Image Dilution using Harris Corner Detection and
Geometric Kernels

1% Aiden James

Department of Computer Science
Department of Mathematics
University of North Carolina Charlotte
Charlotte, NC, USA
ajames61 @uncc.edu

Abstract—Image files contain large amounts of data. An image
is essentially a matrix of values, often represented as RGBA (red,
green, blue, alpha) arrays. A large three dimensional matrix with
a height and width likely in the hundreds can take long for a
program to read. However, many applications may only require
specific key features to understand an image. The majority
of pixel data is relatively unimportant when determining the
contents of the image file. In fact, such extra data can sometimes
deceive the machine, or in the case of a hybrid image [1],
the human viewer. Using only basic matrix calculations and
matrix convolution, specifically Harris Corner Detection and
Edge Detection kernels, we have extracted the key features of
an image in order to dilute its data. The results show that any
confusion, such as noise or the low frequencies of a hybrid image,
becomes weaker, and that the computation is very efficient and
robust.

keywords— Harris Corner Detection, Edge Detection Kernel,
Dilution, Denoising, Hybrid Image, Matrix Convolution

I. INTRODUCTION

Because an image is essentially a matrix of RGBA vectors,
it contains extraneous data. Using only simple matrix calcu-
lations, we have converted the image to a binary matrix of
the same size which retains most of the important features. In
the code itself, these images consist of only ones and zeroes;
one in the matrix is considered a white pixel, and any zero is
considered a black pixel. Working with a sparse binary matrix
is much easier for a machine to compute. As well as this,
the high frequencies of an image are outlined which makes
confusion, such as noise or the low frequencies of a hybrid
image, become weaker [2].

We may obtain the binary representation of this image by
using matrix convolutions and kernels. Our first approach uses
the edge and line kernels [3]. First, the image is convoluted
with an edge kernel, and any pixel above a pre-selected
threshold is set to one, otherwise it is set to zero. After this
initial convolution, various kernels employed to detect lines

James was supported by the UNC Charlotte OUR program and Li was
partially supported by the NSF DMS-1847770.

978-1-5386-5541-2/22/$31.00 ©2022 IEEE

2nd Xingjie Li
Department of Mathematics
University of North Carolina Charlotte
Charlotte, NC, USA
x1i47 @uncc.edu

and corners are applied with different weights in each cell,
giving each white pixel and its eight neighboring pixels a
score and finding their sum. If any of these kernels have a
high enough sum, the pixel is kept, otherwise it is deleted.
This filters out any white pixels that are not adjacent to other
white pixels, however it does not filter out groups of pixels
including common imaging noise. Most detail is kept, along
with some leftover noise.

To overcome these issues, we improve the algorithm by us-
ing Harris corner detection for filtering. Harris corner detection
[4] is an algorithm designed to determine whether a pixel in a
given image is a corner, edge, or center pixel. We will discuss
how this works in sections II and III. While Harris corner
detection is normally used only for finding the corners [2],
[5], we have used it for filtering an image to extract a binary
reduced representation. Any pixel with a high likelihood of
being a corner or an edge is set to one in the binary reduced
matrix. Rather than attempt to filter out noise, we check that
the pixel is a part of an edge before including it in the binary
matrix. Some pixels may be considered corners if they are
close to a corner pixel, so to check for this we also apply an
edge kernel and make sure it is above a certain threshold.

The effect when using a hybrid image as the input is that
the moderate to high frequencies are kept, making it easier to
see the sharper of the two images more easily. Hybrid images
appear different depending on the distance from them because
the high detail features are not visible from far away. What
this means is that the sharper image one sees when they are
closer is higher contrast, and will be retained when the image
is filtered. This means that the lower frequency components are
filtered out and the illusion is removed; only a white outline
of the high frequency image is left.

Our main contribution of this work is summarized below:
We have used Harris corner detection to dilute an image to
its most important components. Anything that we detect as a
corner or an edge is set to one in a binary reduced matrix.
The resulting image is further streamlined by an edge kernel
while its important features are reserved. This sparse matrix
allows for the image to be read later much more efficiently.

This paper will be organized as follows: in section II, we
will review the mathematical formulations of Harris corner

detection and matrix convolution with edge kernel; in section
I, we will demonstrate the algorithm used for image denois-
ing and dilution; in section IV, we will test and discuss the
performance of this algorithm on several benchmark examples
and the comparison with other methods; in section V, we will
conclude this work and propose some future work.

