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Abstract: Upward trends in commuting duration and distance due to urban sprawl in the United
States have raised concerns about the ensuing environmental, social and economic problems. Various
urban planning approaches have been developed, hypothesizing that built environment variables
such as density, diversity, design, distance to transit and destination accessibility contribute to reduc-
ing travel consumption. This study evaluates the impact of the built environment on commuting
duration in Mecklenburg County, North Carolina, in two steps. First, the built environment is classi-
fied into four types of exurban, suburban, urban, and compact and transit-accessible development
(CTAD). Second, the impact of built environment types on commuting duration is evaluated for 2000
and 2015 using spatial panel data models controlling for selection bias. Results show that CTAD
areas have shorter commuting durations than other areas in 2015; however, the commuting duration
in both CTAD and urban areas has increased over time. Given the multifaceted nature of urban
transportation-built environment interactions and their importance for sustainable futures, this calls
for further attention from urban researchers and planners to more comprehensively consider the vari-
ous dimensions of this matter, with an explicit focus on the changing nature of urban environments.

Keywords: commuting duration; built environment type; D variables; spatial panel data models;
selection bias; urban mobility

1. Introduction

In the United States, there has been an upward trend in urban sprawl development
and car dependency [1], in average vehicle miles traveled (VMT) [2], and in commuting
duration [3] over the last decades. These trends have awakened concerns about the ensuing
environmental, economic and social costs, such as fossil fuel consumption, environmen-
tal pollution, climate change and social exclusion. In order to alleviate these problems,
various urban planning and design approaches have been developed. These include new
urbanism, smart growth, sustainable urbanism, compact development and transit-oriented
development (TOD). Their aims are to reduce travel demand and consumption by bringing
destinations closer together, to improve accessibility and increase the number of travel
options for a broad variety of social groups. The typical argument is that these objectives
can be achieved by increasing residential and employment density, enhancing diversity of
social groups, housing types and affordability, land-use mix, improving urban design with
the development of pedestrian and bicycle-friendly neighborhoods with small block sizes,
and increasing accessibility to a variety of transit options.

Whether or not these approaches have been effective at improving travel outcomes
and the related issues discussed above have been germane to the ongoing urban policy
and planning debates situated at the intersection of urban sustainability, urban livability
and quality of life, and community-based approaches to city building, as advocated by
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Jane Jacobs [4]. If travel demand impacts are proved to exist, policy makers can more readily
feature the relevant urban planning and urban design principles as part of an integrated
vision and practice for transportation planning. As a result, a large number of studies
have investigated the relationship between the built environment and travel behavior over
the recent decades [5–8]. These studies have been aimed at finding an answer to whether
changes in the built environment have an impact on travel demand and consumption.
Testing this hypothesis in different study areas in the United States using different data
sources and different methodologies, studies have found somewhat inconsistent results.
Some studies concluded the existence of positive impacts [9–15], but some others found
either no statistically significant relationship or very weak impacts [7,8,16–20].

Many of the studies investigating the relationships between the built environment
and travel behavior suffer from some shortcomings in research design and methodologies,
which may have led to the mentioned confounding findings. One of these methodological
issues is selection bias or self-selection [7,21–23]. Self-selection means that individuals’
travel behavior may not necessarily be influenced by the built environment, but they may
select themselves into those built environments due to their travel preferences. This is
fundamentally an endogeneity issue that is known to be rather pervasive in the social
sciences [24]. The second issue that needs to be taken into account is the spatial depen-
dence or autocorrelation that may explain a significant amount of variation in the outcome
variable. Spatial autocorrelation means that there is a spatial relationship between values
of geographic unit areas and their neighbors based on methods like geographic adjacency
or proximity [25]. Positive spatial autocorrelation indicates similar values between close
neighbors, and negative spatial autocorrelation indicates dissimilar values between close
neighbors. Such spatial effects are often intertwined with internal and external contextual-
ization considerations that may mask relationships [26]. A related issue is the modifiable
areal unit problem (MAUP), which concerns the potential statistical bias arising from the
areal scale of analysis. Closely aligned with the well-known challenge of ecological fallacy,
MAUP indicates that the results of the analysis are sensitive to the granularity and spatial
definition of data. In other words, results may change if analysis is conducted at a different
level of geography, for example, census tracts instead of census blocks, or other census
designation areas [27].

Furthermore, it is important to distinguish work trips from nonwork trips when
studying the different components of travel behavior as their dynamics are not the same,
particularly because the former are compulsory while the latter are discretionary. In this
article, we revisit the relationship between the built environment and commuting duration
through an empirical case study in the United States. To address some of the methodological
issues mentioned above, the study uses a longitudinal design as a means to control for
self-selection in testing the impact of the built environment on the commuting duration
component of travel behavior. This impact is evaluated in two years (2000 and 2015) in
Mecklenburg County, North Carolina. In addition, spatial panel models are applied to
account for the spatial dependence that may be embedded in the concepts, relationships
and data used for this analysis.

The study is conducted in two main steps to test the hypothesis that the built en-
vironment type has an impact on the commuting duration and that built environment
types with higher levels of density, diversity, design, destination accessibility and transit
proximity have shorter commuting duration. First, variables related to the built environ-
ment are used to classify the built environment into 2015 in four types, comprised of the
exurban, suburban, urban and compact transit-accessible development settings. Second,
non-spatial and spatial panel data regression models are estimated to study the impacts on
commuting duration.

2. Literature Review

There is a large body of literature on the relationship between the built environment
and travel behavior that dates back to the 1990s. A majority of these studies found that
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the features of the built environment have a significant impact on reducing travel demand
and consumption, while others found no evidence of such an impact. When a relationship
is detected, it is normally found that travel demand is lower where urban development
assumes denser and more compact forms. Yet the conclusions of research studies remain
somewhat at odds. The disparity in conclusions reported in the literature may reflect
less on the true nature of this relationship than other design considerations, such as the
multidimensional and contextual nature of the relationship or its bidirectionality. Both the
built environment and travel behavior are complex and multifaceted concepts. Considering
their components, both concepts have been apprehended through a variety of dimensions
across the extant literature.

