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ABSTRACT 
 
 

KUSHAL DATTA. An efficient design space exploration framework to 
optimize power-efficient heterogeneous many-core multi-threading embedded 
processor architectures. (Under the direction of DR. ARINDAM MUKHERJEE) 

By the middle of this decade, uniprocessor architecture performance had hit 

a roadblock due to a combination of factors, such as excessive power dissipation 

due to high operating frequencies, growing memory access latencies, diminishing 

returns on deeper instruction pipelines, and a saturation of available instruction 

level parallelism in applications. An attractive and viable alternative embraced by 

all the processor vendors was multi-core architectures where throughput is 

improved by using micro-architectural features such as multiple processor cores, 

interconnects and low latency shared caches integrated on a single chip.  The 

individual cores are often simpler than uniprocessor counterparts, use hardware 

multi-threading to exploit thread-level parallelism and latency hiding and typically 

achieve better performance-power figures. The overwhelming success of the 

multi-core microprocessors in both high performance and embedded computing 

platforms motivated chip architects to dramatically scale the multi-core 

processors to many-cores which will include hundreds of cores on-chip to further 

improve throughput. With such complex large scale architectures however, 

several key design issues need to be addressed. First, a wide range of micro-

architectural parameters such as L1 caches, load/store queues, shared cache 

structures and interconnection topologies and non-linear interactions between 

them define a vast non-linear multi-variate micro-architectural design space of 

many-core processors; the traditional method of using extensive in-loop 
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simulation to explore the design space is simply not practical. Second, to 

accurately evaluate the performance (measured in terms of cycles per instruction 

(CPI)) of a candidate design, the contention at the shared cache must be 

accounted in addition to cycle-by-cycle behavior of the large number of cores 

which superlinearly increases the number of simulation cycles per iteration of the 

design exploration. Third, single thread performance does not scale linearly with 

number of hardware threads per core and number of cores due to memory wall 

effect. This means that at every step of the design process designers must 

ensure that single thread performance is not unacceptably slowed down while 

increasing overall throughput. While all these factors affect design decisions in 

both high performance and embedded many-core processors, the design of 

embedded processors required for complex embedded applications such as 

networking, smart power grids, battlefield decision-making, consumer electronics 

and biomedical devices to name a few, is fundamentally different from its high 

performance counterpart because of the need to consider (i) low power and (ii) 

real-time operations. This implies the design objective for embedded many-core 

processors cannot be to simply maximize performance, but improve it in such a 

way that overall power dissipation is minimized and all real-time constraints are 

met. This necessitates additional power estimation models right at the design 

stage to accurately measure the cost and reliability of all the candidate designs 

during the exploration phase. 

In this dissertation, a statistical machine learning (SML) based design 

exploration framework is presented which employs an execution-driven cycle-
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accurate simulator to accurately measure power and performance of embedded 

many-core processors. The embedded many-core processor domain is Network 

Processors (NePs) used to processed network IP packets. Future generation 

NePs required to operate at terabits per second network speeds captures all the 

aspects of a complex embedded application consisting of shared data structures, 

large volume of compute-intensive and data-intensive real-time bound tasks and 

a high level of task (packet) level parallelism. Statistical machine learning (SML) 

is used to efficiently model performance and power of candidate designs in terms 

of wide ranges of micro-architectural parameters. The method inherently 

minimizes number of in-loop simulations in the exploration framework and also 

efficiently captures the non-linear interactions between the micro-architectural 

design parameters. To ensure scalability, the design space is partitioned into (i) 

core-level micro-architectural parameters to optimize single core architectures 

subject to the real-time constraints and (ii) shared memory level micro-

architectural parameters to explore the shared interconnection network and 

shared cache memory architectures and achieves overall optimality. The cost 

function of our exploration algorithm is the total power dissipation which is 

minimized, subject to the constraints of real-time throughput (as determined from 

the terabit optical network router line-speed) required in IP packet processing 

embedded application. 
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CHAPTER 1: INTRODUCTION 
 

 

1.1 Embedded Many-core Processors 

Recent years have witnessed a dramatic transition in the complexities and 

capabilities of embedded processors. Examples include Cisco  40 core Quantum 

Flow network processor [1],  Freescale QorIQ series network processors with 

upto to 8 cores [2], Netlogic XLP316L 16 core quad-issue processor with 4 

hardware threads per core [3], Netronome Network Flow Processor with 40 IXP 

cores with 4-threads per core [4], NVIDIA Tesla 10 core GGPGPU with 24 scalar 

stream processors per core [5], and PicoChip  250-300 core picoArray digital 

signal processor [6]. Similar to high performance processor vendors, those in the 

embedded domain are permanently altering their existing roadmaps to 

incorporate hundreds of cores on the same chip in the coming decade – the 

embedded many-core processor. However, embedded computing is 

fundamentally different from its high performance counterpart because of the 

need for low energy and real-time operation required in complex embedded 

applications such as networking, smart power grids, battlefield decision-making, 

consumer electronics and biomedical devices, to name a few. To satisfy these 

performance requirements, conceivably the future embedded many-core 

processor will have hundreds of heterogeneous cores on chip, some of which will 

be fine grained multi-threaded RISC cores to exploit embedded task level 
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parallelism, and some highly application-specific cores – all connected to 

hierarchies of distributed on-chip memories by high speed networks-on-chip 

(NoCs). While the industry focus is on putting higher number of cores on a single 

chip, the key challenge is to optimally architect these embedded many-core 

processors for low energy operations while satisfying area and often stringent 

real-time constraints.  With such complex many-core architectures, the traditional 

approach to processor design through extensive simulations is no longer viable 

due to the large design space that must be explored in-order to optimize power-

performance. 

Future generation embedded applications are expected to grow even 

more complex consisting of a large volume of computational and data intensive 

real time bound tasks sharing large data structures. To methodically study the 

power-performance trade-offs of embedded many-core processors to be 

designed to satisfy the requirements of such complex embedded applications, we 

focus on Network Processors (NePs) executing the functions of IP packet 

processing as the representative processor domain. Our idea is to thoroughly 

investigate the high degree of task level parallelism, shared data structures and 

real-time operations present in packet processing application and establish a 

modeling and design exploration framework for NePs in this dissertation. The 

methodology can be easily extended to design complex embedded and high 

performance many-core platforms. 

1.2 Demands of High Performance Packet Processing Routers 

Internet demand is growing at an explosive rate. A large volume of 
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technology consumer products such as personal computers, workstations, web-

enabled mobile devices and multimedia-enabled smart-phones are used to 

connect to various websites on a regular basis. Also, an increased use of 

websites offering online voice and video services such as Hulu, Youtube and 

Facebook to name a few, has resulted in a surge in overall network traffic. The 

total network traffic in North America (the highest IP-traffic generating region) is 

predicted to be approximately 19.0 exabytes per month by 2014 [7]. With such an 

explosive increase in data demand, existing edge routers used to interface 

between different communication networks and core routers which constitute the 

backbone of the internet, are identified to be the bottlenecks in the next 

generation ultra high speed networks [8]. The Network Processors (NePs) 

powering these routers can support maximum line speeds of 10 to 100 gigabits 

per second [9-14], which is insufficient for handling the predicted volume of data 

in the future. Power is also a critical concern in the design of high performance 

NePs. Cost is increased by the requirements of larger power supplies and 

cooling systems. Reliability is compromised by thermal hot-spots on chip. Power 

increase also adversely affects operating environment features by driving higher 

utility costs and higher installation and maintenance costs. Cool running NePs 

pack more ports into a smaller space within thermal operating limits, and have 

the capability of staying online longer in a battery back-up mode when main 

power fails. As a result, next generation NePs must be architected to achieve 

throughput that can support terabit per second (TBPS) line speeds, and yet 

operate under low power budgets so that the overall operating cost can be 
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minimized and reliability can be improved. 

NePs execute real-time Internet Protocol (IP) packet processing 

applications, which consist of compute-bound and data-bound tasks [15-17]. 

Compute-bound tasks include cyclic redundancy error checking codes, block-

ciphering and likewise. Data-bound tasks include traffic monitoring, IP table 

lookups, packet fragmentation, Reed Solomon’s error checking codes, deep 

packet inspection and others. Incoming packets in a router are classified as 

either high priority hard real-time constrained conversational voice packets for 

example, or lower priority soft real-time constrained non-critical video and other 

content-delivery packets [18]; the incoming packets are scheduled on the NePs 

according to their priorities. Once error-checking and route calculations are 

completed, the packets are sent to the outward queues. Two critical shared data 

structures in this system are the routing table and the traffic monitoring table. The 

routing table contains millions of forward route entries which are read by 

incoming packets to look-up the next destinations. It is rarely updated. On the 

other hand, the traffic monitoring database is updated with the details of every 

incoming packet. 

1.3 Micro-architectural Domain of Network Processors 

Existing high-performance network processors are based on the following 

micro-architectures: superscalar (SS), streaming single instruction multiple data 

(S-SIMD), chip multi-processor (CMP), and simultaneous multi-threading (SMT) 

[10, 11, 14, 19]. While SS exploits instruction level parallelism (ILP), it does not 

take advantage of the high degree of task (packet) level parallelism (TLP) 
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inherent in IP packet processing. S-SIMD implements a systolic array of packet 

processing kernels and the packet data is streamed from one stage to another. 

However the benefit of pipelining of the packet operations is mitigated by stalls 

encountered at the shared data structure read/write stage for every incoming 

packet. Although network processors designed with SMT are able to process 

packets with high throughput and meet real time constraints, they have high 

power dissipation and hence are not always cost-effective. Commercial network 

processor architectures combine these paradigms along with ASIC acceleration 

engines. For example, EzChip’s TopCore technology uses an array of 

superscalar processors with customized instruction sets [20]; Intel’s Next 

Generation Microengine Architecture combines CMP and multithreading along 

with inter-processor pipelined operation using next neighbor registers [21]; 

Netronome’s NFP-3240 network flow processor is an array of 40 1.4GHz micro-

engine RISC processor [4]. 

1.4 Dissertation Contribution 

Our design philosophy to achieve a low power TBPS network processor is 

to use shared memory many-core architecture. Low latency on-chip shared 

cache memories helps us to minimize off-chip accesses as the large shared data 

structures (IP lookup table and Traffic monitoring table) are read or updated for 

all packets. All the processor cores are in-order and use hardware multi-

threading; the thread selection policy is fine-grained multi-threading (FGMT). In-

order FGMT [22] utilizes simple six stage pipeline shared between the hardware 

threads, enabling us to achieve (i) high throughput per-core by latency hiding and 
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(ii) minimize the power dissipation of a core by avoiding complex micro-

architectural structures such as instruction issue queues, re-order buffers and 

history-based branch predictors typically used in superscalar or other types of 

hardware multi-threading techniques. Also, to achieve better power-performance 

points we make the processor cores structurally heterogeneous. This way more 

hardware resources are invested into processor cores designed to compute more 

resource-hungry tasks and overall on-chip hardware resources are optimally 

utilized. Dynamic power-saving mechanisms such as power-gating and dynamic 

voltage and frequency scaling (DVFS) are used at the core level to minimize 

power dissipation in case of idle cores. Inside the cores, clock-gating is enabled 

at all pipeline stages to minimize dynamic power dissipation. A high level of 

packet-level parallelism is achieved due to the large number of cores, which also 

overcomes the well-known power wall problem. 

In this dissertation we present an efficient and scalable statistical machine 

learning based design space exploration framework. Our first step includes the 

design and development of an instruction trace-driven cycle-accurate many-core 

processor simulator used to measure throughput (in terms of cycles per 

instruction) of candidate many-core designs for different combinations of various 

micro-architectural parameters belonging to this design space. The simulator 

called Chip Multi-threading Architecture Simulator for Performance Energy and 

ARea Analysis (CASPER) is a SPARCV9 instruction set based processor 

simulator. To simultaneously measure power dissipation of candidate designs 

along with throughput, CASPER is empowered with power estimation models of 
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each micro-architectural block enabling us to accurately measure power 

dissipation every cycle. Our literature survey of existing functional and cycle-

accurate multi-core simulators and network processor simulators in Chapter 2 

show that to the best of our knowledge no such large scale simulation platform 

exist which can accurately measure power and performance of many-core 

designs cycle-by-cycle. In addition, a well-established Solaris 5.10 software stack 

on top of CASPER enables us to execute any embedded or high performance 

application on this simulation platform. 

Once we have a validation platform, our second step is to apply a divide 

and conquer method to explore the design space in a stepwise fashion. Our 

many-core micro-architectural design space is defined by the core-level 

parameters which include level one (L1) instruction and data (I/D) cache sizes 

and number of hardware threads per core, pipeline depth, I/D miss queues and 

store buffers. The chip-level parameters include number of cores, interconnection 

architecture, shared second level memory (L2) queue size, L2 organization and 

access times. Although all of the above micro-architectural parameters are 

tunable in CASPER to simulate different configurations, it is not practical to use 

in-loop simulation while exploring the vast micro-architectural design space. To 

resolve this issue we first optimize the core architectures. The objective of this 

step is to design a core in such a way that it processes a packet within the real-

time boundary and the power dissipation is minimized. Several packet types exist 

according to which the sequence of functions used to process a packet varies. 

Hence the micro-architecture of a core optimized for a particular packet type also 
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varies from other cores designed for other packet types. Using linear statistical 

regression, the power and performance regression models of the cores are 

derived using randomly chosen values of the core-level micro-architectural 

parameters. Once the models are derived, they are used instead of in-loop 

simulation in a Genetic Algorithm based heuristic to find optimal core micro-

architectures for all packet types. 

At this point of our exploration, chip-level parameters still not been used. 

Our third step involves core interaction modeling and shared cache optimization. 

We estimate the number of cores required for processing a particular distribution 

of packet types. For a given choice of the interconnection network (for example, 

crossbar), we build a predictive model for the contention (and hence the 

associated L2 cache access time) and power dissipation, and the L2 cache 

banks. The predictive models are built from training data obtained through the 

macro-simulator L2MacroSim implemented in CASPER. Only the core to L2 

cache and L2 cache to memory reply/acknowledgement packets are simulated. 

The inputs to the L2 MacroSim are L2 cache input queue size per core, cache 

bank size, line size, associativity, number of L2 banks, L1 I and D cache sizes, 

line sizes and associativities and instruction trace files for each thread in each 

core. The individual core parameters are set to their optimal values from previous 

step. The L2MacroSim enables significant savings in simulation time while 

capturing the interaction between the cores. The predictive models for core 

interaction are used to optimize the power dissipation of the L2 cache banks 

while satisfying the real-time constraints. If the L2 access time constraints cannot 
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be satisfied, we choose the next best core for each packet type and repeat steps 

two and three. 

The rest of the dissertation is organized as follows. Chapter 2 describes 

existing processor simulators and architecture exploration algorithms. Chapter 3 

explains the embedded network packet processing benchmark which we use in 

this research. Chapter 4 and 5 discusses the structural details and organization 

of a many-core processor simulator CASPER. Our exploration algorithm is 

elaborated in Chapter 5 and 6. Results of our research are presented and 

analyzed in Chapter 6, and finally in Chapter 7 we present our conclusions.



CHAPTER 2:  BACKGROUND 
 

 

2.1 Processor Simulators 

Virtutech Simics [23] is a full-system scalable functional simulator for 

embedded systems. The released versions support microprocessors such as 

PowerPC, x86, ARM and MIPS. Simics is also capable of simulating any digital 

device and communication bus. The simulator is able to simulate anything from a 

simple CPU + memory, to a complex SoC, to a custom board, to a rack of 

multiple boards, or a network of many computer systems. Simics is empowered 

with a suite of unique debugging toolset including reverse execution, tracing, 

fault-injection, checkpointing and other development tools. Similarly, Augmint [24] 

is an execution-driven multiprocessor simulator for Intel x86 architectures 

developed in University of Illinois, Urbana-Champagne. It can simulate 

uniprocessors as well as multiprocessors. The inflexibility in Augmint arises from 

the fact that the user needs to modify the source code to customize the simulator 

to model multiprocessor system. However both Simics and Augmint are not 

cycle-accurate and they model processors which do not have open-sourced 

architectures or instruction sets; this limits the potential for their use by the 

research community. Another execution-driven simulator is RSIM [25] which 

models shared-memory multiprocessors that aggressively exploit instruction-level 

parallelism (ILP). It also models an aggressive coherent memory system and 
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interconnects, including contention at all resources. However throughput 

intensive applications which exploit task level parallelism are better implemented 

by the fine-grained multi-threaded cores that our proposed simulation framework 

models. Moreover we plan to model simple in-order processor pipelines which 

enable thread schedulers to use small-latency, something vital for meeting real-

time constraints. 

