
AN EFFICIENT DESIGN SPACE EXPLORATION FRAMEWORK TO OPTIMIZE
POWER-EFFICIENT HETEROGENEOUS MANY-CORE MULTI-THREADING

EMBEDDED PROCESSOR ARCHITECTURES

by

Kushal Datta

A dissertation submitted to the faculty of
the University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree Of Doctor of Philosophy In

Electrical and Computer Engineering

Charlotte

2011

Approved by:

Dr. Arindam Mukherjee

Dr. Arun Ravindran

Dr. Bharat S. Joshi

Dr. Kazemi Mohammed

ii

© 2011
Kushal Datta

ALL RIGHTS RESERVED

iii

ABSTRACT

KUSHAL DATTA. An efficient design space exploration framework to
optimize power-efficient heterogeneous many-core multi-threading embedded
processor architectures. (Under the direction of DR. ARINDAM MUKHERJEE)

By the middle of this decade, uniprocessor architecture performance had hit

a roadblock due to a combination of factors, such as excessive power dissipation

due to high operating frequencies, growing memory access latencies, diminishing

returns on deeper instruction pipelines, and a saturation of available instruction

level parallelism in applications. An attractive and viable alternative embraced by

all the processor vendors was multi-core architectures where throughput is

improved by using micro-architectural features such as multiple processor cores,

interconnects and low latency shared caches integrated on a single chip. The

individual cores are often simpler than uniprocessor counterparts, use hardware

multi-threading to exploit thread-level parallelism and latency hiding and typically

achieve better performance-power figures. The overwhelming success of the

multi-core microprocessors in both high performance and embedded computing

platforms motivated chip architects to dramatically scale the multi-core

processors to many-cores which will include hundreds of cores on-chip to further

improve throughput. With such complex large scale architectures however,

several key design issues need to be addressed. First, a wide range of micro-

architectural parameters such as L1 caches, load/store queues, shared cache

structures and interconnection topologies and non-linear interactions between

them define a vast non-linear multi-variate micro-architectural design space of

many-core processors; the traditional method of using extensive in-loop

iv

simulation to explore the design space is simply not practical. Second, to

accurately evaluate the performance (measured in terms of cycles per instruction

(CPI)) of a candidate design, the contention at the shared cache must be

accounted in addition to cycle-by-cycle behavior of the large number of cores

which superlinearly increases the number of simulation cycles per iteration of the

design exploration. Third, single thread performance does not scale linearly with

number of hardware threads per core and number of cores due to memory wall

effect. This means that at every step of the design process designers must

ensure that single thread performance is not unacceptably slowed down while

increasing overall throughput. While all these factors affect design decisions in

both high performance and embedded many-core processors, the design of

embedded processors required for complex embedded applications such as

networking, smart power grids, battlefield decision-making, consumer electronics

and biomedical devices to name a few, is fundamentally different from its high

performance counterpart because of the need to consider (i) low power and (ii)

real-time operations. This implies the design objective for embedded many-core

processors cannot be to simply maximize performance, but improve it in such a

way that overall power dissipation is minimized and all real-time constraints are

met. This necessitates additional power estimation models right at the design

stage to accurately measure the cost and reliability of all the candidate designs

during the exploration phase.

In this dissertation, a statistical machine learning (SML) based design

exploration framework is presented which employs an execution-driven cycle-

v

accurate simulator to accurately measure power and performance of embedded

many-core processors. The embedded many-core processor domain is Network

Processors (NePs) used to processed network IP packets. Future generation

NePs required to operate at terabits per second network speeds captures all the

aspects of a complex embedded application consisting of shared data structures,

large volume of compute-intensive and data-intensive real-time bound tasks and

a high level of task (packet) level parallelism. Statistical machine learning (SML)

is used to efficiently model performance and power of candidate designs in terms

of wide ranges of micro-architectural parameters. The method inherently

minimizes number of in-loop simulations in the exploration framework and also

efficiently captures the non-linear interactions between the micro-architectural

design parameters. To ensure scalability, the design space is partitioned into (i)

core-level micro-architectural parameters to optimize single core architectures

subject to the real-time constraints and (ii) shared memory level micro-

architectural parameters to explore the shared interconnection network and

shared cache memory architectures and achieves overall optimality. The cost

function of our exploration algorithm is the total power dissipation which is

minimized, subject to the constraints of real-time throughput (as determined from

the terabit optical network router line-speed) required in IP packet processing

embedded application.

vi

ACKNOWEDGMENTS

First of all, I thank my parents Mr. Kalyan Kumar Datta and Mrs. Tamali

Datta for providing me love, strength, support, inspiration, knowledge, wisdom

and independence. I feel an endless sense of pride and emotion as I

acknowledge and appreciate their contribution in my life. I feel equally blessed to

have my elder sister Mrs. Kabita (Datta) Hazra and her beloved husband Mr.

Susovan Hazra and thank them from the bottom of my heart for providing me

support and friendship all throughout my life no matter how dire the situation. I

also would like to thank my late grandmother Mrs. Kamala Datta and her sister-

in-law Mrs. Bimala Bala Datta for being such a big part of my life during my

adolescent years – loving me endlessly and teaching me to confront every

adversity with pride, faith and love. I also thank my late uncle Mr. Kuber Datta for

teaching me to be enthusiastic and full of life and freedom.

I would like to thank the rest of my family, all my cousin brothers and

sisters, especially Kaushik Dutta and my dear friends Jong-ho Byun, Aby

Kuruvilla and Rewa S. Tikekar, who have been there through my toughest times

and knocked sense into me every now and then.

I would especially like to thank my advisor Dr. Mukherjee for being my

friend, philosopher and guide. He will always be a source of inspiration to me. I

also thank my committee members, Dr. Arun Ravindran and Dr. Bharat S. Joshi

for their continuous support, for reviewing my work and providing me with useful

feedback.

vii

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION 1

 1.1 Embedded Many-core Processors 1

 1.2 Demands of High Performance Packet Processing Routers 2

 1.3 Micro-architectural Domain of Network Processors 4

 1.4 Dissertation Contribution 5

CHAPTER 2: BACKGROUND 10

 2.1 Processor Simulators 10

 2.2 Multi- and Many-core Design Space Exploration 14

 2.3 Statistical Machine Learning for System Optimization 17

CHAPTER 3: EMBEDDED NETWORK PROCESSING BENCHMARK 19

 (ENEPBENCH)

CHAPTER 4: CASPER PROCESSOR SIMULATOR 25

 4.1 Processor Model 26

 4.2 Performance Measurement 30

 4.3 Verification 31

 4.4 Deep Chip Vision – Area and Power/Energy Measurement 33

 4.5 Design of HDL Models 33

4.5.1 Area and Power Estimation 34

4.5.2 Modeling Activity Factor 39

4.5.3 Design Trade-offs in case of SPECWEB2005 43

4.5.4 Design Trade-offs in case of EnePBench 50

viii

CHAPTER 5: DYNAMIC POWER MANAGEMENT TECHNIQUES IN 54

 CASPER

 5.1 Abstract 54

 5.2 Introduction 55

 5.3 Dynamic Voltage and Frequency Scaling (DVFS) 56

 5.4 Hardware Controlled DPM in Commercial Embedded Processors 58

 5.5 Our Contribution 58

 5.6 Power Management Unit Architecture 60

 5.7 The Experimental Setup 62

 5.8 Existing Global Power Management Policies 63

5.8.1 Chip-wide DVFS 64

5.8.2 MaxBIPS 66

5.8.3 SmartBIPS Power Management Scheme 68

 5.9 Experimental Results 75

 5.10 Conclusion 83

CHAPTER 6: MODELING OF THROUGHPUT AND POWER DISSIPATION 86

 OF CORES

 6.1 Theory of Statistical Curve Fitting 86

 6.2 Micro-architectural Parameters used in statistical curve-fitting 86

 6.3 Regression Models and Error Analysis 89

CHAPTER 7: EXPLORATION ALGORITHM 99

CHAPTER 8: CONCLUSION 113

REFERENCES 115

CHAPTER 1: INTRODUCTION

1.1 Embedded Many-core Processors

Recent years have witnessed a dramatic transition in the complexities and

capabilities of embedded processors. Examples include Cisco 40 core Quantum

Flow network processor [1], Freescale QorIQ series network processors with

upto to 8 cores [2], Netlogic XLP316L 16 core quad-issue processor with 4

hardware threads per core [3], Netronome Network Flow Processor with 40 IXP

cores with 4-threads per core [4], NVIDIA Tesla 10 core GGPGPU with 24 scalar

stream processors per core [5], and PicoChip 250-300 core picoArray digital

signal processor [6]. Similar to high performance processor vendors, those in the

embedded domain are permanently altering their existing roadmaps to

incorporate hundreds of cores on the same chip in the coming decade – the

embedded many-core processor. However, embedded computing is

fundamentally different from its high performance counterpart because of the

need for low energy and real-time operation required in complex embedded

applications such as networking, smart power grids, battlefield decision-making,

consumer electronics and biomedical devices, to name a few. To satisfy these

performance requirements, conceivably the future embedded many-core

processor will have hundreds of heterogeneous cores on chip, some of which will

be fine grained multi-threaded RISC cores to exploit embedded task level

2

parallelism, and some highly application-specific cores – all connected to

hierarchies of distributed on-chip memories by high speed networks-on-chip

(NoCs). While the industry focus is on putting higher number of cores on a single

chip, the key challenge is to optimally architect these embedded many-core

processors for low energy operations while satisfying area and often stringent

real-time constraints. With such complex many-core architectures, the traditional

approach to processor design through extensive simulations is no longer viable

due to the large design space that must be explored in-order to optimize power-

performance.

Future generation embedded applications are expected to grow even

more complex consisting of a large volume of computational and data intensive

real time bound tasks sharing large data structures. To methodically study the

power-performance trade-offs of embedded many-core processors to be

designed to satisfy the requirements of such complex embedded applications, we

focus on Network Processors (NePs) executing the functions of IP packet

processing as the representative processor domain. Our idea is to thoroughly

investigate the high degree of task level parallelism, shared data structures and

real-time operations present in packet processing application and establish a

modeling and design exploration framework for NePs in this dissertation. The

methodology can be easily extended to design complex embedded and high

performance many-core platforms.

1.2 Demands of High Performance Packet Processing Routers

Internet demand is growing at an explosive rate. A large volume of

3

technology consumer products such as personal computers, workstations, web-

enabled mobile devices and multimedia-enabled smart-phones are used to

connect to various websites on a regular basis. Also, an increased use of

websites offering online voice and video services such as Hulu, Youtube and

Facebook to name a few, has resulted in a surge in overall network traffic. The

total network traffic in North America (the highest IP-traffic generating region) is

predicted to be approximately 19.0 exabytes per month by 2014 [7]. With such an

explosive increase in data demand, existing edge routers used to interface

between different communication networks and core routers which constitute the

backbone of the internet, are identified to be the bottlenecks in the next

generation ultra high speed networks [8]. The Network Processors (NePs)

powering these routers can support maximum line speeds of 10 to 100 gigabits

per second [9-14], which is insufficient for handling the predicted volume of data

in the future. Power is also a critical concern in the design of high performance

NePs. Cost is increased by the requirements of larger power supplies and

cooling systems. Reliability is compromised by thermal hot-spots on chip. Power

increase also adversely affects operating environment features by driving higher

utility costs and higher installation and maintenance costs. Cool running NePs

pack more ports into a smaller space within thermal operating limits, and have

the capability of staying online longer in a battery back-up mode when main

power fails. As a result, next generation NePs must be architected to achieve

throughput that can support terabit per second (TBPS) line speeds, and yet

operate under low power budgets so that the overall operating cost can be

4

minimized and reliability can be improved.

NePs execute real-time Internet Protocol (IP) packet processing

applications, which consist of compute-bound and data-bound tasks [15-17].

Compute-bound tasks include cyclic redundancy error checking codes, block-

ciphering and likewise. Data-bound tasks include traffic monitoring, IP table

lookups, packet fragmentation, Reed Solomon’s error checking codes, deep

packet inspection and others. Incoming packets in a router are classified as

either high priority hard real-time constrained conversational voice packets for

example, or lower priority soft real-time constrained non-critical video and other

content-delivery packets [18]; the incoming packets are scheduled on the NePs

according to their priorities. Once error-checking and route calculations are

completed, the packets are sent to the outward queues. Two critical shared data

structures in this system are the routing table and the traffic monitoring table. The

routing table contains millions of forward route entries which are read by

incoming packets to look-up the next destinations. It is rarely updated. On the

other hand, the traffic monitoring database is updated with the details of every

incoming packet.

1.3 Micro-architectural Domain of Network Processors

Existing high-performance network processors are based on the following

micro-architectures: superscalar (SS), streaming single instruction multiple data

(S-SIMD), chip multi-processor (CMP), and simultaneous multi-threading (SMT)

[10, 11, 14, 19]. While SS exploits instruction level parallelism (ILP), it does not

take advantage of the high degree of task (packet) level parallelism (TLP)

5

inherent in IP packet processing. S-SIMD implements a systolic array of packet

processing kernels and the packet data is streamed from one stage to another.

However the benefit of pipelining of the packet operations is mitigated by stalls

encountered at the shared data structure read/write stage for every incoming

packet. Although network processors designed with SMT are able to process

packets with high throughput and meet real time constraints, they have high

power dissipation and hence are not always cost-effective. Commercial network

processor architectures combine these paradigms along with ASIC acceleration

engines. For example, EzChip’s TopCore technology uses an array of

superscalar processors with customized instruction sets [20]; Intel’s Next

Generation Microengine Architecture combines CMP and multithreading along

with inter-processor pipelined operation using next neighbor registers [21];

Netronome’s NFP-3240 network flow processor is an array of 40 1.4GHz micro-

engine RISC processor [4].

1.4 Dissertation Contribution

Our design philosophy to achieve a low power TBPS network processor is

to use shared memory many-core architecture. Low latency on-chip shared

cache memories helps us to minimize off-chip accesses as the large shared data

structures (IP lookup table and Traffic monitoring table) are read or updated for

all packets. All the processor cores are in-order and use hardware multi-

threading; the thread selection policy is fine-grained multi-threading (FGMT). In-

order FGMT [22] utilizes simple six stage pipeline shared between the hardware

threads, enabling us to achieve (i) high throughput per-core by latency hiding and

6

(ii) minimize the power dissipation of a core by avoiding complex micro-

architectural structures such as instruction issue queues, re-order buffers and

history-based branch predictors typically used in superscalar or other types of

hardware multi-threading techniques. Also, to achieve better power-performance

points we make the processor cores structurally heterogeneous. This way more

hardware resources are invested into processor cores designed to compute more

resource-hungry tasks and overall on-chip hardware resources are optimally

utilized. Dynamic power-saving mechanisms such as power-gating and dynamic

voltage and frequency scaling (DVFS) are used at the core level to minimize

power dissipation in case of idle cores. Inside the cores, clock-gating is enabled

at all pipeline stages to minimize dynamic power dissipation. A high level of

packet-level parallelism is achieved due to the large number of cores, which also

overcomes the well-known power wall problem.

In this dissertation we present an efficient and scalable statistical machine

learning based design space exploration framework. Our first step includes the

design and development of an instruction trace-driven cycle-accurate many-core

processor simulator used to measure throughput (in terms of cycles per

instruction) of candidate many-core designs for different combinations of various

micro-architectural parameters belonging to this design space. The simulator

called Chip Multi-threading Architecture Simulator for Performance Energy and

ARea Analysis (CASPER) is a SPARCV9 instruction set based processor

simulator. To simultaneously measure power dissipation of candidate designs

along with throughput, CASPER is empowered with power estimation models of

7

each micro-architectural block enabling us to accurately measure power

dissipation every cycle. Our literature survey of existing functional and cycle-

accurate multi-core simulators and network processor simulators in Chapter 2

show that to the best of our knowledge no such large scale simulation platform

exist which can accurately measure power and performance of many-core

designs cycle-by-cycle. In addition, a well-established Solaris 5.10 software stack

on top of CASPER enables us to execute any embedded or high performance

application on this simulation platform.

Once we have a validation platform, our second step is to apply a divide

and conquer method to explore the design space in a stepwise fashion. Our

many-core micro-architectural design space is defined by the core-level

parameters which include level one (L1) instruction and data (I/D) cache sizes

and number of hardware threads per core, pipeline depth, I/D miss queues and

store buffers. The chip-level parameters include number of cores, interconnection

architecture, shared second level memory (L2) queue size, L2 organization and

access times. Although all of the above micro-architectural parameters are

tunable in CASPER to simulate different configurations, it is not practical to use

in-loop simulation while exploring the vast micro-architectural design space. To

resolve this issue we first optimize the core architectures. The objective of this

step is to design a core in such a way that it processes a packet within the real-

time boundary and the power dissipation is minimized. Several packet types exist

according to which the sequence of functions used to process a packet varies.

Hence the micro-architecture of a core optimized for a particular packet type also

8

varies from other cores designed for other packet types. Using linear statistical

regression, the power and performance regression models of the cores are

derived using randomly chosen values of the core-level micro-architectural

parameters. Once the models are derived, they are used instead of in-loop

simulation in a Genetic Algorithm based heuristic to find optimal core micro-

architectures for all packet types.

At this point of our exploration, chip-level parameters still not been used.

Our third step involves core interaction modeling and shared cache optimization.

We estimate the number of cores required for processing a particular distribution

of packet types. For a given choice of the interconnection network (for example,

crossbar), we build a predictive model for the contention (and hence the

associated L2 cache access time) and power dissipation, and the L2 cache

banks. The predictive models are built from training data obtained through the

macro-simulator L2MacroSim implemented in CASPER. Only the core to L2

cache and L2 cache to memory reply/acknowledgement packets are simulated.

The inputs to the L2 MacroSim are L2 cache input queue size per core, cache

bank size, line size, associativity, number of L2 banks, L1 I and D cache sizes,

line sizes and associativities and instruction trace files for each thread in each

core. The individual core parameters are set to their optimal values from previous

step. The L2MacroSim enables significant savings in simulation time while

capturing the interaction between the cores. The predictive models for core

interaction are used to optimize the power dissipation of the L2 cache banks

while satisfying the real-time constraints. If the L2 access time constraints cannot

9

be satisfied, we choose the next best core for each packet type and repeat steps

two and three.

