
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
Genoviz Software Development Kit: Java tool kit for building
genomics visualization applications
Gregg A Helt1, John W Nicol2, Ed Erwin3, Eric Blossom4,
Steven G Blanchard Jr2, Stephen A Chervitz3, Cyrus Harmon5 and
Ann E Loraine*2

Address: 1Genomancer Consulting, 9400 Mill Creek Road, Healdsburg, CA 95448, USA, 2Dept of Bioinformatics and Genomics, University of
North Carolina at Charlotte, 600 Laureate Way, North Carolina Research Campus, Kannapolis, NC 28082, USA, 3Affymetrix, Inc 3420 Central
Expressway, Santa Clara, CA 95051, USA, 4Blossom Associates West, 2737 Russell St Berkeley, CA 94705, USA and 5Olema Pharmaceuticals, Inc
665 3rd St, Suite 250, San Francisco, CA 94107, USA

Email: Gregg A Helt - gregghelt@gmail.com; John W Nicol - jnicol1994@alumni.cmu.edu; Ed Erwin - enwired@gmail.com;
Eric Blossom - elb@blossomassociates.net; Steven G Blanchard - sgblanch@uncc.edu; Stephen A Chervitz - trutane@gmail.com;
Cyrus Harmon - cyrus@bobobeach.com; Ann E Loraine* - aloraine@uncc.edu

* Corresponding author

Abstract
Background: Visualization software can expose previously undiscovered patterns in genomic data
and advance biological science.

Results: The Genoviz Software Development Kit (SDK) is an open source, Java-based framework
designed for rapid assembly of visualization software applications for genomics. The Genoviz SDK
framework provides a mechanism for incorporating adaptive, dynamic zooming into applications, a
desirable feature of genome viewers. Visualization capabilities of the Genoviz SDK include
automated layout of features along genetic or genomic axes; support for user interactions with
graphical elements (Glyphs) in a map; a variety of Glyph sub-classes that promote experimentation
with new ways of representing data in graphical formats; and support for adaptive, semantic
zooming, whereby objects change their appearance depending on zoom level and zooming rate
adapts to the current scale. Freely available demonstration and production quality applications,
including the Integrated Genome Browser, illustrate Genoviz SDK capabilities.

Conclusion: Separation between graphics components and genomic data models makes it easy for
developers to add visualization capability to pre-existing applications or build new applications using
third-party data models. Source code, documentation, sample applications, and tutorials are
available at http://genoviz.sourceforge.net/.

Background
Since the beginning of the genomics era, numerous
authors have warned against on-coming information
overload, using metaphors that evoke natural disasters

("deluge," [1] "avalanche" [2], "tsunami" [3]) to empha-
size how our capacity to generate data threatens to over-
whelm our ability to deploy it in research. Finding ways to
store and analyze vast amounts of data is not as difficult

Published: 25 August 2009

BMC Bioinformatics 2009, 10:266 doi:10.1186/1471-2105-10-266

Received: 12 April 2009
Accepted: 25 August 2009

This article is available from: http://www.biomedcentral.com/1471-2105/10/266

© 2009 Helt et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19706180
http://www.biomedcentral.com/1471-2105/10/266
http://creativecommons.org/licenses/by/2.0
http://genoviz.sourceforge.net/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2009, 10:266 http://www.biomedcentral.com/1471-2105/10/266
as it once was, thanks to improvements in database tech-
nologies, web services, and computer hardware, but devel-
oping graphical software that allows scientists to visualize,
explore, and interact with novel and rapidly expanding
data sets from genomics remains a challenging task.

Flexible, highly-interactive visualization software has
great value in genomics because it enables scientists to
explore the genomic landscape without knowing in
advance what patterns and relationships they might find
[4-6]. Visualization techniques provide an excellent com-
plement to more abstract, quantitative or statistical analy-
sis methods in that they rely on innate human visual
processing systems, rather than on abstract mathematical
reasoning. Discoveries arising from interactive inspection
of the genomic landscape will always require correspond-
ing statistical validation, but visual methods have tremen-
dous power to expose compelling patterns and give
scientists ideas on what to test.

