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ABSTRACT 

 
  

CHRISTOPHER TYLER.  A machining stability model with process damping for 
hard-to-machine materials.  (Under the direction of DR. TONY SCHMITZ) 

 
 

A substantial fraction of current machining research is directed towards increased 

productivity. A fundamental limitation is unstable vibration, or chatter, during cutting. 

Stability lobe diagrams, which relate the allowable chip width to spindle speed, may be 

used to select stable cutting conditions based on the system dynamics. However, at lower 

cutting speeds the stability limit asymptotically approaches a nearly constant chip width 

(using standard stability analyses) and variations in spindle speed do not have a 

significant effect. Thermal and hardness characteristics limit hard-to-machine metals, 

such as titanium and nickel alloys, to lower spindle speeds to avoid prohibitive tool wear. 

At these speeds, the allowable chip width can be larger due to an effect known as process 

damping. 

This work develops an analytical stability model that includes process damping effects 

in turning and milling for single and multiple degree of freedom (DOF) dynamic systems. 

This model includes contributions from the system frequency response functions, as well 

as a process damping force normal to the cut surface, which is a function of the depth of 

cut, cutting speed, and an empirical process damping coefficient, C. 

Stability testing was completed using a parallelogram, leaf-type flexure to identify the 

process damping behavior for low-speed single DOF milling. A representative database of 

process modeling coefficients was established for the workpiece materials: AISI 1018 

steel, 6Al-4V titanium, 304 stainless steel, and Inconel 718. Two inserted cutting tools 

were used with relief angles of 11° and 15°; the rake and helix angles were zero for both 
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single-insert cutters. It was demonstrated that a reduction in the relief angle and an increase 

in flank wear on the cutting edge results in an increased process damping effect.  

Multi-DOF (MDOF) systems for turning and milling were also modeled. Stability 

experiments were performed using a custom double-parallelogram notch-hinge flexure and 

a finned 6061-T6 aluminum workpiece for milling. Similarly, orthogonal stability testing 

was completed for turning using a custom parallelogram notch hinge flexible cutting tool. 

Tubular 6061-T6 aluminum workpieces were machined to validate the MDOF turning 

algorithm. The results indicate that the multiple degree of freedom model is able to predict 

a stability boundary that best represents the cutting test outcomes using a single process 

damping coefficient.    

Finally, the versatility of the experimentally identified process damping coefficients 

was examined. To accomplish this, the coefficient identification for 6061-T6 aluminum 

using the single DOF parallelogram milling setup was first performed. Secondly, the same 

11° relief angle milling insert was mounted to the MDOF turning flexure and the 

orthogonal turning tests were repeated on the same composition aluminum alloy. 

The effects of changes in system dynamics on the process damping coefficient was 

observed to be minimal for a reduction of approximately 32% in the system’s natural 

frequency. The process coefficients were similarly identified for much larger changes in 

dynamics, i.e., a 200-300% increase in the system’s natural frequency. It was found that 

the identified process damping coefficients remained relatively consistent for the dynamic 

systems tested. 
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 INTRODUCTION 

1.1 Machining Stability 

Subtractive processes such as milling and turning play a significant role in modern 

discrete part production. The desire to produce parts accurately and efficiently has 

increased with part complexity. Since its development in the late 1960s, the computer 

numerically-controlled (CNC) machine has facilitated this increase in complexity. 

However, productivity in machining processes is often limited by self-exited vibrations 

between the cutting tool and workpiece, referred to as chatter. These self-excited vibrations 

arise due to the regeneration of surface waviness that occurs as the tool removes the chip 

of commanded thickness, hm,  from the surface, y(t), that was created during the previous 

pass, y(t-τ), where τ is the time for one revolution; see Figure 1.1. In turning operations, 

this is developed after successive rotations of the workpiece. In milling, a rotating cutter is 

moved relative to the workpiece in order to remove material, so the delay is between teeth.  

Prior to research in the 1950s and 60s, the primary chatter mechanisms were unknown. 

Pioneering research led by Tobias, Tlusty, and Merritt [1-3] established that stability of the 

cutting process depended on the relative stiffness and damping between the tool and 

workpiece. They realized that the phase between undulations left on the workpiece surface 

after each pass of the cutting tool dictated the stability. 



 

2 
 Figure 1.1 illustrates the case where the wavy surfaces between two passes of the 

cutting tool are in phase. While vibration is still present for this in-phase condition, the chip 

thickness variation is small, leading to a stable cutting operation. Understanding the 

structural dynamics of the system allows for this in-phase condition to be selected and 

enables stable cutting at much larger chip widths. Figure 1.2, presents the condition when 

the wavy surfaces are out of phase. This leads to much larger variation in chip thickness 

and, subsequently, cutting forces. 

 

 

Figure 1.1: Chip thickness variation resulting from vibrating flexible cutting tool, where 
y(t -τ) is the cut surface from the previous pass of the cutter, y(t) is the cut surface from 
the current pass, and hm is the commanded chip thickness. 
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Figure 1.2: Significant chip thickness variation resulting from out of phase machining, 
where y(t -τ) is the cut surface from the previous pass of the cutter, y(t) is the cut surface 
from the current pass, and hm is the commanded chip thickness. 

 

The work by Tobias, Tlusty, and Merritt [1-3] helped to develop an analytical model 

to estimate stability based on the natural vibratory modes of the cutting tool with respect 

to the direction of the cutting force. This, in turn, led to several effective methods for 

predicting chatter, including the stability lobe diagram. The stability lobe diagram offers a 

predictive capability for selecting stable chip width-spindle speed combinations in 

machining operations. These diagrams require knowledge of the system dynamics (in the 

form of the system’s frequency response function, or FRF) and the process (cutting force 

coefficients, radial immersion, and geometric tool specifications). These diagrams depict 

regions of stable cutting with respect to spindle speed and chip width. Stable and unstable 

zones are segregated by a stability boundary as illustrated in Figure 1.3. 
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Figure 1.3: Example stability lobe diagram using traditional linear analysis. 

 

1.2 Hard-to-machine Materials 

At high spindle speeds, more efficient cutting is possible. Consequently, the popularity 

of aluminum alloys in the aerospace industry has shifted much of the machining dynamics 

research in the high speed machining direction, where tool wear resulting from high surface 

speeds is less of a concern. Recently, that focus has shifted to lower spindle speed regions 

because hard-to-machine materials cannot take advantage of higher speed stability zones 

due to prohibitive tool wear. 

For example, nickel-based super alloys serve as important materials in the aerospace, 

gas turbine, and nuclear industries. These alloys are highly regarded for superior corrosion, 

creep, and thermal fatigue resistance. In particular, Inconel 718 is widely used within the 

combustion regions of gas turbines where temperatures exceed 1100ºC for several 

thousand hours. It derives its unique mechanical properties from a high composition 
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5 
percentage of solid-solution elements including: Ni-55%, Cr-21%, Fe-18%, and Mo-3%. 

The desired mechanical properties also contribute to its poor machinability. The 

characteristics of its machinability can be summarized as follows [4-8]: 

• rapid work hardening during machining operations 

• abrasive tool wear due to carbides within the material 

• poor thermal conductivity/diffusivity causes heat to remain at the cutting tool tip 

which yields high cutting edge temperatures 

• excessive diffusive wear due to high cutting edge temperatures and chemical 

interactions 

• chip adhesion that leads to notch wear and/or chipping along the cutting edge. 

Other materials, such as titanium, stainless steels, and other high carbon steel alloys are 

also now commonly used in the medical, defense, and energy manufacturing sectors. 

However, achieving high material removal rates with acceptable tool life is challenging. 

To address the challenges associated with the machining these types of materials, 

companies invest in expensive tooling centers that are extremely stiff and equipped with 

elaborate cooling systems in order to meet production requirements. 

1.3 Process Damping 

In order to maintain productivity and prevent excessive tool wear, hard-to-machine 

materials must be processed at low spindle (surface) speeds that reside in what is referred 

to as the process damping regime. As the tool vibrates during cutting, there are several 

waves that are left on surface of the workpiece due to this vibration. A cutting process 

operating at a high surface speed imparts a long wavelength vibration as illustrated in 

Figure 1.4.  
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Figure 1.4: Waves left on workpiece surface at elevated surface cutting speeds. 

 

If the flexible tool vibrates at the same frequency and the cutting speed is reduced, the 

frequency of wave generation remains unchanged. However, the wavelength left on the 

surface of the workpiece reduces. Process damping is a phenomenon that is thought to 

occur when there is interference between the cutting tool’s flank, or relief, face and the 

undulations left behind on the cut surface, as depicted in Figure 1.6. 

 

 

Figure 1.5: Waves left on workpiece surface at lower surface cutting speeds have a shorter 
wavelength. 
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Figure 1.6: Depiction of tool interfering short wavelength undulations imparted on 
workpiece surface, thought to be the underlying cause of process damping. 

 

The interaction between the flank of the cutting tool and the wavy surface serves as an 

energy dissipation, or damping, mechanism and has been observed to increase the process 

stability. The result is the ability to cut at much higher chip widths at low spindle speeds. 

This increases the material removal rate which is otherwise low due to the low cutting 

speeds required to limit tool wear. 

To further describe the mechanism for process damping, consider the tool tip moving 

along a wavy surface while shearing away the chip; see Figure 1.7. Four locations are 

identified: 1) the clearance angle, 𝛾𝛾, between the flank face and the work surface tangent 

is equal to the nominal relief angle of the tool; 2) there is a greater potential for the 

tool/surface interference; 3) the relief angle returns to the original nominal value; and 4) 𝛾𝛾 

is significantly larger than the nominal value. 
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Figure 1.7: The clearance angle varies with the instantaneous surface tangent as the cutter 
removes material on the sinusoidal surface. 

 

The damping effect is larger for the shorter vibration wavelengths because the slope of 

the sinusoidal surface increased and, subsequently the variation in clearance angle 

increases. Therefore, lower cutting speeds or higher vibrating frequencies give shorter 

wavelengths and, consequently, increase process damping. The result is a transformation 

of the traditional, linear stability lobes to stability lobes that include a process damping 

regime; see Figure 1.8. 

 

Figure 1.8: Stability lobe boundary including process damping effects. 
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Identifying and verifying a model that can predict these process damping conditions is 

becoming more important in today’s manufacturing industry. This research provides an 

analytical solution for machining stability that includes process damping effects for single 

and multiple degree of freedom (DOF) dynamic systems. A velocity-dependent process 

damping force model, which relies on a single process damping coefficient, the cutting 

depth, the cutter velocity, and the cutting speed, is applied here. The intent of this study is 

to establish a machining model database for hard-to-machine materials. Included in the 

proposed database is cutting force coefficients, tool life parameters, and the process 

damping coefficients, all of which provide valuable information for parameter selection in 

a modern industrial setting. The materials that are considered include: AISI 1018 steel, Ti 

6Al-4V, AISI 304 stainless steel, Inconel 718, and 6061-T6 aluminum.  



 

 LITERATURE REVIEW 

Process damping can be described as the energy dissipation due to relative velocity and 

interference between the relief angle of a cutting tool and the existing vibrations on the 

machined workpiece surface. Modeling the process damping mechanism in metal cutting 

has been the subject of many research efforts, especially as the use of exotic hard-to-

machine materials has increased. This chapter summarizes prior process damping research.  

Many researchers have investigated process damping in turning and milling operations. 

Underestimations in stability behavior at low cutting velocities motivated early studies by 

Sisson and Kegg [9], Wallace and Andrew [10] and Tlusty and Ismail [11]. In their studies, 

they established that contact between the cutter flank and the vibrations imprinted on the 

machined surface influenced the dynamic cutting forces and lead to “process damping”. 

Tlusty and Ismail [11] concluded that the stability increase with a reduction in cutting speed 

is largely due to process damping. In their 1978 CIRP keynote, Tlusty et al. [12] discussed 

the direct influence of tool geometry, work material, and cutting speed on the dynamic 

cutting force coefficients at process damping cutting speeds. The important factors 

described in these investigations provided the basis for subsequent process damping 

models.
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Process damping is particularly important for hard-to-machine materials, such as titanium, 

nickel super alloys, and hardened steels. For this reason, more recent efforts have been 

made to analytically predict process damping behavior. In his 1989 publication, Wu [13] 

developed a model in which plowing forces present during the tool-workpiece contact are 

assumed to be proportional to the volume of interference between the flank of the cutter 

and the undulations existing on the workpiece. Several others later utilized this method of 

estimating process damping forces by calculating the volume of material displaced by the 

cutter. Tarng et al. [14] expanded the indentation model to more efficiently calculate 

process damping forces using feedforward neural networks. In their proposed model, they 

analyzed the stability in turning processes using different relief and rake angles to identify 

the stability boundary. Elbestawi et al. [15] modified Wu’s indentation model for milling. 

An important aspect of this study was the ability to simulate the increase in stability limit 

due to tool wear effects at process damping speeds. 

In 1994, the tool wear stabilizing effect in turning processes was observed by Chiou 

and Liang [16,17]. Here, a first-order Fourier transform representation of the interference 

between the tool and workpiece was developed to model the nonlinear process as linear. 

Analytical stability lobe diagrams were generated using the linear approximation and 

qualitative agreement was observed in turning experiments at several levels of flank wear.  

Altintas et al. [18] also provided a method for identifying the dynamic cutting force 

coefficients and stability at low cutting velocities in turning. In a series of cutting tests, a 

fast tool servo was used to modulate the cutting tool at the desired frequencies and 

amplitudes. This removed the regenerative aspect of orthogonal cutting and isolated the 
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process damping effect. This study also considered the effects of tool wear on the process 

coefficients and illustrated the influence on stability at low cutting speeds.  

Continuing in their study of process damping in machining, Altintas et al. [19] extended 

their prior research to include milling at low cutting velocities. By modeling process 

damping as a linear function of the velocity and modeling both rotating and fixed structures 

present in the cutting process, they produced the stability boundary for the process damping 

regime. Using Wu’s indentation method to obtain the process damping coefficients, they 

were able to compare simulations against a series of slot milling experiments. They 

observed stability dependence both on cutting speed and symmetry in the rotating system’s 

structural dynamics. 

