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Abstract

Affymetrix three-prime expression microarrays contain thousands of redundant probe sets that interrogate different regions
of the same gene. Differential expression analysis methods rarely consider probe redundancy, which can lead to inaccurate
inference about overall gene expression or cause investigators to overlook potentially valuable information about
differential regulation of variant mRNA products. We investigated the behaviour and consistency of redundant probe sets in
a publicly-available data set containing samples from mouse brain amygdala and hippocampus and asked how applying
filtering methods to the data affected consistency of results obtained from redundant probe sets. A genome-based filter
that screens and groups probe sets according to their overlapping genomic alignments significantly improved redundant
probe set consistency. Screening based on qualitative Present-Absent calls from MAS5 also improved consistency. However,
even after applying these filters, many redundant probe sets showed significant fold-change differences relative to each
other, suggesting differential regulation of alternative transcript production. Visual inspection of these loci using an
interactive genome visualization tool (igb.bioviz.org) exposed thirty putative examples of differential regulation of
alternative splicing or polyadenylation across brain regions in mouse. This work demonstrates how P/A-call and genome-
based filtering can improve consistency among redundant probe sets while at the same time exposing possible differential
regulation of RNA processing pathways across sample types.
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Introduction

Expression arrays from Affymetrix contain hundreds of

thousands of oligonucleotide probes grouped into functional units

called probe sets, where each probe set is designed to measure the

expression of a known or computationally-predicted mRNA target

molecule. Affymetrix sells two commonly-used types of expression

arrays: three-prime arrays in which probe sets are designed against

the three-prime region of a single mRNA target, called a

consensus sequence in Affymetrix parlance, and exon-focused

arrays in which probe sets are designed to interrogate individual

exons. Currently, the majority of mammalian expression data in

the Gene Expression Omnibus (GEO) are from three-prime

arrays, especially the mouse 430 and human u133 series, and these

arrays continue to be used in individual labs as well as larger-scale

projects, such as the Cancer Genome Atlas [1]. Exon arrays were

developed more recently and have been marketed as being able to

quantify changes in alternative splicing. Many groups have

reported success using exon arrays in this way, while others have

explored alternative designs in which probes span exon-exon

junctions and interrogate individual splicing events. In this paper,

we argue that the three-prime arrays, although they were not

designed specifically for this purpose, may have some value in the

study of alternative transcripts, thanks to the large number of

redundant probe sets present on many of these arrays.

Redundant probe sets are probe sets that measure different

regions of the same target gene. As described in their product

literature, the Affymetrix probe set design procedures for the

three-prime arrays attempt to generate probe sets for all known or

inferred expressed sequences. As a result, many of the three-prime

arrays contain a large proportion of redundant probe sets that

interrogate potential alternative forms of transcripts arising from

the same gene. In most cases, redundant probe sets reflect

differential three-prime end processing, since probes have typically

been selected from regions near the three-prime ends of the target

transcripts. For example, D’mello et al. [2] compared human,

mouse, and rat Affymetrix GeneChips probes and probe sets to

polyadenylation sites predicted from ESTs. They concluded that

alternative polyadenylation may affect expression analysis of a

large number of target genes (13%–35%) on each array.

Probe set redundancy can cause problems for microarray data

analysis when different probe sets addressing the same gene

produce inconsistent results. For example, if only one of a set of

redundant probe sets appears differentially-expressed, should this

lessen confidence that the gene itself is changed in response to the

treatment being investigated in an experiment? How should an
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investigator interpret a scenario where multiple probe sets appear

differentially-expressed, but in opposite directions? Such questions

have largely been overlooked in most real-world analyses, mainly

because commonly-used analysis protocols operate at the level of

the probe set and incorporate probe set-to-gene annotations late in

the process. It is not clear how how an investigator should

interpret redundant probe sets that generate discordant results,

which is one of the problems we address in this paper.

The most biologically-interesting and straightforward explana-

tion for inconsistency among redundant probe sets is that the

experimental condition under investigation has induced a change in

the relative concentration of mRNA variants detected by the

discordant probe sets. However, this interpretation is clouded by the

fact that some redundant probe sets are not intended to measure

variants of the same gene. For example, some redundant probe sets

are merely designed to measure opposite strands of the same gene

when the array design process was unable to determine the genomic

strand of a transcribed sequence. In other cases, redundant probe

sets map to the same strand of the same gene region, but their target

sequences do not overlap and therefore are unlikely to be variants of

the same transcriptional unit. For example, Stalteri and Harrison

[3] described in detail the mouse Surf4 gene that was associated with

eight probe sets on the MOE430A chip. As described in their article,

two out of the eight probe sets actually hybridize to transcripts

arising from a different but related gene (Surf2) transcript. Our

analysis of the redundant probe sets on the Arabidopsis ATH1 chip

using a large collection of microarray data showed that some of the

lack of concordance between the profiles from the redundant probe

sets is likely associated with incorrect gene models and annotation

problems [4]. Thus, the potential ability of redundant probe sets to

shed light on regulation of mRNA variants is somewhat clouded by

ambiguities in annotation, i.e., mapping probe sets onto their

putative target genes.

Previously Affymetrix reported probe set-to-target gene map-

pings primarily as mappings between Unigene identifiers (ids) and

probe set ids, reflecting the transcriptome-centric nature of the

Affymetrix probe set design pipeline [5]. However, as genomic

sequence has become available, Affymetrix has shifted toward a

more gene-centric approach, reporting mappings between Entrez

Gene ids and probe sets in addition to mappings between probe set

ids and putative target transcripts. Because new sequences are

constantly added to the public databases, the probe set-to-target

mappings require constant updating to reflect the new data, and

Affymetrix obliges this requirement via periodic new releases of

probe set annotations. One group tracking these new releases

showed that 5% of the Affymetrix probe set-to-gene annotation in

Affymetrix’ NetAffx database had changed over a two-year span

[6]. Other groups besides Affymetrix have also tackled the

problem of probe set annotation and target gene identification.

Some of these efforts have helped to expose problematic or

potentially faulty probes, such as probes that map to multiple

locations in the genome or, conversely, probes that do not appear

to map to any location within the designated target locus. Studies

that have investigated problematic probes have demonstrated that

removing them from estimates of target mRNA abundance

profoundly affects analysis results [3,7,8].

In this paper, we investigate redundant probe set consistency in

a data set harvested from the Gene Expression Omnibus [9]. We

investigate the degree to which redundant probe sets, determined

using default probe set annotations provided by Affymetrix,

exhibit discordant results. We assess how genome-based and

qualitative present/absent (P/A) screening methods affect probe

set consistency, using different measures of differential expression.

