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Abstract: We introduce a new class of non-uniformly correlated beams that are called rectangular
Hermite non-uniformly correlated (RHNUC) beams, which possess rectangular symmetry in
their degree of coherence. It is shown that, in free space and in turbulence, these beams possess
self-focusing properties and that the position of the focus can be adjusted in 3-D space by
manipulating the correlation properties of the source. Furthermore, it is demonstrated that, by
choosing different mode orders and correlation lengths along two transverse directions, one
creates astigmatic beams that can be designed to have a high and near-constant intensity over an
extended propagation range.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Much of the research in optical coherence theory has focused on studying beams of Gaussian
Schell-model (GSM) form. For such beams, bothless affect by turbulence the intensity and
degree of coherence (DOC) have Gaussian distributions, and the DOC is a homogeneous and
isotropic function (Schell-model) [1]. Until recently, only a few papers were devoted to partially
coherent beams (PCBs) with non-conventional correlations (i.e. non-Gaussian correlated),
such as J0-correlated Schell-model beams [2] and vortex-carrying partially coherent beams [3].
Investigations of such beams were limited due to the difficulty in proving that a given function is,
in fact, a mathematically valid correlation function.
But in 2007, a powerful new method for designing correlation functions of scalar PCBs was

introduced by Gori et al. [4], followed in 2009 by a more general method for vector PCBs [5],
allowing a wide variety of novel PCBs to be investigated. Among the classes that have been studied
since then are multi-Gaussian correlated Schell-model beams [6], Laguerre-Gaussian correlated
Schell-model beams [7], Hermite-Gaussian Schell-model beams [8], and optical coherence
lattices [9]. Such beams display many extraordinary and potentially beneficial properties, such
as flat-topped and ring-shaped intensity profiles in the far field, self-splitting properties, and
lattice-like intensity patterns that form on propagation.

In 2011, Lajunen et al. introduced a class of PCBs with spatially variant correlation functions
(i.e. non-uniformly correlated beams) [10]. This class exhibits self-focusing and self-shifting on
propagation. Higher-order non-uniformly correlated beams were introduced in 2018, and their
propagation properties were also investigated [11]. Later in 2018, we extended these ideas and
introduced a new infinite class of beams called Hermite non-uniformly correlated (HNUC) beams,
in which both mode order and correlation length may be tuned to adjust the focal properties of
the beam [12].
There are other potential benefits to developing novel PCB classes. When a laser beam
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propagates through atmospheric turbulence, it experiences several deleterious effects caused
by random variations in the refractive index [13]. These negative effects, which include
excessive beam spreading, beam wander, angle-of-arrival fluctuations, and scintillation, reduce
the reliability of remote sensing systems, laser radar, and free-space optical communications.
Thus it is imperative to take action to mitigate or overcome these effects. It has long been
appreciated that PCBs are a good choice to reduce the negative effects from turbulence [14]. Many
papers have studied strategies to improve turbulence resistance of beams by using different kinds
of PCBs, e.g. PCBs with special beam profiles [15], states of polarization [16], phases [17–19],
and non-conventional correlation functions [20, 21].

In nearly all the attempts listed above, the beams have a Schell-model degree of coherence, and
though they are effective at reducing turbulence effects, this comes with a decrease of intensity in
the focal plane. In recent years, however, it was shown that non-uniformly correlated (NUC)
beams in turbulence can have, under certain circumstances, not only lower scintillation but higher
intensity than GSM beams [22]. Recently, Yu et al. looked at the extended class of HNUC
beams in turbulence, and demonstrated that the intensity and the scintillation of the beam can
be simultaneously optimized in the receiver plane for an appropriate choice of beam order and
spatial coherence [12].
The HNUC beams considered previously had circular symmetry. In this paper, we introduce

a yet more general class of NUC beams called rectangular Hermite non-uniformly correlated
beams, which possess rectangular symmetry and may have their characteristics along the two
rectangular axes independently tuned. The propagation properties of such beams are studied
in free space and in atmospheric turbulence, and it is shown by that adjusting beam orders and
correlation lengths, one can achieve a high constant on-axis intensity over an extended range, and
one can control the location of the focal point of RHNUC beams in 3–D space. Furthermore, we
investigate the impact of the shift parameter on the beam’s resistance to turbulence.