II. OVERVIEW OF METHODS

We first review the Harris corner detection method. In Harris
corner detection, I, and I, are set to image derivatives in x and
y directions respectively. In the simulation, we approximate
them at pixel (7,) by the finite difference:

. 1, . .)
IL(Z*j) = 5 <I<7’ + 17]) - I(Z - 11.7)))
. T, . .
L6, j) = 5 (6,)+ 1) = 1(i.j = 1))
Next, we defined the difference matrix M ’(i-j) by averaging

the derivatives at pixel (7, 7) and its neighbors via a Gaussian
window function w:

2 I,
M (i,3) Z w(z,y) (Lr I, 15)) (1)

z,yE€Neigh(i,7)

where a Gaussian window function w(x,y) is applied with
pre-selected window size L. In the simulation, we used the
default Gaussian window function. Next, we compute the
Harris Corner Detection R score of pixel (¢,;) with a pre-
selected k value:

R := det(M) — k(trace(M))?.)

The number output R has three possible outcomes, either
being close to zero, medium, or very large, depending on the
pixel values, pre-selected k = 0.05 and threshold value. Large
values are corners, medium values are edges, while near zero
values are more likely interiors. For the purposes of our new
application for this algorithm, anything not considered near-
zero is filtered out, as corners and edges are both desirable
features to keep. The main strength of this system is that it
finds the edges of objects without relying solely on contrast,
allowing unimportant pixels to easily be filtered out. However,
this method also creates much larger areas of interest, as the
windowing function causes surrounding pixels to also be read
as corners. To mitigate this issue, we also checked that an
applied edge kernel, which is introduced in (3), met a certain
threshold on the pixel.

As a comparison, we also implement the method for dilution
without Harris corner detection. First, the image is convoluted
with an edge kernel. Then, every pixel is either set to a 1 or
a 0 based on if it has enough luminance. After this, multiple
kernels are applied to check for possible lines. If any one of
these meets the threshold, the pixel is kept. This removes a
lot of noise, but clumps of pixels usually remain, unlike the
Harris corner method. This method only detects linear edges
or corners, with single pixel deviations considered part of the
important information. More detail is kept, however less noise
is filtered out.

Unlike this system of many kernels, Harris corner detection
is not dependent on a set number of configurations. Although
the edge filters have some weights to allow for variation in the
lines they detect, Harris corner detection views the image in a
more non-local and nonlinear way than the edge and geometric
kernel algorithm. Curves are also detected as part of the edge
when using Harris corner detection.

III. METHODOLOGY

For each method, we first make an empty binary matrix.
Applying Harris corner detection citation needed, we are able
to determine the likelihood that a pixel is part of an edge or
corner. If the odds of this are high, we apply an edge detection
kernel

0 -1 0
EEdge = -1 4 -1 (3)
0 -1 0

to the pixel, and if its contrast meets a threshold then the
corresponding entry in the binary matrix will be set to one.
Otherwise, the pixel will be set to zero. The simple use of
only two numbers, as well as the fact that this leads to a sparse
matrix, allows for any later calculations to be performed much
faster. The exported images are multiplied by 255 to show
clearly what is stored in the data, however this would not be
needed if the image is intended to only be read by a computer.

Before trying the corner detection method, we originally
tried using an edge kernel and a set of other geometric kernels,
which we designed to be 5-by-5 instead of 3-by-3 in contrast
to the edge kernel. This allowed us to view the wider context
of the surrounding pixels to see if they formed geometrical
elements. An edge kernel is applied directly to the image.
Pixels in the convoluted image whose values were above a
threshold of ten were kept in the binary matrix. Then, the
following geometric kernels were applied in every applicable
orientation:

0 1 1 1 0
01 2 10
Fiine:=10 0 0 0 O @)
01 2 1 0
0 1 1 1 0
1 1.0 0 0
1 2 1 0 0
EDiagonal =10 1 0 1 0, 5
001 2 1
00 0 11
and
01 1 1 0
1 0 2 0 O
Ecomee:=|1 2 0 0 0 (6)
1 0 0 0 O
0 00 0O

If any one of these kernels or their rotations convoluted with
a value of Ty = 6 or higher, the pixel was kept. The goal was
similar to our use of Harris corner detection, which was to

filter out any potential noise by only keeping pixels that were
likely parts of an edge.