General Execution-driven Multiprocessor Simulator (GEMS) [26] is an 

execution-driven simulator of SPARC-based multiprocessor system. It relies on 

functional processor simulator Simics and only provides cycle-accurate 

performance models when potential timing hazards are detected. GEMS Opal 

provides an out-of-order processor model. GEMS Ruby is a detailed memory 

system simulator. GEMS Specification Language including Cache Coherence 

(SLICC) is designed to develop different memory hierarchies and cache 

coherence models. The advantages of our simulator over the GEMS platform 

include its ability to (i) carry out full-chip cycle-accurate simulation with 

guaranteed fidelity which results in high confidence during broad micro-

architecture explorations, and (ii) provide deep chip vision to the architect in 

terms of chip area requirement and run-time switching characteristics, energy 

consumption, and chip thermal profile. 

SimFlex [27] is a simulator framework for large-scale multiprocessor 

systems. It includes (a) Flexus – a full-system simulation platform and (b) 

SMARTS – a statistically derived model to reduce simulation time. It employs 

systematic sampling to measure only a very small portion of the entire application 
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being simulated. A functional model is invoked between measurement periods, 

greatly speeding the overall simulation but results in a loss of accuracy and 

flexibility for making fine micro-architectural changes, because any such change 

necessitates regeneration of statistical functional models. SimFlex also includes 

FPGA-based co-simulation platform called the ProtoFlex. Our simulator can also 

be combined with an FPGA based emulation platform in future, but this is beyond 

the scope of this work.  

MPTLsim [28] is is a uop-accurate, cycle-accurate, full-system simulator 

for multi-core designs based on the X86-64 ISA. MPTLsim extends PTLsim [29], 

a publicly available single core simulator, with a host of additional features to 

support hyperthreading within a core and multiple cores, with detailed models for 

caches, on-chip interconnections and the memory data flow. MPTLsim 

incorporates detailed simulation models for cache controllers, interconnections 

and has built-in implementations of a number of cache coherency protocols. 

NePSim2 [30] is an open source framework for analyzing and optimizing 

NP design and power dissipation at architecture level. It uses a cycle-accurate 

simulator for Intel's multi-core IXP2xxx NPs, and incorporates an automatic 

verification framework for testing and validation, and a power estimation model 

for measuring the power consumption of the simulated NP. To the best of our 

knowledge, it is the only NP simulator available to the research community. 

NePSim2 has been evaluated with cryptographic benchmark applications along 

with a number of basic testcases. However, the simulator is not readily scalable 

to explore a wide variety of NP architectures. 
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McPAT [31] is an integrated power, area and timing modeling framework 

for multi-core and many-core architectures. At the core level it includes models of 

micro-architectural components such as in-order, out-of-order processor cores 

while at the chip level it consists of shared caches, multiple clock domains, 

memory controllers and NoC. The critical path timing models, area models and 

leakage power model at the circuit level enables McPAT to estimate power 

dissipation of a simulated design. However, McPAT is a static power dissipation 

model and does not contain any cycle-accurate behavior. 

Although the available processor simulators are effective for exploring 

different micro-architectural design spaces, CASPER provides us the flexibility to 

interchangeably tune impactful micro-architectural parameters such as number of 

threads in a core, pipeline depth, multiple clock domains, number of cores, 

interconnection network, shared L2 cache size, associativity and line size. Such 

a wide range of tunable parameters are not found in other simulators. Also, none 

of the available simulators provide power estimation for simulated designs. The 

built-in scalable HDL models of all the micro-architectural blocks in our design 

such as arithmetic unit, queues, caches and arbiters along with technology 

libraries ranging from 90nm to 22nm are used to accurately model delay, 

dynamic and leakage power in CASPER. This is an extremely powerful feature 

enabling us to accurately measure power dissipation of candidate designs right 

at the design stage. A stripped down version of the Solaris 5.10 OS kernel is 

ported onto CASPER which enables us to study a wide range of high 

performance embedded benchmarks. The details of the simulator and micro-



14 

 

architectural features are described in Chapter 4. 

2.2 Multi- and Many-core Design Space Exploration 

Exploring the many-core processor design space through exhaustive cycle-

accurate simulation is not practical due to the prohibitively long simulation time 

and its superlinear increase as the numbers of cores are scaled. Several 

techniques have been proposed that avoids exhaustive simulations in effectively 

exploring the uniprocessor [32-35] and many-core [36-38] design space. We first 

review recent research on modeling and exploring multi- and many-core 

architectures. 

 Lee et al. [36] minimize many-core simulation times in estimating 

performance through composable regression models for baseline uniprocessor 

performance, cache contention, and delay penalty. Their unicore simulation 

platform is an execution driven, cycle accurate IA-32 simulator modeling a 

superscalar, out-of-order architecture. Long instruction traces derived from a 

variety of application areas ranging from digital home to the server are used as 

benchmarks. The uniprocessor regression model predicts the baseline 

performance of each core while the contention regression model predicts 

interfering accesses to shared resources from other cores. Uniprocessor and 

contention model outputs are composed in a penalty regression model that 

considers the contention as a secondary penalizing effect. A trace simulation is 

stated to be sufficient for developing the contention and penalty models, thus 

greatly reducing the overall simulation time. A median CPI error of 6.6% is 

reported for quad-core processors. The major advantage of their work is the 
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scalability of the methodology to hundreds of cores. The authors have only 

focused on developing regression models for predicting CPI and not for power 

estimation. 

Ipek et. al. [37] use artificial neural networks to predict performance of a 

multi-core processor using a small sized training set drawn from the processor 

design space. Partial simulation techniques based on SimPoint where only 

certain application intervals or simulation points are modeled, are employed to 

reduce the simulation time. Benchmarking applications are derived from the 

SPEC OMP and parallel NAS benchmarks. An average predicted IPC error of 4-

5% is reported when the neural network is trained  using a 1% sample  drawn 

from a multi-core design space of 8 cores with 250K points and up to 55× 

performance swings among different system configuration. Similar to Lee et. al. 

the authors do not model processor power dissipation. More importantly, the 

authors do not consider chip level shared micro-architectural components such 

as shared L2 cache and interconnect network which may critically affect 

performance and power due to the contention in the shared resources. Kang and 

Kumar [39] treat the multi-core processor design space exploration problem as a 

classic search and optimization problem with a simulation-in-the-loop approach 

and use of a rule based machine learning algorithm to prune the search space. 

The optimization algorithms include steepest ascent hill climbing and genetic 

algorithms. The machine learning algorithms includes 1-tuple tagging based on 

the complexity of the cores (simple, moderate, and complex), and 5-tuple tagging 

based on architecture parameters (Simple, D-cache intensive, I-Cache intensive, 
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Execution units intensive, and Fetch Width intensive). The objective functions for 

the optimizations are performance, power, and area. Simulations are done using 

a modified version of SMTSim. Power and area estimates are obtained for 

different hardware structures from existing literature. The benchmarks are drawn 

from SPEC2000, IBS, Olden, and Mediabench. The authors report that their 

search/machine learning approach achieves within 1% of the performance 

compared to an exhaustive simulation approach for a 4 core system while being 

3800 times faster. However, similar to Ipek et. al. the authors do not consider 

chip level shared micro-architectural components. Also, their power estimation 

approach does not allow the study of the dependence of power dissipation on 

architectural parameters. Regarding exploration of network processor 

architectures, Wolf and Tillman [40] present an analytical model performance 

model for predicting the performance, chip area, and power consumption for a 

prototype network processor parameterized using the Commbench network 

processing benchmark; Mysore et. al, [41] propose a sensor network benchmark, 

WiSeNBench,and use an ARM simulator to identify some of the key 

characteristic behaviors; Lin et. al, [42] use a combination of analytical models 

and simulations to explore core-centric network processor architectures; Salehi 

et. al, [43] optimize of a superscalar MIPS network processor through exhaustive 

simulation. Modeling many-core architecture with an analytical approach requires 

many simplifying assumptions about the architecture while simulations-only 

approach suffers from the drawbacks mentioned earlier. Dubach et. al. [33] 

presents an approach that co-designs an optimizing compiler and architecture 



17 

 

using a machine learning approach. Their framework consists of the Xtrem 

simulator for the Intel XScale architecture, gcc for the compilier, MiBench for the 

benchmark, and Support Vector Machines (SVM) for modeling the design space. 

The best design achieves significant performance increases resulting in a 13% 

improvement in execution time, 23% savings in energy and an energy-delay 

product (ED) of 0.67. However, their work is limited to unicore processor 

architectures. Although, our methodology can incorporate compiler optimizations, 

these optimizations alone may not achieve sufficient performance on many-core 

processors. 

2.3 Statistical Machine Learning for System Optimization 

Statistical machine learning (SML) algorithms can be used to model 

multivariate data sets. The basic framework in machine learning based 

optimization includes tunable specification, observables identification, training 

data collection and data analysis. Brewer [44] uses a linear regression to select 

the best data partitioning scheme for a given problem size; Vuduc [45] employs 

support vector machines to construct a non-parametric model of the shape of the 

partitions of the input space of sparse matrix kernels; Cavazos et. al. [46] use a 

logistic regression model to predict the optimal set of compiler flags for the SPEC 

benchmark suite; Ganapathi et. al. [47] use Kernel Canonical Correlation 

Analysis to effectively identify the relationship between a set of optimization 

parameters and a set of resultant performance metrics to explore the search 

space for stencil algorithms; Liao et. al. [48] evaluate several classical machine 

learning algorithms such as Nearest Neighbor, Naive Bayes, Decision Tree, 
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Support Vector Machines, Multi-layer perception and Radial Basis Function to 

optimize pre-fetch configurations for data center applications; Li et. a. [49] use 

machine learning based online performance prediction for runtime parallelization 

and task scheduling; Leather et. al. [50] develop a new technique to 

automatically generate good features for machine learning based optimizing 

compilation by improving the quality of a machine learning heuristic through 

genetic programming and predictive modeling. The successes of the above listed 

research efforts indicate the power of machine learning in directing program and 

system optimization.  



CHAPTER 3:  EMBEDDED NETWORK PROCESSING BENCHMARK 
(ENEPBENCH) 

 

 

To evaluate the performance and power dissipation of candidate designs 

we have developed a benchmark suite called Embedded Network Packet 

Processing Benchmark (ENePBench) which emulates the IP packet processing 

tasks executed in a network router. The router workload varies according to 

internet usage where random number of IP packets arrive at random intervals. To 

meet a target bandwidth, the router has to (i) process a required number of 

packets per second and (ii) process individual packets within their latency 

constraints. The task flow is described in Figure 3-1. Incoming IPv6 packets are 

scheduled on the processing cores of the NeP based on respective packet types 

and priorities. Depending on the type of a packet different header and payload 

processing functions process the header and payload of the packet respectively. 

Processed packets are either routed towards the outward queues (in case of 

pass-through packets) or else terminated. 
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Figure 3-1: Pictorial representation of IP packet header and payload processing 
in two packet instances of different types 

The packet processing functions of ENePBench are adapted from 

CommBench 0.5 [51]. Routing table lookup function RTR, packet fragmentation 

function FRAG and traffic monitoring function TCP constitute the packet header 

functions. Packet payload processing functions include encryption (CAST), error 

detection (REED) and JPEG encoding and decoding as shown in Table 3-1. 

Table 3-1: ENePBench: Packet processing functions 

Function Type  Functio n Name Description  

Header Processing 

Functions 
RTR 

A Radix-Tree routing 

table lookup program  
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FRAG 
An IP packet 

fragmentation code 

TCP 
A traffic monitoring 

application 

Payload Processing 

Functions 

CAST 
A 128 bit block cipher 

algorithm 

REED 

An implementation of 

Reed-Solomon Forward 

Error Correction scheme. 

JPEG 
A lossy image data 

compression algorithm. 

Packet Scheduler DRR 
Deficit Round Robin fair 

scheduling algorithm 

 

Functionally, IP packets are further classified into types TYPE0 to TYPE4 

as shown in Table 3-2. The headers of all packets belonging to packet types 

TYPE0 to TYPE4 are used to lookup the IP routing table (RTR), managing 

packet fragmentation (FRAG) and traffic monitoring (TCP). The payload 

processing of the packet types, however, is different from each other. Packet 

types TYPE0, TYPE1 and TYPE2 are compute bound packets and are 

processed with encryption and error detection functions. In case of packet type 

TYPE3 and TYPE4, the packet payloads are processed with both compute 

bound encryption and error detection functions as well as data bound JPEG 
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encoding/decoding functions. 

Table 3-2: Packet Types used in ENePBench 

Packet 

Type 

Header 

Functions 

Data Functions  Characteristic  Type of Service  

TYPE0 RTR, FRAG, TCP REED Compute Bound Real Time 

TYPE1 RTR, FRAG, TCP CAST Compute Bound Real Time 

TYPE2 RTR, FRAG, TCP CAST, REED Compute Bound Content-Delivery 

TYPE3 RTR, FRAG, TCP REED, JPEG Data Bound Content-Delivery 

TYPE4 RTR, FRAG, TCP CAST, REED, JPEG Data Bound Content-Delivery 

 

The two broad categories of IP Packets are hard real-time termed as real-

time packets and soft real-time termed as content-delivery packets. Real-time 

packets are assigned with high priority whereas content-delivery packets are 

processed with lower priorities. The total propagation delay (source to 

destination) of real-time packets is less than 150 milliseconds (ms) and less than 

10 sec for content-delivery packets respectively. 

Table 3-3: Performance Targets for IP packet type 

Application/Packet 

Type 

Data Rate Size End-to-end 

Delay 

Description  

Audio 4 – 64 (Kb/s) < 1KB  < 150 msec Conversational 

Audio 

Video 16 – 384  ~ 10KB  < 150 msec Interactive video 
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(Kb/s) 

Data - ~ 10KB  < 250 msec Bulk data 

Still Image - < 100KB  < 10 sec Images/Movie 

clips 

 

Assuming maximum 10 to 15 hops are allowed per packet, worst case 

processing time of the packets in the intermediate routers is in the order of 10ms  

in case of real-time packets and 1000 ms in case of content-delivery packets 

respectively [52]. The network propagation delay is assumed to be negligible as 

optical fiber networks provide sufficient data bandwidth [8]. Table 3-3 enlists the 

end-to-end transmission delays associated with each packet categories. All of 

our candidate micro-architectures must be designed to process packets within 

the packet processing delay limits. In addition to processing delay per packet, we 

also consider total number of packets required to process per second in a TBPS 

router. Since IPv6 packets are of varying length we assume in average packet 

contains a payload of size 8KB. Hence, total number of packets to be processed 

is given by, 

������� 	�
 �����
 � ���
��
��
���
��� 	����� ����                �3 � 1� 

 
According to Equation 3-1 approximately 70 to 100 million packets are 

required to be processed per second to achieve TBPS line speed. In a shared 

memory NeP with �� number of cores where each core has �� hardware threads, 

�� � �� packets are processed simultaneously. 
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Table 3-4: Processing time and instruction count of 5 packet types  

Packet  

Type 

Processing 

Time 

(msec) 

Instruction 

Count 

Packet 

Distribution 

TYPE0 10 1255368 60% 

TYPE1 10 1354559 25% 

TYPE2 10 1258022 5% 

TYPE3 1000 8922987 5% 

TYPE4 1000 9124851 5% 

 

The processing time, instruction count and packet distribution for all the 

packet types are enlisted in Table 3-4. For a given network bandwidth the total 

number of packets to be processed per second contains a distribution of different 

packet types. For example, if 100 packets are to be processed per second, packet 

distribution percentage as shown in Table 3-4 signifies that there are 60 TYPE0 

packets, 25 TYPE1 packets and 5 packets of types TYPE2, TYPE3 and TYPE4.  

