the following analysis.

Moran’s I statistic
In order to test for the presence of spatial autocorrel-
ation, Moran’s I statistic [32] is implemented. Moran’s I
is widely applied in evaluating spatial autocorrelation in
univariate areal data series. The index is defined as:

Moran0s I ¼
Pn

i¼1

Pn
j¼1Wij yi−yð Þ y j−y

� �

S2
Pn

i¼1

Pn
j¼1Wij

S2 ¼
Pn

i¼1 yi−yð Þ2
n

; y ¼
Pn

i¼1yi
n

where yi denotes the recorded number of rabies cases in
area i, n is the number of areas, and W is the so-called
spatial weights matrix, whose element Wij records the
spatial relation between area i and area j. When the spatial
relations are described by a binary matrix, the element Wij

is set to one whenever area i is a neighbor of area j, and
zero otherwise. If the I statistic is greater than 0, the spatial
relationship exhibits positive correlation; correlation is
negative when I is negative. The larger the I statistic, the
higher the correlation is; in other words, a region close to
regions of observed rabies cases is more likely to experience
rabies outbreaks, and vice versa.

Model specifications
When dealing with panel data collected over a large ter-
ritory, the variance among different sub-regions cannot
be ignored. Regions far away from each other can have
drastically different socioeconomic or physical environ-
ments and consequently fall into different patterns. The
effects originating from different patterns can hardly be
fully narrated only by explanatory variables. Additionally,
components of the effects may derive from some un-
known or incidental factors so that the effects turn to be
arbitrary. To incorporate spatial heterogeneity and con-
trol its unobserved shifting effects, the equation is
enhanced with variable intercepts:

Rit ¼ βTXit þ αi þ ηi; ηi � N 0; σ i2
� �

where Rit is the normalization numbers of rabies cases
for area i at time t; Xit is the vector of predictors; αi de-
notes a corresponding intercept for area i, which implies
a specific level of disease incidence for this area, and
thus reflects the spatial heterogeneity of rabies’s impact
factors. ηi represents the factors specific to region i
that are not taken into account by the observed and
intrinsic independent variables of rabies’ onset; ηi is a
Gaussian random variable with zero mean and con-
trolled by variance σi

2.
Spatial dependence is handled explicitly in our ana-

lysis. Spatial autocorrelation measures the dependence
between geographic objects, which is often depicted as a
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spatial dependence or spillover effect. Positive autocor-
relation indicates that variable values similarity appears
in the neighborhood, whereas negative autocorrelation
involves considerable discrepancy in values assumed by
nearby areas. Positive correlation among disease inci-
dences in adjacent areas can be anticipated. Indeed, adja-
cent areas often share environmental conditions. With
similar natural factors such as humidity, temperature,
and slope, the rabies virus and animal vectors tend to
have analogous survival and diffusion capacities. As a
compounding consideration, similar socioeconomic fac-
tors such as traffic conditions, household incomes, edu-
cational attainments, and public health policies bring
out similar post-exposure handling situations, while the
proximity of areas also translates into more regular and
intensive communication, such as the periodic move-
ment of the animals that carry the virus.
To measure these neighborhood-based effects, we as-

sume that the count of cases follows a spatial autore-
gressive process. Both substantive and error spatial
dependences are concerned [33]. A Spatial Lag Model
(SLM) is suitable for spatial substantive dependence,-
which is the interaction between the dependent variable
and explanatory variables in their geographic vicinity
through spillover across region boundaries. A Spatial
Error Model (SEM) is suitable to handle spatial error
dependence, which is also known as the spatial autocor-
relation model; this model can simulate the spatial dis-
semination of random effects from factors that are not
covered by the set of explanatory variables.
Then we attempt to treat both spatial effects simultan-

eous in a unified model. Therefore, a model that con-
siders spatial dependence both in substantive attributes
and in errors is a combination of SLM and SEM. This
model consists of a complete SLM model supplemented
by a component of simulated spatial random effect from
the SEM model, as follows [34]:

