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Abstract: The maximum entropy method is a theoretically sound approach to construct
an analytical form for the probability density function (pdf) given a sample of random
events. In practice, numerical methods employed to determine the appropriate Lagrange
multipliers associated with a set of moments are generally unstable in the presence of noise
due to limited sampling. A robust method is presented that always returns the best pdf,
where tradeoff in smoothing a highly varying function due to noise can be controlled. An
unconventional adaptive simulated annealing technique, called funnel diffusion, determines
expansion coefficients for Chebyshev polynomials in the exponential function.
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1. Introduction

Given a sample of statistical data, the maximum entropy method (MEM) is commonly employed to
construct an analytical form for the probability density function (pdf) in myriad applications across a
diverse array of disciplines [1–3]. The classic problem has been posed as: Given a finite set of power
moments over the random variable, x, defined as 〈xj〉, ∀j = 1, 2, . . . ,M ; find a pdf that reproduces
these power moments. Unfortunately, this problem is ill-posed because it is clear that a finite number of
moments cannot lead to a unique pdf. Moreover, if a sequence of such moments is arbitrarily specified, it
is possible that no pdf can be constructed because there exists well-known inequality relations that must
be satisfied among the moments when they are derived from any true pdf. For example, if the assumed
pdf is bounded on a finite interval, the construction of the pdf is referred to as the Hausdorff moment
problem, which remains a highly active research area in statistics and probability theory [4–7] in regards
to finding the most faithful pdf when only limited information about the moments is known.
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The problem of interest in this paper is much simpler than the Hausdorff moment problem because
the collected statistical data ensures that a pdf exists. For example, the pdf can be directly estimated
by making a histogram of the statistical data. Although the histogram method may provide a sufficient
estimate for the pdf, its analytical form will be unknown. To determine an analytical form, a common
approach is to calculate the set of power moments {〈xj〉} from the sampled statistical data, and apply
the postulate that the true pdf will maximize entropy while satisfying the set of constraints that all
known moments will be reproduced. As such, the MEM is useful because it recasts an ill-posed inverse
problem into a well-defined calculus of variation problem. Although other methods are available that do
not invoke the maximum entropy assumption [8], it has been shown that the MEM generally is able to
obtain a pdf with the same degree of accuracy using less number of moments [9].

Due to the appeal of the MEM, and its connection and origins with statistical physics concepts [10],
many inverse problems encountered in physics have been successfully solved [11] using a markedly
small number of moments. As powerful as the MEM has proven to be, it has been notoriously difficult
to find stable algorithms to reconstruct the pdf when the number of known empirical moments become
more than four [12–14]. This problem is unfortunate, because in principle a more accurate pdf can be
determined the greater number of moments that are known. The common attribute of numerical methods
that have problems with convergence and stability require employing a Hessian matrix to find a minimum
of a function of many variables (being the set of Lagrange multipliers that appear from the calculus of
variation problem). Interestingly, much greater numerical stability has been achieved by considering
moments of certain types of orthogonal polynomials where the zeros of all the polynomials are within the
domain range of the random variable, x, such as the Chebyshev polynomials [15] appropriately scaled on
a bound interval. Recently, a robust method has been developed that has been demonstrated to be stable
using hundreds of moments [16]. Although using moments of orthogonal functions achieve greater
numerical stability compared to power moments, convergence problems remain, and this approach is
not completely robust. Rather than viewing a set of moments as characterizing a pdf, the histogram of
the sampled data has been directly used as constraints within the framework of the MEM [17]. The
maximum entropy histogram approach appears to be robust.

In this paper, a combination of the orthogonal function moments and the maximum entropy histogram
approach are combined to yield a novel MEM variant that is robust. The motivation for developing a
new MEM was to determine a pdf with high accuracy that extends deep into the tails of the distribution
function, where the sampling is very sparse. The specific application of interest is related to the
calculation of a partition function at temperature, T , given that the probability density of finding a
system in a state of energy, E, while subject to a thermal bath at temperature, To, is given by p(E).
It is straightforward to derive the partition function is given as

Z(T ) = Z(To)

∞∫
Eo

p(E)e−∆β E dE (1)

where Eo is the lowest possible energy of the system, ∆β = 1
kT

− 1
kTo

, and k is the Boltzmann constant.
In this application of interest, the sampling of E was obtained using Monte Carlo (MC) simulation at To,
and from this data, an accurate pdf was sought. Thermodynamic functions, such as free energy, mean
energy, entropy and heat capacity are then calculated from Z(T ). For these quantities to be accurate at
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temperatures, T , far away from To, the pdf must be accurate in the tails at both low and high energy,
E. The new MEM that was developed to solve this problem was verified to work well, because the MC
simulations were performed at other temperatures as a direct check. Although it is possible to simply run
MC simulation for all temperatures of interest, the approach defined in Equation 1 provides analytical
expressions, which were desired.

The focus of this paper is to describe the novel MEM in a general context because determining an
accurate pdf from sampled data is ubiquitous. In particular, in many applications the true answer is not
known, and it is impractical to simply sample more to obtain better accuracy within the tails. Therefore,
consider the generic problem that requires re-weighting the pdf with exponential factors, such that

〈f(x)〉µ =

∞∫
xmin

f(x)p(x)e−µx dx

∞∫
xmin

p(x)e−µx dx

(2)

where f(x) is an arbitrary function, p(x) is the unknown pdf that is to be determined, and µ is essentially
a conjugate Laplace transform variable. One problem with Equation 2 is that f(x) could have high
powers of x, or 1/x, making the average 〈f(x)〉µ very sensitive to noise in the sampling data. More
difficult is the exponential re-weighting factor that increases the significance in the tails of the original
pdf that were low probability regions. This sort of problem had to be solved in some practical way.
Obviously, any method will break down at some point for |µ| too large, or for some misbehaved function.
Therefore, the first approach was to simply smooth the original sampled data using a sliding histogram
smoothing technique. However, when attempting to re-weight the pdf while working with moments
dealing with powers of x2, the smoothing/histogram method failed to yield satisfactory results. Failure
in using a smoothed distribution function was confirmed by performing numerical experiments where
the exact p(x) function is known. This null result suggested to apply some standard MEM that was
already available. Unfortunately, the method that promised to be very robust [16] failed to work. It was
this discouraging result that required reformulating the problem so that a solution for the pdf, given the
existence of the histogram, would always be possible.

In this paper, I present a solution to the problem of constructing the pdf from statistical data that works
remarkably well for applications described by Equation 2. The MEM presented is pragmatic in nature,
using a combination of computational and optimization methods. I provide no proofs that the method
presented is optimal, as it appears one could create many variants to work just as good. In my original
application of interest, no a priori information about the true pdf is known, except that the pdf exists in
the form of a histogram, and the lower limit in x is bounded, but this value is unknown. In this paper,
the method is developed to allow for either the lower and upper limits in Equation 2 to be finite or not.
The conclusion is what one should expect. First, the method will always return a result. The final pdf
that is returned can reproduce the original statistics observed from the sampled data. Extrapolating the
moments using Equation 2 will almost surely be in error for most problems if one exceeds reasonable
limits on |µ|. However, for reasonable extrapolations, the method is probably the best one can hope
for. That is, an analytical form for the pdf is always constructed that allows for accurate integration
of f(x)-moments, and the sensitivity of the re-weighted moments can be controlled to a point, which
provides a means to estimate uncertainties in the predictions. Thus, the method presented is a robust
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way to solve a common problem regarding constructing probability density functions, and calculating
averages of functions.