The built environment has been apprehended by the so-called 5 Ds, which stand for
density, diversity, design [28], destination accessibility [29] and distance to transit [6]. Den-
sity is measured by population, residential or employment density. Diversity is measured
by land-use mix or diversity in housing affordability. Design is measured by intersec-
tion density or road density as a proxy for small block sizes and therefore the ease of
non-motorized travel. Destination accessibility is measured by the ease of access to jobs,
retail outlets and services. Finally, distance to transit is measured by the distance to the
public transit options. Some studies have directly examined the impact of these variables
on travel behavior [17,28,30–32], while some others have investigated the heterogeneity
in travel behavior in different built environment types defined based on the D factors
mentioned above [13–16,33]. As for travel behavior, it is standard to measure it through its
components of trip length (distance or time), trip frequency and travel mode for different
trip types. The working hypothesis is then that the prevalence of the 5 Ds that describe the
built environment brings about a reduction in travel activities. Literature can be further
synthesized as follows.

Using travel diary data in the San Francisco Bay Area, Cervero and Kockelman [28]
investigated the impacts of density, diversity and design on trip rates and mode choice and
found a statistically significant response to these three built environment factors, although
the effects were weak. Cervero [34] used travel and land-use data from Montgomery
County, Maryland, and found significant evidence that density and land-use mix had
an impact on travel mode choice, while design had a modest impact only. Cervero and
Duncan [35] studied the impact of jobs-housing balance and retail-housing mix on VMT
with travel survey data from the Bay Area, California; they found a significant impact on
travel reduction, with the jobs-housing balance being more influential. Using travel diary
data from the New York Metropolitan Area, Chen et al. [11] studied how mode choice
in work trips responds to population and employment density, accessibility, and transit
proximity in both home place and work place. They found that job accessibility had the most
significant impact, followed by density and transit proximity. Zhang et al. [36] investigated
how factors of density, land-use mix, block size and CBD proximity influences VMT
reduction using household activity survey data in the four metropolitan areas of Seattle, WA,
Richmond-Petersburg and Norfolk-Virginia Beach, VA, Baltimore, MD, and Washington,
DC; they found significant impact, but there was heterogeneity in this effectiveness both
between and within metropolitan areas. Finally, using household travel data in 15 US
regions, Ewing et al. [30] investigated the impact of the 5 Ds on several travel behavior
components, namely car trips, walk trips, bike trips, transit trips and VMT. They too
concluded that significant impacts existed in the form of a drop in travel demand.

The other strand of literature boils the diverse characteristics of the built environment
down to a typology that can be more effective at discriminating behavioral responses.
Khattak and Rodriguez [13] used travel survey data from Chapel Hill and Carrboro,
North Carolina, and found that built environment types, including neo-traditional and
conventional neighborhoods, significantly deflate trip frequency by trip type. With travel
survey data in California, Salon [14] studied the heterogeneity in the relationships between
the VMT and built environment characteristics in the built environment types (rural, rural-
in-urban, suburban, urban and central city) and found that this relationship is strongly
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dependent on both the built environment type and trip purpose. In other words, for
specific trip purposes and built environment types, there is a significant impact, but not for
others. In their study of travel survey data from 8 neighborhoods in Northern California,
Handy et al. [33] found significant differences in travel behavior between traditional and
suburban neighborhoods. In a similar paper using survey data from four traditional and
four suburban neighborhoods in Northern California, [9] found that changes in the built
environment are significantly associated with changes in driving reduction, with a large
negative impact from accessibility variables. Finally, Cao et al. [22] studied the impact of
residential location (namely, environments defined as urban, suburban, exurban and inner
ring suburbs) on vehicle miles driven using regional travel diary data from Raleigh, North
Carolina, as a case study, and found a significant impact with decreasing auto dependence
and vehicle miles driven in areas that are more urban.

The studies mentioned earlier in this section found some relationship between the built
environment and travel behavior in the sense that the 5 Ds are effective at reducing travel
demand, either in all or in part of the built environment and travel behavior components.
However, a small number of other studies found no such relationship or a rather weak
relationship between the two. Among these, Crepeau [17] studied this relationship on
travel survey data in San Diego, California, and found evidence that design would have an
impact on travel decisions but found little impact of density. Bagley and Mokhtarian [16]
studied the impact of residential neighborhood types (specifically traditional and suburban
neighborhoods) on travel demand measurements of vehicle miles traveled, transit miles
traveled and trip frequency. Using travel survey data from the Bay Area, California, they
found very little impact.

Given the literature’s rather inconsistent findings, Leck [37] performed a meta-analysis
on the impact of urban form on travel behavior to draw generalizable conclusions. In
this study, urban form was measured by residential and employment densities, land-use
mix and street patterns. Travel components included VMT, vehicle hours traveled (VHT),
vehicle trips, non-work vehicle trips and the probability of commuting by automobile,
transit, or by walking. Studying 17 prior case studies on this topic, this meta-analysis
concluded that residential and employment densities and land-use mix had statistically
significant impacts on travel behavior and dampened travel demand, even after controlling
for socio-demographic attributes. However, street layout did not show a significant impact.
Ewing and Cervero [7] conducted another meta-analysis on more than 50 studies of the
relationship between the built environment and travel behavior, updating some of them and
obtaining the effect sizes. Their paper found that VMT was associated with accessibility and
street network design, that walking was associated with diversity, design and accessibility,
and that transit use was associated with transit proximity, design and diversity. It is
important to point out that the magnitudes of influence were found to be small. In a more
recent meta-analysis study of this topic, Stevens [8] reviewed the literature to answer the
question of whether the built environment and compact urban development reduce travel,
or conversely, whether this link is nonexistent or tenuous and other urban scenarios explain
the evolution of the urban system. He discussed the selective reporting bias as an important
issue and as one of the most important potential reasons for the incongruous results in
the literature. Studying the findings of 37 papers, he found that some of the D variables
measuring the built environment had a statistically significant impact on reducing VMT;
however, the impacts were so small that he suggested planners to not rely on compact
developments for reducing travel unless the costs were very small or their expectations
of reducing travel were very low. In his meta-analysis work, the statistical significance
and direction of impacts on travel varied over different built-environment variables. Job
accessibility by transit and jobs-housing balance had no statistical significance. An increase
in population density reduced travel; however, an increase in diversity and a decrease
in CBD proximity increased VMT. Similarly, Guerra [38] found that areas closer to the
CBD had longer VMT. In addition, Jin et al. [39] studied the impact of densification on
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travel duration and found that densification increased traffic congestion and consequently
increased travel duration.