2. Theoretical model for RHNUC beams

The spatial coherence properties of scalar PCBs are characterized by the cross-spectral density
(CSD) in the space-frequency domain and by the mutual coherence function in the space-time
domain. The CSD is the quantity of choice for studying quasi-monochromatic fields, and it is
defined as a two-point correlation function [1],

W (r1, r2) = 〈E∗ (r1) E (r2)〉ω , (1)

where r1=(x1, y1) and r2=(x2, y2) are two arbitrary position vectors transverse to the direction
of propagation, E(r) represents the field fluctuating in a direction perpendicular to the z-axis,
the asterisk denotes the complex conjugate and the angular brackets 〈...〉ω denote an ensemble
average over a ensemble of monochromatic field realizations.
The CSD of PCBs can be expressed in the following general form [1],

W (r1, r2) =
√

S (r1) S (r2)µ (r1, r2) , (2)

where S(r) is the spectral density at point r, and µ(r1, r2) is the DOC of the PCB. For HNUC
beams with a circularly symmetric DOC, the CSD is defined as [12]

W (r1, r2) = exp

(
−

r2
1 + r2

2

w2
0

)
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where w0 denotes the beam width, rc is the correlation length, G0 = 1/H2m(0) and H2m denotes
the Hermite polynomial of order 2m.
Now we introduce the rectangular Hermite non-uniformly correlated beams as a natural

extension of circular HNUC beams. The spectral density and the DOC of RHNUC beams in the
source plane are given as

S (r) = exp
(
−r2/w2

0

)
, (5)

µ (r1, r2) = µx (x1, x2) µy (y1, y2)

= G0xH2m

[
(x1 − x0)2 − (x2 − x0)2

r2
cx

]
exp
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)2

r4
cx


× G0yH2n

[
(y1 − y0)2 − (y2 − y0)2

r2
cy

]
exp

−
(
(y1 − y0)2 − (y2 − y0)2

)2

r4
cy

 ,
(6)

where rcx and rcy are the correlation lengths in the x and y directions, respectively, G0x=1/H2m(0)
and G0y=H2n(0), x0 and y0 are the shift parameters in x and y directions.

To be a mathematically genuine or physically realizable correlation function, the CSD of PCBs
must be Hermitian and satisfy the condition of non-negative definiteness. From the definition, it
is obvious that it is Hermitian. The condition for non-negative definiteness will be satisfied if it
may be written in the form [1],

W (r1, r2) =
∫

I (v)V∗0 (r1, v)V0 (r2, v) d2v, (7)

where V0 is an arbitrary kernel but I must be a non-negative function. Equation (7) can be
expressed in the following alternative form [23],

W (r1, r2) =
∬

Wi (v1, v2)V∗0 (r1, v1)V0 (r2, v2) d2v1d2v2, (8)

where
Wi (v1, v2) =

√
I (v1) I (v2)δ (v1, v2) , (9)

here, δ denotes the Dirac delta function. FromEqs. (8) and (9), we see that PCBswith special DOC
can be generated from an incoherent source with CSD function Wi(v1, v2) through propagation
by choosing suitable expressions of I and V0. In such a case, V0 would be the kernel of a linear
optical system.
To generate RHNUC beams, we set I and V0 as follows:

I(v) = (4π)−1
(
2
a

)2m+1 (
2
b

)2n+1
v2m
x v2n

y exp

(
−v

2
x

a2 −
v2
y

b2

)
, (10)

V0 (r, v) = exp

(
− r2

w2
0

)
exp

[
−ikvx (x − x0)2 − ikvy (y − y0)2

]
, (11)

where a = 2/kr2
cx and b = 2/kr2

cy , k = 2π/λ is the wavenumber. After substituting Eqs. (10)
and (11) into Eq. (8), it reduces (after some operations) to the CSD of RHNUC beams. So this
CSD satisfies the condition of non-negative definiteness and it is therefore physically realizable.
How to realize the system of Eq. (11), however, is an open question.
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Fig. 1. Density plot of the absolute value of the DOC of RHNUC beams for different beam
orders with x0=y0=0 and different shift parameters with m = n = 2 (a) in the x1 − x2 plane
with y1 = y2 = 0 (b) in the x1 − y1 plane with x2 = y2 = 0.

Figure 1 shows the density plot of the absolute value of the DOC of RHNUC beams for
different beam orders and shift parameters in the source plane. One finds that the distribution of
the DOC of RHNUC beams in the x1 − x2 plane is similar to that of the circular HNUC beams
mentioned in [12]; however, the distribution of the DOC in the x1 − y1 plane has rectangular
symmetry. The number of side lobes in x and y directions increases as the value of the beam
orders m and n increase, respectively. The DOC of RHNUC beams is also dependent on the shift
parameters, and the center position is determined by the shift parameters. We therefore have a
class of rectangular non-uniformly correlated beams with distinct correlation functions.