The rest of the dissertation is organized as follows. Chapter 2 describes

existing processor simulators and architecture exploration algorithms. Chapter 3

explains the embedded network packet processing benchmark which we use in

this research. Chapter 4 and 5 discusses the structural details and organization

of a many-core processor simulator CASPER. Our exploration algorithm is

elaborated in Chapter 5 and 6. Results of our research are presented and

analyzed in Chapter 6, and finally in Chapter 7 we present our conclusions.

CHAPTER 2: BACKGROUND

2.1 Processor Simulators

Virtutech Simics [23] is a full-system scalable functional simulator for

embedded systems. The released versions support microprocessors such as

PowerPC, x86, ARM and MIPS. Simics is also capable of simulating any digital

device and communication bus. The simulator is able to simulate anything from a

simple CPU + memory, to a complex SoC, to a custom board, to a rack of

multiple boards, or a network of many computer systems. Simics is empowered

with a suite of unique debugging toolset including reverse execution, tracing,

fault-injection, checkpointing and other development tools. Similarly, Augmint [24]

is an execution-driven multiprocessor simulator for Intel x86 architectures

developed in University of Illinois, Urbana-Champagne. It can simulate

uniprocessors as well as multiprocessors. The inflexibility in Augmint arises from

the fact that the user needs to modify the source code to customize the simulator

to model multiprocessor system. However both Simics and Augmint are not

cycle-accurate and they model processors which do not have open-sourced

architectures or instruction sets; this limits the potential for their use by the

research community. Another execution-driven simulator is RSIM [25] which

models shared-memory multiprocessors that aggressively exploit instruction-level

parallelism (ILP). It also models an aggressive coherent memory system and

11

interconnects, including contention at all resources. However throughput

intensive applications which exploit task level parallelism are better implemented

by the fine-grained multi-threaded cores that our proposed simulation framework

models. Moreover we plan to model simple in-order processor pipelines which

enable thread schedulers to use small-latency, something vital for meeting real-

time constraints.

General Execution-driven Multiprocessor Simulator (GEMS) [26] is an

execution-driven simulator of SPARC-based multiprocessor system. It relies on

functional processor simulator Simics and only provides cycle-accurate

performance models when potential timing hazards are detected. GEMS Opal

provides an out-of-order processor model. GEMS Ruby is a detailed memory

system simulator. GEMS Specification Language including Cache Coherence

(SLICC) is designed to develop different memory hierarchies and cache

coherence models. The advantages of our simulator over the GEMS platform

include its ability to (i) carry out full-chip cycle-accurate simulation with

guaranteed fidelity which results in high confidence during broad micro-

architecture explorations, and (ii) provide deep chip vision to the architect in

terms of chip area requirement and run-time switching characteristics, energy

consumption, and chip thermal profile.

SimFlex [27] is a simulator framework for large-scale multiprocessor

systems. It includes (a) Flexus – a full-system simulation platform and (b)

SMARTS – a statistically derived model to reduce simulation time. It employs

systematic sampling to measure only a very small portion of the entire application

12

being simulated. A functional model is invoked between measurement periods,

greatly speeding the overall simulation but results in a loss of accuracy and

flexibility for making fine micro-architectural changes, because any such change

necessitates regeneration of statistical functional models. SimFlex also includes

FPGA-based co-simulation platform called the ProtoFlex. Our simulator can also

be combined with an FPGA based emulation platform in future, but this is beyond

the scope of this work.

MPTLsim [28] is is a uop-accurate, cycle-accurate, full-system simulator

for multi-core designs based on the X86-64 ISA. MPTLsim extends PTLsim [29],

a publicly available single core simulator, with a host of additional features to

support hyperthreading within a core and multiple cores, with detailed models for

caches, on-chip interconnections and the memory data flow. MPTLsim

incorporates detailed simulation models for cache controllers, interconnections

and has built-in implementations of a number of cache coherency protocols.

NePSim2 [30] is an open source framework for analyzing and optimizing

NP design and power dissipation at architecture level. It uses a cycle-accurate

simulator for Intel's multi-core IXP2xxx NPs, and incorporates an automatic

verification framework for testing and validation, and a power estimation model

for measuring the power consumption of the simulated NP. To the best of our

knowledge, it is the only NP simulator available to the research community.

NePSim2 has been evaluated with cryptographic benchmark applications along

with a number of basic testcases. However, the simulator is not readily scalable

to explore a wide variety of NP architectures.

13

McPAT [31] is an integrated power, area and timing modeling framework

for multi-core and many-core architectures. At the core level it includes models of

micro-architectural components such as in-order, out-of-order processor cores

while at the chip level it consists of shared caches, multiple clock domains,

memory controllers and NoC. The critical path timing models, area models and

leakage power model at the circuit level enables McPAT to estimate power

dissipation of a simulated design. However, McPAT is a static power dissipation

model and does not contain any cycle-accurate behavior.

Although the available processor simulators are effective for exploring

different micro-architectural design spaces, CASPER provides us the flexibility to

interchangeably tune impactful micro-architectural parameters such as number of

threads in a core, pipeline depth, multiple clock domains, number of cores,

interconnection network, shared L2 cache size, associativity and line size. Such

a wide range of tunable parameters are not found in other simulators. Also, none

of the available simulators provide power estimation for simulated designs. The

built-in scalable HDL models of all the micro-architectural blocks in our design

such as arithmetic unit, queues, caches and arbiters along with technology

libraries ranging from 90nm to 22nm are used to accurately model delay,

dynamic and leakage power in CASPER. This is an extremely powerful feature

enabling us to accurately measure power dissipation of candidate designs right

at the design stage. A stripped down version of the Solaris 5.10 OS kernel is

ported onto CASPER which enables us to study a wide range of high

performance embedded benchmarks. The details of the simulator and micro-

14

architectural features are described in Chapter 4.

2.2 Multi- and Many-core Design Space Exploration

Exploring the many-core processor design space through exhaustive cycle-

accurate simulation is not practical due to the prohibitively long simulation time

and its superlinear increase as the numbers of cores are scaled. Several

techniques have been proposed that avoids exhaustive simulations in effectively

exploring the uniprocessor [32-35] and many-core [36-38] design space. We first

review recent research on modeling and exploring multi- and many-core

architectures.

 Lee et al. [36] minimize many-core simulation times in estimating

performance through composable regression models for baseline uniprocessor

performance, cache contention, and delay penalty. Their unicore simulation

platform is an execution driven, cycle accurate IA-32 simulator modeling a

superscalar, out-of-order architecture. Long instruction traces derived from a

variety of application areas ranging from digital home to the server are used as

benchmarks. The uniprocessor regression model predicts the baseline

performance of each core while the contention regression model predicts

interfering accesses to shared resources from other cores. Uniprocessor and

contention model outputs are composed in a penalty regression model that

considers the contention as a secondary penalizing effect. A trace simulation is

stated to be sufficient for developing the contention and penalty models, thus

greatly reducing the overall simulation time. A median CPI error of 6.6% is

reported for quad-core processors. The major advantage of their work is the

15

scalability of the methodology to hundreds of cores. The authors have only

focused on developing regression models for predicting CPI and not for power

estimation.

Ipek et. al. [37] use artificial neural networks to predict performance of a

multi-core processor using a small sized training set drawn from the processor

design space. Partial simulation techniques based on SimPoint where only

certain application intervals or simulation points are modeled, are employed to

reduce the simulation time. Benchmarking applications are derived from the

SPEC OMP and parallel NAS benchmarks. An average predicted IPC error of 4-

5% is reported when the neural network is trained using a 1% sample drawn

from a multi-core design space of 8 cores with 250K points and up to 55×

performance swings among different system configuration. Similar to Lee et. al.

the authors do not model processor power dissipation. More importantly, the

authors do not consider chip level shared micro-architectural components such

as shared L2 cache and interconnect network which may critically affect

performance and power due to the contention in the shared resources. Kang and

Kumar [39] treat the multi-core processor design space exploration problem as a

classic search and optimization problem with a simulation-in-the-loop approach

and use of a rule based machine learning algorithm to prune the search space.

The optimization algorithms include steepest ascent hill climbing and genetic

algorithms. The machine learning algorithms includes 1-tuple tagging based on

the complexity of the cores (simple, moderate, and complex), and 5-tuple tagging

based on architecture parameters (Simple, D-cache intensive, I-Cache intensive,

16

Execution units intensive, and Fetch Width intensive). The objective functions for

the optimizations are performance, power, and area. Simulations are done using

a modified version of SMTSim. Power and area estimates are obtained for

different hardware structures from existing literature. The benchmarks are drawn

from SPEC2000, IBS, Olden, and Mediabench. The authors report that their

search/machine learning approach achieves within 1% of the performance

compared to an exhaustive simulation approach for a 4 core system while being

3800 times faster. However, similar to Ipek et. al. the authors do not consider

chip level shared micro-architectural components. Also, their power estimation

approach does not allow the study of the dependence of power dissipation on

architectural parameters. Regarding exploration of network processor

architectures, Wolf and Tillman [40] present an analytical model performance

model for predicting the performance, chip area, and power consumption for a

prototype network processor parameterized using the Commbench network

processing benchmark; Mysore et. al, [41] propose a sensor network benchmark,

WiSeNBench,and use an ARM simulator to identify some of the key

characteristic behaviors; Lin et. al, [42] use a combination of analytical models

and simulations to explore core-centric network processor architectures; Salehi

et. al, [43] optimize of a superscalar MIPS network processor through exhaustive

simulation. Modeling many-core architecture with an analytical approach requires

many simplifying assumptions about the architecture while simulations-only

approach suffers from the drawbacks mentioned earlier. Dubach et. al. [33]

presents an approach that co-designs an optimizing compiler and architecture

17

using a machine learning approach. Their framework consists of the Xtrem

simulator for the Intel XScale architecture, gcc for the compilier, MiBench for the

benchmark, and Support Vector Machines (SVM) for modeling the design space.

The best design achieves significant performance increases resulting in a 13%

improvement in execution time, 23% savings in energy and an energy-delay

product (ED) of 0.67. However, their work is limited to unicore processor

architectures. Although, our methodology can incorporate compiler optimizations,

these optimizations alone may not achieve sufficient performance on many-core

processors.

2.3 Statistical Machine Learning for System Optimization

Statistical machine learning (SML) algorithms can be used to model

multivariate data sets. The basic framework in machine learning based

optimization includes tunable specification, observables identification, training

data collection and data analysis. Brewer [44] uses a linear regression to select

the best data partitioning scheme for a given problem size; Vuduc [45] employs

support vector machines to construct a non-parametric model of the shape of the

partitions of the input space of sparse matrix kernels; Cavazos et. al. [46] use a

logistic regression model to predict the optimal set of compiler flags for the SPEC

benchmark suite; Ganapathi et. al. [47] use Kernel Canonical Correlation

Analysis to effectively identify the relationship between a set of optimization

parameters and a set of resultant performance metrics to explore the search

space for stencil algorithms; Liao et. al. [48] evaluate several classical machine

learning algorithms such as Nearest Neighbor, Naive Bayes, Decision Tree,

18

Support Vector Machines, Multi-layer perception and Radial Basis Function to

optimize pre-fetch configurations for data center applications; Li et. a. [49] use

machine learning based online performance prediction for runtime parallelization

and task scheduling; Leather et. al. [50] develop a new technique to

automatically generate good features for machine learning based optimizing

compilation by improving the quality of a machine learning heuristic through

genetic programming and predictive modeling. The successes of the above listed

research efforts indicate the power of machine learning in directing program and

system optimization.

CHAPTER 3: EMBEDDED NETWORK PROCESSING BENCHMARK
(ENEPBENCH)

To evaluate the performance and power dissipation of candidate designs

we have developed a benchmark suite called Embedded Network Packet

Processing Benchmark (ENePBench) which emulates the IP packet processing

tasks executed in a network router. The router workload varies according to

internet usage where random number of IP packets arrive at random intervals. To

meet a target bandwidth, the router has to (i) process a required number of

packets per second and (ii) process individual packets within their latency

constraints. The task flow is described in Figure 3-1. Incoming IPv6 packets are

scheduled on the processing cores of the NeP based on respective packet types

and priorities. Depending on the type of a packet different header and payload

processing functions process the header and payload of the packet respectively.

Processed packets are either routed towards the outward queues (in case of

pass-through packets) or else terminated.

20

Figure 3-1: Pictorial representation of IP packet header and payload processing
in two packet instances of different types

The packet processing functions of ENePBench are adapted from

CommBench 0.5 [51]. Routing table lookup function RTR, packet fragmentation

function FRAG and traffic monitoring function TCP constitute the packet header

functions. Packet payload processing functions include encryption (CAST), error

detection (REED) and JPEG encoding and decoding as shown in Table 3-1.

Table 3-1: ENePBench: Packet processing functions

Function Type Functio n Name Description

Header Processing

Functions
RTR

A Radix-Tree routing

table lookup program

21

FRAG
An IP packet

fragmentation code

TCP
A traffic monitoring

application

Payload Processing

Functions

CAST
A 128 bit block cipher

algorithm

REED

An implementation of

Reed-Solomon Forward

Error Correction scheme.

JPEG
A lossy image data

compression algorithm.

Packet Scheduler DRR
Deficit Round Robin fair

scheduling algorithm

Functionally, IP packets are further classified into types TYPE0 to TYPE4

as shown in Table 3-2. The headers of all packets belonging to packet types

TYPE0 to TYPE4 are used to lookup the IP routing table (RTR), managing

packet fragmentation (FRAG) and traffic monitoring (TCP). The payload

processing of the packet types, however, is different from each other. Packet

types TYPE0, TYPE1 and TYPE2 are compute bound packets and are

processed with encryption and error detection functions. In case of packet type

TYPE3 and TYPE4, the packet payloads are processed with both compute

bound encryption and error detection functions as well as data bound JPEG

22

encoding/decoding functions.

Table 3-2: Packet Types used in ENePBench

Packet

Type

Header

Functions

Data Functions Characteristic Type of Service

TYPE0 RTR, FRAG, TCP REED Compute Bound Real Time

TYPE1 RTR, FRAG, TCP CAST Compute Bound Real Time

TYPE2 RTR, FRAG, TCP CAST, REED Compute Bound Content-Delivery

TYPE3 RTR, FRAG, TCP REED, JPEG Data Bound Content-Delivery

TYPE4 RTR, FRAG, TCP CAST, REED, JPEG Data Bound Content-Delivery

The two broad categories of IP Packets are hard real-time termed as real-

time packets and soft real-time termed as content-delivery packets. Real-time

packets are assigned with high priority whereas content-delivery packets are

processed with lower priorities. The total propagation delay (source to

destination) of real-time packets is less than 150 milliseconds (ms) and less than

10 sec for content-delivery packets respectively.

Table 3-3: Performance Targets for IP packet type

Application/Packet

Type

Data Rate Size End-to-end

Delay

Description

Audio 4 – 64 (Kb/s) < 1KB < 150 msec Conversational

Audio

Video 16 – 384 ~ 10KB < 150 msec Interactive video

23

(Kb/s)

Data - ~ 10KB < 250 msec Bulk data

Still Image - < 100KB < 10 sec Images/Movie

clips

Assuming maximum 10 to 15 hops are allowed per packet, worst case

processing time of the packets in the intermediate routers is in the order of 10ms

in case of real-time packets and 1000 ms in case of content-delivery packets

respectively [52]. The network propagation delay is assumed to be negligible as

optical fiber networks provide sufficient data bandwidth [8]. Table 3-3 enlists the

end-to-end transmission delays associated with each packet categories. All of

our candidate micro-architectures must be designed to process packets within

the packet processing delay limits. In addition to processing delay per packet, we

also consider total number of packets required to process per second in a TBPS

router. Since IPv6 packets are of varying length we assume in average packet

contains a payload of size 8KB. Hence, total number of packets to be processed

is given by,

������� 	�
 �����
 � ���
��
��
���
��� 	����� ���� �3 � 1�

According to Equation 3-1 approximately 70 to 100 million packets are

required to be processed per second to achieve TBPS line speed. In a shared

memory NeP with �� number of cores where each core has �� hardware threads,

�� � �� packets are processed simultaneously.

24

Table 3-4: Processing time and instruction count of 5 packet types

Packet

Type

Processing

Time

(msec)

Instruction

Count

Packet

Distribution

TYPE0 10 1255368 60%

TYPE1 10 1354559 25%

TYPE2 10 1258022 5%

TYPE3 1000 8922987 5%

TYPE4 1000 9124851 5%

The processing time, instruction count and packet distribution for all the

packet types are enlisted in Table 3-4. For a given network bandwidth the total

number of packets to be processed per second contains a distribution of different

packet types. For example, if 100 packets are to be processed per second, packet

distribution percentage as shown in Table 3-4 signifies that there are 60 TYPE0

packets, 25 TYPE1 packets and 5 packets of types TYPE2, TYPE3 and TYPE4.

CHAPTER 4: CASPER PROCESSOR SIMULATOR

CASPER is an instruction trace-driven cycle-accurate many-core processor

simulator which models a shared memory heterogeneous architecture. CASPER

provides the user with three key benefits – (i) entire SPARCV9 instruction set

support enabling the user to run any Solaris executable on the simulator, (ii) a

large set of tunable architectural parameters so that heterogeneous CMT design

space can be widely explored, and (iii) deep chip vision - accurate area and

performance estimations, along with cycle-accurate power and energy

consumption models, which enable the user to capture energy consumption

characteristics of different parts of the chip on a cycle-by-cycle basis. CASPER

also provides the architect complete access to the processor and enables the

monitoring of critical system events. CASPER is open-sourced under GNU GPL

license [53].

CASPER is written in C++ programming language and has been flexibly

parallelized using pthreads to optimally run on a wide variety of parallel

processors. Functionally, it has been validated against the open-sourced

functional simulator of Sun Microsystem's UltraSPARC T1 processor [54-56] -

SPARC Architecture Simulator (SAM). Timing verification is done in two stages –

(i) CPI and memory operations of applications executed on UltraSPARC T1

processor and a structurally similar design simulated in CASPER are matched

26

and (ii) number of retired instructions, required number of cycles to commit these

instructions and program counter progression are matched with the pre-

characterized HDL models of the processor.

Figure 4-1: The shared memory processor model simulated in CASPER. NC
heterogeneous cores are connected to NB banks of shared secondary cache via
a crossbar interconnection network. Each core consists of S0 to SN-1 are the
pipeline stages, T0 to TNT-1 hardware threads, L1 I/D cache and I/D miss queues

4.1 Processor Model

The processor model used in CASPER is shown in Figure 4-1. NC cores are

connected to the shared L2 cache through a crossbar interconnection network.