Aside from using somewhat different sets of attributes of the built environments
and of travel behavior in their research design, these studies may also exhibit discordant
conclusions owing to some methodological considerations, particularly how self-selection
is addressed, if at all [9,13–15,23,33]. The self-selection issue boils down to the possibility
that the association between the built environment and travel behavior found in the
literature does not clearly indicate a causal relationship between the two. In other words,
the built environment may not necessarily lead to changes in travel behavior (i.e., travel
reduction), but it may well be the individuals’ travel preferences that encourage them
to select themselves into neighborhoods with specific characteristics (e.g., compact and
diverse development with higher accessibility to transit and different modes of travel).
Studies have used different approaches to tackle the self-selection issue, including direct
surveying of individuals, statistical control through attitudinal information, instrumental
variables estimation, purposeful sample selection designs, joint discrete choice models,
structural equation modeling and longitudinal data models [23].

3. Materials and Methods
3.1. Research Design

This study is comprised of two parts to investigate the impact of the built environment
on commuting duration. First, the city space is partitioned into four distinct types of envi-
ronments, namely the exurban, the suburban, the urban, and compact and transit-accessible
development (CTAD), based on their built environment elements. The exurban, urban
and suburban built environments are dominant built environment types in the US, with
population density and intensity of land use being the most distinctive and discriminating
factors. In this study, the CTAD type is defined based on the discussed 5 Ds of the built
environment. Owing to the historical patterns of urban development in the US, the geo-
graphic delineation of these types does not necessarily follow a strong concentric pattern
from the city center nor does it exhibit contiguity; some leapfrogging is often detected in the
geography of the urban fabric of US cities. Built environment elements bundled together
as built environment types are used instead of individual built environment variables to
evaluate impacts on commuting duration to circumvent the potential for collinearity among
5 D elements. This approach to evaluating the impact of the built environment on travel
behavior through a built environment or neighborhood typology has been used in some
other studies [13–16,33]. Accordingly, we use a multivariate clustering approach to identify
built-environment types that denote the most discriminated structures in the built environ-
ment based on the combination of built-environment variables. Practically, census block
groups are classified into mutually exclusive and collectively exhaustive types through a
stepwise process that incorporates Ward’s clustering method [40]. Second, we estimate a
non-spatial panel data model of the effect of the built environment on commuting duration
as well as several corresponding spatial models. In order to control for the selection bias
issue, the difference in differences (DiD) technique is incorporated in our panel data models.
The DiD method takes the difference in change in outcome variable in treatment groups
from change in outcome variable in control groups, as shown in Equation (1):

y = α + β1D + β2T + β3D × T + u (1)

In the above equation, D is a binary variable representing the treatment and control
groups, and T is a binary variable indicating times before and after the treatment; y is the
outcome variable, u represents the error term, and α is the intercept. The interaction term
between the groups and time helps to resolve the selection bias issue by removing the
unobserved variables. In this study, the two years of 2000 and 2015 are chosen as the before
and after years of operation of the Lynx light rail service and of implementation of compact
transit-accessible development along the transit corridor.
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It is important to distinguish work trips and nonwork trips when studying the different
components of travel behavior, as their dynamics are not the same. In this study, the trip to
work is selected as it is the most important trip type for a majority of individuals and it is the
trip purpose with the greatest structuring effect on other travel aspects for most individuals,
owing to its compulsory nature. Duration of work travel is taken as the dependent variable
as it reflects choices made by individuals in terms of home place, work place, mode of
travel and routing, as well as the reciprocal adjustments from the urban systems in the form
of traffic congestion in dense urban areas. In other words, this variable effectively controls
for traffic congestion that high-density developments are expected to generate [41]. This
selection of dependent variable stands in contrast with many previous studies that used
VMT or VMT per capita for investigating the relationship between the built environment
and travel behavior; however, they are not as compelling as travel duration. As a matter of
fact, as a travel distance measure, VMT does not account for traffic congestion in general,
while the problem with VMT per capita is that the development of high-density and diverse
areas with high transit accessibility may decrease VMT per capita in the entire area but
not necessarily in the compact areas. There is a small number of studies using commuting
duration as the travel outcome [42–45], however, most of these studies are conducted on
cases outside of the United States. As a result, this article studies the commuting duration
to address one of the other gaps in the literature.

In addition to the commuting duration component of travel behavior, to measure the
built environment, a variety of indicators including housing density, road density, inter-
section density, land-use mix, single family housing size, multifamily housing percentage,
jobs-housing ratio, jobs accessibility and rail transit proximity, are used for measuring the
multiple facets of the built environment and its context.