Huang and Wang [20] showed that the plowing force (more than the shear force) was 

the dominant contributor in process damping for peripheral milling operations. In this 

study, the effects of cutting conditions (cutting speed, feed, axial and radial depths of cut) 

on process damping were examined. Separating the process damping force into shearing 

and plowing components enabled them to identify that plowing was the dominant element 

in process damping. 

Budak and Tunc [21] used an energy-based method to identify the process damping 

force coefficient and reinforced the concept that decreasing the relief angle increases the 

process damping effect for milling and turning processes. They found that the hone radius 

could cause a process damping effect at higher cutting speeds in orthogonal cutting. The 

proposed method was verified by time domain simulation and experiments.  

In a follow-up study, Budak and Tunc [22] extended their model to include additional 

effects of cutting conditions and tool geometry on process damping. In this paper, they 
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observed a slight increase in process damping when using a cylindrical flank face as 

compared to a planar flank geometry. 

Sims and Turner [23] developed a time domain model in milling operations that 

included non-linear process damping effects. Their method calculated: 1) the current tooth 

position, 2) the instantaneous chip thickness based on the tooth position, and 3) the forces 

that arise due to the flank-wave interference. Generated data revealed a strong connection 

between the feed rate of the cutter and the process damping wavelength. Their observation 

was that higher feed per tooth values correspond to lower out-of-phase forces. 

Experimental comparison with time domain simulation suggested further calibration of the 

model parameters was required either through experimentation or detailed chip formation 

modeling.   

Turner et al. [24] experimentally assessed the role of geometric cutter parameters in 

process damping. Cutting tests performed on a flexure were used to evaluate the process 

damping influence of edge geometry, relief angle, rake angle, and variable helix/pitch angle 

on milling operations. The flexible workpiece study revealed a significant performance 

increase using variable helix/pitch cutters and tools with increased edge radius. To a lesser 

extent, low relief angle/low rake angle combinations also increased the process damping 

performance. 

  



 

 ANALYTICAL STABILITY ANALYSIS PART 1: TURNING 

In this chapter, an iterative, analytical stability analysis that incorporates effects of 

process damping is described. An overview of the traditional stability analysis is first 

presented followed by a detailed description of the new analysis that includes process 

damping. The dynamic model is used to describe single and MDOF turning.  

3.1 Linear Stability Analysis for Turning: An Overview 

Frequency-domain solutions for machining stability are well established and have been 

applied for many years. Efforts initiated by Tobias, Tlusty, and Merritt [1-3] identified 

regenerative chatter as a mechanism influenced largely by the cutting system’s dynamic 

response. The frequency response function (FRF) of the cutting system was mapped to 

create stability lobe diagrams that display chip width versus spindle speed to identify stable 

and unstable cutting regions.  

In descriptions of regenerative chatter in machining, the instantaneous cutting force, 

Fc, is typically written as: 

 

 𝐹𝐹𝑐𝑐 = 𝐾𝐾𝑠𝑠𝑏𝑏ℎ(𝑡𝑡) (1) 
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where 𝐾𝐾𝑠𝑠 is the specific cutting force (which depends on the tool-workpiece combination 

and, to a lesser extent, the cutting parameters), 𝑏𝑏 is the chip width, and ℎ(𝑡𝑡) is the time-

dependent instantaneous chip thickness:  

 

 ℎ(𝑡𝑡) = ℎ𝑚𝑚 + 𝑦𝑦(𝑡𝑡 − 𝜏𝜏) − 𝑦𝑦(𝑡𝑡). (2) 

 

Referring back to Figure 1.1, the constant portion of the force containing the mean, or 

commanded, chip thickness, ℎ𝑚𝑚, does not influence the stability of the operation. The 

feedback between the current vibration, 𝑦𝑦(𝑡𝑡), and the time-delayed vibration from the 

previous revolution, 𝑦𝑦(𝑡𝑡 − 𝜏𝜏), is the mechanism that leads to self-excited vibration, where 

𝜏𝜏 is the time for one revolution. The control feedback block diagram for a turning operation 

is presented in Figure 3.1, where 𝐺𝐺𝑜𝑜𝑜𝑜 is the oriented frequency response function (described 

later) and the remaining terms are described in Eqs. 1 and 2.  

 

 

Figure 3.1: Control block diagram for a turning operation. 
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To describe the stability algorithm, consider the single DOF turning model displayed 

in Figure 3.2. Tlusty [2] defined the limiting stable chip width, 𝑏𝑏𝑙𝑙𝑖𝑖𝑚𝑚, for regenerative 

chatter using:  

 

 ( )lim
1

2 Res or

b
K G

−
= ,  (3) 

 

where 𝐺𝐺𝑜𝑜𝑜𝑜 = cos(β − α) cos(𝛼𝛼)𝐺𝐺𝑢𝑢. In this expression, 𝛽𝛽 is the force angle relative to the 

surface normal, 𝛼𝛼 is the angle between the u direction and the surface normal, and 𝐺𝐺𝑢𝑢 is 

the frequency response function in the u direction, which can be described using the modal 

mass, m, modal stiffness, k, and modal (viscous) damping, c.  

 

Figure 3.2: Single degree of freedom turning model. 
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The expression relating the spindle speed, Ω, to the phase, 𝜀𝜀, is given as:  

 

 
2

cf N ε
π

= +
Ω

,  (4) 

where 𝑁𝑁 = 0,1,2, … is the integer number of vibration waves left on the workpiece surface 

per revolution, 𝑓𝑓𝑐𝑐 is the chatter frequency (from the negative real portion of 𝐺𝐺𝑜𝑜𝑜𝑜), and ε is 

the relative phase between the current and the time-delayed vibration; see Eq (5). Here, Re 

denotes the real part and Im the imaginary part of the oriented frequency response function. 

 ( )
1 Re(G )2 2 tan (rad)

Im
or

orG
ε π −  
= −   

 
 (5) 

Figure 3.3 presents an example stability lobe diagram where the curves generated from 

the governing equations separate the region into stable and unstable chip width-spindle 

speed combinations. 

 
Figure 3.3: Example stability lobe diagram. The stability boundary separates stable (chip 
width, spindle speed) pairs (denoted by 'o') and unstable pairs (denoted by '×'). 
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3.2 Stability Analysis Including Process Damping 

From Figure 3.3, the chatter-free depths of cut are observed to diminish substantially 

at low spindle speeds, where the stability lobes become more closely spaced. Fortunately, 

the process damping effect can serve to increase the allowable chip width for low spindle 

speeds. The process damping force, 𝐹𝐹𝑑𝑑, is characterized as a 90º (𝜋𝜋 2⁄  𝑖𝑖𝑚𝑚𝑚𝑚) phase shift 

relative to the displacement and opposite in sign from the velocity. Given the preceding 

description, the process damping force is modeled as the viscous damping force shown in 

Eq. 6. 

 d
bF C y
V

= −   (6) 

Here, the process damping force in the y direction (perpendicular to the cut surface) is 

expressed as a function of the cutter velocity, �̇�𝑦, chip width, b, cutting speed, V, and process 

damping coefficient, C. The following sections demonstrate how an analytical stability 

solution is derived for both milling and turning applications with the inclusion of the 

process damping force.  

3.2.1 Single DOF Turning 

Consider the single DOF system presented in Figure 3.2. To incorporate the process 

damping force into the stability analysis, it is first projected in the u direction: 

 ( ) ( ) ( )cos cos cos .u d
b bF F C y C y
V V

α α α = = − = − 
 

    (7) 

The final form of the u projection of the process damping force is effectively a viscous 

damping term. Therefore, the force can be incorporated in the traditional regenerative 

chatter stability analysis by modifying the structural damping in 𝐺𝐺𝑢𝑢. As illustrated in Figure 
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3.2, the single degree of freedom, lumped-parameter dynamic model can be described 

using the modal mass, m, modal viscous damping coefficient, c, and modal spring stiffness, 

k. In the absence of process damping, the time domain equation of motion in the u direction 

is: 

 ( )cos .cmu cu ku F β α+ + = −   (8) 

In this equation, one overdot indicates one time derivative (velocity) and two overdots 

indicate two time derivatives (acceleration). The corresponding FRF in the u direction is:  

 

 ( ) 2

1 ,
cosu

c

UG
F m ic kβ α ω ω

= =
− − + +

 (9) 

where 𝑖𝑖 is the excitation frequency (rad/s). When process damping is included, however, 

the equation becomes: 

 ( ) ( )cos cos .c
bmu cu ku F C y
V

β α α + + = − − 
 

    (10) 

Replacing �̇�𝑦 in Eq. (10 with cos(𝛼𝛼) �̇�𝑚 gives: 

 ( ) ( )2cos cos .c
bmu cu ku F C u
V

β α α + + = − − 
 

    (11) 

Rewriting Eq. 11 to combine the velocity terms yields: 

where the new viscous damping coefficient is ( )2cos .new
bc c C
V

α = + 
 

 Replacing the 

original damping coefficient, c, (from the structural dynamics only) with 𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛 enables 

process damping to be incorporated in the analytical stability model. The new FRF is then: 

 ( ) ( )2cos cos ,c
bmu c C u ku F
V

α β α + + + = − 
 

   (12) 
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 ( ) 2

1 .
cosu

c new

UG
F m ic kβ α ω ω

= =
− − + +

 (13) 

The modified FRF is a function of the spindle speed-dependent limiting chip width and 

the cutting speed (which, in turn, depends on the spindle speed). Therefore, the chip width 

and spindle speed values must be known beforehand to incorporate process damping 

effects. This leads to an iterative, converging analysis, in which the new damping 

coefficient is updated after each iteration. The stability boundary is established for each 

lobe number, N, using the following steps:  

 

1. The analytical stability boundary is calculated with no process damping to identify 

the initial b and Ω vectors. 

2. These vectors are used to determine the corresponding 𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛 vector. 

3. The stability analysis is repeated with the new damping value to determine updated 

b and Ω vectors. 

4. The process is repeated until the stability boundary converges. 

 

To demonstrate this approach, consider the model in Figure 3.2 with 𝛼𝛼 = 0°, 𝑘𝑘 =

6.48 × 106  N m⁄ , 𝑚𝑚 = 0.561 kg, 𝑐𝑐 = 145 N ∙ s m⁄ , 𝐾𝐾𝑠𝑠 = 2927 ×  106 N m2⁄ , 𝛽𝛽 = 61.8° 

and 𝑚𝑚 = 35 mm. The stability boundary with no process damping (𝐶𝐶 = 0 N m⁄ ) is shown 

in Figure 3.4 for N = 0 to 100 lobes. It is observed that the limiting chip width approaches 

the asymptotically stable chip width of 𝑏𝑏 = 0.37 mm for spindle speeds below Ω =

1000 rpm. 
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Results for the converging procedure with process damping for the N = 20 stability lobe 

are provided in Figure 3.5. Converging behavior is observed for the 10 iterations as the 

lobes move up and slightly to the right. A practical selection of 20 iterations was applied 

for the diagrams throughout this study to ensure convergence. Figure 3.6 displays the new 

stability diagram for N = 0 to 100 with 𝐶𝐶 = 6.11 × 105 N m⁄ . 

 

Figure 3.4: Stability diagram for the single DOF model from Figure 3.2, with no process 
damping. 
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Figure 3.5: Convergence demonstration (N = 20 for 10 iterations) for the single degree-
of-freedom model from Figure 3.2 with 𝐶𝐶 = 6.11 × 105 N m⁄ . 

 

Figure 3.6: Stability diagram for the single degree-of-freedom turning model from Figure 
3.6 with 𝐶𝐶 = 6.11 × 105 N m⁄ . 

3.2.2 Single DOF Turning in Two Directions 

In some cases, it is not sufficient to consider the system flexibility in one direction only. 

The process damping model can be extended to include vibration in two orthogonal 

directions as illustrated in Figure 3.7.  
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To proceed with the analytical solution, the process damping force, defined in Eq 6, 

and the cutting force are projected into the 𝑚𝑚1 and 𝑚𝑚2 directions as shown in Eqs. 14 and 

15, where 𝐹𝐹𝑐𝑐1and 𝐹𝐹𝑐𝑐2are the cutting force components in the 𝑚𝑚1 and 𝑚𝑚2 directions.  

 

 ( ) ( ) ( )1 1 1 1 1cos cos cosu c c
b bF F C y F C y
V V

β α α α   = − − = −   
   

   (14) 

 
( ) ( ) ( )2 2 2 2 2cos cos cosu c c

b bF F C y F C y
V V

β α α α   = − − = −   
   

   
(15) 

 

 

Figure 3.7: Turning model with a single DOF in two orthogonal directions. 

 

The time domain equations of motion for the two directions are provided in Eqs. 16 

and 17, where 𝑚𝑚𝑖𝑖, 𝑐𝑐𝑖𝑖, and 𝑘𝑘𝑖𝑖, 𝑖𝑖 = 1, 2, are the mass, viscous damping coefficient, and 

stiffness for the single DOF structural dynamics.  
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The y direction velocity can be written as a function of the velocities in the u1 and u2 

directions as shown in Eq. 18. Substitution of Eq. 18 into Eqs. 16 and 17 yields Eqs. 19 

and 20. Even though the structural dynamics are uncoupled (orthogonal), the equations of 

motion for the two directions are now coupled through the �̇�𝑚1 and �̇�𝑚2 velocity terms. 

 

 

By assuming a solution of the form 𝑚𝑚1(𝑡𝑡) = 𝑈𝑈1𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 for harmonic motion, Eqs. 19 and 

20 can be rewritten in the frequency domain. The results are provided in Eqs. 21 and 22, 

where the U1 and U2 terms have been grouped on the left hand side in both equations and 

the 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 term has been dropped from both sides in each case. 