Developing visualization software for genomics can be
difficult. Genome science changes so rapidly that new
data types frequently appear in advance of statistical
methods and visualization software needed to analyze
and display them. Conceiving effective ways to represent
new types of biological data in graphical formats can be
difficult in part because even the scientists generating the
data may not know precisely what they want to see until
they have seen and interacted with real-life examples.
Once they do, the experience of viewing their data in
graphical format often suggests new questions and new
ideas, creating the need to develop new ways to display
data and new modes of interaction. However, once a
developer has created a working application for scientists
to use, it may not be easy or even feasible to modify how
the data are represented, depending on how the developer
has implemented the graphical components.

The Genoviz Software Development Kit (SDK) aims to
solve some of these problems. The Genoviz SDK is an
open-source, freely available Java-based toolkit for build-
ing genomics visualization applications. It provides core
functionality developers can easily deploy in their appli-
cations, notably interactive, dynamic zooming, which
allows rapid navigation and exploration of genome-scale
data sets covering many orders of magnitude, from chro-
mosomes to genes to individual base pairs. The toolkit
implements functionality well-suited to genomics visuali-
zation applications, but its architecture also makes it easy
for developers to invent new ways to represent emerging
data types in graphical formats. The Genoviz SDK aims to
help developers build new applications iteratively and
organically, inventing novel graphical representational
schemes in collaboration with users as they explore their

own data, make discoveries, and think of new questions
for their software and experiments to address.

Implementation
The Genoviz SDK is implemented using the Java program-
ming language and requires Java versions 1.6 or above.

Results
The Genoviz SDK is an object-oriented, Java-based graph-
ics framework that provides methods, objects, and a class
hierarchy for developers to display genomic data in two-
dimensional fields. It originated as the Neomorphic Soft-
ware Development Kit (NGSDK) and was first developed
at Neomorphic Software, a bioinformatics company that
later merged with Affymetrix, which continued develop-
ment of the software. The NGSDK later entered the public
domain as open source software under a new name: the
Genoviz SDK. As a result, many classes and packages in
the toolkit bear appellations "neo" and "affymetrix,"
reflecting the Genoviz SDK's origins at the two compa-
nies.

The Genoviz SDK's core graphics system employs three
collaborating classes: Scene, a View, and Glyph. A Scene
object represents a two-dimensional data field and its
coordinate system. For example, a Scene might represent
the physical map of a single chromosome or chromosome
arm, with its associated annotations and sequence data. In
this case, the coordinate system comprises nucleotide
positions, most easily expressed as whole numbers.
Another Scene might represent a genetic or cytological
map; in this case, the coordinate system might be based
on map units, which can have fractional values. To accom-
modate different types of maps, the trio of interacting
objects use floating point numbers to indicate positions,
but programmers are free to use either floating point
numbers or integers when adding items to a Scene.

A View represents the user's current view on the Scene. It
captures the user's current level of zoom and the range of
visible coordinates. Each View references a single Scene
and encapsulates algorithms for transforming coordinates
referencing the Scene's biology-based coordinate system
into the pixel-based coordinate system of the user's com-
puter screen. The details of how Scene and View objects
accomplish this translation are largely hidden from the
programmer, and most programmers would not need to
manipulate instances of these classes directly, unless they
required specialized behavior not already provided as part
of the toolkit. However, because the system is open
source, programmers can investigate the transformation
logic in detail when necessary.

Glyph objects are individual graphical elements that
belong to a Scene and change their appearance depending
Page 2 of 13
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:266 http://www.biomedcentral.com/1471-2105/10/266
on the scale of the View (or Views) in which they appear.
A Scene may contain many thousands of Glyphs; typi-
cally, only a subset of these is on display at once. The
toolkit contains a rich array of ready-to-use glyphs (see
Figure 1,) and developers can create new Glyph classes by
implementing the GlyphI interface or by subclassing exist-
ing GlyphI implementations. Glyphs are designed to
know how to draw themselves; hence, a developer can
exert near-total control over their appearance at different
zoom levels. To create a new Glyph class with a novel
appearance, the developer would over-ride the drawing
routines promised in the GlyphI interface, perhaps using
extant Glyph source code as a rough guide to how achieve
different effects. (A simple example appears in Figure 2.)
Glyphs can also be nested within other Glyphs in parent-

child relationships, allowing for a variety of effects. For
example, the drawing method of a parent (or container)
Glyph might measure its available screen space and
choose to invoke its child Glyphs' drawing methods only
if there are enough pixels to display them adequately, an
example of semantic zooming.