We use an ANOVA-based method to detect target genes whose

redundant probe sets show significantly different fold-changes across

experimental conditions. We then visually-inspect these target genes

using an interactive genome display tool and determine if

independent evidence for alternative splicing or polyadenylation is

available. In general, we find that eliminating problematic probe sets

through genome-based screening, followed by application of

present/absent call filtering, results in an overall increase of

consistency among redundant probe sets, leaving only the most

interesting cases for further analysis and experimental verification.

Methods

Affymetrix-provided redundant probe set groupings
A file containing annotations for the Mouse 430_2 array was

downloaded from Affymetrix. The file (Mouse430_2.na22.annot.csv)

reports zero or more Entrez Gene ids for each probeset. Thus, probe

sets mapping to the same gene id represent redundant probe sets

according to Affymetrix’ in-house annotation pipeline. Out of

45,101 probe sets listed in the file, 36,431 were listed as having one or

more target genes. A group of probe sets that match the same target

gene are designated redundant probe sets. (Note that MOE430 and

430_2 are alternative designations for the same array design.)

Genome-based grouping and screening procedures
We obtained mouse genome (mm8) alignments for Affymetrix

MOE430 probe set consensus sequences from the UCSC Genome

Bioinformatics Table Browser in ‘‘bed’’ (browser extensible format)

and fasta formats. The ‘‘bed’’ file describes the pattern of aligned

blocks between matching segments of consensus and genomic

sequence, and the fasta file contains concatenated segments of

genomic sequence as defined by these alignment blocks. Probe sets

with consensus alignments that mapped to a single genomic location

within the assembled chromosomes were retained. We obtained

probe sequences for the Mouse 430_2 array from Affymetrix and

then computed the coordinates of each probe’s position within the

corresponding genome-based fasta sequences. Consensus align-

ments that contained all eleven probes were noted and carried

forward for subsequent statistical analysis. Finally, we trimmed the

alignments such that they included only the regions bounded by the

five- and three-prime most probe positions. For visualization of the

trimmed target regions and probes, we converted the trimmed

alignments into Affymetrix’ ‘‘link.psl’’ format and viewed them in

the Integrated Genome Browser, an open source, freely-available

interactive desktop genome browser tool (http://igb.bioviz.org).

The ‘‘link.psl’’ file is available from http://www.transvar.org/

results/reanal/MOE430.trimmed.link.psl.

In parallel, we obtained mRNA-to-genome alignments from the

UCSC Genome Bioinformatics Web site using the Table Browser

tool. mRNAs that mapped to a single genomic location were

included in subsequent steps. The mRNA-to-genome and

trimmed probe set consensus sequence alignments were then

sorted into groups such that at least one alignment block from each

group member overlapped with one or more blocks from at least

one other alignment in the same group. The biological rationale

for this is that alignment blocks in mRNA alignments represent

exons, and when these exons overlap, this is reasonably good

evidence that they originate from the same gene region or

transcriptional unit. When a trimmed, probe set consensus

sequence alignment overlaps with one or more mRNAs in a

group, the probe set is then considered to interrogate the same

gene region or transcriptional unit as defined by the mRNAs’

pattern of alignment. When two or more trimmed, probe set

consensus sequences belong to the same group, these probe sets

are considered redundant because they measure the same gene

Redundant Probe Sets Analysis
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region or transcriptional unit. To facilitate downstream analysis,

Entrez Gene id-to-mRNA accession mappings were obtained from

NCBI (the gene2accession file from the Entrez Gene ftp site) and

then added to each gene grouping.

Data S1 lists groupings for screened probe sets, and Data S2

summarizes results from the screening steps. In the latter file,

probe sets whose consensus sequences mapped to one or no

genomic positions receive mapping codes ‘‘SM’’ or ‘‘NM’’

respectively, and probe sets mapping to multiple positions are

annotated with code ‘‘MM.’’ For all ‘‘SM’’ probe sets, the number

of probes perfectly matching the genomic sequence within the

region defined by the probe set consensus alignment is reported.

Microarray data set
Array data files (.CEL files) for expression microarray data set

GSE4035 were obtained from the Gene Expression Omnibus.

This experiment profiled the gene expression in the amygdala and

hippocampus dissected from mice from two different strains that

exhibit distinct responses to fear conditioning (high and low

tolerance). Each brain region for each reaction level was

represented by six biological replicates. For the redundant probe

sets and differential expression analysis, brain regions were

compared only between mice from the same strain [10]. We

selected this data set in because of its relatively high level of

replication (six arrays per group) and observations that alternative

mRNA processing is unusually prevalent in neural tissue.

Array pre-processing
Probe intensity data from each data set were imported into the R

environment (http://www.R-project.org) directly from .CEL files

using the affy package [11] in Bioconductor (http://www.

bioconductor.org/). The affy package was also used to create

expression summary measures. Briefly, we adjusted the background

of perfect match (PM) probes, applied a quantile normalization of

the corrected PM values, and calculated final expression measures

using the robust multi-array average (RMA) method [12]. Pre-

processing was performed on all chips in the data set together.

Present/absent call filtering
In cases where Present/Absent filtering was conducted, P/A call

for each probe set on each chip was obtained using the MAS 5.0

method implemented in the affy package with default settings

unless specified. To be designated ‘‘present’’ in differential

expression analysis, a probe set needed to have at least 80% of

replicate samples called as present in at least one sample type.

Probe set-level differential expression analysis
To estimate effects of each brain region and test for the region

effect, we split the data according to fear reaction levels and then

fit a model to the data from each probe set. For each subset of data

we fit a fixed effect one-way ANOVA model, yij~mzRizeij , to

the pre-processed expression level of each probe set. Here m is the

overall mean; Ri is the deviation of the ith (i = 1,2) brain region

from the overall mean; and eij is the residual. We used a shrinkage-

based t test [13] to test the brain region effect (Ri). The empirical

distribution of the shrinkage-based t statistic was established

through permutation analysis, where the rows of the design matrix

corresponding to the tested term (Ri) were shuffled 1000 times

randomly while the data were kept unchanged [13,14]. The

shrinkage t statistics calculated from the permutations were pooled

across genes that are not significant [15] at nominal 0.1 level

according to a conservative gene specific t test to form one overall

empirical distribution. The percentile of the shrinkage t from

observed data in the empirical distribution provides an estimate of

the p-value for each gene. Gene lists were generated using a false

discovery rate (FDR) of 0.005 [16] unless otherwise specified.

