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ABSTRACT

SCOTT ANTHONY BARLOWE. A visual analytics approach to feature discovery
and subspace exploration in protein flexibility matrices. (Under the direction of DR.

JING YANG)

The vast amount of information generated by domain scientists makes the transi-

tion from data to knowledge difficult and often impedes important discoveries. For

example, the knowledge gained from protein flexibility data sets can speed advances

in genetic therapies and drug discovery. However, these models generate so much

data that large scale analysis by traditional methods is almost impossible. This hin-

ders biomedical advances. Visual analytics is a new field that can help alleviate this

problem. Visual analytics attempts to seamlessly integrate human abilities in pattern

recognition, domain knowledge, and synthesis with automatic analysis techniques. I

propose a novel, visual analytics pipeline and prototype which eases discovery, com-

parison, and exploration in the outputs of complex computational biology datasets.

The approach utilizes automatic feature extraction by image segmentation to locate

regions of interest in the data, visually presents the features to users in an intuitive

way, and provides rich interactions for multi-resolution visual exploration. Functional-

ity is also provided for subspace exploration based on automatic similarity calculation

and comparative visualizations. The effectiveness of feature discovery and subspace

exploration is shown through a user study and user scenarios. Feedback from analysts

confirms the suitability of the proposed solution to domain tasks.
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CHAPTER 1: INTRODUCTION

Models describing physical or naturally occurring behavior can generate many pos-

sible outputs when different parameter settings are used. As models become more

complex and more sensitive to parameter changes, the data produced becomes more

difficult to analyze. This difficulty arises from both the amount and variation of

produced data which must be considered quickly in parallel so that a model and the

consequences of its outputs can be understood efficiently and accurately. Models are

used in many applications but have become central in the prediction of protein be-

havior. One of the most fundamental predictors of protein behavior is flexibility, or

a protein’s ability to change shape under given circumstances. Accurate descriptions

of protein flexibility are crucial for understanding the physiochemical mechanisms

that underlie protein function [49] and could eventually be used to speed the drug

discovery process. Making the prediction of protein behavior complex is that some

portions of a protein are highly dynamic (flexible), whereas other regions are quite

static (rigid). Compounding the problem is choosing the most appropriate set of

parameters that accurately describe or predict protein flexibility.

These problems become evident when attempting to holistically analyze various

types of flexibility and correlation plots. These plots are colored matrices representing

either a flexibility index or residue to residue coupling behavior for varied proteins
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and parameter settings. Small-scale examination impedes comparison among residues

within plots possibly having several hundred variables. Scientists must not only

identify abrupt differences, but subtle changes which easily escape manual inspection.

This becomes more difficult as the similarities or differences among proteins becomes

less dramatic, but no less important. In fact, the identification and comparison of

small differences may prove to be crucial for learning how to alter a given behavior

or explaining why two similar proteins behave differently. This difficulty increases as

any insights gained must be placed in context across multiple proteins, environmental

conditions, and correlation types.

The main contribution of this work is the design and development of a visual

analytics prototype for model-based protein analysis. Two benefits emerged during

the development of the prototype presented here. The first benefit is the formalization

of data types and high-level tasks encountered in the course of using a particular

protein flexibility model. Unfortunately, even public providers of biological data

publish data sets with inconsistent formatting standards and require a great deal of

preprocessing before software systems can be used in exploring them. Stein [81]

discusses the challenges and current attempts for creating standardized data sets.

However, attempts at standardization mostly address public repositories and often

ignore the complexities introduced by scientists employing individualized workflows.

Only when individualized workflows, including data types and high-level tasks, are

exposed can common processes be identified and the level of standardization needed

for fast discovery take place. Years of collaboration, sifting through much data, and

several failed attempts at prototyping have resulted in the description of the data sets



3

for this particular model. This will not only aid in the development of new processing

tools for this model but also for other domains encountering similar data structures

both within and outside protein analysis. Furthermore, this work defines the high-

level tasks learned from observing domain analysis which will help in the development

of new analysis tools tools so that insights can be made more efficiently.

The second benefit is the construction of a pipeline and prototype that can serve

as a model for future visual analytics tools. The prototype, called WaveMap [3]

combines automatic analysis and human perceptual abilities to provide a more com-

plete view of data. WaveMap utilizes automatic feature extraction through image

segmentation to guide users to points of interest in the colored plots at varying levels

of granularity. Items that exhibit coarse-grain patterns of interest can be selected

so that features representing a given fine-grain behavior can be explored. Simulta-

neously, the data is reduced through both automatic techniques and user interaction

allowing scientists to focus on fewer items of interest. Extracted features can be effi-

ciently compared to the original data values so that the results of automatic analysis

can be mapped back to their original values. WaveMap also includes techniques for

interactive selection and comparison of subspaces that help in distinguishing local

behavior from global behavior. The effectiveness of the system is confirmed by a user

study, user scenarios, and feedback from domain scientists.



CHAPTER 2: LITERATURE REVIEW

The solution presented in this work employs many techniques from a wide range

of fields. In the following sections, current visualization systems used in the ex-

ploration of two-dimensional protein data are surveyed and their shortcomings are

exposed. Techniques in matrix visualization are then examined. Finally, possible

feature extraction methods for emphasizing areas of interest and ways of visualizing

those features are discussed.

2.1 Current Systems for Protein Analysis

While limited, there have been multiple attempts for applying visual analytics to

protein structure and function. Because of the complexities associated with han-

dling biologically based data, most attempts have either originated in or been heavily

influenced by the bioinformatics community. Several systems are presented now.

Keim et al [41] state the importance of combining automatic and exploratory tech-

niques during protein analysis. The authors present VisAlign (Figure 1) which helps

users view and explore the alignment sequence of proteins and the correlation to a

selected basis column. The system is comprised of the Alignment Viewer, Parameter

Window, Mapping Window, Properties Window, and a 3D viewer. The Alignment

Viewer shows each alignment as a column where each amino acid is color coded. All

cells not correlated to the basis column are gray. The user can input maximum and
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Figure 1: VisAlign [41].

minimum threshold values which are immediately available in the visualization. The

Mapping Window allows the grouping of similar amino acids where similarity is based

on an amino acid property or hypothesis of interest. The Properties Window controls

visual properties such as zooming, fading, and cell size variation. The 3D Viewer

shows a three-dimensional protein structure which is linked to the Alignment Viewer.

iVici [85] is a system for viewing protein-protein interactions encoded into sym-

metric, two-dimensional matrices (Figure 2). There are three modes. The general

mode represents hierarchical clusters generated by an outside source. The compara-

tive mode dissects symmetrical matrices into halves along the diagonal resulting in a

triangular section. Matrices are compared by placing the triangular section from one

matrix onto the top of a new matrix and the triangular section from the other matrix

onto the bottom of the new matrix. The superimposed mode places one matrix onto
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Figure 2: iVici [85].

another and the resulting color of each cell represents the intersection of values.

Java Protein Dossier [65] is shown in Figure 3(a). This system attempts to be a

parameter and visualization warehouse for protein analysis. Java Protein Dossier ac-

counts for many parameters that may need to be considered and employs elementary

pixel displays for summary statistics. The authors claim that their molecular model-

ing capabilities include more than sixty parameters and can be deployed over the web.

Windows showing protein sequences, structures, and parameters are coordinated.

One of the most complete tools specifically targeting protein structure and func-

tion exploration is based on lattice construction [72]. This system (Figure 3(b)) in-
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Figure 3: (a) Java Protein Dossier [65] and (b) lattice-based protein visualization
[72].

cludes many of the techniques necessary for complete visual analysis. Focus+context,

overview+detail, and multiple views are integrated into this platform. Energy land-

scapes can be examined through interactive line plots. Additionally, the work is

connected to simulation models, provides a three dimensional lattice viewer, and

includes contact matrix visualizations.

Although these representative systems attempt to utilize visualization of two-

dimensional protein data, there are shortcomings. For example, most of these systems

make little use of automatic analysis techniques which can ease the exploratory bur-

den of users when searching for important data characteristics. In the cases where

automatic techniques are present, highly-interactive tools are not available to guide

the user to the places in the data which may be of greatest interest. Additionally,

these and similar systems often only show summary information which can hide im-
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portant relationships and subtle features. Such information is often crucial in spatial

or temporal understanding. Finally, these systems (with the exception of [41]) only

consider one or few proteins at a time and ignore the need for large scale analysis.

2.2 Matrix Visualization

Currently, scientists lack effective tools to conduct the above tasks for large flexi-

bility data sets. Existing methods heavily depend on manual inspection of enlarged

flexibility plots using Heatmaps [59], [58]. Subtle but important relationships and

patterns may remain hidden even with zooming and distortion interactions. The

large number of plots and the subtle differences both within each plot and among

parameter sets are almost impossible to distinguish. These obstacles greatly hinder

knowledge discovery.

Heatmaps are widely used in bioinformatics besides protein flexibility data visu-

alization. Specifically, they are the most common representation for gene expression

data [23]. Many of them can guide users to patterns such as clusters and out-

liers within the data. For example, HCE [78] and Java Treeview [76] enable users

to identify clusters in microarray experiment data sets using hierarchical clustering

algorithms and interactive visual exploration. Visualization methods developed for

matrix data [84], [79] also allow users to find patterns through interactive visual

exploration. However, the above techniques would not work for protein flexibility

data visualization because of their heavy reliance on the grouping of similar rows and

columns. Not only does each flexibility matrix value i,j have a color-coded flexibil-

ity measure but also carries spatial significance reflecting residue ordering along the
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three-dimensional protein structure. Any reordering or rearranging of rows, columns,

or individual measures would disrupt the spatial context in which any flexibility mea-

sure occurs. Moreover, a large number of plots need to be examined simultaneously

in our application while most of the above techniques only consider one matrix or

array at a time.

2.3 Feature Extraction

2.3.1 Extraction Techniques

Feature extraction is an automatic analysis technique in signal and image processing

used to draw out defining characteristics in a data set. Forlines and Balakrishnan

[22] have shown that feature extraction through image segmentation can be helpful

in visual search as target subimages become small and rare. This is a necessary aid

since they note that search time is linearly correlated with the number of distractor

objects. The authors perform user studies which differ in the presentation of targeted

objects. Presentation differences include increasing target prevalence, re-layout, and

space/time tradeoff. The authors found that all three of the image segmentation

techniques improved search performance by reducing the false-negative error rates.

Many image analysis techniques for extracting features can be applied to flexibility

plots so that difficult to detect patterns can be identified. For example, Principal

Component Analysis (PCA) [38], [17] can be used to summarize features by finding

the linear combinations of variables and then ordering the resulting components by

variance [93]. It has been used in many image processing applications such as face

recognition [69] and edge detection [73] but can be computationally taxing [88],



10

[18]. Additionally, the results can be difficult to interpret [96]. Fourier analysis [24]

is another popular image analysis technique applied to many areas including feature

extraction and dimension reduction [35]. Fourier frequencies can be linked to pixel

value changes where low frequencies are associated with slowly varying pixel changes

and high frequencies are associated with abrupt pixel changes [24]. A major drawback

to this type of analysis is that frequency and spatial information cannot be conveyed

at the same time.

Wavelet analysis is based on small signals (waves) of limited duration and varying

frequency [24]. This type of transform allows the same frequency-based processing

of pixel values as Fourier analysis. However, wavelets provide simultaneous frequency

and spatial information with a multi-resolution approach that allows normally hidden

features to be revealed. The wavelet transform (Equation (1)) results in a set of

coefficients WΨ(s, τ) which represent the similarity between a function f(x) and a

given wavelet transform Ψs,t. Similarity is measured as s, a scaling factor, and τ , a

translation factor, are varied resulting in a multiresolution view of f(x).

WΨ(s, τ) =

∫
∞

−∞

f(x)Ψs,t(x)dx (1)

Different wavelets transforms, many of which can be grouped with others exhibiting

similar characteristics to form wavelet families, can be substituted to extract desired

characteristics. Examples of different wavelets are shown in Figure 4. Wavelets have

been integrated into visualization tools for brushing applications [90] (Figure 5(a)),

text analysis [55] (Figure 5(b)), and many scientific applications [19], [8].



11

Figure 4: A sample of different wavelet families provided by a toolkit in MATLAB
[53]

Wavelet lifting [82], [37] is an improvement to traditional wavelet analysis. Lifting

is accomplished through repeated execution of a set of distinct steps. Steps for a one-

dimensional signal include split, predict, and update. The first step, split, sorts the

data into even and odd indices. Predict assumes that the correlation between a

sample and its neighbors is high. In this step, the difference between the predicted

value and the actual value is recorded in the odd entries. The update step uses the

difference in the predict step to update the even entries. The even entries represent

an approximation of the signal and the odd entries represent the details. Repeating

these steps using the output as the input to the next sequence of split, predict, and

update results in an increasingly coarse (if the approximations are used) or detailed
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Figure 5: (a) Wavelet brushing shows the approximations (outside the brush) and
details (inside the brush) [90]. (b) Wavelet energies superimposed on topics (left)
wavelet energies on a line graph (right) [55].

(if the differences are used) view of the signal. The steps in lifting are shown in Figure

6 and the general effects of applying a wavelet to a one dimensional signal is shown

in Figure 7.

The wavelet used can be changed by altering the predict and update stages. As with

other wavelet implementations, different filter banks can be constructed by varying
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Figure 6: Steps in wavelet lifting are split, predict, and update. The result is a set of
approximations, S and a set of details, d.

Figure 7: The general effect of applying a wavelet filter on an one-dimensional signal.
Outputs include a set of approximations representing a coarse view of the original
signal and a set of details representing a fine-grained view. Different variations of
wavelts can be used to alter specific behavior.

what (either the signal approximation or detail) is taken as the input to the next

step. A discrete, iterative process which uses no more memory than required for the

original data matrix improves computational efficiency. Additionally, the results of

lifting can be reversed by simply reversing the discrete steps used in transformation.

This property enables the original data to be directly and quickly accessed from any

level of decomposition.
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There have been many cases of the application of feature extraction to data sets

found in protein analysis [61], [12], [56]. The mining of protein contact maps is

an excellent example where automatic feature extraction has been applied to protein

image data. Protein contact maps are color images representing the chemical inter-

actions for all amino acids in a protein and, because each map is unique, is a picture

of protein structure [39]. Contact maps have also been used to inform scientists

regarding a protein’s secondary structure in addition to non-local features influencing

the definition of its tertiary structure [32]. Characteristics which are color coded by

Fernandes et al [39] include hydrophobic interactions, electrostatic interactions, and

hydrogen bonds. Similar to the protein model described earlier (section 3.3.2), contact

maps relate three-dimensional structure to a two-dimensional color image. Because

the final output of the protein analysis is an image, the authors use content-based

image retrieval (CBIR) as an automatic approach for similarity based searching. The

authors report a successful grouping of similar structures based on their methods.

Other activities in which scientists have been interested include pruning mined pat-

terns and then clustering the results [32]. An example of a contact map is shown in

Figure 8.

2.3.2 Feature and Change Visualization

Although most of the attempts for developing a complete system for modeling

protein behavior have come from the bioinformatics domain, the visualization com-

munity has many techniques that can be applied to model-driven protein analysis.