The Scene, Glyph, and View come together as components
of a fourth object, called a Widget (see below), that man-
ages their interactions with each other and implements
basic functionality for mediating user interactions with
the genomic data on display in the Scene. The Widget typ-
ically creates and manages scrollbars, sliders, or other
graphical user interface components the user operates to
zoom or pan the display. The Widget intercepts user

Scene, View, and GlyphsFigure 1
Scene, View, and Glyphs. The core graphics capability in the Genoviz SDK involves three core collaborating classes/inter-
faces. A Scene implements the SceneI interface and contains references to ViewI and GlyphI objects. In a typical application,
there is usually only one ViewI per Scene, but Scenes can support multiple ViewI objects in order to present of alternative
views on the same data. Scene objects also contain a reference to a single root GlyphI object, which in turn contains many chil-
dren. When the View on a Scene changes, the Scene invokes the draw method of its associated GlyphI object, which then may
recursively invokes the draw method of its child Glyphs.
Page 3 of 13
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:266 http://www.biomedcentral.com/1471-2105/10/266
requests to change scale or position, and then triggers
invocation of drawing methods via the one or more View
objects associated with its Scene. Each View in turn
requests its Scene's Glyphs to draw themselves; Glyphs
consult the View in which they appear to determine their
sizes relative to the pixel-based coordinate system of the
computer screen and then use the built-in Java AWT
Graphics object (also obtained from a View) to draw
graphical elements on the screen. The division of respon-
sibility between Scene, Glyph, and View makes it possible
for a single Scene to appear in multiple Views, allowing
multiple, alternative representations of the same data.
This can be useful in a number of settings, for example,
when viewing an overview graphic of an entire chromo-
some in tandem with a zoomed-in view of the same data.

An important feature of this design is that it enables the
graphics system to operate relatively independently of the
data models, akin to the Model-View-Controller architec-
tural design pattern commonly encountered in modern
software applications that aim to separate business logic
from presentation strategy [7]. Glyphs can contain refer-

ences to custom data models, and specialized Glyph sub-
classes may implement drawing logic that consults these
data models, but otherwise, Glyphs do not enforce a par-
ticular scheme for modeling genomic data.

One of the core features of Genoviz SDK is that the graph-
ical rendering system handles zooming and panning
(scrolling) without the programmer having to provide
explicit control of the system in response to user drags on
scrollbars or sliders attached to a display. The zooming
sub-system typically uses a default (but replaceable) log-
based Transform object to adapt the amount of zoom
obtained per unit of user drag (e.g., the number of pixels
a scrollbar thumb moves) to the current scale of the view
on display in an application. As a result, drag gestures at
high zoom change the scale of the display less than do
drags at lower zoom. Similarly, the programmer does not
typically have to determine the vertical positioning of
Glyphs in horizontal maps. Typically, the widget compo-
nent implements algorithms (encapsulated in Packer
objects) that determine the vertical location of new

A sample draw method for a simple Genoviz SDK Glyph classFigure 2
A sample draw method for a simple Genoviz SDK Glyph class. The method accepts a View object, defined as type
ViewI, an interface containing View-related methods. A superclass' calcPixels method translates the Glyphs map-based
coordinates (the coordbox) to pixel-based coordinates. The Java AWT Graphics object then draws an oval shape in the space
bounding the Glyph's location in pixel coordinates.
Page 4 of 13
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:266 http://www.biomedcentral.com/1471-2105/10/266
Glyphs, stacking them in ways that prevent them from
colliding in the two-dimensional data field.

Custom data representation schemes using Glyphs
Programmers can easily implement novel visualization
ideas within the Genoviz framework by implementing
and deploying new Glyphs. Figure 3 presents a screen cap-
ture from a demonstration application containing several
examples of Glyph types already implemented as part of
the Genoviz SDK. Note that some are comprised of several
other Glyphs, such as the central Glyph containing of
three blue rectangular Glyphs. The basic Glyph class,
which developers would typically sub-class, contains
methods that allow a Glyph to recursively draw its chil-
dren, using the coordinates of the parent Glyph to delimit
the child Glyphs' available space. The ability to invoke
this method recursively is particularly useful for represent-
ing compound features, such as the set of exons and
introns that comprise a gene structure [6]. Because the
toolkit is open source, developers can examine the source
code and use these pre-existing Glyph classes as a rough
guide to what types of effects are possible.