Comparing redundant probe sets
To determine when two redundant probe sets measuring the same

gene generate discordant results, we formally tested whether the

redundant probe sets produce different fold changes. One way to

achieve this is to test whether the signal differences between

redundant probe sets have a significant brain region effect. In other

words, we compare the fold-change between tested groups (brain

region, in this case) exhibited by two redundant probe sets and ask if

they are significantly different. If two probe sets yield similar fold-

changes, the differences will not show a significant group effect. If

two probe sets generate different fold-changes, this indicates possible

differential regulation of probe set targets. To test for different fold-

changes, we first take the difference between the probe sets on the

same chip after data pre-processing and then fit the ANOVA model

used above for differential expression to the differences. The test of

significance for the term of interest (Ri) provides information on

whether the targets of the two redundant probe sets are affected by

this term differently. This method is a modified version of the

ANOSVA methods by Cline et al. [17], adapted for pairwise probe

set comparisons. The modification allows identification of specific

pairs of disagreeing probe sets, a necessary first step toward

identification of differentially-processed targets.

Significance consistency index
We developed a significance consistency index of the redundant

probe sets to summarize the overall degree to which redundant

probe sets generate consistent results in a test for differential

expression. This allows one to assess probe set-to-gene target

annotations across the full set of probe sets in a given array. For a

single group of redundant probe sets targeting ith gene gi, the

consistency index was calculated as the proportion pi of redundant

probe sets found to be significant with respect to differential

expression. Only probe set groupings where there was at least one

significant probe set were included in consistency index calcula-

tions. Averaging individual redundancy probe set group consis-

tencies yields an overall consistency index C~

P

i

pi

G
, where pi is

the proportion of probe sets that are significant for gene gi

(i = 1,…,G) and G is the total number of associated multi-probe set

target genes being tested on an array in which at least one probe

set was found to be significantly changed. Thus, values closer to

one indicate greater overall agreement among redundant probe

sets across all genes G represented on an array.

Re-sample procedure assessing effects of sampling
variation on probe set pair differences

We used a re-sampling approach to assess the effects of sampling

variation on fold-change and P/A call consistency between

redundant probe sets. To simulate variation arising from random

sampling, we created sub-data sets from arrays in two different

experiment groups: amygdala and hippocampus samples harvested

from the low fear strain, where each group contained six replicate

arrays. For this, we randomly-selected three arrays from each group,

forming a single sub-data set of six arrays, including a three arrays

from group one (S1a - low fear amygdala) and three arrays from

group two (S1h - low fear hippocampus). The remaining six arrays

formed a second sub-data set (S2a and S2h). For each round of

sampling, we assessed consistency using summary statistics compar-

ing sub-data sets and redundant probe sets. We repeated the sub-

Redundant Probe Sets Analysis
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setting procedure twenty times and calculated the average and

variance for each measure. For simplicity, we considered probe sets

with only one redundant partner probe set.

The summary statistics included: (1) PA-consistency for

redundant probe sets, calculated as the percentage of redundant

probe set pairs where each probe set in the pair had the same PA

call in the two sub-data sets; (2) PA-consistency for single probe

sets, calculated as the percentage of probe sets that had the same

PA-call in the two sub-data sets; (3) Fold-change correlation for

redundant probe sets, computed as the correlation of fold-changes

pairs corresponding two redundant probe sets harvested from S1

and S2 array triplets, where fold-change (amygdala versus

hippocampus) was calculated using array triplets from each sub-

data set separately; (4) Fold-change correlation for individual

probe sets, calculated as the correlation between fold-changes

obtained from S1 versus S2; (5) No. of redundant probe sets pairs

where both probe sets in the pair were significantly changed across

brain regions (FDR 0.05), within the same sub-data set S1 or S2; (6)

Number of individual probe sets that were significantly changed

(FDR 0.05) across brain regions in both sub-data sets S1 and S2.

Note that one caveat to this random sampling approach is that

the power to detect differential expression across brain regains test

using the sub-data sets decreases is reduced in the sub-data sets

because of the smaller number of replicates, e.g., reduced from six

to three. Therefore, for this analysis, we adjusted the stringency for

identifying differential probe sets to FDR 0.05.

Results

Affymetrix provides annotation files mapping individual probe set

onto Entrez Gene ids; these annotations are widely used in publicly-

available databases (such as the Gene Expression Omnibus) and in

microarray analysis software packages such as those in Bioconductor.

These annotation files report Entrez Gene ids for many probe sets,

and probe sets that are annotated with the same Entrez gene id

represent redundant probe sets as determined by Affymetrix. Using

matching of Entrez gene ids, we obtained a list of Affymetrix-

designated redundant probe set groupings where all the probe sets in

the same group match the same gene. These redundant probe set

listings thus provide a baseline against which to evaluate improve-

ments in probe set-to-target gene annotations. As shown in Table 1,

the general distribution of the number of probe sets per gene is highly

skewed. For example, groups with n probe sets are more than twice

as common as groups with n+1 probe sets.

We developed a genome-based computational pipeline that uses

genomic alignments of mRNAs and probe set consensus sequences

to identify high-quality probe sets and assign these to groups based

on their patterns of genomic overlap. The goal of the pipeline is to

generate a highly stringent set of annotations and make

downstream, gene-by-gene analysis steps less perilous (Figure 1).

Briefly, the method uses publicly-available genomic alignments to

define probe set interrogation regions within the genomic

sequence. Next, it searches for probe locations within the fasta

sequence from concatenated genomic sequence defined by

alignment blocks. Probe sets whose probes are omitted from the

fasta sequence are flagged as questionable and omitted from the

final list of ‘‘cleaned’’ probe sets. Using this procedure, we found

that 94% of probe set consensus sequences on the Mouse 430_2

array mapped to a single genomic location. Of these, 86%

contained all eleven probes in the genomic sequence.

We then used consensus and mRNA genomic alignments to sort

the screened probe sets into redundant probe set groupings such

that members of each group measure the same gene. Using this

procedure, we identified around 5,000 genes or gene regions that

were interrogated by two or more cleaned redundant probe sets

for the MOE430 array. Compared with the groupings based on

Affymetrix annotation, the groupings generated this way have

many fewer genes with redundant probe sets (Table 1). Also, the

group sizes tend to be smaller. The largest group contains 8 probe

sets. In contrast, a substantial number of groups from Affymetrix’

annotation file have more than 8 redundant probe sets, while

others have as many as 15 probe sets.

Redundant probe set consistency
Affymetrix microarray expression data are commonly analyzed

probe set by probe set. If the redundant probe sets for a given gene

indeed measure the same target transcripts, then they should yield

consistent results in the same experiment with the allowance of

some variation. We tested this expectation by examining present-

absent call consistency, significance consistency, and fold change

consistency across redundant probe sets in a relatively well-

replicated, real-life data set (GSE4035) harvested from the Gene

Expression Omnibus and generated using the mouse MOE430

array from Affymetrix. The data set consists of six samples per

experimental grouping, where the groups consist of samples from

different brain regions (amygdala and hippocampus) from two

different strains of mice that exhibit differential fear responses. For

differential expression analysis across sample types, we compared

different brain regions dissected from the same mouse strain, thus

avoiding complications due to genetic differences between strains.