 

 

These equations are arranged in matrix form as: 

 ( )1 1 1 1 1 1 1 1cosc
bm u c u k u F C y
V

α + + = − 
 

    (16) 

 
( )2 2 2 2 2 2 2 2cosc

bm u c u k u F C y
V

α + + = − 
 

    
(17) 

 �̇�𝑦 = �̇�𝑚1 cos(𝛼𝛼1) + �̇�𝑚2 cos(𝛼𝛼2) (18) 

 𝑚𝑚1�̈�𝑚1 + 𝑐𝑐1�̇�𝑚1 + 𝑘𝑘1𝑚𝑚1 = 𝐹𝐹𝑐𝑐1 − 𝐶𝐶
𝑏𝑏
𝑉𝑉

(�̇�𝑚1 cos(𝛼𝛼1) + �̇�𝑚2 cos(𝛼𝛼2)) cos(𝛼𝛼1) (19) 

 𝑚𝑚2�̈�𝑚2 + 𝑐𝑐2�̇�𝑚2 + 𝑘𝑘2𝑚𝑚2 = 𝐹𝐹𝑐𝑐2 − 𝐶𝐶
𝑏𝑏
𝑉𝑉

(�̇�𝑚1 cos(𝛼𝛼1) + �̇�𝑚2 cos(𝛼𝛼2)) cos(𝛼𝛼2) (20) 

�−𝑚𝑚1𝑖𝑖2 + 𝑖𝑖𝑖𝑖 �𝑐𝑐1 + 𝐶𝐶
𝑏𝑏
𝑉𝑉

(cos(𝛼𝛼1))2�+ 𝑘𝑘1�𝑈𝑈1 + 𝑖𝑖𝑖𝑖 �𝐶𝐶
𝑏𝑏
𝑉𝑉

cos(𝛼𝛼1) cos(𝛼𝛼2)�𝑈𝑈2 = 𝐹𝐹𝑐𝑐1 (21) 

�−𝑚𝑚2𝑖𝑖2 + 𝑖𝑖𝑖𝑖 �𝑐𝑐2 + 𝐶𝐶
𝑏𝑏
𝑉𝑉

(cos(𝛼𝛼2))2� + 𝑘𝑘2�𝑈𝑈2 + 𝑖𝑖𝑖𝑖 �𝐶𝐶
𝑏𝑏
𝑉𝑉

cos(𝛼𝛼1) cos(𝛼𝛼2)�𝑈𝑈1 = 𝐹𝐹𝑐𝑐2 (22) 
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 111 12 1

221 22 2

c

c

Fa a U
Fa a U
    

=     
     

, (23) 

where: 

• 𝑚𝑚11 = −𝑚𝑚1𝑖𝑖2 + 𝑖𝑖𝑖𝑖 �𝑐𝑐1 + 𝐶𝐶 𝑏𝑏
𝑉𝑉

(cos(𝛼𝛼1))2�+ 𝑘𝑘1 

• 𝑚𝑚12 = 𝑖𝑖𝑖𝑖 �𝐶𝐶 𝑏𝑏
𝑉𝑉

cos(𝛼𝛼1) cos(𝛼𝛼2)� 

• 𝑚𝑚21 = 𝑚𝑚12 

• 𝑚𝑚22 = −𝑚𝑚2𝑖𝑖2 + 𝑖𝑖𝑖𝑖 �𝑐𝑐2 + 𝐶𝐶 𝑏𝑏
𝑉𝑉

(cos(𝛼𝛼2))2� + 𝑘𝑘2 

Using complex matrix inversion on a frequency-by-frequency basis, the direct and cross 

frequency response functions for the coupled dynamic system are obtained, as shown in 

Eq. 24. The direct FRFs are located in the on-diagonal positions and the cross FRFs are 

located in the off-diagonal positions; the cross FRFs are equal, because the inverted matrix 

is symmetric. 

The fundamental stability equations (Eqs. 3-5) are then used to relate the limiting stable 

chip width, 𝑏𝑏𝑙𝑙𝑖𝑖𝑚𝑚, to the commanded spindle speed, Ω. However, Tlusty’s approach is 

extended here to develop an oriented FRF that incorporates both the direct and cross FRFs 

from Eq. 24. The oriented FRF is defined using Eq. 25, where 𝜇𝜇𝑖𝑖𝑖𝑖 (𝑖𝑖, 𝑗𝑗 = 1,2) are the 

directional orientation factors: 

• 𝜇𝜇11 = cos(𝛽𝛽 − 𝛼𝛼1) cos(𝛼𝛼1) projects F into u1 to cause u1 vibration through the 

direct FRF 𝑈𝑈1
𝐹𝐹𝑐𝑐1

 and then projects this result into y. 

 

1 1
1

1 21 11 11 12

2 22 21 22 2 2

1 2

c cc c

c c

c c

U U
F FF FU a a

F FU a a U U
F F

−
 
         = =               
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 (24) 
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• 𝜇𝜇12 = cos(𝛽𝛽 + 𝛼𝛼2) cos(𝛼𝛼1) projects F into u2 to cause u1 vibration through the 

cross FRF 𝑈𝑈1
𝐹𝐹𝑐𝑐2

 and then projects this result into y. 

• 𝜇𝜇21 = cos(𝛽𝛽 − 𝛼𝛼1) cos(𝛼𝛼2) projects F into u1 to cause u2 vibration through the 

cross FRF 𝑈𝑈2
𝐹𝐹𝑐𝑐1

 and then projects this result into y. 

• 𝜇𝜇22 = cos(𝛽𝛽 + 𝛼𝛼2) cos(𝛼𝛼2) projects F into u2 to cause u2 vibration through the 

direct FRF 𝑈𝑈2
𝐹𝐹𝑐𝑐2

 and then projects this result into y. 

 

 𝐺𝐺𝑜𝑜𝑜𝑜 = 𝜇𝜇11
𝑈𝑈1
𝐹𝐹𝑐𝑐1

+ 𝜇𝜇12
𝑈𝑈1
𝐹𝐹𝑐𝑐2

+ 𝜇𝜇21
𝑈𝑈2
𝐹𝐹𝑐𝑐1

+ 𝜇𝜇22
𝑈𝑈2
𝐹𝐹𝑐𝑐2

 (25) 

 

The direct and cross FRFs included in Eq. 25 incorporate the process damping 

contribution by modifying the structural damping through the terms: 𝑖𝑖𝑖𝑖 �𝑐𝑐1 +

𝐶𝐶 𝑏𝑏
𝑉𝑉

(cos(𝛼𝛼1))2�, 𝑖𝑖𝑖𝑖 �𝐶𝐶 𝑏𝑏
𝑉𝑉

cos(𝛼𝛼1) cos(𝛼𝛼2)�, and 𝑖𝑖𝑖𝑖 �𝑐𝑐2 + 𝐶𝐶 𝑏𝑏
𝑉𝑉

(cos(𝛼𝛼2))2� as shown in 

Eq. 23. The process damping contribution depends on the 𝑏𝑏
𝑉𝑉
 ratio in each case, where 𝑉𝑉 =

𝜋𝜋𝑑𝑑
60
Ω (d is the workpiece diameter and Ω is expressed in rpm). Therefore, the b and Ω 

vectors must be known in order to modify the damping. This again establishes a converging 

stability solution. As shown previously, the solution converges rapidly (20 iterations or less 

is typically sufficient). 

To demonstrate the algorithm, consider the model in Figure 3.7 with α1 = 30°, α2 = 

60°, β = 70°, Ks = 2000 N/mm2, C = 200 N/mm, and d = 75 mm for an outer diameter 

turning operation. The structural dynamics are symmetric with a stiffness of 9×106 N/m, a 
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natural frequency of 900 Hz, and a viscous damping ratio of 0.03 (3%). The corresponding 

stability limit with process damping effects is displayed in Figure 3.8. 

3.2.3 Multiple DOF Turning in Two Directions 

The coupled dynamics solution is now extended to mutiple DOF turning in the two 

orthogonal directions, u1 and u2 as illustrated in Figure 3.9. From an FRF measurement in 

each direction, the modal parameters can be extracted. These modal parameters represent 

uncoupled single DOF systems in the modal coordinates q1 and q2 for the u1 direction and 

p1 and p2 for the u2 direction [25]. This modal representation requires that proportional 

damping hold, but this is a reasonable approximation for the lightly damped tool dynamics 

typically observed in practice.  

 

Figure 3.8: The analytical stability limit for turning model with a single DOF in two 
orthogonal directions. 

 

Equation 16, which provides the equation of motion for the u1 direction with a single 

DOF, is rewritten in Eq. 26 to describe motion in the first modal DOF, q1. The y direction 

velocity is again  �̇�𝑦 = �̇�𝑚1 cos(𝛼𝛼1) + �̇�𝑚2 cos(𝛼𝛼2), but �̇�𝑚1 is now the sum of the modal 
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velocities, �̇�𝑚1 =  �̇�𝑞1 + �̇�𝑞2; the results for �̇�𝑚2 are similar. Substitution yields Eqs. 27, 28 and 

29 give the results for the second modal degree of freedom motion, q2 in the u1 direction. 

 

 

Figure 3.9: Two DOF in two orthogonal directions turning model. 

 

Equations 27 and 29 are converted to the frequency domain by again assuming 

harmonic motion so that 𝑞𝑞𝑖𝑖(𝑡𝑡) = 𝑄𝑄𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑝𝑝𝑖𝑖(𝑡𝑡) = 𝑃𝑃𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 for j = 1, 2. Equation 27 

 ( )1 1 1 1 1 1 1 1cosq q q c
bm q c q k q F C y
V

α + + = − 
 

    (26) 

𝑚𝑚𝑞𝑞1�̈�𝑞1 + 𝑐𝑐𝑞𝑞1�̇�𝑞1 + 𝑘𝑘𝑞𝑞1𝑞𝑞1 = 𝐹𝐹𝑐𝑐1 − 𝐶𝐶
𝑏𝑏
𝑉𝑉

cos(𝛼𝛼1) �cos(𝛼𝛼1) (�̇�𝑞1 + �̇�𝑞2) + cos(𝛼𝛼2) (�̇�𝑝1 + �̇�𝑝2)� (27) 

 ( )2 2 2 2 2 2 1 1cosq q q c

b
m q c q k q F C y

V
α+ + = −  

 
 

    (28) 

𝑚𝑚𝑞𝑞2�̈�𝑞2 + 𝑐𝑐𝑞𝑞2�̇�𝑞2 + 𝑘𝑘𝑞𝑞2𝑞𝑞2 = 𝐹𝐹𝑐𝑐1 − 𝐶𝐶
𝑏𝑏
𝑉𝑉

cos(𝛼𝛼1) �cos(𝛼𝛼1) (�̇�𝑞1 + �̇�𝑞2) + cos(𝛼𝛼2) (�̇�𝑝1 + �̇�𝑝2)� (29) 
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represents motion in Q1 and Eq. 29 describes motion in Q2. Even though the modal degrees 

of freedom are uncoupled by definition, the two equations of motion for the u1 direction 

now include both Q1 and Q2 due to process damping. Similar to the single DOF model in 

the previous section, the equations also include contributions from the u2 direction 

dynamics (P1 and P2). Interestingly, the equations of motion are coupled in both modal 

coordinates and the two orthogonal directions. This presents a rich dynamic system which 

is unlike other machining models. 

 

Following the same approach, the frequency domain equations for the u2 direction are 

presented in Eqs 32 and 33 where Eq. 32 describes motion in P1 and Eq. 33 describes 

motion in P2. 

�−𝑚𝑚𝑞𝑞1𝑖𝑖
2 + 𝑖𝑖𝑖𝑖 �𝑐𝑐𝑞𝑞1 + 𝐶𝐶

𝑏𝑏
𝑉𝑉

(cos(𝛼𝛼1))2� + 𝑘𝑘𝑞𝑞1�𝑄𝑄1 + �𝑖𝑖𝑖𝑖𝐶𝐶
𝑏𝑏
𝑉𝑉

(cos(𝛼𝛼1))2�𝑄𝑄2

+ �𝐶𝐶
𝑏𝑏
𝑉𝑉

cos(𝛼𝛼1) cos(𝛼𝛼2)� (𝑃𝑃1 + 𝑃𝑃2) = 𝐹𝐹𝑐𝑐1  

(30) 

�−𝑚𝑚𝑞𝑞2𝑖𝑖
2 + 𝑖𝑖𝑖𝑖 �𝑐𝑐𝑞𝑞2 + 𝐶𝐶

𝑏𝑏
𝑉𝑉

(cos(𝛼𝛼1))2� + 𝑘𝑘𝑞𝑞2�𝑄𝑄2 + �𝑖𝑖𝑖𝑖𝐶𝐶
𝑏𝑏
𝑉𝑉

(cos(𝛼𝛼1))2�𝑄𝑄1

+ �𝐶𝐶
𝑏𝑏
𝑉𝑉

cos(𝛼𝛼1) cos(𝛼𝛼2)� (𝑃𝑃1 + 𝑃𝑃2) = 𝐹𝐹𝑐𝑐1  

(31) 

�−𝑚𝑚𝑝𝑝1𝑖𝑖
2 + 𝑖𝑖𝑖𝑖 �𝑐𝑐𝑝𝑝1 + 𝐶𝐶

𝑏𝑏
𝑉𝑉

(cos(𝛼𝛼2))2� + 𝑘𝑘𝑝𝑝1�𝑃𝑃1 + �𝑖𝑖𝑖𝑖𝐶𝐶
𝑏𝑏
𝑉𝑉

(cos(𝛼𝛼2))2�𝑃𝑃2

+ �𝐶𝐶
𝑏𝑏
𝑉𝑉

cos(𝛼𝛼1) cos(𝛼𝛼2)� (𝑄𝑄1 + 𝑄𝑄2) = 𝐹𝐹𝑐𝑐2  

(32) 