 



CHAPTER 4:  CASPER PROCESSOR SIMULATOR 
 

 

CASPER is an instruction trace-driven cycle-accurate many-core processor 

simulator which models a shared memory heterogeneous architecture. CASPER 

provides the user with three key benefits – (i) entire SPARCV9 instruction set 

support enabling the user to run any Solaris executable on the simulator, (ii) a 

large set of tunable architectural parameters so that heterogeneous CMT design 

space can be widely explored, and (iii) deep chip vision - accurate area and 

performance estimations, along with cycle-accurate power and energy 

consumption models, which enable the user to capture energy consumption 

characteristics of different parts of the chip on a cycle-by-cycle basis. CASPER 

also provides the architect complete access to the processor and enables the 

monitoring of critical system events. CASPER is open-sourced under GNU GPL 

license [53]. 

CASPER is written in C++ programming language and has been flexibly 

parallelized using pthreads to optimally run on a wide variety of parallel 

processors. Functionally, it has been validated against the open-sourced 

functional simulator of Sun Microsystem's UltraSPARC T1 processor [54-56] - 

SPARC Architecture Simulator (SAM). Timing verification is done in two stages – 

(i) CPI and memory operations of applications executed on UltraSPARC T1 

processor and a structurally similar design simulated in CASPER are matched 
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and (ii) number of retired instructions, required number of cycles to commit these 

instructions and program counter progression are matched with the pre-

characterized HDL models of the processor. 

 

Figure 4-1: The shared memory processor model simulated in CASPER. NC 
heterogeneous cores are connected to NB banks of shared secondary cache via 
a crossbar interconnection network. Each core consists of S0 to SN-1 are the 
pipeline stages, T0 to TNT-1 hardware threads, L1 I/D cache and I/D miss queues 

4.1 Processor Model 

The processor model used in CASPER is shown in Figure 4-1. NC cores are 

connected to the shared L2 cache through a crossbar interconnection network. 

The unified L2 cache is inclusive and is divided into NB banks. Each bank of L2 

privately owns DRAM controllers and independently communicates with the RAM 

modules. NC and NB are parameterized in CASPER. The 64-bit pipeline is 

parameterized to handle NT hardware threads and is divided into 6 main stages – 

Instruction-Fetch (F-stage), Thread-Schedule (S-stage), Branch-and-Decode (D-

stage), Execution (E-stage), Memory-Access (M-stage) and Write-back (W-

stage). 
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Figure 4-2: Micro-architectural structures inside a core in CASPER 

Figure 4-2 shows the different stages of the in-order instruction pipeline inside 

a core. The Instruction Fetch Unit includes the instruction address translation 

buffer (I-TLB) and the instruction cache (I$) and the thread scheduling state 

machine. I-TLB and I$ are shared by the hardware threads. Each thread privately 

owns a register file (processor-state specific set of registers) and a set of alternate 

address mapped registers called ASI registers; the D-stage includes a full 

SPARCV9 instruction set decoder described in [57]. The E-stage includes a 

standard RISC 64-bit ALU, an integer multiplier and divider. Load Store Unit 

(LSU) is the top level module which implements the M-stage and W-stage. It also 

includes the data TLB (D-TLB) and data cache (D$). 
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The miss path of I$ is controlled through Missed Instruction List (MIL) and 

Instruction Fetch Queue (IFQ), while that of the D$ is controlled through Load 

Miss Queue (LMQ) which maintains cache misses separately for each thread. 

Duplicate load misses are maintained in a wait buffer to reduce off-core traffic. 

Store Buffer (SB) serializes all the stores following the Total Store Order (TSO) 

model. 

The Floating point Unit (FPU) which executes single and double-precision 

floating-point operations can either be shared across all cores or can be privately 

owned by a single core. In the former case, all floating point operation packets 

are routed to the FPU via the interconnection network. Two thread scheduling 

schemes are implemented in CASPER. The small latency thread scheduling 

scheme allows instructions from ready threads to be issued into the D-stage at 

every clock cycle [56, 58]. Long latency scheduling scheme allows one active 

thread to continue its execution till it is complete or interrupted by higher priority 

threads. The full list of tunable architectural parameters is given in Table 4-1. 

Table 4-1: Configurable Parameters in Casper 

Name Range  Description  

Cores 1: NC Number of cores on chip 

Strands 1:NS Hardware threads per core 

Strand 

Scheduling 
2 

Long Latency Scheduling / 

Small Latency Scheduling 

FPU 1 or 0 
FPU can be shared between 

the cores or threads 
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Name Range  Description  

I$_C/D$_C 4:64 (KB) Size of L1 I-D cache 

I$_B/D$_B 4:64 Size L1 I-D cache block 

I$_A/D$_A 2:8 Associativity of L1 I-D cache 

I$/D$ Hit 

Latency 
2:4 clock cycles 

Measured in Cacti for 45nm 

technology 

IFQ 1NS:8NS 
Size of Instruction Fetch 

Queue 

MIL 1NS:8NS Size of Missed Instruction List 

BBUFF 4NS:16NS entries Size of Branch Address Buffer 

LMQ 1NS:8NS Size of Load Miss Queue 

DFQ 1NS:8NS Size of Data Fill Queue 

SB 
1NS:16NS Size of Store Buffer (Store-

ordering) 

L2$_C 256KB:16MB Size of L2 cache 

L2$_B 8:24 Size of L2 cache block 

L2$_A 4:16 Associativity of L2 cache 

L2$_NB 4:16 Number of L2 cache banks 

 
In case of heterogeneous designs, the cores in CASPER are configured 

with different micro-architectures (one set of values of the architectural 

parameters) although the six functional stages of the core pipeline are fixed. The 

size and structure of the core-to-memory and memory-to-core request packets 

are also kept same across all the cores for simplicity. This is important since the 
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size of the interface packets usually depends on the cache block sizes. The clock 

signals to the heterogeneous cores are designed to be scaled so that different 

cores can be driven at different voltage and frequency levels. The tunable 

parameters in L2 cache are number of banks, bank size, associativity, block size 

and access latency. Arbiters in the L2 cache controllers issues one request 

packet from the input queues at a time. 

4.2 Performance Measurement 

For a given set of micro-architectural parameters, CASPER uses counters in 

each core to measure the number of completed instructions individually for each 

hardware thread (InstrTHREAD) and for the entire core (InstrCORE) every second. For 

a processor clock frequency of 1GHz, the total number of clock cycles per second 

is 1G. In this case the CPI-per-core is calculated as (1G/InstrCORE) while CPI-per-

thread is calculated as (1G/InstrTHREAD). 

In addition to CPI, counters are provided in CASPER to measure (i) pipeline 

stalls, (ii) wait time of threads due to MIL/LMQ/SB being full, (iii) I$ and D$ 

misses, and (iv) stalls due to other long latency operations such as ASI registers 

writes and floating point operations. Counters are also attached to the crossbar 

network to measure the access frequencies of the various cores and threads in 

them. The input queues of the L2 cache are monitored to track the accesses 

occurring every clock cycle from the various cores and corresponding threads. In 

addition, special counters are attached to every set in the L2 cache to report 

utilization, number of hits/misses per core and per hardware thread, and reuse 

and access frequencies of the active threads running in the system [59]. Cache hit 
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latencies (delays) are measured using Cacti [60, 61]  for a given cache size, block 

size, associativity and silicon technology. Miss penalties are counted in clock 

cycles by the counters provided in CASPER. 

Another important feature used in CASPER is Hardware Scouting. Usually 

long latency operations such as ASI register load/stores, I$ misses and D$ load 

misses in an in-order thread are blocking in nature. This means the blocked 

thread is in a WAIT state and no further instructions are issued into the decode 

stage. This also means that even though the depth of the load miss queue (LMQ) 

is greater than one, only one entry is effectively used. To save a few more clock 

cycles such that load misses following a previous load misses are also enqueued 

in the LMQ, hardware scouting is implemented in our pipeline which switches the 

state of a blocked thread to SPECULATIVE RUN state instead of WAIT state. 

Instructions in a thread which is in SPECULATIVE RUN state are scheduled to 

the decode stage, but are never committed until the first blocking load miss is 

resolved. Once the first load miss is resolved, the thread is switched to usual 

READY state and further execution continues. Arithmetic instructions appearing 

between two load misses are rolled back and the issuing thread is kept waiting till 

the first load miss is committed. In average, this enhances the performance of a 

single thread by 2-5%. 

4.3 Verification 

Functional correctness of candidate designs simulated in CASPER is 

verified using a set of diagnostic codes which are designed to test all the possible 

instruction and data paths in the stages of the pipeline in a core. Additional set of 
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diagnostic codes are written which consist of random combinations of 

instructions such that different system events such as traps, store buffer full and 

others are also asserted. To further verify the accuracy of CASPER, we have 

compared the total number of system events generated while executing 10 IP 

packets in the ENePBench in a real-life UltraSPARC T1000 machine consisting 

of an UltraSPARC T1 (T1) processor (T1) [56] to an exact UltraSPARC T1 

prototype (T1_V) simulated in CASPER. UltraSPARC T1 is the closest in-order 

CMT variant to our CMT designs modeled in CASPER and consists of 8 cores 

and 4 hardware threads per core. The simulated processor in CASPER had 

equal number of cores, hardware threads per core, L1 and L2 caches as T1. 

Columns 3a, 3b, 4a, 4b, 5a, 5b and 6 of our results tabulated  in Table 4-2 

compare the number of instructions committed, store buffer full event, I$ misses 

and D$ misses respectively in T1 and T1_V respectively. Column 6 shows that in 

average, the error in number of system events is less than 10%. 

Table 4-2: Comparison between number of system events for 5 IP packets types 
in (i) T1000 server with an UltraSPARC T1 processor and (ii) a T1 prototype 

simulated in CASPER 

Packet 

Type 

Clock 

Ticks 

(in 

 !"� 

Instr_cnt 

(in  !") 

SB_full 

(in  !#) 

IC_miss

es 

(in  !#� 

DC_misse

s 

(in  !#� 

Avg.  

Erro

r (%) 
T1 T1_V T1 

T1_

V 
T1 

T1_

V 
T1 

T1_

V 

TYPE0 0.674 0.255 0.255 5.0 4.9 2.6 2.6 1.56 1.59 2.01 

TYPE1 0.673 0.254 0.254 5.4 5.6 2.5 2.4 1.50 1.6 7.35 
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TYPE2 0.612 0.26 0.258 5.1 5.2 2.6 2.5 1.51 1.52 4.0 

TYPE3 2.257 0.90 0.892 12.9 12.7 3.5 3.9 6.84 6.84 5.7 

TYPE4 2.259 0.94 0.896 18.9 17.1 3.5 3.6 6.89 6.89 9.5 

4.4 Deep Chip Vision – Area and Power/Energy Measurement 

To accurately model the area and the power dissipation of the architectural 

components we (i) design scalable hardware models of all pipelined and non-

pipelined components of the processor in terms of corresponding architectural 

parameters (Table 1), (ii) derive area and power dissipations (dynamic + leakage) 

of the component HDL models using industry-standard synthesis and layout tools 

such as Synopsys and placement and routing tools as Encounter and (iii) 

statistically curve-fit the area and power dissipation values of the components for 

increasing values of the parameter to derive linear estimation models. Derived 

power models are then used to estimate energy consumption of the components 

by capturing the activity factor $��� from simulation, and integrating the product of 

power dissipation and  $��� over simulation time. 

4.5 Design of HDL Models 

Table 4-3 summarizes the common hardware structural components used in 

a CMT processor and the HDL models they map to. Some of the HDL models of 

the components (both intra-core and chip level components such as interconnect 

buses and arbiters) are available in OpenSPARC [56], while others have been 

custom designed in our lab. The HDL models are designed to be scalable, and 

capture different variations in the architectural parameters. 
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Table 4-3: Common CPU Hardware Structures and their models used in 
CASPER 

Hardware 

Structure 
HDL Model Affected By 

I$, D$ Cache Array  

Branch Predictor RAM + Logic threads-per-core (NS ) 

I-TLB, D-TLB RAM + CAM - 

Load Miss Queue RAM + CAM NS  

Missed 

Instruction List 
RAM + CAM NS 

Store Buffer RAM + CAM + Logic NS 

Crossbar 

Interconnect 
Scaled CCX number of cores (NC) 

L2 Cache Banks Cache Array NC 

FPU Logic 

SPARCV9 Floating 

Point Operations – 

FADD, FSUB, FMUL, 

FDIV 

Integer + Float 

Register File 
Logic 

SPARCV9 Register 

File 

 

4.5.1 Area and Power Estimation 

To accurately model the area and the power dissipation of the architectural 
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components we have (i) designed scalable hardware models of all pipelined and 

non-pipelined components of the processor in terms of corresponding 

architectural parameters, (ii) derived power dissipations (dynamic + leakage) of 

the component HDL models using industry-standard synthesis and layout tools 

such as Synopsys [62] which targets the Berkeley 45nm Predictive Technology 

Model (PTM) technology library [63] and placement and routing tools as 

Encounter [64] and (iii) statistically curve-fit the area and power dissipation 

values of the components for increasing values of the parameter to derive linear 

regression models. Derived power models are then used to estimate energy 

consumption of the components by capturing the activity factor $��� from 

simulation, and integrating the product of power dissipation and  $��� over 

simulation time. The following equation is used to calculate the power dissipation 

of a pipeline stage – 

�%&'()��� � �*)'+'()��� ,  $�-./'012  ���    �4 � 1� 
 

where 4 is the activity factor of that stage (α=1 if that stage is active; α = 0 

otherwise) which is reported by CASPER, and Pleakage and Pdynamic are the leakage 

and dynamic power dissipations of the stage respectively. 

The power dissipation values of the parameterized micro-architectural 

non-pipeline components in a core namely, the load miss queue, store buffer, 

missed instruction list, I/D-TLB, and I/D$ are collected from Cadence Encounter 

using a 1GHz clock into lookup tables. These lookup tables are then used in the 

simulation to calculate the power dissipation cycle by cycle. Table 4-4 shows the 

area, dynamic and leakage powers of the micro-architectural blocks in a core. 
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Area, delay and power dissipation of caches in Table 4-4 have been modeled 

using Cacti 4.1 [60, 61]. 

Table 4-4: Post-Layout Area, Dynamic and Leakage Power of HDL Models 

HDL Model 
Area 

(mm 2) 

Dynamic 

Power 

(mW) 

Leakage 

Power (uW) 

RAM (16) 0.022 1.03 17.81 

CAM (16) 0.066 3.51 67.70 

FIFO (16) for 8 threads 0.3954 165 1200.00 

TLB (64) 0.0178 21.11 92.60 

Cache (32KB) 0.0149 28.3 - 

Cache Controller    

Integer Register File 0.5367 11.92 4913.7 

Float Register File 0.0764 309.44 551.897 

FPU - - - 

IFU 0.0451 3280.1 378.39 

EXU 0.0307 786.99 301.94 

LSU 0.8712 5495.3 6848.30 

TLU 0.064 1302.2 553.8458 

Floating Frontend Unit 

(FFU) 
0.0123 767.07 98.40 

Multiplier 0.0324 23.74 383.88 
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Figure 4-4: Power dissipation distribution
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network respectively. A detailed discussion about the multiple linear and non-

linear regressions method is presented in Chapter 6. Dynamic power dissipation 

measured in Watts of L2 cache is related to the size in megabytes, associativity 

and number of banks �5 as shown in Equation 4-2. The model parameters are 

shown in Table 4-5. 

62-./'012_9:;)< �  �0 , �1 � >��� ,  �2 � ������������? � �3 � �5     �4 � 2� 

Table 4-5: L2 cache linear regresssion model parameters 

R R Square 
Std. Error of 

Estimate 

0.926 0.857 0.524 

 

Similarly, the dynamic and leakage power dissipation measure din milli-

Watts of a crossbar interconnection network is given by Equation 4-3 and 

Equation 4-4 respectively. Note that dynamic and leakage power is exponentially 

related to number of cores (��� and number of cache banks ��5�. In these two 

cases, the R value is 0.753 and standard errors of estimates is10.64. 