3. Cross-spectral density of RHNUC beams propagating in turbulent atmosphere

In general, paraxial propagation of the CSD of PCBs from the source plane z = 0 into an arbitrary
plane z > 0 in free space or a turbulent medium can be treated by the generalized Huygens-Fresnel
integral [13],

W (ρ1, ρ2, z) =
(

k
2πz

)2 ∬ ∞

−∞
W0 (r1, r2) exp

[
− ik

2z
(r1 − ρ1)2 +

ik
2z
(r2 − ρ2)2

]
× 〈exp [Ψ (r1, ρ1) + Ψ∗ (r2, ρ2)]〉 d2r1d2r2,

(12)

where ρ1 and ρ2 represent two arbitrary spatial positions in the receiving plane, W0(r1, r2)
denotes the CSD of the beams in the source plane, and Ψ(r, ρ) denotes the complex phase
perturbation induced by the refractive-index fluctuations of the random medium between r and ρ.
In free space, Ψ(r, ρ) = 0. The ensemble average term in Eq. (12) can be expressed as [12],

〈exp [Ψ (r1, ρ1) + Ψ∗ (r2, ρ2)]〉 =

exp
{
−

(
π2k2z

3

) [
(ρ1 − ρ2)2 + (ρ1 − ρ2) · (r1 − r2) + (r1 − r2)2

] ∫ ∞

0
κ3
Φn (κ) d2κ

}
,

(13)

where Φn (κ) is the spatial power spectrum of the refractive-index fluctuations of the turbulent
atmosphere. For brevity, we set

T =
∫ ∞

0
κ3
Φn (κ) d2κ . (14)
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Here, we choose the van Karman power spectrum as the turbulence model, which can
account for non-Kolmogorov as well as Kolmogorov (α = 11/3) turbulence with inner and outer
scales [24, 25]

Φn (κ) = A (α)C2
n

(
κ2 + κ2

0

)−α/2
exp

(
−κ2/κ2

m

)
, (15)

where C2
n is a generalized refractive-index structure parameter with units m3−α, κ0 = 2π/L0, with

L0 being the outer scale of turbulence, κm = c(α)/l0, with l0 being the inner scale of turbulence,
and

A(α) = 1
4π2 Γ(α − 1) cos (απ/2) , c(α) =

[
2πA(α)

3
Γ(5 − α/2)

]1/(α−5)
, (16)

where Γ(·) represents the Gamma function.
With this spectrum, T can be expressed in the following form

T =
A(α)

2(α − 2)C
2
n

[
βκ2−α

m exp
(
κ2

0/κ
2
m

)
Γ1

(
2 − α/2, κ2

0/κ
2
m

)
− 2κ4−α

0

]
, 3 < α < 4, (17)

where β = 2κ2
0 − 2κ2

m + ακ
2
m and Γ1 is the incomplete Gamma function. T is therefore a constant

for a given state of turbulence.
Now, we may calculate the CSD of RHNUC beams in the target plane using the above equations.

As it is too hard to integrate directly by inserting Eqs. (5) and (6) into Eq. (12), we substitute
Eq. (7) into Eq. (12), and after interchanging the orders of the integrals, we obtain the formula

W (ρ1, ρ2, z) =
∫

I(v)P (ρ1, ρ2, v, z) d2v, (18)

where we define P (ρ1, ρ2, v, z) as

P (ρ1, ρ2, v, z) =
(

k
2πz

)2 ∬ ∞

−∞
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− ik
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]
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3
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]}
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(19)

Substituting from Eq. (11) into Eq. (19), after a lengthy integral calculation, one obtains

P (ρ1, ρ2, v, z) = exp
[
− ik
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We obtain the CSD of RHNUC beams after propagation by evaluation of Eq. (18).
The spectral intensity of RHNUC beams in the output plane is defined as

S(ρ, z) = W (ρ, ρ, z) . (23)

The spectral degree of coherence of HNUC beams in the output plane is obtained from the
expression

µ (ρ1, ρ2, z) =
W (ρ1, ρ2, z)√

W (ρ1, ρ1, z)W (ρ2, ρ2, z)
. (24)

Applying Eqs. (10) and (20)–(24), one can numerically study the evolution properties of the
spectral intensity and spectral DOC in free space and in turbulence in a straightforward manner.