Consistency of present and absent calls
Affymetrix probe sets include perfect match (PM) probes that

are identical to the probe set’s intended target, as well as

corresponding mis-match probes (MM) that contain a single base

pair difference. The MM probes are believed to provide an

estimate of non-specific hybridization that presumably affects the

PM and MM probes equally. Comparing hybridization intensity

of PM and MM probes allows assessment of the overall signal

strength of a probe set. The low PM signals relative to MM probes

Table 1. Number of genes with redundant probe sets before
and after filtering out the absent probe sets.

# of prs/gene AG AGP GG GGP

2 5,133 2864 3767 2337

3 2,427 1228 1173 677

4 1,181 496 353 205

5 556 256 105 55

6 305 99 25 10

7 144 35 7 3

8 69 18 1 0

9 30 4 0 0

10 15 0 0 0

11 7 0 0 0

12 4 0 0 0

13 3 0 0 0

15 1 0 0 0

Total # genes 9875 5000 5431 3287

AG and GG indicate the original Affymetrix grouping and genome-based
groupings, respectively. AGP and GGP represent the AG and GG groupings in
which only probe sets called as ‘‘Present’’ were included in the final groupings.
The abbreviation ‘‘prs’’ means: ‘‘probe sets.’’
doi:10.1371/journal.pone.0004229.t001

Redundant Probe Sets Analysis
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can be identified using the qualitative, present/absent (P/A) call

algorithms in the MAS5.0 software from Affymetrix [18]. The

consistency of the P/A calls between probe sets interrogating the

same gene provides an indicator of how differently the redundant

probe sets from the same gene behave at this level. We ran the P/

A call algorithm on all arrays and examined the consistency of P/

A calls between redundant probe sets on the same array. We found

that, on average, only about 50%–60% of probe sets are called as

present, which is similar to the overall proportion of expressed

genes in most tissues [19]. We found that redundant probe sets

measuring the same gene (as designated by Affymetrix) frequently

received different P/A calls. For example, genes with two

redundant probe sets assigned by Affymetrix grouping showed

inconsistent P/A calls in 31% of the genes. However, the

redundant probe sets based on the genome-based groupings

showed lower (only 26%) P/A call inconsistency. Overall, we

found that P/A calls for the genome-based groupings were

generally more consistent than for the Affymetrix groupings.

Significance Consistency of redundant probe sets
Expression microarray data analyses from Affymetrix arrays

generate lists of significantly-changed probe sets, and when one or

more of a gene’s matching probe sets appear in the list, then the

target gene is typically considered to be differentially expressed.

Because redundant probe sets may interrogate different transcripts

arising from the same gene, examining the consistency of

redundant probe sets that are included or excluded from the

significant probe set list may expose biologically-interesting

features of the data, such as evidence of differential mRNA

processing. Using a relatively stringent significance level

(FDR = 0.005) for selecting significant probe sets, we identified

4,982 and 8,952 significant probe sets that were differentially

expressed between the amygdala and hippocampus samples in the

low and high reaction levels in the GSE4035 data set. The overlap

among these two lists is very high, with 4,041 probe sets in

common. The fold changes obtained from these two reaction

levels are also very similar (Data S3). For simplicity, we focused on

the low reaction level alone for the significance consistency

analysis. Among the 4,982 significant probe sets, we found that

3,193 probe sets were from genes that have two or more probe

sets, as judged by our genome-based grouping and screening

procedure. To determine the consistency of these redundant probe

sets in terms of differential expression, we examined the presence

or absence of all redundant probe sets in the significant list. We

found that only a small proportion of the genes with at least one

significant probe set have all probe sets significant, while the

majority of them show inconsistent results from the redundant

probe sets (Data S4). The results obtained from the high reaction

level are similar to that of the low reaction level presented here.

To summarize the overall consistency of the redundant probe

sets in terms of whether they are significant, we calculated the

consistency index using genes with redundant probe sets where at

least one probe set was identified as significantly-changed between

compared groups. Figure 2 shows that the majority of the

redundant probe set groupings have consistency index less than

one. The large proportion of genes with consistency index of 0.5 or

1 is due to the fact that most genes in our groupings have only two

probe sets and at least one of them is significant for this calculation

(Table 1). Compared with the Affymetrix grouping scheme, the

genome-based grouping has a larger proportion of genes showing

higher consistency and smaller proportion of genes showing lower

consistency. We also computed the average consistency score

across all genes. It is 0.60 when genome-based grouping was used.

However, it is 0.50 when the Affymetrix grouping was used. The

larger consistency index obtained for the genome-based grouping

indicates that this probe set screening procedure increases the

consistency across redundant probe sets. Considering that the

consistency index may change when different FDR thresholds are

used for identifying differentially expressed probe sets, we also

examined the overall consistency index at various FDR thresholds

(Figure 3). We found that the consistency index increases as the

FDR threshold decreases. However, regardless of the FDR

threshold, the consistency index of the genome-based grouping

exceeds that of the Affymetrix grouping, although the difference

decreases with increasing FDR.

Removing absent probe sets improves redundant probe
set consistency

It was demonstrated previously that filtering out probe sets that

are deemed as absent (P/A filtering) before conducting further

statistical inference benefits identification of differentially expressed

genes [20]. To test the effects of P/A filtering on redundant probe set

consistency, we removed probe sets that were deemed as absent by

MAS5.0 present/absent call [21] and only analyzed the redundant

probe sets that were deemed present. When we recomputed the

significance consistency index for the present redundant probe sets

and excluded absent probe sets from the calculations, the consistency

index increased dramatically. Figure 2 shows that removing the

Figure 1. Scheme for genome-based redundant probe sets
grouping. Genomic alignments for probe set consensus sequences are
tested for instances of probe sequences within the genomic portion of
the alignment. For all probe sets whose consensus sequence
alignments contain all eleven probes, a new trimmed target region
genomic alignment is generated bounded by the five and three-prime-
most probe sequences. In parallel, genomic alignments for mRNA are
combined into groups based on genomic overlap patterns. The
trimmed target region alignments are then compared with the exon
overlap groups from the mRNA branch of the pipeline. All probe set
target sequence alignments that overlap with at least one member of
the mRNA exon overlap groups are then annotated as targeting the
given group. Probe sets interrogating members of the same exon
overlap group are designated redundant probe sets.
doi:10.1371/journal.pone.0004229.g001

Redundant Probe Sets Analysis
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absent probe sets using P/A filtering increased the proportion of

genes with higher consistency and decreased the proportions of genes

with lower consistency. The significance consistency index for the

genome-based grouping increased from 0.60 to 0.65 with P/A

filtering. For the Affymetrix grouping, P/A filtering increased the

consistency index from 0.50 to 0.59.