@�-./'012_9:;)< �  A0 , A1 � �BC�DE ,  A3 � F , A4 � �BG�DH       �4 � 3� 

@�*)'+'()_9:;)< �  A0 , A1 � �BC�D�IBJ�KIBL�D5        �4 � 4� 

4.5.2 Modeling Activity Factor 

It is necessary to track the activity factors of all the components and all the 

stages to accurately estimate the energy consumption of a design. Cycle-accurate 

simulation captures the switching activity of the micro-architectural components in 

every clock cycle. As a given instruction is executed through the multiple stages 
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of the instruction pipeline inside a core, the simulator tracks (i) the intra-core 

components that are actively involved in the execution of that instruction and (ii) 

the cycles during which that instruction uses any particular pipeline stage of a 

given component. Any component or a stage inside a component is assumed to 

be in two states – idle (not involved in the execution of an instruction) and active 

(process an instruction). For example, in case of a D$ load-miss, the occurrence 

of the miss will be identified in the M-stage. The load instruction will then be 

added to the LMQ and W-stage will be set to an idle state for the next clock cycle.  

 

Figure 4-5: Power Dissipation transient for a single pipeline stage in a 
component. The area under the curve is the total Energy consumption 

A non-pipelined component is treated as a special case of a single stage 

pipelined one. We consider only leakage power dissipation in the idle state and 

both leakage and dynamic power dissipations in the active state. Figure 4-5 

shows the total power dissipation of a single representative pipeline stage in a 

component. Note that the total power reduces to just the leakage part in the 
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absence of a valid instruction in that stage (idle), and the average dynamic power 

of the stage is added when an instruction is processed (active). 

A certain pipeline stage of a component will switch to active state when it 

receives an instruction ready signal from its previous stage. In the absence of the 

instruction ready signal, the stage switches back to idle state. Note that the 

instruction ready signal is used to clock-gate (disable the clock to all logic of) an 

entire component or a single pipeline stage inside the component to save 

dynamic power. Hence we only consider leakage power dissipation in the 

absence of an active instruction. In case of an instruction waiting for memory 

access or in the stall state due to a prior long latency operation, is assumed to be 

in active state. 

 

Figure 4-6: Power profile of a pipelined component where multiple instructions 
exist in different stages. Dotted parts of the pipeline are in idle state and add to 
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the leakage power dissipation. Shaded parts of the pipeline are active and 
contribute towards both dynamic and leakage dissipate power dissipations. 

Figure 4-6 shows the power (dynamic + leakage) contributions of multiple 

pipeline stages (which are simultaneously processing different pipelined 

instructions) to generate the total power dissipation profile of a pipelined micro-

architectural component. As shown in the Figure 4-6 above, for any given pipeline 

stage the horizontal separation lines correspond to different clock cycles during 

which different instructions flow through the stage. The shaded parts correspond 

to active states of the stage (dynamic + leakage power), while the dotted parts 

correspond to idle states of the stage (only leakage power). Note that different 

stages have different values of dynamic and leakage power dissipations. The 

following equation is used to calculate the power dissipation of a pipeline stage – 

�%&'()��� � �*)'+'()��� ,  $�-./'012  ���      �4 � 5� 
 
where 4 is the activity factor of that stage (α=1 if that stage is active; α = 0 

otherwise) which is reported by CASPER, and Pleakage and Pdynamic are the leakage 

and dynamic power dissipations of the stage respectively. Finally the energy 

consumption is found using the following equation: 

N � O �%&'()���
P10Q*'&1:/ �10)

&RS
       �4 � 6� 

 
A trace of the total power dissipation of a processor under simulation is 

reported by CASPER by adding the power dissipation profiles of all stages of all 

components for every clock cycle of simulation. The area under that curve is the 

total energy consumption of the processor for a given benchmark. CASPER can 

be used to design future throughput intensive CMT architectures ranging from 
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real-time constrained embedded systems (such as embedded network 

processors) to high-performance computing (HPC) platforms (such as 

web/application servers). Typically, for embedded applications the objective is to 

minimize energy consumption subject to throughput constraints, while for high-

performance applications throughput is maximized under power dissipation 

constraints. The following sections explain the data demand characteristics of 

these two application domains and how we employ CASPER to design 

processors for them. We use commercial benchmarks such as CommBench-0.5 

(embedded network processors) and SPECJBB2005 (web/application server 

processors) to evaluate CMT architectures. 

4.5.3 Design Trade-offs in case of SPECWEB2005 

High-end web and applications servers process huge amounts of data 

simultaneously. The typical data complexity is of the order of 10-20 million 

simultaneous users (parallel tasks) accessing large databases and executing 

transactions. User processes are mapped to software threads and corresponding 

transaction data from the backend database servers are transferred into the local 

memory of the executing processor. It is possible that substantial data can be 

reused or shared for multiple users justifying the use of shared memory 

architectures to enhance performance. CMT shared-memory architectures are 

known to perform efficiently for such applications [54, 55, 58]. L2 cache size 

(maximize amount of on-chip data), number of threads per core, number of cores 

and other critical architectural parameters have substantial impact on processor 

performance. Table 4-6 lists the parameters of interest and the range of values 
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that can be explored in an HPC CMT processor. The benchmark used to study 

this class of applications is SPECJBB2005 [66]. 

Table 4-6: The micro-architectural parameters and their ranges used to study the 
design trade-offs in SPECWEB2005 

Parameter  Range 

Cores 1:32 

Threads 4:32 

L1_I$ 4KB:64KB 

L1_D$ 4KB:64KB 

I-TLB 16:64 

D-TLB 16:64 

L2$_Size 1MB:16MB 

L2$_banks 4:16 

 

Table 4-7: Baseline Architecture used to measure CPI for SPECJBB2005 

Parameter  Value 

Cores 1 

Threads per core 1 

L1 I$/D$ size 16KB/8KB 

L1 I$/D$ Associativity 4/4 

L1 I$/D$ Block size 32/16 

I/D-TLB 64/64 
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Table 4-7 shows the baseline architecture used to study the SPECJBB2005 

benchmark. Figure 4-7 shows how the normalized CPI of a core and that of a 

strand vary with the number of threads in the core (from 1 to 16). Other 

architectural parameters are kept constant in baseline architecture for this 

experiment. As observed, performance of a core levels off as the number of 

threads increases, leading to more L1 cache misses due to cache thrashing. 

 

Figure 4-7: Scalability of CPI-per-core and CPI-per-strand of a core as threads-
per-core is increased from 1 to 16. SPECJBB2005 is used as benchmark. 

Additional stalls occur in the LSU, where the arbiter, responsible for transferring 

load-store packets from the core to the shared L2 cache becomes the bottleneck. 

The arbiter follows a round-robin fairness scheduling scheme to issue packets 

into the interconnection network. The worst case wait time for an outbound 

load/store packet of a thread is of the order of U��P�, where NS is the number of 

threads in the core. However, the CPI-per-strand increases considerably since a 

thread can wait in the worst case for U��P� cycles to be scheduled from the F-
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stage to the D-stage. Note that Figure 6 shows the data for small latency thread 

scheduling scheme. 

In Figure 4-8, we show how performance scales when two independent 

architectural parameters, (i) number of threads per core and (ii) size of L1 data 

cache, are varied together. The area and power dissipation for a 4-way set 

associative 16-block size cache for increasing size of cache is enlisted in Table 

A.1 in Appendix A. Note in Figure 4-8 that less misses in larger caches helps in 

increasing the effective CPI-per-core. However, as the number of threads-per-

core increases, L1 cache contention reduces this benefit. However, larger cache 

sizes indicate larger die area and hence more power dissipation. 

 

Figure 4-8: CPI-per-core scalability as threads-per-core is scaled from 1 to 16 
and the size of a 4-way set associative 16-block sized data cache is varied from 
8-64KB  (with SPECJBB2005) 
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Figure 4-9: Scalability of the area of a core (consisting of 4-threads) as size of a 
4-way set-associative 16-block size data cache increases (with SPECJBB2005) 

Figure 4-9 shows die area (in mm2) of one core scales almost super-linearly 

with increasing cache sizes. In the figure we vary the data cache size from 1KB to 

64KB. 

 

Figure 4-10: Dynamic power dissipation of a core (consisting of 4-threads) as 
size of a 4-way set-associative 16-block size data cache increases. The black 
line shows the trend (with SPECJBB2005) 
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Figure 4-10 shows peak dynamic power dissipation of a core consisting of 4 

threads as the size of the D$ varies from 1KB to 64KB. As expected with bigger 

cache sizes, we observe more power dissipation. A 32KB data cache size has 

high power dissipation ratings than that of 64KB cache as can be seen from Table 

A.1 in Appendix A. Also, the power saved due to lower cache misses for a 32KB 

data cache, compared to a 16KB data cache, is mitigated by the high power 

signature of the cache. This explains the slight increase in overall dynamic power 

dissipation of the core for this cache size. 

 

Figure 4-11: Dynamic Power Dissipation in a 4-threaded core simulated in 
CASPER with SPECJBB2005. Number of retired instructions at each time step is 
around 5.2 billion. 

Figure 4-11 shows the variation in power dissipation of a 4-threaded core 

according to data cache misses and committed instructions. Note the close 

correlation between D$ misses and dynamic power dissipation. 
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Figure 4-12: Shared L2 cache contention as a function of time for a 2-core CMT 
(4 threads-per-core) processor (with SPECJBB2005); L1 D$ misses of Core_0 
and Core_1 are shown in red and green respectively. 

  
Figure 4-12 shows traffic in the shared L2 cache (in units of 10 million 

misses) due to the simultaneous accesses from two cores in the system. In this 

case, the cores are configured with 4 threads-per-core, a 8KB data cache, and 

other features similar to the baseline architecture described in Table 4-7. Table 

4-8 shows average L2 access load (in units of 10 million misses) as the number of 

cores is scaled, using similar core configurations as described above. 

Table 4-8: Average L2$ load distribution as the number of 4-threaded cores is 
increased from 2 to 8. Data corresponds to units of 10 million misses 

Cores  C2T4 C4T4 C8T4 

Core0 3.11 3.19 3.24 

Core1 2.89 3.12 3.27 

Core2 0 3.24 3.26 

Core3 0 3.098 3.33 
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Core4 0 0 3.3 

Core5 0 0 3.26 

Core6 0 0 3.21 

Core7 0 0 3.33 

 

4.5.4 Design Trade-offs in case of EnePBench 

NePs must process data packets at line speeds of typically 50-60 million 

packets per second.  NePs execute codes for all layers of the Open System 

Interconnection (OSI) Protocol Stack [67]. The operations performed on a typical 

example packet have been discussed in [19]. Usually, a packet is mapped to a 

software-thread (posix thread) where the functions from different layers are 

executed sequentially. In a many-core processor, different operations on a packet 

will be mapped to one of the hardware threads. In addition latency, due to stalls in 

packet processing due to dependency on other packets or other network state 

information, can be potentially hidden by overlapping multi-threaded execution. 

Table 4-9: Architecture Parameters for Real-Time Embedded Network 
Processing 

Parameter  Range 

Cores 1:4 

Threads 1:8 

L1 I$ 1KB:4KB 

L1 D$ 1KB:4KB 

I/D-TLB 4:8 
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A subset of micro-architectural design parameters and their ranges are 

listed in Table 4-9. The benchmark suite used for these experiments is 

CommBench-0.5 [51] which is designed to measure performance of embedded 

NPs. The applications in CommBench are broadly categorized into (i) Header –

Processing Applications (HPA) and (ii) Payload-Processing Applications (PPA). 

HPA programs include the following: 

1. RTR - A Radix-Tree routing table lookup program. 

2. FRAG - An IP packet fragmentation code. 

3. DRR - Deficit Round Robin fair scheduling algorithm. 

4. TCP - A traffic monitoring application. 

PPA applications include: 

a) CAST - A 128 bit block cipher algorithm. 

b) ZIP - A data compression program based on commonly used Lempel-Ziv 

compression algorithm. 

c) REED - An implementation of Reed-Solomon Forward Error Correction 

scheme. 

d) JPEG - A lossy image data compression algorithm. 

Table 4-10: Baseline Architecture used to measure CPI for CommBench 0.5 

Parameter  Value 

Cores 1 

Threads per core 1 

L1 I$/D$ size 1KB/1KB 

L1 I$/D$ Associativity 2/2 
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L1 I$/D$ Block size 8/8 

I/D-TLB 4/4 

 

Table 4-10 shows the baseline architecture used. Table 4-11 shows the 

individual performance of the CommBench benchmark applications on the 

baseline architecture. Table 4-12 shows the energy consumption of the different 

CommBench programs. Column 2 shows the average energy consumption (with 

just clock-gating enabled in every stage in every component) – the LPMU 

algorithm described in Chapter 4 is not used. The data in column 3 shows the 

reduction in energy achieved by only power gating the core components. Power-

gating reduces overall power dissipation by cutting down the leakage power. Due 

to relatively low leakage power in the 1-core 1-thread design, the effects of power-

gating are relatively low. DVFS on the other hand produces larger reduction in 

energy consumption, as illustrated in the last two columns. In column 4, the 

supply voltage has been scaled down to 0.65V (from 0.7V), and the clock 

frequency has been to scale down to 0.8GHZ (compared to 1GHz for normal 

execution). Column 5 shows the energy reduction because of only frequency 

scaling (FS). The operating frequency for this experiment is set to 0.7GHz.  

Table 4-11: List of system events for CommBench 0.5 applications 

Benchmark  Instr uction  

Count 

I$ 

misses 

D$ 

misses 

CPI 

RTR 1976779411 393164 725377 3.03 

FRAG 1825056567 46150 420580 3.29 
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DRR 1776752836 103189 2837196 3.38 

TCP 1829361746 20387 831234 3.28 

CAST 1891153306 176163 1120180 3.18 

ZIP 1834895294 31505 11679186 3.27 

REED 4307088095 130365 583296 2.79 

JPEG 1832782256 49717 4606153 3.28 

 

Table 4-12: Power Dissipation for CommBench 0.5 applications with power-
saving features 

Benchmark 

Energy Consumption (µJ) for 8000 

clock cycles 

without 

LPMU 

with  

power 

gating 

with 

DVFS 

with  

FS 

RTR 57.46 57.34 39.64 40.22 

FRAG 55.59 55.27 38.35 38.90 

DRR 57.34 56.48 39.55 40.14 

TCP 57.91 57.78 39.95 40.54 

CAST 57.20 57.10 39.46 40.04 

ZIP 63.39 63.23 43.73 44.37 

REED 65.63 65.08 45.27 45.94 

JPEG 63.21 63.09 43.60 44.24 

 
 



CHAPTER 5: DYNAMIC POWER MANAGEMENT TECHNIQUES IN CASPER 
 

 

5.1 Abstract 

Dynamic power management (DPM) in many-core processors executing 

parallel tasks involves a set of techniques which perform power-efficient 

computations under real-time constraints to achieve system throughput goals 

while minimizing power. DPM is executed by an integrated chip-wide power 

management unit (PMU), implemented in software, hardware or a combination 

thereof, which monitors and manages the power and performance of each core by 

dynamically adjusting its operating voltage and frequency. Hardware-controlled 

power management eliminates the computation overhead of the processor for 

workload performance and power estimations. Hence, hardware power 

management realizes more accurate and real time impact on workload 

performance than a slower reacting software power management can achieve. 

We evaluate three different hardware-controlled global PMU policies – (i) the 

existing chip-wide DVFS [68] and (ii) MaxBIPS [68] methods, besides (iii) the 

novel SmartBIPS algorithm that we have developed in this work. SmartBIPS uses 

a hysteresis based prediction mechanism for dynamic performance estimations, 

and thereby automatically incorporates shared memory interactions between the 

multiple cores. Results show that on average, SmartBIPS achieves a 41.3% 

improvement in power savings and a 19.8% improvement in throughput per unit 
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power with respect to MaxBIPS. This analysis is obtained using CASPER [69] 

running ENePBench the network packet processing benchmark discussed in 

Chapter 3. The throughput improvement of SmartBIPS with respect to chip-wide 

DVFS is 16.7% at a cost of 1.2 times higher power dissipation. MaxBIPS achieves 

a 61% throughput improvement at a cost of 2.1 times higher power with respect to 

chip-wide DVFS. 