3.2. Study Area

The area of study is Mecklenburg County, North Carolina, and unit areas are census
block groups. As the most populous county in North Carolina until 2020 and with the city
of Charlotte as its seat, Mecklenburg County has been experiencing fast population growth
and accelerated economic development over the past decades. Anticipating continued
growth of the population and of the local economy, some plans were developed for this
county to better integrate land use, urban design and transportation systems, such as the
2025 Transit/Land-Use plan, which was finalized in 1992. This plan entails five transit
corridors and developments along them; the first corridor started operating in 2007 as
the Blue Line of the Lynx light rail service on a 9.6 mile right of way with 15 stations.
The cost of this light rail line, as one of the five corridors planned as a complete citywide
rail system, reached $462.7 million, more than twice the original estimate of $225 million
announced a decade earlier [46]. Establishment of this light rail line has led to compact
and diverse developments incorporating 5D design elements by private land developers,
including transit-oriented development projects in proximity to the rail transit stations.
From the opening of the original light rail line in 2007 to 2019, official records show that
mixed-use projects investing more than $2.8 billion were planned or completed within a
half-mile distance of the LYNX Blue Line. These mixed-use projects include office, retail and
residential developments [47]. One of the main objectives of these transportation/land-use
plans was to reduce travel demand and consumption [47]. In order to study the impact of
the built environment types, two years, 2000 and 2015, are selected to capture the conditions
before and after the establishment of the light rail line and the implementation of compact
development areas.

3.3. Data Sources

Data for classifying the built environment are collected from the National Historical
Geographic Information System (NHGIS) [48], including primary data drawn from the
American Community Survey (ACS). In addition, GIS shapefiles were sourced from the
Mecklenburg County GIS Center [49], while some travel and mobility data came from the
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Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination Employment
Statistics (LODES) [50]. Data from NHGIS facilitated the integration of data longitudinally,
as this data source provides interpolated 2000 data in 2010 census boundaries. To control
for the socio-demographic attributes, data on median population age, median household in-
come, median housing value, race, educational attainment and car ownership are collected
from NHGIS and ACS. Commuting duration data are also collected from the ACS.

3.4. Built Environment Types: Classification and Factors

Partitioning and classification of the city space is performed for the year 2015 in three
sequential steps on the basis of built environment considerations. First, rural areas are
extracted from the Mecklenburg County block groups using the Census Bureau’s urban-
rural classification data [51] to form the exurban area type for the purpose of the present
study. Second, non-rural block groups are classified into either suburban or other environ-
ments using built environment factors of land-use mix, road density, intersection density,
housing density, multifamily percentage, and single-family housing size. Third, the latter
set of block groups is classified into urban and CTAD using the built environment factors
of land-use mix, jobs-housing ratio, jobs accessibility, housing density and multifamily
percentage, with the condition that a block group must be within 0.5 mile of any Lynx
Blue line station to be classified as CTAD. Table 1 reports the descriptive statistics of these
variables in the pooled dataset. Ward’s method was used for steps two and three of the
classification process.

Table 1. Descriptive statistics of built environment related variables in 2015 (N = 546 census block groups).

Built Environment Related Variable Min Mean Standard Deviation Max

Land-use mix (normalized entropy index) 0 0.001 0.001 0.009

Road density (ft/mi2) 13,913 66,997 22,877.45 166,697

Intersection density (units/mi2) 9.83 75.00 37.68 255.31

Housing density (units/mi2) 32.7 1409.5 1211.7 12,959.3

Multifamily housing (%) 0 23.815 41.380 100

Average size of single-family lots (ft2) 0 32,725 90,942 1,244,304

Jobs-housing ratio 0.005 2.032 9.583 191.076

Jobs accessibility (jobs) 0 772 1531 12,768

Further elaboration on the built environment variables used in this process is war-
ranted. Housing density is the number of all housing units per square mile using ACS data
sourced from NHGIS. Road density is the total length of street centerlines per square mile
extracted from the street network shapefile from the Mecklenburg County GIS Center. For
intersection density, four-way intersections are created from the street network shapefile
and density is calculated as their count per square mile; this density is a proxy for block
size, which tends to be smaller in more urban environments and CTAD neighborhoods.
Land-use mix is calculated using the entropy index relative to a reference geography. The
entropy index is a common method for measuring diversity in land use as a function of the
percentages of two or more land uses in an area. However, an issue with this method is that
equal percentages of land uses will produce the highest degree of mixture. For example,
50% housing and 50% industrial land uses will create a perfect entropy index of 1, while it
is not a desirable mixture. To solve this issue, Song et al. [52] proposed normalizing this
measure by using the percentages of land uses in a well-balanced reference geography, for
example, the entire study area, if considered well-balanced. To obtain the entropy index us-
ing the mentioned method, land use data are extracted from the tax record dataset sourced
from the Mecklenburg County GIS center. Land uses for the year 2015 were classified into
the following categories: Commercial, Industrial, Recreation, Single-family, Multifamily,
Institutional, Office and Other. After using this enhanced variant of the entropy index, one
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more improvement is made to the method. With the entropy index, larger block groups will
have higher diversity scores since they can encompass a larger variety of different uses. To
circumvent this drawback, the entropy index is normalized by the area of the block group.
Single-family housing size is the mean of the area of all lots with single-family houses.
Multifamily housing share is the percentage of multifamily housing of all residential units.
The data for area of single-family lots and multi-family housing are obtained from the tax
record dataset sourced from the Mecklenburg County GIS center. The jobs-housing ratio is
the ratio of the number of employees to residents in each unit area using LEHD data. Jobs
accessibility is the total number of jobs within the 5-mile distance of each areal unit, using
LEHD data. Rail transit proximity is an indicator variable of whether an areal unit is within
0.5 mile of a rail transit station or not.

3.5. Non-Spatial and Spatial Panel Data Models

A panel data model of commuting duration is estimated to test the impact of the built
environment type, accounting for the selection bias. The model used in this study follows
the difference in differences approach in that it takes the differences between both built
environment groups and time periods into account. Two groups are included in the model
specification: urban and CTAD; exurban and suburban serve as reference groups. Second,
interactions between these two groups and the year variable are added to the model to test
changes in commuting duration in these groups over time. Socio-demographic variables
are added to the model to control for their impact. Among the sociodemographic variables,
the population percentage with some form of college degree, population percentage with a
Master’s degree, and median housing rent value are removed from the model due to the
collinearity. Table 2 shows the descriptive statistics of the variables used in this model.