The most important contribution of the visualization community for the inspiration
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Figure 8: Contact map [86] color coding hydrophophic interactions, electrostatic
interactions, and hydrogen bonds.

of this work is in feature visualization. Because the proposed system seeks to detect

unexpected changes in residue behavior, works in anomaly visualization and visual

change detection are included below.

Schreck et al [77] recognize the importance of visualization when analyzing fea-

tures. The authors present an approach utilizing a self-organizing map (SOM) and

visualization to help find high quality feature vectors. Feature vectors are descriptors

of data characteristics and are important in clustering, classification, and similarity

search. Although crucial in many data mining tasks, feature vectors which exhibit

high discriminatory ability are often found only after much experimentation, bench-

marking, and expert intervention. The authors cluster the feature vectors in the SOM

which results in an unsupervised, compact feature space representation. Component

planes are constructed by color-coding reference vectors at each SOM position. The
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Figure 9: Component plane array for feature vector distribution from a self-organizing
map [77].

distribution of the vectors is then visualized. Image processing techniques such as

differencing and entropy functions are used to mine the component planes. An array

of component planes is shown in Figure 9.

Oelke et al [68] present feature-based text visualization and illustrate how ex-

tracted features can provide patterns for desired text characteristics to which other

documents can be compared. Characteristics include the importance of passages and

the classification of opinions. Visual examination relies on the work in [40] where

pixel displays representing documents relate feature importance through a color scale.

Visualizing features produced through image segmentation is one of the main func-

tions of the Semantic Image Browser [91]. The Semantic Image Browser utilizes

automatic image analysis to explore image datasets. Users can view the original
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image or extracted image features which result from semantic image classification.

Layout options include multidimensional scaling and ordering. Viewable low-level

features include but are not limited to color histograms, extracted textures, and color

variances. Interactions such as zooming, panning, and distortion aid exploration.

The detection of interesting regions or items allows more efficient comparison by al-

lowing experts to isolate where trends or individual values deviate from expectations.

Visualization has been shown to be beneficial in finding specific points of interest. The

visualization of text passage importance has already been mentioned [68]. Layout

generation has been used to reflect importance of numeric summaries and variance

through display size and location [29]. Two-dimensional colormaps [95] and the inte-

gration of visualization with advanced interfaces [54] have been successfully used for

detecting unexpected behavior in financial time series data. Maciejewski et al [51] use

visual analytics to identify unexpected behavior change, or hotspots. Hotspots can

occur in spatiotemporal data including health reports and terrorism and are available

to aid analysts prevent disease spread or criminal attacks.

The work here differs from those mentioned above by providing feature extraction

within a highly interactive visual analytics framework for guided discovery in model

guided protein examination. Specifically, this approach utilizes image segmentation

to detect regions of interest based on the degree of change in flexibility and correlation

plots. This work goes even further by providing options for choosing which image

characteristics in the protein data should be explored. Finally, this work provides

links from the extracted features to the original data so that the features can be

understood in context of the entire data set.



CHAPTER 3: MODELS, DATA, AND TASKS

3.1 Protein Construction

The National Center for Biotechnology Information (NCBI) [62] defines bioinfor-

matics as the ”science in which biology, computer science, and information technology

merge to form a single discipline.” The NCBI goes on to state that bioinformatics

has two goals. The first is a practical goal of enabling the discovery of new biological

insights. The second goal, the progress toward which is much more difficult to mea-

sure, is to create ”a global perspective from which unifying principles in biology can

be discerned.” One area of bioinformatics that can greatly benefit from approaches

that combine the above components is the study of protein behavior. Complexities

associated with protein insight include the simultaneous consideration of multiple pro-

tein families, the presence of multiple proteins within families, single proteins having

many residues per protein, and a host of environmental conditions.

Proteins are composed of unbranched chains of amino acids connected by chemical

bonds [72]. These chains can consist of 20 different possible amino acids and vary

greatly in length and sequence across different proteins. The spatial arrangement of

these chains determines the biological function of the protein. As Figure 10 illustrates,

amino acids make up the primary protein structure and influence the more complex,

upper level (secondary, tertiary, and quaternary) shapes. After polymerization, each
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Figure 10: The four protein structures [63]. The primary structure consists of amino
acids and influences the upper level structures.

amino acid building block in the protein chain is referred to as a residue. The overall

3D shape of the protein chain is defined by internal rotation angles within bonds

that form the repeating unit along the protein backbone. Present in each residue,

the rotatable angles phi and psi (shown in Figure 11) provide the degrees of freedom
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Figure 11: Phi-psi rotation angles that allow movement between chemical bonds in
an amino acid [7].

that allow the structure to change. A proper understanding of this process is critical

because protein function is defined by its structure, and fluctuations therein. Unfor-

tunately, to date, there have only been a small number of connections that correlated

specific structural changes to function [42].

One of the main obstacles in understanding how structural changes in proteins

affect function is the vast number of possible spatial configurations allowed by var-

ious bond rotations occurring under changed environmental conditions. This set of

possible configurations is referred to as a protein’s conformation space [66]. Most pre-

diction methods search this space for the structure having the lowest energy, making

energy one of the primary variables to be examined. Although important in protein

changes, the energy function is often difficult to explore. Exploration is complicated

by multiple local minima and an energy function’s dependence on many interrelated

variables. Furthermore, differences in the underlying chemical structures may require

examination of individual proteins.

3.2 A Computational Model

Because of the complexities associated with exploring a protein’s conformation

space researchers rely on models to understand and to predict changes in protein
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Figure 12: The Distance Constraint Model [34], [48] consists of numerous steps
including third-party information such as protein repository files, 3d structure dia-
grams, several programs developed by domain scientists, manipulation of structures,
and model parameters. (From James Mottonen, 2008).

structure. A variety of models exist which are suited to magnify the effect of important

characteristics desired for study [57], [36], [28]. The Distance Constraint Model [34],

[48] is an example of a model that has proved successful in predicting protein behavior

and is the model used throughout this work. The Distance Constraint Model (DCM)

is based on free energy decomposition and mechanical constraints. The premise of

the DCM is to relate free energy and mechanical constraints with a graph topology

which can be calculated in linear time. The strength and location of constraints

represented by graph edges in the resulting topology help scientists determine the

flexibility/rigidity of a protein. The details of workflow for the DCM are shown in

Figure 12. The generalized steps [50] include the following:
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1. Each vertex in the graph is assigned degrees of freedom.

2. Molecular interactions are represented by an edge in the graph and assigned

enthalpy (depth of the energy curve) and entropy (width of the energy curve).

3. Constraints are added recursively from lowest to highest entropy.

4. When accessible degrees of freedom are present, the added constraint consumes

1 degree of freedom.

5. Enthalpic components are linearly consumed, entropic components are only

summed over independent degrees of freedom.

6. The partition function is calculated and thermodynamic properties are deter-

mined.

7. Using the probabilities calculated from the thermodynamic data, mechanical

properties are appropriately averaged.

Like any model that retains relevance, the DCM [34], [48] is constantly evolving

and the need to quickly examine changes in parameters is crucial for efficient model

development. Parameters considered by this model include but may not be limited

to heat capacities, energy curves, pH measures, temperature, and torsion constraints.

3.3 Data Formulation and Tasks

The process of data formulation and the defining of high-level tasks for the model

in this work occurred over a period of several years with the help of domain scien-

tists. Data formulation and the definition of tasks were not discrete events but often
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Figure 13: Model outputs can be used to form flexibility measures, psi-phi correlation
measures, and aligned correlation measures.

occurred in small segments before, during, and after collaborative activities. The

model outputs are described here first so that the high-level tasks, and the process

for defining them, can be more clearly explained.

3.3.1 Model Outputs

Outputs from the DCM [34], [48] can take several forms depending on the needs of

the scientist. They include, but are not limited to, raw flexibility values, correlation

measures, and aligned correlation measures (Figure 13). They are now described.
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Figure 14: The allosteric response plot for one parameter set applied to the CheY
protein [58] where a color index at i, j is the response of residue j occurring due to
a perturbation at residue i. Columns represent the response for all residues when a
single residue is perturbed. Rows represent all of the allosteric responses for a single
residue as every residue in the protein is perturbed.

Raw flexibility measures. Raw flexibilty measures are determined by model

parameters or other internal modifications and serve as a standard method for com-

paring residue flexibility. An example use of raw flexibility measures is the study of

allosteric response. Allosteric response tracks how a protein change in one residue,

referred to as a perturbation, affects the flexibility of other residues. Analyzing al-

losteric responses for many residue parameters and types will allow scientists to better

understand how to achieve specific biomedical results. Allosteric responses can be rep-

resented by an n x n asymmetric color plot where n represents the number of residues

for a given protein. Figure 14(a) shows the set-up for allosteric response plots and (b)

shows the allosteric response of one parameter set when applied to the CheY protein



25

[58]. In each plot, the residues are ordered according to the three-dimensional protein

structure so that local and regional characteristics have biological meaning. In the

examples used here, a color index at i, j is the flexibility change of residue j occurring

with a perturbation at residue i. Color values are used such that darker shades of

blue indicate increased residue rigidity and darker shades of red indicate increased

flexibility. White areas correspond to neutral residues.

Correlation measures. Scientists may be just as interested in how flexibility

changes are coordinated as parameter sets vary just as much as a global flexibil-

ity measure. For example, Quantitative Stability/Flexibility Relationships (QSFR)

describe a high dimensional range of model properties where regions of correlated

flexibility and rigidity are of great interest [49], [59]. Domain scientists currently

visualize correlated flexibility and rigidity through cooperativity correlation matrices

(Figure 15) where each axis is also ordered by the sequence of amino acids (residues)

that define a protein. Individual indices are correlations for one of two different types

of rotation angles found on the residue structure such that for two residues A and B

• i, j is the correlation between Aphi and Bphi

• i + 1, j is the correlation for Aphi and Bpsi

• i, j + 1 is the correlation between Apsi and Bphi

• i + 1, j + 1 is the correlation between Apsi and Bpsi

Correlations between pairs of residues provide insight into the nature of the dy-

namics of a protein. Patterns that emerge in these plots over families of proteins give
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Figure 15: The length of each axis is twice the number of the residues in the protein.
Each index in the matrix is one of the pair-wise correlation measures for a residue’s
psi-phi angles. In this cooperativity correlation matrix, blue indicates residue pairs
that are co-rigid, red indicates coflexible, and white indicates no mechanical coupling.
The three dimensional protein structures are colored according to a single strip of the
matrix, meaning each highlights all pairwise coupling to a given reference residue.
Some residues share similar correlations resulting in large, consistent regions. Other
residue regions that differ from neighbors are much more difficult to detect. Three
dimensional structures were visualized with PyMol [15].

insight into the mechanisms important for biological function. These include the size

and location of similar or dissimilar regions, and any outliers where a given residue

may unexpectedly differ from its neighbors, or from a consensus over the family.

Descriptors, or metrics, include (but are not limited to) the probability of residues

to rotate (PROB), the probability of residues to be in correlated motion (COR), a

flexibility index (FLX), indicators of structure fluctuation (SUS), and measures of

mechanical freedom (DOF). Taken together, these plots simultaneously provide both

local and global descriptions of protein dynamics. Scientists can plot the correlation

between any two metrics but this work only considers the correlation among mea-
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sures of the same metric type (e.g. PROB-PROB, COR-COR, SUS-SUS, FLX-FLX,

and DOF-DOF). The volume of plots produced and the number of residues present

within a plot makes large-scale comparisons and exploration cumbersome and inef-

fective. Although some descriptions for a single protein are expected to show some

common characteristics, any unexpected differences within a protein’s set of metrics

or across proteins for a single metric would be of great interest to domain experts.

Aligned correlation measures. Not all correlation measures being studied have

the same number of residues because the underlying proteins are different lengths.

This often occurs for individual proteins within the same family and makes compar-

ison among those proteins more difficult. To better compare proteins of different

lengths, alignment algorithms [64], [80] are applied. The sequence alignment is rep-

resented by a string of alpha characters (each character corresponding to a residue)

and, in simple cases, alignment algorithms will shift the residues left or right. During

the process of shifting, spaces or gaps may be inserted so that the optimal alignment is

reached (Figure 16). (What constitutes ”optimal” and how that condition is reached

is an active area of research [70], [16] beyond the scope of this work.) Accounting

for aligned residues when applying both automatic analysis and visual techniques is

necessary for accurate comparison.

3.3.2 High-level Tasks

This work addresses the problem of identifying and exploring points of interest

in allosteric response or QSFR [49], [59] correlation data resulting from the DCM

[34], [48]. The process of gathering user requirements for solving those problems
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Figure 16: Alignment for two proteins. Dashes represent where the residues have been
shifted to produce the best alignment. Column A shows the length of the protein and
column B shows the adjusted length used during comparison.

included heavy involvement by domain scientists beginning in the summer of 2008

and is most adequately described as participatory design [60]. Domain experts had

no choice but to be full partners in the design process because I knew very little

about the correlation and flexibility data that was driving the collaboration. I began

attending group research meetings with bioinformatics faculty members, graduate

students, and a research scientist where the group would examine a single plot or, at

best, a few plots at a time. I was a silent observer in the beginning and was, frankly,

overwhelmed by the complexity and diversity of the workflow to produce even a single

flexibility plot. The domain terminology describing the workflow and the resulting

data were just as complex and diverse. I began experimenting with ideas, maintained
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Figure 17: Residue comparison becomes difficult as the number of parameter sets
increases. Each parameter set produces a set of flexibility which, in turn, can be used
to calculate several types of correlation measures among many residues.

frequent communication (at least once every two weeks) with both bioinformatics

and visualization experts, and regularly presented results. Discussion was primarily

at meetings during summer sessions (of which there were well over 30), through email,

and less frequent meetings during the academic year.

I quickly learned plots displaying raw flexibility measures for a single protein or pa-

rameter set can contain local and regional characteristics for perhaps several hundred

residues that are difficult to identify and even more difficult to compare. Eventually,

flexibility plots can be used to construct cooperativity correlation matrices. Acquir-

ing insights from these matrices becomes more difficult as the number of parameters,

correlation types, or residues increases. Figure 17 illustrates the multi-tiered prob-
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Figure 18: Multiple correlation metrics for the 2TRX protein family. In this display
created by WaveMap [3] each row consists of a single correlation metric for all
proteins in the family. From top to bottom the metrics are FLX-FLX, COR-COR,
PROB-PROB, DOF-DOF, and SUS-SUS. Black lines represent gaps inserted into the
sequence by an alignment algorithm.

lems challenging users of the DCM and QSFR data. Domain scientists have few tools

available for examining plots and then pruning the possible choices to only those of

interest. The lack of tools hinders biological insight.

There were several failed attempts before the solution presented here emerged.