The unified L2 cache is inclusive and is divided into NB banks. Each bank of L2

privately owns DRAM controllers and independently communicates with the RAM

modules. NC and NB are parameterized in CASPER. The 64-bit pipeline is

parameterized to handle NT hardware threads and is divided into 6 main stages –

Instruction-Fetch (F-stage), Thread-Schedule (S-stage), Branch-and-Decode (D-

stage), Execution (E-stage), Memory-Access (M-stage) and Write-back (W-

stage).

27

Figure 4-2: Micro-architectural structures inside a core in CASPER

Figure 4-2 shows the different stages of the in-order instruction pipeline inside

a core. The Instruction Fetch Unit includes the instruction address translation

buffer (I-TLB) and the instruction cache (I$) and the thread scheduling state

machine. I-TLB and I$ are shared by the hardware threads. Each thread privately

owns a register file (processor-state specific set of registers) and a set of alternate

address mapped registers called ASI registers; the D-stage includes a full

SPARCV9 instruction set decoder described in [57]. The E-stage includes a

standard RISC 64-bit ALU, an integer multiplier and divider. Load Store Unit

(LSU) is the top level module which implements the M-stage and W-stage. It also

includes the data TLB (D-TLB) and data cache (D$).

28

The miss path of I$ is controlled through Missed Instruction List (MIL) and

Instruction Fetch Queue (IFQ), while that of the D$ is controlled through Load

Miss Queue (LMQ) which maintains cache misses separately for each thread.

Duplicate load misses are maintained in a wait buffer to reduce off-core traffic.

Store Buffer (SB) serializes all the stores following the Total Store Order (TSO)

model.

The Floating point Unit (FPU) which executes single and double-precision

floating-point operations can either be shared across all cores or can be privately

owned by a single core. In the former case, all floating point operation packets

are routed to the FPU via the interconnection network. Two thread scheduling

schemes are implemented in CASPER. The small latency thread scheduling

scheme allows instructions from ready threads to be issued into the D-stage at

every clock cycle [56, 58]. Long latency scheduling scheme allows one active

thread to continue its execution till it is complete or interrupted by higher priority

threads. The full list of tunable architectural parameters is given in Table 4-1.

Table 4-1: Configurable Parameters in Casper

Name Range Description

Cores 1: NC Number of cores on chip

Strands 1:NS Hardware threads per core

Strand

Scheduling
2

Long Latency Scheduling /

Small Latency Scheduling

FPU 1 or 0
FPU can be shared between

the cores or threads

29

Name Range Description

I$_C/D$_C 4:64 (KB) Size of L1 I-D cache

I$_B/D$_B 4:64 Size L1 I-D cache block

I$_A/D$_A 2:8 Associativity of L1 I-D cache

I$/D$ Hit

Latency
2:4 clock cycles

Measured in Cacti for 45nm

technology

IFQ 1NS:8NS
Size of Instruction Fetch

Queue

MIL 1NS:8NS Size of Missed Instruction List

BBUFF 4NS:16NS entries Size of Branch Address Buffer

LMQ 1NS:8NS Size of Load Miss Queue

DFQ 1NS:8NS Size of Data Fill Queue

SB
1NS:16NS Size of Store Buffer (Store-

ordering)

L2$_C 256KB:16MB Size of L2 cache

L2$_B 8:24 Size of L2 cache block

L2$_A 4:16 Associativity of L2 cache

L2$_NB 4:16 Number of L2 cache banks

In case of heterogeneous designs, the cores in CASPER are configured

with different micro-architectures (one set of values of the architectural

parameters) although the six functional stages of the core pipeline are fixed. The

size and structure of the core-to-memory and memory-to-core request packets

are also kept same across all the cores for simplicity. This is important since the

30

size of the interface packets usually depends on the cache block sizes. The clock

signals to the heterogeneous cores are designed to be scaled so that different

cores can be driven at different voltage and frequency levels. The tunable

parameters in L2 cache are number of banks, bank size, associativity, block size

and access latency. Arbiters in the L2 cache controllers issues one request

packet from the input queues at a time.

4.2 Performance Measurement

For a given set of micro-architectural parameters, CASPER uses counters in

each core to measure the number of completed instructions individually for each

hardware thread (InstrTHREAD) and for the entire core (InstrCORE) every second. For

a processor clock frequency of 1GHz, the total number of clock cycles per second

is 1G. In this case the CPI-per-core is calculated as (1G/InstrCORE) while CPI-per-

thread is calculated as (1G/InstrTHREAD).

In addition to CPI, counters are provided in CASPER to measure (i) pipeline

stalls, (ii) wait time of threads due to MIL/LMQ/SB being full, (iii) I$ and D$

misses, and (iv) stalls due to other long latency operations such as ASI registers

writes and floating point operations. Counters are also attached to the crossbar

network to measure the access frequencies of the various cores and threads in

them. The input queues of the L2 cache are monitored to track the accesses

occurring every clock cycle from the various cores and corresponding threads. In

addition, special counters are attached to every set in the L2 cache to report

utilization, number of hits/misses per core and per hardware thread, and reuse

and access frequencies of the active threads running in the system [59]. Cache hit

31

latencies (delays) are measured using Cacti [60, 61] for a given cache size, block

size, associativity and silicon technology. Miss penalties are counted in clock

cycles by the counters provided in CASPER.

Another important feature used in CASPER is Hardware Scouting. Usually

long latency operations such as ASI register load/stores, I$ misses and D$ load

misses in an in-order thread are blocking in nature. This means the blocked

thread is in a WAIT state and no further instructions are issued into the decode

stage. This also means that even though the depth of the load miss queue (LMQ)

is greater than one, only one entry is effectively used. To save a few more clock

cycles such that load misses following a previous load misses are also enqueued

in the LMQ, hardware scouting is implemented in our pipeline which switches the

state of a blocked thread to SPECULATIVE RUN state instead of WAIT state.

Instructions in a thread which is in SPECULATIVE RUN state are scheduled to

the decode stage, but are never committed until the first blocking load miss is

resolved. Once the first load miss is resolved, the thread is switched to usual

READY state and further execution continues. Arithmetic instructions appearing

between two load misses are rolled back and the issuing thread is kept waiting till

the first load miss is committed. In average, this enhances the performance of a

single thread by 2-5%.

4.3 Verification

Functional correctness of candidate designs simulated in CASPER is

verified using a set of diagnostic codes which are designed to test all the possible

instruction and data paths in the stages of the pipeline in a core. Additional set of

32

diagnostic codes are written which consist of random combinations of

instructions such that different system events such as traps, store buffer full and

others are also asserted. To further verify the accuracy of CASPER, we have

compared the total number of system events generated while executing 10 IP

packets in the ENePBench in a real-life UltraSPARC T1000 machine consisting

of an UltraSPARC T1 (T1) processor (T1) [56] to an exact UltraSPARC T1

prototype (T1_V) simulated in CASPER. UltraSPARC T1 is the closest in-order

CMT variant to our CMT designs modeled in CASPER and consists of 8 cores

and 4 hardware threads per core. The simulated processor in CASPER had

equal number of cores, hardware threads per core, L1 and L2 caches as T1.

Columns 3a, 3b, 4a, 4b, 5a, 5b and 6 of our results tabulated in Table 4-2

compare the number of instructions committed, store buffer full event, I$ misses

and D$ misses respectively in T1 and T1_V respectively. Column 6 shows that in

average, the error in number of system events is less than 10%.

Table 4-2: Comparison between number of system events for 5 IP packets types
in (i) T1000 server with an UltraSPARC T1 processor and (ii) a T1 prototype

simulated in CASPER

Packet

Type

Clock

Ticks

(in

 !"�

Instr_cnt

(in !")

SB_full

(in !#)

IC_miss

es

(in !#�

DC_misse

s

(in !#�

Avg.

Erro

r (%)
T1 T1_V T1

T1_

V
T1

T1_

V
T1

T1_

V

TYPE0 0.674 0.255 0.255 5.0 4.9 2.6 2.6 1.56 1.59 2.01

TYPE1 0.673 0.254 0.254 5.4 5.6 2.5 2.4 1.50 1.6 7.35

33

TYPE2 0.612 0.26 0.258 5.1 5.2 2.6 2.5 1.51 1.52 4.0

TYPE3 2.257 0.90 0.892 12.9 12.7 3.5 3.9 6.84 6.84 5.7

TYPE4 2.259 0.94 0.896 18.9 17.1 3.5 3.6 6.89 6.89 9.5

4.4 Deep Chip Vision – Area and Power/Energy Measurement

To accurately model the area and the power dissipation of the architectural

components we (i) design scalable hardware models of all pipelined and non-

pipelined components of the processor in terms of corresponding architectural

parameters (Table 1), (ii) derive area and power dissipations (dynamic + leakage)

of the component HDL models using industry-standard synthesis and layout tools

such as Synopsys and placement and routing tools as Encounter and (iii)

statistically curve-fit the area and power dissipation values of the components for

increasing values of the parameter to derive linear estimation models. Derived

power models are then used to estimate energy consumption of the components

by capturing the activity factor $��� from simulation, and integrating the product of

power dissipation and $��� over simulation time.

4.5 Design of HDL Models

Table 4-3 summarizes the common hardware structural components used in

a CMT processor and the HDL models they map to. Some of the HDL models of

the components (both intra-core and chip level components such as interconnect

buses and arbiters) are available in OpenSPARC [56], while others have been

custom designed in our lab. The HDL models are designed to be scalable, and

capture different variations in the architectural parameters.

34

Table 4-3: Common CPU Hardware Structures and their models used in
CASPER

Hardware

Structure
HDL Model Affected By

I$, D$ Cache Array

Branch Predictor RAM + Logic threads-per-core (NS)

I-TLB, D-TLB RAM + CAM -

Load Miss Queue RAM + CAM NS

Missed

Instruction List
RAM + CAM NS

Store Buffer RAM + CAM + Logic NS

Crossbar

Interconnect
Scaled CCX number of cores (NC)

L2 Cache Banks Cache Array NC

FPU Logic

SPARCV9 Floating

Point Operations –

FADD, FSUB, FMUL,

FDIV

Integer + Float

Register File
Logic

SPARCV9 Register

File

4.5.1 Area and Power Estimation

To accurately model the area and the power dissipation of the architectural

35

components we have (i) designed scalable hardware models of all pipelined and

non-pipelined components of the processor in terms of corresponding

architectural parameters, (ii) derived power dissipations (dynamic + leakage) of

the component HDL models using industry-standard synthesis and layout tools

such as Synopsys [62] which targets the Berkeley 45nm Predictive Technology

Model (PTM) technology library [63] and placement and routing tools as

Encounter [64] and (iii) statistically curve-fit the area and power dissipation

values of the components for increasing values of the parameter to derive linear

regression models. Derived power models are then used to estimate energy

consumption of the components by capturing the activity factor $��� from

simulation, and integrating the product of power dissipation and $��� over

simulation time. The following equation is used to calculate the power dissipation

of a pipeline stage –

�%&'()��� � �*)'+'()��� , $�-./'012 ��� �4 � 1�

where 4 is the activity factor of that stage (α=1 if that stage is active; α = 0

otherwise) which is reported by CASPER, and Pleakage and Pdynamic are the leakage

and dynamic power dissipations of the stage respectively.

The power dissipation values of the parameterized micro-architectural

non-pipeline components in a core namely, the load miss queue, store buffer,

missed instruction list, I/D-TLB, and I/D$ are collected from Cadence Encounter

using a 1GHz clock into lookup tables. These lookup tables are then used in the

simulation to calculate the power dissipation cycle by cycle. Table 4-4 shows the

area, dynamic and leakage powers of the micro-architectural blocks in a core.

36

Area, delay and power dissipation of caches in Table 4-4 have been modeled

using Cacti 4.1 [60, 61].

Table 4-4: Post-Layout Area, Dynamic and Leakage Power of HDL Models

HDL Model
Area

(mm 2)

Dynamic

Power

(mW)

Leakage

Power (uW)

RAM (16) 0.022 1.03 17.81

CAM (16) 0.066 3.51 67.70

FIFO (16) for 8 threads 0.3954 165 1200.00

TLB (64) 0.0178 21.11 92.60

Cache (32KB) 0.0149 28.3 -

Cache Controller

Integer Register File 0.5367 11.92 4913.7

Float Register File 0.0764 309.44 551.897

FPU - - -

IFU 0.0451 3280.1 378.39

EXU 0.0307 786.99 301.94

LSU 0.8712 5495.3 6848.30

TLU 0.064 1302.2 553.8458

Floating Frontend Unit

(FFU)
0.0123 767.07 98.40

Multiplier 0.0324 23.74 383.88

The area distribution of a 8 threaded core in CASPER is shown in

4-3. The width of LMQ, SB, D

32KB in size with 16B linesize and 4 set

(IRF) for each thread is segregated and hence there are 8 in total. IRF is the

biggest contributor of the core area.

Figure 4-3: Area distribution of the micro
single core area estimation

8%
1%

0%

24%

The area distribution of a 8 threaded core in CASPER is shown in

The width of LMQ, SB, D-TLB are 16, 16 and 64 respectively.

in size with 16B linesize and 4 set-associativity. The integer

(IRF) for each thread is segregated and hence there are 8 in total. IRF is the

biggest contributor of the core area.

Area distribution of the micro-architectural features of an 8
ingle core area estimation model in CASPER

5%

5%
0%

54%

24%

1%

0%

2%

Area (mm2)

LMQ(16x8)

SB(16x8)

TLB(64)

IRF(8)

FRF(8)

IFU

EXU

LSU

TLU

Multiplier

37

The area distribution of a 8 threaded core in CASPER is shown in Figure

TLB are 16, 16 and 64 respectively. The D$ is

The integer register file

(IRF) for each thread is segregated and hence there are 8 in total. IRF is the

of an 8-thread

LMQ(16x8)

SB(16x8)

TLB(64)

IRF(8)

FRF(8)

IFU

EXU

LSU

TLU

Multiplier

Figure 4-4: Power dissipation distribution
8-thread single core area estimation model in CASPER

Figure 4-4 shows the power estimation distribution of the micro

blocks of an 8-threaded core simulated for 1 million clock cycles in CASPE

width of LMQ, SB, D-TLB are 16, 16 and 64 respectively. The D$ is 32KB in size

with 16B linesize and 4 set

the heaviest contributor of power dissipation in a core. The operations of LSU is

divided into four pipelined stages where the D

Buffer (SB) is cammed and all out

power dissipation.

The structures of shared L2 cache and interconnection network is

dependent on the number of cores in a candidate design which makes it

immensely difficult to synthesize, place and route all possible combinations.

Hence we have used

dynamic and leakage power dissipation of shared L2 cache and interconnection

44%

Single core power distribution (mW)

: Power dissipation distribution of the micro-architectural features of an
thread single core area estimation model in CASPER

shows the power estimation distribution of the micro

threaded core simulated for 1 million clock cycles in CASPE

TLB are 16, 16 and 64 respectively. The D$ is 32KB in size

with 16B linesize and 4 set-associativity. As observed the load store unit or

the heaviest contributor of power dissipation in a core. The operations of LSU is

ided into four pipelined stages where the D-TLB, D$ are accessed, Store

Buffer (SB) is cammed and all out-going packets are resolved; hence the high

he structures of shared L2 cache and interconnection network is

dependent on the number of cores in a candidate design which makes it

immensely difficult to synthesize, place and route all possible combinations.

Hence we have used multiple linear regression [65] to model the throughput,

dynamic and leakage power dissipation of shared L2 cache and interconnection

2%

1%
0%

1%

20%

26%

6%

0%

0%
0%

Single core power distribution (mW)

LMQ(16x8)

SB(16x8)

TLB(64)

IRF(8)

FRF(8)

IFU

EXU

LSU

TLU

Multiplier

38

architectural features of an
thread single core area estimation model in CASPER

shows the power estimation distribution of the micro-architectural

threaded core simulated for 1 million clock cycles in CASPER. The

TLB are 16, 16 and 64 respectively. The D$ is 32KB in size

the load store unit or LSU is

the heaviest contributor of power dissipation in a core. The operations of LSU is

TLB, D$ are accessed, Store

going packets are resolved; hence the high

he structures of shared L2 cache and interconnection network is co-

dependent on the number of cores in a candidate design which makes it

immensely difficult to synthesize, place and route all possible combinations.

to model the throughput,

dynamic and leakage power dissipation of shared L2 cache and interconnection

Single core power distribution (mW)

LMQ(16x8)

SB(16x8)

TLB(64)

IRF(8)

FRF(8)

Multiplier

39

network respectively. A detailed discussion about the multiple linear and non-

linear regressions method is presented in Chapter 6. Dynamic power dissipation

measured in Watts of L2 cache is related to the size in megabytes, associativity

and number of banks �5 as shown in Equation 4-2. The model parameters are

shown in Table 4-5.

62-./'012_9:;)< � �0 , �1 � >��� , �2 � ������������? � �3 � �5 �4 � 2�

Table 4-5: L2 cache linear regresssion model parameters

R R Square
Std. Error of

Estimate

0.926 0.857 0.524

Similarly, the dynamic and leakage power dissipation measure din milli-

Watts of a crossbar interconnection network is given by Equation 4-3 and

Equation 4-4 respectively. Note that dynamic and leakage power is exponentially

related to number of cores (��� and number of cache banks ��5�. In these two

cases, the R value is 0.753 and standard errors of estimates is10.64.

@�-./'012_9:;)< � A0 , A1 � �BC�DE , A3 � F , A4 � �BG�DH �4 � 3�

@�*)'+'()_9:;)< � A0 , A1 � �BC�D�IBJ�KIBL�D5 �4 � 4�

4.5.2 Modeling Activity Factor

It is necessary to track the activity factors of all the components and all the

stages to accurately estimate the energy consumption of a design. Cycle-accurate

simulation captures the switching activity of the micro-architectural components in

every clock cycle. As a given instruction is executed through the multiple stages

40

of the instruction pipeline inside a core, the simulator tracks (i) the intra-core

components that are actively involved in the execution of that instruction and (ii)

the cycles during which that instruction uses any particular pipeline stage of a

given component. Any component or a stage inside a component is assumed to

be in two states – idle (not involved in the execution of an instruction) and active

(process an instruction). For example, in case of a D$ load-miss, the occurrence

of the miss will be identified in the M-stage. The load instruction will then be

added to the LMQ and W-stage will be set to an idle state for the next clock cycle.