�−𝑚𝑚𝑝𝑝2𝑖𝑖
2 + 𝑖𝑖𝑖𝑖 �𝑐𝑐𝑝𝑝2 + 𝐶𝐶

𝑏𝑏
𝑉𝑉

(cos(𝛼𝛼2))2� + 𝑘𝑘𝑝𝑝2�𝑃𝑃2 + �𝑖𝑖𝑖𝑖𝐶𝐶
𝑏𝑏
𝑉𝑉

(cos(𝛼𝛼2))2�𝑃𝑃1

+ �𝐶𝐶
𝑏𝑏
𝑉𝑉

cos(𝛼𝛼1) cos(𝛼𝛼2)� (𝑄𝑄1 + 𝑄𝑄2) = 𝐹𝐹𝑐𝑐2  

(33) 
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Equations 30-33 are arranged in matrix form as shown in Eq. 34, where: 

• 𝑚𝑚11 = �−𝑚𝑚𝑞𝑞1𝑖𝑖
2 + 𝑖𝑖𝑖𝑖 �𝑐𝑐𝑞𝑞1 + 𝐶𝐶 𝑏𝑏

𝑉𝑉
(cos(𝛼𝛼1))2� + 𝑘𝑘𝑞𝑞1� 

• 𝑚𝑚12 = 𝑖𝑖𝑖𝑖 �𝐶𝐶 𝑏𝑏
𝑉𝑉

(cos(𝛼𝛼1))2� 

• 𝑚𝑚13 = 𝑖𝑖𝑖𝑖 �𝐶𝐶 𝑏𝑏
𝑉𝑉

cos(𝛼𝛼1) cos(𝛼𝛼2)� 

• 𝑚𝑚14 = 𝑖𝑖𝑖𝑖 �𝐶𝐶 𝑏𝑏
𝑉𝑉

cos(𝛼𝛼1) cos(𝛼𝛼2)� 

• 𝑚𝑚21 = 𝑚𝑚12 

• 𝑚𝑚22 = �−𝑚𝑚𝑞𝑞2𝑖𝑖
2 + 𝑖𝑖𝑖𝑖 �𝑐𝑐𝑞𝑞2 + 𝐶𝐶 𝑏𝑏

𝑉𝑉
(cos(𝛼𝛼1))2�+ 𝑘𝑘𝑞𝑞2� 

• 𝑚𝑚23 = 𝑖𝑖𝑖𝑖 �𝐶𝐶 𝑏𝑏
𝑉𝑉

cos(𝛼𝛼1) cos(𝛼𝛼2)� 

• 𝑚𝑚24 = 𝑖𝑖𝑖𝑖 �𝐶𝐶 𝑏𝑏
𝑉𝑉

cos(𝛼𝛼1) cos(𝛼𝛼2)� 

• 𝑚𝑚31 = 𝑚𝑚13 

• 𝑚𝑚32 = 𝑚𝑚23 

• 𝑚𝑚33 = �−𝑚𝑚𝑝𝑝1𝑖𝑖
2 + 𝑖𝑖𝑖𝑖 �𝑐𝑐𝑝𝑝1 + 𝐶𝐶 𝑏𝑏

𝑉𝑉
(cos(𝛼𝛼2))2�+ 𝑘𝑘𝑝𝑝1� 

• 𝑚𝑚34 = 𝑖𝑖𝑖𝑖 �𝐶𝐶 𝑏𝑏
𝑉𝑉

cos(𝛼𝛼1) cos(𝛼𝛼2)� 

• 𝑚𝑚41 = 𝑚𝑚14 

• 𝑚𝑚42 = 𝑚𝑚24 

• 𝑚𝑚43 = 𝑚𝑚34 

• 𝑚𝑚44 = �−𝑚𝑚𝑝𝑝2𝑖𝑖
2 + 𝑖𝑖𝑖𝑖 �𝑐𝑐𝑝𝑝2 + 𝐶𝐶 𝑏𝑏

𝑉𝑉
(cos(𝛼𝛼2))2�+ 𝑘𝑘𝑝𝑝2�. 
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The direct FRFs in the u1 and u2 directions are defined by Eqs. 35 and 36 respectively; 

the cross FRFs are provided in Eqs. 37 and 38. The oriented FRF is again calculated using 

Eq. 25 and the directional orientation factors are the same. 

 

1,1 1,2 1,3 1,4

1 1 2 2
1

2,1 2,2 2,3 2,411 12 13 14 11

1 1 2 221 22 23 24 12

31 32 33 34 21 1,1 1,2 1,3 1,4

41 42 43 44 22 1 1 2 2
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1

c c c c

c

c c c cc
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(34) 

 
1,1 1,2 2,1 2,21

1 1 1 1 1c c c c c

Q Q Q QU
F F F F F

= + + +  (35) 

 
1,3 1,4 2,3 2,42

2 2 2 2 2c c c c c

P P P PU
F F F F F

= + + +  (36) 

 
1,1 1,2 2,1 2,22

1 1 1 1 1c c c c c

P P P PU
F F F F F

= + + +  (37) 

 
1,3 1,4 2,3 2,41

2 2 2 2 2c c c c c

Q Q Q QU
F F F F F

= + + +  (38) 
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The model may be extended to additional DOFs in each direction. For three DOFs in 

each direction, for example, Eq. 34 becomes a 6×6 symmetric matrix. The direct and cross 

FRFs are then a sum of six, rather than four, terms from the inverted matrix. 

To demonstrate the multiple DOF algorithm, consider the model in Figure 3.9 with α1 

= 30°, α2 = 60°, β = 70°, Ks = 2000 N/mm2, C = 200 N/mm, and d = 75 mm for an outer 

diameter turning operation. The structural dynamics are symmetric with a modal stiffness 

of 7×106 N/m, a natural frequency of 600 Hz, and a viscous modal damping ratio of 0.03 

(3%) for the first mode and a modal stiffness of 9×106 N/m, a natural frequency of 900 Hz, 

and a viscous modal damping ratio of 0.03 (3%) for the second mode. The corresponding 

stability limit with process damping effects is displayed in Figure 3.10.  

 

Figure 3.10: Analytical stability limit results for turning model with two DOF in two 
orthogonal directions. 
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 ANALYTICAL STABILITY ALGORITHM PART 2: MILLING 

Tlusty [2] modified the turning analysis to accommodate the milling process. A primary 

obstacle to defining an analytical solution for milling (aside from the same inherent time 

delay) is the time dependence of the cutting force direction. Tlusty solved this problem by 

assuming an average angle of the tooth in the cut, φave, and, therefore, an average force 

direction. This produced an autonomous, or time-invariant, system. 

In this chapter, an analytical solution, similar to solution presented for turning in 

Chapter 3, is presented that enables single and multiple DOF structural dynamics to be 

considered with the inclusion of process damping effects. The solution is carried out in a 

similar manner by describing a process damping force in the surface normal direction of 

the cut as a function of depth of cut, cutting speed, tool velocity and a single empirical 

process damping coefficient. The analytical solution for milling is presented in the 

following sections. 

4.1 Stability Analysis Including Process Damping 

The milling models are depicted in Figure 4.1 and 4.2Figure 4.2, where x is the feed 

direction (the positive direction indicates the workpiece motion for a fixed tool position). 

The cutting force, Fc, inclined relative to the surface normal, n, by the angle β is also 

displayed. The surface normal is shown to be oriented at the average angle of a tooth in the 

cut, φave, which is the mean of the cut starting, φs, and exit, φe, angles. These angles are  
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defined by the milling operation (up/conventional or down/climb milling) and the radial 

depth of cut. Figure 4.1 and 4.2 illustrate up/conventional and down/climb milling 

operation at arbitrary radial immersions, respectively. 

 

Figure 4.1: Milling model for up/conventional milling. The vector n defines the average 
surface normal direction and x is the feed direction. 

 

The variable component of the cutting force is described by Eq. 39, where Ks is the 

specific cutting force coefficient that relates the cutting force to the chip area, b is the 

commanded axial depth of cut, n0(t) is the vibration amplitude in the n direction from the 

previous tooth, and n(t) is the current vibration amplitude. The difference between n0 and 

n identifies the variable chip thickness due to the vibration from one revolution to the next 

and provides the basis for regenerative chatter. 
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𝐹𝐹𝑐𝑐 
𝛽𝛽 

𝑥𝑥 

𝑦𝑦 

𝑖𝑖 

Feed 



 

35 

 

Figure 4.2: Milling model for down/climb milling. The vector n defines the average 
surface normal direction and x is the feed direction. 

 

The mean component of the cutting force is excluded because it does not influence 

stability for the linear analysis presented here. 

 

 𝐹𝐹𝑐𝑐 = 𝐾𝐾𝑠𝑠𝑏𝑏(𝑖𝑖0(𝑡𝑡) − 𝑖𝑖(𝑡𝑡)) (39) 

 

The assumption for Eq. 39 is that there is no phase shift between the variable force and 

the chip thickness. This is indicated by the real values of b and Ks. However, it has been 

shown that a phase shift can occur at low cutting speeds. This phenomenon is captured by 

the inclusion of the process damping force, Fd, defined in Eq. 40, where C is the process 

damping coefficient, V is the cutting speed, and �̇�𝑖 is the tool velocity in the 𝑖𝑖 direction. 

The process damping force is oriented in the 𝑖𝑖 direction and opposes the cutting force (as 

projected in the n direction). In other words, it is a viscous damping force; therefore, the 

𝜙𝜙𝑛𝑛 = 180 
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process damping force is used to modify the structural damping and obtain an analytical 

stability solution. 

 d
bF C n
V

= − 
 (40) 

4.1.1 Single DOF Milling in Two Directions  

To proceed with the solution, the cutting and process damping forces are projected into 

the x and y directions as shown in Eqs. (41)-(42), where φ𝑢𝑢𝑑𝑑 = 90 − φ𝑎𝑎𝑎𝑎𝑛𝑛  for up milling 

and φ𝑢𝑢𝑑𝑑 = φ𝑎𝑎𝑎𝑎𝑛𝑛 − 90 for down milling. 

 
𝐹𝐹𝑥𝑥 = 𝐹𝐹𝑐𝑐 cos�𝛽𝛽 + φ𝑎𝑎𝑎𝑎𝑛𝑛 − 90� − 𝐶𝐶

𝑏𝑏
𝑉𝑉
�̇�𝑖 cos�φ𝑢𝑢𝑑𝑑� = 𝐹𝐹𝑐𝑐𝑥𝑥 − 𝐶𝐶

𝑏𝑏
𝑉𝑉
�̇�𝑖 cos�φ𝑢𝑢𝑑𝑑� 

 

(41) 

𝐹𝐹𝑦𝑦 = 𝐹𝐹𝑐𝑐 cos�180 − φ𝑎𝑎𝑎𝑎𝑛𝑛 − 𝛽𝛽� − 𝐶𝐶
𝑏𝑏
𝑉𝑉
�̇�𝑖 cos�180 − φ𝑎𝑎𝑎𝑎𝑛𝑛�

= 𝐹𝐹𝑐𝑐𝑦𝑦 − 𝐶𝐶
𝑏𝑏
𝑉𝑉
�̇�𝑖 cos�180 − φ𝑎𝑎𝑎𝑎𝑛𝑛� 

(42) 

 

The time domain equations of motion for the two directions are provided in Eqs. 43-

44, where mi, ci, and ki, i = x, y, are the mass, viscous damping coefficient, and stiffness for 

the single DOF structural dynamics. In these equations, one overdot indicates one time 

derivative (velocity) and two overdots indicate two time derivatives (acceleration). 

  

 𝑚𝑚𝑥𝑥�̈�𝑥 + 𝑐𝑐𝑥𝑥�̇�𝑥 + 𝑘𝑘𝑥𝑥𝑥𝑥 = 𝐹𝐹𝑐𝑐𝑥𝑥 − 𝐶𝐶
𝑏𝑏
𝑉𝑉
�̇�𝑖 cos�φ𝑢𝑢𝑑𝑑� (43) 

 𝑚𝑚𝑦𝑦�̈�𝑦 + 𝑐𝑐𝑦𝑦�̇�𝑦 + 𝑘𝑘𝑦𝑦𝑦𝑦 = 𝐹𝐹𝑐𝑐𝑦𝑦 − 𝐶𝐶
𝑏𝑏
𝑉𝑉
�̇�𝑖 cos�180 − φ𝑎𝑎𝑎𝑎𝑛𝑛� (44) 
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The n direction velocity can be written as a function of the velocities in the x and y 

directions as shown in Eq. 45. Substitution of Eq. 45 into Eqs. 43-44 yields Eqs. 46-47. 

Even though the structural dynamics are uncoupled (orthogonal), the equations of motion 

for the two directions are now coupled through the �̇�𝑥 and �̇�𝑦 velocity terms. 

 �̇�𝑖 = �̇�𝑥 cos�φ𝑢𝑢𝑑𝑑� + �̇�𝑦 cos�180 − φ𝑎𝑎𝑎𝑎𝑛𝑛� (45) 

𝑚𝑚𝑥𝑥�̈�𝑥 + 𝑐𝑐𝑥𝑥�̇�𝑥 + 𝑘𝑘𝑥𝑥𝑥𝑥 = 𝐹𝐹𝑐𝑐𝑥𝑥 − 𝐶𝐶
𝑏𝑏
𝑉𝑉

cos�φ𝑢𝑢𝑑𝑑� ��̇�𝑥 cos�φ𝑢𝑢𝑑𝑑� + �̇�𝑦 cos�180 − φ𝑎𝑎𝑎𝑎𝑛𝑛�� (46) 

𝑚𝑚𝑦𝑦�̈�𝑦 + 𝑐𝑐𝑦𝑦�̇�𝑦 + 𝑘𝑘𝑦𝑦𝑦𝑦 = 𝐹𝐹𝑐𝑐𝑦𝑦 − 𝐶𝐶
𝑏𝑏
𝑉𝑉

cos�180 − φ𝑎𝑎𝑎𝑎𝑛𝑛� ��̇�𝑥 cos�φ𝑢𝑢𝑑𝑑� + �̇�𝑦 cos�180 − φ𝑎𝑎𝑎𝑎𝑛𝑛�� (47) 

 

By assuming solutions of the form 𝑥𝑥(𝑡𝑡) = 𝑋𝑋𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑦𝑦(𝑡𝑡) = 𝑌𝑌𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 for harmonic 

motion, Eqs. 46-47 can be rewritten in the frequency domain (ω is frequency). The results 

are provided in Eqs. 48-49, where the X and Y terms have been grouped on the left hand 

side of both equations and the 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 term has been dropped from both sides. 