Those first attempts primarily targeted a small, but much studied data set comprised

of QSFR [49], [59] correlation plots for nine related proteins (Figure 18). The

first attempt consisted of multiple glyphs similar to a picture frame. The correlation

type of interest was in the center of the frame and the remaining four measures for

the protein made up the surrounding frame segments. This proved ineffective when
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Figure 19: Residue comparison becomes difficult as the number of parameter sets
increases. Each parameter set produces a set of flexibility which, in turn, can be used
to calculate several types of correlation measures among many residues.

multiple proteins were viewed because the domain analysts found the color mapping

and glyph representation confusing. The second attempt plotted the cooperativity

correlation plots on the bottom of the screen and line graphs for parameters relevant

to QSFR such as energy curves and heat capacities on the top. A prototype is shown

in Figure 19(a). The third attempt (Figure 19(b)) utilized animation to selectively

gray items that fell below a correlation threshold for a single protein across the QSFR

correlation types listed above. The aim in this case was to quickly identify regions

that had high positive or negative correlation to a metric of interest chosen by the

user. Different colors were eventually used to signify predefined bins of correlation.

Both attempts proved ineffective for large-scale analysis since the number of plots

were limited to five (one for each metric) so that neither the back-end parameters nor

the shaded areas could be easily compared.

Most of the difficulties in the previous attempts were unsuccessful because they

were not scalable to large data sets with many dimensions. Additionally, the mixing
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Figure 20: The CheY data set [58] consists of 75 plots representing one protein’s
behavior for varying combinations of three parameters. Many of the differences among
the plots are subtle and difficult to detect.

of correlation types often confused development and analysis efforts. Further compli-

cating development was the fact that this data set contained several different proteins

having residue sequences needing functions to adequately handle alignment results.

The CheY data set [58] that had been developed by BMPG for studying allosteric

response was much more suitable (Figure 20). It was significantly larger, all plots

could be considered at once without confusion, and there was no significant sequence

preprocessing required. Even though the data set was changed to ease development,

the same high-tasks described below are the same for almost all flexibility data sets
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used by BMPG.

Analyzing spatial relationships and numeric trends of flexibility mea-

sures within proteins. Protein dynamics can be altered by either a local group of

residues, larger regional groups, or the concerted effort of multiple areas of varying

sizes. Locating and identifying those regions of interest which contribute to change

is necessary before the roles of individual subunits can be identified.

Studying parameter influence and grouping parameter sets. Parameter

refinement within a model is a reflection of evolving expert knowledge for a specific

protein and environmental condition. For a fixed parameter set, a comparative analy-

sis between different proteins and/or environmental conditions can help discover new

spatial relationships and numerical trends. Grouping model outputs by parameter

sets will allow scientists to understand what combination of parameter settings result

in the greatest or most unexpected change for a single or group of residues. From this

knowledge, domain experts can refine the model or investigate ways to take advantage

of these differences.

Pruning parameter sets and residues. Clearly defining relationships among

residues and parameters of interest is best accomplished if redundant or uninteresting

data items are excluded from consideration. This can take the form of excluding entire

parameter sets, entire proteins, or individual residues based on domain knowledge

or thresholding. Additionally, scientists need to be able to start with a well-studied

individual residue, group of residues, or overall structure that is accurately reflected by

model outputs and then eliminate parameter sets based on similarity (or dissimilarity)

from the established item.
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BMPG members confirm that these tasks are frequently encountered. Previous to

this work, the lack of a tool in meeting them was a significant obstacle in securing

biomedical advances. Because of the complexities associated with protein insight,

approaches that address the above goals must combine the best of automatic tech-

niques to guide users to interesting places in the data, the natural ability of humans

to discern patterns, and the unique knowledge of domain scientitists.



CHAPTER 4: WAVEMAP - INTERACTIVE FEATURE DISCOVERY

WaveMap [3] is a visual analytics prototype that integrates wavelet lifting [82], [37]

with visualization to address the problems associated with protein analysis. Specifi-

cally, WaveMap was designed to help scientists find global, regional, and individual

residue characteristics that may be of interest. The prototype is now presented.

The system is comprised of inputs, preprocessing, and the interface (Figure 21).

Inputs include a file containing the sequence alignment for all proteins to be studied,

one file for each raw flexibility/correlation data matrix, and a file for the parameter

settings. Parameter settings include which part of the wavelet output is sent to the

input of the next iteration, the number of proteins, the number of necessary wavelet

Figure 21: WaveMap consists of inputs, preprocessing, and the interface.
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decompositions, and several other parameters used in system functions. Preprocess-

ing includes extracting features (described below) and distance calculations. The

interface consists of a control panel, an overview to display the entire data set, a fea-

ture window to examine selected plots, a detailed analysis window to perform closer

examination, and a clipboard to carry plots of interest throughout analysis (Figure

22). The interface with allosteric response data is shown in Figure 22(a)-(d). Co-

Figure 22: (a) MDS, Sorting, and Jigsaw layout space. (b) Clipboard. (c) Detail
window. (d) Control panel. (e) Single cooperativity correlation measure. (f) Multi-
ple correlation metrics after alignment. Black lines represent ”gaps” inserted by an
alignment algorithm. When multiple metrics are included, users can filter the display
by metric type.
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operativity correlation measures are shown in Figure 22(e) and aligned cooperativity

correlation measures with multiple metrics are shown in Figure 22(f). In the case of

aligned measures and multiple metrics, users can view the entire data set with all

metrics available or filter the data set to one metric through a drop-box selection.

WaveMap [3] allows scientists to begin with the entire data set and continuously

refine their analysis to individual residues. The workflow is shown in Figure 23. The

first step in this process is to extract features by wavelet analysis. Extracted features

are visually presented to users to help them locate global trends or local areas where

trends are interrupted. Subtle trends that are hard to discover in the original data

become visible in the feature space. To study parameter influence, a set of plots in

the original data or extracted features can be viewed in a clustering or sorting layout

from which global trends across parameter sets, as well as clusters and outliers of

Figure 23: Feature-based framework for examining protein flexibility matrices.
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plots can be observed. Users can interactively retrieve groups of interesting plots so

that further examination and comparison can reveal the relationships among residues

and parameters. Features can be filtered based on their type and magnitude and are

intuitively mapped to the original data. The feature window allows examination of

interesting regions for a subset of interesting plots. The detail window facilitates co-

ordinated, residue-level analysis among multiple plots. In every view, specific regions

for given parameter sets can be exported for insight management and exchange. The

framework is now discussed.

4.1 System Components

4.1.1 Feature Extraction

Wavelet lifting [82], [37] is first applied to extract varying plot features at many

resolutions. During each application to a discrete, two dimensional signal (or decom-

position), the data is separated into the high and low frequency components. The

result is a series of four data matrices each of which is one-quarter the size of the

original data matrix. The results include the high frequency components in both

directions (HH), low frequency components in both directions (LL), low frequency

along rows and high frequency along columns (LH), and high frequency along the

rows and low frequency along columns (HL). One of the components is chosen to be

fed to the input of the next stage and the process repeats.

Wavelets come in varying families and can be designed to extract desired features

[83]. A lifting implementation of the widely-applied Debauchies 4 wavelet [37] is

the starting point chosen here but other wavelets can be used. Because the data is
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halved along the rows and columns during each application, the original data set is

linearly interpolated so that each row and column is a power of two. (It should be

noted that the suggestion given by domain analysts for handling sequences with gaps

was followed. Their suggestion was to remove any row or column across the data set

if one protein or parameter set had a gap inserted.) The interpolated data is only

used in application of the wavelet algorithm and is never visible to the user. After

each decomposition during wavelet analysis, any given feature represents a larger

neighborhood in the original data. Feature magnitude can be mapped to color so

that the degree of change between adjacent locations can be visually represented.

The components, or subbands, and the characteristics emphasized in the data that

are important for our work are illustrated in Figure 24 and include

• LL: Averages along rows and columns

• LH: Averages along rows and differences along columns

• HL: Differences along rows and averages along columns

• HH: Differences along rows and columns

It may seem that the total amount of data has been significantly increased because

each original data plot is now represented by four different subbands. However, each

decomposition results in each subband being only one-quarter of the input data size.

Additionally, the subbands and multiple levels of resolution produced are different

perspectives of the original data. This allows experts to choose the appropriate prism

through which domain knowledge can be applied.
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Figure 24: During a wavelet iteration four data matrices are produced, each one-fourth
the size of the input matrix. Each resulting matrix contains features representing
different data characteristics.

Figure 25 illustrates how features for each subband emphasize various character-

istics present in cooperativity correlation flexibility plots for a TRX protein [59].

Each index is the correlation between two flexibility measures for two rotation an-

gles. The top row is the original data and the bottom row is the transformed data

after wavelet analysis and filtering. Original plot values (top row) are displayed with

the red-white-blue scheme currently in use by domain scientists. The features for all

subbands except for the averaging features (LL), use a different color scheme because

features capture the change occurring between plot regions and not the original plot

values. We chose a feature color scheme ranging from green (negative changes) to

white (no change or below a threshold) to orange (positive changes). The red-white-

blue scheme was kept for the averaging features because they visually relate original

data information at varying resolutions (25(c)). In Figure 25(a) coarse-grain behav-

ior along rows is preserved and differences along each column are detected so that

general residue behavior is preserved along the rows but changes in residue behavior

between adjacent column are detected. Figure 25(b) shows the detection of changes
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Figure 25: Three cooperativity correlation plots [49], [59] depicting the correlation
of flexibility changes. Original correlation values are shown on the top row. Blue
indicates co-rigid regions and red indicates co-flexible regions. The data after wavelet
transformation (3 decompositions) are on the bottom row and corresponding regions
are bounded in red. Orange highlights positive correlation changes and green high-
lights negative correlation changes in all except the last pair. (a) Row patterns are
preserved while indicating changes along columns. Because this data set is symmet-
ric, the LH and HL subbands are redundant. Only the LH subband is shown here.
(b) Areas of change along both rows and columns are detected. (c) Coarse-grain
characteristics are preserved for the entire data set.

along both rows and columns revealing where residue behavior changes from adjacent

residues in both the row and column direction. Figure 25(c) preserves coarse-grain

behavior in both directions. Although the features highlighted in the top row are

easily detected and represent symmetric data, such features can be much harder to

detect in other datasets without the help of the transformed data. An application to

the asymmetric and much more subtle allosteric response data is discussed later.
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4.1.2 Overview

After feature extraction, either the original values or the features can be displayed

in the overview. Original data plots and extracted feature plots can be browsed with

a MDS layout (Figure 26), a jigsaw layout (Figure 27), or according to similarity

based sorting. MDS allows viewers to interpret data similarity as visual distances

[9], [14]. Plot size can be interactively reduced to minimize overlap. The jigsaw

layout [89], [92] allows users to examine plot clusters and outliers without overlap.

It is a grid layout where similar plots are placed close to each other and boundaries

among clusters of similar plots can be detected. Sorting enables users to examine

similarity in relation to a selected plot. MDS, jigsaw, and sorting configurations

depend on whether the original or feature plots are chosen. If features are explored,

the MDS, jigsaw, and sorting layouts can futhermore depend on the subband and

level of decomposition chosen. Providing access to all subbands and decomposition

levels allows users to view the plot arrangement or the features which detect desired

characteristics and simultaneously reducing the number of points being considered.

Users have much flexibility when setting display properties. The data can be displayed

according to features but display the original plot values. Likewise, the data can be

viewed according to the original values but display features.

When parameter set labels are turned on, analysts can see if a relationship ex-

ists between any parameter sets and if any parameter combinations result in out-

liers. WaveMap [3] has the ability to read a set of filenames with the format

ParameterTypeA-ParameterTypeB-ParameterTypeC (format of the allostery data
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Figure 26: Clustering features for a section of the MDS layout. The HH subband
after 2 decompositions identifies places of change along both rows and columns while
simultaneously reducing the number of data points. the data is separated into areas
with plots having many points of change (left side of each layout) and plots with
fewer points of change (right side of each layout).

Figure 27: Clustering features for a section of the jigsaw layout also showing the HH
subband after 2 decompositions.

file names)and then dynamically count the number of variants per type, up to 16

variants per type. The user can then choose through the interface which parameter

type to apply border highlights. Figure 28 illustrates this functionality. Figure 28(a)
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Figure 28: Parameter variants in (a) and (b) are evenly distributed and mixed. Pa-
rameter variants in (c) generally cluster by type. Clusters are identified in (d) and
show varying degrees of consistency.

shows that variants of the first parameter type are evenly mixed. The variants of

the second parameter type in 28(b) are mixed but seem to exhibit more consistency

than 28(a). Variants of third parameter type shown in Figure 28(c) show even more

consistency. In the third parameter type, each color represents a variant of an entropy

parameter referred to as d-nat. The three possible values are 0.4 (red), 0.8 (blue),

and 1.2 (green). Figure 28(d) indicates that some of the 0.4 items cluster in a small

homogeneous cluster (far right), a less homogeneous cluster with mostly one other

color (center), and a very heterogeneous cluster (far left). Domain analysts reported

that the configuration confirmed their suspicions that the data set would at least
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roughly cluster by this variable.

Many interactions exist for the overview display. They include filtering, decompo-

sition level and subband change, searching, selection, and drawing.

Filtering. Features within plots can be filtered according to a user-defined

threshold changed by buttons that trigger incremental increases or decreases or

by direct entry into a textbox. Thresholding allows only the most important

features to be shown by eliminating plot items that have an absolute value less

than the user-defined value. Entire plots can also be filtered by metric type

through a drop-down box.

Decomposition Change. The decomposition level is changed through a slider

giving smooth transition between various levels of resolution. Decomposition

values are propagated to feature exploration to aid in view continuity.

Subband Change. The feature type displayed can be changed through a

drop-down box.

Searching. Individual plots can be located by entering the protein-metric

combination. Found plots are highlighted in bright green.

Selection. Any plot left-clicked in the main display will be shown with greater

detail in the context window. A middle-mouse click on a plot will add the plot to

the clipboard. The clipboard is used to maintain an evolving list of interesting

plots to be investigated further.
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Figure 29: Drawing a line on the plot in the detail window reveals the residues at the
line location along with the plot coordinates and residue name abbreviations.

Drawing. Detailed residue information is always available. Drawing a hori-

zontal line on the plot in the context window displays corresponding residue

flexibility/correlation colors and residue name abbreviations (Figure 29).

4.1.3 Feature Exploration

After viewing and selection, features can be examined in detail. Users can either

view all proteins for a single metric or a mixture of protein-metric combinations that

have been placed on the clipboard. A coordinated lens Figure 30(a) allows users to

view the averages (LL) at the current decomposition level as the user sweeps over the

features. The LL subband was chosen to be the center of the lens so that as sweeps

are performed, users can associate features with the original values at the given level

of decomposition.

Reconstruction (Figure 30(b)) further extends the effective and efficient association

of extracted features with the original values. In this system, users are allowed to
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Figure 30: (a) A coordinated lens allows simultaneous examination of multiple plots
while relating features to the original data. (b) Reconstruction further bridges the
feature and original data. Coordinates are marked in the large plot showing the
original data and in the context window. A bounding box marks where the features
occur in the data before transformation. Coordinates are propagated to the detail
view.

select a plot and then manually inspect features. Navigation is through directional

buttons and users can choose to visit each feature or snap to features with values

above the threshold. Once a feature is accessed, the original data values responsible

for that feature value are bounded in the context window and in a resizable plot in the

main display. Bounding box size increases along with the number of decompositions

reflecting a decrease in the number of features present but an increase in neighborhood

size. Boundary conditions can be problematic in wavelet analysis and developing

techniques to appropriately deal with this case is an active area of research beyond

the scope of this work [11], [27]. However, an initial step towards informing the user

of boundary effects has been incorporated into this system by filling the reconstructed
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bounding box that falls outside of the plot with gray.