To further examine the relationship among P/A calls, significant

probe sets, and consistency of the redundant probe sets, we

examined in detail the genes with two probe sets. In general, probe

sets that indicate differential expression are also called as Present by

MAS5.0 (Table 2). For the 2,002 genes with both probe sets called

as present (P/P category in Table 2), about 22% (884) of the probe

sets were significant and more than 57% of the 884 significant probe

sets were from the same genes. In contrast, for genes with both

probe sets absent (A/A category), only three probe sets from the 834

genes were significant and each of these three significant probe sets

were from different genes. For genes with one present probe set and

one absent probe set (P/A category), 9.6% (178) of the probe sets

from the 931 genes were significant and 13% of the significant probe

sets were from the same gene. In addition, the significant probe set is

the present probe set in most cases (147 out 154). These results

indicate that the significant probe sets and the significance

consistency among redundant probe sets come mainly from the

present probe sets, which explains why removing absent probe sets

improves the overall consistency of redundant probe sets. We also

formally tested whether the proportions of significant probe sets in

each of the three categories in Table 3 (P/P, P/A, A/A) are different

using a McNemar test [22] and obtained extremely high

significance (with p values less than 2.2610216). The same test

was also conducted to test the proportions of significant probe sets

that are from the same gene across the three categories (P/P, P/A,

A/A), and the result was also extremely highly significant (with p

values less than 2.2610216). These tests confirm that absent probe

sets indicate differential expression to a lesser degree than do present

probe sets and that removing absent probe sets increases redundant

probe set agreement.

Figure 2. The distribution of genes with various significance
consistency index values. A consistency index was calculated for
each gene with multiple probe sets and at least one probe set
significantly different across compared groups. The y-axis indicates the
proportion of genes with the consistency index indicated on the x-axis.
AG and GG refer to Affymetrix groupings and genome-based
groupings, respectively. AGP and GGP refer to AG and GG groupings
in which only probe sets called as ‘‘present’’ were included in the
calculation. Significance level is FDR 0.005.
doi:10.1371/journal.pone.0004229.g002

Figure 3. Significance consistency among the redundant probe
sets changes depends on FDR threshold. A consistency index was
computed for each gene with redundant probe sets at different FDR
level. AG and GG indicate the original Affymetrix grouping and
proposed genome-based groupings, respectively. AGP and GGP
represent the AG and GG groupings. AGP and GGP refer to AG and
GG groupings in which only probe sets called as ‘‘present’’ were
included in the calculation.
doi:10.1371/journal.pone.0004229.g003

Table 2. Relationship between P/A calls and significance for
differential expression for genes with two probe sets.

P/P A/A A/P

Total # genes 2002 834 931

Sig probe sets 884 3 178

2 (1) sig prs/gene 253 (378) 0 (3) 12 (154)

P/P, both probe sets are present. A/A, both probe sets are absent. A/P, one
probe set is absent and the other one is present. The abbreviations ‘‘sig’’ and
‘‘prs’’ mean ‘‘significant’’ and ‘‘probe sets,’’ respectively.
doi:10.1371/journal.pone.0004229.t002

Table 3. Consistency of fold changes between redundant
probe set pairs.

Statistics AG AGP GG GGP

Corr. Coef. of FC 0.60 0.74 0.72 0.79

% genes w/ opposite FC direction 0.38 0.28 0.33 0.27

AG and GG indicate the Affymetrix grouping and genome-based groupings,
respectively. AGP and GGP represent the present the AG and GG groupings and
including only present probe sets. The abbreviation ‘‘prs’’ means probe sets. FC
is fold change. Corr. Coef is Pearson correlation coefficient.
doi:10.1371/journal.pone.0004229.t003
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The default stringency setting of the P/A call criteria used above

was meant to control the false present calls rate at 0.05, i.e., an

expected false present call rate of 5%. At this rate, the false absent

call could be high. We increased the false present call rate to 0.1, 0.3,

and 0.5 and examined how these different rates affected consistency

of the redundant probe sets called as present. The overall proportion

of present probe sets increased dramatically from 54% to 82% as the

false present call rate increased. The P/A call consistency between

redundant probe sets increased from 75% to 85% for genes with two

probe sets. However, the overall significance consistency index for

the present redundant probe sets reduced slightly from 0.65 to 0.61

(Data S5). This trend is observed for all the FDR settings in

differential expression analysis (Data S6). These results showed that

increasing the false present call rate resulted in large increase of the

number of present probe sets and large increase of P/A call

consistency with a small decrease of the significance consistency. It

suggests that a higher P/A call threshold might be more appropriate

in routine Affymetrix expression array data analyses.

Fold change consistency among redundant probe sets
Fold change estimation is an important aspect of microarray

analysis. It has been suggested that fold change is more replicable

than p-value based inferences and often has greater biological

meaning [19]. Therefore, we evaluated correlation between the fold

changes obtained from redundant probe sets, focusing as before on

genes with two redundant probe sets (Table 3). We found that the

Pearson correlation coefficients were higher from the genome-based

redundant probe sets (0.72) than from the Affymetrix-defined

redundant probe sets (0.60). In addition, P/A filtering increased fold-

change correlations. We also examined the proportion of genes in

which the redundant probe sets exhibited fold-changes in the

opposite direction and found that the Affymetrix-defined redundant

probe sets had a higher percentage of opposite-directed fold-changes

(38%) than the genome-based redundant probe sets (33%), and this

difference was reduced by filtering out the absent probe sets. Thus,

we conclude that the genome-based grouping in combination with

P/A filtering improved fold-change correlation among redundant

probe sets and also reduced the proportion of genes whose

redundant probe sets indicated opposite fold change directions.

The above fold-change consistency analysis does not consider the

whether a gene is significantly changed in an experiment. However,

investigators are typically more interested in genes that are

significantly-changed as a result of an experimental condition, tissue

source, or other factor. To evaluate the fold-change consistency for

genes in the significant list, we computed the fold-change correlation

coefficient for genes with two present redundant probe sets such that

at least one of these was significantly different between the two brain

regions. The resulting correlation coefficient of fold-changes for this

subset of redundant probe set pairs is 0.84, which is substantially

higher than the correlation obtained from all genes with two present

redundant probe sets (0.79). Only a very small proportion of probe

set pairs (0.09%) in this group showed opposite fold change

directions. These results suggest that the redundant probe sets from

highly significant genes are generally more consistent. Figure 4

summarizes these results in graphical form.

P/A filtering stringency also affected the correlation of fold

changes from redundant probe sets. For the present redundant

probe sets, the correlations between the fold changes showed

reduction (0.79 to 0.74) as P/A call p value threshold increased

from 0.05 to 0.5. The proportion of genes with opposite fold

change directions also increased from 27% to 30% (Data S5).

These results provide evidence that the decrease of P/A call

stringency also reduces the fold change consistency among the

redundant probe sets called as present.