�−𝑚𝑚𝑥𝑥𝑖𝑖2 + 𝑖𝑖𝑖𝑖 �𝑐𝑐𝑥𝑥 + 𝐶𝐶
𝑏𝑏
𝑉𝑉
�cos�φ𝑢𝑢𝑑𝑑��

2
� + 𝑘𝑘𝑥𝑥�𝑋𝑋

+ 𝑖𝑖𝑖𝑖 �𝐶𝐶
𝑏𝑏
𝑉𝑉

cos�φ𝑢𝑢𝑑𝑑� cos�180 − φ𝑎𝑎𝑎𝑎𝑛𝑛�� 𝑌𝑌 = 𝐹𝐹𝑐𝑐𝑥𝑥  

(48) 

�−𝑚𝑚𝑦𝑦𝑖𝑖2 + 𝑖𝑖𝑖𝑖 �𝑐𝑐𝑦𝑦 + 𝐶𝐶
𝑏𝑏
𝑉𝑉
�cos�180 − φ𝑎𝑎𝑎𝑎𝑛𝑛��

2
� + 𝑘𝑘𝑦𝑦� 𝑌𝑌

+ 𝑖𝑖𝑖𝑖 �𝐶𝐶
𝑏𝑏
𝑉𝑉

cos�φ𝑢𝑢𝑑𝑑� cos�180 − φ𝑎𝑎𝑎𝑎𝑛𝑛�� 𝑋𝑋 = 𝐹𝐹𝑐𝑐𝑦𝑦 

(49) 

 

These equations are arranged in matrix form as shown in Eq. (50), where: 

• 𝑚𝑚11 = �−𝑚𝑚𝑥𝑥𝑖𝑖2 + 𝑖𝑖𝑖𝑖 �𝑐𝑐𝑥𝑥 + 𝐶𝐶 𝑏𝑏
𝑉𝑉
�cos�φ𝑢𝑢𝑑𝑑��

2
� + 𝑘𝑘𝑥𝑥� 

• 𝑚𝑚12 = 𝑖𝑖𝑖𝑖 �𝐶𝐶 𝑏𝑏
𝑉𝑉

cos�φ𝑢𝑢𝑑𝑑� cos�180 − φ𝑎𝑎𝑎𝑎𝑛𝑛�� 
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• 𝑚𝑚21 = 𝑚𝑚12 

• 𝑚𝑚22 = �−𝑚𝑚𝑦𝑦𝑖𝑖2 + 𝑖𝑖𝑖𝑖 �𝑐𝑐𝑦𝑦 + 𝐶𝐶 𝑏𝑏
𝑉𝑉
�cos�180 − φ𝑎𝑎𝑎𝑎𝑛𝑛��

2
� + 𝑘𝑘𝑦𝑦�. 

 

 11 12

21 22

cx

cy

Fa a X
Fa a Y
    

=     
    

, (50) 

 

Using complex matrix inversion on a frequency-by-frequency basis, the direct and 

cross frequency response functions (FRFs) for the coupled dynamic system are obtained as 

shown in Eq. 51. The direct FRFs are located in the on-diagonal positions and the cross 

FRFs are located in the off-diagonal positions; the cross FRFs are equal because the 

inverted matrix is symmetric. 

 

This work builds on the analytical stability solution presented by Tlusty [2]. As shown 

in Figure 4.1 and Figure 4.2, he assumed an average angle of the tooth in the cut and, 

therefore, an average cutting force direction. This produced an autonomous, or time 

invariant, system. He then made use of directional orientation factors, µx and µy, to first 

project this force into the x and y directions and, second, project these results into the 

surface normal, n (in the direction of φave). The limiting axial depth of cut, blim, and spindle 

speed, Ω, are defined as a function of frequency using Eqs. 52-54, where 𝑅𝑅𝑒𝑒(𝐺𝐺𝑜𝑜𝑜𝑜) is the 

negative real part of the oriented FRF, 𝑁𝑁𝑖𝑖∗ is the average number of teeth in the cut (see Eq. 

 
1

11 12

21 22

cx cycx cx

cy cy

cx cy

X X
F FF Fa aX

F Fa aY Y Y
F F

−
 
        = =               
 

 (51) 



 

39 
(54), where the angles are expressed in°), fc is the valid chatter frequencies (i.e., those 

frequencies where 𝑅𝑅𝑒𝑒(𝐺𝐺𝑜𝑜𝑜𝑜) is negative), Nt is the number of cutter teeth, N = 0, 1, 2, … is 

the integer number of waves between teeth (i.e., the lobe number), and 𝜀𝜀 = 2𝜋𝜋 −

2 tan−1 �𝑅𝑅𝑛𝑛(𝐺𝐺𝑜𝑜𝑜𝑜)
𝐼𝐼𝑚𝑚(𝐺𝐺𝑜𝑜𝑜𝑜)� is the phase between the current vibration and the previous tooth. The 

spindle speed and limiting axial depth are plotted against one another to represent the 

stability boundary in traditional stability lobe diagrams.  
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Tlusty’s approach is extended here to develop an oriented FRF that incorporates both 

the direct and cross FRFs from Eq. 51. The oriented FRF is defined using Eq. 55, where 

µij, i, j = x, y, are the directional orientation factors: 

• 𝜇𝜇𝑥𝑥𝑥𝑥 = cos�𝛽𝛽 + φ𝑎𝑎𝑎𝑎𝑛𝑛 − 90� cos�φ𝑢𝑢𝑑𝑑� projects F into x to cause x vibration through 

the direct FRF 𝑋𝑋
𝐹𝐹𝑐𝑐𝑥𝑥

 and then projects this result into n 

• 𝜇𝜇𝑥𝑥𝑦𝑦 = cos�180 − 𝛽𝛽 + φ𝑎𝑎𝑎𝑎𝑛𝑛� cos�φ𝑢𝑢𝑑𝑑� projects F into y to cause x vibration 

through the cross FRF 𝑋𝑋
𝐹𝐹𝑐𝑐𝑦𝑦

 and then projects this result into n 
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• 𝜇𝜇𝑦𝑦𝑥𝑥 = cos�𝛽𝛽 + φ𝑎𝑎𝑎𝑎𝑛𝑛 − 90� cos�180 − φ𝑎𝑎𝑎𝑎𝑛𝑛� projects F into x to cause y vibration 

through the cross FRF 𝑌𝑌
𝐹𝐹𝑐𝑐𝑥𝑥

 and then projects this result into n 

• 𝜇𝜇𝑦𝑦𝑦𝑦 = cos�180 − 𝛽𝛽 + φ𝑎𝑎𝑎𝑎𝑛𝑛� cos�180 − φ𝑎𝑎𝑎𝑎𝑛𝑛� projects F into y to cause y 

vibration through the direct FRF 𝑌𝑌
𝐹𝐹𝑐𝑐𝑦𝑦

 and then projects this result into n. 

 

 𝐺𝐺𝑜𝑜𝑜𝑜 = 𝜇𝜇𝑥𝑥𝑥𝑥
𝑋𝑋
𝐹𝐹𝑐𝑐𝑥𝑥

+ 𝜇𝜇𝑥𝑥𝑦𝑦
𝑋𝑋
𝐹𝐹𝑐𝑐𝑦𝑦

+ 𝜇𝜇𝑦𝑦𝑥𝑥
𝑌𝑌
𝐹𝐹𝑐𝑐𝑥𝑥

+ 𝜇𝜇𝑦𝑦𝑦𝑦
𝑌𝑌
𝐹𝐹𝑐𝑐𝑦𝑦

 (55) 

 

The direct and cross FRFs included in Eq. 55 incorporate the process damping 

contribution by modifying the structural damping through the terms: 𝑖𝑖𝑖𝑖 �𝑐𝑐𝑥𝑥 +

𝐶𝐶 𝑏𝑏
𝑉𝑉
�cos�φ𝑢𝑢𝑑𝑑��

2
�, 𝑖𝑖𝑖𝑖 �𝐶𝐶 𝑏𝑏

𝑉𝑉
cos�φ𝑢𝑢𝑑𝑑� cos�180 − φ𝑎𝑎𝑎𝑎𝑛𝑛��, and 𝑖𝑖𝑖𝑖 �𝑐𝑐𝑦𝑦 + 𝐶𝐶 𝑏𝑏

𝑉𝑉
�cos�180 −

φ𝑎𝑎𝑎𝑎𝑛𝑛��
2
� as shown in Eq. 50. The process damping contribution depends on the 𝑏𝑏

𝑉𝑉
 ratio in 

each case, where 𝑉𝑉 = 𝜋𝜋𝑑𝑑
60
Ω (d is the tool diameter and Ω is expressed in rpm). Therefore, 

the b and Ω vectors must be known in order to modify the damping. This establishes a 

converging stability solution. The following steps are completed for each lobe number, N: 

1. the analytical stability boundary is calculated with no process damping to identify 

initial b and Ω vectors 

2. these vectors are used to determine the process damping contribution 

3. the stability analysis is repeated with the new damping terms to determine updated 

b and Ω vectors 

4. the process is repeated until the stability boundary converges. 
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Again, the solution converges rapidly (20 iterations or less is typically sufficient). 

 

To demonstrate the algorithm, consider the model in Figure 4.1 with φs = 0, φe = 90°, 

β = 70°, Ks = 2000 N/mm2, C = 200 N/mm, Nt = 4, and d = 19 mm for a 50% radial 

immersion up milling operation. The structural dynamics are symmetric in x and y with a 

stiffness of 9×106 N/m, a natural frequency of 900 Hz, and a viscous damping ratio of 0.03 

(3%). The corresponding stability limit with process damping effects is displayed in Figure 

4.3.  

 

 

Figure 4.3: Analytical stability limit results for milling model with a single DOF in the 

x and y directions. 
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4.1.2 Multi-Degree-of-Freedom Milling in Two Directions 

The coupled dynamics solution is now extended to two DOF in the x and y directions. 

From an FRF measurement in each direction, the modal parameters can be extracted (by 

peak picking, for example) which represent uncoupled single DOF systems in the modal 

coordinates q1 and q2 for the x direction and p1 and p2 for the y direction [25]. This modal 

representation requires that proportional damping holds, but this is a reasonable 

approximation for the lightly damped tool point dynamics typically observed in practice. 

Equation 43, which provides the equation of motion for the x direction with a single 

DOF, is rewritten in Eq. 56 to describe motion in the first modal DOF, q1. The n direction 

velocity is again �̇�𝑖 = �̇�𝑥 cos�φ𝑢𝑢𝑑𝑑� + �̇�𝑦 cos�180 − φ𝑎𝑎𝑎𝑎𝑛𝑛�, but �̇�𝑥 is now the sum of the modal 

velocities, �̇�𝑥 = �̇�𝑞1 + �̇�𝑞2 and �̇�𝑦 = �̇�𝑝1 + �̇�𝑝2. Substitution yields Eq. 57. Equations 58 and 59 

give the results for q2 motion (the second modal DOF) in the x direction. 

  

𝑚𝑚𝑞𝑞1�̈�𝑞1 + 𝑐𝑐𝑞𝑞1�̇�𝑞1 + 𝑘𝑘𝑞𝑞1𝑞𝑞1 = 𝐹𝐹𝑐𝑐𝑥𝑥 − 𝐶𝐶
𝑏𝑏
𝑉𝑉
�̇�𝑖 cos�φ𝑢𝑢𝑑𝑑� 

 

(56) 

𝑚𝑚𝑞𝑞1�̈�𝑞1 + 𝑐𝑐𝑞𝑞1�̇�𝑞1 + 𝑘𝑘𝑞𝑞1𝑞𝑞1 = 

𝐹𝐹𝑐𝑐𝑥𝑥 − 𝐶𝐶
𝑏𝑏
𝑉𝑉

cos�φ𝑢𝑢𝑑𝑑� �cos�φ𝑢𝑢𝑑𝑑� (�̇�𝑞1 + �̇�𝑞2)  + cos�180 − φ𝑎𝑎𝑎𝑎𝑛𝑛� (�̇�𝑝1 + �̇�𝑝2)� 

 

 

(57) 

𝑚𝑚𝑞𝑞2�̈�𝑞2 + 𝑐𝑐𝑞𝑞2�̇�𝑞2 + 𝑘𝑘𝑞𝑞2𝑞𝑞2 = 𝐹𝐹𝑐𝑐𝑥𝑥 − 𝐶𝐶
𝑏𝑏
𝑉𝑉
�̇�𝑖 cos�φ𝑢𝑢𝑑𝑑� 

 

(58) 

𝑚𝑚𝑞𝑞2�̈�𝑞2 + 𝑐𝑐𝑞𝑞2�̇�𝑞2 + 𝑘𝑘𝑞𝑞2𝑞𝑞2 = 

𝐹𝐹𝑐𝑐𝑥𝑥 − 𝐶𝐶
𝑏𝑏
𝑉𝑉

cos�φ𝑢𝑢𝑑𝑑� �cos�φ𝑢𝑢𝑑𝑑� (�̇�𝑞1 + �̇�𝑞2) + cos�180 − φ𝑎𝑎𝑎𝑎𝑛𝑛� (�̇�𝑝1 + �̇�𝑝2)� 

(59) 
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Equations 57 and 59 are converted to the frequency domain by again assuming 

harmonic motion so that 𝑞𝑞𝑖𝑖(𝑡𝑡) = 𝑄𝑄𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑝𝑝𝑖𝑖(𝑡𝑡) = 𝑃𝑃𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖, j = 1, 2. Equation 60 

represents motion in Q1 and Eq. (61) describes motion in Q2. Even though the modal 

degrees of freedom are uncoupled by definition, the two equations of motion for the x 

direction now include both Q1 and Q2 due to process damping. Similar to the single DOF 

model in the previous section, the equations also include contributions from the y direction 

dynamics (P1 and P2). As with turning, the equations of motion are coupled in both modal 

coordinates and the two orthogonal directions [26]. 
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Following the same approach, the frequency domain equations for the y direction are 

presented in Eqs. 62 and 63, where Eq. 62 describes motion in P1 and Eq. 63 describes 

motion in P2. 
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Using complex matrix inversion on a frequency-by-frequency basis, the direct and 

cross FRFs for the coupled dynamic system are obtained as shown in Eq. 65.  
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(65) 

 

The direct FRFs in the x and y directions are defined by Eqs. 66-69, respectively; the 

cross FRFs are provided in Eqs. 30-31. The oriented FRF is again calculated using Eq. 17; 

the directional orientation factors are the same. 
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The model may be extended to additional DOFs in each direction. For three DOFs in 

each direction, for example, Eq. 64 becomes a 6×6 symmetric matrix. The direct and cross 

FRFs are then a sum of six, rather than four, terms from the inverted matrix. 