4. Numerical calculation results and analysis of propagation properties of RHNUC
beams in free space

In this section, we study the propagation properties of RHNUC beams propagating in free space
by using the formulas derived above (when C2

n = 0). In the following examples, the parameters
of the beam are set as λ = 632.8 nm, w0 = 5 cm.

Fig. 2. The normalized intensity of RHNUC beams at different distances for different values
of the beam orders and the correlation lengths with no shifting (a) m = n = 0, rcx = rcy = 3
cm (b) m = n = 2, rcx = rcy = 3 cm (c) m = n = 2, rcx = rcy = 4 cm.

Figure 2 shows the intensity for identical orders and correlation lengths along x and y. One
observes that the size of the beam spot of RHNUC beams decreases with increasing propagation
distance over short ranges, while at long ranges, the spot size increases, which means RHNUC
beams possess a self-focusing property, which is similar to the behavior of circular HNUC
beams discussed in [12]. However, the distribution of the intensity of RHNUC beams satisfies a
Gaussian distribution in the source plane, and it evolves into diamond distribution gradually as
the increasing propagation distance. Here, let us define the position of the smallest size, i.e., focal
distance, of the beam spot as “Z f ” [e.g., Z f = 1.2 km in Fig. 2(b)]. There is a detailed calculation
process of Z f in Ref. [26]. Comparing with Figs. 2(a) and 2(b), we find that, with increasing
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beam order, the self-focusing property becomes more dramatic and Z f becomes smaller, but
the spot size increases more rapidly at long ranges. We find from Figs. 2(b) and 2(c) that the
correlation length also affects the self-focusing property. With a small value of correlation length,
the self-focusing property becomes more dramatic and Z f becomes smaller; the explanation of
this is similar to that given in Ref. [12].
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Fig. 3. Normalized intensity on-axis of RHNUC beams propagation in free space (a) with
rcx = rcy = 3 cm for different beam orders (b) with m = n = 2 for different correlation
lengths.

Figure 3 shows the normalized intensity on-axis of RHNUC beams in free space for different
beam orders and different correlation lengths. One confirms that the on-axis intensity of RHNUC
beams increases over short propagation distances to a maximum, after which it decreases
gradually. Furthermore, the peak value of the intensity is larger and the Z f is smaller with
increasing beam orders or decreasing correlation lengths, which means the self-focusing property
of RHNUC beams with large beam orders or low correlation lengths is more dramatic and both
mode orders and correlation lengths may be changed to adjust the focal distance (i.e., the position
in z-direction).
In the case of equal mode orders and correlations along x and y, the beam effectively has a

point focus and a high intensity over a relatively short propagation range. If different coherence
properties are used along x and y, the focusing will be astigmatic; under such a circumstance, an
appropriate choice of mode orders and correlation lengths can result in a high constant intensity
over an extended propagation range, as we now show.

Figure 4 shows the density plot of the normalized intensity of RHNUC beams propagation at
several propagation distances for astigmatic cases (m , n and/or rcx , rcy). We find that the
beam spot becomes a squashed diamond distribution at Z f ; over long ranges, the beam profile is
also a squashed diamond but is perpendicular to that at Z f . This phenomenon can be explained
by the different focal lengths along x and y for different mode orders or correlation lengths.
Figure 5 shows the focal distance and normalized intensity maximum in x and y directions

of RHNUC beams versus the correlation lengths for different beam orders (the results in x and
y direction are the same). We find from Fig. 5(a) that the focal distance increases gradually
over low coherence to a maximum, after which it decreases rapidly to zero, which indicates that
self-focusing disappears with high coherence. Furthermore, the focal distancemaximum increases
with larger beam orders. Figure 5(b) shows us that the value of normalized intensity maximum
of the beam is almost constant for low coherence, and then decreases rapidly with increasing
coherence to a value of unity. It should be pointed out that the value of the normalized intensity
maximum is 1 for an incoherent beam, which isn’t shown in Fig. 5(b). Figure 5 demonstrates lots
of flexibility in placing the x and y focal points. According to these observations, we can choose

                                                                                               Vol. 26, No. 21 | 15 Oct 2018 | OPTICS EXPRESS 27900 



Fig. 4. The astigmatic normalized intensity of RHNUC beams at different distances for
different values of the beam orders and the correlation lengths with no shifting (a)m = 2,
n = 0, rcx = rcy = 3 cm (b) m = n = 2, rcx = 5 cm, rcy = 3 cm.
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Fig. 5. (a) Focal distance (b) Normalized intensity maximum in x(y) direction of RHNUC
beams versus the correlation lengths for different beam orders.

different focal distances and normalized intensity maximums of the beam in x and y directions to
realize a flat-topped high intensity profile with respect to propagation distance.
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Fig. 6. Normalized intensity of astigmatic RHNUC beams propagation in free space for
different beam orders and correlation lengths. Sx and Sy are the normalized intensities in x
and y directions, respectively.