Figure 4-5: Power Dissipation transient for a single pipeline stage in a
component. The area under the curve is the total Energy consumption

A non-pipelined component is treated as a special case of a single stage

pipelined one. We consider only leakage power dissipation in the idle state and

both leakage and dynamic power dissipations in the active state. Figure 4-5

shows the total power dissipation of a single representative pipeline stage in a

component. Note that the total power reduces to just the leakage part in the

41

absence of a valid instruction in that stage (idle), and the average dynamic power

of the stage is added when an instruction is processed (active).

A certain pipeline stage of a component will switch to active state when it

receives an instruction ready signal from its previous stage. In the absence of the

instruction ready signal, the stage switches back to idle state. Note that the

instruction ready signal is used to clock-gate (disable the clock to all logic of) an

entire component or a single pipeline stage inside the component to save

dynamic power. Hence we only consider leakage power dissipation in the

absence of an active instruction. In case of an instruction waiting for memory

access or in the stall state due to a prior long latency operation, is assumed to be

in active state.

Figure 4-6: Power profile of a pipelined component where multiple instructions
exist in different stages. Dotted parts of the pipeline are in idle state and add to

42

the leakage power dissipation. Shaded parts of the pipeline are active and
contribute towards both dynamic and leakage dissipate power dissipations.

Figure 4-6 shows the power (dynamic + leakage) contributions of multiple

pipeline stages (which are simultaneously processing different pipelined

instructions) to generate the total power dissipation profile of a pipelined micro-

architectural component. As shown in the Figure 4-6 above, for any given pipeline

stage the horizontal separation lines correspond to different clock cycles during

which different instructions flow through the stage. The shaded parts correspond

to active states of the stage (dynamic + leakage power), while the dotted parts

correspond to idle states of the stage (only leakage power). Note that different

stages have different values of dynamic and leakage power dissipations. The

following equation is used to calculate the power dissipation of a pipeline stage –

�%&'()��� � �*)'+'()��� , $�-./'012 ��� �4 � 5�

where 4 is the activity factor of that stage (α=1 if that stage is active; α = 0

otherwise) which is reported by CASPER, and Pleakage and Pdynamic are the leakage

and dynamic power dissipations of the stage respectively. Finally the energy

consumption is found using the following equation:

N � O �%&'()���
P10Q*'&1:/ �10)

&RS
 �4 � 6�

A trace of the total power dissipation of a processor under simulation is

reported by CASPER by adding the power dissipation profiles of all stages of all

components for every clock cycle of simulation. The area under that curve is the

total energy consumption of the processor for a given benchmark. CASPER can

be used to design future throughput intensive CMT architectures ranging from

43

real-time constrained embedded systems (such as embedded network

processors) to high-performance computing (HPC) platforms (such as

web/application servers). Typically, for embedded applications the objective is to

minimize energy consumption subject to throughput constraints, while for high-

performance applications throughput is maximized under power dissipation

constraints. The following sections explain the data demand characteristics of

these two application domains and how we employ CASPER to design

processors for them. We use commercial benchmarks such as CommBench-0.5

(embedded network processors) and SPECJBB2005 (web/application server

processors) to evaluate CMT architectures.

4.5.3 Design Trade-offs in case of SPECWEB2005

High-end web and applications servers process huge amounts of data

simultaneously. The typical data complexity is of the order of 10-20 million

simultaneous users (parallel tasks) accessing large databases and executing

transactions. User processes are mapped to software threads and corresponding

transaction data from the backend database servers are transferred into the local

memory of the executing processor. It is possible that substantial data can be

reused or shared for multiple users justifying the use of shared memory

architectures to enhance performance. CMT shared-memory architectures are

known to perform efficiently for such applications [54, 55, 58]. L2 cache size

(maximize amount of on-chip data), number of threads per core, number of cores

and other critical architectural parameters have substantial impact on processor

performance. Table 4-6 lists the parameters of interest and the range of values

44

that can be explored in an HPC CMT processor. The benchmark used to study

this class of applications is SPECJBB2005 [66].

Table 4-6: The micro-architectural parameters and their ranges used to study the
design trade-offs in SPECWEB2005

Parameter Range

Cores 1:32

Threads 4:32

L1_I$ 4KB:64KB

L1_D$ 4KB:64KB

I-TLB 16:64

D-TLB 16:64

L2$_Size 1MB:16MB

L2$_banks 4:16

Table 4-7: Baseline Architecture used to measure CPI for SPECJBB2005

Parameter Value

Cores 1

Threads per core 1

L1 I$/D$ size 16KB/8KB

L1 I$/D$ Associativity 4/4

L1 I$/D$ Block size 32/16

I/D-TLB 64/64

45

Table 4-7 shows the baseline architecture used to study the SPECJBB2005

benchmark. Figure 4-7 shows how the normalized CPI of a core and that of a

strand vary with the number of threads in the core (from 1 to 16). Other

architectural parameters are kept constant in baseline architecture for this

experiment. As observed, performance of a core levels off as the number of

threads increases, leading to more L1 cache misses due to cache thrashing.

Figure 4-7: Scalability of CPI-per-core and CPI-per-strand of a core as threads-
per-core is increased from 1 to 16. SPECJBB2005 is used as benchmark.

Additional stalls occur in the LSU, where the arbiter, responsible for transferring

load-store packets from the core to the shared L2 cache becomes the bottleneck.

The arbiter follows a round-robin fairness scheduling scheme to issue packets

into the interconnection network. The worst case wait time for an outbound

load/store packet of a thread is of the order of U��P�, where NS is the number of

threads in the core. However, the CPI-per-strand increases considerably since a

thread can wait in the worst case for U��P� cycles to be scheduled from the F-

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 8 16

C
P

I

Number of Threads

CPI-per-thread

CPI-per-core

46

stage to the D-stage. Note that Figure 6 shows the data for small latency thread

scheduling scheme.

In Figure 4-8, we show how performance scales when two independent

architectural parameters, (i) number of threads per core and (ii) size of L1 data

cache, are varied together. The area and power dissipation for a 4-way set

associative 16-block size cache for increasing size of cache is enlisted in Table

A.1 in Appendix A. Note in Figure 4-8 that less misses in larger caches helps in

increasing the effective CPI-per-core. However, as the number of threads-per-

core increases, L1 cache contention reduces this benefit. However, larger cache

sizes indicate larger die area and hence more power dissipation.

Figure 4-8: CPI-per-core scalability as threads-per-core is scaled from 1 to 16
and the size of a 4-way set associative 16-block sized data cache is varied from
8-64KB (with SPECJBB2005)

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 8 16

C
P

I-
p

e
r-

co
re

Number of Threads

64kb

32kb

16kb

8kb

47

Figure 4-9: Scalability of the area of a core (consisting of 4-threads) as size of a
4-way set-associative 16-block size data cache increases (with SPECJBB2005)

Figure 4-9 shows die area (in mm2) of one core scales almost super-linearly

with increasing cache sizes. In the figure we vary the data cache size from 1KB to

64KB.

Figure 4-10: Dynamic power dissipation of a core (consisting of 4-threads) as
size of a 4-way set-associative 16-block size data cache increases. The black
line shows the trend (with SPECJBB2005)

8.7

8.8

8.9

9

9.1

9.2

9.3

9.4

1 2 4 8 16 32 64

D
ie

 A
re

a
 (

m
m

2
)

D$_Size

23.685

23.69

23.695

23.7

23.705

23.71

23.715

1 2 4 8 16 32 64

D
y

n
a

m
ic

 P
o

w
e

r
(W

)

D$_Size

48

Figure 4-10 shows peak dynamic power dissipation of a core consisting of 4

threads as the size of the D$ varies from 1KB to 64KB. As expected with bigger

cache sizes, we observe more power dissipation. A 32KB data cache size has

high power dissipation ratings than that of 64KB cache as can be seen from Table

A.1 in Appendix A. Also, the power saved due to lower cache misses for a 32KB

data cache, compared to a 16KB data cache, is mitigated by the high power

signature of the cache. This explains the slight increase in overall dynamic power

dissipation of the core for this cache size.

Figure 4-11: Dynamic Power Dissipation in a 4-threaded core simulated in
CASPER with SPECJBB2005. Number of retired instructions at each time step is
around 5.2 billion.

Figure 4-11 shows the variation in power dissipation of a 4-threaded core

according to data cache misses and committed instructions. Note the close

correlation between D$ misses and dynamic power dissipation.

0

2

4

6

8

10

12

5 10 15 20 25 30 35

Time (Seconds)

Dynamic Power (W) Misses (in 10millions) Instructions (in billions)

49

Figure 4-12: Shared L2 cache contention as a function of time for a 2-core CMT
(4 threads-per-core) processor (with SPECJBB2005); L1 D$ misses of Core_0
and Core_1 are shown in red and green respectively.

Figure 4-12 shows traffic in the shared L2 cache (in units of 10 million

misses) due to the simultaneous accesses from two cores in the system. In this

case, the cores are configured with 4 threads-per-core, a 8KB data cache, and

other features similar to the baseline architecture described in Table 4-7. Table

4-8 shows average L2 access load (in units of 10 million misses) as the number of

cores is scaled, using similar core configurations as described above.

Table 4-8: Average L2$ load distribution as the number of 4-threaded cores is
increased from 2 to 8. Data corresponds to units of 10 million misses

Cores C2T4 C4T4 C8T4

Core0 3.11 3.19 3.24

Core1 2.89 3.12 3.27

Core2 0 3.24 3.26

Core3 0 3.098 3.33

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

L2
 C

a
ch

e
 C

o
n

te
n

ti
o

n
 (

u
n

it
 o

f
1

0
M

m
is

se
s)

Time (seconds)

50

Core4 0 0 3.3

Core5 0 0 3.26

Core6 0 0 3.21

Core7 0 0 3.33

4.5.4 Design Trade-offs in case of EnePBench

NePs must process data packets at line speeds of typically 50-60 million

packets per second. NePs execute codes for all layers of the Open System

Interconnection (OSI) Protocol Stack [67]. The operations performed on a typical

example packet have been discussed in [19]. Usually, a packet is mapped to a

software-thread (posix thread) where the functions from different layers are

executed sequentially. In a many-core processor, different operations on a packet

will be mapped to one of the hardware threads. In addition latency, due to stalls in

packet processing due to dependency on other packets or other network state

information, can be potentially hidden by overlapping multi-threaded execution.

Table 4-9: Architecture Parameters for Real-Time Embedded Network
Processing

Parameter Range

Cores 1:4

Threads 1:8

L1 I$ 1KB:4KB

L1 D$ 1KB:4KB

I/D-TLB 4:8

51

A subset of micro-architectural design parameters and their ranges are

listed in Table 4-9. The benchmark suite used for these experiments is

CommBench-0.5 [51] which is designed to measure performance of embedded

NPs. The applications in CommBench are broadly categorized into (i) Header –

Processing Applications (HPA) and (ii) Payload-Processing Applications (PPA).

HPA programs include the following:

1. RTR - A Radix-Tree routing table lookup program.

2. FRAG - An IP packet fragmentation code.

3. DRR - Deficit Round Robin fair scheduling algorithm.

4. TCP - A traffic monitoring application.

PPA applications include:

a) CAST - A 128 bit block cipher algorithm.

b) ZIP - A data compression program based on commonly used Lempel-Ziv

compression algorithm.

c) REED - An implementation of Reed-Solomon Forward Error Correction

scheme.

d) JPEG - A lossy image data compression algorithm.

Table 4-10: Baseline Architecture used to measure CPI for CommBench 0.5

Parameter Value

Cores 1

Threads per core 1

L1 I$/D$ size 1KB/1KB

L1 I$/D$ Associativity 2/2

52

L1 I$/D$ Block size 8/8

I/D-TLB 4/4

Table 4-10 shows the baseline architecture used. Table 4-11 shows the

individual performance of the CommBench benchmark applications on the

baseline architecture. Table 4-12 shows the energy consumption of the different

CommBench programs. Column 2 shows the average energy consumption (with

just clock-gating enabled in every stage in every component) – the LPMU

algorithm described in Chapter 4 is not used. The data in column 3 shows the

reduction in energy achieved by only power gating the core components. Power-

gating reduces overall power dissipation by cutting down the leakage power. Due

to relatively low leakage power in the 1-core 1-thread design, the effects of power-

gating are relatively low. DVFS on the other hand produces larger reduction in

energy consumption, as illustrated in the last two columns. In column 4, the

supply voltage has been scaled down to 0.65V (from 0.7V), and the clock

frequency has been to scale down to 0.8GHZ (compared to 1GHz for normal

execution). Column 5 shows the energy reduction because of only frequency

scaling (FS). The operating frequency for this experiment is set to 0.7GHz.

Table 4-11: List of system events for CommBench 0.5 applications

Benchmark Instr uction

Count

I$

misses

D$

misses

CPI

RTR 1976779411 393164 725377 3.03

FRAG 1825056567 46150 420580 3.29

53

DRR 1776752836 103189 2837196 3.38

TCP 1829361746 20387 831234 3.28

CAST 1891153306 176163 1120180 3.18

ZIP 1834895294 31505 11679186 3.27

REED 4307088095 130365 583296 2.79

JPEG 1832782256 49717 4606153 3.28

Table 4-12: Power Dissipation for CommBench 0.5 applications with power-
saving features

Benchmark

Energy Consumption (µJ) for 8000

clock cycles

without

LPMU

with

power

gating

with

DVFS

with

FS

RTR 57.46 57.34 39.64 40.22

FRAG 55.59 55.27 38.35 38.90

DRR 57.34 56.48 39.55 40.14

TCP 57.91 57.78 39.95 40.54

CAST 57.20 57.10 39.46 40.04

ZIP 63.39 63.23 43.73 44.37

REED 65.63 65.08 45.27 45.94

JPEG 63.21 63.09 43.60 44.24

CHAPTER 5: DYNAMIC POWER MANAGEMENT TECHNIQUES IN CASPER

5.1 Abstract

Dynamic power management (DPM) in many-core processors executing

parallel tasks involves a set of techniques which perform power-efficient

computations under real-time constraints to achieve system throughput goals

while minimizing power. DPM is executed by an integrated chip-wide power

management unit (PMU), implemented in software, hardware or a combination

thereof, which monitors and manages the power and performance of each core by

dynamically adjusting its operating voltage and frequency. Hardware-controlled

power management eliminates the computation overhead of the processor for

workload performance and power estimations. Hence, hardware power

management realizes more accurate and real time impact on workload

performance than a slower reacting software power management can achieve.

We evaluate three different hardware-controlled global PMU policies – (i) the

existing chip-wide DVFS [68] and (ii) MaxBIPS [68] methods, besides (iii) the

novel SmartBIPS algorithm that we have developed in this work. SmartBIPS uses

a hysteresis based prediction mechanism for dynamic performance estimations,

and thereby automatically incorporates shared memory interactions between the

multiple cores. Results show that on average, SmartBIPS achieves a 41.3%

improvement in power savings and a 19.8% improvement in throughput per unit

55

power with respect to MaxBIPS. This analysis is obtained using CASPER [69]

running ENePBench the network packet processing benchmark discussed in

Chapter 3. The throughput improvement of SmartBIPS with respect to chip-wide

DVFS is 16.7% at a cost of 1.2 times higher power dissipation. MaxBIPS achieves

a 61% throughput improvement at a cost of 2.1 times higher power with respect to

chip-wide DVFS.

5.2 Introduction

Computing with power efficiency has become the paramount concern in

embedded many-core platforms. High power dissipations in embedded platforms

will increase form factors, reduce battery life, add to operation costs in cooling

systems, and decrease the system reliability. Such concerns motivate the need

for advanced power management schemes in embedded multi-core processors.

Dynamic power management (DPM) in many-core processors involves a

set of techniques which perform power-efficient computations under real-time

constraints to achieve system throughput goals while minimizing power. DPM is

executed by an integrated chip-wide power management unit (PMU), which is

typically implemented in software, hardware or a combination thereof. The PMU

monitors and manages the power and performance of each core by dynamically

adjusting its operating voltage and frequency. Power management is typically

done using hierarchical power management units; the local power management

unit (LPMU) optimizes power inside the core using techniques such as clock-

gating [70] and power-gating [71], while the global power management unit

(GPMU) at the chip level optimizes power dissipation using techniques such as

56

core-level dynamic voltage and frequency scaling (DVFS) [72]. Hardware-

controlled power management eliminates the computation overhead that the

processor incurs for software based power management while performing

workload performance and power estimations. Hence hardware power

management realizes more accurate and real time impact on workload

performance than slower reacting software power management can achieve.

5.3 Dynamic Voltage and Frequency Scaling (DVFS)

The key idea of DVFS is to scale the voltages and frequencies of a single

core or the entire processor during run-time to achieve specific throughputs while

minimizing power dissipation, or to maximize throughput under a power budget.

Equation 5-1 shows the quadratic and linear dependences of dynamic or

switching power dissipation on the supply voltage and frequency respectively:

� � α VW--C X �5 � 1�

where α is the switching probability, C is the total transistor gate (or sink)

capacitance of the entire module, Vdd is the supply voltage, and f is the clock

frequency. Note that the system frequency needs to scale along with the voltage

to satisfy the timing constraints of the circuit whose delay changes linearly with

the operating voltage [68]. DVFS algorithms can be implemented at different

levels such as the processor micro-architecture (hardware), the operating system

scheduler, or the compiler [73]. Figure 5-1 shows a conceptual diagram

implementing DVFS on a multi-core processor. Darker shaded regions represent

cores operating at high voltage, while lighter shaded regions represent cores

operating at low voltage. The unshaded cores are in sleep mode.

57

Until recently, the benefit of DVFS has been offset by slow off-chip voltage

regulators that lack the ability to switch to different voltages in short time periods.

This drawback motivates the need for fast on-chip DVFS control at the core level.

Figure 5-2: Three power-supply configurations for a 4-core CMP [74]

Recent development of on-chip regulators with multiple on-chip power

domains [74] has realized voltage regulation times of the order of 10mV per

nanosecond. Figure 5-2 shows three possible power-supply configurations [74].