Programmers can design new Glyph classes that imple-
ment semantic zooming, a form of zooming in which
objects change their representation depending on the
zoom level and which has special relevance in genomics
where the scale of the data ranges across several orders of

magnitude, from entire chromosomes to individual base
pairs. Developers can modify zooming behavior by over-
riding the Glyph "draw" method, as discussed above. A
Glyph accesses its currently available screen space via a
View, passed as a parameter to the Glyph's drawing rou-
tines, and then change its drawing logic accordingly. For
example, a Glyph might choose to draw its label based on
whether or not there is enough horizontal space to accom-
modate the label text. Similarly, a Glyph might choose to
invoke the drawing routines on its child Glyphs only
when the parent Glyph achieves a pre-determined size in
pixel-based coordinate system of the user's display. Other,
more complex behaviors are possible. Figures 4 and 5
present an examples of semantic zooming from the Inte-
grated Genome Browser [8], a Genoviz SDK-based appli-
cation. In Figure 4, the developer has created a Glyph
representing the cytological map of the human genome.
At low zoom, the entire chromosome occupies the View,
while at higher zoom, individual labeled bands compris-
ing the cytological map become visible as more space
becomes available. Figure 5 presents another example of
semantic zooming from the IGB software. The software
implements partial (also called "lazy") loading of
sequence data from a back end data server, an optimiza-
tion scheme that lets the user access regions of interest
without having to download an entire genome or chro-
mosome sequence, which could be multiple megabytes or
even gigabytes. At low zoom, regions where sequence has

Genoviz SDK Glyphs on displayFigure 3
Genoviz SDK Glyphs on display. The toolkit contains Glyph classes programmers can use to develop new applications and
new representation schemes for genomic data. The green arrow outlined in red is an instance of an ArrowGlyph. The outline
indicates the user has clicked the Glyph and the Glyph is now considered selected. This example application is available from
demo sub-directories within the genoviz sdk package in the Genoviz source code repository.
Page 5 of 13
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:266 http://www.biomedcentral.com/1471-2105/10/266
already loaded appear in gray, tagging regions the user has
already examined in depth. At high zoom, these regions
resolve into letters representing base pairs.

Separation of Concerns: Graphics Semantics and
Genomics Semantics
The Genoviz SDK aims wherever possible to separate the
semantics of graphical rendering from the semantics of
the genomic data. This design decision enables developers
to reuse preexisting libraries and applications when creat-
ing visualization applications. The Genoviz SDK graphics
logic does not specify how data should be represented
internally within an application. At first glance, this state-
ment may seem contradictory in that the Genoviz SDK

aims to make creation of genomic data visualization
applications easy and convenient for programmers. How-
ever, the precise semantics of genomic data models are
often application-specific, whereas the graphics compo-
nents more often generalize across diverse applications
and problem domains. For example, a developer who has
implemented a database system for representing genomic
data may wish to use data models that harmonize with the
database. Similarly, a developer familiar with the open
source BioJava library might prefer to use BioJava data
models in conjunction with the Genoviz SDK [9]. To
ensure maximum reusability, the Genoviz SDK does not
require programmers to conform to any pre-determined
scheme for representing genomic data. By separating

Semantic Zooming and Child GlyphsFigure 4
Semantic Zooming and Child Glyphs. The image below comes from the Integrated Genome Browser, which can display a
chromosome ideogram alongside the genome axis. A. At low zoom, component bands merge with parent bands and labels
appear only when the display size in pixels is large enough to accommodate them. B. At high zoom, chromosome bands
resolve and labels appear. Glyph classes that implement this behavior are in the igb subdirectories within the Genoviz project
source code repository at sourceforge.net.
Page 6 of 13
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:266 http://www.biomedcentral.com/1471-2105/10/266
drawing logic from genomic semantics of genes and
genomes, sequence and annotations, the Genoviz SDK
graphics system provides conveniences for the program-
mer that are nonetheless well-adapted to representation
of genomic data.