After estimating the non-spatial panel data model, spatial autocorrelation in the
dependent variable and in residuals is tested with Global Moran’s I [53] (see Table 3).
Based on Table 3, there is strong statistically significant autocorrelation in the dependent
variable and statistically significant autocorrelation in the model residuals. As a result,
both spatial lag and spatial error models are considered to handle the spatial dependences
in the data [54]. Spatial lag accounts for the spatial dependence in the dependent variable
and spatial error accounts for the spatial dependence in residuals in explaining variations
in the dependent variable. In addition to the spatial lag and spatial error models, spatial
Durbin and spatial error Durbin models are also implemented. The spatial Durbin model
incorporates the spatial lag of the dependent variable and independent variables, and
the spatial error Durbin model incorporates the spatial lag of the error and spatial lag
of the independent variables in the model. All the spatial models are estimated using a
spatial weight matrix based on the adjacency of block groups. This spatial weight matrix
is an NxN matrix indicating whether two block groups are neighbors or not, with row
standardized weights. N is the number of block groups. The queen contiguity criterion is
used for determining spatial relationships between neighbors.

In addition to the Global Moran’s I statistic, Lagrange Multiplier (LM) tests are used
before running spatial models [54] (see Table 4). LM-lag and LM-error test for spatial lag
and spatial error in regression model, respectively. Robust LM-lag tests for spatial lag in the
presence of spatial error and robust LM-error tests for spatial error in the presence of spatial
lag. Based on LM tests, both spatial lag and error model are diagnosed. All the spatial
models are implemented in the Spatial Panels MATLAB package developed by Elhorst [55].
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Table 2. Descriptive statistics of independent variables used in the panel data model of commuting duration (Minutes) (n = 1092 block groups for the pooled dataset,
n = 546 for 2000 and 2015).

No vehicle
Available (%)

CBD
Proximity

(mi)

Ph.D. Degree
Holders (%)

Bachelor’s
Degree

Holders (%)

Associate’s
Degree

Holders (%)

Median
Population
Age (Years)

Median
Housing

Value
(Dollars)

Median
Household

Income
(Dollars)

Housing
Density

(Units/mi2)

Asian Popu-
lation (%)

African
American

Population
(%)

White
Population

(%)
Year Independent

Variables

0 0.13 0 0 0 10.8 937.97 6791.47 1.66 0 0 0
Pooled
dataset
(2000

and 2015)

Min
7.58 7.39 0.78 22.74 5.77 35.42 189,209.30 60,983.93 1249.28 3.8 29.29 61.33 Mean

9.29 4.03 1.19 13.08 3.11 6.39 136,096.30 32,691.11 1102.41 5.14 27.55 29.3 Standard
deviation

64.8 19.41 13.14 57.98 21.08 80.5 1,169,800.00 250,001 12,959.33 54.87 99.33 100 Max

0 0.13 0 0 0 19.5 937.96 6791.46 1.65 0 0 0

2000

Min
7.16 7.39 0.81 26.56 6.61 34.23 161,953.90 56,414.17 1089.08 2.94 27.21 65.53 Mean

9.73 4.03 1.2 13.89 2.87 4.58 103,069.70 26,785.43 955.63 2.71 28.08 29.5 Standard
deviation

64.8 19.41 13.13 57.98 16.81 51.95 784,989.10 199,375.20 6402.19 18.92 99.32 100 Max

0 0.13 0 0 0 10.8 16,100.00 12,212.00 32.7 0 0 0

2015

Min
7.98 7.39 0.75 18.92 4.93 36.59 216,467.00 65,553.68 1409.47 4.66 31.37 57.12 Mean

8.8 4.03 1.16 10.95 3.11 7.61 158,008.00 37,149.00 1211.68 6.64 28.5 28.5 Standard
deviation

45.5 19.41 7.86 48.11 21.08 80.5 1,169,600.00 250,001.00 12,959.33 54.86 100 100 Max
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Table 3. Spatial autocorrelation in dependent variable and model residuals using Global Moran’s I.

Spatial Autocorrelation in
Dependent Variable

Spatial Autocorrelation in
Model Residuals

Year Index p Value Index p Value

2000 0.751 0 0.33 0
2015 0.508 0 0.14 0

Table 4. LM and robust LM tests for spatial lag and spatial error models.

Test LM-Error LM-Lag RLM-Error RLM-Lag

LM 79.3781 78.3621 4.9183 3.9023
p-value 0 0 0.027 0.048

4. Results

Figure 1 shows the results of the built environment type classification in 2015. Starting
from the Bureau of the Census’ definition of urban and rural areas, 16 block groups
were identified as exurban, mainly at the periphery of the county. Using the Ward’s
clustering method, 252 of the non-rural block groups are classified as suburban, 259 census
block groups are identified as urban, mainly in the urban core and along the corridors of
development. Finally, 28 census block groups are identified as CTAD. These CTAD areas
are located in the CBD and along the south corridor, in proximity to the light rail Blue Line.
Statistics of the centroid of each of these clusters are reported in Table 5. The four built-
environment types are found to be quite distinct from one another. Comparing the cluster
centroids to the county-wide statistics (Table 1) shows that the four built-environment
types align well with the sorting of block groups according to their degree of urbanity.
As Figure 1 indicates, suburban business districts and edge cities such as the Ballantyne
and South Park areas (to the south of the city center), the South End (adjacent to the city
center on the southwest side), and the University area (northeast of the city center) are
identified as part of the urban area clusters. Some of these clusters, such as the South Park
area, provide employment opportunities to the surrounding urban and suburban areas.