Once a feature is visited, plot coordinates of the bounding box are displayed in the

main display and in the context window. Main display coordinates represent absolute

coordinates for that particular plot before any gaps are inserted during alignment.

Coordinates in the context window reflect the bounding box origin relative to gaps

inserted by alignment algorithms. Gaps are included in the context window bounding

box so that plot coordinates for the entire data set can be normalized. The normalized

coordinates are propagated to the next view for detailed analysis across multiple

proteins.

4.1.4 Detailed Analysis

Once a subset of protein plots are placed on the clipboard, the chosen plots are

available for detailed analysis (Figure 31). In this view, a column segment is shown

for each protein. For raw flexibility values, each column is one rectangle wide. For

correlation measures, each segment is composed of two horizontally adjacent color

rectangles that represent the correlation values of the two rotation angle pairs for

each residue in the column. Any inserted gaps appear black. The current column

and row numbers are shown to the left of the series of correlation cells. Exploration

in this view can begin at the plot origin or from the context coordinates propagated

from the previous view. After a suitable beginning point is found, residue columns are

navigated by directional buttons or by entering known coordinates into text fields so

that a detailed sweep across selected plots can be performed. Clicking in each column

sends the entire plot to the context window and a vertical green bar indicates current
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Figure 31: Detailed analysis occurs for a column section across multiple plots. Left,
right, up, and down buttons facilitate navigation during reconstruction and detailed
analysis.

plot location. Removing an item from the clipboard removes it from the display

and allocates the extra space to the remaining column segments. Normalization

in this view only includes clipboard plots and is recalculated as plots are added

and removed. Users can also toggle residue name abbreviations to further connect

alignment information with correlation values.

4.2 Scenario

We now present an example scenario that illustrates how WaveMap [3] can be

utilized for better understanding of flexibility data. It specifically highlights the

utility of our approach in detecting a small but significant area among a set of similar

allostery response plots. A good reason for performing such analysis is to find model

parameter sets which result in similar overall response but exhibit a small difference
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Figure 32: (a) A section of the Jigsaw layout is identified for further analysis based on
similar global features (2 decompositions). A known plot is highlighted in green. (b)
Closer examination of features reveals noticeable differences. Circled regions indicate
a point of difference in one parameter set (lower right).

which could explain subtle variations in behavior. The data set used in the example

represents flexibility response measures from the CheY [58] protein.

A protein scientist pre-selects a set of parameters (ie a plot) which exhibit a desired

global behavior. The analyst suspects that other parameter sets globally similar to

the selected plot have differences which may explain subtle variations in behavior.

However, the values and residue region resulting in this behavior are unknown. The

analyst searches for the known plot in the overview by entering the identifier into a

search box and it is highlighted in green. Places of flexibility trend changes within

this parameter set indicating possible differences are difficult to locate in the con-

text of other similar plots. The analyst moves the slider which changes the level of

decomposition and examines the resulting features (Figure 32(a)).When the wavelet

features are displayed after two levels of decomposition and after the elimination of

features having a small magnitude, the analyst sees a pattern of interest within the

known plot indicating the changes in flexibility. He/she uses the Jigsaw layout [89],
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Figure 33: (a) The coordinated lens reveals the pattern that the features emphasize.
(b) A larger view of the lens shown for clarity.

[92] and identifies several adjacent plots with similar features to the known plot to

ensure global similarity (Figure 32(b)). The group of plots are placed on the clipboard

for further examination.

After pruning the parameter sets, the analyst proceeds to the feature exploration

window. In this window, the analyst easily compares corresponding regions of the

selected plots with the help of the coordinated lens (Figure 33). It is confirmed that

the feature plots are similar but have noticeable differences. Of particular interest

is the feature present in all but the bottom, far-right plot in Figure 32(b). The

coordinated lens (33(a) and 33(b)) reveals that the area of interest highlights a sharp

change in flexibility (a small blue section in the middle of red) except for the one

parameter set.

To more accurately define the region of difference, the location is visited (Figure

34(a)) and the residue numbers marking the area of change are revealed. The coordi-

nates are propagated to the detail analysis window (Figure 34(b)) and the differences

in response can be mapped to the specific residue numbers. The analyst can now



52

Figure 34: (a) Plot coordinates for the region of interest are found during recon-
struction. (b) Detailed analysis allows further mapping of flexibility values to residue
numbers among multiple plots.

further examine the physiochemical properties found in the plot lacking the small

blue area to see if this region is perhaps responsible for variations in behavior or if

the model should be modified.

4.3 Evaluation

4.3.1 User Study

A formal user study has also been conducted to confirm that discovering similarity

or dissimilarity can be eased by feature analysis. Eight student subjects conducted

the study one by one. Experience in protein analysis was not a requirement since we

were interested in the ability of this technique in easing visual examination and not

interpretation of the data. Each subject was given three tasks on paper using three

different subsets of the allostery data. Each of the three tasks consisted of 12-15 plots

(Figure 35). Subjects were asked to identify the most similar plot according to the
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preselected sub-region denoted by a rectangle. (The ”correct” match was determined

during the design of the study and was based on the visual similarity of the HH

wavelet features.)

The tasks each consisted of two subtasks. One subtask only showed the original

values and another subtask set showed the original values accompanied by feature

plots after three decompositions of the HH subband. Both original values and features

below a common magnitude were eliminated to ease the comparison for both sets.

The same plots were used for each subtask but the order was shuffled between the

original layout and the feature layout subtasks. Half of the subjects were given the

original plots first and the other half were given the feature plots first. Additionally,

the plot that was the correct match for one layout was the starting plot for the other

layout (Figure 35). We did this so that the same plots would be common across a

given task while eliminating any biases that may arise by starting with the same plot

in both subtasks. For the task shown in Figure 35 users were given the raw data plots

35(a) and asked to find the plot that they thought most closely matched the outlined

section. After the selection, the subject was given 35(b) and asked to do the same.

The matching pair (35(c)) was shuffled before the second subtask. This was unknown

to the subject. One task allowed the subject to browse enlarged plots for additional

assistance (one per page) during matching.

Users were asked to rate task difficulty and the confidence that they had chosen

the match using a 5 point scale. The accuracy of the results was analyzed after the

study. Subjects were also asked for comments after the tasks were completed. The

questionnaire is shown in Figure 36 and the cognitive guidelines [30] are listed below.
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Figure 35: In this task the user was given the raw flexibility plots in (a) and asked to
select the most similar plot to the one denoted with a star according to the outlined
section. The user was asked to do the same with the feature values accompanied by
the original values as shown in (b). The matched pair consists of plots numbered 6
and 10 in the feature view. The raw flexibility plots correspond to plots 5 (10 in the
feature view) and 15 (6 in the feature view). They are shown in (c).
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Figure 36: User form given to subjects during the study.

• Mental Demand (MD): How much mental and perceptual activity was re-

quired (e.g., thinking, deciding, calculating, remembering, looking, searching,

etc.)? Was the task easy or demanding, simple or complex, exacting or forgiv-

ing?

• Physical Demand (PD): How much physical activity ws required (e.g., push-

ing, pulling, turning, controlling, activating, etc.)? Was the task easy or de-
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manding, slow or brisk, slack or strenuous, restful or laborious?

• Temporal Demand (TD): How much time pressure did you feel due to the

rate or pace at which the tasks or task elements occurred? Was the pace slow

and leisurely or rapid and frantic?

• Performance (OP): How successful do you think you were in accomplishing

the goals of the task set by experimenter? How satisfied were you with your

performance in accomplishing these goals?

• Effort (EF): How hard did you have to work (mentally and physically) to

accomplish your level performance?

• Frustration Level (FR): How insecure, discouraged, irritated, stressed and

annoyed versus secure, gratified, content, relaxed and complacent did you feel

during the task?

The results were overwhelmingly in favor of wavelet analysis and are shown in Fig-

ure 37. The wavelet feature tasks scored lower than the original data for the amount

of demand (MD, PD, TD), effort (EF), and frustration (FR). Users thought that they

performed better on the experiment during the feature tasks (OP). Furthermore, all

subjects were able to correctly match the most similar plots when features were pro-

vided for all tasks. However, only one plot was correctly matched in the original plots

only subtasks (out of eight subjects over three tasks). Additionally, the perceived dif-

ficulty was much greater for the original plots only subtasks and subject confidence

that they had chosen the correct plot was higher for subtasks with the feature plots.
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Figure 37: Wavelet features allowed users (a) to find more correct matches with (b)
less perceived task difficulty and (c) less uncertainty.

One subject became so frustrated with the original plot only subtasks that he gave

up on finding a match. Several subjects said in the post-test that they preferred the

feature plots because the patterns were much easier to identify. In task 2, enlarged

plots were provided to the subjects but did not aid the users in more accurately find-

ing matches. This shows that zooming alone may not be very effective in assisting

plot exploration.

The tasks in the user study provided a concrete example why the feature plots can

effectively help users. Although this example may not be biologically significant, it

illustrates how the methods presented here can be used to find spatial trends from
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Figure 38: Three parameter sets (a, b, c) used in one of the tasks illustrating that the
features make identification and comparison of subtle patterns easier. Top row shows
the original data plots and the middle row shows the features which correspond to the
circled region. The bottom row displays the very light, subtle patterns that resulted
in the middle row features. For clarity, the outline of the dominat pattern is shown
to the immediate right of each section and this pattern highly resembles the features.
The areas of change in (a) are much more difficult to define and do not survive the
threshold increase and decomposition change for this subband.

protein prediction data. The target plot for task 1 is shown in Figure 38(b) and

its matching plot is shown in Figure 38(c). Seven out of the eight subjects chose
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the plot shown in Figure 38(a) which did not match the target plot. The circled

regions highlight the major difference between the plot in Figure 38(a) and the plots

in Figures 38(b) and 38(c). It is difficult to distinguish in the original plots but the

features provide much clarity and can be easily identified. The section corresponding

to the region of interest is enlarged in the third row of Figure 38. The bounds of

the section were found by examining the features in our tool as described in the case

study. Upon closer examination the checkerboard like sections for 38(b) and 38(c) in

the third row resemble the pattern formed by the features. The data plot in 38(a)

also has a checkboard-like pattern similar to 38(b) and 38(c). However, this pattern

is interrupted by a significant white column making the pattern much smaller and

more ill-defined. Features in the selected region do not survive the threshold or are

not formed in this level of decomposition.

4.3.2 Expert Evaluation

The scenario described above is a general-purpose example of how system compo-

nents are able to meet the high-level needs of domain scientists. Domain analysts

have further identified two specific scientific tasks that parallel the above scenario

and illustrate the effectiveness of this approach. The scientific tasks are listed below.

(The following was communicated by domain analysts via email.)

• Identifying the QSFR feature(s) that lead to conservation of function

across a protein family and the QSFR differences that lead to known

functional differences. In this scenario we are going to compare a single

QSFR metric of interest...across a number of evolutionarily related proteins.
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While these proteins are found in different organisms, they all have (basically)

the same function, meaning that at a high level function is conserved, but the

low level details might vary. The size of these families in our planned studies

will range from 50 to 200 proteins. Note that model variables (i.e., parameters)

will be strictly controlled for in this scenario, and are not part of what WaveMap

is trying to understand.

So, what properties are conserved across the family that mediate this conserved

function? WaveMap will thus be used to identify features from within the FLX-

FLX that are most conserved across the family. The conserved properties will

thus represent likely candidates for mediating function because evolution con-

serves things that are important.

In addition, there will be known (and unknown) small functional differences that

arise due to divergence. So, for example, assume that we can a priori classify

the protein family into three different functional sub-families. This information

is based on known differences from experiment. Then, we use WaveMap to

cluster the family based on the features. Those features that best reproduce the

functional clustering represent likely mechanistic features leading to functional

diversity.

Finally, not all of the proteins will be experimentally characterized due to the

cost of such efforts. Therefore, once WaveMap has classified the known experi-

mental space, we can infer what type of functional variants the uncharacterized

proteins fall into.
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• Identifying conserved allosteric response across a single protein using

delta-QSFR metrics. In this scenario, we are going to construct delta-QSFR

metrics based on a difference between the unperturbed (normal) and perturbed

variant of the same protein...That is, we introduce a hypothetical clamp to a

single amino acid that restricts its flexibility, and then we recalculate the QSFR

properties, which are now presented as difference maps. So, the FLX-FLX plot

is now a delta-FLX-FLX. One at a time, we systematically move the ”clamp”

along the protein sequence to interrogate the effects of rigidifying each position.

Thus, we end up with N-aa delta plots, where N-aa is the number of amino acids

in the protein of interest. As above, all model details are strictly controlled for,

and are not part of the WaveMap investigation.

The scientific question being asked is, ”Which amino acid clamps lead to sim-

ilar results of functional interest?” Thus, the natural thing to do is to simply

cluster the N-aa delta plots based on their overall composition. However, this

is likely not to be sufficient because it describes all possible pairwise couplings.

Rather, there may be a sub-section of the FLX-FLX plot that is believe to be

most related to function, and thus changes to this sub-section would be of high-

est interest. Therefore, we again cluster using WaveMap features within this

region. Therefore, we have now answered the question posed above.
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4.4 Discussion

4.4.1 Extensions

The initial purpose of the proposed approach was to help computational biologists

investigate outputs from the Distance ConstraintModel [34], [48]. Domain analysts

were impressed with the ability of the wavelet extraction technique in providing multi-

resolution views and simultaneously reducing the data. They are very interested in

extending the system so that one-dimensional data can be analyzed as well. One-

dimensional data of interest includes the data that appears earlier in the DCM pipeline

(such as energy curves) as well as one-dimensional outputs (such as individual column

or rows in the two-dimensional plots). These are both important avenues of future

work so that inputs and outputs can be more tightly coupled.

As the approach was refined and the data set was better understood, we realized

that biologists often need to visually describe data in context of spatial arrangement.

Our approach helps locate, identify, and evaluate both local and regional factors

influencing global behavior. However, any data set where variables of interest can

be arranged in a row/column layout consistently across many items and has spatial

or other meaning can benefit from this approach. In the general case, the index

i, j would represent the value of an output i for a parameter j. Examining rows

(or columns) is useful for evaluating many model or experimental responses for a

single variable and each column (or row) reflects a single result for the combination

of interdependent variables.