Genoviz SDK Widgets
The Genoviz SDK includes several classes (called Widgets)
that provide convenient functions for interacting with and
representing data types commonly encountered in bioin-
formatics. These Widgets implement a generic interface
that specifies basic functionality related to zooming, pan-
ning, selection, and interaction with the underlying
graphics system. Widgets provide methods for establish-
ing horizontal and/or vertical axes, setting display
bounds, panning, zooming, selecting and placing items at

designated positions, configuring glyph factories and data
adapters (for creating graphical objects with common
attributes), setting background colors, establishing win-
dow resize behavior, and managing event handler objects
that intercept and respond to user interactions. Special-
ized Widget implementation classes also provide methods
and functionality for representing specific categories of
genomic data. Some of the currently available widgets
include a NeoMap object, for representation of physical
and genetic maps; a TieredNeoMap widget for display of
physical or genetics map data in individually-adjustable
and configurable tracks; a NeoAssembler widget, aimed at
display of EST/cDNA assemblies; and a NeoSeq widget for
display of sequence data. By providing a generic Widget
interface, the Genoviz SDK framework aims to encourage
developers to create new widgets that support emerging

Semantic zooming and sequence dataFigure 5
Semantic zooming and sequence data. This screen capture from the Integrated Genome Browser showing gene models
from Arabidopsis thaliana and overlapping, spliced EST alignments shows two view on the same sequence Glyph. At low zoom
(top,) the loaded sequence appears as a gray bar beneath the sequence axis. At high zoom, the gray bar resolves into charac-
ters (A, G, T, C) representing the DNA sequence bases.
Page 7 of 13
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:266 http://www.biomedcentral.com/1471-2105/10/266
data types, such as data from sequence-based expression
profiling.

The NeoMap and TieredNeoMap widgets are used to place
annotations, sequence, and functional genomics data sets
such as chIP-chip data into a linear coordinate system.
Their primary use is to support implementation of
genome browser-like applications, where items of interest
appear alongside a genomic sequence axis representing
base pair positions. As such, they include functions that
allow selection of items based on their position inside the
map coordinate system and contain layout algorithms
(implemented in Packer objects) that determine where
items are located in the vertical dimension. A developer
can add new Glyphs to a NeoMap or TieredNeoMap by
invoking addItem methods that accept start and end
coordinates and specialized factory objects that instanti-
ate new Glyphs using pre-determined styles. NeoMap and
TieredNeoMap widgets handle integer- and real-number-
based coordinate systems, thus making them useful for
display of cytological or genetic maps, as well as physical,
base-pair maps. The TieredNeoMap (Figure 6) is a Neo-

Map that can position Glyphs into separate tiers (tracks)
the user can move, hide, collapse, or transform.

As with the NeoMap and TieredNeoMap, the NeoAssem-
bler widget (Figure 7) includes convenience methods for
a specialized data type: sequences assemblies. The
NeoAssembler displays short-read sequences (e.g., ESTs or
genomic sequence reads) in rows beneath a typically
much-longer consensus sequence and includes methods
that allow the programmer to specify how mismatches
and other aspects of the assembly will appear to the user.
As with the other widget objects, the NeoAssembler pro-
vides ways for the user to navigate the data scene on dis-
play. At high zoom, sequences resolve into letters
representing base pairs; at low zoom, they appear as anno-
tated, rectangular Glyph objects that show the large-scale
structure of the assembly, including mismatch positions
and directionality of reads relative to the consensus. The
NeoSeq widget (Figure 8) contains functions aimed at
convenient display of a single sequence. It supports text-
based display of sequence data in a scrollable display and
supports user interactions relevant to the representation

TieredNeoMapFigure 6
TieredNeoMap. The TieredNeoMap is a specialized subclass of NeoMap that allows developers to display data in labeled
tracks. Typically, this functionality is used to segregate data sets arising from different sources so that users can compare them
easily.
Page 8 of 13
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:266 http://www.biomedcentral.com/1471-2105/10/266
of sequence as simple text, such as selection of subse-
quence, highlighting, and copy-and-paste.