A key feature of the new method described here is that the constraints are not considered to be exact.
This is because one must realize that the power moments or moments of orthogonal functions carry with
them error bars that reflect the number of independent samples taken. This error due to limited sampling
is also present in the histogram. In particular, when the sampling is very limited, there is large intrinsic
noise due to unavoidable fluctuations. Methods that rely on exact known values of certain moments can
be expected to have problems because of the uncertainties within the constraints. Recent work has been
done in trying to correct for intrinsic noise that appears due to limiting sampling [18–20]. The approach
taken here is to spread errors due to inconsistencies that originate from fluctuations in sampling over
all the constraints being imposed. In other words, all the constraints are softened by minimizing the
least squares error between the final predicted moments with the empirically derived moments that are
operationally calculated from the statistical data. The advantages of the least squares approach in the
context of determining a pdf has also been considered before [21].

The new MEM described here yields the “best” pdf for quantitatively representing statistical data.
This claim is made because many constraints are considered simultaneously, which includes a large
number of moments, as well as requiring the pdf to reproduce the histogram. The method is set up in a
generic fashion, meaning nothing special needs to be known about the nature of the pdf. However, when
the sample dataset is small, the predicted pdf can substantially deviate from the true pdf. Nevertheless,
the method is robust in the sense that it always returns a pdf that reproduces the statistics while gracefully
distributing statistical uncertainties. It is demonstrated that as the number of samples increases, the
predicted pdf converges to the true pdf markedly well, even for difficult cases.

2. Method

This section is broken down into a step-by-step prescription for a novel MEM, where each step is
a straightforward exercise. First, the sampled data is transformed to reside on a finite interval, which
makes the subsequent analysis much easier. Consequently, the pdf of the transformed data is subject
to the Hausdorff moment problem. Second, rather than using power moments which tend to loose
useful information across the entire domain range as the power increases, the moments for a set of
orthogonal level-functions is much more appropriate because all regions within the domain range of
the random variable are covered more uniformly. Third, the least squares error method is formulated
such that the constraints need not be perfectly satisfied, but rather all constraints should be satisfied as
best as possible by distributing the residual errors over all the imposed constraints. These constraints
include matching to the histogram, where the binning size is properly taken into account. Fourth, a
discussion of how to handle boundary conditions is given. Fifth, a method for smoothing the pdf is
described that adds additional constraints to the least squares method. In this way, smoothing is handled
with ease, and the degree of smoothing can be controlled by the user at the expense of increasing errors
between empirical based moments and the calculated moments from the predicted pdf. Sixth, a simulated
annealing technique is proposed to avoid dealing with ill-behaved Hessian matrices that cause numerical
instability. The method implemented prevents over specifying Lagrange multipliers, which is determined
by monitoring how the least squares error decreases as more Lagrange multipliers are included. In the
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seventh step, a novel type of adaptive simulated annealing technique, called funnel diffusion is described,
which was implemented in this work. The description of these seven prudent steps will hopefully
become a valuable resource for those who would like to either use the method presented as is, or further
explore variations.

2.1. Transforming the sampled data

The situation envisioned deals with statistical data, {xk}N , consisting of N unbiased observed random
events. Whether true or not, initially it is assumed that the range of accessible values of x is over all
reals (−∞,∞). However, the probability of observing an xk that is an extreme outlier approaches zero
rapidly, and thus the tails of the pdf are not sampled well. The lowest and greatest observed values define
xmin and xmax respectively. All random data is mapped onto an interval that has a range (−1, 1) through
the transformation

y = tanh

(
x − xshift

xspread

)
where xshift =

xmax + xmin

2
and xspread =

xmax − xmin

2A
(3)

By setting A = arctanh(ymax) for ymax on the interval (0, 1); Equation 3 maps all N observed data
points onto the smaller interval between (−ymax, ymax), where ymax is free to be set to a desirable value.
Since y ≈ tanh(y) for |y| ¿ 1, selecting a small value for ymax will keep the transformation essentially
linear. However, small ymax will compress all the data into a local region near the origin, and resolution
is lost. Resolution means that if a curve having minimums and maximums is squeezed down into a very
small region, ymax << 1, a set of orthogonal functions that span the range (−1 ≤ y ≤ 1) will accurately
represent the curve only if they vary rapidly over short scales. Thus, to keep the need to resolve small
scales to a minimum, it is best to spread the data over the entire range available. On the other hand,
although large ymax yields greater resolution for most of the data, resolution in how the curve varies will
be lost in the tails of the distribution where the transformation is non-linear in the regime where |y| ≈ 1.
Keeping the resolution problem in mind on both sides, a value near 3

4
for ymax works well. However,

when the data is binned, it is best to not have any possibility that the data falls exactly on the boundary.
To prevent data to lie on the boundary during the binning process, it is numerically convenient to shift
the limiting ymax value to be infinitesimally smaller than the nominal value would otherwise indicate.
A slight shift guarantees that the binning scheme that is to be employed below will maximally cover
the domain range of y, but if the shift is large, then it is possible that the bins defining the boundary
will be unfilled with data. Although normally these details are not a concern, it was found that careful
attention to the boundaries of bins is necessary in order to maintain high accuracy when singularities are
present at a boundary. To provide a robust generic method, a slight numerical shift proved sufficient to
accurately describe singularities that occur at these boundaries. Denoting ε as a very small number, such
as 5 × 10−7, a value of ymax = 3

4
− ε is found to work well in transforming the data while avoiding

problematic concerns. Then, A = 0.972954055 with this choice of ymax, and the sampled data lies on
the range (−3

4
, 3

4
). Alternatively, another logical choice is to set xshift = x where x is the mean value of

the sampled data, and xspread = 4σx where σx is the standard deviation. In most cases good results occur
using either prescription of change of variable. However, the transformation presented in Equation 3 is
much better when the distribution is highly skewed to the far left or right.
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The transformation of Equation 3 is applied to all input data to produce a new set of random variables
given by {yk}N . Note that the new variables are dimensionless. Let pT (y) define the pdf for the
transformed random variables, {yk}N . The objective now becomes determining pT (y) using the MEM.
The advantage of using the variable y is that it is known to be bound on the interval (−1, 1). After pT (y)

is found, the inverse transformation is applied to arrive at

p(x) =
pT

(
tanh

(
x−xshift

xspread

))
xspread

[
cosh

(
x−xshift

xspread

)]2 (4)

The form of Equation 4 makes the tails of p(x) fall off extremely fast for large values of x due to the
cosh2 function in the denominator. This functional behavior at the boundaries is fully welcomed and
desirable to guarantee that the predicted p(x) is normalizable.