Comparing consistency between and within redundant
probe sets

Although redundant probe sets are expected to be consistent if

they are interrogating the same transcript in a data set, random

sampling will always introduce some variation. Thus, lack of

consistency between redundant probe sets could arise from variation

due to sampling, rather than a change in the relative concentration

of mRNA targets. To evaluate the plausibility of random variation

due to sampling as a potential cause of the observed discordance

between redundant probe sets, we performed a re-sampling

procedure aimed at simulating variance due to sampling and then

evaluated redundant probe set concordance across the samples. For

this, we separated the six replicates in each brain region (amygdala

and hippocampus) of the low tolerance group into two sub-data sets,

containing three replicates each from the two brain regions. The

consistency of the results obtained from the same probe set

compared to itself across the sub-data sets thus provides a measure

of the variability introduced by random sampling. Comparing this

sampling-induced variability with the variability observed between

redundant probe sets within the same sub-data set then allows an

assessment of whether or not the observed differences between

redundant probe sets are due to sampling variability alone. For

example, if the underlying target molecule differences between two

redundant probe sets do not contribute much to their observed

inconsistency, then the relative consistency for a single probe set’s

behaviour across the two sub-data sets should be similar in

magnitude to the consistency observed between two redundant

probe sets. In other words, we are asking whether redundant probe

sets behave as replicates of each other in the re-sampling scenario.

For each of twenty repeated re-samplings, we calculated

consistency with respect to PA calls, fold-change correlation, and

differential expression twenty times, as described in Methods. The

Figure 4. Fold change comparison across redundant probe
sets. We first tested each probe set on the array for the brain region
effect and identified a list of significant probe sets using FDR 0.005
significance level. We then compared this significant probe set list with
the list of genes with two present redundant probe sets according to
genome based grouping. For genes with at least one significant probe
set, we plotted the two fold changes (on log scale) against each other
with random naming of probe set1 (prs1) and probe set2 (prs2) in a
gene. Genes with one significant probe set are presented by points.
Genes with two significant probe sets are represented by circles. We
also tested the two fold changes obtained from each probe set for
genes with two redundant probe sets using FDR 0.05 significance level
as described in Methods. Genes that show significant difference in their
fold changes are represented by red V.
doi:10.1371/journal.pone.0004229.g004

Redundant Probe Sets Analysis

PLoS ONE | www.plosone.org 7 January 2009 | Volume 4 | Issue 1 | e4229



average and standard deviation of the values obtained appear in

Table 4. The results show that P/A calls for single probe sets are

extremely consistent across sub-data sets; we found that, on

average, around 95% of probe sets are called as either Present or

Absent in subsets taken from the same brain region. In contrast, only

60% of redundant probe sets are both called as Present or Absent.

We observe a similar pattern with respect to fold-change correlation.

Average fold-change correlation for individual probe sets calculated

across sub-data sets was 0.956, while average correlation for

redundant probe sets was 0.860. We also examined the number of

genes in which both redundant probe sets were significant in the

same test versus the number of probe sets significant in both subset

data tests. The average number of genes with same probe set

significant in both tests is 380 while the number of genes with both

redundant probe sets significant in both tests is 301. In every

simulation, the former was larger than the latter. These results

indicate that the consistency across tests of different sub data sets for

a single probe set is much higher than that between redundant probe

sets within a test. The inconsistency is probably largely due to the

nature of the redundant probe sets and their targets rather than due

to random experimental variation.

Redundant probe sets that give significantly different
fold-changes

If redundant probe sets show very different response to the

treatment or condition, interesting biological phenomena, such as

splicing or polyadenylation variants that respond to treatment or

condition differently, may be revealed. Therefore, it is interesting

to identify those redundant probe sets for further exploration. To

achieve this, we used an ANOVA model (described in Methods) to

examine some redundant probe set pairs for which both probe sets

in the pair received a MAS5 ‘‘Present’’ call. Using a shrinkage-

based t test, we found that 70 probe set pairs that showed

significantly-different fold-changes between the two brain regions

relative to each other (Figure 4). Interestingly, many of these pairs

included probe sets that were not found to be themselves

differentially-expressed across brain regions. These results suggest

that even if one or both probe sets in a redundant pair do not

suggest differential expression in isolation, together they may

indicate a condition-dependent change in the relative concentra-

tions of individual probe set target transcripts.

We examined the 70 genes with significantly different fold

changes between the two redundant probe sets using the Integrated

Genome Browser (IGB), an interactive genome visualization tool

that can show probes and probe sets together with genomic

sequence and sequence annotations (http://igb.bioviz.org). Using

the Browser, we examined the probe target regions and compared

these to the knownGene annotations harvested from the UCSC

Genome Informatics Table Browser. We found that 29 of the 70

probe set pairs appeared to distinguish between different transcript

variants according to knownGene mRNA annotations. In these

cases, the relative expression of alternative transcript forms could

differ across brain regions. In 5 cases, probe sets did not appear to

overlap with any known genes or were associated with a pair of

mRNAs that overlapped only across their 3-prime and 5-prime

regions and therefore unlikely to be transcribed from the same

promoters. (Note that mRNAs with this configuration are typically

associated with different Entrez Gene ids; our scheme flags such

cases where redundant probe sets are grouped together with

mRNAs associated with different Entrez Gene ids as ‘‘mixed

overlap groups.’’ For a list of these, see Data S1.) In another 4 cases,

the probe sets target very small genes whose known transcripts

encompass one or no introns. The remaining 32 redundant probe

set pairs were associated with only one knownGene mRNA; one

possible explanation for this result is that there may be some

additional variant forms that have not yet been discovered or not yet

recorded in the knownGene collection (Data S7).

Redundant probe sets, by definition, interrogate different

regions of the same gene. As a result, they hybridize to different

locations along the same transcripts. Except in cases where probe

sets overlap along the transcript, the difference in the fold changes

revealed by different probe set could also be due to the different

degrees of degradation at different regions of targeted transcripts.

To test this possibility, we examined the RNA degradation

controls on the Mouse430v2.0 chip (Gapdh, b-Actin, TransRec, and

PyruCarb). Each of these control genes has 3 to 4 probe sets located

at the 59end, middle, or 39 end of a single target transcript. We

tested adjacent probe sets and the probe sets at the two ends for

fold change difference across groups using the same procedures

used above in both data sets. No comparison was significant at the

nominal 0.05 level in either data set. This result indicates that

RNA degradation is not likely a major explanation for the different

fold changes across groups exhibited by redundant probe sets in

some genes as shown in Figure 4.

Discussion

Redundant probe sets can complicate analysis of gene

expression, but they may also yield information about how the

relative concentrations of individual transcript variants change in

response to diverse conditions or treatments. However, taking

Table 4. Comparison of consistency across sub data sets and consistency across redundant probe sets based on re-sampling.