Creating an application using the Genoviz SDK
A typical Genoviz SDK application consists of several col-
laborating classes: parsers that read data from files or data-
bases and generate in-memory data structures; adapter
objects that translate these data structures into Glyph

NeoAssemblerFigure 7
NeoAssembler. The NeoAssembler widget displays assembled sequences and their merged consensus sequence.
Page 9 of 13
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:266 http://www.biomedcentral.com/1471-2105/10/266
objects shown in the display; one or more display compo-
nents (e.g., NeoMap) that mediate user interactions with
data, and custom application logic that specifies how the
application will respond to user interactions with Glyphs,
menus, scrollbars, and other graphical elements. Typi-
cally, developers attach data models representing genomic
data to Glyph objects via a generic setInfo method,
which accepts any Java object; this allows developers to
link the object models representing genomic data to the
graphical elements that control how the data will appear
within a display. When users interact with Glyphs, the dis-
play component generates events, which the application
logic may capture and then interpret. For example, right-
clicking a Glyph representing a gene model might signal a
request to get more information about it, as happens in

the Integrated Genome Browser [8]. Alternatively, it could
represent a request to perform an editing operation on the
underlying genomic data model the Glyph represents. In
this way, the graphics system provides a visual representa-
tion of data structures that users can easily inspect and
manipulate via Glyph objects, similar to windows, check-
boxes, and other familiar graphical elements that users
can click, drag, and manipulate in standard graphical user
interfaces.

Discussion
Developers evaluating the Genoviz SDK for use in their
applications may be interested in comparing it to other
graphics frameworks that render two-dimensional data.
The Jazz/Piccolo framework, first developed at the Univer-

NeoSeq and NeoMap widgets can work in concertFigure 8
NeoSeq and NeoMap widgets can work in concert. (A) A NeoSeq widget displays sequence as characters. Here, the
user has highlighted a section of the sequence. The selected region appears in red. (B) NeoSeq and NeoMap working in con-
cert. Here, a red RectangleGlyph covers the section of the NeoMap corresponding to the section of sequence displayed in the
NeoSeq. Click-dragging the RectangleGlyph in the NeoMap scrolls the sequence displayed in the NeoSeq. Likewise, scrolling
the NeoSeq moves the RectangleGlyph. In many settings, it is useful to be able to view sequence data in a scrollable window,
linked to a map in which annotations and other notations on the sequence appear.
Page 10 of 13
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:266 http://www.biomedcentral.com/1471-2105/10/266
sity of Maryland, enjoys a large group of enthusiastic users
[10]. In Jazz/Piccolo, zooming is typically two-dimen-
sional, imitating the action of camera rising and lowering
over a two-dimensional data field. Jazz/Piccolo zooming
involves focusing on a single point around which the data
field contracts or expands as the user zooms in or out. In
genomic applications, where the field of data is typically
one-dimensional and involves stretching and contracting
a genomic sequence axis, zooming is simpler and more
intuitive when restricted to a single dimension [6]. The
graphical components implemented in Jazz/Piccolo
require more memory and processing power than their
equivalents in the Genoviz SDK, thus limiting their use-
fulness for display of vast genomic data sets [11]. They are
best-suited to the representation of hundreds of data
objects, whereas the Genoviz SDK is well-suited for repre-
sentation of genome-scale data sets, which can include
hundreds of thousands of objects and millions of data
points.

Other toolkits for genomics visualization that have been
published include bioTK and bioWidgets. David Searls'
bioTk toolkit offered a set of configurable graphical com-
ponents, termed "widgets," that programmers could
manipulate using the Tcl/Tk command-line language
[12]. This early toolkit included components for drawing
chromosomes, genome maps, and sequence displays.
Later, Gregg Helt developed bioTK-Perl, which allowed
Perl developers to use similar components in Perl applica-
tions, such as Genotator, a workbench for genome anno-
tation developed by Nomi Harris [13]. At least two Java-
based toolkits for genomics visualization were developed
in the late 1990s, including the BioViews toolkit from the
Berkeley Drosophila Genome Project [5] and the BioW-
idgets toolkit from CBIL at the University of Pennsylvania
[14]. To our knowledge, these toolkits are no longer sup-
ported. The Genoviz SDK draws inspiration from these
early groups' work; however, its structured graphics
approach more closely resembles the Jazz/Piccolo toolkit
and places greater emphasis on efficient memory usage.
The open source BioJava and BioPerl projects include
sequence visualization components, but they are more
tightly coupled to their respective BioJava and BioPerl
data models [9].