2.2. Maximum entropy method applied to level-functions

Consider a set of functions that are labeled as f j
n(y). Based on the dataset {yk}N the empirical and

theoretical moments of these functions are given as

Empirical: f j
n =

1

N

N∑
k=1

f j
n(yk) Theoretical: 〈f j

n〉 =

∫ 1

−1

f j
n(y)pT (y) dy (5)

Although we do not know what the pdf is, a reasonable constraint to place on the function pT (y) is for the
theoretical and empirical averages of a large set of functions to be equal. Other than satisfying all these
moment conditions and the normalization condition, it is convenient to assume the functional form of
pT (y) will maximize information entropy. There is of course no justification for this assumption, except
what it does pragmatically. By maximizing the Shannon entropy, given by −

∫
ln (pT (y)) pT (y)dy,

the distribution function will be as broad as it possibly can be to maximize this entropy term, while
maintaining the other equalities. As such, the function pT (y) can be determined using the calculus of
variation by finding the maximum of the functional given by:

S [pT (y)] = µ0

(∫ 1

−1

pT (y)dy − 1

)
+

∑
j,n

µj
n

(∫ 1

−1

f j
n(y)pT (y)dy − f j

n

)
−

∫ 1

−1

ln (pT (y)) pT (y)dy (6)

where µ0 and the set, {µj
n}, are Lagrange multipliers. Once the Lagrange multipliers are determined, the

general form of pT (y) is simply given by:

pT (y) = exp

(
µ0 − 1 +

∑
j

∑
n

µj
nf

j
n(y)

)
(7)

The MEM shows the generic form of the pdf is an exponential of a linear combination of the
moment-functions used in observations. It is common to consider a set of functions that are elementary
powers of y, such as y, y2, ..., yn. Alternatively, the moment-functions could also be polynomials, such
as (a+ by + cy2 +dy3). Each of these polynomial functions (of all different sorts) are associated with its
own Lagrange multiplier as shown in Equation 6. In either case, the solution using the MEM for pT (y) is
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the exponential of a polynomial function. Based on the generic form given in Equation 7, the Lagrange
multipliers can be grouped together in algebraic combinations to form a single coefficient per power of
y to yield a power series, which in practice is truncated to some highest order term deemed important.

The choice of using polynomials for the moment-functions is not necessary, but the best reason for
this choice is because working with a power series is convenient for a generic solution to a general
problem. Without knowing specific details to motivate using exotic non-analytic functions, they are best
avoided. Having said this, even after the Lagrange multipliers are grouped together to form a generic
power series, the choice of moment-functions is important. In general, selecting elementary powers of
y is not good, since higher powers probe less of the function pT (y) for |y| << 1. It is better to probe
regions of pT (y) as uniformly as possible. To this end, it is prudent to use multiple level-functions that
more uniformly span different regions in the interval (−1, 1). Note that a level-function means that its
absolute value is bound, usually expressed as |f j

n(y)| ≤ 1. Example level-functions are the Chebyshev
polynomials, Tn(y), Legendre polynomials, Pn(y) and sine, sin(nπ

2
y) and cosine functions, cos(nπ

2
y),

among many other possible choices. In this work, these four types of level-functions are employed, for
integer n from 0 to 20. Notice that in the four examples, the level functions define an orthogonal set of
functions. Orthogonality is a desirable property, since each additional condition (enforced through the
Lagrange multiplier) is distinct from all previous conditions. Consequently, orthogonality provides the
desired feature of uniformity, which is not the case when using the power basis, {1, y, y2, ..., ym}.

A polynomial will be obtained regardless of whether a few or multiple sets of orthogonal
level-functions are used to determine the form of pT (y). Moreover, this polynomial is expected to be
truncated to a maximum power, up to ym. In this case, the polynomial is expressed exactly in terms of
the Chebyshev polynomials. Note that there is nothing fundamentally special about using the Chebyshev
polynomials compared to the sine and cosine functions, or the Legendre polynomials over the interval
−1 ≤ y ≤ 1. However, sine and cosine functions have powers to infinite order, so they were not selected.
It is also generally true that Chebyshev polynomials have the best convergence properties among similar
finite power series polynomials. Nevertheless, any choice of orthogonal polynomials is expected to work,
but determining what the optimal choice is, has not been attempted. With the selection of the Chebyshev
polynomials, the general solution for pT (y) that maximizes the Shannon entropy while all theoretical
moments are constrained to the empirically observed moments is given by

pT (y) = exp (Γm(y)) where Γm(y) =
m∑

j=0

λjTj(y) (8)

The coefficients λj reflect the series expansion for the optimal polynomial function needed to match the
empirical moments. Note that if it happens that pT (y) is a Gaussian distribution, then it follows that
Γm(y) = λ0 + λ1T1(y) + λ2T2(y) where

λ0 = −1 + 2y2

4σ2
y

− ln
(
σy

√
2π

)
, λ1 = y/(σ2

y) , λ2 =
−1

2σ2
y

, and λm = 0 ∀ m > 2 (9)

An important point is that higher power moments of a pdf may be fully described by Equation 8 with
Γm(y) found to have m small. In other words, it is not a priori required to have more non-zero λj

just because higher moments are calculated and enforced by Lagrange multipliers. If more expansion
coefficients are necessary, then surely the higher order level-function moments are critical to determine
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these coefficients accurately. On the other hand, it can happen that new information about the form of the
pdf may appear when higher moments are considered, not because of principle, but because of unwanted
sampling noise.

Nominally, the best solution for pT (y) is expressed by Equation 8, but the values of the λj expansion
coefficients still need to be determined. Unfortunately, the solution will be sensitive to noise in the
random sampling. For example, for N = 100 sampled data points, a certain set of m expansion
coefficients, {λj}m will fit the specific set of observed points. However, for another completely
independent set of N = 100 sampled data points, a different optimal set of expansion coefficients, {λ′

j}m′

will in all likelihood be obtained. Thus, sampling noise renders finding an exact solution impossible.
Even within a single dataset sampled, the ability for Equation 8 to satisfy an arbitrarily large number of
moment-functions may become impossible because m is truncated too soon. Therefore, the criteria of a
good representative pdf must be changed from solving the functional given in Equation 6 with an exact
set of Lagrange multipliers, to finding an optimal approximate set of expansion coefficients {λj}m, and
optimal number of coefficients from Equation 8. This is conveniently implemented by minimizing the
least squares error between all corresponding empirical and theoretical moments simultaneously, where
the majority of moment-functions considered are not explicitly represented within the function Γm(y).

2.3. Least squares error method and integral evaluation

The algorithm that is to be applied to determine the expansion coefficients, {λj}m, is based
on an iterative approach of random guessing. Actually, m is guessed, λj is guessed for all j

such that 1 ≤ j ≤ m, and λ0 is determined by the normalization condition. For a given set of expansion
coefficients, a weighted least squares error, E, for a collection of target conditions is calculated, and
used as an objective function. The goal is to guess the set {λj}m such that E = 0. The details of the
employed iterative guessing procedure (funnel diffusion) will be described below. Here, consider {λj}m

as given. The dependence on the expansion coefficients is explicitly expressed by writing the function
as, pT (y|{λj}m).