Voltage

Supply

DC-DC

Voltage

Regulator

Vddhigh

Vddlow

Figure 5-1: Dynamic voltage and frequency scaling for a multi-core processor

58

5.4 Hardware Controlled DPM in Commercial Embedded Processors

Some examples of commercial embedded processors which implement the

DPM scheme include the Transmeta Crusoe, Intel StrongARM and XScale

processors, and IBM Power4 [68]. These processors allow dynamically turning off

idle sections of the processor, setting chip-wide fixed power consumption, halting

idle cores, and/or operating dynamic voltage and frequency scaling of the cores in

support of DPM strategies. Another commercial processor which partially

implements the DPM scheme is the Intel Centrino Core Duo [75], which was

designed to achieve two main goals: (1) maximize the performance under the

thermal limitation the platform allows, (2) improve the battery life of the system

relative to previous generations of processors. The OS views the Intel Core Duo

processor as two independent execution parts, and the platform views the whole

processor as a single entity for all power management related activities. Intel

chose to separate the power management for a core from that of the full CPU and

platform. This was achieved by making the power and thermal control unit part of

the core logic and not part of the chipset as before. Migration of the power and

thermal management flow into the processor allows the use of a hardware

coordination mechanism in which each core can request any power saving state it

wishes, thus allowing for individual core savings to be maximized.

5.5 Our Contribution

In this dissertation, we have developed a prototype of a new hardware-

controlled power management algorithm called SmartBIPS, for multi-core

processors with shared global resources such as hierarchical memory.

59

SmartBIPS is a DVFS based GPMU algorithm that aims to achieve low power

under throughput constraints. Unlike existing hardware-controlled power

management algorithms, SmartBIPS uses real run-time data based on the

operating power and performance history of the task set on the chip, and

dynamically selects the operating power modes of the different cores. The impact

of the chip level shared resources (like shared memory bottlenecks) on

computation times and throughputs is captured in history tables for the different

cores, and these data are used by SmartBIPS to predict the throughputs of the

cores under new DVFS levels that the algorithm may assign to the cores for

power optimal operation. Cores which execute memory bound tasks, or are

otherwise in stall modes for considerable times, are dynamically slowed down to

save power without impacting the throughput, whereas cores with high

computation throughputs are operated at high voltage (and hence, frequency)

levels. This ensures that cores which have high throughput operate at high power

and performance points, and power reduction is mostly carried out for low

performance tasks on other cores. In order to study the relative merits of our

algorithm with respect to similar existing ones, we have implemented the chip-

wide DVFS and MaxBIPS [68] algorithms as well. Our experimental setup

includes a SPARCV9 based cycle-accurate chip multi-threading multi-core

simulation platform, CASPER [69], and a suite of Network Packet Processing

benchmarks called Embedded Network Processing (ENePBench) that we have

developed (discussed in Chapter 3). Our results show that on average,

SmartBIPS achieves a 41.3% improvement in power savings compared to

60

MaxBIPs, and a 19.8% improvement in throughput per unit power. This analysis is

obtained by running network packet processing benchmarks on CASPER. The

throughput improvement of SmartBIPS with respect to chip-wide DVFS is 16.7%

at a cost of 1.2 times higher power dissipation. MaxBIPS achieves a 61%

throughput improvement at a cost of 2.1 times higher power with respect to chip-

wide DVFS.

5.6 Power Management Unit Architecture

For multi-core processors, the global power manager monitors activities in

all the cores and take proper voltage-frequency mode-setting decisions with the

target of enforcing a chip-level performance budget at the minimal power

dissipation point. Figure 5-3 shows our proposed hierarchical power management

architecture at the local intra-core and global inter-core levels. Any component or

an entire core that can either be clock gated or power gated or voltage-frequency

scaled, is a power saving candidate (PSC). Above the dashed line, the local

power management unit (LPMU) operates inside a core, observes the content of

the power status registers (PSRs) which are associated with different PSCs,

executes a power saving algorithm based only on clock-gating and power-gating,

and modifies the value in the corresponding power control registers (PCRs) to

activate or deactivate power saving.

61

Figure 5-3: Architectural overview of autonomous hardware power saving
scheme

The PSRs inside the cores are updated by the trap logic and the decoder,

which signal the impending activation of the power saving candidate when certain

interrupts have to be serviced or certain instructions are decoded. Similarly, the

power saving candidates themselves can update their PSRs to signal the

impending power saving due to prolonged inactivity (idle or blocked status) which

is better observed locally inside a core. The LPMU algorithm that we have

implemented is based on delay monitoring; specific PSCs have specific delay

thresholds for clock-gating and power-gating, and after the PSCs have been idle

for longer than these thresholds, power saving is either activated by clock-gating

or power-gating. The clock-gating threshold is set to 1 clock cycle, while power-

gating thresholds are longer and specific to the PSC. The PCR contents are read

by the on-chip analog voltage and clock regulators which use that data to

implement power-gating and clock-gating on the power saving candidates.

62

Below the dashed line and outside the cores, is the chip level GPMU which

makes intelligent DVFS based power management decisions about the cores.

The GPMU interacts with the cores through core status registers (CSRs) and core

control registers (CCRs). We have used the above LPMU scheme for all three

global power management algorithms discussed in this dissertation. Figure 5-4

shows details of the GPMUs interactions (CR and SR denote control and status

registers respectively).

Figure 5-4: Interactions of Global Power Management Unit

5.7 The Experimental Setup

In order to evaluate the efficacies of SmartBIPS, MaxBIPS and chip-wide

DVFS algorithms, we use CASPER [69]. For these experiments, we have

modeled the architectural parameters to include 4 cores with a single hardware

thread per core (virtual processor), a register file size of 160 registers, instruction

translation lookaside buffer (TLB) size of 128, cache-size and coherence

63

protocols, L1 data cache of size 8KB and instruction caches of size 16KB, and

instruction queue size of 1. The shared memory subsystem is configured as a

shared L2 cache of size 1GB with 4 banks. The interconnection network is a

crossbar. The processor architecture is homogeneous many-core architecture.

The micro-architecture of each core is same as described in Chapter 4, containing

IFU, BRU, EXU and LSU, L1 I/D$, LMQ, SB and I/D TLB and so on.

We use the ENePBench application suite used as the benchmark

application in our experiment.

5.8 Existing Global Power Management Policies

Two existing hardware-controlled global power management policies –

chip-wide DVFS and MaxBIPS are implemented and the results are compared

with those of our novel SmartBIPS algorithm. Note that all these algorithms

continuously re-evaluate the voltage-frequency operating levels of the different

cores, once every evaluation cycle. If not explicitly stated, one evaluation cycle

corresponds to 1024 processor clock cycles in our simulations.

The DVFS based GPMU algorithms rely on the assumption that when a

given core switches from power mode A (voltage_A, frequency_A) in time interval

N to power mode B (voltage_B, frequency_B) in time interval N+1, the power and

throughput in time interval N+1 can be predicted using Equation 5-3 shown in

Table 5-1. Note that the system frequency needs to scale along with the voltage

to ensure that the operating frequency meets the timing constraints of the circuit

whose delay changes linearly with the operating voltage [76]. This assumes that

the workload characteristics do not change from one time interval to next one, and

64

there are no shared resource dependencies between tasks and cores. Table 5-1

explains the dependencies of power and throughput on the voltage and frequency

levels of the cores.

Table 5-1: Relationship of power and throughput in time interval N and N+1

Time Interval N N+1

Mode (v, f)
(v’, f’)

f’ = f (v’/v)

Throughput T T’ = T*(f’/f) (5-2)

Dynamic Power P P’ = P*(v’/v)2*(f’/f) (5-3)

Our power modes are defined as follows: VF_mode1 (1.2V, 2GHz),

VF_mode2 (1.0V, 1GHz), and VF_mode3 (0.8V, 0.5GHz). These voltage-

frequency pairs have been verified using the experimental setup. Note that

performance predictions of the existing GPMU algorithms to be discussed in this

section do not consider the bottlenecks caused by shared memory access

between cores.

5.8.1 Chip-wide DVFS

Chip-wide DVFS is a global power management scheme that monitors the

entire chip power consumption and performance, and enforces a uniform

voltage-frequency operating point for all cores to minimize power dissipation

under a chip-wide throughput budget. This approach does not need any

individual information about the power and performance of each core, and simply

relies on entire chip throughput measurements to make power mode switching

65

decisions. As a result, one high performance core can push the entire chip over

throughput budget, thereby triggering DVFS to occur across all cores on chip. A

scaling down of voltage and frequency in cores which are not exceeding their

throughput budgets will further reduce their throughputs. This may be

undesirable, especially if these cores are running threads from different

applications which run at different performance levels.

Table 5-2: Pseudo Code of Chip-wide DVFS (this algorithm continuously
executes once every evaluation cycle)

A. Get_current_core_dvfs_level;

B. For all Coresi {

a. Get power dissipated by Corei in the last clock cycle;

b. Get effective throughput of Corei in the last clock cycle;

c. Sum up cumulative power dissipated by all cores in the last clock

cycle;

d. Sum up cumulative throughput of all cores in the last clock cycle;

}

C. If (Overall effective throughput of all cores > throughput budget) {

a. if (current_core_dvfs_level > lowest_dvfs_level) {

i. Lower down current_core_dvfs_level to next level;

 }

}

66

D. For all Coresi {

a. Update every core’s new dvfs level;

}

5.8.2 MaxBIPS

The MaxBIPS algorithm [68] monitors the power consumption and

performance at the global level and collects information about the entire chip

throughput, as well as the throughput contributions of individual cores. The power

mode for each core is then selected so as to minimize the power dissipation of the

entire chip, while maximizing the system performance subject to the given

throughput budget. The algorithm evaluates all the possible combinations of

power modes for each core, and then chooses the one that minimizes the overall

power dissipation and maximizes the overall system performance while meeting

the throughput budget by examining all voltage/frequency pairs for each core. The

cores are permitted to operate at different voltages and frequencies in MaxBIPS

algorithm. A linear scaling of frequency with voltage is assumed in MaxBIPS [68].

Based on Table 5-1, the MaxBIPS algorithm predicts the estimated power

and throughput for all possible combinations of cores and voltage/frequency

modes (vf_mode) or scaling factors and selects the (core_i, vf_mode_j) that

minimizes power dissipation, but maximizes throughput while meeting the

required throughput budget.

Table 5-3: Pseudo code of MaxBIPS (this algorithm continuously executes once
every evaluation cycle)

67

A. Define_power_mode_combinations;

B. Initialize Min_power;

C. Initialize Max_throughput;

D. Initialize Selected_combination;

--voltage frequency (power mode) combinations for different cores

E. For all Coresi {

a. dvfsLevel = Get current DVFS level of Corei;

b. Get power dissipated by Corei in the last clock cycle;

c. Get effective throughput of Corei in the last clock cycle;

 }

F. For all Power_Mode_Combinationsj {

A. For all Coresk {

a. Calculate predicted throughput value of core k in combination_j;

--Using power_mode_combination, Equation (5-2)

b. Calculate predicted power value of core k in combination_j;

--Using power_mode_combinations, Equation (5-2)

c. Accumulate predicted throughputs of all cores in combination_j;

d. Accumulate predicted power dissipations of all cores in

combination_j;

 }

B. If (overall_predicted_throughput of all cores <= throughput budget) {

a. If (Max_throughput < overall_predicted_throughput of all cores) {

i. Max_throughput = overall_predicted_throughput of all cores;

68

ii. Min_power = overall_predicted_power of all cores;

iii. Selected_combination = j;

 }

b. If (Max_throughput == overall_predicted_throughput of all cores) {

iv. Max_throughput = overall_predicted_throughput of all cores;

v. If (Min_power >= overall_predicted_power of all cores)

vi. Min_power = overall_predicted_power of all cores;

vii. Selected_combination = j;

 }

 }

}

E. For all Coresi {

 Update every core’s new dvfs level with values in Selected_combination;

}

5.8.3 SmartBIPS Power Management Scheme

Most event-driven systems are non-deterministic, and hence power

management decisions have to be made based on predictions of future

workloads. A promising concept in power management predictive techniques for

processors is to explore the past history of performance in order to make reliable

predictions about future behavior.

In our proposed SmartBIPS method, the global power management unit

periodically monitors the power and throughput of each core in every time interval

69

(a pre-set number of clock cycles, typically 1024) and predicts the optimal

operating modes of the cores for the next time interval based on recent history of

the system behavior and performance. SmartBIPS captures real run-time data

based on the operating power and performance history of the task set on different

cores on the chip in history tables, and uses it to make dynamic decisions about

selecting operating power modes of the cores in the near future. There exists

separate power and throughput entries in these history tables for every core and

for every power (voltage-frequency) mode the core operated in. The user pre-

defines a certain number of time intervals over which the performance and power

numbers at different DVFS levels are averaged and stored in the history tables.

The impact of the chip level shared resources (like shared memory bottlenecks)

on computation times, throughputs and power dissipation on the different cores is

automatically captured and encoded in the history tables. Hence, cores which

execute memory bound tasks, or are otherwise in stall modes for considerable

times, are dynamically slowed down to save power without impacting the

throughput, whereas cores with high computation throughputs are operated at

high voltage (and hence, frequency) levels. This ensures that cores which have

high throughput operate at high power and performance points, and power

reduction is mostly carried out for low performance tasks on other cores.

Different depths of history tables and different history data sampling

methods are also implemented in order to observe the sensitivity of the results

with different parameters. For 4096 clock cycles in one time interval (history table

depth of 4096), results show that there is very little difference for power and

70

throughput of SmartBIPS with respect to 1024 clock cycles in every time interval.

Moreover, sampling the parameters of interest every 128 clock cycles, and

random sampling, within one time interval have been implemented as well.

Results show that sampling every 128 clock cycles does not improve power

saving and throughput per unit power of SmartBIPS compared to MaxBIPS;

random sampling improves power saving by about 10% on average, but no

improvement in throughput per unit power of SmartBIPS is achieved with respect

to MaxBIPS. Sampling every clock cycle improves both power saving and

throughput per unit power compared to chip-wide DVFS and MaxBIPS.

A scaling factor α (with values between 1.0 and 1.5) is empirically defined

to control throughput reduction in SmartBIPS. Only if the history table throughput

data is α times greater than MaxBIPS predicted throughput at a certain power

level, a scaling of lower voltage/frequency level is allowed in SmartBIPS; this

achieves a high throughput per unit power while saving power. Table 4 shows the

average power, average throughput, and throughput per unit power of SmartBIPS

with different values of α at different power levels. Note that throughput is typically

measured in terms of number of instructions per cycle (IPC). However, because

of DVFS the clock period for a core can potentially change in every evaluation

cycle. Hence, we use the metric of instructions per nanosecond (IPnS) to capture

throughput. Also, α = 1 for levels are not explicitly mentioned in Table 5-4.

71

Table 5-4: Average power, average throughput, T/P with different α values

at different power levels in SmartBIPS

10000 clk cycles, time interval is 1024,

90% T_budget

Average

power in

one time

interval

(W)

Average

throughput

in one time

interval

(IPnS)

Throughput

per unit

power

With α 1.25 at VF_mode3 0.205 0.276 1.345

With α 1.2 at VF_mode3 0.205 0.276 1.345

With α 1.1 at VF_mode3 0.205 0.276 1.345

With α 1.25 at VF_mode2 and VF_mode3 0.208 0.285 1.370

With α 1.25 at VF_mode2 and with α 1 at

VF_mode3

0.123 0.21 1.68

MaxBIPS 0.209 0.295 1.411

From Table 5-1 we notice that when α is 1 at level 3 and α is 1.25 at level

2, SmartBIPS can save power, keep a relative high throughput and give a high

throughput per unit power with respect to those of MaxBIPS.

Table 5-5: Pseudo-code of SmartBIPS (this algorithm continuously executes
once every evaluation cycle)

A. Define_power_mode_combinations;--like Equation (5-3)

B. Initialize Min_power;

C. Initialize Max_throughput;

72

D. Initialize Selected_combination;

--voltage frequency (power mode) combinations for different cores

E. For all Coresi {

a. dvfsLevel = Get current DVFS level of Corei;

b. Get power dissipated by Corei in the last time interval;

c. Get effective throughput of Corei in the last time interval;

}

F. For all Power_Mode_Combinationsj {

a. For all Coresk {

A. Calculate predicted throughput of core i in combination_j;

--Using power_mode_combinations, Equation (5-3)

B. Calculate predicted power dissipation of core i in

combination_j;

--Using power_mode_combinations, Equation (5-3)

C. Accumulate predicted throughput values of all cores;

D. Accumulate predicted power values of all cores;

}

b. If (overall_predicted_throughput of all cores <= throughput budget) {

A. If (Max_throughput < overall_predicted_throughput of all

cores) {

i. Max_throughput = overall_predicted_throughput of all

cores;

ii. Min_power = overall_predicted_power of all cores;

73

iii. Selected_combination = j;

}

B. If (Max_throughput = overall_predicted_throughput of all

cores) {

i. Max_throughput = overall_predicted_throughput of all

cores;

ii. If (Min_power >= overall_predicted_power of all cores)

{

a. Min_power = overall_predicted_power of all cores;

b. Selected_combination = j;

}

}

} -- upto here we are following MaxBIPS

--start of code unique to SmartBIPS

c. For all Coresi {

A. For all dvfs_levelj {

B. Check History Table entries for throughput at dvfs_level j;

C. Get average_history_throughput of core i at dvfs_level j;

}

}

d. For all Coresi {

A. Initialize predicted dvfs level of MaxBIPS to core_i;

B. If (core_i_next_dvfs_level == lowest_dvfs_level) {

74

i. Go to next core;

}

C. Else if (average_history_throughput of core i at predicted

dvfs_level > predicted throughput value of core i by MaxBIPS

*factor_alpha) { -- factor_alpha is an empirical paramter

between 1.0 and 1.5

i. Lower down current predicted dvfs_level of core i to next

level;

ii. Get average_history_power of core i at predicted dvfs_level;

}

D. Else keep current predicted dvfs_level of core i;

}

e. For all Coresi {

A. Update every core’s new dvfs level;

}

}

In the SmartBIPS algorithm, the actual power dissipation and throughput

for the chosen DVFS level combination for the different cores (as stored in the

history table) are found using the processor simulator CASPER (discussed in

Chapter 4), which executes instructions between every pair of consecutive time

interval boundaries when the global power manager re-evaluates the DVFS levels

of the different cores.

75

5.9 Experimental Results

In this section we show throughput and power comparisons of the three

power management algorithms, followed by a similar comparison with a

modification of the chip-wide DVFS algorithm – the chip-wide DVFS throughput is

lower-bounded to of 60% of its peak throughput. We conclude that lower-

bounding the throughput of chip-wide DVFS effectively lowers its throughput per

unit power metric below those obtained by SmartBIPS and MaxBIPS. Finally we

compare the average power, average throughput, and average throughput per

unit power, average energy and average latency of three discussed policies.