Several groups in industry and academia have imple-
mented applications using the Genoviz SDK. These
include Affymetrix, where co-authors Gregg Helt with Ed
Erwin developed early versions of the Integrated Genome
Browser (Figure 9), also available in the same sourceforge
project as the toolkit itself. In late 2008, another group
released the Genome Environment Browser, which used
the Genoviz SDK to implement an interactive genome
environment for users to explore genome-scale data sets,
primarily tiling array data [15]. Other applications devel-

oped using the Genoviz SDK (and its earlier incarnation
the Neomorphic Genome Software Development Kit)
include the Neomorphic Annotation Station [6], which
The Institute for Genomic Research commissioned to sup-
port their curation of the Arabidopsis thaliana genome [16],
as well as proprietary genome display tools used and
developed at Celera Genomics.

Conclusion
The Genoviz SDK is a Java data visualization toolkit for
genome data application developers. It handles the low-
level aspects of linking object-oriented data models to
graphical widgets so that application developers can focus
on the unique aspects of their data and application logic,
rather than implement graphical rendering algorithms.
An award from the National Science Foundation (U.S.A.),
as well as volunteer efforts from a small but growing com-
munity of developers, continue to support development
of the IGB software and the Genoviz SDK. Major efforts
currently underway include creation and updates of docu-
mentation for novice and experienced developers, crea-
tion of new tutorials showing programmers how they can
use Genoviz SDK to add visualization capability to their
applications, and development of demonstration applica-
tions showing Genoviz SDK graphics capability.
Resources for developers and users alike are available
from http://genoviz.sourceforge.net.

Availability and Requirements
The Genoviz SDK is implemented in the Java program-
ming language and is freely available under the Common
Public License, v1.0, an Open Source Initiative http://
www.opensource.org/ approved open source license. The
project home page is http://genoviz.sourceforge.net, from
where users can download and view source code anony-
mously. Users interested in downloading a pre-compiled
copy of the Integrated Genome Browser software can
obtain it at http://igb.bioviz.org. Please note that the
igb.bioviz.org site systems administrator compiles com-
posite usage statistics aimed at tracking the overall
number of downloads and average number of accesses per
IP address. The sourceforge site also tracks general usage
statistics. Other than this, no details about individual
users and their visits to the site are tracked. To run the soft-
ware, users will require Java version 1.6 or higher.

Authors' contributions
All authors contributed development of Genoviz SDK
source code, documentation, or both. All authors partici-
pated in writing or editing the manuscript. All authors
read and approved the final manuscript.

Acknowledgements
Funding from the National Science Foundation Arabidopsis 2010 program
(Award number 0820371, to PI Ann Loraine) and the National Institutes of
Health (Award R01HG003040-02S1 to PI Gregg Helt) provided financial
Page 11 of 13
(page number not for citation purposes)

http://genoviz.sourceforge.net
http://www.opensource.org/
http://www.opensource.org/
http://genoviz.sourceforge.net
http://igb.bioviz.org

BMC Bioinformatics 2009, 10:266 http://www.biomedcentral.com/1471-2105/10/266

Page 12 of 13
(page number not for citation purposes)

Semantic zooming and other functionality implemented in the Integrated Genome Browser, version 5.3Figure 9
Semantic zooming and other functionality implemented in the Integrated Genome Browser, version 5.3. The
top view shows a region of human chromosome 21 with gene annotations and mRNA alignments. The display also shows plots
of expression array data from Jurkat and HepG2 cell lines, represented as a score for each tiling array probe chromosomal
position. The bottom view shows a "sliced" subset of the same data, in which exons for selected annotations (outlined in red)
along with flanking sequence have been spliced to form a virtual sequence and all annotations remapped to the virtual
sequence. There are roughly 50,000 data points per expression array plot in the region displayed in the top view, averaging 50
data points per pixel along the horizontal axis. The graph Glyph object used to render these plots appears in both views. The
display uses semantic zooming to render them differently according to the different resolutions. In the lower resolution top
view, for each horizontal pixel position a vertical line is drawn representing the score range for data points whose genomic
coordinates fall within that pixel. A slightly brighter dot is also drawn for the scores' average. In the sliced view at the lower
part of the display, the resolution is high enough that each scored position is rendered as a simple bar. These rendering tech-
niques can allow real-time visualization of more data than is shown here. For example, the two plots shown each have greater
than 3 million data points on chromosome 21.