The generic form of the objective function is given by

E({λj}m) =
∑

j

αj

∑
n

wn(j)
(
〈f j

n〉 − f j
n

)2

+ Es({λj}m) (10)

where Es is a separate objective function for smoothing. Take Es = 0 when no smoothing is
desired. The scale factor αj > 0 is used to weight the overall importance of the j-th type of
level-function. The selected level-functions, f j

n, include the four types of orthogonal functions described
above (i.e., j = 1, 2, 3, 4). For these four orthogonal functions, the n-index specifies the mode for which
the greater value of n implies a greater degree of oscillation and greater number of zero crossings on the
interval (-1,1). At some point, appreciable oscillations occur on a scale, ∆y, while pT (y|{λj}m) will
be approximately constant for the same ∆y. This means that 〈f j

n〉 → 0 for large n. The weight factor,
wn(j), can formally represent a cutoff, such that wn(j) = 1 ∀ n ≤ Nj , and wn(j) = 0 ∀ n > Nj .
However, better results were obtained when moments with (lower, higher) n are assigned a (greater,
lesser) weight. In particular, for 1 ≤ j ≤ 4 the scale factors were set as αj = 2500, and wn(j) were set
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with an identical exponential decay of exp[− (n−1)
19

ln(10)]. With the mode index range of 1 ≤ n ≤ 20,
this exponential decay sets moments with n = 1 a weight of 1, and for n = 20 the weight factor is 1

10
.

Two more level-functions related to the frequency counts of sampled data (for j = 5, 6) are also
included in Equation 10. Perhaps the most common way to estimate a pdf from unbiased sampled data
is to construct a histogram using a fixed binning scheme. For the n-th bin, there will be a count of
observations, Nn. The total number of observations, N , is given by the sum rule, N =

∑
n Nn. The

frequency for finding a random event within bin, n, is given by Nn

N
. With respect to the transformed

y-variable, the binning function Bn(y) is defined as Bn(y) = 1 when y falls within bin n, and
Bn(y) = 0 when y is not within bin n. The empirical estimate is matched with the theoretical
prediction (for j = 5) as

Empirical: f 5
n =

Nn∑
n Nn

Theoretical: 〈f 5
n〉 =

∫ 1

−1

B5
n(y)pT (y|{λj}m) dy (11)

where Nn is the counts with respect to the y-variable. A similar pair of equations (for j = 6) is given as

Empirical: f 6
n =

Nn∑
n Nn

Theoretical: 〈f 6
n〉 =

∫ xmax

xmin

B6
n(x)p(x|{λj}m) dx (12)

where Nn in Equation 12 is understood to represent counts with respect to the x-variable. The relative
weighting to match the empirical frequency based on the normalized histogram method to the integrated
pdf within corresponding bins has in this work been set to αj = 400 for j either 5 or 6.

The number of bins to construct the histogram in the y-variable was selected to be 40, and 50 bins
were used for the x-variable. In the former case, the bin width is always 0.05 and the 40 bins cover the
range (-1,1). The transformation given in Equation 11 for the y-variable should be commensurate with
the bin boundaries. For example, the bin that spans the y-values between 0.70 and 0.75 is fully sampled
because care was given to make sure ymax does not fall anywhere other than at the very end of this
bin. There is no similar concern for the x-variable because no artifact from a transformation equation is
present to cause a problem. Therefore, the number of bins span the range between xmin and xmax, so
that (xmax − xmin)/50 is the bin width. On the theoretical side, integrals given in Equations 5, 11, 12
are discretized. For the problems considered here, it was found that using the Riemann sum of calculus
with NR = 200 points is sufficient, where∫ 1

−1

f(y)pT (y) dy → ∆y

NR∑
k=1

f(yk)pT (yk) and
∫ xmax

xmin

f(x)p(x) dx → ∆x

NR∑
k=1

f(xk)p(xk) (13)

Note that because the reference points used in the Riemann sums are centered, the above choice of
bin number and NR give five Riemann terms for every bin estimating pT (y) where ∆y = 0.01 and
four Riemann terms for every bin estimating p(x), where ∆x = (xmax − xmin)/200. Note that it is
necessary to make sure the bin resolution for doing this numerical integration is commensurate with the
bin resolution for histograms in the y- and x-variables. It was found that this resolution is good enough
to make sums and integrals virtually indistinguishable. However, more sophisticated numerical methods
for estimating integrals should be incorporated if the integrand varies wildly.
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2.4. Boundary conditions

There are two possible boundary conditions for pT (y) at negative y-values (i.e., left, L) and at positive
y-values (i.e., right, R). These are either that |y| → 1, or to a limiting value corresponding to a minimum
or maximum value in x for the L- or R-sides respectively. If a limiting value is known, it can be specified
and used directly to scale the sampled data in Equation 3. In absence of knowing what the limiting value
is, other than it exists, the lowest observed value from sampling is used. In either case, all the sampled
data representing pT (y) always falls between (−3

4
, 3

4
). The consequence of enforcing a finite boundary

is that when calculating the least squares error given in Equation 10—the range is restricted to be within
the physically realizable domain, and pT (y) ≡ 0 ∀ y outside this domain.

When the boundary condition corresponds to an unlimited range in x-values: Say for the R-side
where x → +∞ implying y → 1, the function pT (y) is truly unknown for y > 3

4
since no random

events have been sampled. However, a frequency of W
N

where N is the total number of samples taken is
assigned to all bins in the y-domain that fall beyond the inclusive range of (−3

4
, 3

4
) where data has been

observed. This W
N

augmentation to bins with no statistics prevents pT (y) to be zero, due to insufficient
sampling. Furthermore, because the noisy statistics of sampling is associated with uncertainty, the value
of W

N
is added to any bin within the range (−3

4
, 3

4
) that would otherwise have zero events.

In some applications, the frequency count formula given in Equation 11 was modified such that

Empirical: N ′
n = max (Nn,W ) and N ′ =

∑
n

N ′
n where f 6

n =
N ′

n

N ′ (14)

for all bins considered (based on boundary conditions). However, this augmentation in frequency is not
done for the bins representing p(x) over the x-values. This is because moments of the level orthogonal
functions is calculated and compared only to pT (y) and the observed y-variables. Note that the minimum
number of events of W need not be an integer. In some applications, when N was large, W = 2 worked
well. However, when N is small, this arbitrary perturbation was not helpful. In all the results presented
here, W = 0. This aspect is documented because it provides another way to impose some a priori known
conditions into the problem.