To demonstrate the algorithm, consider the model in Figure 4.1 with φs = 0, φe = 90°, 

β = 70°, Ks = 2000 N/mm2, C = 200 N/mm, Nt = 4, and d = 19 mm for a 50% radial 

immersion up milling operation. The structural dynamics are symmetric with a modal 

stiffness of 7×106 N/m, a natural frequency of 700 Hz, and a viscous modal damping ratio 

of 0.03 (3%) for the first mode and a modal stiffness of 9×106 N/m, a natural frequency of 

900 Hz, and a viscous modal damping ratio of 0.03 (3%) for the second mode. The 

corresponding stability limit with process damping effects is displayed in Figure 4.4.  
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Figure 4.4: Analytical stability limit results for milling model with two DOF in the x and 
y directions. 
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EXPERIMENTAL PROCEDURE 

The stability algorithms described in Chapter 3 and Chapter 4 require the following 

information: the dynamics of the cutting system in the form of the frequency response 

function (FRF); the cutting force coefficient, Ks, and cutting force angle, β; the process 

damping coefficient, C; and other parameters specific to the cutting process, such as the 

radial depth of cut, number of cutting edges (in the case of milling), etc. This chapter 

presents experimental setups and procedures for acquiring the stability model parameters. 

It also presents a method for modeling the tool life for a given cutting operation, which 

proves useful for the hard-to-machine materials concerned with in this work. 

5.1 Specific Cutting Force Identification 

The cutting forces in a given manufacturing process is considered to be proportional to 

the chip area by a constant known as the specific cutting force, Ks; see Eq. 1. To a first-

order approximation, the value of the specific cutting force is dependent on the workpiece 

material. The tool geometry, cutting speed, and feed rate are known to have higher order 

effects on specific cutting force value.  

Several methods may be used to develop a cutting force model for a given cutting 

operations. Thermo-visco-plastic constitutive laws, such as Johnson-Cook, may be used to 

predict the shear angles, strain rates, and temperatures associated with chip formation and,



 

49 
 therefore, the forces generated during cutting. These methods normally require high strain 

rate material testing using a compressive split-Hopkinson bar. Alternatively, cutting force 

model parameters may be obtained from historically tabulated data. A potential drawback 

is that the values of Ks also depend on the state of the material. That is, any heat treatment 

or method of cold work may affect the value. The following sections present a mechanistic 

approach to cutting coefficient identification for milling and turning operations. 

5.1.1 Specific Cutting Force Identification for Turning 

From Eq. 1, the total, instantaneous, cutting force, F, is proportional to the chip area, 

𝐴𝐴 = 𝑏𝑏ℎ, by a single term referred to as the specific cutting force, Ks. The total cutting force 

can be decomposed into normal and tangential components, Fn and Ft, using F and the 

average cutting force angle, 𝛽𝛽: 

 

 𝐹𝐹𝑛𝑛 = cos(𝛽𝛽)𝐹𝐹 = 𝐾𝐾𝑠𝑠cos (𝛽𝛽)𝑏𝑏ℎ =  𝑘𝑘𝑛𝑛𝑏𝑏ℎ (70) 

 𝐹𝐹𝑖𝑖 = sin(𝛽𝛽)𝐹𝐹 = 𝐾𝐾𝑠𝑠 sin(𝛽𝛽) 𝑏𝑏ℎ =  𝑘𝑘𝑖𝑖𝑏𝑏ℎ (71) 

 

The kn and kt terms are referred to as the normal and tangential cutting force coefficients. 

These terms can readily be measured by mounting the tool to a cutting force dynamometer, 

which decomposes the force experienced at the tool tip into three orthogonal force 

components. Figure 5.1 shows the experimental force measurement setup. A Kistler 9257B 

dynamometer is aligned with the axes of the machine and an orthogonal cut is taken from 

a cylindrical workpiece. Figure 5.2 shows an example of the normal and tangential cutting 

forces involved in a cutting test. Due to inherent flexibility in the system, the average of 

the measured forces was used in each calculation. With an average value for Fn and Ft, the 
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values for kn, kt, 𝛽𝛽, and Ks may be calculated. The total force presented in Figure 5.2 is the 

root sum square of the force components.  

 

Figure 5.1: Force measurement setup for turning experiments using the Kistler 9257B 
dynamometer. The tangential and normal forces are measured during the cutting of a 
cylindrical workpiece in an orthogonal cut. 

 

Figure 5.2: Normal and tangential cutting forces measured during orthogonal test cut.  
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5.1.2 Specific Cutting Force Identification for Milling 

The forces generated during milling operations vary periodically with each rotation of 

the tool. For this reason, the method used to calculate the cutting force coefficients in 

turning cannot be used in milling. Instead, the cutting coefficients are determined via a 

linear regression using the average cutting forces measured by a dynamometer over a range 

of specified feed per tooth values. Figure 5.3 shows the force measurement setup for 

milling.  

 

 

Figure 5.3: Cutting force measurement setup using a three component force 
dynamometer. 

 

Schmitz [25] presents the method where the kn and kt terms can be calculated from the 

mean x and y force data. Figure 5.4 illustrates an example of the cutting forces obtained 

during a test cut using a single flute endmill.  
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Figure 5.4: Example of cutting forces decoupled into x and y-directions for a 25% radial 
immersion test cut using a single-tooth endmill. 

 

If the mean x and y force values, 𝐹𝐹�𝑥𝑥 and 𝐹𝐹�𝑦𝑦, are plotted versus a range of feed per tooth 

values, as illustrated in Figure 5.5, the cutting coefficients can be extracted from a linear 

regression fit using the expressions: 
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From these expressions, it can be seen that cutting coefficient values can be calculated 

using the slopes from the linear fit and solving the system of equations. The specific cutting 
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force and cutting force direction can be calculated by 𝐾𝐾𝑠𝑠 =  (𝑘𝑘𝑖𝑖2 + 𝑘𝑘𝑛𝑛2)1 2⁄  and 𝛽𝛽 =

tan−1(𝑘𝑘𝑖𝑖 𝑘𝑘𝑛𝑛⁄ ).  

 

Figure 5.5: Linear regression results for mean x and y forces versus a range of feed per 
tooth values.  
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selected tool-material combinations. 

Tool life, T, is defined as the time required to obtain a predetermined wear level. 

Depending on the dominant wear mode, the wear level may be described using the flank 

wear width (FWW), crater depth, and/or notch depth. The Taylor tool life equation relates 

the tool life to the cutting speed using a power law model [26]: 
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𝑉𝑉𝑇𝑇𝑛𝑛𝑡𝑡 = 𝐶𝐶𝑇𝑇 

where 𝑖𝑖𝑇𝑇 and 𝐶𝐶𝑇𝑇are empirical constants. The primary mode of tool wear in all cases in this 

work was flank wear; see Figure 5.6. In several test cases, the cutting force coefficients 

and process damping coefficient were identified under moderately worn conditions. To 

avoid removing the inserted tool from the spindle, a portable digital microscope was used 

to record the FWW at regular intervals as shown in Figure 5.7. 

 

Figure 5.6: Sample measurements of the maximum FWW progression during wear tests. 

 

 

Figure 5.7: Setup for interrupted FWW measurements. 

Tool wear testing was completed at specified cutting velocities and the tool life was 
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Digital 
microscope 



 

55 
uncertainty in each FWW measurement due to the repeatability of the angular orientation 

of the microscope relative to the cutting edge. This variation proved to be negligible, but 

care was taken to ensure the cutting edge was approximately in the same angular 

orientation for each measurement. Figure 5.8 displays the FWW progression versus cutting 

time for Ti 6Al-4V. The ‘o’ symbols represent the intervals at which the FWW was 

recorded. In all cases, as expected, the wear rate was found to increase as cutting speed was 

increased. 

 

 

Figure 5.8: Increase in FWW with cutting time at three spindle speeds for Ti 6Al-4V. 
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spindle speeds less than 1000 rpm if a tool life greater than approximately 30 minutes is 

desired. As a practical limit, this range of spindle speeds was used to select the operating 

speed range for process damping characterization. 

 

Figure 5.9: Taylor tool life model fit for Ti 6Al-4V. 
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the methods used to identify the process damping coefficient for turning and milling 

operations. 

5.3.1 Least RSS Method for Process Damping Coefficient Identification 

Conventional linear stability analysis (i.e., C = 0 N/m) was first used to validate the 

stability behavior at higher speeds for the flexure setup. Using the experimental flexure 

modal parameters and cutting force coefficients, analytical stability lobes were generated 

without including the effects of process damping. Several test cuts were then chosen to 

confirm that key features predicted by the analytical lobes existed at higher spindle speeds. 

As seen in Figure 5.10, the predicted behavior was observed experimentally. Additionally, 

the critical limiting chip width, blim,cr, was identified to be approximately 1 mm for the 228 

Hz SDOF milling setup; this result also agreed with the analytical prediction. A similar 

approach was used to validate the stability boundary for the 156 Hz single DOF setup, 

milling multi-DOF setup, and turning multi-DOF setup.  

 

Figure 5.10: Stability lobe validation for the single DOF milling (fn = 228 Hz) milling 
setup. Stable cuts (o) and unstable cuts (×) are identified. 
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A grid of test points at low spindle speeds was next selected to investigate the 

process damping behavior. Based on the stable/unstable cutting test results, a single 

variable residual sum of squares (RSS) estimation was applied to identify the process 

damping coefficient that best represented the experimental stability boundary; see Figure 

5.11. The spindle speed-dependent experimental stability limit, bi, was selected to be the 

midpoint between the stable and unstable points at the selected spindle speed. The sum of 

squares of residuals is given by Eq. 74, where ( )f iΩ  is the analytical stability boundary 

and n is the number of test points.  

 𝑅𝑅𝑅𝑅𝑅𝑅 =  � (𝑏𝑏𝑖𝑖 − 𝑓𝑓(Ω𝑖𝑖))2
𝑛𝑛

𝑖𝑖=1
 (74) 

 

 

Figure 5.11: Description of variables for RSS estimate of process damping coefficient. 
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A range of process damping coefficients was selected and the RSS value was 

calculated for each corresponding stability limit; see Figure 5.12. The C value that 

corresponded to the minimum RSS value was selected to identify the final stability 

boundary for all test conditions. The following sections present the methods for process 

damping coefficient identification for the milling and turning setups. 

 

 

Figure 5.12: Sweep of process damping coefficients used to select final stability 
boundary 
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to produce two comparable stiffness bending modes at natural frequencies sufficiently 

spaced apart. The intent for this design was to produce stability lobes with what are known 

as “competing lobes”. The cutting insert (Sandvik CCMW32.51H13A) was uncoated with 

a 7° relief angle, 0° rake angle, and no chip-breaker. The method used to design the flexible 

cutting tool is presented in Appendix A. 

In order to isolate the workpiece dynamics from the cutting process, a tubular geometry 

was selected in which the feed direction was parallel to the length of the tube. In this 

arrangement, the stiffness of the workpiece was much greater than that of the cutting tool. 

Because the flexure compliance was much higher than the workpiece specimen in the feed 

direction, the stability analysis was completed using the flexure’s dynamic properties. The 

frequency response function and modal parameters for the flexure in the feed and tangential 

directions are provided in Figure 5.14 and Table 5.1.  

 

 

Figure 5.13: Experimental setup for turning stability tests. A cutting force dynamometer 
and accelerometer (not shown) were used to monitor the tool vibration during cutting. 
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Figure 5.14: Frequency response function of flexible cutting tool in tangential and feed 
directions. 

 

Table 5.1: Modal parameters for flexible cutting tool setup 
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Also, qualitatively, the machined surface finish after each test cut was inspected using a 

digital microscope. 

5.3.2.1 Vibration Measurements for Turning 

Figure 5.15 illustrates an example stability lobe diagram and test cut results for the 

flexure setup. Points A-C were selected to describe the characteristics of stable and 

unstable cutting conditions. Figure 5.16 displays the force and acceleration signals for point 

A at a spindle speed of Ω=300 rpm and chip width of b=3 mm. It is observed that the forces 

generated for this stable cut remained steady at a mean of approximately 364 N with no 

apparent growth or instability in the time domain. The frequency content of the force and 

accelerometer signals at point A reveal slight, but not distinct, peaks near the flexure’s 

natural frequencies; Table 5.1. 

 

Figure 5.15: Stability boundary for the multi-degree of freedom system with the grid of 
stable (o) and unstable (x) cutting tests identified.  
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Figure 5.16: Cutting force and accelerometer time domain signals in the feed direction for 
the stable point A {300 rpm, 3.0 mm} with corresponding frequency content below. 
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Figure 5.17: Cutting force and accelerometer time domain signals in the feed direction for 
the unstable point B {400 rpm, 3.0 mm}, with corresponding frequency content below. 
The chatter frequency is approximately 310 Hz. 