BMC Bioinformatics 2009, 10:266 http://www.biomedcentral.com/1471-2105/10/266
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

support for this work. We gratefully acknowledge former and current col-
leagues at Affymetrix, Neomorphic, and the Berkeley Drosophila Genome
Project for their support and encouragement during the development of
the Genoviz SDK. We also gratefully acknowledge Affymetrix, Inc. for
releasing the Genoviz SDK under an open source license and donating
developer time during the transition from closed to open source develop-
ment.

References
1. Aldhous P: Managing the genome data deluge. Science 1993,

262(5133):502-503.
2. Sonnhammer EL: Genome informatics: taming the avalanche

of genomic data. Genome Biol 2005, 6(1):301.
3. Hoon S, Ratnapu KK, Chia JM, Kumarasamy B, Juguang X, Clamp M,

Stabenau A, Potter S, Clarke L, Stupka E: Biopipe: a flexible frame-
work for protocol-based bioinformatics analysis. Genome Res
2003, 13(8):1904-1915.

4. Cline MS, Kent WJ: Understanding genome browsing. Nat Bio-
technol 2009, 27(2):153-155.

5. Helt GA, Lewis S, Loraine AE, Rubin GM: BioViews: Java-based
tools for genomic data visualization. Genome Res 1998,
8(3):291-305.

6. Loraine AE, Helt GA: Visualizing the genome: techniques for
presenting human genome data and annotations. BMC Bioin-
formatics 2002, 3:19.

7. MVC [http://heim.ifi.uio.no/trygver/themes/mvc/mvc-index.html]
8. Nicol JW, Helt GA, Blanchard SG Jr, Raja A, Loraine AE: The Inte-

grated Genome Browser: Free software for distribution and
exploration of genome-scale data sets. Bioinformatics 2009.
[Epub ahead of print]

9. Holland RC, Down TA, Pocock M, Prlic A, Huen D, James K, Foisy S,
Drager A, Yates A, Heuer M, et al.: BioJava: an open-source
framework for bioinformatics. Bioinformatics 2008,
24(18):2096-2097.

10. Piccolo2D – A structured 2D Graphics Framework [http://
www.piccolo2d.org]

11. FAQ: Why is my app so slow? [http://www.piccolo2d.org/learn/
dev-faq.html#q2]

12. Searls DB: bioTk: Componentry for genome informatics
graphical user interfaces. Gene 1995, 163(2):GC1-16.

13. Harris NL: Annotating sequence data using Genotator. Mol
Biotechnol 2000, 16(3):221-232.

14. Fischer S, Crabtree J, Brunk B, Gibson M, Overton GC: bioWidgets:
data interaction components for genomics. Bioinformatics
1999, 15(10):837-846.

15. Huntley D, Tang YA, Nesterova TB, Butcher S, Brockdorff N:
Genome Environment Browser (GEB): a dynamic browser
for visualising high-throughput experimental data in the con-
text of genome features. BMC Bioinformatics 2008, 9:501.

16. Haas BJ, Wortman JR, Ronning CM, Hannick LI, Smith RK Jr, Maiti R,
Chan AP, Yu C, Farzad M, Wu D, et al.: Complete reannotation
of the Arabidopsis genome: methods, tools, protocols and
the final release. BMC Biol 2005, 3:7.
Page 13 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8211171
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15642109
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15642109
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12869579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12869579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19204697
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12149135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12149135
http://heim.ifi.uio.no/trygver/themes/mvc/mvc-index.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19654113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19654113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19654113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18689808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18689808
http://www.piccolo2d.org
http://www.piccolo2d.org
http://www.piccolo2d.org/learn/dev-faq.html#q2
http://www.piccolo2d.org/learn/dev-faq.html#q2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7590260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7590260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11252807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10705436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10705436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19038045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19038045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19038045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15784138
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15784138
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15784138
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Results
	Custom data representation schemes using Glyphs
	Separation of Concerns: Graphics Semantics and Genomics Semantics
	Genoviz SDK Widgets
	Creating an application using the Genoviz SDK

	Discussion
	Conclusion
	Availability and Requirements
	Authors' contributions
	Acknowledgements
	References