Figure 6 shows examples of such flat-topped intensity for different beam orders and correlation
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lengths. One finds that an appropriate choice of mode orders and correlation lengths can
achieve flat-topped on-axis intensity over a range on order of a kilometer. Furthermore, we
can adjust the beam orders and correlation lengths to control the magnitude and location of
the flat-topped intensity. Here, though we present only three results, users can use Fig. 5 to
determine for themselves which beam orders and correlation lengths provide optimal results for
their application.

5. Numerical calculation results and analysis of propagation properties of RHNUC
beams in turbulent atmosphere

In this section, we study the propagation properties of RHNUC beams propagating in turbulence.
In the following numerical examples, the parameters of the turbulence are set as L0 = 1 m, l0 = 1
mm, α = 11/3 and C2

n = 4 × 10−15 m−2/3 . The Rytov variance σ2
1 = 1.23C2

nk7/6z11/6, which
represents the scintillation of a plane wave under weak fluctuation conditions, is often used as a
rough measure of turbulence strength. For our conditions, σ2

1 = 1.7 at 3 km, which indicates
strong turbulence.

Fig. 7. The normalized intensity of RHNUC beams at different distances in turbulence for
different beam parameters with no shifting (a) m = n = 0, rcx = rcy = 3 cm (b) m = n = 2,
rcx = rcy = 3 cm (c) m = n = 2, rcx = rcy = 4 cm.

Figure 7 shows the normalized intensity of RHNUC beams at different distances in turbulence
with different beam orders and correlation lengths. We confirm that the self-focusing property of
such beams still works in turbulence. Figure 7 shows that the intensity profile of RHNUC beams
evolves from a Gaussian profile in the source plane, to a diamond distribution in the self-focusing
plane (similar to the free-space case), to a Gaussian profile again at a long propagation distance.
One can explain this phenomenon by the fact that the influence of turbulence can be neglected
and the free-space diffraction plays a dominant role at short propagation distance, thus the
propagation properties of RHNUC beams in turbulence is similar to those in free space. With
the further increase of the propagation distance, the influence of turbulence accumulates and
plays a dominant role gradually, and the diamond distribution beam profile evolves into Gaussian
distribution beam profile at long distance due to the isotropic influence of turbulence.
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Comparing with Figs. 7(a) and 7(b), one finds that the evolution properties of the intensity
are closely related to the beam orders m and n, the conversion from the diamond distribution to
Gaussian distribution becomes slower as the beam orders m and n increase, which means that
RHNUC beams with large m and n are less affect by turbulence. We confirm from Figs. 7(b) and
7(c) that RHNUC beams with low correlation lengths can keep the diamond distribution beam
profile longer propagation distance than RHNUC beams with high correlation lengths, which
means that RHNUC beams with low correlation lengths are less affected by turbulence.
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Fig. 8. Normalized intensity of astigmatic RHNUC beams propagation in turbulence for
different beam orders and correlation lengths. Sx and Sy are the normalized intensities in x
and y directions, respectively.

Figure 8 shows the flat-topped intensity of RHNUC beams propagation in turbulence for
different beam orders and correlation lengths. One confirms from Fig. 8 that one can also choose
an appropriate mode orders and correlation lengths to achieve flat-topped on-axis intensity in
turbulence. For applications, this flat-topped profile could reduce sensitivity to range errors.
Figure 9 shows the density plot of the absolute value of the DOC of RHNUC beams for

different beam orders and correlation lengths in free space and turbulence. We find from Fig. 9
that the spectral DOC of RHNUC beams displays a rectangular symmetry array distribution (if
m = n = 0, just like a rectangle) in the source plane, evolves into a different array distribution at
short distance and then regains the profile similar to that in the source plane in free space [see
Fig. 9(a)]. In turbulence, however, the rectangular symmetry distribution of DOC gradually
disappears on propagation and the spectral DOC finally becomes of Gaussian distribution in the
far field. Furthermore, the evolution properties of the DOC are closely related to the beam orders
[see Figs. 9(b) and 9(c)] and also related to the correlation lengths [see Figs. 9(b) and 9(d)].
We find that the conversion from the array distribution to Gaussian distribution becomes slower
as the beam orders m and n increase or the correlation lengths decrease in turbulence, which
means that RHNUC beams with large beam orders or low correlation lengths are less affected by
turbulence from the perspective of the spectral degree of coherence.
We therefore conclude that the self-focusing property of RHNUC beams also works and

flat-topped and high intensity also can be realized in turbulent atmosphere. Furthermore, RHNUC
beams with large beam orders and low coherence are less affected by the turbulence.