5.2 Introduction 

Computing with power efficiency has become the paramount concern in 

embedded many-core platforms. High power dissipations in embedded platforms 

will increase form factors, reduce battery life, add to operation costs in cooling 

systems, and decrease the system reliability. Such concerns motivate the need 

for advanced power management schemes in embedded multi-core processors.  

Dynamic power management (DPM) in many-core processors involves a 

set of techniques which perform power-efficient computations under real-time 

constraints to achieve system throughput goals while minimizing power. DPM is 

executed by an integrated chip-wide power management unit (PMU), which is 

typically implemented in software, hardware or a combination thereof. The PMU 

monitors and manages the power and performance of each core by dynamically 

adjusting its operating voltage and frequency. Power management is typically 

done using hierarchical power management units; the local power management 

unit (LPMU) optimizes power inside the core using techniques such as clock-

gating [70] and power-gating [71], while the global power management unit 

(GPMU) at the chip level optimizes power dissipation using techniques such as 
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core-level dynamic voltage and frequency scaling (DVFS) [72]. Hardware-

controlled power management eliminates the computation overhead that the 

processor incurs for software based power management while performing 

workload performance and power estimations. Hence hardware power 

management realizes more accurate and real time impact on workload 

performance than slower reacting software power management can achieve. 

5.3 Dynamic Voltage and Frequency Scaling (DVFS) 

The key idea of DVFS is to scale the voltages and frequencies of a single 

core or the entire processor during run-time to achieve specific throughputs while 

minimizing power dissipation, or to maximize throughput under a power budget. 

Equation 5-1 shows the quadratic and linear dependences of dynamic or 

switching power dissipation on the supply voltage and frequency respectively: 

� � α VW--C X     �5 � 1� 

where α is the switching probability, C is the total transistor gate (or sink) 

capacitance of the entire module, Vdd is the supply voltage, and f is the clock 

frequency. Note that the system frequency needs to scale along with the voltage 

to satisfy the timing constraints of the circuit whose delay changes linearly with 

the operating voltage [68]. DVFS algorithms can be implemented at different 

levels such as the processor micro-architecture (hardware), the operating system 

scheduler, or the compiler [73]. Figure 5-1 shows a conceptual diagram 

implementing DVFS on a multi-core processor. Darker shaded regions represent 

cores operating at high voltage, while lighter shaded regions represent cores 

operating at low voltage. The unshaded cores are in sleep mode. 
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Until recently, the benefit of DVFS has been offset by slow off-chip voltage 

regulators that lack the ability to switch to different voltages in short time periods. 

This drawback motivates the need for fast on-chip DVFS control at the core level. 

 

Figure 5-2: Three power-supply configurations for a 4-core CMP [74] 

Recent development of on-chip regulators with multiple on-chip power 

domains [74] has realized voltage regulation times of the order of 10mV per 

nanosecond. Figure 5-2 shows three possible power-supply configurations [74]. 

Voltage 

Supply 

DC-DC 

Voltage 

Regulator 

Vddhigh 

Vddlow 

Figure 5-1: Dynamic voltage and frequency scaling for a multi-core processor 
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5.4 Hardware Controlled DPM in Commercial Embedded Processors 

Some examples of commercial embedded processors which implement the 

DPM scheme include the Transmeta Crusoe, Intel StrongARM and XScale 

processors, and IBM Power4 [68]. These processors allow dynamically turning off 

idle sections of the processor, setting chip-wide fixed power consumption, halting 

idle cores, and/or operating dynamic voltage and frequency scaling of the cores in 

support of DPM strategies. Another commercial processor which partially 

implements the DPM scheme is the Intel Centrino Core Duo [75], which was 

designed to achieve two main goals: (1) maximize the performance under the 

thermal limitation the platform allows, (2) improve the battery life of the system 

relative to previous generations of processors. The OS views the Intel Core Duo 

processor as two independent execution parts, and the platform views the whole 

processor as a single entity for all power management related activities. Intel 

chose to separate the power management for a core from that of the full CPU and 

platform. This was achieved by making the power and thermal control unit part of 

the core logic and not part of the chipset as before. Migration of the power and 

thermal management flow into the processor allows the use of a hardware 

coordination mechanism in which each core can request any power saving state it 

wishes, thus allowing for individual core savings to be maximized. 

5.5 Our Contribution 

In this dissertation, we have developed a prototype of a new hardware-

controlled power management algorithm called SmartBIPS, for multi-core 

processors with shared global resources such as hierarchical memory. 



59 

 

 

SmartBIPS is a DVFS based GPMU algorithm that aims to achieve low power 

under throughput constraints. Unlike existing hardware-controlled power 

management algorithms, SmartBIPS uses real run-time data based on the 

operating power and performance history of the task set on the chip, and 

dynamically selects the operating power modes of the different cores. The impact 

of the chip level shared resources (like shared memory bottlenecks) on 

computation times and throughputs is captured in history tables for the different 

cores, and these data are used by SmartBIPS to predict the throughputs of the 

cores under new DVFS levels that the algorithm may assign to the cores for 

power optimal operation. Cores which execute memory bound tasks, or are 

otherwise in stall modes for considerable times, are dynamically slowed down to 

save power without impacting the throughput, whereas cores with high 

computation throughputs are operated at high voltage (and hence, frequency) 

levels. This ensures that cores which have high throughput operate at high power 

and performance points, and power reduction is mostly carried out for low 

performance tasks on other cores. In order to study the relative merits of our 

algorithm with respect to similar existing ones, we have implemented the chip-

wide DVFS and MaxBIPS [68] algorithms as well. Our experimental setup 

includes a SPARCV9 based cycle-accurate chip multi-threading multi-core 

simulation platform, CASPER [69], and a suite of Network Packet Processing 

benchmarks called Embedded Network Processing (ENePBench) that we have 

developed (discussed in Chapter 3). Our results show that on average, 

SmartBIPS achieves a 41.3% improvement in power savings compared to 
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MaxBIPs, and a 19.8% improvement in throughput per unit power. This analysis is 

obtained by running network packet processing benchmarks on CASPER. The 

throughput improvement of SmartBIPS with respect to chip-wide DVFS is 16.7% 

at a cost of 1.2 times higher power dissipation. MaxBIPS achieves a 61% 

throughput improvement at a cost of 2.1 times higher power with respect to chip-

wide DVFS. 

5.6 Power Management Unit Architecture 

For multi-core processors, the global power manager monitors activities in 

all the cores and take proper voltage-frequency mode-setting decisions with the 

target of enforcing a chip-level performance budget at the minimal power 

dissipation point. Figure 5-3 shows our proposed hierarchical power management 

architecture at the local intra-core and global inter-core levels. Any component or 

an entire core that can either be clock gated or power gated or voltage-frequency 

scaled, is a power saving candidate (PSC). Above the dashed line, the local 

power management unit (LPMU) operates inside a core, observes the content of 

the power status registers (PSRs) which are associated with different PSCs, 

executes a power saving algorithm based only on clock-gating and power-gating, 

and modifies the value in the corresponding power control registers (PCRs) to 

activate or deactivate power saving. 
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Figure 5-3: Architectural overview of autonomous hardware power saving 
scheme 

The PSRs inside the cores are updated by the trap logic and the decoder, 

which signal the impending activation of the power saving candidate when certain 

interrupts have to be serviced or certain instructions are decoded. Similarly, the 

power saving candidates themselves can update their PSRs to signal the 

impending power saving due to prolonged inactivity (idle or blocked status) which 

is better observed locally inside a core. The LPMU algorithm that we have 

implemented is based on delay monitoring; specific PSCs have specific delay 

thresholds for clock-gating and power-gating, and after the PSCs have been idle 

for longer than these thresholds, power saving is either activated by clock-gating 

or power-gating. The clock-gating threshold is set to 1 clock cycle, while power-

gating thresholds are longer and specific to the PSC. The PCR contents are read 

by the on-chip analog voltage and clock regulators which use that data to 

implement power-gating and clock-gating on the power saving candidates.  



62 

 

 

Below the dashed line and outside the cores, is the chip level GPMU which 

makes intelligent DVFS based power management decisions about the cores. 

The GPMU interacts with the cores through core status registers (CSRs) and core 

control registers (CCRs). We have used the above LPMU scheme for all three 

global power management algorithms discussed in this dissertation. Figure 5-4 

shows details of the GPMUs interactions (CR and SR denote control and status 

registers respectively). 

 

Figure 5-4: Interactions of Global Power Management Unit 

5.7 The Experimental Setup 

In order to evaluate the efficacies of SmartBIPS, MaxBIPS and chip-wide 

DVFS algorithms, we use CASPER [69]. For these experiments, we have 

modeled the architectural parameters to include 4 cores with a single hardware 

thread per core (virtual processor), a register file size of 160 registers, instruction 

translation lookaside buffer (TLB) size of 128, cache-size and coherence 
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protocols, L1 data cache of size 8KB and instruction caches of size 16KB, and 

instruction queue size of 1. The shared memory subsystem is configured as a 

shared L2 cache of size 1GB with 4 banks. The interconnection network is a 

crossbar. The processor architecture is homogeneous many-core architecture. 

The micro-architecture of each core is same as described in Chapter 4, containing 

IFU, BRU, EXU and LSU, L1 I/D$, LMQ, SB and I/D TLB and so on. 

We use the ENePBench application suite used as the benchmark 

application in our experiment. 

5.8 Existing Global Power Management Policies 

Two existing hardware-controlled global power management policies – 

chip-wide DVFS and MaxBIPS are implemented and the results are compared 

with those of our novel SmartBIPS algorithm. Note that all these algorithms 

continuously re-evaluate the voltage-frequency operating levels of the different 

cores, once every evaluation cycle. If not explicitly stated, one evaluation cycle 

corresponds to 1024 processor clock cycles in our simulations. 

The DVFS based GPMU algorithms rely on the assumption that when a 

given core switches from power mode A (voltage_A, frequency_A) in time interval 

N to power mode B (voltage_B, frequency_B) in time interval N+1, the power and 

throughput in time interval N+1 can be predicted using Equation 5-3 shown in 

Table 5-1. Note that the system frequency needs to scale along with the voltage 

to ensure that the operating frequency meets the timing constraints of the circuit 

whose delay changes linearly with the operating voltage [76]. This assumes that 

the workload characteristics do not change from one time interval to next one, and 



64 

 

 

there are no shared resource dependencies between tasks and cores. Table 5-1 

explains the dependencies of power and throughput on the voltage and frequency 

levels of the cores. 

Table 5-1: Relationship of power and throughput in time interval N and N+1 

Time Interval  N N+1 

Mode (v, f) 
(v’, f’) 

f’ = f (v’/v) 

Throughput T T’ = T*(f’/f)     (5-2) 

Dynamic Power P P’ = P*(v’/v)2*(f’/f)   (5-3) 

Our power modes are defined as follows: VF_mode1 (1.2V, 2GHz), 

VF_mode2 (1.0V, 1GHz), and VF_mode3 (0.8V, 0.5GHz). These voltage-

frequency pairs have been verified using the experimental setup. Note that 

performance predictions of the existing GPMU algorithms to be discussed in this 

section do not consider the bottlenecks caused by shared memory access 

between cores. 

5.8.1 Chip-wide DVFS 

Chip-wide DVFS is a global power management scheme that monitors the 

entire chip power consumption and performance, and enforces a uniform 

voltage-frequency operating point for all cores to minimize power dissipation 

under a chip-wide throughput budget. This approach does not need any 

individual information about the power and performance of each core, and simply 

relies on entire chip throughput measurements to make power mode switching 
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decisions. As a result, one high performance core can push the entire chip over 

throughput budget, thereby triggering DVFS to occur across all cores on chip. A 

scaling down of voltage and frequency in cores which are not exceeding their 

throughput budgets will further reduce their throughputs. This may be 

undesirable, especially if these cores are running threads from different 

applications which run at different performance levels. 

Table 5-2: Pseudo Code of Chip-wide DVFS (this algorithm continuously 
executes once every evaluation cycle) 

A. Get_current_core_dvfs_level; 

B. For all Coresi { 

a. Get power dissipated by Corei in the last clock cycle; 

b. Get effective throughput of Corei in the last clock cycle; 

c. Sum up cumulative power dissipated by all cores in the last clock 

cycle; 

d. Sum up cumulative throughput of all cores in the last clock cycle; 

} 

 

C. If (Overall effective throughput of all cores > throughput budget) { 

a. if (current_core_dvfs_level > lowest_dvfs_level) { 

i. Lower down current_core_dvfs_level to next level; 

           } 

} 
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D. For all Coresi { 

a. Update every core’s new dvfs level; 

} 

 

5.8.2 MaxBIPS 

The MaxBIPS algorithm [68] monitors the power consumption and 

performance at the global level and collects information about the entire chip 

throughput, as well as the throughput contributions of individual cores. The power 

mode for each core is then selected so as to minimize the power dissipation of the 

entire chip, while maximizing the system performance subject to the given 

throughput budget. The algorithm evaluates all the possible combinations of 

power modes for each core, and then chooses the one that minimizes the overall 

power dissipation and maximizes the overall system performance while meeting 

the throughput budget by examining all voltage/frequency pairs for each core. The 

cores are permitted to operate at different voltages and frequencies in MaxBIPS 

algorithm. A linear scaling of frequency with voltage is assumed in MaxBIPS [68].  

Based on Table 5-1, the MaxBIPS algorithm predicts the estimated power 

and throughput for all possible combinations of cores and voltage/frequency 

modes (vf_mode) or scaling factors and selects the (core_i, vf_mode_j) that 

minimizes power dissipation, but maximizes throughput while meeting the 

required throughput budget. 

Table 5-3: Pseudo code of MaxBIPS (this algorithm continuously executes once 
every evaluation cycle) 
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A. Define_power_mode_combinations; 

B. Initialize Min_power; 

C. Initialize Max_throughput; 

D. Initialize Selected_combination; 

--voltage frequency (power mode) combinations for different cores 

E. For all Coresi { 

a. dvfsLevel = Get current DVFS level of Corei; 

b. Get power dissipated by Corei in the last clock cycle;  

c. Get effective throughput of Corei in the last clock cycle; 

 } 

F. For all Power_Mode_Combinationsj { 

A. For all Coresk { 

a. Calculate predicted throughput value of core k in combination_j; 

--Using power_mode_combination, Equation (5-2) 

b. Calculate predicted power value of core k in combination_j; 

--Using power_mode_combinations, Equation (5-2) 

c.  Accumulate predicted throughputs of all cores in combination_j; 

d.  Accumulate predicted power dissipations of all cores in 

combination_j; 

  }  

B. If (overall_predicted_throughput of all cores <= throughput budget) { 

a. If (Max_throughput  <  overall_predicted_throughput of all cores) { 

i. Max_throughput = overall_predicted_throughput of all cores; 
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ii. Min_power = overall_predicted_power of all cores; 

iii. Selected_combination = j; 

               } 

b. If (Max_throughput  ==  overall_predicted_throughput of all cores) { 

iv. Max_throughput = overall_predicted_throughput of all cores; 

v. If (Min_power >= overall_predicted_power of all cores) 

vi. Min_power = overall_predicted_power of all cores; 

vii. Selected_combination = j; 

            } 

   }  

} 

E. For all Coresi { 

  Update every core’s new dvfs level with values in Selected_combination; 

} 

 

5.8.3 SmartBIPS Power Management Scheme 

Most event-driven systems are non-deterministic, and hence power 

management decisions have to be made based on predictions of future 

workloads. A promising concept in power management predictive techniques for 

processors is to explore the past history of performance in order to make reliable 

predictions about future behavior. 