R ¼ βTX þ IT⨂αþ IT⨂ρlWN
� �

Rþ u

with βTX + IT⨂ α + η + (IT⨂ ρlWN) as the expression of
the SLM. The SLM, also known as the spatial autore-
gressive model, is employed to represent a system com-
prised of N areas and T time periods. In this model, ⨂
denotes the Kronecker product; R is an NT × 1 space-
time panel matrix of stored and normalized rabies cases;
X is a NT × k matrix of explanatory variables; IT is a time
matrix that reflects the changes in the level of rabies
outbreak over time; α is a N × 1 vector of intercepts
identifying the unobserved regression factors of rabies at
various periods, whose value is not related to spatial re-
lationships. Also, ρl is the scalar parameter for the auto-
regressive process and WN is a N ×N spatial weights
matrix. In our work, a binary matrix is used and each

element [WN]ij = 1 signifies that regions i and j are adja-
cent; otherwise, it is 0. The diagonal elements of WN are
set to zero, and the scalar ρl is limited to |ρl| < 1; hence
IN − ρlWN is nonsingular.
In our model, u is associated with the SEM model and

simulates the spatial random spillover effect. This model
component cannot be expressed as a function of the ex-
planatory variables. It is given by:

u ¼ IT⨂ρeWN
� �

uþ v

where u is a NT × 1 space-time panel matrix of error
terms that follow a spatial autoregressive process; ρe is
the scalar parameter for this autocorrelation process and
|ρe| < 1; IN − ρeWN is also nonsingular. The disturbance
term v is expressed as follows:

v ¼ eT⨂INð ÞμN þ ϑN

where eT is aT × 1 vector of ones. It encompasses two error
terms. μN is a N × 1 vector of unit specific error compo-
nents, while ϑN is a TN × 1 vector that contains error com-
ponents that vary over areas and time periods. μN and ϑN
are random vectors with zero means and their covariance
matrices are EðμNμNT Þ ¼ σμN

2IN and EðϑNϑNT Þ ¼ σϑN
2

ITN . Adopting the assumptions proposed by Kapoor et al.
[31], the elements of μN are identically distributed and so
are the elements of ϑN.

Estimation approach
We resort to several possible estimators to provide com-
parisons between classical regression models and models
that allow for spatial heterogeneity and spatial depend-
ence effects.
The estimation starts with a baseline OLS estimator

derived from pooled OLS equations and ignoring spatial
heterogeneity and spatial autocorrelation. The OLS
model concentrates on measuring the associations be-
tween the dependent variable and explanatory variables.
Second, a random effects-generalized least squares

(RE-GLS) estimator is used to represent the gains
brought out by spatial heterogeneity. The RE-GLS esti-
mator does not consider spatial dependence.
In order to identify gains derived from spatial effects, a

SLM estimator and a SEM estimator must be exploited.
Given the presence of spatial autocorrelation, the least-
squares estimator is biased and the General Method of
Moments (GMM) is employed as an estimation tool to
obtain consistent estimates for unknown parameters.
The estimators for SLM and SEM here do not consider
spatial heterogeneity.
Finally, with heterogeneity and spatial effects both

allowed for, an estimator for the aggregation model is
built using GMM. The estimator is defined on the basis
of the BP-FGLS system estimator proposed by Baltagi
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and Pirotte [35]. The estimated parameters are obtained

through an iteration of two steps. In the first step, ~β and
~α , which denote parameters corresponding to explana-
tory variables and intercepts, respectively, are calculated
using a feasible general least-squares (FGLS) method.
An OLS estimator can supply the initial parameters. In

the second step, with ~β and ~α fixed, ~ρl and ~ρe can be esti-
mated by GM estimators proposed by Kapoor. Several
different moments are adopted to output unbiased esti-
mators for the scalars. Furthermore, residuals can be cal-
culated with the parameters fixed, and then the variance
matrices are estimated using the residuals. The esti-
mated variance matrices are used in the FGLS estima-
tion in the first step in the next iteration. When the
estimator converges, we can get an approximate result
for the required parameters.

Comparison of model performances
To estimate the goodness of fit (GOF) of models, the
sum of squared residuals and the standard error of re-
gression are used as indicators of model performance.
Generally, GOF of regression models can be measured
by classical statistics like R-squared or F-statistic. How-
ever, the classical statistics are not suitable for GMM es-
timators. In order to verify the validity of models using
GMM, J-statistic and corresponding probabilities are
adopted. To provide a general measurement, the sum of
squared residuals and the standard error serve as the ref-
erence. Furthermore, scatterplots of observations against
predictions and residual graphs are illustrated to de-
scribe the regression results.