In Figure 5-5 and Figure 5-6, we show the power and throughput data

respectively (with a throughput budget constrained to at 90% of peak throughput

with any voltage and frequency scaling) for our three discussed policies for packet

type 3 (TYPE3) which is a typical representative of all other packet types. Values

on the X-axis correspond to the number of evaluation cycles, where one

evaluation cycle is the time period between consecutive runs of the power

management algorithms. Where not explicitly stated, one evaluation cycle

corresponds to 1024 processor clock cycles in our simulations. In Figure 5-5, the

X-axis represents number of clock cycles and the Y-axis represents power (W). In

Figure 5-6, the Y-axis represents throughput (in instructions per nanosecond -

IPnS).

76

Figure 5-5: Power dissipation data for three global power management policies
for packet type TYPE3 with throughput budget constrained to 90%

Figure 5-6: Throughput data for three global power management policies for
packet type TYPE3 with throughput budget constrained to 90%

As Figure 5-5 shows, the power consumption of MaxBIPS is much higher

than those of SmartBIPS and chip-wide DVFS (the latter being the lowest in

power dissipation among the three methods). However the throughput of

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1K 2K 3K 4K 5K 6K 7K 8K 9K

P
o

w
e

r
(W

)

Evaluation Cycles

chipwide DVFS

MaxBIPS

SmartBIPS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1K 2K 3K 4K 5K 6K 7K 8K 9K

T
h

ro
u

g
h

p
u

t
(I

P
n

S
)

Evaluation Cycles

chipwide DVFS

MaxBIPS

SmartBIPS

Packet TYPE3

Packet TYPE3

77

MaxBIPS is also higher than those of the other two policies. SmartBIPS has lower

throughput than MaxBIPS but higher than that of chip-wide DVFS.

Figure 5-7: Throughput per unit power for all packet types for the 3 methods

Figure 5-7 depicts the throughput per unit power (T/P) data for the three

methods. While chip-wide DVFS has the highest T/P values for the different

packet types, the SmartBIPS T/P is greater than that of MaxBIPS and is very

close to the T/P of chip-wide DVFS. Note that high T/P value for chip-wide DVFS

arises from the fact that power dissipation in this scheme is substantially lower

than other schemes, and not because the throughput is high. When implementing

power management by chip-wide DVFS, any increase in the throughput of a

single core over a target threshold triggers chip-wide operating voltage (and

hence, frequency) reductions in all cores, to save power. Hence, once the overall

throughput exceeds the budget, all the cores have to adjust their power modes to

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

TYPE0 TYPE1 TYPE2 TYPE3 TYPE4 TYPE5

T
h

ro
u

g
h

p
u

t
p

e
r

u
n

it
 p

o
w

e
r

(I
P

n
S

/W
)

Packet Types

chipwide DVFS

MaxBIPS

SmartBIPS

78

a lower level. While this method reduces the chip-wide power dissipation

substantially, it also leads to excessive performance reductions in all cores as

shown in Figure 5-6.

A modification of the chip-wide DVFS algorithm required for achieving high

performance is to assign a lower bound of throughput. Figure 5-8 and Figure 5-9

show the power and throughput data respectively (with a lower bound of

throughput budget constrained to at 60% of peak throughput with all voltage-

frequency levels) for chip-wide DVFS for packet type 3 (TYPE3). The power

consumption and throughput of chip-wide DVFS are higher than those of

MaxBIPS and SmartBIPS due to the lower bound of throughput which does not

allow chip-wide DVFS to scale all the cores to lower voltage-frequency levels in

order to guarantee the system performance. However the throughput per unit

power of chip-wide DVFS is lower than those of the other two policies as Figure

5-10 demonstrates. SmartBIPS has the highest throughput per unit power

compared to MaxBIPS and chip-wide DVFS. Table 5-6 shows the power,

throughput, and throughput per unit power of chip-wide DVFS with and without

lower bound on throughput.

79

Figure 5-8: Power dissipation for three global power management policies (chip-
wide DVFS throughput budget constrained to 60% of peak throughput)

Figure 5-9: Throughput observed in three global power management policies

(chip-wide DVFS throughput budget constrained to at 60% of peak throughput)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1K 2K 3K 4K 5K 6K 7K 8K 9K

P
o

w
e

r
(W

)

Evaluation Cycles

chipwide DVFS

MaxBIPS

SmartBIPS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1K 2K 3K 4K 5K 6K 7K 8K 9K

T
h

ro
u

g
h

p
u

t
(I

P
n

S
)

Evaluation Cycles

chipwide DVFS

MaxBIPS

SmartBIPS

Packet TYPE3

Packet TYPE3

80

Figure 5-10: Throughput per unit power data (chip-wide DVFS with lower bound
throughput)

Table 5-6: Power, throughput, throughput per unit power of chip-wide DVFS with
and without lower bound on throughput

 With lower bound 60% of peak T Without lower bound of

throughput

Power in

one time

interval

(W)

Throughput

in one time

interval

(IPnS)

Throughpu

t per unit

power

(IPnS/W)

Power in

one time

interval

(W)

Throughput

in one time

interval

(IPnS)

Throughpu

t per unit

power

(IPnS/W)

chip-wide

DVFS

0.252 0.332 1.318 0.105 0.184 1.752

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

TYPE0 TYPE1 TYPE2 TYPE3 TYPE4 TYPE5

T
h

ro
u

g
h

p
u

t
p

e
r

u
n

it
 p

o
w

e
r

(I
P

n
S

/W
)

Packet Types

chipwide DVFS

MaxBIPS

SmartBIPS

81

In summary, experimental data show that when chip-wide DVFS is not

enabled with lower bound of throughput, MaxBIPS has the highest throughput.

However, SmartBIPS has a better throughput per unit power and saves more

power than MaxBIPS. Although chip-wide DVFS gives the highest throughput per

unit power, its throughput, on average, is lower than that of SmartBIPs, which can

be a constraining factor in high throughput systems that require throughputs close

to the budget. When chip-wide DVFS is lower-bounded to 60% of peak

throughput achievable by chip-wide DVFS, it produces the highest throughput and

consumes the highest power among all the three methods. This yields the lowest

throughput per unit power for chip-wide DVFS, and SmartBIPS saves more power

and achieves the highest throughput per unit power compared to the other two

policies. Table 5-7 shows the relevant experimental results of three policies with

different packet types.

Table 5-7: Power, throughput, throughput per unit power of three policies for
different packet types

chip -wide DVFS

without

lower bound

MaxBIPS SmartBIPS

P (W)
T

(IPnS)

T/P

(IPnS/W)
P (W)

T

(IPnS)

T/P

(IPnS/W)
P (W)

T

(IPnS)

T/P

(IPnS/W)

TYPE0 3.72 6.61 1.78 7.53 10.62 1.41 4.24 7.28 1.72

TYPE1 3.72 6.65 1.79 7.54 10.65 1.41 4.24 7.31 1.72

TYPE2 3.93 6.65 1.69 7.83 10.65 1.36 5.47 8.32 1.52

82

TYPE3 3.72 6.64 1.78 7.54 10.64 1.41 4.24 7.30 1.72

TYPE4 3.72 6.64 1.78 7.54 10.63 1.41 4.24 7.30 1.72

TYPE5 3.72 6.63 1.78 7.53 10.64 1.41 4.24 7.29 1.72

Average 3.75 6.64 1.76 7.58 10.64 1.40 4.45 7.47 1.68

Table 5-8 compares the power savings and T/P gains of SmartBIPS

compared to MaxBIPS. Results show that on average, SmartBIPS achieves a

41.3% improvement in power savings compared to MaxBIPS, and a 19.8%

improvement in throughput per unit power with respect to MaxBIPS.

Table 5-8: Power saving and throughput per unit power improvement of
SmartBIPS with respect to MaxBIPS

Packet Types Power saving
Throughput per unit

power

TYPE 0 43.72% 21.8%

TYPE 1 43.72% 22.0%

TYPE 2 30.2% 11.8%

TYPE 3 43.71% 21.9%

TYPE 4 43.72% 21.9%

TYPE 5 43.72% 21.9%

Average 41.3% 19.8%

Table 5-9 shows the average power, average throughput, average

throughput per unit power, average energy and average latency (execution time)

83

of three discussed policies while running about 7300 instructions for all the

packet types (averaging is done over all packet types). Results show that on

average, chip-wide DVFS consumes 17.7% more energy than MaxBIPS and has

2.34 times its latency. SmartBIPS consumes 8.2% more energy than MaxBIPS

and takes 1.85 times longer execution time. However, SmartBIPS achieves a

41.3% improvement in power savings and a 19.8% improvement in throughput

per unit power with respect to MaxBIPS. Hence SmartBIPS is an ideal candidate

for use in applications with relatively high throughput requirements than what

chip-wide DVFS can provide, and with cooling capacity limits lower than what

MaxBIPS demands.

Table 5-9: Average power, average throughput, average throughput per unit
power, average energy, and average execution time of three discussed policies

 P_avera

ge (W)

T_avera

ge

(IPnS)

T/P_aver

age

(IPnS/W)

Energy_avera

ge (nJ)

Average Latency

(nS)

chip-wide

without lower

bound

3.75 6.64 1.77 3.371 34816

MaxBIPS 7.58 10.64 1.40 2.864 14848

SmartBIPS 4.44 7.47 1.68 3.100 27477

5.10 Conclusion

This chapter of this dissertation presents SmartBIPS, a new algorithm for

hardware controlled dynamic power management in embedded multi-core

84

processors executing real-time constrained high performance applications.

SmartBIPS minimizes power dissipation while maximizing the chip level

performance, subject to throughput constraints. The proposed SmartBIPS

algorithm is based on chip-level monitoring, control and dynamic management of

power for multiple cores. The global power management unit (GPMU) is aware of

the activities of all the cores in a system, captures the throughput and power

dissipation history of every core in shifting temporal windows, and makes

intelligent prediction for power management based on recent workload power-

performance history. Performance bottlenecks due to inter-core sharing of global

resources, including on-chip interconnection networks and higher level cache

memories, are captured in the history tables used by the GPMU.

Results show that on average, SmartBIPS achieves a 41.3% improvement

in power savings and a 19.8% improvement in throughput per unit power with

respect to MaxBIPS. This analysis is obtained using CASPER [69], a cycle-

accurate simulation platform for multi-core processors, using a network packet

processing benchmark that we have developed. The throughput improvement of

SmartBIPS with respect to chip-wide DVFS is 16.7% at a cost of 1.2 times higher

power dissipation. MaxBIPS achieves a 61% throughput improvement at a cost

of 2.1 times higher power with respect to chip-wide DVFS.

These results encourage us to believe in the potential applicability of

hardware controlled dynamic power management for embedded multi-core

processors with global monitoring and control. To the best of our knowledge, the

SmartBIPS algorithm presented in this dissertation is the first to consider shared

85

resource constraints for dynamic power management. In the future we will study

other hardware-controlled power management strategies. In addition we plan to

design the hardware circuits which implement the different hardware-controlled

power management schemes, and evaluate the hardware area, power and

performance trade-offs.

CHAPTER 6: MODELING OF THROUGHPUT AND POWER DISSIPATION OF
CORES

6.1 Theory of Statistical Curve Fitting

The generalized linear regression models of n-variables are shown in the

Equation 6-1 and Equation 6-2 respectively:

Y � �Z , O �1[1
/

1
, \ �6 � 1�

Y � �Z , O �1[1
/

1
, O O �1,^[1[̂

/

^

/

1
, O O O �1,^,+[1[̂ [+

/

+

/

^

/

1
, … , �S,C,…,/[S[C … [/

, \ �6 � 2�

In our case, the different dependent variable (denoted by Y) is CPI per

thread, CPI per core or total power dissipation of cores. The micro-architectural

parameters listed in Table 6-1 constitute the predictor variables [S, [C, … , [/. Our

objective is to perform regression using our training dataset and then derive the

correlation coefficients �Z, �S, … , �/ in Equation 6-1 and Equation 6-2 such that we

can achieve <10% error of estimates.

6.2 Micro-architectural Parameters used in statistical curve-fitting

Table 6-1 shows the set of micro-architectural parameters that we tune to

derive optimized designs of cores. Throughput and power dissipation of a core

primarily depends on �� number of threads, the L1 instruction and data cache

87

size, associativity and line sizes and the miss queues. Each thread has its own

register file and hence contributes significantly to power dissipation of a core.

Also, as �� is scaled, throughput per thread decreases as each thread needs to

wait as many cycles before its next instruction is issued to the D-stage. However,

throughput per core might increase. Our processor model follows a write-through

scheme for the store instructions. Moreover, stores are serialized following the

Total Store Order (TSO) model explained in [56]. The TSO model is implemented

through the store buffer which serializes all the stores of a hardware thread. Off-

core L2 traffic hence consists of stores, instruction and data cache misses.

Instruction misses are detected in I$ in the F-stage of the pipeline and then

enqueued into the MIL. Duplicate instruction misses are blocked in the core and

never forwarded to L2. Data misses are detected in D$ in the M-stage in load

store unit and are enqueued in LMQ. Duplicate data misses are also blocked in

the core. Since outgoing packets from all the cores are first enqueued in the L2

queues and then arbitrated into the processing controller of the L2 cache, the

total L2 cache access time depends on the overall L2 traffic. In the meantime, the

core has to wait and keep asserting the interconnect signals to check whether

the required L2 reply has arrived. Hence, the throughput and power dissipation of

a core depends on L2 queue size and the L2 access time which are also

included in the core optimization process. Address Space Identifier (ASI) register

load, store and atomic instructions are all processed through the ASI queue.

Hence, ASI queue is also an important micro-architectural feature affecting

throughput and power dissipation of a core.

88

Table 6-1: Micro-architectural Parameters of a Multi-threading Core

Name Range Increment Description

1. �� 1 to 16 Power of 2 Threads per core

2. Load Miss Queue

(LMQ) Size Per

Thread

1 to 16 Power of 2 Used to enqueue all

the D$ misses

3. SB Size Per Thread 1 to 16 Power of 2 Used to serialize

the store

instructions

following the TSO

model [56]

4. L1 ICache

Associativity

2 to 8 Power of 2 Set-associativity of

I$

5. L1 ICache Line Size 8 to 64 Power of 2 Block size of I$

6. L1 ICache Size 1KB to

64KB

Power of 2 Total I$ size

7. L1 DCache

Associativity

2 to 8 Power of 2 Set-associativity of

D$

8. L1 DCache Line Size 8 to 64 Power of 2 Block size of D$

9. L1 DCache Size 1KB to

64KB

Power of 2 Total I$ size

10. MIL Size Per Thread 1 to 16 Power of 2 Used to enqueue

the I$ misses

89

11. ASI Queue Size Per

Thread

1 to 16 Power of 2 Used to serialize all

Address Space

Identifier register

reads/writes

12. L2 Access Time 25 to 1000 Incremented by

1

Hit latency of L2

cache

13. L2 Input Queue Size

per Core

4 to 16 Power of 2 Used to enqueue all

the core-to-L2

ifill/load/store

packets

6.3 Regression Models and Error Analysis

Although there is no direct way of knowing the best length of training

dataset, the rule of thumb in case of both linear and non-linear multiple

regressions is to get at least 10 times as many training cases as input variables.

These way inherent problems such as over-fitting or under-fitting can be avoided

in multiple non-linear regressions. However, with noise free targets, twice as

many training cases as input variables would be more than adequate. In our case

for each packet type, we have collected 100 sets of data which contains CPI per

thread, CPI per core and power dissipation of the cores.

Note that CPI per thread is modeled to accurately predict the processing

time of a packet which is mapped to a hardware thread. This packet processing

time is used during design space exploration to evaluate whether all packets in

the system are meeting the real time constraints. After careful consideration of

90

the CPI and power dissipation for each packet types, we found that CPI per

thread and power dissipation of packet types TYPE0, TYPE1 and TYPE2 are

linearly related to the micro-architectural parameters of the multi-threaded core

as shown by Equation 6-3.

Y � �Z , �S � a�
��
� , �C � 6bF , �G � cVP1d) , �e � cV*1/)%1d) , �f � �>@F , �g

� @VP1d) , �h � @Vi1/)%1d) , �SZ � 62j22)%%�10) , �SS � 62Kklmn �6 � 3�

The small number of store instructions (<1%) in these compute bound

packets do not have a major impact on performance or power dissipation and

hence store buffer size does not appear in the statistical model. Similarly, due to

low number of memory accesses in these packet types, higher order non-linear

terms comprising of L2 cache access time and others do not appear in the model

either.

The values of the correlation coefficients, corresponding variables and

model parameters are shown in Table 6-2, Table 6-3 and Table 6-4 for packet

types TYPE0, TYPE1 and TYPE2 respectively. Note that R is the multiple

correlations co-efficient which are the linear correlation between the observed

and model predicted values of dependent variable. Large value indicates strong

relationship. R2 is the coefficient of determination which tells the percentage of

time the variation is explained by the model.