As a first step in showing how our technique can be applied to other fields, several
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Figure 39: (a) A recently developed tool for analyzing molecular dynamics with
zooming, sorting, and weighting [10]. (b) Plotting molecular dynamics versus time
[31].

other examples in bioinformatics will be examined. For example, other molecular

models than the one that is the focus of this work can use the row/column layout

described above. Figures 39(a) and (b) show other applications that can benefit

from our approach. Figure 39(a) is a matrix visualization tool for finding uneven

distributions among molecular dynamics. Like the correlation measures presented

earlier (section 3.3.1), Bremm et al [10] map these correlations to a three-dimensional

protein sequence. The authors note that changes in dynamics often influence both

local and global characteristics. The tool relies heavily on zooming and sorting and

still suffers from the lack of tools that are provided with WaveMap [3]. Primarily,

the tool lacks automatic guidance techniques during initial viewing and from the lack

of contextual preservation during analysis.

Another example of protein analysis that would benefit from WaveMap [3] can be
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found in [31]. In this case, scientists are interested in plotting molecular dynamics

versus time (Figure 39(b)). The dynamics of a single atomic structure is tracked

across time creating a space in which few of the data items will greatly influence

global behavior. The authors do not mention any software tools used in analysis.

The work presented here can help 1) find those few places of great influence by using

fine-grain analysis and 2) preserve any meaning associated with time.

The final example from the bioinformatics community which can benefit from

WaveMap [3] is microarray analysis. Microarrays are created by placing thousands

of genetic material samples on a chip and allows the simultaneous analysis of an or-

ganism’s genetic response for a single experiment [1], [94]. The process includes

hybridization to bind the genes to a small, thin structure. Red and green dyes are

used to express the level of activitiy of a given gene. The expression level is mapped

to intensity and the results are summarized in an matrix organized by genes (rows)

and experimental sample (column). A microarray is shown in Figure 40(a).

Zhang et al [94] discuss the visualization techniques that have been applied to

microarray analysis. These include scatterplots, heatmaps, parallel coordinates, den-

drograms, hyperbolic views, and an assortment of graph drawing methods. The

authors also list several common needs associated with microarray analysis. Among

those listed, WaveMap [3] is a suitable fit for two of those items. First, the authors

list the need for data reduction since much information can be hidden by clutter. One

way to perform data reduction is through wavelet analysis [45]. Since the application

of wavelet analysis to microarrays has been extensively studied [47], [5], [44], [87]

there would be little effort required for extending this tool to gene expression data.
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Figure 40: (a) Spot intensities in a microarray indicating gene expression [1]. Visu-
alizing cluster uncertainty in microarray data [74].

Second, the authors note that time series experimentation for genetic expression is

becoming more important. The method presented here will preserve the time sensi-

tive value (either global or anomalous behavior) of any variables being measured as

experimentation progresses.

Although many visualization and automatic analysis techniques have been applied

to mining microarray data, there still exists a great deal of uncertainty in the results

even before they are visualized. Among the chief contributors to uncertainty is decid-

ing on the proper clustering algorithm and the most appropriate parameter settings

for those algorithms. Rasmussen et al [74] use Dirichlet process mixture models, a

non-parametric Bayesian approach, to form similarity measures among gene expres-

sions. The authors visualize the co-occurrence probabilities (Figure 40)(b) such that
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the resulting plot is similar to the outputs of the model used by the BMPG. In this

display, each index represents the probability that the gene at row i and the gene at

column j are in the same cluster. WaveMap [3] would be able to represent the global

cluster structure and reveal when similar genes cluster together, leading to insight

regarding both the clustering algorithm and the behavior of gene pairs.

4.4.2 Limitations

During experimentation a several limitations were found. First, the effectiveness of

this approach is influenced by the wavelet used and the current level of decomposition.

Each wavelet feature is the result of a correlation between two signals (data signal and

wavelet signal) [45] and changing the wavelet alters its correlation to the data signal.

This means that, for a different wavelet, the interpretation of the extracted features in

relation to the underlying data may be different. Our initial implementation relied on

a well-known wavelet technique and serves only as an initial attempt. Refinement and

study are needed to develop custom wavelets so that more specific feature sets can be

targeted and better defined in terms of biological significance. Furthermore, finding

the best level of decomposition that reveals the most useful features for a given plot

is accomplished through browsing the results of the entire range of decompositions.

The situation becomes much more complicated if other data plots within the same

set have interesting features revealed at other levels of decomposition.

Second, the original framework is meant to identify localized neighborhoods which

cumulatively result in a feature. However, extensive exploration of corresponding

neighborhoods for an entire data set would be quite tedious. In the original approach,
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users are allowed analysis of a neighborhood for a single plot (feature view) before

placing that information in a limited contextual setting considering only one, fixed

height column containing a small number of data plots (detail analysis). Depending

on the subband used and the level of decomposition investigated, data yielding insight

yet contributing to the feature pattern may not be spatially close to the center of the

feature. Furthermore, an accurate representation of the original data is also assumed.

This may not be the case because of shifting during wavelet transformation and

artifacts from noise. As discussed before, boundary conditions can also lead to a

distorted representation of the underlying data near plot extremities and is an active

area of research in signal processing [11], [27].

Third, a user could suffer from change blindness [67] in the workflow. For example,

the clustering algorithm starts from a random seed and will result in different layouts

each time it is executed. However, scientists wanted layouts that would persist across

sessions. To stabilize the layouts, all cluster coordinates (raw and feature values) are

calculated the first time the data set is processed. During program execution, the

coordinates are read ensuring consistency but any desire for stability during dynamic

clustering would be problematic. Another example is the change in decomposition.

When the slider is moved, there is not a visual relationship bridging the layouts before

and after the change. Any subtle changes in the feature location or values within a

plot are lost. Solutions to these problems, including alternate layout methodologies,

should be explored.



CHAPTER 5: EXTENSIONS FOR SUBSPACE EXPLORATION

Shortcomings of the original approach were listed earlier (section 4.4.2). One of the

disadvantages is the lack of tools for efficient exploration of corresponding sub-regions

across an entire data set. The following sections show how this shortcoming was ad-

dressed. First, a refinement of the original tasks are presented. Second, related work

in protein subspace analysis and previous attempts at visually conveying subspaces

are given. Third, the proposed extensions are described. The extensions consist of a

plot carving view, a subspace cluster view, and a sliding subspace view. Finally, an

example illustrates how the proposed extensions can aid analysis.

5.1 Task Refinement

Problems faced in protein subspace analysis include organizing and separating sub-

regions across the entire data set, adequately describing differences among corre-

sponding neighborhoods, and facilitating exploration of neighborhood border areas.

As solutions were sought for these challenges, the high-level tasks mentioned earlier

(section 3.3.2)were further refined to include the following subspace tasks. They con-

tain elements of all three original high-level tasks but better represent the specialized

nature of subspace exploration. The refined subspace tasks are listed below.

Categorizing a given sub-region and its components as rigid, flexible,

neutral, or mixed. Flexibility for a region can be difficult to visually compare
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because flexible/rigid regions may take place at different parts in the sub-region.

Traditional distance measures, such as correlation, may not always be appropriate.

For example, regions having a similar total flexibility may have a low correlation value.

This can occur when local areas have the same number of flexible/rigid residues of sim-

ilar magnitude but in different locations. Furthermore, analysis of neighborhoods can

be difficult because highly flexible(rigid) regions can overshadow/hide rigid(flexible)

residues which may not be noticeable if interwoven within the flexible(rigid) regions.

Analyzing the changes in conservation for a sub-region across multiple

parameters within context of its neighborhood. Knowing how shifting the sub-

region or changing its size across the entire data set will allow scientists to know how

extensive the effects of parameters are. Parameters may only affect a small region

or they may result in a more concerted effort accross many residues. Additionally,

the extent of the effect may be different for various parameter sets. Knowing the

extent of a given group of parameters will aid scientists in developing methods to

more accurately model or predict behavior.

5.2 Background in Subspace Exploration

5.2.1 Protein Subspaces

Finding important subspaces allows analysts to identify local patterns and features

which contribute to global behavior [71]. Subspace construction and exploration is

common in protein analysis. For example, subspaces have been used in the synthesis

and analysis of experimental proteins [52]. Often, these type of mutant proteins differ

from a wild type by varying a single amino acid. Subspace modeling has helped alle-
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viate some of the difficulties encountered with numerous mutants that make training

and applying machine learning problematic.

Henk and Liere [33] divide the conformational space into two subspaces: essential

and physically constrained. The essential degrees of freedom describe functionally

important motions and physically constrained describes local variations that are not

relevant to functionally important motions. From these spaces, a protein analyst

can construct and visualize a three-dimensional ribbon diagram. Interactions for the

diagram include dragging an atom to a new position resulting in a new displacement,

monitoring the hinge properties with an angular widget, and a measuring stick widget

for deciphering distances between atoms.

Interesting clusters may be difficult to find in noisy or in high dimensional data

[2] and protein analysts lack the appropriate tools for overcoming these difficulties.

Current methods for exploration are insufficient in two ways. First, many of the

methods employed for constructing and evaluating subspaces rely almost exclusively

on computational methods, ignoring the abilities of humans to establish and compare

patterns. Second, if visualization is used as part of the solution such as described

above, only a few proteins or environmental conditions can be evaluated at a time.

Solutions that effectively address the need for subspace exploration during protein

analysis will utilize both computational methods and visualization for large scale

data sets.



71

5.2.2 Subspaces in Visualization

Visual methods for handling large data sets can provide an alternative to using

computational methods only. There are multiple works that either explicitly or im-

plicitly address interactive analysis or construction of subspaces. Several of those

works are now presented.

Many existing approaches for detecting and finding subspaces rely on quality met-

rics and reordering of dimensions. For example, Ferdosi and Roerdink [21] note

that problems exist in many current techniques used in the visualization of high-

dimensional data sets. Scatterplot matrices can fall victim to crowding and parallel

coordinates require the proper ordering of items to reveal interesting data spaces.

Ferdosi and Roerdink present three approaches based on subspace clustering and

ranking to help alleviate the shortcomings found in parallel coordinates and scatter-

plot matrices. The first is structure-based full ordering for parallel coordinates. The

first part of this step is to rank all one-dimensional subspaces by a combination of

density distribution multimodality, mode significance, and mode separability. The

top performing subspace reappears first in the reordered sequence. Next, the two-

dimensional subspaces are ranked by quality. The subspaces considered in this step

only include high-quality subspaces from the one-dimensional ranking. This process

continues for higher-order subspaces except that the highest ranking subspaces with

a known number of clusters will be considered in the next iteration. If no subspaces

exist containing the given number of clusters, then the highest ranking subspace will

be used in its place. Structure-based partial ordering for parallel coordinates is sim-
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ilar to the full ordering scheme except that sequence creation is stopped when there

are not any subspaces with the known number of clusters. Structure-based simple

ordering is useful for filtering noise in scatterplot matrices and is based on density

image quality. The filtering threshold is automatically set to the average quality of

the one-dimensional subspace. User interactions include the ability to change the

ordering of the scatterplots by dragging and dropping dimensions and the ability to

swap dimensions in the parallel coordinates. Although these methods improve some

of the most widely used visualizations, it does not fit the problem described in this

work. If used for exploring plot subspaces, the above methods would not easily allow

the inclusion of raw data values which are important in this work. The techniques

would also not facilitate the exploration of rows and columns within plot subspaces.

Like many of the matrix visualization techniques, finding and analyzing subspaces by

Ferdosi and Roerdink rely on reordering. As previously described, reordering would

not be able to handle dimensions or subspaces which are separate but may have highly

interconnected effects.

Guo et al [25] present a platform for finding subspaces based on interactive fea-

ture selection and easily examining hierarchical clusters. For automatic guidance to

interesting subspaces, an entropy matrix is constructed. In the matrix, the cell’s

color represents a measure between two dimensions. The maximum conditional en-

tropy (MCE) is displayed above the diagonal and χ2 below the diagonal. Brighter

colors represent either low MCE or high χ2 values and those values can be accessed

by moving the mouse over the cell. Clicking on the diagonal allows the user to add

or subtract a variable from a subspace and other system components are updated
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Figure 41: a) Subspace and feature selection [25]. Subspace entropy map (top) and
linked visualizations for subspace and cluster exploration.

according to the change. Capabilities exist so that automatic searches are based on

entropy values. Figure 41 shows the subspace feature selection platform. The en-

tropy matrix is at the top of the display and is placed among other linked tools for

cluster examination. Although the interactive feature selection methods show how

automatic techniques and visualization can be combined, the interface shown in Fig-

ure 41 is very complicated and could easily hide important information or overwhelm
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scientists. Additionally, this example lacks the ability to drill-down into specific data

items and compare that data item’s attributes across the data set.

Another plaform allows users to isolate subsets of data according to linear trend

discovery [26]. The system includes a data space view consisting of a scatterplot

matrix. In this view, users are allowed to choose which variables are dependent and

which are independent. The model space view consists of linear trend management

(viewing, selection, and deletion) as well as linear trend measurement views. A color

coded sample measurement map allows parameter partitioning and tuning. Although

a positive step forward in the subspace examination of model variables, it presents

drawbacks for the application presented in this research. For example, techniques

such as parallel coordinates and scatterplots are used which may not scale to the

number of conditions being studied by protein scientists. Most importantly, domain

scientists may not only be interested in the parameters which exhibit similar linear

trends but may be more interested in exploring those parameters whose behavior

cannot be easily defined across studies.

VISA (Visual Subspace Clustering Analysis) [2] attempts to occlude redundant

spaces with efficient representations a nd user feedback (Figure 42). VISA allows

subspaces to be browsed. The greatest obstacle in this first step is being able to

compare insights in separate or overlapping subspaces in the same view. To overcome

the problem of subspace comparability, a normalized distance function is constructed.

Detailed information such as mean and variance can be shown for a selected subspace.

Bracketing is a series of views for different parameter settings and is helpful to the

user when setting the appropriate parameters that minimize redundancy. Subspace
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Figure 42: Visa [2]. a) Subspace cluster overview b) Detail view showing statistics
for clusters c) Bracketing redundancy d)Matrix of cluster subspaces

matrices can be viewed where rows represent clusters and columns represent columns.

Saturation denotes subspace importance through which a subspace anchor and di-

mension values are mapped to color. Groups are defined as a set of dimensions within

a distance of the anchor. Individual subspaces can be examined even further through

the use of a scrolling zoom.

Finding and examining outliers is an important activity for protein scientists. A
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Figure 43: Web-based outlier subspace [46].

system for examining outlier subspaces is shown in [46]. There are many outlier de-

tection methods [13] and this platform allows the simultaneous visual verification and

comparison of detection methods. Additionally, users can visualize distributions of

the outlier space. The two-dimensional display (Figure 43) outputs the total number

of outliers, the number of outliers in the display, and summary information regarding

outliers. Additionally, the user can change the threshold for defining an outlier and

view a three-dimensional display.

The above is a sampling of the approaches combining visualization and subspace

analysis. The major shortcomings of the above works and many other subspace

approaches are listed below.

• Reliance on reordering. As discussed already, domain scientist may not want

to rely on reordering of their data set. Each residue does not occur in isolation

and may have large influence on the behavior of other residues which may or
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may not share neighborhoods on the three-dimensional protein.

• Utilization of complex algorithms and quality metrics. Many systems

for subspace analysis rely on complex algorithms and quality metrics which

may not be designed to locate subspaces of true interest to domain scientists.