Data presentation
Human rabies data
The data on human rabies cases used in this study are
from the National Notifiable Disease Reporting System
(NDRS), the national information system of infectious
disease mandatory notification of mainland China. Hu-
man rabies is classified as a B notifiable disease by the
Law of the People’s Republic of China on Prevention
and Treatment of Infectious Diseases. All related infor-
mation is provided by NDRS.
The data set contains 20,368 reported cases of human

rabies, spanning from 2005 to 2013. The cases pertain to
humans infected by dogs, cats, rats, bats and other
transmitters. Among them, dogs are believed to be the
most important transmitter and cause over 80 % of cases
of human rabies in China. Although the detailed propor-
tion of all transmitters of human rabies cases was not
available for this study because of the insufficiency of
the information (demographic and clinical data) for part
of the cases, we can acquire information on the virus trans-
mitters through analyses of a sample of all cases. Analysis

of human rabies cases in Guangdong province in 2003 and
2004 suggested that 85.7% of all cases were infected by
dogs, followed by cats (3.7%) and rats (2.5%) [36].
Each suspected human case would be mandatorily re-

ported to public health authorities. All reported cases
with geocodes (i.e. longitude and latitude of the house-
hold home address) were included in our study. Four
suspicious cases (found in 2005, 2008, 2011 and 2011,
respectively) in Xinjiang Province were dropped from
our analysis. The China Centers for Disease Control
(CDC) ethical committee approved our research on
these data and the data were anonymized.
Figure 1 [40] displays the numbers of rabies notifica-

tion cases from 2005 to 2013. A downward trend of the
count of cases, which first manifested itself in 2008, is
depicted in the figure. However, the annual number of
cases has remained high and the corresponding burden
cannot be simply ignored. Therefore, it is fitting to seek
to identify the factors that led to the downward trend of
rabies cases in China during this nine-year timespan.
Figure 2 represents the spatial distribution of human ra-
bies cases in China. According to these maps, cases are
more frequent in the eastern and southern parts of
China, with a spatial pattern that has shifted over time.
For statistical analysis, each case was assigned to

an administrative village, which served as the pri-
mary sampling unit. The number of administrative
villages in China is so large that the result of this
assignment turned out to be extremely sparse.
Therefore, the primary unit for the regression ana-
lysis was set to be a cell instead of an administrative
village. The cells were obtained through spatial clus-
tering: villages that are adjacent or have direct geo-
graphical connections with each other and share the
same or similar environmental conditions, were ag-
gregated. Each cell consisted of several villages. The

Fig. 1 The numbers of reported rabies cases from 2005 to 2013 [40]
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number of villages contained in a cell and the spatial
extent of a cell vary according to the size and condi-
tion of relevant administrative villages. Some rivers
and (mountain) watersheds are not only natural unit
boundaries but they are also the administrative
boundaries, so there is a greater possibility that our
cell boundaries overlap with the administrative
boundaries in these instances. Due to the variability
in the geographic characteristics of the statistical
units that are grouped into the same cell, aggrega-
tion errors may be generated. However, because the
aggregation was conducted so as to minimize infor-
mation loss, aggregation errors should be small and
rather uniform, thus mitigation impacts on the na-
tional scale analysis. Through this process, we ob-
tained 271 spatially defined cells for the subsequent
regression analysis.

Environmental and socioeconomic data
Explanatory variables were selected from a set of
features that denote the geographic, climatic and

socioeconomic conditions of a specific region. The en-
vironmental and geographic features included: the longi-
tude and the latitude, the average annual land surface
temperature (LST), the slope and the average elevation.
To get the average value for a specific year, an adaptive
Savitzky-Golay smoothing filter, implemented using the
TIMESAT package [37], was employed. The socioeco-
nomic features pertained to the human population dens-
ity, yearly gross domestic product (GDP), per capita
GDP, ratio of middle school graduates (RMS), and ratio
of illiteracy (ROI). Data on human population were ob-
tained from three national censuses (2000, 2005 and
2010) released by the National Statistics Bureau of
China. The values of population for intervening years
were estimated using a linear interpolation method. Fur-
thermore, a spatial trend analysis methodology [38] was
used to smooth data on several neighboring villages and
provide equivalent values for the corresponding cell.
Also, the set of covariates was extended with transpor-