Calculation method (see
Methods) Summary statistic Average Std. Dev.

1 PA consistency – redundant probe sets 0.608 0.130

2 PA consistency – same probe set across sub-data sets 0.947 0.018

3 Fold-change correlation – redundant probe sets 0.874 0.009

4 Fold-change correlation – same probe set, across sub-data sets 0.956 0.0094

5 # of redundant probe sets, with both members of the pair significantly different within
a sub-data set

301.1 61.4

6 # of probe sets, significantly different in both sub-data sets 380.1 76.4

The subset of data corresponding to low reaction level were divided into two data sets by randomly sampling 3 out of the 6 biological replicates from each brain region.
Each probe set was individually and with its redundant probe set partner for differential expression, fold-change correlations across and within sub-data sets, as
described in the Methods. The mean and standard deviation were calculated for each summary statistics across twenty re-samplings of the data.
doi:10.1371/journal.pone.0004229.t004
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advantage of redundant probe sets in this way first requires a

careful examination of probe set quality and annotations. We used

genomic alignments for the probe set consensus sequences and their

pattern of overlap with reference mRNA-to-genome alignments

provided by UCSC Genome Bioinformatics to screen and group

redundant probe sets such that only probe sets with reliable genomic

mappings remained. This process excluded potentially-flawed probe

sets and, at the same time, grouped the remaining probe sets into

clusters of redundant probe sets based on their mutual overlaps with

mRNA-to-genome alignments harvested from the ‘‘knownGene’’

track of the UCSC Genome Browser.

We tested these genome-based groupings by comparing them to

the Affymetrix-provided redundant probe set groupings in a

differential expression analysis of the GSE4035 data set, which

involved comparisons of gene expression between two different brain

regions in the mouse. Table 5 provides a summary of several

consistency metrics we evaluated. To summarize consistency among

redundant probe sets measuring the same gene, we developed a

simple metric, the consistency index, defined as the percentage of

probe sets measuring a single gene that are called as differentially-

expressed in an experiment, averaged over all genes with multiple

probe sets. We found that the genome-based redundant probe set

groupings had a higher overall consistency index when compared to

the Affymetrix groupings. As a further measure of redundant probe

set consistency, we computed Pearson’s correlation coefficient

between the fold-changes obtained for the two different probe sets

belonging to each redundant probe set pair. As with the consistency

index, fold-change correlation was higher for genome-based

groupings. In all cases, fold-change correlation and consistency

index improved when only probe sets called as ‘‘Present’’ in 80% or

more samples in a group were considered.

We conclude based on these results that the genome-based

grouping and screening method yields more consistent results for

redundant probe sets. By grouping probe sets based on their

genomic overlaps with known mRNAs, we obtained a more

realistic picture of redundant probe set targets. And by only

considering probe sets whose target regions map precisely to a

single location in the genome which in turn contains perfect

matches for all eleven probes, we help to rule out doubts that

inconsistencies observed between redundant probe sets are due to

cross-hybridization or probe set-design artefacts. Thus, the

genome-based groupings have the potential to reveal biological-

ly-interesting differential regulation of mRNA processing. To

demonstrate this latter idea, we showed how a simple ANOVA-

based method can detect significantly-different fold-changes for

redundant probe sets that measure the same gene. Our application

of the model identified redundant probe set pairs where the probe

sets within a pair yielded significantly-different fold-changes. This

method can be easily extended for genes with more than two

redundant probe sets using a two-way ANOVA model as proposed

by Li et. al., [23]. In the two-way ANOVA model, brain regions

and probe sets are the two factors, and the interaction term of

these two factors will capture the relative target level change

associated with brain region. This two-way ANOVA model differs

from the analysis presented here in that the response variable is the

probe set intensity after normalization, while in the current

analysis it is the difference between redundant probe sets, for genes

with only two redundant probe sets.

Because we applied the test to redundant probe sets as defined

by the genome-based screening and grouping method, we can be

more confident that differences they detect are not mostly due to

mis-annotations but instead may represent bona fide cases of

condition-dependent differential mRNA processing. When we

inspected the gene structures and probe set consensus sequence

alignments using the Integrated Genome Browser, we found that

about half of our findings have redundant probe sets interrogating

different target mRNAs based on the knownGene transcript forms.

Alternative approaches to probe set redundancy have been

developed. One seeks to avoid the complexity of the redundant

probe sets by redefining Affymetrix probe sets in custom Chip

Definition Files (CDFs), so that all probes from redundant probe sets

are assembled into a single probe set [24]. In this case, the analysis is

simplified to just analyzing one (potentially enormous) ‘‘mega probe

set’’ per gene. It has been shown that using these custom CDFs can

improve reproducibility of differential expression analysis between

different laboratories [25]. However, consolidating the redundant

probe sets eliminates the potential ability for individual probe sets to

detect distinct transcripts. Redundant probe sets exist because the

Affymetrix probe set design pipeline for three-prime arrays is capable

of recognizing and handling transcript variants. The consolidation

strategy perhaps allows for improvements in gene-level differential

expression analysis, but it may eliminate any potential for detecting

bona fide differential regulation of alternative transcripts, e.g., cases

where the treatment under investigation changes the ratio of

alternative forms expressed by the same transcriptional unit.

Similarly, it is not clear if these ‘‘mega probe sets’’ have excluded

Table 5. Summary of redundant probe sets consistency
evaluation.

Evaluated Metric Groups Compared Statistics Used

P/A call Redundant probe
sets from genes with
just two redundant
probe sets

c

T
c, the number of genes with

consistent P/A call; T, the total
number of genes analyzed

Random biological
samples of the
same probe set

Significance for
brain region effect

Redundant probe
sets for all genes
with redundant
probe sets

P

i

pi

G
pi , the proportion of probe

sets that are significant for gene i
(i = 1,…,G); G, the total number of
associated multi-probe set target
genes being tested on the array.

Present redundant
probe sets for all
genes with redundant
probe sets

Random biological
samples of the same
probe set

Fold change Redundant probe
sets from genes
with two redundant
probe sets

Pearson correlation coefficients
and proportion of genes with
opposite signed fold changes

Present redundant
probe sets from
genes with two
redundant probe
sets

Present redundant
probe sets from
genes with two
redundant probe
sets and at least one
probe set significant

Random biological
samples of the same
probe set

doi:10.1371/journal.pone.0004229.t005
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probes from problematic probe sets, such as the probe sets

interrogating incorrect strand as described for Surf4 [3].

Another strategy is to sub-divide the probe sets into smaller

groups of probes that that interrogate individual exons using prior

knowledge of sequences present in transcript databases [26]. This

strategy tends to generate a large number of probe sets containing

fewer probes. Although this strategy has great appeal, simulation

studies showed that results obtained from probe sets with fewer

than four probes are not reliable, and therefore should be removed

from an analysis. Any remaining probe sets are expected to detect

different transcripts or clusters of transcripts and would therefore

provide transcript-level differential expression measurements.