Any visualization in these systems is constrained by the understanding of these

algorithms by domain scientists and how much overlap there is between what

the metrics and domain scientists consider a quality subspace.

• Visualization of summary clusters Ferdosi et al [20] note that too many

visualization approaches only aid in presenting cluster analysis and do not aid

in exploring individual subspaces. Because of the contextual significance of the

residues on the three-dimensional behavior of proteins, the inability to explore

neighboring regions on a residue-level basis is a critical shortcoming.

This work proposes a solution for finding subspaces of interest in protein flexibility

that overcomes the above shortcomings by combining visualization with appropri-

ate automatic analysis. Additionally, this approach will provide a more streamlined

approach and greater flexibility than the systems presented here. Specifically, the ap-

proach in this work will allow domain analysts to use their unique knowledge within

an exploratory environment to decide which subspaces need to be examined and then

investigate individual members of those subspaces.

The views developed for subspace exploration in protein flexiblity matrices are

now presented and described. Capabilities for subspace analysis are integrated into

WaveMap [3] to complement the functionality already presented.
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5.3 Plot Carving

5.3.1 Grid Sections

The plot carving view allows users to employ several techniques in support of

exploring and categorizing subspaces. In this view, the entire data set can be divided

into corresponsing sections and histograms allow each section to be categorized into

its rigid and flexible components. Users begin exploration by dividing plots into

smaller chuncks via a method we termed carving. Input boxes specify the number of

horizontal grids and the number of vertical grids. If the plot cannot be divided evenly

into the length or width given, an error message is displayed. After the neighborhood

size has been specified, an interactive grid is drawn on the plot in the detail window.

The grid dimensions can be changed by entering the new length/width (Figure 44(a))

and then clicking on a refresh button. Later, a free-hand tool is described for greater

freedom for choosing subspaces.

Once the grid sections are defined the user can click on the ”carved” plot (Figure

44(b)). Scientists can choose a grid three ways. First, scientists may be interested

in a certain section because of prior domain knowledge. Second, they may use the

previously described wavelet analysis to guide them to areas of interest. Third, they

may systematically click on adjacent grid sections until a region of interest is found.

5.3.2 Histogram Sorting

After finding a grid section of interest, the main display shows information about

the section occurring across all plots. Histograms for the corresponding grid section

are shown for the entire data set (Figure 44(c)) and are utilized to categorize the
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Figure 44: (a) Input boxes for changing the length and width of grid sections. (b) Grid
sections dividing the data set into sub-regions. Sections can be selected by clicking.
(c) Histogram view with bins colored according to average flexibility of its members.
(d) Enlarged view of the selected plot with the currently selected residue outlined in
black and the previous residue outlined in gray. (e) The currently selected residue is
on the right side of the columns and the previous residue is on the left. Green lines
indicate the place of each residue when all corresponding residues are sorted and the
residue coordinates are shown below. (f) The current residue sorted across the data
set allows users to select a plot of interest. Clicking on a square changes the target
plot which is highlighted in green.

components in each individual plot. Histograms have been successfully integrated

into visual analytics systems. Guo et al [26] used histograms to display distributions

of distances for finding linear trends in model variables. Color is used to match the

histogram to data in other views and colored vertical lines show boundaries where any

bins outside of the boundaries contain trend outliers. In some instances histograms

have played a more central role. For example, Barlowe et al [4] used histograms to



80

Figure 45: Multivariate Variable Explanation (MVE) [4]. Histograms are an integral
part of MVE. (a) Histograms of partial derivatives help locate variables with high
correlation. (b) Histograms are linked to parallel coordinates through brushing.

visually explore partial derivatives so that highly correlated variables can be detected

and used in interactive model building. A histogram layout linked to parallel coor-

dinates is shown in Figure 45(a) and (b). For the work presented here, histograms

provide scientists a way to categorize groups of residues within a plot as flexible,

rigid, neutral, or mixed. This compartmentalizes each subspace by varying degrees

of flexibility. Bin color is determined by the average flexibility of its members. Data

items are normalized for the entire set but the bin size is normalized individually.

This allows users to compare bin color across all histograms but accurately maintain

the proportion of each bin to the total subspace members.

After each subspace is compartmentalized, sorting the entire space of histograms

allows users to categorize and compare whole histograms. There are many algorithms

for calculating histogram similarity. Surveys of histogram bin measures can be found

in [75] and [43]. Most types of histogram distance measures can be classified as

either bin-by-bin, cross-bin, or a hybrid of these. Bin-by-bin distances are calculated
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using only bins that correspond to the same position in the histogram. Examples

of this type include Minkowski-form, histogram intersection, Kullback-Leibler and

Jeffrey divergence, and χ2 [75]. Bin-by-bin distances have several notable disadvan-

tages. First, they do not consider the similarity of any adjacent bins and may suffer

information loss. Second, bin-by-bin measures are sensitive to bin size. Large bins

may not distinguish between a large range of data items and small bins may place

items within a narrow range into different bins where the distance between them will

not be matched. Third, bin-by-bin measures may not produce perceptual similarity

where histograms considered similar are visually similar.

Cross-bin distances calculate distance among pair-wise bins [75]. Information

loss is minimized because more adjacent bins are taken into account when deriving

distances. Common distances include the quadratic-form distance, parameter-based

distance, and earth mover’s signature distances. Cross-bin distances also suffer from

several disadvantages. For example, quadratic-form distances do not ensure percep-

tual similarity and in the case of image retrieval can result in false positives. Because

of pair-wise comparisons, cross-bin distances are generally more computationally ex-

pensive than the bin-by-bin distances. For example, [6] lists χ2 with a low complexity,

quadratic form distance with a medium complexity, and earth mover’s distance with

a high complexity. (The only cross-bin measure listed as having low computational

complexity by [6] is a measure for cumulative histograms which will not be considered

here.)

The histogram similarity measure chosen was χ2 (Equation (2)) where d represents

the distance between two histograms H and K, hi is the number of data items in the
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Figure 46: The left and right histograms are identical in shape. When bins are colored
according to flexibility, the interpretation of the histogram drastically changes even
though perceptual similarity is maintained. (The vertical black line marks the zero
point between flexible and rigid.)

ith bin of histogram h, and mi is the average size of corresponding bins.

dχ2(H,K) =
∑
i

(hi −mi)
2

mi

(2)

A bin-by-bin distance was chosen for three primary reasons. First, users should be

able to order plots by similarity during program execution and bin-by-bin measures

offer the efficiency that would be required doing this for large data sets. Second,

a method for determining similarity among bins having the same flexibility range

is desired. A method for pair-wise comparison could have been chosen to preserve

perceptual similarity. However, perceptually similar histograms that are identical but

differ only by a shift left or right would destroy any meaningful flexibility information

encoded by bins (Figure 46). Third, the sensitivity to bin size can be controlled by

letting the user interactively choose the number of bins into which the subspace can

be divided.
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5.3.3 Interactions

There are many interactions available for examining histograms. Clicking on a

subspace will make that subspace the target. The remaining histograms will be sorted

based on similarity to the target. Slider movement allows the number of bins in a

subspace to be increased or decreased. Users can also interactively trim the histograms

so that a subset of bins can be compared (Figure 47). For instance, scientists may

Figure 47: (a) Histograms before trimming is executed. (b) Histograms and trim tool
after trimming is executed. Trimmed bins are removed from the histograms and are
not considered in similarity calculations.



84

Figure 48: After bins are excluded members of the those bins are filtered from the
subspaces when the original values are shown.

see a subset of bins with an average flexibility score (denoted by color) and want to

compare the size and color of only the corresponding bins. When this tool is activated,

the entire histogram for the target subspace is shown. When bins are clicked the green

rectangle below each bin turns gray indicating that they have been trimmed from the

entire data set. After the user trims the bins, all distances from the target subspace

are recalculated and all subspaces are resorted. This can be accomplished because

the columns under comparison do not need to be adjacent, a benefit of the bin-by-bin

approach. After a bin is removed the data members contained in that bin are removed

from subspaces when the histogram view is toggled off (Figure 48).

Once a subspace of interest has been chosen, the user can investigate individual

residues. Individual residues are selected (Figure 44(d)) as the user clicks within an

enlarged plot in the bottom left portion of the screen. The current residue is outlined

in black and the residue visited just before the current one is outlined in gray. To aid

in determining context, the current residue is marked in all of the subspace sections
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Figure 49: Black dots mark the location of the current residue in all subspaces.

by a black dot (Figure 49). The values for the current residue across the entire

data set are sorted in the far right portion of the main display with the current plot

labeled and highlighted (Figure 44(f)). Between the enlarged sub-region and the

right-hand sorting display, the current residue and the previously examined residue

are each sorted across the dataset in columns (Figure 44(e)). Beside each column, the

current and previous residue for the plot being examined are marked with green tick

marks. The sorted comparison columns were added to help users track their path of

exploration and to compare multiple residues across the entire data set. Although the

implementation only shows the current residue and the previously visited residue, this

could be easily extended to include less recently examined residues enabling longer

exploration paths to be kept.

5.4 Subspace Clusters

When the plot in the detail window has the grid drawn on it, users can pick the size

of the subspace and then click on the plot section to select it. Once the grid section
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has been selected and plots having interesting subspaces placed on the clipboard, the

user toggles the view to ”Off” to go to the next view. Boundary coordinates of the

selected sub-region are captured and the plots of interest are propagated to the next

view. Before users are presented with the sliding window, an MDS [9], [14] display is

shown. In the previous view, histograms are sorted according to bin similarity. The

MDS view is a two-dimensional representation of the subsapces consistent with other

views in the system and may reveal overall patterns not visible in the one-dimensional

histogram sort. As mentioned earlier, alternative methods can be explored. The

MDS display in the subspace workflow has the same layout as the MDS display in the

original framework. However, the distances calculated, the coordinates determined,

and the data within each plot shown only consider the plot section selected in the

grid. Any general patterns for the entire subspace section that were not detected

while viewing the histogram layout can be examined here.

5.5 Sliding Subspaces

5.5.1 Context Scans

Once a subspace has been located it should be placed in context with adjacent

subspaces. However, simply comparing the single subspace with others is not enough

because proteins are continuous in structure where parameter effects may be sudden

or evolve gradually through several subspaces. Knowing how a subspace gradually

merges with other adjacent subspaces will allow scientists to more finely characterize

the effects of parameters sets. This includes both finding the magnitude of differences

from other subspaces and better pinpointing where those differences occur. To accom-
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Figure 50: (a) A sliding window the size entered by the user at (b). (c) Bubbles
represent pair-wise distances for clipboard items. (d) Raw data points for the subspace
pairs. (e) Sorted bubbles relating distances from each subspace on the clipboard to
subspaces across the entire data set.

plish this, domain scientists conveyed an interest in a mechanism where the bounds of

a window could gradually scan across adjacent subspaces revealing distances among

items as that window moved from one subspace into the selected subspace. What

follows below is a description of the resulting design.

After viewing overall patterns in the cluster view the user can right-click the detail

window to begin the sliding window (Figure 50(a)). The window’s coordinates and

size are the same as the subspace selected in the grid. After initiating the window,

a dotted bounding box appears to the left of the subspace. The window’s distance

from the base is half of the bounding box size entered by the user (Figure 50(b)).

Changing the bounding box size allows scientists to alter the space of analysis for

which they desire to measure parameter effects.
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When the scan begins, the sliding window moves right in increments of one residue

at a time. The user can control window movement through buttons that cause the

scan to stop, to increment by one, or to decrement by one. Because scientists may

want to also examine subspaces that are vertically adjacent, users can change the

direction of the scan through a toggle button. Being able to change the direction

has a practical use for domain analysts. The different implications of direction choice

for the allosteric response data is described below. To simplify the descriptions, they

will only consider the scan of a single row or column for the length of the protein.

However, the following descriptions can be generalized for larger sub-regions.

• Horizontal scan Scanning horizontally allows scientists to monitor the effects

of parameters for a single residue as all residues are individually perturbed.

• Vertical scan Scanning vertically reveals changes in parameter effects for the

perturbation of a single residue across all residues.

As the window moves horizontally or vertically, the differences in the effects of

parameters are output to the user. Distances between subspaces are encoded as

bubbles. As the scan progresses, the bubble area and the alpha value are altered

as distances change. When distances are small, bubbles are small and gray. Large

distances result in larger bubbles and deeper shades of blue. The screen space is

divided into two main sections. On the far left (Figure 50(c)), bubbles for the pair

of subspaces next to it (Figure 50(d)) are drawn in a larger scale. Each bubble on

the left represents the distance between one of the pair-wise comparisons made from

the clipboard contents. To the right of the raw values for each subspace, is a row of
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bubbles increasing in size (Figure 50(e)). Each row of bubbles represents the distance

from the subspace at the beginning of the row to every corresponding subspace across

the entire data set.

Functionality exists to help users compare the overall scan. The system records

the bubble sizes in each row at the beginning of the scan, at the original window,

and at the end of the scan. These snapshots are automatically organized by the

system according to subspace and are available to the user after one pass of the

sliding window. As will be shown later, this organization can be useful for comparing

changes occurring between time points among several subspaces.

5.5.2 Interactions

The user has several interactions to reveal more detailed information when the scan

is paused. When any bubble (including the enlarged bubbles on the left or the smaller

bubbles to the right) is selected by a mouse-over, the normalized distance is shown

at the top of the screen within a rectangle that matches the corresponding bubble

color (Figure 51(a)). On either side of the rectangle are the plot names for which that

distance was calculated. Additionally, green rectangles enclose one circle on each row

(Figure 51(b)). The green rectangle indicates where the distance represented by the

enlarged bubble on the left ranks when the entire data set is sorted. Finally, users

have access to a free-hand tool if the current size or location of the selected subspace

is inadequate. To use this tool, the upper-left corner of the new bounding box is

selected by clicking in the detail window and then releasing the mouse at the desired

bottom-right corner (Figure 52).
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Figure 51: (a) Moving the mouse over a bubble causes the distance and plot names to
be displayed within a rectangle in the same color as the buble. (b) Green rectangles
show where the subspace at the left ranks when the all distances to that subspace are
sorted.

Figure 52: Subspaces can be selected by window-selecting the desired area.