tation and spatial accessibility features, which included
the Euclidean distances from a village to the road net-
work, to the nearest downtown of a county or a city, to
the nearest hospital, and to the nearest clinic. The smal-
lest offset to the road network was used to describe the
distance to the road network. Public health measures,
including various programs for the prevention and con-
trol of the disease, are in effect restricted by the local
traffic and accessibility conditions.
Finally, spatial epidemiology variables were incorpo-

rated. The epidemiologic features included the minimum
spatial distance to the nearest case, the minimum tem-
poral distance to the latest case, and the minimum
spatio-temporal distance to the nearest case. Epidemi-
ology variables may reveal correlations between infected
zones. Moreover, the distance from nearest or latest case
represented the degree of potential risk revealed by
existing cases. Explicit information on the full set of var-
iables is listed in Table 1.

Variable selection
Multiple backward stepwise regressions were carried
out to select meaningful explanatory variables. The
stepwise process was repeated 1000 times applying
different training subsets. The 20 regression models
with the best fit were picked, while the variables
yielding non-significant effects (mean P-value > 0.05)
were removed.
At the end of this process, the variables that were

retained included the longitude, the average temperature,
the distance to county center, the distance to road net-
work and the minimum spatial distance to the nearest
case. More detailed results are presented hereunder for
this specification.

Fig. 2 Maps of human rabies cases in China in 2005 (a) and 2013
(b). The map encompasses 23 provinces, 5 autonomous regions and
4 municipalities under the direct control of the central government
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Modeling results
Spatial autocorrelation
The Moran’s I computed on the normalized case
count for 2005 to 2013 is illustrated in Fig. 3 [40].
The global index is statistically significant and posi-
tive; it provides evidence of positive spatial autocor-
relation in rabies incidence in China. The graph also
depicts the longitudinal downward trend of Moran’s I,
which may be a consequence of the continuous drop
of rabies cases in China from 2008.

Estimation results
The input of the regression models is a balanced panel
that contains 271 cross-sections with 9 time periods.
Thus, 2439 samples are generated, each of which con-
sists of the normalized rabies incidence and explanatory
variables of an individual cell in a specific year. The esti-
mation results are reported in Table 2. AM stands for
the aggregation model that allows for both the hetero-
geneity effect and the spatial dependence effect. The re-
sults of the variable selection process show that the
variables can be accepted as significant predictors of the
normalized number of rabies cases. The J-statistic im-
plies that the SLM, the SEM, and the aggregation model
are all valid.
Table 2 provides reference for comparisons between

different regression models. As is shown in the table, the
use of variable intercepts improves the performance of
the model by a wide margin. On the other hand, the re-
sidual and standard error of regression obviously de-
crease once spatial autocorrelation is taken into account.
The SLM and the SEM provide better performance. The
results imply that both the spatial heterogeneity and
spatial dependence effects provide a meaningful contri-
bution to understanding rabies risk. When the model
combines estimators from SEM and SLM, it reaches the

Table 1 List of explanatory variables

Category Description of dataset Abbreviation Unit Data source

Environmental variables digital elevation DEM m USGS

digital slope SLOPE degree USGS

Average temperature AT °C MODIS

Human population density 2000 POPDENS p/km2 National Statistics Bureau

Socioeconomic variables Human population density 2005 POPDENS p/km2 National Statistics Bureau

Human population density 2010 POPDENS p/km2 National Statistics Bureau

Ratio of illiteracy ROI p/million National Statistics Bureau of China

Ratio of middle school and above RMS p/million National Statistics Bureau of China

Yearly GDP GDP 104RMB National Statistics Bureau of China

Yearly per Capita GDP PCGDP 104RMB National Statistics Bureau of China

Distance to road network DTRN km National Administration of Surveying,
Mapping and Geoinformation

Transportation variables Distance to city center DTCC km National Administration of Surveying,
Mapping and Geoinformation