2.5. Smoothing the pdf

It is often desirable to smooth a pdf for aesthetic reasons, or to demand that an unknown pdf is smooth
to hedge against noise due to an insufficient amount of sampling. Smoothing is easily implemented
within the least squares method as an added error term, Es, as introduced above in Equation 10. The
analytical form for the best pdf is given by Equation 8 where the smoothness of pT (y) will be a direct
reflection of how smooth Γm(y) is. Since Γm(y) is an expansion of m Chebyshev polynomials, it is a
continuously differentiable function at all orders, but only up to order m will it have non-trivial terms.
Therefore, the smoothing condition in this context is to prevent the function from rapidly varying over
certain scales. The smoothness of the function will be based on a local Taylor expansion to second
order. With respect to the finest resolution employed for the Riemann summation process, ∆y, consider
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δy = s∆y, where s is an integer. Then, the estimate for Γm(y) to second order about the point
yk is given by:

Γm(yk + δy)|δy=s∆y ≈ A(yk, s) ≡
m∑

j=0

λj

(
Tj(yk) + T ′

j(yk)δy + T ′′
j (yk)

δy2

2

)
(15)

where T ′
j(y) and T ′′

j (y) are respectively the first and second derivatives of the Chebyshev polynomial
functions. Note that not only is it easy to determine the values of the Chebyshev polynomials using
recursion relations, but also the first and second derivatives are also easy to evaluate in a similar way.
Thus, the expression for A(yk, s) is exactly calculated.

The least square error term for s ≥ 0 is defined as

Es = αs

NR−s∑
k−=1

[
A(yk− , s) − Γm(yk− + s∆y)

]2
+

NR∑
k+=s+1

[
A(yk+ ,−s) − Γm(yk+ − s∆y)

]2

 (16)

where αs is the relative weighting factor for smoothing, and has been set to 1111 in this work.
When s = 0, Es = 0 because no smoothing is being enforced. We can therefore increase the degree
of smoothing by simply increasing s. In this work, s = 5 implies that the Γm(y) function will be
smooth over scales of 0.05 in the y-variable. Although increasing s allows control over the degree of
smoothness for pT (y), other least square components in Equation 10 will inevitably increase. Therefore,
the deformation in pT (y) that results from demanding greater smoothness will decrease the overall
agreement between empirical and theoretical moments of the level-functions. Thus, judgment must be
exercised to determine which aspect of the pdf is more important for the problem under consideration.

2.6. Procedure to determine expansion coefficients

Given the objective function to be minimized (defined by Equations 10 and 16)—the number
of unknown expansion coefficients, m, and the expansion coefficients themselves, {λj}m, must be
determined. The first part of the question has been implemented using a conceptually simple procedure,
albeit not algorithmically efficient. Namely, each m is considered sequentially starting from 1 up to
a maximum value, such as 80. Although the efficiency can be readily improved by replacing this
sequential search method with a bisection method, this aspect of the problem is not of concern since
the computational cost of the implemented method is negligible compared to the time it takes to collect
the samples in the actual application that motivated this work. Nevertheless, the bisection method should
be implemented for real-time applications.

The implemented procedure minimizes the objective function for one expansion coefficient, then two,
then three, and so forth until the root mean squared error (RMSE) reaches a target value. The RMSE

is defined as the square root of the normalized objective function. The normalized objective function is
the least squares error divided by the number of comparison points. The number of comparison points
defines the number of individual squared terms in the objective function, regardless of the α weight
factors. By design, with the numbers selected above for the α weight factors, the number of distinct types
of level orthogonal functions and number of their moments, the number of histogram level functions and
number of their bins, and, the number of Riemann points used—a RMSE of 1 indicates an excellent
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solution. In fact, there is no need to attempt to reduce the RMSE further, albeit it is frequently possible
to reduce RMSE below a tenth. Note that with different numbers of comparison points for various
quantities, the α weight factors can be adjusted so that the RMSE target value of 1 remains excellent.

In this work, a RMSE of 5 will result in a fair to good solution, while a RMSE > 10 quickly
deteriorates from fair to poor. Consequently, different m are considered, starting from 1, and sequentially
checking greater values until the target goal is reached, or the maximum m is reached. This approach
ensures the function for pT (y) is not over-parameterized. For each trial m value, an optimization in a
m-dimensional space is required to determine the expansion coefficients. Recall that λ0 is determined
by the normalization condition based on the values of {λj}m for 1 ≤ j ≤ m. Finding the best values for
{λj}m is the second aspect of the problem.

The second aspect of finding m parameters is solved by employing a method I call funnel diffusion.
Funnel diffusion is similar in concept to simulated annealing, except direct comparisons are made against
the energy function (or objective function) where temperature is never used. Although a procedure that
does not use the temperature has been implemented by others, I have refined the method to such a
degree that it has evolved into a separate method of its own that is worth describing here. In my work,
funnel diffusion has proven to be a robust optimization algorithm across several different applications.
Therefore, funnel diffusion will be briefly described here for completeness, although any other method
to search for a global minimum of an objective function in a high dimensional space can be applied.

2.7. Funnel diffusion: A surrogate for simulated annealing

Given m and an initial guess for {λj}m and the error function, E({λj}m), funnel diffusion consist
of performing a random walk with varying step size to find the minimum error. In particular, the step
size is decreased gradually based on certain acceptance criteria. As the landscape of the error function
is explored, the random walker’s step size starts out at large scales, and then funnels down into finer
scales. To facilitate discussion of this algorithm, let λ̄ define a vector in the m-dimensional space, where
λj = êj · λ̄ is a projection for the j-th expansion coefficient. The algorithm consists of just a handful of
steps given as:

Initialization: Set the current position equal to an initial guess: λ̄ = λ̄o. Define the initial
standard deviation for a zero-mean Gaussian distributed random step for each component to
be σ

(0)
j = 1 +

λj

10
. Set the decay rate, r, to control the rate at which the random step size decreases.

In this work, r =
√

2
2

. As funnel diffusion proceeds, the step size will be at the i-th iteration, given
by σ

(i)
j = riσ

(0)
j . In vector notation, the standard deviation for each component is expressed as σ̄(i).

The criteria for the step size to decrease is that the error does not decrease after many consecutive
failed attempts. Initialize the number of consecutive failed steps, Nfail, equal to zero. The step
size is decreased only after Nfail exceeds a maximum number of consecutive failed steps, Mfail.
In this work, Mfail = 100.

Random step: Generate an independent random step in each of the m directions characterized by the
corresponding standard deviation given by σ̄(i) to arrive at the vector displacement, δλ̄. Define a
new test position, λ̄′ = λ̄ + δλ̄, and evaluate E(λ̄′).
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Acceptance criteria: If E(λ̄′) > E(λ̄) the current position does not change, and Nfail is incremented
by 1. Otherwise, accept the move such that the new test position becomes the current position.
In addition, reset Nfail = 0, and also reset σ

(0)
j = 1 +

λj

10
in order to reflect the new current

position. Notice that σ̄(0) is updated on each successful move in order to provide an automated
adaptive scale for the step size for each component. Consequently, σ̄(i) is also updated, although
the iteration index, i, remains the same.

Funneling: If Nfail ≤ Mfail continue without doing anything. Conversely, if Nfail > Mfail, the
current step size is too large. Therefore, decrease the step size where σ̄(i+1) = rσ̄(i). To reflect the
continual decrease in step size as the bottom of the funnel is approached, the index i is incremented
by 1. Finally, reset Nfail = 0.