However, because a large number of rare transcripts (in rare

tissues and conditions) are considered in the same way as common

transcripts, most of the probe sets may not detect particular

transcripts in each experiment. The division of the probe sets may

reduce the power for overall gene expression comparison.

Both the sub-division and consolidation strategies generate

probe sets of unequal sizes, the influence of which on expression

analysis is unknown. While both ideas have some appeal, we

would argue that the probe sets, although some are flawed,

capture real information about sequence variants that existed in

the public databanks at the time the probe sets were designed. For

the purposes of detecting condition-dependent differential mRNA

processing of known variant forms (not detecting unknown

variants), we recommend retaining the Affymetrix defined probe

sets while at the same time depending on the high-quality ones for

more detailed and careful analyses. Similarly, only probe sets that

are truly redundant (e.g., hybridize with transcripts arising from

the same gene or gene region) should be used to address

alternative mRNA processing in Affymetrix 3-prime arrays.

Another recently-published approach involves treating redun-

dant probe sets as replicate measurements of the same gene in an

attempt to improve statistical power in differential expression

inference [23]. This approach respects the original design of the

array, and uses a statistical model to incorporate measurements

from all redundant (termed sibling) probe sets, but only when the

probe sets behave similarly in an experiment based on the

insignificant result from testing the interaction term. In their

article presenting the approach, Li and co-workers showed that

their strategy has greater power to detect differentially expressed

genes than individual probe set analysis or the consolidated ‘‘mega

probe set’’ strategy. Their work differs from ours in that we focus

on the differences between redundant probe sets, aiming to

identify candidates for regulated alternative mRNA processing. Li

et al focus on detecting differential expression of the entire target

gene and use redundant probe sets only when they respond the

same way to an experimental treatment. In general, most

approaches that attempt to handle redundant probe sets are

aimed either at using them to improve gene-level inference or

detect novel splice variants. Our approach, by contrast, aims to

detect candidates for differential regulation of mRNA processing,

using what is already known about the genomic landscape and

respecting the original Affymetrix design, which, although

imperfect, reflects the known universe of mRNA transcripts.

In addition to probe set-to-target-gene mappings, Affymetrix

assigns a grade to each probe set according to how well it matches

a designated target transcript, independent from the Entrez Gene

annotations. The probe set grades are based on sequence analysis

comparing probes to their annotated targets. Although valuable,

they do not specifically address the redundancy of probe sets but

instead describe how well a probe set’s constituent probes match a

transcript (mRNA) record. For the purposes of redundant probe

set assignments and examining alternative splicing/polyadenyla-

tion, it is better to examine the exon-intron structure of target

mRNAs via their genomic alignments, since ultimately these are

what biologists and data analysts will use to assess whether a given

pair of probes sets interrogate an alternatively spliced or

polyadenylated gene.

It is important to note that Affymetrix continues to develop new

array designs, such as exon-focused arrays in which probes are

selected from all known exons, and, more recently, reduced genome

exon arrays which query all known exons but use fewer probes per

target gene. However, the continuing popularity of the three-prime

arrays and availability of large amounts of archived expression data

in resources such as the Gene Expression Omnibus argue in favour

of continued exploration of new analysis methods. The redundant

probe sets on the three-prime arrays offer a means to measure

differential three-prime end processing, e.g., alternative terminal

exon choice and alternative polyadenylation. We expect that in the

future, the exon arrays (or specialized splicing arrays) will be the tool

of choice to measure differential mRNA splicing, while data from the

three-prime arrays will get a second life as a rich source for data-

mining alternative three-prime end processing mechanisms. Ulti-

mately, the analysis procedures demonstrated here can be applied to

multiple data sets to reveal large-scale patterns of alternative mRNA

production and regulation.

Supporting Information

Data S1 Genome-screened redundant probe sets. This file

reports Entrez Gene targets (when available) and genome-screened

redundant probe sets. Each row lists a set of redundant probe sets.

Column 1 gives the Entrez Gene id; column 2 gives a GenBank

accession for a mRNA overlapping the region; column 3 reports

the group type; and column 4 contains a comma-separated list of

redundant probe set ids. All probe set ids are from the mouse

MOE430_2 array from Affymetrix. Group type (column 3)

designation ‘‘overlap’’ indicates that the probe sets all match the

same Entrez Gene. Group type ‘‘mixed_overlap’’ indicates that

some probe sets within a group map onto more than one Entrez

Gene id. This can occur when a first exon in one gene overlaps the

last exon in another.

Found at: doi:10.1371/journal.pone.0004229.s001 (0.28 MB

TXT)

Data S2 Probe set screening results. This tab-delimited spread-

sheet lists every probe set on the mouse 430_2 array from

Affymetrix. Column 1 gives the name of the probe set; column 2

(labeled ‘‘map’’) reports whether the probe set maps to one (SM),

more than one (MM) or no (NM) locations in the mm8 mouse

genome assembly; and the third column (labeled ‘‘probes’’) reports

the number of probes per probe set that map to the genome for all

probe sets designated SM in column 2.

Found at: doi:10.1371/journal.pone.0004229.s002 (0.78 MB

TXT)

Data S3 Plots Showing Differentially Expressed Probe Sets. This

file contains plots summarizing differential expression analysis

results for the two subsets of data from GSE4035. Each fear

condition level was treated as one data set after data pre-

processing. The two brain regions were compared to identify

differentially-expressed probe sets.

Found at: doi:10.1371/journal.pone.0004229.s003 (0.06 MB

DOC)

Data S4 Redundant Probe Set Consistency with Respect to

Differential Expression. This file (divided into four sections) reports

the number of significant probe sets for genes interrogated by

redundant probe sets established using different grouping methods
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with or without removing the absent probe sets. Only genes with at

least one differentially-expressed probe set are included.

Found at: doi:10.1371/journal.pone.0004229.s004 (0.00 MB

TXT)

Data S5 Effects of Varying Present/Absent Alpha Level. This

file reports the effects of altering P/A call expected false positive

alpha rate settings on redundant probe set consistency.

Found at: doi:10.1371/journal.pone.0004229.s005 (0.01 MB

XLS)

Data S6 Significance Consistency Results. Plots illustrating how

significance consistency varies with respect to the false positive

alpha rate setting for P/A calls.

Found at: doi:10.1371/journal.pone.0004229.s006 (0.06 MB

DOC)

Data S7 Gene Structure Inspection Results. Results from

manual inspection of gene structures using the Integrated Genome

Browser for the 70 genes with two present redundant probe sets

that show significant different fold changes between two brain

regions.

Found at: doi:10.1371/journal.pone.0004229.s007 (0.03 MB

XLS)
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