5.5.3 Outlier Detection

Before this view emerged there was one attempt that was not suitable for detailed

examination. This view, shown in Figure 53, split the display space along the screen’s

diagonal. The lower right portion contains enlarged distance bubbles. In the top por-

tion is one-half of the symmetrical distance matrix. Bubble size and color represents

each pair-wise similarity between two subspace regions as in the previous view. Even

though the views contained the same basic components, the split-screen view resulted

in the crowding of the distances across the data set. Additionally, the fixed rows and
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Figure 53: Each row and column in the top-left portion of the screen represent dif-
ferent plots. Each bubble relates the dissimilarity of subspaces. In the bottom-right,
bubbles for plots of interest on the clipboard are drawn larger. (a) An outlier is iden-
tified as bubbles in this column are large across the data set. (b) and (c) point to
rows having bubbles of various sizes, the majority of which are large bubbles. This
indicates an outlier that is less extreme than that in (a).

columns were arranged in the order that they were input from storage which made

patterns difficult to detect. However, this view is useful for easily identifying subspace

outliers as scans are performed. The previous view only displays a limited number

of subspaces but this expanded version can help users monitor the entire data set

for outliers. A user can easily monitor this portion of the screen to see if a row (or

column) develops only large bubbles, an indication that an outlier has emerged. Fur-

thermore, the user can stop the scan to see exactly where the behavior started that

resulted in outlier status.
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5.5.4 Subspace Similarity Types

To help quantify the differences in parameter effects, two distance measures are

available in the bubble view (Figure 54). The default distances for pair-wise com-

parisons are simply the covariances used in the cluster view. However, scientists may

need to track if the distances between two corresponding subspaces is different from

the distance calculated from the entire plots. In other words, is the similarity of the

subspaces different from the similarity calculated when the entirety of each plot is

considered? This difference is conveyed through changing bubble size and color B(a,b)

according to the absolute value of the difference between the distance E(a,b) (entire

matrix A to entire matrix B) and a second distance S(a,b) (sub-region in matrix A

Figure 54: Beginning, middle, and end samples of an animated scan. Top: Bubbles
relate the similarity of corresponding subspaces. There is a gradual, but noticeable
increase in bubble size indicating a decrease in similarity. Bottom: Bubbles relate the
difference in the similarities when comparing subspaces and when comparing entire
plots. A larger, deeper red bubble indicates that the subspaces exhibit a different
degree of similarity than the plots as whole entities.
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to the corresponding sub-region in matrix B) as shown in Equation (3).

B(a, b) = |E(a, b)− S(a, b)| (3)

A small difference indicates that comparing subspaces for two plots follow the same

general behavior as if the entire plots were compared. A large difference indicates

that subspace behavior deviates from the comparative behavior of the two plots as

whole entities. A large difference flags scientists to an area that may lead to insight

not possible when entire plots are considered.

5.6 Evaluation

5.6.1 Example Use

An example now illustrates how some of the above functions are able to aid sci-

entists in exploring subspace data sets. Mottonen et al [58] found that allosteric

response is both conserved and variable across the CheY protein. To investigate this

further using the added subspace functions, each plot is divided into eight grid sec-

tions along both the width and length. In this case, the grid is browsed systematically

and sections will be investigated individually for their consistency. Figure 55 displays

one subspace that was visited and exhibits a high degree of consistency. In the top

of Figure 55 the original data values are shown. The histogram for each subspace

is shown on the bottom. From both the top and the bottom views, there is little

variability throughout the data set. Most subspaces are flexible (red). Sorting makes

it clear that there are only a couple sections that have any rigid sections (blue). This

is also evident in the histogram view. After the browsing is finished, it would be
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Figure 55: The original values and histograms for the subspace marked in green on
the right. Across the data set, this subspace exhibits great consistency. The only
significant deviations are a small number of blue residues in the first row. (Green
borders on the top-left and bottom-left indicate the current plot selected and not the
particular sub-region selected on the right.)

interesting to re-visit the few variable sections (those with blue) and investigate what

causes the difference in flexibility.

Another subspace visited is shown in Figure 56. Again, the original data values

and the histograms are displayed. This set of subspaces can be roughly segregated

into two groups. One is consistently flexible (red) and the other has a mix of rigid

(blue) and flexible (red) residues. Viewing the histograms confirms that observation.

Although there is consistency in the red group, the mixed group seems a little more

variable in both the degree of flexibility (and rigidity) and the differences in the total

number of residues exhibiting flexible or rigid behavior. This is also confirmed in
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Figure 56: A more variable plot subsection. Histograms for the extreme plots are
shown on the right.

the histograms. The top left plot has a rigid bin having more members than the

flexible bin. Additionally, the rigid bin has an average value that is more rigid than

the others. However, the rigid bin generally becomes smaller and more faded as the

sequence of histograms progresses towards the end of the list. At the end of the list,

there are no rigid residues.

To adequately examine the effect of parameters in this subspace, the surrounding

sections should be included in the analysis. Two subspaces from the mixed (variable)

group and two plots from the consistently flexible group are placed on the clipboard.
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Figure 57: Resulting distances (bubbles) after a scan is initiated organized by plot.
Three places in the scan were recorded: the beginning of the scan (0), the original
window (1), and the end of the scan (2). As the scans progress, differences across the
data set become evident and allow adjacent subspaces to be included.

By investigating the extremities of the sorted list, the entire range of parameter

differences should be evident. To get a wider view of the adjacent subspaces to the

left and right of the selected region, 50 is chosen as the window size (each subspace

is only 16 residues wide). The scan is started and the changes are mostly gradual.

To better visualize the gradual changes, bubble sizes in each row are recorded by the

system at the beginning of the scan, at the original window, and at the end of the

scan. The three points in the scan are shown in Figure 57. The system organizes each

recording by plot after one complete scan. In the figure, line 0 is the beginning, line

1 is the original window, and line 2 is the end of the scan. The more rigid (mixed)

sub-regions are in Figure 57(a) and the more consistent sections are in 57(b).
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The extent of the parameter differences can now be examined so that they can be

placed in context of adjacent sections. In this case, only bubbles having a size greater

than half of the largest bubble in that row are drawn. This helps filter subspaces that

are similar to the target and more clearly show the subspaces that are less similar.

In Figure 57(a), the number of subspaces drawn decreases as the original window is

reached and then increases again as the bounding box passes through to the other side.

For scientists, this case means that, in relation to the selected plot, the difference in

parameter effects is more narrow in the original window than in adjacent sections. For

the more consistent subspaces on the bottom, the opposite occurs. For scientists, this

means that, in relation to the selected plot, the difference in the effects of parameters

is evident across more subspaces in the original window than in adjacent sub-regions.

Also clear in this view are general characteristics of the two groups. The subspaces

in 57(a) have more bubbles in each row than those in 57(b). This indicates that the

bottom subspaces have more overall similarity to the rest of the data set than the top

subspaces.

In the example here, the changes are slow during the scan indicating that the

changes are gradual. To more accurately pinpoint any sudden change, the grid size

and section can be altered or the free-hand tool employed. Because the user has

identified the behavior at the beginning, middle, and end of the scan, the window size

can also be narrowed to either the first part of the scan or the latter part of the scan.

Which part of the scan is investigated further depends on the behavior (increasing

or decreasing similarity) that is desired. This can be repeated until the residue-level

differences are found. Another option for exploration is to move the mouse over plots
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having larger distances, record the plot names, and then explore them for residue-level

variations.

5.6.2 Expert Evaluation

The subspace exploration functionality was shown to the domain scientists. The

scientists expressed interest in the histogram view by mentioning that an approach

tried earlier by a graduate student in their group involved heavy use of histograms

and binning. Scientists had many questions regarding the determination of bin size,

both in terms of height and width. Any future use would need to investigate exactly

what normalization procedures (per subspace, over the entire data set, etc.) would

create the best environment for comparison.

The domain scientists found the bubble view shown in Figure 50 and Figure 51

confusing at first. When all of the subspace additions were demonstrated, explaining

this view took the most time. Scientists had trouble conceptualizing the distances

among pair-wise comparisons. In other words, it seemed as though they needed to

mentally convert the layout to the more symmetrical distance matrix before inter-

preting the results. However, they stated that the view was compact and showed

more information in a way they had not considered before. They showed interest in

investigating the data with the new information available.

A few changes were made to simplify the bubble view. Previously, each large bub-

ble on the left was followed by two subspaces and two lines of bubbles representing

the distance from each subspace to all other corresponding subspaces. Now, each row

only consists of the subspace and its label followed by its distance to the other cor-
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Figure 58: Subspaces that are (a) similar to some but dissimilar to others, (b) similar
to all other subspaces except for one, and (c) dissimilar to almost all others. (d)
Detail information shown when the scan is stopped and the mouse moves over the
last bubble in row (b). The last bubble in row (b) is the distance to the outlying
subspace in row (c).

responding subspaces across the data set. The green rectangles were also eliminated

when a user stops the animation. The double entries were eliminated and the large

bubbles on the left were also removed. The updated view is shown in Figure 58.

The updated version streamlined the previous version with little information loss.

Because domain scientists expressed an interest in some of the information in the

older view, they now have access to both. The new version can be viewed for a less

cluttered overview of a few interesting subspaces and then users can move to the

advanced view for more detail.

After scientists began to understand the layout, there were two noteworthy ob-

servations. First, the allosetric response data was used in the demonstration and

scientists expressed a desire for a very specific subspace definition. Scientists were

more interested in setting the subspaces to single columns. Although it wasn’t sur-

prising that scientists were interested in defining the subspaces as columns, it was

somewhat surprising that little interest was shown in subspaces of different shapes
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and sizes. In future attempts, this will be taken into account so that response vectors

can be used as the base unit of comparison. During development a mechanism for

clustering columns had been implemented. This implementation clustered columns

within a single plot. However, the interest in column-based analysis expressed by

scientists included clustering the entire data set according to weighted columns of

interest. Second, domain scientists stated that the bubble view introduced them to

information that they had not even considered before. More exploration would be

needed to see how this new information fit into their analysis. There was agreement

that the bubble view could provide useful information but quickly become unman-

ageable as subspaces are added.

There was interest from domain scientists in at least two directions for further

work. First, more guidance should be given when searching for interesting subspaces,

regardless of shape and size. If domain analysts have no beginning suspicions about

where to start exploration or the wavelet functionalities prove fruitless, finding a

subspace of interest is a purely exploratory process. Much time can be wasted finding

the subspace of interest. Second, there was agreement from everyone that alternate

clustering configurations which better conveyed distances between column response

vectors would be beneficial. A new configuration should include an evolving picture

of the data set and allow scientists to move from column to column more fluidly

without having to click on the grid, an action that becomes increasingly difficult in

the current implementation as columns become more narrow.



CHAPTER 6: CONCLUSION AND FUTURE WORK

This work addresses the challenges encountered when analyzing outputs from a pro-

tein flexibility model. Providing solutions to the analysis of complex computational

data sets will speed advances in predicting and treating disease. Data commonly en-

countered by users of this model has been categorized and described so that overlap

with other scientists can be identified and used in the construction of more standard-

ized processing tools. Frequent communication with domain scientists, the study of

multiple data sets, and several attempts at prototyping have resulted in a set of high-

level tasks so that better analysis tools can be developed in the future. A prototype

incorporating feature extraction, visualizations, and interactions emerged from the

formalization of data types and high-level tasks. A user study, user scenarios, and

feedback illustrate the prototype’s effectiveness in locating and exploring areas of

interest in a large, complex data set.

There are many directions for future work in addition to addressing the shortcom-

ings already discussed. For example, experimentation with feature extraction should

continue. Custom wavelets and even other feature extraction techniques could be

integrated in the system. Giving the user a wide range of options for the type of fea-

ture extraction and parameter options for the chosen method would allow scientists

to fine tune which characteristics are extracted. Expanding this idea would include
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finding ways to effectively compare the effects of different extraction techniques over

an entire data set.

Another direction for future work is searching for better ways to associate input

parameters with model results. Most of the effort here concentrated on discriminating

between model outputs represented by plots. Options were included for displaying

plot names and border highlighting which reflect only a few inputs of interest to the

domain scientist. In the future, model outputs and extracted features should be more

closely bound to all model parameters, the list of which could be pruned by the user.

Access to line plots and scalar values of all input variables, to name just a couple,

can be integrated into the system so that change in outputs can be traced back to the

single or group of responsible parameters. Extensions to this line of research include

providing tools for what-if analysis when changing model inputs.

Finally, the pipeline and prototype in this work should be applied to other domains.

The possibilities for applying this approach to other problems encountered when

analyzing biological data was discussed. Experimentation should be conducted to find

any differences in the data processing or high-level needs of scientists. Additionally,

applications of the tool to domains beyond biological data sets can be explored.



103

REFERENCES

[1] Anandhavalli, M., Mishra, C., and Ghose, M. Analysis of microarray
image spots intensity: A comparative study. International Journal of Computer
Theory and Engineering 1, 5 (December 2009), 1793–8201.

[2] Assent, I., Krieger, R., Muller, E., and Seidl, T. Visa: Visual subspace
clustering analysis. SIGKDD Explorations 9, 2 (2007), 5–12.

[3] Barlowe, S., Liu, Y., Yang, J., Livesay, D. R., Jacobs, D., Mottonen,

J., and Verma, D. Wavemap: Interactively discovering features from protein
flexibility matrices using wavelet-based visual analytics. Computer Graphics Fo-
rum 30 (2011), 1001–1010.

[4] Barlowe, S., Zhang, T., Liu, Y., Yang, J., and Jacobs, D. Multivariate
visual explanation for high dimensional datasets. IEEE Symposium on Visual
Analytics Science and Technology (2008), 147–154.

[5] Barlowe, S. A., and Tashakkori, R. A lifting-based knowledge discovery
in microarray data. International Conference on Mathematics and Engineering
Techniques in Medicine and Biological Sciences (2005), 291–298.

[6] Bernas, T., Asem, E. K., Robinson, J. P., and Rajwa, B. Quadratic
form: A robust metric for quantitative comparison of flow cytometric histograms.
Cytometry A. 73, 8 (2008), 715–26.

[7] Biochem.co - biochem & science notes. http://biochem.co/2008/08/

proteins-primary-secondary-structures/.

[8] Bonneau, G.-P. An introduction to wavelets for scientific visualization. Sci-
entific Visualization Conference (dagstuhl ’97). (1997), 16.

[9] Borg, I., and Groenen, P. Multidimensional Scaling: Theory and Applica-
tions. Springer, 2009.

[10] Bremm, S., Schreck, T., Boba, P., Held, S., and Hamacher, K. Com-
puting and visually analyzing mutual information in molecular co-evolution.
BMC Bioinformatics 11, 1 (2010).

[11] Cai, W., and Adjouadi, M. Minimization of boundary artifacts on scalable
image compression using symmetric-extended wavelet transform. International
Conference on Information Technology: Coding and Computing 1 (2004), 598.

[12] Camoglu, O., Kahveci, T., and Singh, A. K. Psi: indexing protein struc-
tures for fast similarity search. Bioinformatics 19 (2003), i81–i83.

[13] Chandola, V., Baneriee, A., and Kumar, V. Anomaly detection: A
survey. ACM Comput. Surv 41, 3 (2009), 1–58.



104

[14] Cox, T., and Cox, M. Multidimensional Scaling., second ed. Chapman and
Hall, 2000.

[15] DeLano Scientific. The PyMOL Molecular Graphics System, 2002.

[16] Do, C. B., Mahabhashyam, M. S., Brudno, B., and Batzoglou, S.

Probcons: Probabilistic consistency-based multiple sequence alignment. Genome
Research. 15 (2005), 330–340.

[17] Dunteman, G. H. Principal Components Analysis. Sage Publications, 1989.

[18] Elshenawy, L. M., Yin, S., s. Naik, A., and Ding., S. X. Efficient recur-
sive principal component analysis algorithms for process monitoring. Industrial
& Engineering Chemistry Research. 49 (2010), 252–259.