Table 6-2: Linear Regression Correlation Coefficients and Model Parameters for
TYPE0

Variable Correlation Power CPI- CPI-per-

91

Coefficients (mW) per-

strand

core

Constant �Z 1.437 -9.176 5.744

Threads �S 0.086 2.658 -0.277

LMQ �C -0.075 0.298 0.244

DC_Size �G -0.011 0.123 -0.11

DC_Linesize �e 0.019 -0.069 -0.055

ASIQ �f -0.092 -0.275 -0.104

IC_Size �g 0.012 0.084 -0.009

IC_Linesize �h 0.001 -0.012 0.000

L2_Access �SZ 0.003 0.438 0.074

L2_Q �SS -1.57 0.432 -0.028

Model Summary

 Parameters

 R 0.816 0.914 0.805

 R2 0.665 0.836 0.649

 Std. Err. Of

Estimates
0.354 7.141 1.537

Table 6-3: Linear Regression Correlation Coefficients and Model Parameters for
TYPE1

Variable Correlation Power CPI-per- CPI-per-

92

Coefficients (mW) strand core

Constant �Z 0.526 -10.014 6.015

Threads �S 0.021 3.656 -0.507

LMQ �C -0.032 0.404 0.714

DC_Size �G -0.006 0.070 0.010

DC_Linesize �e 0.004 -0.013 -0.109

ASIQ �f -0.057 -3.826 0.372

IC_Size �g 0.004 1.234 -0.058

IC_Linesize �h -0.002 0.162 -0.018

L2_Access �SZ 0.000 0.642 0.162

L2_Q �SS -0.035 -2.395 0.231

Model Summary

 Parameters

 R 0.796 0.907 0.839

 R2 0.633 0.822 0.704

 Std. Err. Of

Estimates
0.097 10.407 2.678

Table 6-4: Linear Regression Correlation Coefficients and Model Parameters for
TYPE2

Variable Correlation Power CPI-per- CPI-per-

93

Coefficients (mW) strand core

Constant �Z 0.270 -4.327 7.351

Threads �S 0.016 1.684 -0.215

LMQ �C -0.013 0.292 0.063

DC_Size �G -0.002 0.069 -0.032

DC_Linesize �e 0.003 -0.027 -0.012

ASIQ �f -0.005 0.480 -0.751

IC_Size �g 8.61e-5 -0.046 0.086

IC_Linesize �h 4.053e-5 -0.030 -0.007

L2_Access �SZ 0.001 0.194 0.018

L2_Q �SS -0.026 0.445 -0.440

Model Summary

 Parameters

 R 0.792 0.964 0.751

 R2 0.628 0.929 0.564

 Std. Err. Of

Estimates
0.075 2.916 1.504

94

Figure 6-1: Error distribution of CPI-per-thread of packet types TYPE0, TYPE1
and TYPE2

The model in Equation 6-3 is validated using an error set comprising of 15

randomly chosen micro-architectural configurations for each of the packet types

TYPE0, TYPE1 and TYPE2. The configurations in the error set were simulated in

CASPER. The error distribution of CPI-per-thread as shown in Figure 6-1 is

calculated by comparing the measured CPI-per-thread (CASPER) against

predicted CPI-per-thread given by Equation 6-3. As the figure suggests, the error

of the model was within the required limit of 10%. Also, the standard confidence

of interval for each of the coefficients c0 to c11 was measured and was observed

to never cross zero value which suggests that all the coefficients were significant.

Similarly, the error distribution of the power dissipation model of the cores for

packet types TYPE0, TYPE1 and TYPE2 is shown in Figure 6-2. In this case also

we found that the error of our model was less than 10%.

0

2

4

6

8

10

12

TYPE0 TYPE1 TYPE2

95

Figure 6-2: Error distribution of dynamic power dissipation (mW) of the cores
processing packet types TYPE0, TYPE1 and TYPE2

Data bound packet types TYPE3 and TYPE4, on the other hand

demonstrates a completely different behavior. In case of both TYPE3 and TYPE4

packet types, using only single factor terms in the linear regression model for

either CPI per thread or power dissipation resulted in a high 15% standard error

of estimate. Hence we included the 2-factor, 3-factor and 4-factor terms in our

model which minimized the error of estimates and finally produced the prediction

model equation given by Equation 6-4:

0

2

4

6

8

10

12

TYPE0 TYPE1 TYPE2

96

Y � A0 , A1 � a�
��
� , A2 � 6bF , A3 � >� , A4 � b@6 , A5 �
�%1d) , A6
�
�'%%:2 , A7 �
�*1/)%1d) , A8 � �>@F , A9 � ��%1d) , A10 � ��'%%:2

, A11 � ��*1/)%1d) , A12 � 62'22)%% , A13 � 62K , A14 � a�
��
�

� 6bF , A15 � a�
��
� � >� , A16 � a�
��
� � b@6 , A17
� a�
��
� � �>@F , A18 � >� � 62'22)%% � 62K , A19 �
�%1d)

�
�'%%:2 �
�*1/)%1d) � 6bF � 62'22)%% � 62K , A20 � ��%1d) � ��'%%:2

� ��*1/)%1d) � b@6 � 62'22)%% � 62_F �6 � 4�

The correlation coefficients and model parameters of linear regression

containing non-linear monomial are described in Table 6-5.

Table 6-5: Non-linear Regression Correlation Coefficients

Correla

tion

Coeffici

ents

TYPE8 TYPE9

Power

(mW)

CPI-per-

strand

CPI-per-

core

Power

(mW)

CPI-per-

strand

CPI-per-

core

b0 -5.13 -2.48 6.59 8.64 8.31 -8.62

b1 2.13 2.63 -1.59 -0.204e-6 1.328e-6 -0.442e-6

b2 -0.062e-6 -4.225e-6 0.481e-6 -0.044e-6 -3.316e-6 0.448e-6

b3 1.71 8.288e-1 -2.19 -2.87 -2.8 2.87

b4 -5.12 -2.8 6.59 8.64 8.3 -8.62

b5 -0.015e-6 -0.492e-6 0.069e-6 -0.013e-6 -0.665e-6 0.062e-6

b6 -1.28 -6.21e-1 1.65 2.16 2.1 -2.15

b7 0.028e-6 0.694e-6 -0.108e-6 0.026e-6 0.311e-6 -0.120e-6

97

b8 0.309e-6 -2.816e-6 -0.552e-6 0.308e-6 -0.794e-6 -0.395e-6

b9 -0.008e-6 0.870e-6 -0.112e-6 -0.009e-6 1.002e-6 -0.103e-6

b10 -1.28 -6.22e-1 1.65 2.16 2.1 -2.15

b11 -0.011e-6 -0.049e-6 0.019e-6 -0.010e-6 -0.022e-6 -0.026e-6

b12 -8.7e-2 1.37e4 8.99e4 9.3e4 2.1e6 -5.5e-2

b13 3.42 1.66 -4.39 -5.76 -5.5 -5.75

b14 0.001e-6 0.386e-6 -0.011e-6 0.000e-6 0.018e-6 -0.013e-6

b15 0.034e-6 -0.025e-6 -0.105e-6 0.034e-6 0.271e-6 -0.089e-6

b16 -2.13 -2.63 1.59 0.301e-6 1.828e-6 0.056e-6

b17 -0.078e-6 -0.330e-6 0.235e-6 -0.077e-6 -0.438e-6 0.219e-6

b18 5.43e-3 -856.05e-6 -5.6e-2 -580.87e-6 1.3e-2 3.41e-3

b19 -3.86e-7 -1.37e-7 8.83e-7 -2.90e-7 2.1e-7 1.46e-7

b20 2.75e-6 7.99e-5 -4.58e-6 2.46e-6 5.8e-7 -5.43e-7

Figure 6-3 (a) and (b) shows the model error distribution for the CPI per

thread and power dissipation in case of packet types TYPE3 and TYPE4. Similar

to packet types TYPE0, TYPE1 and TYPE2, randomly chosen sets of 15 micro-

architectural configurations were used to compare measure and predicted values

of CPI per thread and power dissipation in case of packet types TYPE3 and

TYPE4 respectively. As evident from the figure, the prediction models could

achieve less than 12% error.

98

Figure 6-3: (a) Error distribution of CPI-per-thread model for cores of packet
types TYPE3 and TYPE4 and (b) Error distribution of power dissipation model for
cores of packet types TYPE3 and TYPE4

0

2

4

6

8

10

12

TYPE3 TYPE4

0

2

4

6

8

10

12

TYPE3 TYPE4

CHAPTER 7: EXPLORATION ALGORITHM

Various sources of routing and packet processing data show that in a day

maximum number of incoming packets in a router is pass-through real-time

packets. Hence we assume that the five types of IP packets, discussed in Table

3-2, arrive at the given distribution – among all the incoming packets per second,

60% are TYPE0 packets, 25% are TYPE1 packets, 5% are TYPE2 packets, 5%

are TYPE3 packets and 5% are TYPE4 packets. We believe that based on our

observations this is a reasonable assumption. Moreover, our design flow can

easily be tuned to consider other distributions of packet types. We also assume

that the dynamic scheduler responsible for assigning the incoming packets to the

respective customized different cores in the NeP is an ideal scheduler which is

aware of the micro-architecture of the available cores in the system and is always

able to satisfy schedulability of the system. Although scheduling can be a

compute-intensive problem itself, exploring scheduling algorithms adds another

complex dimension to our exploration problem and is out of the scope of this

dissertation.

To efficiently explore the large and complex design space, we take the

divide and rule approach. The structural characteristics of the micro-architecture

enable us to divide the design space into the core subsection and the memory

subsection. These two subsections are connected via the interconnection

network which is a network of crossbar switches. Figure 7-1 shows the steps

100

involved in our exploration algorithm.

Step 1 (Regression Modeling): Given that packets can be scheduled to the

cores in a NeP, we first attempt to explore core micro-architectures according to

packet types as discussed in Table 3-2. To achieve the above, first we use

CASPER to collect training datasets sampling the core micro-architectural design

() , , ,
i i i iT T h CT N N p N

Figure 7-1: Exploration Algorithm

at uniform random intervals separately for each packet type. We then use

101

multiple non-linear regression [65] to derive statistical relations between the

micro-architectural parameters described in Table 6-1 and cycles-per-instruction

(CPI) of a thread, CPI of a core and total power dissipation of the core. Average

power dissipation per clock cycle is calculated by dividing the total overall power

dissipation of the core by the total number of simulated clock cycles. The steps

involved, derived model parameters and model error analysis are described in

Chapter 6.

Step 2 (Core Optimization): Derived statistical linear regressions of CPI per

thread, CPI per core and power dissipation are used in a parallelized Genetic

Algorithm based optimization engine called Fast Genetic Algorithm (FGA) [77] to

generate a set of 10 best optimized core micro-architectures with minimal power

dissipation. GA is a popular evolutionary meta-heuristic optimization algorithm

used in a variety of optimization and search applications [78]. GA prototypes the

characteristic processes of biological evolution, such as fitness, mutation and

crossover.

In our design space, the micro-architectural parameters of a cores

described in Table 6-1 are mapped to genes. A core which is expressed as a set

of micro-architectural parameters represents a chromosome in the GA engine.

We have used total 32 candidate designs in each of 400 generations in the GA

engine. However, in majority of the cases the optimization algorithm converged

within 180 generations. We also increased the default mutation rate of 0.01 to

0.70 which means that in a generation, probability of a one of the genes in a

chromosome will mutate is 70%. The GA fitness function which evaluates the

102

fitness of a candidate design which is power dissipation in our case, we have first

evaluated whether the CPI per thread for the chosen set of micro-architectural

values is actually able to meet the real time requirements. The pseudo-code of

our fitness, mutate gene and crossover two genes functions are described below.

MAX_POWER is a maximum power level set to identify this design does not

satisfy throughput constraints.

GA Fitness Function:

1. CPIThread = evaluate_thr_strand();

2. clk_period = (double) 1 / (double) CLK_FREQ;

3. if V�@�r<)'- � @���
V��s'2+)&�.9) � �t�9)<1:- u ������ �
�������� a�v� then

 return evaluate_power();

4. Else return MAX_POWER;

GA MutateGene Function:

1. Randomly choose a particular gene;

2. Randomly choose a new value for the gene within the range of the

variable;

3. Set the value of the gene to the new value

4. Evaluate the CPI per thread;

5. If CPI per thread satisfies constraints, then accept new value

6. Else, find another new value for the gene;

103

GA 1pt Crossover Function:

1. Randomly choose a cut point for Gene1;

2. Crossover Gene1 and Gene2 from the cut point onwards;

3. Evaluate the CPI per thread for Gene1 and Gene2;

4. If CPI per thread satisfies constraints, then accept new values;

5. Else, find another new cut point;

GA 2pt Crossover Function:

1. Randomly choose 2 cut points for Gene1;

2. Crossover Gene1 and Gene2 from the cut point 1 till cut point 2;

3. Evaluate the CPI per thread for Gene1 and Gene2;

4. If CPI per thread satisfies constraints, then accept new values;

5. Else, find 2 new cut points;

Table 7-1 enlists the micro-architectural details of the best chromosomes

or cores for the five packet types respectively found by GA. Rows 13a and 13b

shows the model predicted and observed power dissipation values for the best

candidate designs. Similarly, model predicted values and observed CPI per

thread is shown in rows 14a and 14b. For each packet type, the 10 best cores

from GA are stored and used later in the joint exploration of L2 memory and core

micro-architectures. This completes the core optimization step.

104

Table 7-1: Optimized core architectures for five packet types found through GA

Parameters TYPE0 TYPE1 TYPE2 TYPE3 TYPE4

Threads 16 16 16 16 4

LMQ 1 1 1 32 32

SB 1 1 4 32 32

I$ Size 1K 1K 1K 128K 4K

I$ Assoc. 8 4 16 4 4

I$ Linesize 64 64 16 128 16

D$ Size 1K 1K 4K 4K 128K

D$ Assoc. 16 16 8 4 4

D$ Linesize 128 2 64 32 64

MIL 32 32 32 1 1

ASIQ 1 4 32 8 16

Power

(mW)

Pred. 202 212 228 297 261

Obs. 230 229 227 310 265

CPI per

thread

Pred. 19.4 20.1 21.7 20.19 6.99

Obs. 18.9 18.7 19.8 21.72 7.13

To see the benefit Table 7-2 enlists the micro-architectural details of the

best chromosomes or cores for the five packet types respectively found by GA.

Rows 13a and 13b shows the model predicted and observed power dissipation

105

values for the best candidate designs.

Table 7-2: Comparison of power and CPI of optimized architectures found by GA
with baseline architecture

Parameters
Base

Arch.
TYPE0 TYPE1 TYPE2 TYPE3 TYPE4

Threads 4 16 16 16 16 4

LMQ 1 1 1 1 32 32

SB 8 1 1 4 32 32

I$ Size 32K 1K 1K 1K 128K 4K

I$ Assoc. 4 8 4 16 4 4

I$ Linesize 32 64 64 16 128 16

D$ Size 8K 1K 1K 4K 4K 128K

D$ Assoc. 4 16 16 8 4 4

D$ Linesize 16K 128 2 64 32 64

MIL 1 32 32 32 1 1

ASIQ 2 1 4 32 8 16

Power

(mW)
261

Pred.
202 212 228 297

 265 Obs. 230 229 227 310

CPI per 6.99 Pred. 19.4 20.1 21.7 20.19

106

thread

 7.13 Obs. 18.9 18.7 19.8 21.72

Step 3 (Integrated L2 and Core Optimization): The set of heterogeneous core

architectures achieved above are used in the third and final stage where they are

fed into a Simulated Annealing-based (SA) optimization engine [79, 80]. We have

only considered one interconnection design which is a crossbar with fixed-sized

queue.

��l � ���wsxl � ay��lz
��l

 �7 � 1�

The number of required cores is calculated using Equation 7-1. For a packet type

� if ��1 is the number of packets to be processed per second where a���l� is the

processing time of that packet type in a core with �� threads, total number of

cores ��l is given by Equation 7-1.

The shared memory level L2 queue size, L2 size, associativity, line size

and most importantly number of L2 banks, described in Table 7-3 are the five

parameters which we explore to determine the overall L2 bandwidth, throughput

and power dissipation of the entire chip. As the number of cores in a chip scales,

the contention in the secondary cache increases resulting in non-deterministic L2

access times which exacerbates throughput degradation in the cores. This effect

can be minimized by increasing the number of L2 banks. The L2 bank ids are

typically decoded into the lower significant word of the physical addresses. This

means that a fetched data block from main memory is distributed across all the

107

L2 banks according to the bank identification bits in the fetched address. This

spatial distribution of data blocks across all the banks minimizes the number of

simultaneous memory accesses per shared bank and attempts to mitigate the

contention in each bank. However, as number of banks is scaled, L2 power

dissipation increases as more logic is required to support the organization of the

independent L2 banks. To address these design trade-offs, we perform a joint

exploration of shared L2 and the cores such that sufficient data bandwidth can be

provided to the cores and overall chip power dissipation can be minimized

subject to the real time throughput demands of the NeP packet processing

applications.

Table 7-3: Micro-architectural parameters of shared L2

Name Range Increment Description

14. FP{|x
4 to 16 Power of 2 L2 input queue

size per core

15. Size 4 to 512 MB 1MB Total L2 size

16. Associativity
8 to 64 Power of 2 Set-associativity of

L2 cache

17. Line Size
8 to 128 Power of 2 Line size of L2

cache

18. �5
4 to 128 Power of 2 Number of L2

banks

The SA engine uses a L2 macro simulator called L2MacroSim which

models the contention in the L2 cache in CASPER. Only the core to L2 cache

108

and L2 cache to memory reply/acknowledgement packets will be simulated. The

inputs to the L2 MacroSim are L2 cache input queue size per core, cache bank

size, line size, associativity, number of L2 banks, L1 I and D cache sizes, line

sizes and associativities and instruction trace files for each thread in each core.

The individual core parameters will be set to their optimal values from GA

optimization. The L2MacroSim enables significant savings in simulation time

while capturing the interaction between the cores. The macro-simulator also

provides the power dissipation of the crossbar interconnection network and the

L2 cache banks. The SA-based hill climbing algorithm is shown below:

Define micro-architecture;

Cost_fn_old = evaluate_power_dissipation();

int inner_loop = 0, count = 0;

/* Initial Temperature */

int T = T_0;

/* Initial Iteration */

int iterations = I_0;

/* Repeat until Run-Time permits */

while (count++ < SA_COUNTER)

{

/* Repeat until inner loop iteration is not over */

 inner_loop = 0;

 while (inner_loop++ < iterations)

109

 {

 /* Compute new Cost Funtion */

 //RF_count = 0;

 Cost_fn_new = perturb(L2 structure);

 // Hill-climbing part

 if (Cost_fn_new > Cost_fn_old || (rand() < �E}~����n� –E}~������
�)))

 {

 Cost_fn_old = Cost_fn_new;

 }

 }

/* Compute the new iteration for inner loop and Temperature */

 iterations = 1.2 * iterations;

 T = 0.1 * T;

}

The small hill-climbing technique embedded in the SA enables us to

quickly converge to an optimal design thus giving us a shared memory

heterogeneous many-core micro-architecture. The cost function in the SA is

average power dissipation per cycle and constraints are the real-time throughput

boundaries of the packets.

Figure 7-2 demonstrates how the number of threads per core changes

during simulated annealing. The optimal number of threads per core for the cores

110

designed for different packet types is shown in Table 7-1. The high density of

threads per core decreases single thread performance significantly to the extent

that the threads processing packets cannot meet real-time constraints anymore.

Hence, we observe that number of threads per core is scaled down to meet the

performance requirements.