Table 5. Built environment type cluster centroids (2015).

Built Environment Related Variable CTAD Urban Suburban Exurban

Land-use mix (normalized entropy index) 0.0023 0.0016 0.0007 0.0002
Road density (ft/mi2) 97,172 80,597 52,600 25,239

Intersection density (units/mi2) 122.95 95.55 52.19 24.43
Housing density (units/mi2) 4001.7 1875.5 743.2 138.6

Multifamily housing (%) 91.25 28.52 11.95 0
Average size of single-family lots (ft2) 9590 33,738 30,516 88,570

Jobs-housing ratio 14.691 1.123 1.706 1.010
Jobs accessibility (jobs) 2986 492 851 411
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The coefficients for the (non-spatial) Ordinary Least Squares (OLS) model estimated
on a sample of 1092 block groups are reported in Table 6. In this specification, some
independent variables were log-transformed to secure homoscedasticity. Based on these
results, both CTAD and urban built environment types have a statistically significant
impact on commuting duration, all else being equal. Specifically, we find that the average
commuting duration in CTAD areas was 1.98 min shorter than in the reference areas
(2.576 − 4.554 = −1.978) in 2015. However, for urban areas, their 2015 average commuting
duration was longer by 0.36 min (1.084 − 0.726 = 0.358) compared to reference areas. In
addition, the average treatment effects show an increase in commuting duration over time in
both CTAD and urban built environment types, with coefficients of 2.58 min and 1.08 min,
respectively. These two coefficients are equal to the difference in differences between
treatment groups and reference groups over time, as shown in Equations (2) and (3). In
these equations, y denotes the commuting duration and base denotes the reference group
formed of exurban and suburban block groups.

CTAD × year 2015 Coefficient = (yCTAD-2015 − yCTAD-2000) − (ybase-2015 − ybase-2000) (2)

Urban × year 2015 Coefficient = (yUrban-2015 − yUrban-2000) − (ybase-2015 − ybase-2000) (3)
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Table 6. Non-spatial panel data model results.

Independent Variable Coefficient t-Stat z-Probability

Intercept 28.283 5.072 0.000
Year 2015 −1.519 −3.626 0.000

CTAD −4.554 −5.159 0.000
CTAD × Year 2015 2.576 2.202 0.028

Urban −0.726 −1.830 0.068
Urban × Year 2015 1.084 2.191 0.029

White population (%) −0.096 −4.716 0.000
African American population (%) −0.065 −3.302 0.001

Log (Asian population (%)) −0.351 −1.915 0.056
Log (Housing density (units/mi2)) 0.045 0.276 0.782

Log (Median household income (dollars)) 0.618 1.232 0.218
Log (Median housing value (dollars)) −1.160 −3.327 0.001
Log (Median population age (years)) 2.356 2.905 0.004

Associate’s degree holder (%) 0.068 1.585 0.113
Bachelor’s degree holders (%) 0.000 0.001 0.999
Log (Ph.D. degree holders (%)) −0.596 −2.091 0.037

CBD proximity (mi) 0.709 16.776 0.000
No vehicle available (%) 0.094 4.688 0.000

R2 0.342
Adjusted R2 0.331

N 1092

In contrast, exurban and suburban built environment types have experienced a re-
duction in commuting duration of 1.52 min from 2000 to 2015. Sociodemographic control
variables, including white percentage, African American percentage, Asian percentage, me-
dian housing value, median age, Ph.D. degree holders, CBD proximity and car ownership,
all have a statistically significant impact on commuting duration, all else being equal.

While the OLS results were an important step in the model building process, we
now move on to the analysis with a similarly specified spatial Durbin model, for which
estimation results are reported in Table 7. This model was selected among all the spatial
models that were tested, including spatial lag, spatial error and spatial error Durbin models,
as the best performing model, while avoiding bias and maintaining efficiency. The best
model is selected based on the goodness of fit measures of R2, squared correlation coefficient
between the fitted values and observed values, maximum likelihood, and after investigating
the plots and maps of model residuals. The R2 of the spatial Durbin model is 0.422, which
is an improvement of 0.08 over the OLS model.

Table 7. Spatial Durbin panel data model results.

Variable Coefficient t-Stat z-Probability

Intercept −7.735 −0.842 0.400
Year 2015 −1.329 −3.307 0.001

CTAD −3.605 −4.281 0.000
CTAD × Year 2015 2.614 2.333 0.020

Urban −0.521 −1.386 0.166
Urban × Year 2015 0.968 2.095 0.036

White population (%) −0.073 −3.749 0.000
Black population (%) −0.050 −2.653 0.008

Log (Asian population (%)) −0.307 −1.751 0.080
Log (Housing density (units/mi2)) −0.057 −0.351 0.726

Log (Median household income (dollars)) 0.277 0.595 0.552
Log (Median housing value (dollars)) −0.762 −2.237 0.025
Log (Median population age (years)) 1.899 2.442 0.015

Associate’s degree holders (%) 0.023 0.568 0.570
Bachelor’s degree holders (%) 0.009 0.515 0.606
Log (PhD degree holders (%)) −0.477 −1.769 0.077
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Table 7. Cont.