6. Numerical calculation results and analysis of effect of the shift parameters
on propagation properties of RHNUC beams

The shift property of RHNUC beams allows their transverse position to be adjusted at the detector
by adjusting the source statistics alone. Figure 10(a) shows the normalized intensity of RHNUC
beams on propagation in free space at several propagation distances with given shift parameters
(x0 = y0 = 2 cm) and Fig. 10(b) shows the normalized intensity of RHNUC beams at the focal
plane Z f = 1.2 km for different values of the shift parameters.
These results show clearly that we can control the location of the beam center (intensity

                                                                                               Vol. 26, No. 21 | 15 Oct 2018 | OPTICS EXPRESS 27903 



Fig. 9. Density plot of the absolute value of the DOC of RHNUC beams for different beam
orders and correlation lengths with no shifting in free space (a) m = n = 2, rcx = rcy = 3
cm; and in turbulence (b) m = n = 2, rcx = rcy = 3 cm (c) m = n = 0, rcx = rcy = 3 cm
(d) m = n = 2, rcx = rcy = 4 cm.

maximum) in receive plane (i.e., x − y plane) by adjusting the shift parameters. Hence, together
with the earlier discussion of focal control, we find that one can control the location of the focus
point in full 3–D space by adjusting the initial parameters of RHNUC beams.

Fig. 10. The normalized intensity of RHNUC beams in free space with m = n = 2,
rcx = rcy = 3 cm (a) at several propagation distances with x0 = y0 = 2 cm; (b) with
different values of the shift parameters at z = 1.2 km.
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It should be noted that turbulence will degrade the shifting behavior. Figure 11 shows that
shift distance (SD) of the intensity maximum of the beam versus the propagation distance in free
space and in turbulence and degradation rate (η) of shift distance of the intensity maximum of the
beam in turbulence with different shift parameters. Here, we defined the SD and the degradation
rate as follows,

SD =
√
ρ2
x + ρ

2
y, (25)

η =

��SDt − SD f

��
SD f

× 100%, (26)

where (ρx , ρy) denotes the position coordinate of the intensity maximum of the beam spot, SD f

and SDt denote the shift distance of the intensity maximum of the beam spot in free space and in
turbulence, respectively.
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Fig. 11. (a) Shift distance of the intensity maximum of RHNUC beams versus the propagation
distance in free space (solid line) and in turbulence (dash line); and (b) degradation rate
of shift distance of the intensity maximum of the beam in turbulence with different shift
parameters.

We find from Fig. 11(a) that the SD increases rapidly at short propagation distance, while at
long distance, it increases gradually in free space. However, in a turbulent atmosphere the SD
increases to a maximum, after which it decreases asymptotically to a fixed value, which implies
that the shifted beam spot returns to a Gaussian beam profile, gradually, due to the influence of
the turbulence. One confirms from Fig. 11(b) that, at a short distance (i.e., z < 1 km) and the
propagation distance between about 5.5 km ≤ z ≤ 9 km, the degradation rate decreases with the
increasing beam shift parameters, which means RHNUC beams can better to keep the original
transmission path with large shift parameters, i.e., we can also adjust the shift parameters of
RHNUC beams to optimize effects for a given propagation distance.

7. Summary

We have studied the propagation of RHNUC beams in free space and in turbulence. Analytical
expressions for the CSD of RHNUC beams in turbulence have been derived and the evolution
properties of the spectral intensity, and the spectral DOC of such beams have been illustrated
numerically. We have found that adjusting the beam orders and correlation lengths can realize
flat-topped astigmatic intensity profiles, and one can adjust the initial beam parameters of RHNUC
beams to control the focus point in 3D space. Furthermore, adjusting the beam orders and the
correlation lengths of the beam can mitigate negative effects from turbulence. Moreover, we
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can also adjust the shift parameters of RHNUC beams to optimize effects for given propagation
distance between a signal transmitter and receiver.
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