Convergence: If ri < tol, the current position, λ̄ is returned as the final answer. In this work, the
tolerance is set as tol = 2 × 10−4. Otherwise, take the next Random step.

Variants to the funnel diffusion algorithm, such as adding a bias toward directions that previously
decreased error, and/or accepting random test positions that raise the error to a small degree are easy to
incorporate. However, based on experience in applying funnel diffusion to several types of problems,
the specific algorithm presented above (the simplest version) performs markedly well, and it is a fast
method compared to simulated annealing. The above algorithm will work for hundreds of parameters,
albeit there is no guarantee that the solution obtained is the global minimum (as is the case for simulated
annealing). It is worth mentioning that in this application, funnel diffusion is started for each increment
in the dimensionality of the space (i.e., m → m+1). Therefore, the initial guess for {λj}m+1 is obtained
by using the previously determined solution given by {λj}m for all j ≤ m and for the extra dimension,
setting λm+1 = 0. Surprisingly, it was found (in this application) that funnel diffusion performs at about
the same speed, and same level of accuracy and robustness regardless of the initial guess for λ̄.

3. Results

In this section, the utility of the maximum entropy method as described above is illustrated using four
examples. Three concerns are addressed in each example. How good is the method for a small number
of samples? How robust is the result for p(x) considering that the non-deterministic method of funnel
diffusion is used to determine the expansion coefficients? How good is the comparison (see Equation 5)
between the level-functions calculated from the proposed pT (y) to those empirically determined? Since
in real applications we do not know what the true pdf is, the random sampling for the four examples
given here are generated by an a priori known pdf. In all cases, the pdf is specified by p(x), and the
cumulative probability distribution P (x) =

∫ x

−∞ p(x′) dx′ is used to generate random samples in the
standard way. Namely, a uniform random number, r, on the range from (0, 1) is generated, and the
random variable xr is determined by setting P (xr) = r. The statistics of the set {xr}N will reproduce
p(x) in the limit that N → ∞. In all cases presented here, the greatest number of samples considered
is 220 = 1048576, while the least number of samples considered is 26 = 64. The predicted p(x)

based on a given random sampling is monitored as a progression from small samples to large samples.



Entropy 2009, 11 1014

Of the four test example p(x), only the first example has an analytical form that agrees with
Equation 8, and then of course pT (y) is transformed to p(x) using Equation 4. This type of functional
form resembles the density of states for solids, as well as the applications of interest related to
biomolecules that motivated this work. The second example has a discontinuous derivative in p(x),
which means it is impossible for the proposed method to result in an exact solution. The cusp shape
may describe a resonance peak encountered in a physical system. In the third case, a divergence
in p(x) of the form ∼ 1√

x
as x → 0 is considered. This example was based on the density of

states for a one-dimensional harmonic oscillator. Finally, in the fourth case; p(x) is constructed to be
bimodal—as a sum of two Gaussian pdf. In spectral analysis it is common to model the peaks as separate
Gaussian distributions. This fourth case is also used to compare different smoothing requests. After the
results are shown for each of the four cases, a brief discussion will follow summarizing the strengths and
weaknesses of the method.

3.1. Test example 1

The function Γm(y) from Equation 8 is specified as:

Γ9(y) = λ0 + C

(
1 +

3

2
(1 − y)

) 4∏
j=1

(
(5y

6
− aj)

bj

)2

− cj

 (17)

where C = 2 × 10−6, a1 = 0.10, b1 = 0.12, c1 = 17.1, a2 = 0.50, b2 = 0.25, c2 = 1.7,
a3 = 0.60, b3 = 0.08, c3 = 3.1, a4 = 0.35, b4 = 0.04, and c4 = 75.0 are the actual parameters used to
generate test example 1. Note that λ0 was determined by the normalization condition numerically (not
selected). The parameters given here were simply adjusted by hand to give a distribution that showed
four well-defined peaks of varying heights, widths and separations. Other than obtaining an interesting
example, nothing special was associated with the selection of these parameters. The results are shown
in Figure 1 corresponding to four different test sets, each independently generated, for 26, 210, 214, 220

number of samples. It is noted that for the case of 220 samples (having the least noise) one might expect
the method will return a predicted Γm(y) that will converge to the actual function given in Equation 17.
However, it is found that for 220 samples, the optimal solutions for the least squares error typically
contain between 33 to 35 coefficients. This indicates that there are many functions that look very close
to Γ9(y) but not equal, and consisting of a lot more terms (33 versus 9). This result implies Γm(y) is
not a relevant target function, because the regions of Γm(y) that do not lead to appreciable probability
density are not well characterized as there are many ways to force the exponential toward zero. As such,
there is a family of Γm(y) that can yield regions of low probability, while maintaining the same values in
regions of high probability. Rather than Γm(y), the relevant quantities are the level-function moments,
such that the theoretical predicted values match well with the empirical values, while maximizing the
entropy. In other words, there are indeed an infinite number of different Γm(y) that will yield virtually
indistinguishable results for pT (y), and thus, indistinguishable results for p(x).
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Figure 1. Example results for test case 1. The first column shows the exact pdf (black)
and four predicted pdf (red, green, blue, magenta) using independent random samples.
The x-axis displays the range of the random variable in arbitrary units, while the y-axis
is dimensionless. From top to bottom rows the number of random events in each sample
were 64, 256, 1024, 4096 and 1048576. The second column is similar to the first, except it
shows the result shown in magenta in the first column, and compares it with four additional
results for the same sample — but from a different funnel diffusion run (black, red, green
and blue). The third column shows 80 different level function moments calculated from the
empirical data (x-axis) and from the theoretical prediction (y-axis) as defined in Equation 5.
Perfect agreement would fall along the red line (y = x).
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3.2. Test example 2

The pdf for test example 2 is defined as:

p(x) =
e−|x|

2
where

∫ ∞

−∞
p(x) = 1 (18)