Variable Coefficient t-Stat z-Probability

CBD proximity (mi) 0.922 11.987 0.000
No vehicle available (%) 0.110 5.366 0.000

Spatial lag 0.327 9.118 0.000
Spatial error terms:

W×White population (%) −0.034 −0.839 0.401
W×Black population (%) −0.022 −0.573 0.566

W×log (Asian population (%)) −0.104 −0.272 0.786
W×log (Housing density (units/mi2)) 0.528 1.986 0.047

W×log (Median household income (dollars)) 3.552 14.752 0.000
W×log (Median housing value (dollars)) −1.406 −2.095 0.036
W×log (Median population age (years)) 1.428 0.964 0.335

W×Associate’s degree holders (%) 0.290 3.318 0.001
W×Bachelor’s degree holders (%) −0.041 −1.348 0.178
W×log (PhD degree holders (%)) 0.080 0.137 0.891

W×CBD proximity (mi) −0.486 −5.306 0.000
W×No vehicle (%) −0.009 −0.249 0.803

R-squared 0.422
Squared correlation coefficient 0.388

Log Likelihood −2973.560
N 1092

According to the spatial Durbin model, after controlling for spatial dependence in
the dependent variable and in independent variables, CTAD areas have an impact on
commuting duration that is significantly different statistically from the suburban and
exurban environments, all else being equal. The average commuting duration of CTAD
areas was shorter by 0.99 min (2.614 − 3.605 = −0.991) compared to other areas in 2015.
Similar to the non-spatial model, commuting duration has increased in both CTAD and
urban areas, with average effects of 2.61 min and 0.97 min, respectively, between 2000
and 2015 (Table 7). The coefficient of 2.61 for CTAD areas indicates changes over time in
differences in commuting duration between CTAD and reference groups (exurban and
suburban). In addition, the coefficient of 0.96 for urban areas shows the differences in
commuting duration (minutes) between the urban areas and reference groups (exurban
and suburban) and between the two years of 2000 and 2015. Mathematically, the rationale
for what these coefficients mean is provided in Equations (1) and (2), respectively. Exurban
and suburban areas, on the other hand, experienced a decrease in commuting duration in
the order of 1.33 min on average.

Like in the non-spatial model, sociodemographic control variables, including white
percentage, African American percentage, Asian percentage, median housing value, median
age, Ph.D. degree holders, CBD proximity, and car ownership, have a statistically significant
impact on commuting duration, all else being equal. Overall, the spatial Durbin model
shows results in line with those of the OLS model.

Mecklenburg County has been experiencing sociodemographic changes (Table 2),
mainly as a result of population growth and fast economic development. Accordingly, it
has been going through built environment changes such as light rail transit, new compact
developments along the planned transit corridors and new employment centers, including
Ballantyne, South End, South Park and University areas. As shown in the spatial and
nonspatial panel data model results, the changes in commuting duration outcomes over
the study period have been affected by the dynamics in sociodemographic and built
environment characteristics of Mecklenburg County.

5. Discussion

In order to alleviate the economic, environmental and social consequences of high-
cost travel behaviors such as long travel distances or duration, and the consequences
of car-dependent travel, new urban planning and design ideas have been advocated,
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such as new urbanism, sustainable urban development and transit-oriented development.
These approaches purport to reduce travel demand and consumption by encouraging
density, diversity, design, destination accessibility and reduced distance to transit. There
is a considerable body of literature on the relationship between the built environment
and travel behavior to evaluate the impact built environment interventions on travel
behavior [6–8,10,34,56], which stands as a core element of these innovations. These studies
have reached diverse conclusions, with some finding statistically significant reduction
in travel [11,14,34,35] and others with very slight or no impact [8,28] in neighborhoods
with denser and more compact development. One of the shortcomings in this literature is
that the majority of studies investigated the relationships in a cross-sectional format while
these relationships are fundamentally dynamic. Very few studies have emphasized the
longitudinal dimension in this body of literature [23,57].

We pointed out some methodological issues in this body of literature. One of these
issues stems from self-selection embedded in the data. Self-selection means that the
difference in travel behavior associated with the built environment may have less to do
with differences in the built environment itself than with people who in fact self-select
themselves into built environments with specific characteristics owing to their travel
preferences [23]. Spatial dependence is a second consideration that may distort the true
nature of the relationship between the built environment and travel behavior components,
including the commuting duration studied here. To alleviate these issues, this study
used longitudinal design as a method for removing unobserved factors; the design also
controlled for spatial dependence by accounting for the spatial dependence econometrically.
By focusing on the difference in differences, we aimed at sorting the impact of the built
environment on travel demand.

Spatial panel data model results reveal that both the CTAD and urban built environ-
ments have a statistically significant impact on commuting duration, in comparison with
our reference groups comprised of exurban and suburban built environments. Both the
CTAD and urban areas have shorter commuting duration. However, the average treatment
effect increased over the study period in these two areas. In contrast, the exurban and
suburban areas experienced a decrease in commuting duration over time. Our analysis
results show that the built environment has an impact on commuting duration; however,
increase in the 5 Ds of the built environment does not lead to a reduction in commuting
duration. Given the importance of such results for policy making in cities that face the
thorny challenges of balancing continued growth and land development, on the one hand,
and mobility imperatives, on the other, we find our work contributes to understanding
the link between travel demand and the built environment. Importantly, we also realize
that it does not settle the matter in simple terms, while opening the door to alternative
explanations that are broached below.

The apparent lack of consistency between the results of our analysis and large segments
of the extant literature begs the question of the possible causes for such differences. In this
respect, we believe a highly pertinent observation is that most of the empirical literature
treats relatively populous cities, such as Los Angeles, CA, the New York Metropolitan
Area, San Diego, CA, Boston, MA, and the San Francisco Bay Area, CA, that are quite
mature. Population densities are higher in these case studies than in Charlotte, and transit
systems, including subway or light rail systems, have been operating for much longer
periods. More transit options are available in these areas, with strong connectivity between
different mobility options such as bus and rail. Charlotte stands in sharp contrast as
it has an established reputation as a sprawling city [58,59] and has only rather recently
experienced a process of densification [60], while the Lynx light rail service is still quite
new (it started operation in Fall 2007) and offers low coverage and low connectivity, and
has low ridership. These striking differences have several implications on the study of
the relationship between the built environment and travel demand. First, by 2015, the
residential density of Charlotte’s light rail corridor had increased. This increase may have
exacerbated the traffic congestion in those compact areas as the transit system still provided
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low coverage and low connectivity, which led to an increase in commuting duration of
2.61 min in CTAD and 0.96 min in urban areas. Second, in 2015, the transit and population
density may not have been in conditions conducive to encouraging people living in CTAD
or urban areas to use transit instead of their personal vehicles. Residents of CTAD areas
may still find their personal vehicles more convenient. Thus, these land development and
transit network properties may have led to traffic congestion and an increase in commuting
duration in compact areas, as policy makers and planners failed to consider their various
aspects comprehensively, such as connectivity, coverage, availability of parking facilities
near transit stations, and public transit ridership. Along with this point, it can be argued
that travel mode is as important as travel duration. As a result, it will be insightful to study
commuting duration by travel mode, such as driving to work or using public transit. Third,
the suburban and exurban areas of Charlotte have themselves evolved tremendously over
the study period, with a frantic pace of land development but also with new highway
infrastructure that has succeeded in curbing traffic congestion in these areas.