In our proposed SmartBIPS method, the global power management unit 

periodically monitors the power and throughput of each core in every time interval 
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(a pre-set number of clock cycles, typically 1024) and predicts the optimal 

operating modes of the cores for the next time interval based on recent history of 

the system behavior and performance. SmartBIPS captures real run-time data 

based on the operating power and performance history of the task set on different 

cores on the chip in history tables, and uses it to make dynamic decisions about 

selecting operating power modes of the cores in the near future. There exists 

separate power and throughput entries in these history tables for every core and 

for every power (voltage-frequency) mode the core operated in. The user pre-

defines a certain number of time intervals over which the performance and power 

numbers at different DVFS levels are averaged and stored in the history tables. 

The impact of the chip level shared resources (like shared memory bottlenecks) 

on computation times, throughputs and power dissipation on the different cores is 

automatically captured and encoded in the history tables. Hence, cores which 

execute memory bound tasks, or are otherwise in stall modes for considerable 

times, are dynamically slowed down to save power without impacting the 

throughput, whereas cores with high computation throughputs are operated at 

high voltage (and hence, frequency) levels. This ensures that cores which have 

high throughput operate at high power and performance points, and power 

reduction is mostly carried out for low performance tasks on other cores.  

Different depths of history tables and different history data sampling 

methods are also implemented in order to observe the sensitivity of the results 

with different parameters. For 4096 clock cycles in one time interval (history table 

depth of 4096), results show that there is very little difference for power and 
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throughput of SmartBIPS with respect to 1024 clock cycles in every time interval. 

Moreover, sampling the parameters of interest every 128 clock cycles, and 

random sampling, within one time interval have been implemented as well. 

Results show that sampling every 128 clock cycles does not improve power 

saving and throughput per unit power of SmartBIPS compared to MaxBIPS; 

random sampling improves power saving by about 10% on average, but no 

improvement in throughput per unit power of SmartBIPS is achieved with respect 

to MaxBIPS. Sampling every clock cycle improves both power saving and 

throughput per unit power compared to chip-wide DVFS and MaxBIPS. 

A scaling factor α (with values between 1.0 and 1.5) is empirically defined 

to control throughput reduction in SmartBIPS. Only if the history table throughput 

data is α times greater than MaxBIPS predicted throughput at a certain power 

level, a scaling of lower voltage/frequency level is allowed in SmartBIPS; this 

achieves a high throughput per unit power while saving power. Table 4 shows the 

average power, average throughput, and throughput per unit power of SmartBIPS 

with different values of α at different power levels. Note that throughput is typically 

measured in terms of number of instructions per cycle (IPC). However, because 

of DVFS the clock period for a core can potentially change in every evaluation 

cycle. Hence, we use the metric of instructions per nanosecond (IPnS) to capture 

throughput. Also, α = 1 for levels are not explicitly mentioned in Table 5-4. 
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Table 5-4: Average power, average throughput, T/P with different α values 

at different power levels in SmartBIPS 

10000 clk cycles, time interval is 1024, 

90% T_budget 

Average 

power in 

one time 

interval 

(W) 

Average 

throughput 

in one time 

interval 

(IPnS) 

Throughput 

per unit 

power 

 

With α 1.25 at VF_mode3 0.205 0.276 1.345 

With α 1.2 at VF_mode3 0.205 0.276 1.345 

With α 1.1 at VF_mode3 0.205 0.276 1.345 

With α 1.25 at VF_mode2 and VF_mode3 0.208 0.285 1.370 

With α 1.25 at VF_mode2 and with α 1 at 

VF_mode3 

0.123 0.21 1.68 

MaxBIPS 0.209 0.295 1.411 

 

From Table 5-1 we notice that when α is 1 at level 3 and α is 1.25 at level 

2, SmartBIPS can save power, keep a relative high throughput and give a high 

throughput per unit power with respect to those of MaxBIPS. 

Table 5-5: Pseudo-code of SmartBIPS (this algorithm continuously executes 
once every evaluation cycle) 

A. Define_power_mode_combinations;--like Equation (5-3) 

B. Initialize Min_power; 

C. Initialize Max_throughput; 
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D. Initialize Selected_combination;  

--voltage frequency (power mode) combinations for different cores 

E. For all Coresi  { 

a. dvfsLevel = Get current DVFS level of Corei; 

b. Get power dissipated by Corei in the last time interval; 

c. Get effective throughput of Corei in the last time interval; 

} 

F. For all Power_Mode_Combinationsj { 

a. For all Coresk { 

A. Calculate predicted throughput of core i in combination_j; 

--Using power_mode_combinations, Equation (5-3) 

B. Calculate predicted power dissipation of core i in 

combination_j; 

--Using power_mode_combinations, Equation (5-3) 

C. Accumulate predicted throughput values of all cores; 

D. Accumulate predicted power values of all cores; 

}  

b. If (overall_predicted_throughput of all cores <= throughput budget) { 

A. If (Max_throughput  <  overall_predicted_throughput of all 

cores) { 

i. Max_throughput = overall_predicted_throughput of all 

cores; 

ii. Min_power = overall_predicted_power of all cores; 
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iii. Selected_combination = j; 

} 

B. If (Max_throughput  =  overall_predicted_throughput of all 

cores) { 

i. Max_throughput = overall_predicted_throughput of all 

cores; 

ii. If (Min_power >= overall_predicted_power of all cores) 

{ 

a. Min_power = overall_predicted_power of all cores; 

b. Selected_combination = j; 

} 

} 

} -- upto here we are following MaxBIPS 

--start of code unique to SmartBIPS 

c. For all Coresi { 

A. For all dvfs_levelj { 

B. Check History Table entries for throughput at dvfs_level j; 

C. Get average_history_throughput of core i at dvfs_level j; 

} 

} 

d. For all Coresi { 

A. Initialize predicted dvfs level of MaxBIPS to core_i; 

B. If (core_i_next_dvfs_level == lowest_dvfs_level) { 
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i. Go to next core; 

} 

C. Else if (average_history_throughput of core i at predicted 

dvfs_level > predicted throughput value of core i by MaxBIPS 

*factor_alpha) { -- factor_alpha is an empirical paramter 

between 1.0 and 1.5 

i. Lower down current predicted dvfs_level of core i to next 

level; 

ii. Get average_history_power of core i at predicted dvfs_level; 

} 

D. Else keep current predicted dvfs_level of core i; 

} 

e. For all Coresi { 

A. Update every core’s new dvfs level; 

} 

} 

 

In the SmartBIPS algorithm, the actual power dissipation and throughput 

for the chosen DVFS level combination for the different cores (as stored in the 

history table) are found using the processor simulator CASPER (discussed in 

Chapter 4), which executes instructions between every pair of consecutive time 

interval boundaries when the global power manager re-evaluates the DVFS levels 

of the different cores. 
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5.9 Experimental Results 

In this section we show throughput and power comparisons of the three 

power management algorithms, followed by a similar comparison with a 

modification of the chip-wide DVFS algorithm – the chip-wide DVFS throughput is 

lower-bounded to of 60% of its peak throughput. We conclude that lower-

bounding the throughput of chip-wide DVFS effectively lowers its throughput per 

unit power metric below those obtained by SmartBIPS and MaxBIPS. Finally we 

compare the average power, average throughput, and average throughput per 

unit power, average energy and average latency of three discussed policies. 

In Figure 5-5 and Figure 5-6, we show the power and throughput data 

respectively (with a throughput budget constrained to at 90% of peak throughput 

with any voltage and frequency scaling) for our three discussed policies for packet 

type 3 (TYPE3) which is a typical representative of all other packet types. Values 

on the X-axis correspond to the number of evaluation cycles, where one 

evaluation cycle is the time period between consecutive runs of the power 

management algorithms. Where not explicitly stated, one evaluation cycle 

corresponds to 1024 processor clock cycles in our simulations. In Figure 5-5, the 

X-axis represents number of clock cycles and the Y-axis represents power (W). In 

Figure 5-6, the Y-axis represents throughput (in instructions per nanosecond - 

IPnS). 
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Figure 5-5: Power dissipation data for three global power management policies 
for packet type TYPE3 with throughput budget constrained to 90% 

 

Figure 5-6: Throughput data for three global power management policies for 
packet type TYPE3 with throughput budget constrained to 90% 

As Figure 5-5 shows, the power consumption of MaxBIPS is much higher 

than those of SmartBIPS and chip-wide DVFS (the latter being the lowest in 

power dissipation among the three methods). However the throughput of 
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MaxBIPS is also higher than those of the other two policies. SmartBIPS has lower 

throughput than MaxBIPS but higher than that of chip-wide DVFS.  

 

Figure 5-7: Throughput per unit power for all packet types for the 3 methods 

Figure 5-7 depicts the throughput per unit power (T/P) data for the three 

methods. While chip-wide DVFS has the highest T/P values for the different 

packet types, the SmartBIPS T/P is greater than that of MaxBIPS and is very 

close to the T/P of chip-wide DVFS. Note that high T/P value for chip-wide DVFS 

arises from the fact that power dissipation in this scheme is substantially lower 

than other schemes, and not because the throughput is high. When implementing 

power management by chip-wide DVFS, any increase in the throughput of a 

single core over a target threshold triggers chip-wide operating voltage (and 

hence, frequency) reductions in all cores, to save power. Hence, once the overall 

throughput exceeds the budget, all the cores have to adjust their power modes to 
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a lower level. While this method reduces the chip-wide power dissipation 

substantially, it also leads to excessive performance reductions in all cores as 

shown in Figure 5-6. 

A modification of the chip-wide DVFS algorithm required for achieving high 

performance is to assign a lower bound of throughput. Figure 5-8 and Figure 5-9 

show the power and throughput data respectively (with a lower bound of 

throughput budget constrained to at 60% of peak throughput with all voltage-

frequency levels) for chip-wide DVFS for packet type 3 (TYPE3). The power 

consumption and throughput of chip-wide DVFS are higher than those of 

MaxBIPS and SmartBIPS due to the lower bound of throughput which does not 

allow chip-wide DVFS to scale all the cores to lower voltage-frequency levels in 

order to guarantee the system performance. However the throughput per unit 

power of chip-wide DVFS is lower than those of the other two policies as Figure 

5-10 demonstrates. SmartBIPS has the highest throughput per unit power 

compared to MaxBIPS and chip-wide DVFS. Table 5-6 shows the power, 

throughput, and throughput per unit power of chip-wide DVFS with and without 

lower bound on throughput. 
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Figure 5-8: Power dissipation for three global power management policies (chip-
wide DVFS throughput budget constrained to 60% of peak throughput) 

 

Figure 5-9: Throughput observed in three global power management policies 

(chip-wide DVFS throughput budget constrained to at 60% of peak throughput) 
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Figure 5-10: Throughput per unit power data (chip-wide DVFS with lower bound 
throughput) 

 

Table 5-6: Power, throughput, throughput per unit power of chip-wide DVFS with 
and without lower bound on throughput 

 With lower bound 60% of peak T  Without lower bound of 

throughput 

Power in 

one time 

interval 

(W) 

Throughput 

in one time 

interval 

(IPnS) 

Throughpu

t per unit 

power 

(IPnS/W) 

Power in 

one time 

interval 

(W) 

Throughput 

in one time 

interval 

(IPnS) 

Throughpu

t per unit 

power 

(IPnS/W) 

chip-wide 

DVFS 

0.252 0.332 1.318 0.105 0.184 1.752 
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In summary, experimental data show that when chip-wide DVFS is not 

enabled with lower bound of throughput, MaxBIPS has the highest throughput. 

However, SmartBIPS has a better throughput per unit power and saves more 

power than MaxBIPS. Although chip-wide DVFS gives the highest throughput per 

unit power, its throughput, on average, is lower than that of SmartBIPs, which can 

be a constraining factor in high throughput systems that require throughputs close 

to the budget. When chip-wide DVFS is lower-bounded to 60% of peak 

throughput achievable by chip-wide DVFS, it produces the highest throughput and 

consumes the highest power among all the three methods. This yields the lowest 

throughput per unit power for chip-wide DVFS, and SmartBIPS saves more power 

and achieves the highest throughput per unit power compared to the other two 

policies. Table 5-7 shows the relevant experimental results of three policies with 

different packet types. 

Table 5-7: Power, throughput, throughput per unit power of three policies for 
different packet types 

 

chip -wide DVFS 

without 

lower bound 

MaxBIPS SmartBIPS 

P (W) 
T 

(IPnS) 

T/P 

(IPnS/W) 
P (W) 

T 

(IPnS) 

T/P 

(IPnS/W) 
P (W) 

T 

(IPnS) 

T/P 

(IPnS/W) 

TYPE0 3.72 6.61 1.78 7.53 10.62 1.41 4.24 7.28 1.72 

TYPE1 3.72 6.65 1.79 7.54 10.65 1.41 4.24 7.31 1.72 

TYPE2 3.93 6.65 1.69 7.83 10.65 1.36 5.47 8.32 1.52 
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TYPE3 3.72 6.64 1.78 7.54 10.64 1.41 4.24 7.30 1.72 

TYPE4 3.72 6.64 1.78 7.54 10.63 1.41 4.24 7.30 1.72 

TYPE5 3.72 6.63 1.78 7.53 10.64 1.41 4.24 7.29 1.72 

Average 3.75 6.64 1.76 7.58 10.64 1.40 4.45 7.47 1.68 

 

Table 5-8 compares the power savings and T/P gains of SmartBIPS 

compared to MaxBIPS. Results show that on average, SmartBIPS achieves a 

41.3% improvement in power savings compared to MaxBIPS, and a 19.8% 

improvement in throughput per unit power with respect to MaxBIPS. 

Table 5-8: Power saving and throughput per unit power improvement of 
SmartBIPS with respect to MaxBIPS 

Packet Types Power saving 
Throughput per unit 

power 

TYPE 0 43.72% 21.8% 

TYPE 1 43.72% 22.0% 

TYPE 2 30.2% 11.8% 

TYPE 3 43.71% 21.9% 

TYPE 4 43.72% 21.9% 

TYPE 5 43.72% 21.9% 

Average  41.3% 19.8% 

 

Table 5-9 shows the average power, average throughput, average 

throughput per unit power, average energy and average latency (execution time) 



83 

 

 

of three discussed policies while running about 7300 instructions for all the 

packet types (averaging is done over all packet types). Results show that on 

average, chip-wide DVFS consumes 17.7% more energy than MaxBIPS and has 

2.34 times its latency. SmartBIPS consumes 8.2% more energy than MaxBIPS 

and takes 1.85 times longer execution time. However, SmartBIPS achieves a 

41.3% improvement in power savings and a 19.8% improvement in throughput 

per unit power with respect to MaxBIPS. Hence SmartBIPS is an ideal candidate 

for use in applications with relatively high throughput requirements than what 

chip-wide DVFS can provide, and with cooling capacity limits lower than what 

MaxBIPS demands. 

Table 5-9: Average power, average throughput, average throughput per unit 
power, average energy, and average execution time of three discussed policies 

 P_avera

ge (W) 

T_avera

ge 

(IPnS) 

T/P_aver

age 

(IPnS/W) 

Energy_avera

ge (nJ) 

Average Latency  

(nS) 

chip-wide 

without lower 

bound 

3.75 6.64 1.77 3.371 34816 

MaxBIPS 7.58 10.64 1.40 2.864 14848 

SmartBIPS 4.44 7.47 1.68 3.100 27477 

 

5.10 Conclusion 

This chapter of this dissertation presents SmartBIPS, a new algorithm for 

hardware controlled dynamic power management in embedded multi-core 
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processors executing real-time constrained high performance applications. 

SmartBIPS minimizes power dissipation while maximizing the chip level 

performance, subject to throughput constraints. The proposed SmartBIPS 

algorithm is based on chip-level monitoring, control and dynamic management of 

power for multiple cores. The global power management unit (GPMU) is aware of 

the activities of all the cores in a system, captures the throughput and power 

dissipation history of every core in shifting temporal windows, and makes 

intelligent prediction for power management based on recent workload power-

performance history. Performance bottlenecks due to inter-core sharing of global 

resources, including on-chip interconnection networks and higher level cache 

memories, are captured in the history tables used by the GPMU. 