Figure 7-2: Thread scaling observed during simulated annealing

Table 7-4: Example optimal design found by simulated annealing

Micro -Architecture Specification Values

NC 214

NC Types
5 (TYPE0, TYPE1, TYPE2, TYPE3,

TYPE4)

NT per core (packet) type 8, 8, 8, 4, 4

0

2

4

6

8

10

12

14

16

18

250 500 750 1000 1250 1500

#
 o

f
T

h
re

a
d

s
p

e
r

co
re

Iterations

Convergence of NT in SA

TYPE0

TYPE1

TYPE2

TYPE3

TYPE4

111

NC per packet type 80, 9, 19, 42, 65

NB 32

L2 Size 256MB

L2 Bandwidth 36.352 GBps

Interconnect Bandwidth 32TBps

Average Estimated Power Dissipation ~80W

Effective Packet Bandwidth 329 GBps

Total Estimated Area 1930 mm2

The result of SA-based optimization engine is shown in Table 7-4. A total

number of cores = 214, where number of TYPE0 cores is 80, number of TYPE1

cores is 9, number of TYPE2 cores is 19, number of TYPE3 cores is 42 and

number of TYPE4 cores is 65. 1 core was optimized for the DRR deficit round

robin scheduling function. However, we have observed that a naïve deficit round

robin scheduling will not suffice in such a large scale system. We believe that an

out-of-order core will be able to exploit the instruction level parallelism of the

scheduling algorithm and will perform better. Number of L2 banks used is 32 and

the total L2 cache size is 256MB. The average power dissipation of the entire

chip is around 80.9W and the net line speed achieved is 329 Gbps. The L2

cache memory section was able to provide a bandwidth of 36.352 GBps which

was sufficient to keep the cores busy. The available bandwidth of crossbar

interconnection network is 32TBps. The overall area of the chips is approximately

1930 mm2.

112

Table 7-5: Comparison with other NePs

Specifications Netronome

[4]

CISCO

Quantum

Flow [1]

Tilera

[81]

UltraSPARC

T1 [55]

Derived

NeP

#Cores 40 40 64 8 ~200

#Threads 4 4 4 4 4 to 8

Power - 400mW - - 80.9W

N/W

Bandwidth

40Gbps 100+Gbps 40Gbps - 329 Gbps

Heterogeneous Yes Yes No No Yes

Table 7-5 shows the comparison of the derived NeP with other

commercially available processors. Although our design space exploration

method was able to achieve the highest throughput, number of cores is almost 5

times compared to the other NePs. Number of threads per core also varies in our

case from 4 to 8. Number of threads per core in all other NePs is fixed. The

power dissipation is significantly high compared to other NePs. The reason is

significantly large number of cores, larger number of cache banks and a crossbar

interconnection. Due to the fundamental differences with the other NePs

available today we think direct comparison of our derived design is an unfair

comparison.

CHAPTER 8: CONCLUSION

In this dissertation we have demonstrated an efficient scalable design

space exploration framework for many-core heterogeneous embedded

processors. In the current implementation of our framework, we have used a

terabit per second network packet processing benchmark. In future we intend to

explore a wide range of embedded applications where the different

characteristics of various applications will pose different design challenges. We

defined the core micro-architectural design space in terms of 13 parameters for

each of the 5 IP packet types. Our objective was to use statistical machine

learning to derive linear regression models of CPI per thread and power

dissipation of the cores in terms of the micro-architectural design space

parameters. The strength of this method is that even with a relatively fewer time-

consuming cycle-accurate simulations (500-600), we were able to capture the

complex relation of the performance and power dissipation of the cores within an

error budget of 10%. However note that the proposed framework is flexible

enough to explore various other machine learning and modeling techniques other

than SML to study the power-performance trade-offs in embedded processor

design. Our proposed method of pruning the design space by first optimizing

core architectures using the derived linear regression models in the GA-based

optimization engine and then integrating the L2 design parameters with the core

architecture parameters in a SA-based hill-climbing algorithm enabled us to

114

rapidly achieve optimal power-performance point. Finally, we derived a many-

core NeP with 214 cores and a 32-banked shared L2 cache which achieved a net

line speed of 329 gigabits per second. We also found that the optimal number of

hardware thread per core is 8. Scaling the number of hardware thread per core

beyond 8 resulted in poor CPI per thread which failed to meet the real time

constraints. In future, we also want to explore other exploration techniques such

as neural networks and likewise to study whether better optimal design points

can be achieved. Moreover, we were successful in avoiding simulation-in-loop

methods as well as exhaustive search techniques which are extremely time-

consuming and not cost-effective. Yet, our method produce results within a

boundary of 20% error which we believe can be minimized by investing more

time in collecting sample data set and fine tuning the linear regression models. In

the end, even for such a large scale many-core system, we could keep the

average power dissipation of the entire chip within 80W.

115

REFERENCES

[1] C. Inc. (2010). The Cisco QuantumFlow Processor: Cisco's Next
Generation Network Processor. Available:
http://www.cisco.com/en/US/prod/collateral/routers/ps9343/solution_overvi
ew_c22-448936.html

[2] Slovati. (2009, Dec 29, 2009). The new Freescale QorlQ platform: how to
migrate to an all-IP environment.

[3] M. W. C. 2011, "NetLogic Microsystems Introduces the Industry’s Most
Advanced Multi-Core Processor for LTE eNodeB / Base Stations," 2011.

[4] N. Inc. (2010). Netronome Heterogeneous Reference Architecture.
Available: http://www.netronome.com/pages/heterogeneous-architecture

[5] E. Lindholm, et al., "NVIDIA Tesla: A Unified Graphics and Computing
Architecture," Micro, IEEE, vol. 28, pp. 39-55, 2008.

[6] http://www.picochip.com/page/12/multi-core-dsp. (2010). Multi-core DSP.

[7] PressRelease. (2010, Annual Cisco Visual Networking Index Forecast
Projects Global IP Traffic to Increase More Than Fourfold by 2014.
Available: http://newsroom.cisco.com/dlls/2010/prod_060210.html

[8] L. G. Roberts, "A radical new router," Spectrum, IEEE, vol. 46, pp. 34-39,
2009.

[9] S. Timothy, "A Pipelined Memory Architecture for High Throughput
Network Processors," 2003, pp. 288-288.

[10] T. Ungerer, et al., "A survey of processors with explicit multithreading,"
ACM Comput. Surv., vol. 35, pp. 29-63, 2003.

116

[11] M. A. M. Vieira, et al., "Survey on wireless sensor network devices," in
Emerging Technologies and Factory Automation, 2003. Proceedings.
ETFA '03. IEEE Conference, 2003, pp. 537-544 vol.1.

[12] J. R. Allen, et al., "IBM PowerNP network processor: Hardware, software,
and applications," IBM Journal of Research and Development, vol. 47, pp.
177-193, 2003.

[13] T. Wolf, "Challenges and Applications for Network-Processor-Based
Programmable Routers," in Sarnoff Symposium, 2006 IEEE, 2006, pp. 1-
4.

[14] B. LILJEQVIST, "Visions and Facts – A Survey of Network Processors,"
Electrical Engineering Program, Department of Computer Engineering,
CHALMERS UNIVERSITY OF TECHNOLOGY, Göteborg, 2003.

[15] A. C. Snoeren, et al., "Single-packet IP traceback," IEEE/ACM Trans.
Netw., vol. 10, pp. 721-734, 2002.

[16] C. Fraleigh, et al., "Packet-level traffic measurements from the Sprint IP
backbone," Network, IEEE, vol. 17, pp. 6-16, 2003.

[17] R. Ramaswamy, et al., "Analysis of network processing workloads," J.
Syst. Archit., vol. 55, pp. 421-433, 2009.

[18] C. Lewis and S. Pickavance, "Application/Bandwidth Requirements," in
Selecting MPLS VPN Services, ed: Cisco Press, 2006, p. 456.

[19] C. Rosewarne, "Network Processors," Calyptech Inc.2004.

[20] http://www.ezchip.com/t_npu_whpaper.htm. (2010, NPU Designs for Next-
Generation Networking Equipment.

[21] Intel. (2001, Next Generation Network Processor Technologies.

117

[22] L. Spracklen and S. G. Abraham, "Chip multithreading: opportunities and
challenges," in High-Performance Computer Architecture, 2005. HPCA-11.
11th International Symposium on, 2005, pp. 248-252.

[23] Virtutech, "Virtutech Simics."

[24] Augmint. Available: http://iacoma.cs.uiuc.edu/augmint.html

[25] RSIM. Available: http://rsim.cs.illinois.edu/rsim/dist.html

[26] GEMS. Available: http://www.cs.wisc.edu/gems/

[27] SimFlex. SimFlex. Available: http://si2.epfl.ch/~parsacom/projects/simflex/
[28] Z. Hui, et al., "MPTLsim: A simulator for X86 multicore processors," in

Design Automation Conference, 2009. DAC '09. 46th ACM/IEEE, 2009,
pp. 226-231.

[29] M. T. Yourst, "PTLsim: A Cycle Accurate Full System x86-64
Microarchitectural Simulator," in Performance Analysis of Systems &
Software, 2007. ISPASS 2007. IEEE International Symposium on, 2007,
pp. 23-34.

[30] L. Yan, et al., "NePSim: a network processor simulator with a power
evaluation framework," Micro, IEEE, vol. 24, pp. 34-44, 2004.

[31] L. Sheng, et al., "McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures," in Microarchitecture,
2009. MICRO-42. 42nd Annual IEEE/ACM International Symposium on,
2009, pp. 469-480.

[32] P. J. Joseph, et al., "A Predictive Performance Model for Superscalar
Processors," in Microarchitecture, 2006. MICRO-39. 39th Annual
IEEE/ACM International Symposium on, 2006, pp. 161-170.

118

[33] C. Dubach, et al., "Microarchitectural Design Space Exploration Using an
Architecture-Centric Approach," presented at the Proceedings of the 40th
Annual IEEE/ACM International Symposium on Microarchitecture, 2007.

[34] T. S. Karkhanis and J. E. Smith, "Automated design of application specific
superscalar processors: an analytical approach," SIGARCH Comput.
Archit. News, vol. 35, pp. 402-411, 2007.

[35] T. Sherwood, et al., "Balancing design options with Sherpa," presented at
the Proceedings of the 2004 international conference on Compilers,
architecture, and synthesis for embedded systems, Washington DC, USA,
2004.

[36] B. C. Lee, et al., "CPR: Composable performance regression for scalable
multiprocessor models," in Microarchitecture, 2008. MICRO-41. 2008 41st
IEEE/ACM International Symposium on, 2008, pp. 270-281.

[37] E. \, et al., "Efficiently exploring architectural design spaces via predictive
modeling," SIGARCH Comput. Archit. News, vol. 34, pp. 195-206, 2006.

[38] K. Sukhun and R. Kumar, "Magellan: A Search and Machine Learning-
based Framework for Fast Multi-core Design Space Exploration and
Optimization," in Design, Automation and Test in Europe, 2008. DATE '08,
2008, pp. 1432-1437.

[39] K. Sukhun and K. Rakesh, "Magellan: a search and machine learning-
based framework for fast multi-core design space exploration and
optimization," presented at the Proceedings of the conference on Design,
automation and test in Europe, Munich, Germany, 2008.

[40] W. Tilman, "Performance Models for Network Processor Design," IEEE
Transactions on Parallel and Distributed Systems, vol. 17, pp. 548-561,
2006.

[41] M. Shashidhar, "Exploring the Processor and ISA Design for Wireless
Sensor Network Applications," 2008, pp. 59-64.

119

[42] Y.-N. Lin, et al., "Modeling and analysis of core-centric network
processors," ACM Trans. Embed. Comput. Syst., vol. 8, pp. 1-15, 2009.

[43] E. S. Mostafa, "Architecture-Level Design Space Exploration of Super
Scalar Microarchitecture for Network Applications," 2010, pp. 269-272.

[44] E. A. Brewer, "High-level optimization via automated statistical modeling,"
SIGPLAN Not., vol. 30, pp. 80-91, 1995.

[45] R. Vuduc, "Automatic Performance Tuning of Sparse Matrix Kernels,"
University of California, Berkeley, 2003.

[46] J. Cavazos, et al., "Rapidly Selecting Good Compiler Optimizations using
Performance Counters," in Code Generation and Optimization, 2007.
CGO '07. International Symposium on, 2007, pp. 185-197.

[47] A. Ganapathi, et al., "A case for machine learning to optimize multicore
performance," presented at the Proceedings of the First USENIX
conference on Hot topics in parallelism, Berkeley, California, 2009.

[48] S.-w. Liao, et al., "Machine learning-based prefetch optimization for data
center applications," presented at the Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis,
Portland, Oregon, 2009.

[49] L. Jiangtian, et al., "Machine learning based online performance prediction
for runtime parallelization and task scheduling," in Performance Analysis
of Systems and Software, 2009. ISPASS 2009. IEEE International
Symposium on, 2009, pp. 89-100.

[50] H. Leather, et al., "Automatic Feature Generation for Machine Learning
Based Optimizing Compilation," in Code Generation and Optimization,
2009. CGO 2009. International Symposium on, 2009, pp. 81-91.

[51] T. Wolf and M. Franklin, "CommBench-a telecommunications benchmark
for network processors," in Performance Analysis of Systems and

120

Software, 2000. ISPASS. 2000 IEEE International Symposium on, 2000,
pp. 154-162.

[52] A. Tee, et al. (2003, Implication of End-user QoS requirements on PHY &
MAC. 802.20 WG Call for Contributions.

[53] F. S. Foundation, GNU General Public License (GPL).

[54] A. S. Leon, et al., "A Power-Efficient High-Throughput 32-Thread SPARC
Processor," Solid-State Circuits, IEEE Journal of, vol. 42, pp. 7-16, 2007.

[55] A. S. Leon, et al., "The UltraSPARC T1 Processor: CMT Reliability," in
Custom Integrated Circuits Conference, 2006. CICC '06. IEEE, 2006, pp.
555-562.

[56] I. Sun Microsystems, "OpenSPARC T1 Micro-Archiecture Specification,"
ed, 2006.

[57] S. M. Inc., "UltraSPARC Architecture 2007, Privileged and Non-Privileged
Instructions," ed, 2008.

[58] P. Kongetira, et al., "Niagara: a 32-way multithreaded Sparc processor,"
Micro, IEEE, vol. 25, pp. 21-29, 2005.

[59] C. Dhruba, et al., "Predicting inter-thread cache contention on a chip multi-
processor architecture," in High-Performance Computer Architecture,
2005. HPCA-11. 11th International Symposium on, 2005, pp. 340-351.

[60] D. T. a. S. T. a. N. Jouppi, "CACTI 4.0," HP Laboratories, Palo AltoJune 2
2006.

[61] P. Subbarao, et al., "Complexity-effective superscalar processors," vol.
25, ed: ACM, 1997, pp. 206-218.

[62] S. Inc., "DFT Compiler Datasheet," ed, 2009.

121

[63] Z. Wei and C. Yu, "New generation of predictive technology model for sub-
45nm design exploration," in Quality Electronic Design, 2006. ISQED '06.
7th International Symposium on, 2006, pp. 6 pp.-590.

[64] Cadence Encounter. Available:
http://www.cadence.com/products/ld/rtl_compiler/

[65] A. Gifi, Nonlinear Multivariate Analysis: John Wiley $ Sons, 1989.

[66] SPECJBB2005 Benchmark Programs. Available:
http://www.spec.org/jbb2005/

[67] C. Ware, "The OSI network layer: Standards to cope with the real world,"
Proceedings of the IEEE, vol. 71, pp. 1384-1387, 1983.

[68] Canturk Isci, et al., "An Analysis of Efficient Multi-Core Global Power
Management Policies: Maximizing Performance for a Given Power
Budget," in Microarchitecture, 2006. MICRO-39. 39th Annual IEEE/ACM
International Symposium on, 2006, pp. 347-358.

[69] Kushal Datta and A. Mukherjee, "SPARC-based Cycle-Accurate CMT
Architecture Simulator for Performance Energy and Area Analysis,"
University of North Carolina at Charlotte, Charlotte2008.

[70] G. E. Tellez, et al., "Activity-driven clock design for low power circuits," in
Computer-Aided Design, 1995. ICCAD-95. Digest of Technical Papers.,
1995 IEEE/ACM International Conference on, 1995, pp. 62-65.

[71] S. Mutoh, et al., "1-V power supply high-speed digital circuit technology
with multithreshold-voltage CMOS," Solid-State Circuits, IEEE Journal of,
vol. 30, pp. 847-854, 1995.

[72] P. Macken, et al., "A voltage reduction technique for digital systems," in
Solid-State Circuits Conference, 1990. Digest of Technical Papers. 37th
ISSCC., 1990 IEEE International, 1990, pp. 238-239.

122

[73] Arindam Mukherjee, et al., "Chapter 10: Hardware Techniques for
Autonomous Power Saving in Embedded Many-Core Processors," in
Multi-Core Embedded Systems, G. Kornaros, Ed., 1 ed: CRC Press and
Taylor & Francis Group, 2009.

[74] Kim Wonyoung, et al., "System level analysis of fast, per-core DVFS using
on-chip switching regulators," in High Performance Computer Architecture,
2008. IEEE 14th International Symposium on, 2008, pp. 123-134.

[75] Alon Naveh, et al., "Power and Thermal Management in The Intel Core
Duo Processor," Intel Technology Journal, vol. 10, May 15 2006.

[76] Luca Benini and G. D. Micheli, Dynamic power management: Design
Techniques and CAD Tools: Kluwer Academic, 1997.

[77] A. Presta. (2007). Fast Genetic Algorithm.

[78] B. Jong-Ho, et al., "Performance analysis of coarse-grained parallel
genetic algorithms on the multi-core sun UltraSPARC T1," in
Southeastcon, 2009. SOUTHEASTCON '09. IEEE, 2009, pp. 301-306.

[79] S. Kirkpatrick, "Optimization by simulated annealing: Quantitative studies,"
Journal of Statistical Physics, vol. 34, pp. 975-986, 1984.

[80] K. Datta, et al., "Automated design flow for diode-based nanofabrics," J.
Emerg. Technol. Comput. Syst., vol. 2, pp. 219-241, 2006.

[81] S. Bell, et al., "TILE64 - Processor: A 64-Core SoC with Mesh
Interconnect," in Solid-State Circuits Conference, 2008. ISSCC 2008.
Digest of Technical Papers. IEEE International, 2008, pp. 88-598.