This pdf is a continuous function, but it has a cusp at x = 0 due to the discontinuous first derivative. The
results for this example is shown in Figure 2. Since the function Γm(y) is continuously differentiable
to all orders of m, it is clear that an exact solution is impossible to achieve. Nevertheless, the method
will always return a solution with smallest least squares error. For this exponential form, the wings
for p(x) are matched well, but the cusp is rounded. It might be expected that greater accuracy will be
achieved by including more Chebyshev polynomials (i.e., greater m). Specifically, the cusp will be better
approximated. In principle this is true, but more samples are required for such a strategy to be successful.
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Figure 2. Example results for test case 2. The first column shows the exact pdf (black)
and four predicted pdf (red, green, blue, magenta) using independent random samples.
The x-axis displays the range of the random variable in arbitrary units, while the y-axis
is dimensionless. From top to bottom rows the number of random events in each sample
were 64, 256, 1024, 4096 and 1048576. The second column is similar to the first, except it
shows the result shown in magenta in the first column, and compares it with four additional
results for the same sample — but from a different funnel diffusion run (black, red, green
and blue). The third column shows 80 different level function moments calculated from the
empirical data (x-axis) and from the theoretical prediction (y-axis) as defined in Eqaution 5.
Perfect agreement would fall along the red line (y = x).
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Employing additional orthogonal polynomials (large m) beyond a point for which the data cannot
justify m free parameters yields an undesirable, but interesting result (not shown). The result is that the
sampled data will be effectively clustered by the appearance of many sharp peaks in the pdf, and outside
of these peaks, the pdf is essentially zero. In other words, the result approaches a simple sum over
Dirac-delta functions. The level-function moments will still yield good comparisons, because essentially
this result is approximating a Gauss quadrature! The location of the sharp peaks are the quadrature
points, and the area under their curves is the Gauss quadrature weight factors for the particular pdf.
Thus, arbitrarily adding more Chebyshev polynomials should not be done. The algorithm that starts with
using m = 1, then m = 2, and so forth will eventually yield a least squares error that is sufficiently small
to terminate exploring greater m, or the least squares error will begin to increase. As such, in practice it
is easy to avoid using too many Chebyshev polynomials. A consequence of this, however, is that if the
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pdf of interest has a sharp feature, such as a cusp, it should be expected that these type of features will
be lost. On the other hand, this rounding effect is a natural smoothing of the pdf.

3.3. Test example 3

The pdf for test example 3 is defined as:

p(x) =
Ce−x

√
x

where x > 0 and
∫ ∞

0

p(x) = 1 (19)

In this example, C is determined numerically to satisfy the normalization condition. This particular
functional form was motivated by an actual application to a physical system, related to the density
of states for a one-dimensional harmonic oscillator combined with a relative Boltzmann factor. The
important point here, is that the minimum value of xmin = 0 was known in advance (zero energy state of
the system), and there is a divergence as x → 0. Therefore, in these calculations, the finite left boundary
condition was applied. The results are shown in Figure 3. The 64 sample case is not shown in order to
show the results of the other sample sizes more clearly. It is seen the method has absolutely no problem
in representing this p(x), as given by Equation 19.

For the largest random data set consisting of 220 samples, the predicted p(x) matches extremely well
to the exact result. To show the level of deviation, the same data is plotted in Figure 4 on a log scale for
the probability. It is seen that the predicted p(x) on the far tail starts to fall off much faster than the true
p(x), which is mainly due to the Jacobian factor in transforming back from pT (y) to p(x). In this large
sample case, the number of terms used is between 23 and 26. An important aspect of this method, is that
for 1024 samples, there already emerges a very good representative of the true pdf.

3.4. Test example 4

The pdf for test example 4 is defined as:

p(x) = 0.7pG(x|µ1 = 5, σ1 = 3) + 0.3pG(x|µ2 = 0, σ2 = 0.5) where
∫ ∞

−∞
p(x) = 1 (20)

Here, pG(x|µ, σ) denotes a Gaussian pdf of mean, µ, and standard deviation, σ. By construction, the
functional form given in Equation 20 cannot be represented by a single exponential, which places the
method outside of its range of applicability. Of course, in real applications this is not a priori known.
Although the relative weighting of each Gaussian distribution, and the parameters of each Gaussian was
arbitrarily selected, this case will provide insight into the following important question that needs to be
answered. Will blindly using the method as described above provide a reasonable analytical form for
p(x) based on the maximum entropy assumption, albeit this assumption does not mimic the true pdf?

The results are given in Figure 5, and the reconstruction of p(x) is fair. In this case, even as the number
of samples goes to 220 there is a fundamental discrepancy between the actual pdf and the predicted one.
Nevertheless, the comparison between level-function moments are good enough for practical use. It
is worth noting that the entropy of the predicted pdf is greater than the actual pdf as a consequence
of trying to maximize it. In this case, the result cannot be improved because the entropy is being
maximized under the constraints enforced by the various level-function moments. Because many of
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these level-functions are being used, the method still yields a good representation of the true pdf. For
relatively small samples, it would be virtually impossible to distinguish the example 1 with say four
Gaussian distributions. The final output of this method will allow a check on overall errors with respect
to the level-function comparisons. As such, one can make an informed choice as to whether apply the
predicted p(x) or flag the calculation for further analysis.

Figure 3. Example results for test case 3. Top panel: The first column shows the exact
pdf (black) and four predicted pdf (red, green, blue, magenta) using independent random
samples. The x-axis displays the range of the random variable in arbitrary units, while the
y-axis is dimensionless. The top and bottom rows respectively show the results using 256
and 1024 random events. The second column is similar to the first, except it shows the
result shown in magenta in the first column, and compares it with four additional results for
the same sample — but from a different funnel diffusion run (black, red, green and blue).
The third column shows 80 different level function moments calculated from the empirical
data (x-axis) and from the theoretical prediction (y-axis) as defined in Eqaution 5. Perfect
agreement would fall along the red line (y = x). Bottom panel: The same description as
the top panel, except that the number of events sampled in the top and bottom rows are
respectively 4096 and 1048576.
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For this example test function, smoothing was also applied with results shown in Figure 6. In practice,
one may get a lot of oscillations in the pdf, especially when using small number of random samples.
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Since the noise in the data will be the main reason for these oscillations, the additional smoothing criteria
is a viable option. It is seen that the agreement between empirical and theoretical level-function moments
is worsened somewhat, compared to no smoothing. However, at the level of accuracy one can expect
from using a small number of random samples in the first place, the increase in error is insignificant.
The user through trial-and-error and inspection can try different smoothing levels to determine the
best compromise between accuracy and smoothness. Note that the smoother the curves, the number
of Chebyshev polynomials used to represent pT (y) decreases. This process is always subjective, because
the smoothing is never required for the method to reproduce the input sample statistics. The only sure
way to get a better estimate of the pdf is to collect more samples.

Figure 4. Example results for test case 3. This re-plots one of the results from Figure 3
that was shown as magenta for the 1048576 random samples. Here, we can see the accuracy
better using a semi-log scale.
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4. Discussion