Results show that on average, SmartBIPS achieves a 41.3% improvement 

in power savings and a 19.8% improvement in throughput per unit power with 

respect to MaxBIPS. This analysis is obtained using CASPER [69], a cycle-

accurate simulation platform for multi-core processors, using a network packet 

processing benchmark that we have developed. The throughput improvement of 

SmartBIPS with respect to chip-wide DVFS is 16.7% at a cost of 1.2 times higher 

power dissipation. MaxBIPS achieves a 61% throughput improvement at a cost 

of 2.1 times higher power with respect to chip-wide DVFS. 

These results encourage us to believe in the potential applicability of 

hardware controlled dynamic power management for embedded multi-core 

processors with global monitoring and control. To the best of our knowledge, the 

SmartBIPS algorithm presented in this dissertation is the first to consider shared 
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resource constraints for dynamic power management. In the future we will study 

other hardware-controlled power management strategies. In addition we plan to 

design the hardware circuits which implement the different hardware-controlled 

power management schemes, and evaluate the hardware area, power and 

performance trade-offs. 

 

 

 



CHAPTER 6:  MODELING OF THROUGHPUT AND POWER DISSIPATION OF 
CORES 

 

 

6.1 Theory of Statistical Curve Fitting 

The generalized linear regression models of n-variables are shown in the 

Equation 6-1 and Equation 6-2 respectively: 
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In our case, the different dependent variable (denoted by Y) is CPI per 

thread, CPI per core or total power dissipation of cores. The micro-architectural 

parameters listed in Table 6-1 constitute the predictor variables [S, [C, … , [/. Our 

objective is to perform regression using our training dataset and then derive the 

correlation coefficients �Z, �S, … , �/ in Equation 6-1 and Equation 6-2 such that we 

can achieve <10% error of estimates. 

6.2 Micro-architectural Parameters used in statistical curve-fitting 

Table 6-1 shows the set of micro-architectural parameters that we tune to 

derive optimized designs of cores. Throughput and power dissipation of a core 

primarily depends on  �� number of threads, the L1 instruction and data cache 
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size, associativity and line sizes and the miss queues. Each thread has its own 

register file and hence contributes significantly to power dissipation of a core. 

Also, as �� is scaled, throughput per thread decreases as each thread needs to 

wait as many cycles before its next instruction is issued to the D-stage. However, 

throughput per core might increase. Our processor model follows a write-through 

scheme for the store instructions. Moreover, stores are serialized following the 

Total Store Order (TSO) model explained in [56]. The TSO model is implemented 

through the store buffer which serializes all the stores of a hardware thread. Off-

core L2 traffic hence consists of stores, instruction and data cache misses. 

Instruction misses are detected in I$ in the F-stage of the pipeline and then 

enqueued into the MIL. Duplicate instruction misses are blocked in the core and 

never forwarded to L2. Data misses are detected in D$ in the M-stage in load 

store unit and are enqueued in LMQ. Duplicate data misses are also blocked in 

the core. Since outgoing packets from all the cores are first enqueued in the L2 

queues and then arbitrated into the processing controller of the L2 cache, the 

total L2 cache access time depends on the overall L2 traffic. In the meantime, the 

core has to wait and keep asserting the interconnect signals to check whether 

the required L2 reply has arrived. Hence, the throughput and power dissipation of 

a core depends on L2 queue size and the L2 access time which are also 

included in the core optimization process. Address Space Identifier (ASI) register 

load, store and atomic instructions are all processed through the ASI queue. 

Hence, ASI queue is also an important micro-architectural feature affecting 

throughput and power dissipation of a core. 
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Table 6-1: Micro-architectural Parameters of a Multi-threading Core 

Name Range Increment  Description  

1. �� 1 to 16 Power of 2 Threads per core 

2. Load Miss Queue 

(LMQ) Size Per 

Thread 

1 to 16 Power of 2 Used to enqueue all 

the D$ misses 

3. SB Size Per Thread 1 to 16 Power of 2 Used to serialize 

the store 

instructions 

following the TSO 

model [56] 

4. L1 ICache 

Associativity 

2 to 8 Power of 2 Set-associativity of 

I$ 

5. L1 ICache Line Size 8 to 64 Power of 2 Block size of I$ 

6. L1 ICache Size 1KB to 

64KB 

Power of 2 Total I$ size 

7. L1 DCache 

Associativity 

2 to 8 Power of 2 Set-associativity of 

D$ 

8. L1 DCache Line Size 8 to 64 Power of 2 Block size of D$ 

9. L1 DCache Size 1KB to 

64KB 

Power of 2 Total I$ size 

10. MIL Size Per Thread 1 to 16 Power of 2 Used to enqueue 

the I$ misses 



89 

 

 

11. ASI Queue Size Per 

Thread 

1 to 16 Power of 2 Used to serialize all 

Address Space 

Identifier register 

reads/writes 

12. L2 Access Time 25 to 1000 Incremented by 

1 

Hit latency of L2 

cache  

13. L2 Input Queue Size 

per Core 

4 to 16 Power of 2 Used to enqueue all 

the core-to-L2 

ifill/load/store 

packets 

6.3 Regression Models and Error Analysis 

Although there is no direct way of knowing the best length of training 

dataset, the rule of thumb in case of both linear and non-linear multiple 

regressions is to get at least 10 times as many training cases as input variables. 

These way inherent problems such as over-fitting or under-fitting can be avoided 

in multiple non-linear regressions. However, with noise free targets, twice as 

many training cases as input variables would be more than adequate. In our case 

for each packet type, we have collected 100 sets of data which contains CPI per 

thread, CPI per core and power dissipation of the cores. 

Note that CPI per thread is modeled to accurately predict the processing 

time of a packet which is mapped to a hardware thread. This packet processing 

time is used during design space exploration to evaluate whether all packets in 

the system are meeting the real time constraints. After careful consideration of 



90 

 

 

the CPI and power dissipation for each packet types, we found that CPI per 

thread and power dissipation of packet types TYPE0, TYPE1 and TYPE2 are 

linearly related to the micro-architectural parameters of the multi-threaded core 

as shown by Equation 6-3. 

Y � �Z ,  �S � a�
��
� , �C � 6bF , �G � cVP1d) ,  �e � cV*1/)%1d) ,  �f � �>@F , �g

� @VP1d) ,  �h � @Vi1/)%1d) ,  �SZ � 62j22)%%�10) ,  �SS � 62Kklmn       �6 � 3� 

The small number of store instructions (<1%) in these compute bound 

packets do not have a major impact on performance or power dissipation and 

hence store buffer size does not appear in the statistical model. Similarly, due to 

low number of memory accesses in these packet types, higher order non-linear 

terms comprising of L2 cache access time and others do not appear in the model 

either. 

The values of the correlation coefficients, corresponding variables and 

model parameters are shown in Table 6-2, Table 6-3 and Table 6-4 for packet 

types TYPE0, TYPE1 and TYPE2 respectively. Note that R is the multiple 

correlations co-efficient which are the linear correlation between the observed 

and model predicted values of dependent variable. Large value indicates strong 

relationship. R2 is the coefficient of determination which tells the percentage of 

time the variation is explained by the model. 

Table 6-2: Linear Regression Correlation Coefficients and Model Parameters for 
TYPE0 

Variable  Correlation  Power CPI- CPI-per-
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Coefficients  (mW) per-

strand 

core  

Constant �Z 1.437 -9.176 5.744 

Threads �S 0.086 2.658 -0.277 

LMQ �C -0.075 0.298 0.244 

DC_Size �G -0.011 0.123 -0.11 

DC_Linesize �e 0.019 -0.069 -0.055 

ASIQ �f -0.092 -0.275 -0.104 

IC_Size �g 0.012 0.084 -0.009 

IC_Linesize �h 0.001 -0.012 0.000 

L2_Access �SZ 0.003 0.438 0.074 

L2_Q �SS -1.57 0.432 -0.028 

     

Model Summary  

 Parameters     

 R 0.816 0.914 0.805 

 R2 0.665 0.836 0.649 

 Std. Err. Of 

Estimates 
0.354 7.141 1.537 

 

Table 6-3: Linear Regression Correlation Coefficients and Model Parameters for 
TYPE1 

Variable  Correlation  Power CPI-per- CPI-per-
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Coefficients  (mW) strand  core  

Constant �Z 0.526 -10.014 6.015 

Threads �S 0.021 3.656 -0.507 

LMQ �C -0.032 0.404 0.714 

DC_Size �G -0.006 0.070 0.010 

DC_Linesize �e 0.004 -0.013 -0.109 

ASIQ �f -0.057 -3.826 0.372 

IC_Size �g 0.004 1.234 -0.058 

IC_Linesize �h -0.002 0.162 -0.018 

L2_Access �SZ 0.000 0.642 0.162 

L2_Q �SS -0.035 -2.395 0.231 

     

Model Summary  

 Parameters     

 R 0.796 0.907 0.839 

 R2 0.633 0.822 0.704 

 Std. Err. Of 

Estimates 
0.097 10.407 2.678 

 

Table 6-4: Linear Regression Correlation Coefficients and Model Parameters for 
TYPE2 

Variable  Correlation  Power CPI-per- CPI-per-
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Coefficients  (mW) strand  core  

Constant �Z 0.270 -4.327 7.351 

Threads �S 0.016 1.684 -0.215 

LMQ �C -0.013 0.292 0.063 

DC_Size �G -0.002 0.069 -0.032 

DC_Linesize �e 0.003 -0.027 -0.012 

ASIQ �f -0.005 0.480 -0.751 

IC_Size �g 8.61e-5 -0.046 0.086 

IC_Linesize �h 4.053e-5 -0.030 -0.007 

L2_Access �SZ 0.001 0.194 0.018 

L2_Q �SS -0.026 0.445 -0.440 

     

Model Summary  

 Parameters     

 R 0.792 0.964 0.751 

 R2 0.628 0.929 0.564 

 Std. Err. Of 

Estimates 
0.075 2.916 1.504 
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Figure 6-1: Error distribution of CPI-per-thread of packet types TYPE0, TYPE1 
and TYPE2 

The model in Equation 6-3 is validated using an error set comprising of 15 

randomly chosen micro-architectural configurations for each of the packet types 

TYPE0, TYPE1 and TYPE2. The configurations in the error set were simulated in 

CASPER. The error distribution of CPI-per-thread as shown in Figure 6-1 is 

calculated by comparing the measured CPI-per-thread (CASPER) against 

predicted CPI-per-thread given by Equation 6-3. As the figure suggests, the error 

of the model was within the required limit of 10%. Also, the standard confidence 

of interval for each of the coefficients c0 to c11 was measured and was observed 

to never cross zero value which suggests that all the coefficients were significant. 

Similarly, the error distribution of the power dissipation model of the cores for 

packet types TYPE0, TYPE1 and TYPE2 is shown in Figure 6-2. In this case also 

we found that the error of our model was less than 10%. 
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Figure 6-2: Error distribution of dynamic power dissipation (mW) of the cores 
processing packet types TYPE0, TYPE1 and TYPE2 

Data bound packet types TYPE3 and TYPE4, on the other hand 

demonstrates a completely different behavior. In case of both TYPE3 and TYPE4 

packet types, using only single factor terms in the linear regression model for 

either CPI per thread or power dissipation resulted in a high 15% standard error 

of estimate. Hence we included the 2-factor, 3-factor and 4-factor terms in our 

model which minimized the error of estimates and finally produced the prediction 

model equation given by Equation 6-4: 
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Y �  A0 ,  A1 � a�
��
� ,  A2 � 6bF ,  A3 � >� ,  A4 � b@6 ,  A5 � 
�%1d) , A6
� 
�'%%:2 , A7 � 
�*1/)%1d) , A8 � �>@F ,  A9 � ��%1d) , A10 � ��'%%:2

, A11 � ��*1/)%1d) , A12 � 62'22)%% , A13 � 62K , A14 � a�
��
�

� 6bF ,  A15 � a�
��
� � >� ,  A16 � a�
��
� � b@6 ,  A17
� a�
��
� � �>@F ,  A18 � >� � 62'22)%% � 62K , A19 � 
�%1d)

� 
�'%%:2 � 
�*1/)%1d) � 6bF � 62'22)%% � 62K ,  A20 � ��%1d) � ��'%%:2

� ��*1/)%1d) � b@6 � 62'22)%% � 62_F                               �6 � 4� 

The correlation coefficients and model parameters of linear regression 

containing non-linear monomial are described in Table 6-5. 

Table 6-5: Non-linear Regression Correlation Coefficients 

Correla

tion 

Coeffici

ents 

TYPE8 TYPE9 

Power 

(mW) 

CPI-per-

strand 

CPI-per-

core 

Power 

(mW) 

CPI-per-

strand 

CPI-per-

core 

b0 -5.13 -2.48 6.59 8.64 8.31 -8.62 

b1 2.13 2.63 -1.59 -0.204e-6 1.328e-6 -0.442e-6 

b2 -0.062e-6  -4.225e-6 0.481e-6 -0.044e-6 -3.316e-6 0.448e-6 

b3 1.71 8.288e-1 -2.19 -2.87 -2.8 2.87 

b4 -5.12 -2.8 6.59 8.64 8.3 -8.62 

b5 -0.015e-6 -0.492e-6 0.069e-6 -0.013e-6 -0.665e-6 0.062e-6 

b6 -1.28 -6.21e-1 1.65 2.16 2.1 -2.15 

b7 0.028e-6 0.694e-6 -0.108e-6 0.026e-6 0.311e-6 -0.120e-6 
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b8 0.309e-6  -2.816e-6 -0.552e-6 0.308e-6 -0.794e-6 -0.395e-6 

b9 -0.008e-6 0.870e-6 -0.112e-6 -0.009e-6 1.002e-6 -0.103e-6 

b10 -1.28 -6.22e-1 1.65 2.16 2.1 -2.15 

b11 -0.011e-6 -0.049e-6 0.019e-6 -0.010e-6 -0.022e-6 -0.026e-6 

b12 -8.7e-2 1.37e4 8.99e4 9.3e4 2.1e6 -5.5e-2 

b13 3.42 1.66 -4.39 -5.76 -5.5 -5.75 

b14 0.001e-6 0.386e-6 -0.011e-6 0.000e-6 0.018e-6 -0.013e-6 

b15 0.034e-6 -0.025e-6 -0.105e-6 0.034e-6 0.271e-6 -0.089e-6 

b16 -2.13 -2.63 1.59 0.301e-6 1.828e-6 0.056e-6 

b17 -0.078e-6 -0.330e-6 0.235e-6 -0.077e-6 -0.438e-6 0.219e-6 

b18 5.43e-3 -856.05e-6 -5.6e-2 -580.87e-6 1.3e-2 3.41e-3 

b19 -3.86e-7 -1.37e-7 8.83e-7 -2.90e-7 2.1e-7 1.46e-7 

b20 2.75e-6 7.99e-5 -4.58e-6 2.46e-6 5.8e-7 -5.43e-7 

       

 

Figure 6-3 (a) and (b) shows the model error distribution for the CPI per 

thread and power dissipation in case of packet types TYPE3 and TYPE4. Similar 

to packet types TYPE0, TYPE1 and TYPE2, randomly chosen sets of 15 micro-

architectural configurations were used to compare measure and predicted values 

of CPI per thread and power dissipation in case of packet types TYPE3 and 

TYPE4 respectively. As evident from the figure, the prediction models could 

achieve less than 12% error. 
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Figure 6-3: (a) Error distribution of CPI-per-thread model for cores of packet 
types TYPE3 and TYPE4 and (b) Error distribution of power dissipation model for 
cores of packet types TYPE3 and TYPE4 
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CHAPTER 7:  EXPLORATION ALGORITHM 
 

 

Various sources of routing and packet processing data show that in a day 

maximum number of incoming packets in a router is pass-through real-time 

packets. Hence we assume that the five types of IP packets, discussed in Table 

3-2, arrive at the given distribution – among all the incoming packets per second, 

60% are TYPE0 packets, 25% are TYPE1 packets, 5% are TYPE2 packets, 5% 

are TYPE3 packets and 5% are TYPE4 packets. We believe that based on our 

observations this is a reasonable assumption. Moreover, our design flow can 

easily be tuned to consider other distributions of packet types. We also assume 

that the dynamic scheduler responsible for assigning the incoming packets to the 

respective customized different cores in the NeP is an ideal scheduler which is 

aware of the micro-architecture of the available cores in the system and is always 

able to satisfy schedulability of the system. Although scheduling can be a 

compute-intensive problem itself, exploring scheduling algorithms adds another 

complex dimension to our exploration problem and is out of the scope of this 

dissertation. 