Distance to county center DTCNC km National Administration of Surveying,
Mapping and Geoinformation

Distance to nearest hospital DTHSP km China’s Health and Family Planning
Commission

Epidemiologic variables Distance to nearest clinic DTCLC km China’s Health and Family Planning
Commission

Minimum spatio-temporal distance to
nearest case

MSTDNC Km/day China CDC Rabies Surveillance data

Minimum spatial distance to nearest case MSDNC km China CDC Rabies Surveillance data

Minimum temporal distance to nearest case MTDNC day China CDC Rabies Surveillance data

Fig. 3 The Moran’s I index, 2005 to 2013 [40]
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best performance of all models. This may suggest that
both spatial substantive dependence and spatial error de-
pendence have a significant influence on the prevalence
of rabies cases.
Figure 4 shows the scatterplots of observed counts

against predicted counts. Each dot denotes a pair of ob-
served and predicted values for any given cell. We find
that a preponderance of dots assemble near the diagonal
line of the plot when spatial heterogeneity and spatial
dependence are explicitly incorporated in the model.
The plots prove that measurements for spatial hetero-
geneity and spatial dependence effects bring effective

improvements to the model, which is consistent with the
analysis on the result of goodness of fit measures.
In Fig. 5, the residual for each sample case is depicted

along with their actual and fitted values. The blue lines
denote the residuals, while the red lines denote the ac-
tual observations. The green lines show the fitted values.
The overlap between actual and fitted values grows with
spatial heterogeneity and spatial dependence incorpo-
rated explicitly in the model. The OLS estimator fails to
fit the observations well, especially in the areas with high
incidence of rabies. The SLM estimator and the SEM es-
timator provide improved results, but it is hard to tell

Table 2 Estimation results

OLS SLM SEM RE-GLS AM

Parameter
Estimate

Standard
Error

Parameter
Estimate

Standard Error Parameter
Estimate

Standard
Error

Parameter
Estimate

Standard
Error

Parameter
Estimate

Standard
Error

Longitude 0.03256 0 0.001901 0.0486 0.002056 0.0331 0.001603 0 0.00222 0

Temperature 0.03812 0.0001 0.011207 0.0004 0.012794 0.0001 0.013616 0 0.007505 0

DTCNC 0.005884 0.0102 0.002337 0.0319 0.002302 0.0360 0.000906 0 0.001898 0

DTRN 0.049686 0.0021 0.011251 0.0093 0.012252 0.0043 0.005268 0.0002 0.006013 0.0005

MSDNC −0.002092 0.1651 −0.002264 0 −0.002466 0 −0.001311 0 −0.001691 0

C 0.047878 0 0.47645 0 0.455308 0 0.681607 0 0.4073 0.0019

ρl 0.008774 0 0.005153 0

ρe 0.117826 0 0.013151 0.0254

σϑN
2 0.866774 0.874635 1.043152 0.684197

σμN
2 0.903172 0.876109 0.934437 0.881217

R-squared 0.3775 0.6691

J-statistic 74.4461 0 71.3784 0 103.6390 0

sum-resid 5191.23 1311.323 1298.777 2060.687 756.4909

S.E. 1.461011 0.832959 0.829185 0.976063 0.684197

Fig. 4 Scatterplots of observed counts (vertical axis) and predicted counts (horizontal axis) of different regression models [40]
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the difference between the two spatial dependence pro-
cesses through the residual graphs. The RE-GLS estima-
tor also gives better performance than the OLS
estimator. The graphs suggest that accounting for spatial
dependence leads to more improvements than spatial
heterogeneity in this case. Furthermore, when spatial
heterogeneity and spatial dependence effects are both
considered, the aggregation model provides the best fit
to the observations.