[19] Farin, G., Hamann, B., and Hagen, H. Hierarchical and Geometric Methods
in Scientific Visualizations. Springer, 2003.

[20] Ferdosi, B. J., Buddelmeijer, H., Trager, S., Wilkinson, M. H., and

Roerdink, J. B. Finding and visualizing relevant subspaces for clustering high-
dimensional astronomical data using connected morphological operators. Proc.
IEEE Conference on Visual Analytics Science and Technology (October 2010),
p. 35–42.

[21] Ferdosi, B. J., and Roerdink, J. B. Visualizing high-dimensional structures
by dimension ordering and filtering using subspace analysis. Eurographics/IEEE
Symposium on Visualization 30, 3 (2011), 1121–1130.

[22] Forlines, C., and Balakrishnan, R. Improving visual search with image
segmentation. CHI (2009), 1093–1102.

[23] Gehlenborg, N., O’Donoghue, S., Baliga, N., Goesmann, A., Hi-

bbs, M., Kitano, H., Kohlbacher, O., Neuweger, H., Schneider, R.,

Tenenbaum, D., and Gaviin., A. Visualization of omics data for systems
biology. Nature Methods. 7 (2010), S56–S68.

[24] Gonzalez, R., and Woods, R. Digital Image Processing. Prentice Hall, 2001.

[25] Guo, D. Coordinating computational and visual approaches for interactive
feature selection and multivariate clustering. Information Visualization 2 (2003),
232–246.

[26] Guo, Z., Ward, M. O., and Rundensteiner, E. A. Model space visual-
ization for multivariate linear trend discovery. VAST (2009), 75–82.

[27] Gutierrez, A., and Somolinos, A. Influence of wavelet boundary conditions
on the classification of biological signals. Proceedings of the IEEE 26th Annual
Northeast Bioengineering Confernece (2000), 25–26.



105

[28] Guyon, F., Tuffery, P., and Camproux, C. A hidden markov model ap-
plied to the protein protein 3d structure analysis. Source Computatonal Statistics
Data Analysis Archive 52, 6 (2008), 3198–3207.

[29] Hao, M. C., Dayal, U., Keim, D. A., and Schreck, T. Importance-driven
visualization layouts for large time series data. IEEE Symposium on Information
Visualization (2005), 27.

[30] Hart, S. G., and Staveland, L. E. Development of nasa-tlx (task load in-
dex): Results of empirical and theoretical research. In Human Mental Workload,
P. A. Hancock and N. Meshkati, Eds. North Holland Press, 1988, pp. 239–250.

[31] Hess, B. Convergence of sampling in protein simulations. Physical Review E
65, 3 (March 2002), 031910.

[32] Hu, J., Shen, X., Shao, Y., Bystroff, C., and Zaki, M. J. Mining protein
contact maps. Workshop on Data Mining in Bioinformatics (2002), 3–10.

[33] Huitema, H., and Liere, R. V. Interactive visualization of protein dynamics.
Visualization 2000 (2000), 465–468.

[34] Jacobs, D., and Dallakyan, S. Elucidating protein thermodynamics from
the three-dimensional structure of the native state using network rigidity. Bio-
phys J 88 (2005), 903–915.

[35] Jadhao, D. V., and Holambe, R. S. Feature extraction and dimensionality
reduction using radon and fourier transforms with application to face recogni-
tion. International Conference on Computational Intelligence and Multimedia
Applications. 2 (2007), 256–260.

[36] Jagielska, A., Wroblewska, L., and Skolnick, J. Protein model refine-
ment using an optimized physics-based all-atom force field. Proceedings of the
National Academy of Sciences of the United States of America 105, 24 (2008),
8268–8273.

[37] Jensen, A., and Cour-Harbo, A. L. Ripples in Mathematics. Springer,
2001.

[38] Jolliffe, I. Principal Component Analysis. Springer, 2002.

[39] Jr., F. F., Lopes, C. E., de Melo, R. C., Santoro, M. M., Carceroni,

R. L., Jr., W. M., de A. Araujo, A., and Silveira, C. H. An image-
matching approach to protein similarity analysis. Proceedings of the XVII Brazil-
lian Symposium on Computer Graphics and Image Processing (2004), 17–24.

[40] Keim, D. A., and Oelke, D. Literature fingerprinting: A new method for
visual literary analysis. IEEE Symposium on Visual Analytics Science and Tech-
nology (2007), 115–122.



106

[41] Keim, D. A., Oelke, D., Truman, R., and Neuhaus, K. Finding corre-
lations in functionally equivalent proteins by integrating automated and visual
data exploration. Sixth IEEE Symposium on Bioinformatics and BioEngineering
(BIBE ’06) (2006), 183–192.

[42] Keskin, O., Jernigan, R., and Bahar, I. Proteins with similar architecture
exhibit similar large-scale dynamic behavoir. Biophys J 78 (2000), 2093–2106.

[43] Kondekar, V., Kolkure, V., Sodal, G., and Mudegaonkar, J. Image
retrieval techniques based on image features: a state of art approach for cbir.
International Conference & Workshop on Emerging Trends in Technology. 2010
(2010), 998–999.

[44] Li, S., Liao, C., and Kwok, J. Wavelet-based feature extraction for mi-
croarray data classification. International Joint Conference on Neural Networks
(October 2006), 5028–5033.

[45] Li, T., Li, Q., Zhu, S., and Ogihara, M. A survey on wavelet applications
in data mining. SIGKDD Exploration 4 (2002), 49–68.

[46] Liu, D., Gao, Q., Wang, H. H., and Zhang, J. A web-based interactive
data visualization system for outlier subspace analysis. SEDE (2010), 275–280.

[47] Liu, Y. Wavelet feature extraction for high-dimensional microarray data. Neu-
rocomputing 72 (2009), 985–990.

[48] Livesay, D., Dallakyan, S., Wood, G., and Jacobs, D. A flexible ap-
proach for understanding protein stability. FEBS Lett 576 (2004), 468–476.

[49] Livesay, D., and Jacobs, D. Conserved quantitative stability/flexibility rela-
tionships (qsfr) in an orthologous rnase h pair. PROTEINS: Structure, Function,
and Bioinformatics 62 (2006), 130–143.

[50] Livesay, D. R. The distance constraint model. Lecture slides for Biophysical
Modeling, University of North Carolina at Charlotte, Fall 2008.

[51] Maciejewski, R., Rudolph, S., Hafen, R., Abusalah, A., Yakout, M.,

Ouzzani, M., William Cleveland, S. G., and Ebert, D. A visual ana-
lytics approach to understanding spatiotemporal hotspots. IEEE Transactions
on Visualization and Computer Graphics 16, 2 (2010), 205–220.

[52] Masso, M. Improving prediction accuracy via subspace modeling in a statistical
geometry based computational protein mutagenesis. International Journal of
Knowledge Discovery in Bioinformatics 1, 4 (2010), 54–68.

[53] Mathworks. http://www.mathworks.com.

[54] Merino, C. S., Sips, M., Keim, D. A., Panse, C., and Spense, R. Task-at-
hand interface for change detection in stock market data. AVI (2006), 420–427.



107

[55] Miller, N., Wong, P. C., Brewster, M., and Foote, H. Topic islandsa
wavelet-based text visualization system. Proceedings of the 9th IEEE Conference
on Visualization (1998), 189–196.

[56] Miwa, M., Saetre, R., Miyao, Y., and Tsujii, J. A rich feature vector for
protein-protein interaction extraction from multiple corpora. Proceedings of the
2009 Conference on Empirical Methods in Natural Language Processing (2009),
121–130.

[57] Morrison, J., Breitling, R., Higham, D., and Gilbert, D. A lock-
and-key model for protein-protein interactions. Bioinformatics, 22 16 (2006),
2012–2019.

[58] Mottonen, J., Jacobs, D., and Livesay, D. Allosteric response is both
conserved and variable across three chey orthologs. Biophysical Journal 99, 7
(2010), 2245–54.

[59] Mottonen, J., Xu, M., Jacobs, D., and Livesay, D. Unifying mechanical
and thermodynamic descriptions across the thioredoxin protein family. PRO-
TEINS: Structure, Function, and Bioinformatics 75, 3 (2009), 610–627.

[60] Muller, M. J. Participatory design: The third space in hci, handbook of hci.
In Human-Computer Interaction: Development Process, J. Jacko and A. Sears,
Eds. Erlbaum, 2008.

[61] Nanni, L. Comparison among feature extraction methods for hiv-1 protease
cleavage site predicition. Pattern Recognition (2006), 711–713.

[62] National center for biotechnology information. http://www.ncbi.nlm.nih.gov/
About/primer/bioinformatics.html.

[63] National human genome research institute. http://www.genome.gov/

Glossary/.

[64] Needleman, S. B., and Wunsch, C. D. A general method applicable to
the search for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology. 48 (1970), 443–453.

[65] Neshich, G., Rocchia, W., Mancini, A., Yamagishi, M., Kuser, P.,

Fileto, R., Baudet, C., Pinto, I., Montagner, A., Palandrani, J.,

Krauchenco, J., Torres, R., Souza, S., Togawa, R., and Higa, R.

Javaprotein dossier: A novel web-based data visualization tool for comprehensive
analysis of protein structure. Nucleic Acids Research 32 (2004).

[66] Nigham, A., Hsu, D., and Latombe, J.-C. Characterizing protein confor-
mation space. Singapore and MIT Alliance (SMA) Symposium (2007).



108

[67] Nowell, L., Hetzler, E., and Tanasse, T. Change blindness in infor-
mation visualization: A case study. Proceedings of the IEEE Symposium on
Information Visualization . (2001), 15–22.

[68] Oelke, D., Bak, P., Keim, D. A., Last, M., and Danon, G. Visual
evaluation of text features for document summarization and analysis. IEEE
Symposium on Visual Analytics Science and Technology (2008), 75–82.

[69] Patil, A., Kolhe, S., and Patil, P. 2d face recognition techniques: A
survey. International Journal of Machine Intelligence. 2 (2010), 74–83.

[70] Pei, J. Multiple protein sequence alignment. Current Opinion in Structural
Biology. 18 (2008), 382–386.

[71] Polharkar, S., and Reddy, C. K. Identifying information-rich subspace
trends in high-dimensional data. SIAM (2009), 557–568.

[72] Potzsch, S., Scheuermann, G., Wolfinger, M., Flamm, C., and

Stadler, P. Visualization of lattice-based protein folding simulations. Pro-
ceedings of the Information Visualization (2006), 89–94.

[73] Qazi, S., Panetta, K., and Agaian, S. Detection and comparison of color
edges via median based pca. IEEE International Conference on Systems, Man
and Cybernetics, 2008. (2008), 702–706.

[74] Rasmussen, C. E., de la Cruz, B. J., Ghahramani, Z., and Wild,

D. L. Modeling and visualizing uncertainty in gene expression clusters using
dirichlet process mixtures. IEEE/ACM Transactions on Computational Biology
and Bioinformatics 6, 4 (October-December 2009), 615–628.

[75] Rubner, Y., Thomasi, C., and Guibas, L. J. The earth movers distance
as a metric for image retrieval. International Journal of Computer Vision. 40
(2000), 99–121.

[76] Saldanha, A. Java treeview-extensible visualization. Bioinformatics. 20, 17
(2004), 3246–3248.

[77] Schreck, T., Schneidewind, J., and Keim, D. A. An image-based ap-
proach to visual feature space analysis. 16th Int. Conference in Central Europe
on Computer Graphics, Visualization and Computer Vision. (2008), 223–230.

[78] Seo, J., and Shneiderman., B. Interactively exploring hierarchical clustering
results. Computer. 35 (2002), 80–86.

[79] Shen, Z., and Ma, K. Path visualization for adjacency matrices.
Eurographics/IEEE-VGTC Symposium on Visualization. (2007), 83–90.

[80] Smith, T., and Waterman, M. Identification of common molecular subse-
quences. Journal of Molecular Biology. 147 (1981), 195–197.



109

[81] Stein, L. Creating a bioinformatics nation. Nature. 417 (2002), 119–120.

[82] Sweldens, W. The lifting scheme: A custom-design construction of biorthog-
onal wavelets. Appl. Comput. Harmon. Anal 3, 2 (1996), 186–200.

[83] Sweldens, W., and Schrder, P. Building your own wavelets at home. In
Wavelets in the Geosciences, R. Klees and R. Haagmans, Eds., vol. 90 of Lecture
Notes in Earth Sciences. Springer Berlin / Heidelberg, 2000, pp. 72–107.

[84] Talbot, J., Lee, B., Kapoor, A., and Tan, D. S. Ensemblematrix: Inter-
active visualization to support machine learning with multiple classifiers. CHI
(2009), 1283–1292.

[85] Tarassov, K., and Michnick, S. W. ivici: Interrelational visualization and
correlation interface. Genome Biology 6 (2005), 1–6.

[86] Tegge, A. N., Wang, Z., Eickholt, J., and Cheng, J. Nncon: improved
protein contact map prediction using 2d-recursive neural networks. Nucleic Acids
Research (2009), 1–4.

[87] Tokuyasu, T. A., and Albertson, D. Wavelet transforms for the analysis of
microarray experiments. Proceedings of IEEE Computer Society Bioinformatics
Conference (2003), 429–430.

[88] Varshney, S. S., Rajpal, N., and Purwar, R. Comparative study of image
segmentation techniques and object matching using segmentation. International
Conference on Methods and Models in Computer Science. (2009), 1–6.

[89] Wattenberg, J. A note on space-filling visualizations and space-filling curves.
Proc. IEEE Symposium on Information Visualization. (2005), 181–186.

[90] Wong, P. C., and Bergeron, R. D. Multiresolution multidimensional
wavelet brushing. Proceedings of the 7th IEEE Conference on Visualization
(1996), 141–148.

[91] Yang, J., Fan, J., Hubball, D., Gao, Y., Luo, H., Ribarsky, W., and

Ward, M. Semantic image browser: Bridging information visualization with
automated intelligent image analysis. IEEE Symposium on Visual Analytics
Science and Technology (2006), 191–198.

[92] Yang, J., Hubball, D., Ward, M., Rundensteiner, E., and Ribarsky,

W. Value and relation display: Interactive visual exploration of large datasets
with hundreds of dimensions. IEEE Transactions on Visualization and Computer
Graphics 13, 3 (2007), 494–507.

[93] Yeung, K., and Ruzzo, W. Principal component analysis for clustering gene
expression data. Bioinformatics. (2001), 763–774.



110

[94] Zhang, L., Kuljis, J., and Liu, X. Information visualization for dna mi-
croarray data analysis: A critical review. IEEE Transactions on Systems, Man,
and CyberneticsPart C: Applications and Reviews 38, 1 (January 2008), 42–54.

[95] Ziegler, H., Nietzschmann, T., and Keim, D. A. Visual exploration and
discovery of atypical behavior in financial time series data using two-dimensional
colormaps. 11th International Conference Information Visualization (2007),
308–315.

[96] Zou, H., Hastie, T., and Tibshirani., R. Sparse principal component
analysis. Journal of Computational and Graphical Statistics. 15 (2006), 265–
286.