To efficiently explore the large and complex design space, we take the 

divide and rule approach. The structural characteristics of the micro-architecture 

enable us to divide the design space into the core subsection and the memory 

subsection. These two subsections are connected via the interconnection 

network which is a network of crossbar switches. Figure 7-1 shows the steps 
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involved in our exploration algorithm. 

Step 1 (Regression Modeling):  Given that packets can be scheduled to the 

cores in a NeP, we first attempt to explore core micro-architectures according to 

packet types as discussed in Table 3-2. To achieve the above, first we use 

CASPER to collect training datasets sampling the core micro-architectural design 

( ) , , ,
i i i iT T h CT N N p N

 

Figure 7-1: Exploration Algorithm 

at uniform random intervals separately for each packet type. We then use 
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multiple non-linear regression [65] to derive statistical relations between the 

micro-architectural parameters described in Table 6-1 and cycles-per-instruction 

(CPI) of a thread, CPI of a core and total power dissipation of the core. Average 

power dissipation per clock cycle is calculated by dividing the total overall power 

dissipation of the core by the total number of simulated clock cycles. The steps 

involved, derived model parameters and model error analysis are described in 

Chapter 6. 

Step 2 (Core Optimization):  Derived statistical linear regressions of CPI per 

thread, CPI per core and power dissipation are used in a parallelized Genetic 

Algorithm based optimization engine called Fast Genetic Algorithm (FGA) [77] to 

generate a set of 10 best optimized core micro-architectures with minimal power 

dissipation. GA is a popular evolutionary meta-heuristic optimization algorithm 

used in a variety of optimization and search applications [78]. GA prototypes the 

characteristic processes of biological evolution, such as fitness, mutation and 

crossover. 

In our design space, the micro-architectural parameters of a cores 

described in Table 6-1 are mapped to genes. A core which is expressed as a set 

of micro-architectural parameters represents a chromosome in the GA engine. 

We have used total 32 candidate designs in each of 400 generations in the GA 

engine. However, in majority of the cases the optimization algorithm converged 

within 180 generations. We also increased the default mutation rate of 0.01 to 

0.70 which means that in a generation, probability of a one of the genes in a 

chromosome will mutate is 70%. The GA fitness function which evaluates the 
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fitness of a candidate design which is power dissipation in our case, we have first 

evaluated whether the CPI per thread for the chosen set of micro-architectural 

values is actually able to meet the real time requirements. The pseudo-code of 

our fitness, mutate gene and crossover two genes functions are described below. 

MAX_POWER is a maximum power level set to identify this design does not 

satisfy throughput constraints. 

 

GA Fitness Function:  

1. CPIThread = evaluate_thr_strand(); 

2. clk_period = (double) 1 / (double) CLK_FREQ; 

3. if V�@�r<)'- � @���
V��s'2+)&�.9) � �t�9)<1:- u ������ �
�������� a�v� then 

 return evaluate_power(); 

4. Else return MAX_POWER; 

 

 

GA MutateGene Function: 

1. Randomly choose a particular gene; 

2. Randomly choose a new value for the gene within the range of the 

variable; 

3. Set the value of the gene to the new value 

4. Evaluate the CPI per thread; 

5. If CPI per thread satisfies constraints, then accept new value 

6. Else, find another new value for the gene; 
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GA 1pt Crossover Function: 

1. Randomly choose a cut point for Gene1; 

2. Crossover Gene1 and Gene2 from the cut point onwards; 

3. Evaluate the CPI per thread for Gene1 and Gene2; 

4. If CPI per thread satisfies constraints, then accept new values; 

5. Else, find another new cut point; 

 

 

GA 2pt Crossover Function: 

1. Randomly choose 2 cut points for Gene1; 

2. Crossover Gene1 and Gene2 from the cut point 1 till cut point 2; 

3. Evaluate the CPI per thread for Gene1 and Gene2; 

4. If CPI per thread satisfies constraints, then accept new values; 

5. Else, find 2 new cut points; 

 

 

Table 7-1 enlists the micro-architectural details of the best chromosomes 

or cores for the five packet types respectively found by GA. Rows 13a and 13b 

shows the model predicted and observed power dissipation values for the best 

candidate designs. Similarly, model predicted values and observed CPI per 

thread is shown in rows 14a and 14b. For each packet type, the 10 best cores 

from GA are stored and used later in the joint exploration of L2 memory and core 

micro-architectures. This completes the core optimization step. 
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Table 7-1: Optimized core architectures for five packet types found through GA  

Parameters TYPE0  TYPE1 TYPE2 TYPE3 TYPE4 

Threads 16 16 16 16 4 

LMQ 1 1 1 32 32 

SB 1 1 4 32 32 

I$ Size 1K 1K 1K 128K 4K 

I$ Assoc. 8 4 16 4 4 

I$ Linesize 64 64 16 128 16 

D$ Size 1K 1K 4K 4K 128K 

D$ Assoc. 16 16 8 4 4 

D$ Linesize 128 2 64 32 64 

MIL 32 32 32 1 1 

ASIQ 1 4 32 8 16 

      

Power 

(mW) 

Pred. 202 212 228 297 261 

Obs. 230 229 227 310 265 

CPI per 

thread 

Pred. 19.4 20.1 21.7 20.19 6.99 

Obs. 18.9 18.7 19.8 21.72 7.13 

 

To see the benefit Table 7-2 enlists the micro-architectural details of the 

best chromosomes or cores for the five packet types respectively found by GA. 

Rows 13a and 13b shows the model predicted and observed power dissipation 
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values for the best candidate designs. 

 

Table 7-2: Comparison of power and CPI of optimized architectures found by GA 
with baseline architecture 

Parameters  
Base 

Arch.  
TYPE0 TYPE1 TYPE2 TYPE3 TYPE4 

       

Threads 4 16 16 16 16 4 

LMQ 1 1 1 1 32 32 

SB 8 1 1 4 32 32 

I$ Size 32K 1K 1K 1K 128K 4K 

I$ Assoc. 4 8 4 16 4 4 

I$ Linesize 32 64 64 16 128 16 

D$ Size 8K 1K 1K 4K 4K 128K 

D$ Assoc. 4 16 16 8 4 4 

D$ Linesize 16K 128 2 64 32 64 

MIL 1 32 32 32 1 1 

ASIQ 2 1 4 32 8 16 

       

Power 

(mW) 
261 

Pred. 
202 212 228 297 

 265 Obs. 230 229 227 310 

CPI per 6.99 Pred. 19.4 20.1 21.7 20.19 
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thread  

 7.13 Obs. 18.9 18.7 19.8 21.72 

 

Step 3 (Integrated L2 and Core Optimization):  The set of heterogeneous core 

architectures achieved above are used in the third and final stage where they are 

fed into a Simulated Annealing-based (SA) optimization engine [79, 80]. We have 

only considered one interconnection design which is a crossbar with fixed-sized 

queue. 

��l � ���wsxl � ay��lz
��l

                   �7 � 1� 

The number of required cores is calculated using Equation 7-1. For a packet type 

� if ��1 is the number of packets to be processed per second where a���l� is the 

processing time of that packet type in a core with �� threads, total number of 

cores ��l is given by Equation 7-1. 

The shared memory level L2 queue size, L2 size, associativity, line size 

and most importantly number of L2 banks, described in Table 7-3 are the five 

parameters which we explore to determine the overall L2 bandwidth, throughput 

and power dissipation of the entire chip. As the number of cores in a chip scales, 

the contention in the secondary cache increases resulting in non-deterministic L2 

access times which exacerbates throughput degradation in the cores. This effect 

can be minimized by increasing the number of L2 banks. The L2 bank ids are 

typically decoded into the lower significant word of the physical addresses. This 

means that a fetched data block from main memory is distributed across all the 
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L2 banks according to the bank identification bits in the fetched address. This 

spatial distribution of data blocks across all the banks minimizes the number of 

simultaneous memory accesses per shared bank and attempts to mitigate the 

contention in each bank. However, as number of banks is scaled, L2 power 

dissipation increases as more logic is required to support the organization of the 

independent L2 banks. To address these design trade-offs, we perform a joint 

exploration of shared L2 and the cores such that sufficient data bandwidth can be 

provided to the cores and overall chip power dissipation can be minimized 

subject to the real time throughput demands of the NeP packet processing 

applications. 

Table 7-3: Micro-architectural parameters of shared L2 

Name Range Increment  Description  

14. FP{|x 
4 to 16 Power of 2 L2 input queue 

size per core 

15. Size 4 to 512 MB 1MB Total L2 size 

16. Associativity 
8 to 64 Power of 2 Set-associativity of 

L2 cache 

17. Line Size 
8 to 128 Power of 2 Line size of L2 

cache 

18. �5 
4 to 128 Power of 2 Number of L2 

banks 

The SA engine uses a L2 macro simulator called L2MacroSim which 

models the contention in the L2 cache in CASPER. Only the core to L2 cache 
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and L2 cache to memory reply/acknowledgement packets will be simulated. The 

inputs to the L2 MacroSim are L2 cache input queue size per core, cache bank 

size, line size, associativity, number of L2 banks, L1 I and D cache sizes, line 

sizes and associativities and instruction trace files for each thread in each core. 

The individual core parameters will be set to their optimal values from GA 

optimization. The L2MacroSim enables significant savings in simulation time 

while capturing the interaction between the cores. The macro-simulator also 

provides the power dissipation of the crossbar interconnection network and the 

L2 cache banks. The SA-based hill climbing algorithm is shown below: 

Define micro-architecture; 

Cost_fn_old = evaluate_power_dissipation(); 

int inner_loop = 0, count = 0; 

 

/* Initial Temperature */ 

int T = T_0; 

/* Initial Iteration */ 

int iterations = I_0; 

/* Repeat until Run-Time permits */ 

while ( count++ < SA_COUNTER ) 

{ 

/* Repeat until inner loop iteration is not over */ 

 inner_loop = 0; 

 while ( inner_loop++ < iterations ) 
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 { 

  /* Compute new Cost Funtion */ 

  //RF_count = 0; 

  Cost_fn_new = perturb(L2 structure); 

   

  // Hill-climbing part 

  if ( Cost_fn_new > Cost_fn_old || ( rand() < �E}~����n� –E}~������
� ) ) ) 

  { 

   Cost_fn_old = Cost_fn_new; 

  } 

 } 

/* Compute the new iteration for inner loop and Temperature */ 

 iterations = 1.2 * iterations; 

 T = 0.1 * T;  

} 

 

The small hill-climbing technique embedded in the SA enables us to 

quickly converge to an optimal design thus giving us a shared memory 

heterogeneous many-core micro-architecture. The cost function in the SA is 

average power dissipation per cycle and constraints are the real-time throughput 

boundaries of the packets. 

Figure 7-2 demonstrates how the number of threads per core changes 

during simulated annealing. The optimal number of threads per core for the cores 
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designed for different packet types is shown in Table 7-1. The high density of 

threads per core decreases single thread performance significantly to the extent 

that the threads processing packets cannot meet real-time constraints anymore. 

Hence, we observe that number of threads per core is scaled down to meet the 

performance requirements. 

 

Figure 7-2: Thread scaling observed during simulated annealing 

Table 7-4: Example optimal design found by simulated annealing 

Micro -Architecture Specification  Values  

NC 214 

NC Types 
5 (TYPE0, TYPE1, TYPE2, TYPE3, 

TYPE4) 

NT per core (packet) type 8, 8, 8, 4, 4 
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NC per packet type 80, 9, 19, 42, 65 

NB 32 

L2 Size 256MB 

L2 Bandwidth 36.352 GBps 

Interconnect Bandwidth 32TBps 

Average Estimated Power Dissipation ~80W 

Effective Packet Bandwidth 329 GBps 

Total Estimated Area 1930 mm2 

 

The result of SA-based optimization engine is shown in Table 7-4. A total 

number of cores = 214, where number of TYPE0 cores is 80, number of TYPE1 

cores is 9, number of TYPE2 cores is 19, number of TYPE3 cores is 42 and 

number of TYPE4 cores is 65. 1 core was optimized for the DRR deficit round 

robin scheduling function. However, we have observed that a naïve deficit round 

robin scheduling will not suffice in such a large scale system. We believe that an 

out-of-order core will be able to exploit the instruction level parallelism of the 

scheduling algorithm and will perform better. Number of L2 banks used is 32 and 

the total L2 cache size is 256MB. The average power dissipation of the entire 

chip is around 80.9W and the net line speed achieved is 329 Gbps. The L2 

cache memory section was able to provide a bandwidth of 36.352 GBps which 

was sufficient to keep the cores busy. The available bandwidth of crossbar 

interconnection network is 32TBps. The overall area of the chips is approximately 

1930 mm2. 
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Table 7-5: Comparison with other NePs 

Specifications  Netronome 

[4] 

CISCO 

Quantum 

Flow [1] 

Tilera 

[81]  

UltraSPARC 

T1 [55] 

Derived 

NeP 

#Cores 40 40 64 8 ~200 

#Threads 4 4 4 4 4 to 8 

Power - 400mW - - 80.9W 

N/W 

Bandwidth 

40Gbps 100+Gbps 40Gbps - 329 Gbps 

Heterogeneous Yes Yes No No Yes 

 

Table 7-5 shows the comparison of the derived NeP with other 

commercially available processors. Although our design space exploration 

method was able to achieve the highest throughput, number of cores is almost 5 

times compared to the other NePs. Number of threads per core also varies in our 

case from 4 to 8. Number of threads per core in all other NePs is fixed. The 

power dissipation is significantly high compared to other NePs. The reason is 

significantly large number of cores, larger number of cache banks and a crossbar 

interconnection. Due to the fundamental differences with the other NePs 

available today we think direct comparison of our derived design is an unfair 

comparison. 



CHAPTER 8:  CONCLUSION 
 

 

In this dissertation we have demonstrated an efficient scalable design 

space exploration framework for many-core heterogeneous embedded 

processors. In the current implementation of our framework, we have used a 

terabit per second network packet processing benchmark. In future we intend to 

explore a wide range of embedded applications where the different 

characteristics of various applications will pose different design challenges. We 

defined the core micro-architectural design space in terms of 13 parameters for 

each of the 5 IP packet types. Our objective was to use statistical machine 

learning to derive linear regression models of CPI per thread and power 

dissipation of the cores in terms of the micro-architectural design space 

parameters. The strength of this method is that even with a relatively fewer time-

consuming cycle-accurate simulations (500-600), we were able to capture the 

complex relation of the performance and power dissipation of the cores within an 

error budget of 10%. However note that the proposed framework is flexible 

enough to explore various other machine learning and modeling techniques other 

than SML to study the power-performance trade-offs in embedded processor 

design. Our proposed method of pruning the design space by first optimizing 

core architectures using the derived linear regression models in the GA-based 

optimization engine and then integrating the L2 design parameters with the core 

architecture parameters in a SA-based hill-climbing algorithm enabled us to 
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rapidly achieve optimal power-performance point. Finally, we derived a many-

core NeP with 214 cores and a 32-banked shared L2 cache which achieved a net 

line speed of 329 gigabits per second. We also found that the optimal number of 

hardware thread per core is 8. Scaling the number of hardware thread per core 

beyond 8 resulted in poor CPI per thread which failed to meet the real time 

constraints. In future, we also want to explore other exploration techniques such 

as neural networks and likewise to study whether better optimal design points 

can be achieved. Moreover, we were successful in avoiding simulation-in-loop 

methods as well as exhaustive search techniques which are extremely time-

consuming and not cost-effective. Yet, our method produce results within a 

boundary of 20% error which we believe can be minimized by investing more 

time in collecting sample data set and fine tuning the linear regression models. In 

the end, even for such a large scale many-core system, we could keep the 

average power dissipation of the entire chip within 80W. 
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