Figure 6 shows the distribution of actual human rabies
cases in 2014 while Fig. 7 shows the prediction of hu-
man rabies cases in the same year according to the AM.
The color depth in Fig. 7 denotes the possible extent of
the disease; darker colors suggest more anticipated cases
in the corresponding regions. Generally speaking, in
comparison with the map of observed cases in 2014, the
model simulation is good. However, the accuracy of
simulation in the two regions of eastern Anhui and

Fig. 5 Residual graphs of different models [40]

Fig. 6 Map of reported rabies cases in 2014
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Zhejiang Provinces is relatively low. This may be due to
the following reasons: (1) rabies in Anhui is mainly con-
centrated in the northwestern part of the province; (2)
Zhejiang and Anhui Provinces are not areas of high inci-
dence of rabies. The two provinces have flat terrain, and
the road traffic connectivity is relatively good, so that ra-
bies simulation accuracy is relatively low. It can be con-
cluded that the prediction fits the observations well in
most regions of China.

Discussion
In section “Discussion”, we compared the performance
of different regression models and verified the validity of
the models that incorporated spatial heterogeneity and
spatial dependence effects. In this section an interpret-
ation of the estimates is provided.
According to the P-values in Table 2, the selected vari-

ables can be accepted as effective independent variables
for the regression of normalized rabies counts. The lon-
gitude and the average temperature both show positive
correlation with the count of rabies. The longitude of an
area is significant in the regression, as it reflects the en-
vironmental attributes across China on a relatively
macro level. Physiographically, China can be separated
into three divisions: the eastern part with low altitude
and a long coastline; the middle part with numerous
mountains and basins; the western part with high alti-
tude and plateaus. The climatic environment varies ac-
cording to the longitude and the differences between the
eastern part and the western part can be enormous.

Generally, from west to east, as the longitude increases,
rainfall and vegetation tend to be relatively higher, and
the environment is more suitable for the survival and
reproduction of animals, including rabies virus carriers.
Moreover, the middle-western part consists of many
plateaus and rugged mountainous regions, which is not
fit for animals, like stray dogs, to roam. In contrast, in
the plain areas, if the distance separating villages is
larger than the range of roaming dogs, rabies can hardly
spread through stray dogs. This suggests that different
prevention and control measurements should be
adopted in mountain regions and plain regions. For
mountain regions, the key means is to control the move-
ment and propagation of stray dogs inside the area, es-
pecially in rugged and forested landscapes. In the plains,
however, the target is to control the connectivity be-
tween the infected villages, where human rabies cases
have been recorded, and un-infected villages.
The incidence of rabies also increases as ambient

temperature rises. A warmer climate means that ani-
mals are more active in their surroundings and track
over greater distances, which contributes to the spread
of rabies. In addition, higher temperatures often result
in humans wearing lighter clothes and in exposing
more skin, which increase the opportunity of being
bitten by dogs.
Table 2 also suggests that the incidence is affected by

transportation accessibility and spatial epidemiology
considerations. The Euclidean distance to the road net-
work and the distance to the nearest county center have

Fig. 7 Map of predicted counts of cases in 2014
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positive coefficients in the regression. Distances can re-
flect the traffic conditions of an area and the intensity of
connections with socioeconomic resources. The longer
the distance is, the more isolated a region may be
with respect to other communities. As a result of
this isolation, the area receives less support for dis-
ease prevention and other public health interven-
tions. Moreover, restricted by the limitations of local
resources, the area would only have a slower re-
sponse to rabies cases and thus be even more afflicted.
According to WHO guidelines for post-exposure prophy-
laxis [39], it is critical to receive PEP in a rabies center as
soon as possible after exposure. Although 98% of all pa-
tients were living in rural areas, great differences were re-
corded in the speed of seeking medical assistance: 64.19%
of patients visited the rabies center within 4 h of exposure,
27.93% of patients visited the rabies center between 4 and
24 h of exposure and 7.88% of patients visited the rabies
center over 1 day later [24]. These differences may be
largely imputed to accessibility discrepancies. Although
we did not collect information on PEP hospitals and rabies
centers, the accessibility to these facilities can be revealed
by the distances mentioned above. The distance to the
nearest county center translates into the convenience of
access to receive rabies PEP and immunoglobulin services.
The count of rabies has a negative correlation with the