 

Point C in Figure 5.15 is another example of unstable cutting conditions. The test was 
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oscillating at the lower chatter frequencies. 

 

0 5 10
-1000

0

1000

Fo
rc

e 
(N

)

0 5 10
-2000

0

2000

Time (s)

A
cc

el
 (m

/s
2 )

1000 2000 3000
0

200

400

600

Frequency (Hz)

|F
(f)

| (
N

)

1000 2000 3000
0

200

400

Frequency (Hz)

|A
cc

el
(f)

| (
m

/s
2 )



 

65 

 

Figure 5.18: Cutting force and accelerometer time domain signals in the feed direction for 
the unstable point B {1000 rpm, 2.0 mm} with corresponding frequency content below. 
The chatter frequency is approximately 1493 Hz. 
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Figure 5.19: Surface roughness and chip morphology of stable test cut. 

 

Figure 5.20 depicts the surface finish and chip morphology of a clearly unstable cutting 

test. From the digital microscope image in Figure 5.20b, there are large undulations 

remaining on the workpiece surface. The chips produced from an unstable test cut contain 

similar undulations and, in cases of large enough vibrations, are discontinuous from the 

cutter leaving the surface of the workpiece, see Figure 5.20c. Such cutting conditions are 

known to have a negative influence on tool life, the machine tool, and workpiece quality.  

 

 

Figure 5.20: Surface roughness and chip morphology of unstable test cut. 
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5.3.3 Process Damping Coefficient Milling Setup 

The procedure for obtaining the process damping coefficient for milling is provided in 

this section. Cutting tests were performed on both single and two DOF flexural cutting 

platforms to validate the algorithm. Because the compliances of the flexures were much 

higher than the tool-holder-spindle-machine, the stability analysis was completed using 

only the flexures’ dynamic properties. The stability limit was identified over a grid of axial 

depth of cut and spindle speed pairs. Using the experimental stability boundary, the process 

damping coefficient was then identified. The effects of insert relief angle and tool wear on 

the process damping coefficient were examined. The flexure dynamics were also adjusted 

to determine the sensitivity of the coefficient to changes in the system dynamics. 

5.3.3.1 Single Degree of Freedom Experimental Setup 

The experimental setup used a parallelogram leaf-type flexure in order to control the 

dynamics of the system and approximate single degree of freedom behavior. The flexure 

was constructed to provide a flexible foundation for individual workpieces/coupons. Figure 

5.21 shows the full experimental setup for the single DOF cutting tests. The dimensions of 

the flexure were chosen so that the flexibility of the platform was much greater than that 

of the cutting tool. The flexure leafs were selected to be 3.13 mm thick AISI 6061 

aluminum sheets. An AISI 1080 steel sheet was used as the top platform to increase the 

mass of the flexible system. The entire system was fixed to the machine table using T-slot 

nuts. An accelerometer was also mounted to the flexure platform to provide in-process data 

for stability evaluation. 
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Figure 5.21: Single degree of freedom setup for milling stability tests and process 
damping coefficient identification. 

 

To study the influence of relief angle on the process damping behavior, two single-tooth 
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angle (SDCW322 KC725M). The second was a 19.05 mm diameter endmill (Cutting Tool 

Technologies model DRM-03) with an 11° relief angle insert (SPEB322 KC725M). Both 

cutting tools had a zero degree rake angle. The inserts had no edge preparation and similar 

TiAlN coatings. The tools were placed in a Schunk Tribos® holder with an overhang length 
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flexure so that test cuts could be completed at any specified radial immersion. A 

preliminary frequency response function for the single degree of freedom setup was 
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obtained in order to confirm that they were much stiffer than the intended flexible direction 

for the flexure. Measurements showed the peak imaginary amplitudes for the tool response 

were approximately ten-times smaller than the intended flexure direction and were, 

therefore, considered negligible when modeling the dynamic system; see Figure 5.22. 

 

Figure 5.22: Frequency response function comparison of single DOF flexure and cutting 
tool in machine spindle (x and y directions were similar). 

 

The sensitivity of the process damping coefficient to changes in the system dynamics 

was also evaluated in this study. The dynamics of the system were altered by adding mass 

to the flexure platform. The added mass decreased the natural frequency by approximately 

32%. The modal parameters for both cases are provided in Table 5.1. The x and y directions 

correspond to flexible and stiff directions of the flexure, respectively, where x is the feed 

direction of the milling cutter. 
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Table 5.2: Modal parameters for single DOF flexure with and without mass. 

 Direction Modal stiffness 
(N/µm) 

Viscous 
damping ratio 

(%) 

Natural 
frequency (Hz) 

No mass x 2.77 6.3 228 
y 174 3.7 1482 

Added mass x 4.37 1.8 156 
y 276 2.8 1137 

 

 

A piezoelectric accelerometer (PCB Piezotronics model 352B10) was used to measure 

the vibration during cutting. The frequency content of the accelerometer signal was used 

in combination with the machined surface finish to establish stable/unstable performance. 

Cuts that exhibited uniform vibration in the time-domain and exhibited content in the 

frequency-domain at the associated tooth passing frequency and its harmonics were 

considered to be stable.  Figure 5.23 and Figure 5.24 represent an example stable test in 

the time and frequency domain, respectively. 

Alternatively, cuts that exhibited vibrations which increased significantly over the 

duration of the cut and showed significant frequency content near the flexure’s x direction 

natural frequency were considered to be unstable. Figure 5.25 and Figure 5.26 represent an 

unstable cutting condition in the time and frequency domains, respectively.  
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Figure 5.23: Time domain acceleration signal of a stable cut. 

 

 

Figure 5.24: Frequency domain signal of a stable cut performed by a single-tooth cutter at 
300 rpm (5 cps). 
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Figure 5.25: Time domain signal of an unstable cutting performance. 

 

 

Figure 5.26: Frequency domain signal of an unstable cutting performance. Strong 
frequency content is observed at the flexure's 228 Hz natural frequency for the test 
completed at 700 rpm (11.7 cps). 
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In addition to vibration measurements, the surface of the workpiece was analyzed visually 

after each test cut. Qualitatively, the surface texture of a stable cut exhibited very few 

surface flaws, shown in Figure 5.27. Inspection of the workpiece surface for an unstable 

cut revealed irregular vibratory flaws in the finish due to the self-excited cutter vibration; 

see Figure 5.28.  

 

Figure 5.27: Surface finish of workpiece after a stable cut. 

 

 

Figure 5.28: Surface finish of workpiece after an unstable cut. 
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5.3.3.2 Multi-DOF Experimental Setup   

To validate the multiple DOF process damping model for milling, low-speed cutting 

tests were performed and a process damping coefficient was calculated.  Experiments were 

performed on a Haas TM-1 CNC milling machine.  A custom-designed notch hinge flexure, 

pictured in Figure 5.29, was designed; placing a small workpiece upon this flexure 

provided a repeatable two DOF system along the feed direction. To negate the effects of 

tool dynamics, tool corner radius effects, and interaction between the tool end and the floor 

of a just-machined slot, a fin geometry was selected for the workpiece. Using this 

configuration, analogous to the tube turning experiments presented in Section 5.3.2, the 

tool is much stiffer than the workpiece/flexure system. The fin is flexible in the z direction, 

but the tool used had a zero degree helix angle, so the z direction force is negligible. 

 

 

Figure 5.29: Experimental setup for two DOF milling stability tests.  An accelerometer 
was used to monitor the flexure vibration during machining. 
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Because the flexure is intentionally more compliant than the tool along the feed 

direction, the stability analysis is performed using the modal parameters of the flexible 

system. Table 5.3 and Figure 5.30 provide the modal parameters and the frequency 

response function of the workpiece/flexure system along the feed (x) and tangential (y) 

directions, oriented as shown in Figure 5.29. The stability of individual test cuts was 

identified according to vibration and surface finish characteristics described in the single 

DOF milling experimental setup 

 

Table 5.3: Modal parameters for two DOF flexible workpiece setup. 

Direction Viscous damping 
ratio (%) 

Modal stiffness 
(×107 N/m) 

Natural frequency 
(Hz) 

Tangential 1.82 4.208 1678 

Feed 0.37 0.814 515 
0.14 2.871 1408 

 

 

Figure 5.30: Frequency response function of flexible system in feed (x) and tangential (y) 
directions.
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EXPERIMENTAL RESULTS AND DISCUSSION 

Experiments were conducted using all three setups described in Chapter 5 to observe 

the process damping behavior and subsequent stability increase at low cutting speeds. The 

bulk of the work described involves the single DOF milling setup. A single DOF setup 

simplifies the manner in which chatter is identified. Using the SDOF setup, quantitative 

effects of clearance angle, flank wear width (FWW), and change in dynamics were 

evaluated using the process damping coefficient identification method previously 

described. A database of process modeling coefficients for AISI 1018 steel, 6061-T6 

aluminum, Ti 6Al-4V, AISI 304 stainless steel, and Inconel 718 is also presented in this 

section. The database includes coefficients for the process damping model, specific cutting 

force, and Taylor tool-life model. For the multi DOF turning and milling setups, 

preliminary results include process modeling coefficients for 6061-T6 aluminum.   

6.1 Experimental Identification of the Process Coefficients for SDOF Milling 

The specific cutting force, process damping coefficient and tool-life parameters 

were experimentally identified and tabulated for the following materials: AISI 1018 steel, 

Ti 6Al-4V, AISI 304 stainless steel, and Inconel 718. The process damping coefficients 

were collected using the single DOF flexure setup. The influence of relief angle on the 

process coefficients were observed using two single tooth indexable square endmills of 

similar diameter. The first was an 18.54 mm diameter endmill (Kennametal model KICR-

0.73-SD3-033.3C) with a 15° relief angle (SDCW322 - KC725M). The second was a 
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19.05 mm diameter endmill (Cutting Tool Technologies model DRM-03) with an 11° relief 

angle insert (SPEB322 KC725M). Both cutting tools had a zero degree rake angle. The 

inserts had no edge preparation and similar TiAlN coatings. The tools were placed in a 

Tribos® holder with an overhang length of approximately 55 mm.  

6.1.1 AISI 1018 Steel Process Coefficients for SDOF 

6.1.1.1 AISI 1018 Steel Cutting Force Coefficients 

The cutting force coefficients were identified under stable cutting conditions using 

a cutting force dynamometer (Kistler model 9257B). The cutting tests were performed as 

described in Chapter 5.1 using a spindle speed of 500 rpm, an axial depth of cut of 3 mm, 

and a feed per tooth range of 0.05-0.25 mm/tooth. A linear regression to the mean cutting 

force over a series of tests at the selected feed per tooth values was used to identify the 

cutting force model values. The tests were completed three times and the average values 

were used in the following stability characterization. The results of the three trials are 

provided in Table 6.1 .  

 

Table 6.1: Cutting force parameters for the 18.54 mm diameter, 15° relief cutter with low 
insert wear (FWW <100 µm). 

Trial kt (N/mm2) kn (N/mm2) Ks (N/mm2) β (deg) 

1 2133.7 1043.3 2375.1 63.9 
2 2024.1 1030.5 2271.3 63.0 
3 2176.0 1084.0 2431.1 63.5 

Mean 2111.3 1052.6 2359.1 63.5 
Std. dev. 78.4 27.9 81.1 0.45 
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Table 6.2: Cutting force parameters for the 19.05mm diameter, 11° relief cutter with low 
insert wear (FWW <100 µm). 

Trial kt (N/mm2) kn (N/mm2) Ks (N/mm2) β (deg) 

1 2205.5 1142.4 2483.8 62.6 
2 2353.7 1219.6 2650.9 62.7 
3 2145.2 1202.7 2459.3 60.7 

Mean 2234.8 1188.2 2531.3 62.0 
Std. dev. 87.6 40.6 104.3 1.1 

 
 

For the 18.54 mm diameter cutter, the mean specific cutting force, Ks, and cutting 

force direction, β, were determined to be 2359.1 N/mm2 and 63.5°, respectively. For the 

19.05 mm diameter cutter, the mean values were Ks = 2531.0 N/mm2 and β = 62.0°. For 

moderately worn insert conditions (0.150 µm < FWW < 0.250 µm) the mean specific cutting 

force and cutting force direction were Ks = 2441.0 N/mm2 and β = 63.5° for the 18.54 mm 

diameter cutter and Ks = 2550.2 N/mm2 and β = 62.0° for the 18.54 mm diameter cutter. 

There was an observed increase, though slight, from the low wear to moderately worn cases 

in the cutting force testing of each material selected. 

6.1.1.2 AISI 1018 Steel Process Damping Coefficients 

Conventional linear stability analysis (i.e., C = 0 N/m) was first used to validate the 

stability behavior at higher speeds for the SDOF flexure setup. Using the experimental 

flexure modal parameters and cutting force coefficients, analytical stability lobes were 

generated without including the effects of process damping. Several test cuts were then 

chosen to confirm that key features predicted by the analytical lobes existed at higher 

spindle speeds. As seen in Figure 6.1, the predicted behavior was observed experimentally. 

Additionally, the critical limiting chip width, blim,cr, was identified to be approximately 1.0 

mm for the 228 Hz flexure setup; this result also agreed with the analytical prediction. A 
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similar approach was used to validate the stability boundary for the 156 Hz setup. The 

critical stability limit was approximately 0.4 mm for this case; see Figure 6.2. 

 
Figure 6.1: Stability lobe validation for the 228 Hz setup. Stable cuts (o) and unstable 
cuts (×) are identified. 

 
 

Figure 6.2: Stability lobe validation for the 156 Hz setup. Stable cuts (o) and unstable 
cuts (×) are identified. 
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A preselected grid of axial depths was chosen at low spindle speeds to identify the 

process damping regime for AISI 1018 steel. Stability testing was first performed for the 

18.54 mm diameter, 15° relief angle end mill. The axial depths ranged from below the 

confirmed blim,cr value of 1 mm to a maximum depth of 3 mm.  All cuts were performed 

using 50% radial immersion up-milling conditions. The feed per tooth was also held 

constant at 0.05 mm/tooth. Using the minimum RSS method described in Chapter 5, a 

process damping coefficient of C = 1.25×105 N/m was found to best fit the data for the 228 

Hz system. The corresponding stability boundary is provided in Figure 6.3.  