We contend these differences are critical because, in urban planning and design, com-
pact developments and transit-oriented plans are long-term in nature. Our analysis spans
15 years (2000 to 2015), yet Charlotte is still in search of a “steady state” in its development
form and in its transportation infrastructure. For instance, the Charlotte community has
recently approved a new transit vision plan [61] that will dramatically enhance the current
single-line Lynx service to a fully built-out system, along with integrated land-use planning
and transit-oriented development as its cornerstones. As evidence of the evolving mind-
set and priorities of the community, the City of Charlotte is in the midst of the approval
and implementation of a new Comprehensive Plan [62] that espouses the principles of
community-centered development with “10-min neighborhoods” as its first goal. Hence,
2015 shows an urban landscape full of nuances that cannot be fully assessed outside of the
long-term adjustments towards a new land-use-mobility “equilibrium”. It remains to be
seen whether impacts may change in future years, when the transit network properties are
improved, and population density is higher. In future conditions of a more populous city,
people may have a greater tendency towards using transit.

In addition, the majority of the research on the impact of the built environment
on reducing travel consumption has been performed on all trip types, while this work
studied work travel. This is important to consider because the response of non-work
trips might well be different from work trips in CTAD and urban areas. The 5 Ds may
have a greater impact on non-work travel duration or distance than on work travel since
the options for services for daily needs and their accessibility increase in compact and
diverse neighborhoods.

Given the points raised on the status of residential development, transport infras-
tructure and mobility in Mecklenburg County in 2015 and given the broader implications
this may have on settling the nature of the relationship between the built environment
and travel consumption, an agenda can be laid out for future research. First, we propose
that cities with diverse degrees of development and transit properties should be studied
through comparative approaches to gain insights and shed a better light on the important
considerations discussed above.

Second, the longitudinal design method for alleviating the selection bias is based on
the assumption that travel preferences are constant over time, while this may not hold true
in the fast changing urban context, such as with the emergence of new housing options and
new mobility options (e.g., novel Mobility-as-a-Service (MaaS) providers). Having access
to primary survey data on travel preferences may help in a better understanding of the role
of selection bias for future work.

In addition, given the potential changes in traffic conditions in compact areas during a
period of fast transformation of the urban fabric, it would be helpful to control for traffic
congestion effects brought about by localized population and employment growth. In
addition, with the growing multimodality of urban travel, some measures of walk-and-
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ride, park-and-ride and other first/last mile coping behaviors should be helpful to the
modeling work.

Furthermore, MAUP is another important issue that needs to be considered in stud-
ies of the built environment and commuting duration. In this study, the finest level of
geography at which the data are available was census block groups. Therefore, possible
ecological fallacy cannot practically be circumvented by downscaling the analysis at a finer
granularity such as the census blocks. It may be useful, however, to conduct the analysis at
the disaggregated level of the individual residents based on travel behavior data.

Lastly, the relationship between the built environment and travel consumption is a
multifaceted and multidirectional phenomenon. Bidirectional relationships are possible
between different components of travel behavior, such as travel duration, travel distance,
travel mode, trip type, trip frequency and mode choice, different factors of the built
environment and travel preferences. As a result, more holistic models that can investigate
complex relationships in a multidirectional phenomenon, such as structural equation
modeling, should be considered for future work.

6. Conclusions

This paper empirically studied the impact of built environment types on commuting
duration as a core travel behavior component. There were two hypotheses. First, built
environment types have an impact on commuting duration. Second, areas whose urban
fabric is deeply associated with density, diversity, design, destination accessibility and
reduced distance to transit have shorter commuting duration.

To test the two stated hypotheses, the built environment in 2015 was classified into
types of exurban, suburban, urban and CTAD on the basis of built environment factors
indicative of the 5 Ds. Their differential impact was then evaluated using spatial panel data
models. Spatial econometric results show that the built environment in both CTAD and
urban areas has a statistically significant impact on commuting duration in comparison to
other built environments, namely the city’s suburbs and exurbs. Both the CTAD and urban
areas had shorter commuting durations. However, our analysis reveals that this impact
consists of an increase in average treatment effect over time, that is between 2000 and
2015 in our case study, while exurban and suburban areas have experienced a reduction
in commuting duration over this period, even after controlling for spatial dependence. It
decreased by 1.33 min per commute trip on average in the spatial Durbin model.

In conclusion, the findings of this case study confirm that the built environment is not a
neutral context within which travel behavior happens to take place. Statistical evidence tells
us that commute duration varies across built-environment types. The results of our case
study are similar to others that found a statistically significant impact, although practically
small. They are not consistent with the notion that a built environment developed according
to the 5 D principles dampens travel demand, however. Instead, they align with studies
that have argued that compact developments lead to higher traffic congestion and greater
travel duration. We discussed the results of the analysis conducted in the light of the
highly dynamic urban environment used for our case study. We argued for the need to
direct future research towards enhancing the research design to explicitly accommodate
the dynamics of the urban systems where land use structures and the mobility of residents
mutually interact.
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