The novel MEM described above has been applied to many application problems that initially
motivated its development. In these applications, the true pdf is unknown. Nevertheless, the quantitative
comparison between empirical and predicted moments consistently returns a satisfactory pdf, and these
results will be published elsewhere in relation to the application of protein thermodynamics. In the
last section, four example cases were considered to illustrate the results in a general context involving
different types of known probability densities, all of which have a challenging aspect. Comparison of the
predictions obtained by the new MEM for varying amounts of sampled data to the true pdf suggests that
the “best” pdf under the maximum entropy assumption is indeed obtained. That is, the final predicted
p(x) faithfully gives back what is known from the sampled data, and extrapolation is stable. Moreover,
the results show constant improvement in p(x) converging toward a final pdf that is close (or the same)
as the true pdf as the number of samples progressively increases. The success of this approach is not
based on newly discovered principles about MEM. Rather, combining several novel steps has produced
a robust MEM for generic applications.
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Figure 5. Example results for test case 4. The first column shows the exact pdf (black)
and four predicted pdf (red, green, blue, magenta) using independent random samples.
The x-axis displays the range of the random variable in arbitrary units, while the y-axis
is dimensionless. From top to bottom rows the number of random events in each sample
were 64, 256, 1024, 4096 and 1048576. The second column is similar to the first, except it
shows the result shown in magenta in the first column, and compares it with four additional
results for the same sample — but from a different funnel diffusion run (black, red, green
and blue). The third column shows 80 different level function moments calculated from the
empirical data (x-axis) and from the theoretical prediction (y-axis) as defined in Equation 5.
Perfect agreement would fall along the red line (y = x).
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The most important aspect is to use many different level-function moments, some of which reflect
the histogram (frequency counts). The level-function moments provide superior target functions,
compared to elementary power moments, because taken together they give a much more uniform
representation of all regions of the pdf. Consequently, this balanced characterization of the pdf makes
the prediction for its analytical form robust. It is likely that the MEM formulated strictly as a Hausdorff
moment problem would not yield a solution to any of the four cases considered here due to numerical
instability [4–7, 16]. In addition to the advantages offered by using a multitude of level-function
moments, the method developed here avoids using the Hessian matrix, uses an expansion in terms of
orthogonal polynomials, and attempts to satisfy all the constraints using least squares error. It is worth
noting that initially all the level-function moments were weighted equally. It was found, however, that
the empirical moments associated with lower powers of y are themselves more accurate. Employing an
exponentially decreasing weight factor renders the decision of how many moments to keep a mute point,
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since adding more moments will have less and less effect until they become irrelevant. An improvement
will be made in future work, such that the rate of decay in the exponent will be dependent on the number
of random samples used in the analysis.

Figure 6. Example results using smoothing on test case 4. The first column shows the
exact pdf (black) and four predicted pdf (red, green, blue, magenta) using smoothing level,
s = 10, (defined in Equation 16) and each case is drawn from independent random samples.
The x-axis displays the range of the random variable in arbitrary units, while the y-axis
is dimensionless. The top and bottom rows contain 256 and 1024 random events. The
second column is similar to the first, except it shows the result shown in magenta in the
first column, and compares it with four additional results for the same sample — but using
different smoothing requests with s = 2, 4, 6, 8 shown as (black, blue, green, red). Note that
the red curve is essentially indistinguishable from the curve shown in magenta. Of course,
since the objective function changes, this implies a different funnel diffusion run as well.
The third column shows 80 different level function moments calculated from the empirical
data (x-axis) and from the theoretical prediction (y-axis) as defined in Equation 5. These
results correspond to the s = 10 smoothing case shown in the first column by the magenta
curve. Perfect agreement would fall along the red line (y = x).
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The method automates the least squares minimization to stop at a reasonable cutoff, so as not to
over-interpret the data. Tuning these criteria was based on applying the method to several applications.
As mentioned above, including more Chebyshev polynomials can often continue to reduce the least
squares error, but the resulting pdf begins to follow clustering in the data, which is most likely noise.
Too close of an agreement with the actual data is over-fitting, because the uncertainty in the data itself
scales as ∼ 1/

√
N , and the best resolution in the estimate of probability scales as ∼ 1/N . As such,

attempting to exactly fit to the data makes no sense, and it is better to use only the number of Chebyshev
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polynomials that can be justified based on the number of samples on hand. The following heuristic for
termination in exploring greater number of terms is given by:

terminate calculation when either RMSE < 1 or m > 3(1 + ln N) (21)

was found to work well. When the RMSE reaches 1 the pdf already results in an excellent
reconstruction of p(x) for all test cases. Although lowering the RMSE cutoff may be advantageous,
it was unnecessary for the applications of interest that motivated this work. No attempt was made to
optimize based on each problem of interest. For example, the number of bins used to represent the
histograms of the y-variables and x-variables could adjust based on the nature of the statistics. Unequal
binning could be incorporated, and different weights could be applied to the level-functions. Many
technical improvements could be made, and work in this direction is in progress. When finished, the
expectation is to release a freeware general application tool.

The strengths of the current method is that it is robust, where variation in different solutions for
predicted p(x) is much lower than the variation that one gets due to noise when using a finite number of
random samples (when the number is lower than 1000). The fact that different estimates are obtained for
different independent samples is not a weakness. Limiting the number of samples is effectively adding
noise to the true pdf, because a finite number of samples create feature perturbations due to fluctuations.
This approach eliminates the need to add auxiliary noise, but more importantly it provides insight into
the performance characteristics of determining the true pdf from limited samples. Unless something is
a priori known about the form of the pdf, the sampled data must drive the representative prediction of
p(x). In this context, the funnel diffusion approach is an excellent method to determine the expansion
coefficients, which are related to the Lagrange multipliers. Multiple solutions from independent funnel
diffusion runs yield insignificant deviations in the predicted p(x) compared to the variation found in p(x)

due to limited samples (noise). For a case where m reaches 40 (sequentially trying 1 to 40) the funnel
diffusion typically takes less than 20 minutes on a 2.3 GHz computer. Replacing the sequential search
with a bisection method will reduce the calculation time to just a few minutes. The funnel diffusion
method has been applied to many different optimization problems, and has always provided a robust
self-adapting simulated annealing method. In particular, it self determines the degree of randomness
needed as the annealing takes place. In standard simulated annealing, the degree of randomness is
controlled by temperature. In many applications, such as the one considered here (i.e., minimizing a
function) temperature is an artificial concept. Funnel diffusion is conceptually more natural, and its
implementation is embarrassing simple.

The weakness of the presented MEM derives only from the maximum entropy assumption itself.
In particular, the maximum entropy assumption need not be true for the actual data. Demanding
maximum entropy is basically an automatic smoother, since the broadest possible pdf consistent with the
level-function moments will be generated. As such, another improvement is currently under development
that separately applies the MEM into distinct modes. Each mode will separately be subject to the
maximum entropy assumption, but multiple modes will be considered. In a similar way that the number
of terms in the Γm(y) function is optimized (smallest m that describes the data well), this generalization
finds the least number of modes that describes the data well. The form and procedure of the k-th mode
is identical to this method, since it is a method based on one mode. The number of terms for the k
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different Γmk
(y) functions will be mk. Then the estimate for the pdf is given as p(x) =

∑
k wkpk(x)

where wk is the statistical weight of the k-th mode, and pk(x) is calculated using the current method.
This generalization is being implemented into a general user-friendly application tool (to be published).

5. Conclusions

The method presented in this report provides a model independent way of parameterizing a probability
density function as an analytical function that recovers the original statistics of the sampled data. The
analytical form allows application to obtain re-weighted moments. The method is robust and works
for low numbers of samples, and is stable without a priori satisfying any particular criteria about the
nature of the sampled data. However, small samples may give the wrong impression of the form of
the true probability density function. Therefore, in cases of low statistics (high noise), smoothing can
be incorporated to change the form of the function by increasing its overall smoothness. This method
provides quantitative measures associated with least squares error, and relative error between theoretical
moments based on the predicted probability density function, and the empirical moments. Consequently,
the method has versatile utility.
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