spatial distance to the nearest case. A negative coeffi-
cient implies that when the distance from existing cases
becomes shorter, the risk of infection rises correspond-
ingly. When one human case occurs, the rabies virus has
spread among hosts in the regions near this case. Strict
control and protection measures should be adopted in
these regions. In current human rabies control and pre-
vention plans issued by the Ministry of Agriculture of
China, control areas include two buffer areas centered
on the location of rabies cases, namely the infected areas
(within a radius of 3 km) and the risk areas (within a ra-
dius of 5 km, excluding the infected areas). In the in-
fected areas, the local CDC and the government will cull
infected dogs and restrict others’ movements. To control
the rabies transmission, mandatory vaccination of dogs
should be enforced in both the infected areas and the
risk areas.
patial heterogeneity has been demonstrated to con-

tribute to the improvement of the fit of the regres-
sion. The RE-GLS estimator provided a base
constant and each area was fitted with an adjusted
constant as its intercept. The incorporation of spatial
heterogeneity greatly reduced the residuals of the re-
gression. With spatial dependence accounted for, the
constant was updated to fit the new model. The
SLM and SEM also led to a further drop in the re-
siduals. The corresponding P-values of ρl and ρe
have proven the significance of spatial heterogeneity

and spatial dependence effects. The results showed
that the variance of the random effects ( σϑN

2 and
σμN

2 ) are also significant at 1% for all models. Fur-
thermore, the aggregation model evidenced the suc-
cessful combination of the two factors. The spatial
heterogeneity and dependence effects are both actu-
ally recognized to play important roles in the spread
of the disease in China. Consideration for differences
across areas and for interactions between areas sug-
gests the wisdom of some degree of local and decen-
tralized decision making on the part of government
agencies and medical institutions. As discussed
above, effective strategies for controlling the disease
are supposed to fit the specific conditions of the so-
cioeconomic and physical environments in the local-
ities. The adjacency relationships between localities
need extra attention, for it may reveal the spread
source of rabies in neighboring areas and it can be
exploited to interrupt the path of the transmission.

Conclusions
In this research, we analyze human rabies in China using
regression models with consideration for spatial hetero-
geneity and spatial dependence effects. We studied ra-
bies cases recorded in China from 2005 to 2013 and
applied regression models based on normalized case
data. The regression estimates provide a reference for
measuring effects concluded from explanatory variables
whose significance were then extracted including the
longitude, the average temperature, the distance to town
center, the distance to the road network and the spatial
distance to the nearest rabies case. The analysis ex-
plained inferred relationships between the case counts
and relevant explanatory variables. For instance, the sur-
vival chance of stray dogs is higher when temperature is
higher and less clothes are worn to protect from biting
dogs. In rural areas, longer average distances between
villages and town centers and greater distance to road
network mean that it is more difficult to have timely
PEP treatment. Given the variables identified as strong
predictors, recommendations on how to prevent and
control human rabies were presented.
Moreover, spatial heterogeneity and spatial depend-

ence were explicitly considered in our analysis. Spatial
autocorrelation is confirmed by Moran’s I statistic. For a
specific area, the incidence of rabies is affected by both
its constant and inherent attributes, and the status of
neighboring areas. The omission of the heterogeneity
and spatial dependence effects can bring biased estima-
tions, which has been proven by the results of pooled
OLS estimation. Through comparisons between trad-
itional models and the aggregation model that allows for
the two types of effects simultaneously, we demonstrated
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the validity and advantage of the aggregation model. The
aggregation model outperformed the existing models and
fitted the observations well. The comparisons suggested
that both spatial heterogeneity and spatial dependence
effects can contribute to the model and that they can be
combined in a single model without any interferences,
thus effectively reducing the possibility of bias.
However, challenges remain for the spatial epidemio-

logic modeling of rabies. Although our approach obtained
promising results on the dataset of rabies cases in China,
it still needs to be verified on other datasets. While the ap-
proach that is advocated here recognizes the role of het-
erogeneity to reveal new insights in terms of missing
variables and inherent characteristics of different regions,
the aggregation of areas leads to the loss of fine-resolution
information on villages assigned to a larger cell. Therefore,
how to better account for the conditions within a cell and
how to map the individual effects may be interesting
issues to tackle in future extensions of this work. In
addition, in this study, the time increment was set to a
year and seasonal effects were not taken into consider-
ation. Alternatively, it is possible to compute the monthly
count of rabies cases and conduct relevant analysis ac-
cording to the rhythm of seasons. In future work, we will
enhance the specification of the aggregation model and
test it on various datasets.
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