A. Algorithms

Here, we summarize the pseudo code of the algorithm used
in this work. We first state the algorithm for the Harris corner
filter combined with edge kernel
Algorithm 1: Harris Corner and Edge kernel Filter
Input: Image, Edge kernel, k¥ = 0.05, Threshold T for R,
Edge kernel threshold T'g
Output: Binary Matrix with the same size as the image matrix

1: for each pixel at coordinates (4, j) do
3: I, =50, j+1)=1(i,j—1))
4: end for
5: for each pixel at coordinates (,j) do
1.1
6: M’(i,j) =3y W(T:Y) L.:Ii
R = det(M) — k x trace(M)?
Calculate the applied edge kernel on the pixel
: if R meets the threshold Tz and the edge kernel meets
its threshold T’z then
10: Set the corresponding cell in the binary matrix to
a value ‘1’
11: else
12: Set the cell to a value ‘0’
13: end if
14: end for

1.1,
I?IIU

In the simulation, we set Tr = 10 and Tz for each individual
example, respectively. Next, we state the algorithm for the
edge kernel and linear kernel filter without Harris corner
method.

Algorithm 2: Edge Kernel and Geometric Kernels Filter
Input: Image, Edge kernel, Several geometric kernels, Thresh-
old T3, Geometric kernel threshold 7}

Output: Binary Matrix with the same size as the image matrix

1: convolute image with edge kernel Eegge (3)

2: convert convoluted image to grayscale

3: create a binary matrix the same size as the image matrix

4: for each pixel (¢, 7) in image do

5: if the pixel’s luminance meets the threshold 735 then

6: set the corresponding cell in the binary matrix to
a value ‘1’

7: else

8: set the cell to a value ‘0’

: end if

10: end for

11: for each white pixel in binary matrix do

12: apply each geometric kernel to the pixel and store the
value

13: if any single geometric kernel value meets a threshold
T4 then

14: remove the pixel

15: end if

16: end for

In the simulation, we employed one edge kernel (3) and three
geometric kernels (4)-(6) and set thresholds 75 = 102 and
Ty = 6.

IV. RESULTS

We tested both algorithms

o Algorithm 1: Harris corner and Edge kernel Filter
o Algorithm 2: Edge kernel and Geometric Kernel Filter

on several images of various types and found consistent results
between them if we set the thresholds T'r for Harris corner R
score manually for each image. Automation of this threshold
is something we plan on implementing in the future.

A. Dilute the image of a group of giraffes.

We first tested our algorithm on the image of giraffes [6], as
their features, such as their patterns, are obfuscated with 20%
added Gaussian noise, and there is high contrast grass in the
background. (See Figure 1). Notice that only using an edge
kernel yielded a very noisy result, whereas the Harris corner
filter alone did not distinguish between important features,
such as the fur patterns and the noise. The background of
the image is retained in the output. It is notable that the
extra edge kernel check allowed the filter to retain more detail
in the pattern. The final edge kernel check mitigates the the
possibility of incorrectly identified corners.

The giraffe image was also processed using the old method
of edge and geometric kernels. As shown in Figure 1, the
applied 20% Gaussian noise was too much for this system,
but lowering the noise to only 1% yields a better image.
More detail is retained, some noise is unfortunately kept in the
background. Even with sharper details, the higher presence of
noise is an undesirable result.

B. Dilute several hybrid images of various types.

We then tested the several hybrid images: (1) a portrait of
Harry Potter and Einstein [7]; (2) a video screenshot of a hand
gesture surrounded by a kitchen background of similar color
[8]; (3) a vase in shadow (taken by the author Aiden James).
The results are summarized in Figure 2.

We found that the most optimal algorithm is Harris corner
detection combined with the edge kernel check. The edge
kernel is important because details may be lost using Harris
corner detection. Pixels are considered corners even if they
are simply close to corner pixels. The main strength of Harris
corner detection is that noise is easily detected as not part of
an edge. In contrast to this, the method using the edge and
geometric kernels (4)-(6) is less likely to detect noise.

The original concept of our research was to use this to
extract only one object from a hybrid image. Hybrid images
may appear to be one of two images, so removing the low
frequency components would make it easier to detect the
sharper of the two images. We tested the filters on a hybrid
image of Einstein and Harry Potter [7], and only the white
outline of Einstein was kept. Gaussian noise with a standard
deviation of 20 (out of 255) was applied to every test image
to ensure that this program would work with imperfect input

Harris Corner
Filter

Input Image

Edge Kernel

Edge Kernel
Harris Corner Edge Kernel with Filter
Filter with with Filter Kernels (reduced
Edge Kernel Kernels input noise)

Fig. 1. Comparison of image dilution of different filters upon the same image
with 20% Gaussian noise: applying the Harris corner detection filter only;
applying the edge kernel convolution only; applying the proposed algorithm;
applying the edge and geometric kernels; applying the edge and geometric
kernels with only 1% Gaussian noise.

Input Image

Harris Corner
Filter

Edge Kernel

Harris Corner
Filter with
Edge Kernel

Fig. 2. Comparison of image dilution of different types of images using three
methods: Row 2 is obtained by applying the Harris corner detection filter
only; Row 3 is obtained by applying the edge kernel and three geometric
kernels convolution; Row 4 is obtained by applying the proposed algorithm
combining Harris corner with edge kernel.

10g,(TR)=-3.4175

_ °

g_ [J

[. L7 N A
®e _e®eo ©

30 32 34 36 38 40 42 44 46 48 50
E

Fig. 3. The average edge convolution value E verse log,,(Tr) of 20 images.
The image source can be found at [7].

data. The edge kernel alone left too much noise for the image
to be interpreted correctly. Harris corner detection, on the other
hand, was able to filter out almost all of the noise. There is
no resemblance of Harry Potter in the filtered output.

The image of a hand gesture contains a lot of noise as well
as a confusing background of a kitchen. The image also has
a very low resolution. Most of the hand is kept in the output,
however parts are missing where it overlaps with the table that
is similar in color. A lot of background elements are kept, but
they appear low-fidelity.

In the third picture, the vase is outlined very well despite
the overlaid shadow and added noise because of the image’s
high resolution and plain background.

C. Empirical study of threshold Tg for Harris corner.

Currently, the threshold for the Harris corner filter must be
decided manually. A good starting point for the filter is T =
10—34175 However, we have not determined the formula for
automatically calculating this variable. We found the value of
T} because we tried to set a mathematical relation between
the average edge convolution value £

1
E= M N Z <EEdge * |mg> (7,)

(w,y)€Elmg

and Tg, where Img is the grayscale image matrix of size
M-by-N and ”x” denotes the matrix convolution. We have
calculated the average of the best thresholds Tk based on
the empirical study of 20 images, which is around 7% =
10=34175, We plotted the average edge convolution value F
verse log,o(Tr) of 20 images in Figure 3. To automatically
calculate the threshold, it may be easier to use the average of
the R score values, but we have not tested this.

Most of the time, similar images have similar ideal thresh-
olds. In the future, we may find a way to calculate this
automatically.

V. CONCLUSION

Using elementary matrix operations, it is possible to extract
only the most important features of an image. Unlike existing
methods of feature extraction, our methods only require sim-
ple calculations to achieve this. Using a new application of

Harris corner detection as a dilution filter, along with a post-
processing edge kernel, we diluted the image to an outline
of its key details. Using another method involving a set of
weighted geometric kernels, we were able to filter remaining
noise out of an edge convolution. In both of these methods,
the image was converted to a binary matrix, making any
calculations much more efficient due to the lack of extraneous
information.

More efforts needs to be put into investigating the threshold
calculation, especially in regards to the Harris corner detection
algorithm. While it is generally a predictable number close to
T ~ 1073417 according to the empirical experiments of 20
images, perfecting the automatic calibration of this number
is something we will work towards. Since there is seemingly
little correlation between the average edge value and the ideal
threshold in the Harris corner algorithm, more mathematical
possibilities should be explored.

REFERENCES

[1] Aude Oliva, Antonio Torralba, and Philippe G. Schyns. Hybrid images.
ACM Transactions on Graphics, 25, 2006.

[2] Jie Chen, Li hui Zou, Juan Zhang, and Li hua Dou. The comparison
and application of corner detection algorithms. Journal of Multimedia,
4, 2009.

[3] Utkarsh Sinha. Image convolution examples, 2010. Article found at
https://aishack.in/tutorials/image-convolution-examples/.

[4] C. Harris and M. Stephens. A combined corner and edge detector.
Proceedings of the Fourth Alvey Vision Conference, 1988.

[5] Olfa Haggui, Claude Tadonki, Lionel Lacassagne, Fatma Sayadi, and
Bouraoui Ouni. Harris corner detection on a numa manycore. Future
Generation Computer Systems, 88, 2018.

[6] Image sourced from https://www.lirent.net/2012/04/black-and-white-
animal-photography/.

[7]1 Image sourced from http://cvcl.mit.edu/hybrid_gallery/gallery.html.

[8] Image source from https://nofilmschool.com/2017/06/watch-4-ways-you-
can-reduce-and-avoid-grainy-footage,.