 

 
Figure 6.3: Up milling stability boundary for 50% radial immersion, 15° relief angle, low 
wear milling tests using the 228 Hz flexure setup (C = 1.25×105 N/m). 

 

Because flank wear can affect the process damping behavior due to changes in the 

tool/surface interference, the flank wear width (FWW) was limited to less than 100 µm for 

these stability tests; see Figure 6.4.  The tool wear was monitored using the 60x digital 

microscope (Dino-Lite: model Pro-AM413T) described in Chapter 5.2. 
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Figure 6.4: Tool wear measurement of: a) new 15° relief angle insert; and b) moderately 
worn 11° insert. 

 

The procedure was repeated for the 156 Hz setup and a process damping coefficient 

of C = 1.6 × 105 N/m was identified. These results are displayed in Figure 6.5. The lower 

natural frequency of the system causes a shift in the process damping regime to lower 

spindle speeds and limiting chip widths compared to the 228 Hz system. However, a 

comparison of the two process damping coefficients indicates less than a 4% difference. In 

this regard, it can be said that the process damping coefficient is insensitive to moderate 

changes in the system dynamics for single DOF systems. 

Tests were then performed using the 19.05 mm diameter, 11° relief angle end mill. 

The same procedure was following and the FWW was again limited to be less than 100 µm 

for all cuts. The process damping coefficient for both the 228 Hz and 156 Hz setups was 

1.65×105 N/m. See Figure 6.6 and Figure 6.7. 
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Figure 6.5: Up milling stability boundary for 50% radial immersion, 15° relief angle, low 
wear milling tests using the 156 Hz flexure setup (C = 1.30×105 N/m). 

 

 
Figure 6.6: Up milling stability boundary for 50% radial immersion, 11° relief angle, low 
wear milling tests using the 228 Hz flexure setup (C = 1.65×105 N/m). 
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Figure 6.7: Up milling stability boundary for 50% radial immersion, 11° relief angle, low 
wear milling tests using the 156 Hz flexure setup (C = 1.65×105 N/m). 

 

The low wear stability test results are summarized in Table 6.3. The process 

damping coefficient for the 228 Hz setup increased by 32% for the 11° relief angle tool 

relative to the 15° relief angle tool. A 27% increase was observed for the 156 Hz setup. 

These trends make sense given that additional interference would be encouraged by the 

smaller relief angle. Figure 6.8 illustrates the increase in the predicted stability boundary 

from a larger relief angle to smaller relief angle cutter. 

 

Table 6.3: Comparison of process damping coefficients for low insert wear tests (FWW < 
100 μm). 

Relief angle (deg) C (N/m) for the 228 Hz setup C (N/m) for the 156 Hz setup 
15 1.25×105 1.30×105 
11 1.65×105 1.65×105 
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Figure 6.8: Comparison of analytical stability boundary for steel between the 15° relief 
angle process damping coefficient (C = 1.25×105 N/m - red) and the 11° relief angle 
process damping coefficient (C = 1.65×105 N/m - green). The blue stability boundary, C = 
0.0×105 N/m, is used as a reference. 

 

In order to explore the effect of tool wear on the process damping performance, tests 

were completed using worn tools where the FWW was maintained at a level of 

approximately 150 µm < FWW < 250 µm. For the 15° relief angle tool, the specific cutting 

force and cutting force direction were 2441.0 N/mm2 and 63.5°, respectively; this 

represents a 3.5% increase in the specific cutting force relative to the unworn tool tests. 

However, the process damping coefficient was found to increase from the unworn tool tests 

by 20% for the 228 Hz setup and 31% for the 156 Hz setup. Similarly, for the 11° cutter, 

the cutting force parameters experienced only a slight change (Ks = 2550.2 N/mm2 and β = 

62.0°). However, the process damping coefficient increased by 15.2% for both flexure 

setups. See Table 6.4. 

 

1000 2000 3000 4000
0

1

2

3

4

5

Ω (rpm)

b lim
 (m

m
)

 

 

C = 1.25 × 105 N/m
C = 1.65 × 105 N/m
C = 0.0 × 105 N/m



 

85 
Table 6.4: Comparison of process damping coefficients for moderate wear tests (150 µm 
< FWW < 250 µm). 

Relief angle (deg) C (N/m) for the 228 Hz setup C (N/m) for the 156 Hz setup 
15 1.50×105 1.70×105 
11 2.00×105 1.90×105 

 
 

Repeat testing was performed using the 19.05 mm diameter, 11° relief angle cutting 

tool in order to observe the variability in the process damping coefficient identification 

process. A series of three additional cutting tests were performed on the 228 Hz system 

using an unworn insert. The three process damping coefficients were: 1.65×105
 N/m, 

1.65×105
 N/m, and 1.45×105 N/m. Assuming a normal distribution, a two-sided 90% 

confidence level was computed for this small sample size. The confidence interval for the 

population mean was: C = (1.60 ± 0.15)×105 N/m. Figure 6.9 illustrates the corresponding 

confidence region. 

 

Figure 6.9: Up milling stability confidence region for 50% radial immersion, 11° relief 
angle milling tests using the 228 Hz flexure setup with an unworn cutting edge (C = (1.60 
± 0.15)×105 N/m). 
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6.1.2 Creating a Process Coefficient Database 

With a technique in place to experimentally identify the process damping regime of the 

stability lobe diagram and the ability to portray the low-speed stability boundary using a 

single coefficient, a database of the process modeling coefficients was developed for 

several representative hard-to-machine materials. In addition to (mild) AISI 1018 steel, Ti 

6Al-4V, AISI 304 stainless steel, and Inconel 718 were chosen to populate the database, 

based on their growing use in the medical, aerospace, and energy manufacturing sectors.  

The database includes the process damping model coefficient, specific cutting force, 

and Taylor tool-life model. The coefficients are provided for two relief angles at both low 

and moderate wear states of the cutting edge. For the additional hard-to-machine metals in 

the database, the cutting conditions were changed from the 50% radial immersion up-

milling in steel, to 25% radial depth of cut down-milling. This increased the allowable 

depths of cut for the harder materials and eliminated chip welding to the machined surface. 

The database of process modeling coefficients are presented in Table 6.5-6.9. 

  From Tables 6.5 and 6.6, it is observed that the process damping force coefficient, C, 

increases with progressive wear and decreases with a larger relief angle; a larger C value 

indicates more process damping. Both trends support the general description of process 

damping as interference between the relief face and machined surface. Increased flank wear 

reduces the apparent relief angle local to the cutting edge. A smaller relief angle, whether 

by design or via wear, encourages the interference phenomenon. Figure 6.10 illustrates the 

trend that a reduction in the insert relief angle leads to an increase in available stable cutting 

conditions. 
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Table 6.5: Process damping coefficients for the 11° relief angle tool geometry. 

 Process damping coefficient, C (N/m) 
Material Low insert wear  

(FWW < 0.100 µm) 
Moderate insert wear  

(0.150 µm < FWW < 0.250 µm) 
1018 Steel 1.65×105 2.00×105 
Ti 6Al-4V 1.70×105 1.80×105 

304 SS 5.20×105 5.80×105 
Inconel 718 1.20×105 1.05×105 

 

Table 6.6: Process damping coefficients for the 15° relief angle tool geometry. 

 Process damping coefficient, C (N/m) 
Material Low insert wear  

(FWW < 0.100 µm) 
Moderate insert wear  

(0.150 µm < FWW < 0.250 µm) 
1018 Steel 1.25×105 1.50×105 
Ti 6Al-4V 1.20×105 1.40×105 

304 SS 4.10×105 4.50×105 
Inconel 718 1.00×105 1.30×105 

 

 

Figure 6.10: Stability boundary comparison for Inconel 718 for the low insert wear 
conditions. 
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For the specific cutting force coefficient, Ks, no clear trend is apparent for a change in 

the tool geometry. The largest difference for relief angle variation is 6.8% (1018 steel). The 

largest difference due to the wear level is -8.2% (15° relief angle tool, 6Al-4V titanium). 

 

Table 6.7: Specific cutting force coefficients for the 11° relief angle tool geometry. 

 Low insert wear 
(FWW < 0.100 µm) 

Moderate insert wear 
(0.150 µm < FWW < 0.250 µm) 

Material Ks (N/mm2) β (deg) Ks (N/mm2) β (deg) 
1018 Steel 2531.0 62.0 2550.2 62.0 
Ti 6Al-4V 2107.0 66.0 2131.2 60.1 

304 SS 3318.0 62.5 3517.0 61.0 
Inconel 718 3515.0 61.1 3617.0 60.6 
 

Table 6.8: Comparison of process coefficients for the 15° relief angle tool geometry. 

 Low insert wear 
(FWW < 0.100 µm) 

Moderate insert wear 
(0.150 µm < FWW < 0.250 µm) 

Material Ks (N/mm2) β (deg) Ks (N/mm2) β (deg) 
1018 steel 2359.1 63.5 2441.0 63.5 
Ti 6Al-4V 2076.3 66.7 2247.2 56.3 
304 SS 3427.2 63.1 3503.2 61.5 

Inconel 718 3582.0 62.0 3653.0 63.0 
 

The Taylor tool life model parameters are presented in Table 6.9. It should be restated 

that the inserts used in gathering the tool life parameters were all PVD TiAlN coated. A 

water-based mist coolant with a flow rate of approximately 15-20 ml/min was used in each 

of the cutting experiments. Finally, the time to reach the limiting FWW of approximately 

400 µm was the total cutting time for each selected cutting speed.  
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Table 6.9: Taylor tool-life model parameters. 

Material nT CT R2 

1018 steel* 0.34 649 0.95 
Ti 6Al-4V 0.96 1804 0.97 
304 SS 0.67 1484 0.98 

Inconel 718 0.66 161 0.93 
*Values were obtained from testing performed by Karandikar et al. [26] using the same tool geometry, but 
an uncoated insert and 50% radial immersion up milling. 

 

6.2 Experimental Identification of Process Coefficients in MDOF Milling 

An experimental process damping coefficient, C, was estimated from a residual sum of 

squares (RSS) minimization of points which best represent the stability boundary. A 

process damping coefficient value of C = 1.80×105 N/m best represents the boundary. The 

stable (o) and unstable (x) test points and stability boundary are presented in Figure 6.11 

 

Figure 6.11: Stability boundary for the MDOF system. Stable (o) and unstable (x) 
experiments are identified. 
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Points A and B in Figure 6.11 were selected to illustrate stable and unstable cutting 

characteristics.  Figure 6.12 illustrates the accelerometer signal at point A, a stable cut at 

1000 rpm, b = 7.0 mm.  The frequency content of the signal consists only of discrete peaks 

at integer multiples of the tooth passing frequency, in this case ftooth = 16.66 Hz.  Figure 

6.13 illustrates measurement signals at point B, an unstable cut at 1800 rpm, b = 7.0 mm.  

This signal shows significant chatter frequency content near the second mode in addition 

to the discrete peaks at the tooth passing frequency; for this test, ftooth = 30 Hz. 

 

Figure 6.12: Accelerometer measurements of stable cut at 1000 rpm, b = 7.0 mm. 
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Figure 6.13: Accelerometer measurements of unstable cut at 1800 rpm, b = 7.0 mm. 

 

6.3 Experimental Identification of Process Coefficients in MDOF Turning 

The analytical model was validated using experimental testing. The average specific 

cutting force was calculated at both 500 and 1000 rpm for b = 1.0 mm and feed rate of 0.13 

mm/rev to be approximately Ks = 1343±32 N/mm2 and β = 55.0°. Orthogonal stability 

testing was completed using the custom parallelogram notch hinge flexible cutting tool to 

cut a tubular workpiece described in Chapter 5.3.1. Again, the cutting insert (Sandvik 

CCMW32.51H13A) was uncoated with a 7° relief angle, 0° rake angle, and no chip-

breaker. Cutting vibration, cutting forces, and surface finish observation were used to 

distinguish stable and unstable cutting conditions for a defined grid of low spindle speed, 

chip width pairs. A process damping coefficient of  C = 2.60×105  N/m was calculated to 

best fit the grid of test points using a residual sum squared minimization for 6061-T6 

aluminum. Figure 6.14 illustrates the actual stability boundary calculated for the MDOF 

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1
x 104

Time (s)

A
cc

el
 (m

/s2 )

200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3
x 108

A
cc

el
 (m

/s2 )

Frequency (Hz)



 

92 
aluminum tests. The stability results for this test was described in detail in the experimental 

procedure in Chapter 5.3.2.   

 

Figure 6.14: Stability boundary for the MDOF system with the grid of stable (o) and 
unstable (x) cutting tests identified (C = 2.6×105 N/m) for aluminum. 

 

It is interesting to note the intersection of the stability boundary caused by the two 

vibratory modes that occurs at approximately 1200 rpm in the turning case. In fact, it is the 

higher stability boundary (corresponding to the stiffer vibration mode) that truncates the 

lower stability boundary (corresponding to less stiff mode of vibration) and determines the 

relatively large process damping coefficient value. If the lower stability boundary were not 

truncated, the process damping coefficient would be much lower and resemble the values 

obtained in single and multiple degree of freedom milling. The truncation that occurs could 

be an artifact of the stability algorithm; it is the dominant mode that needs to be considered 

when calculating the process damping value. 
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However, because the previous experiments revealed a sensitivity to tool geometry 

(i.e., relief angle and tool wear), it is uncertain if the large process damping coefficient 

value is a product of the algorithm or due to the discrepancy in the cutting insert geometry. 

To better understand this sensitivity, the MDOF milling stability tests were performed 

using the 11° relief angle coated insert, while the turning stability tests were performed 

with a 7° relief angle uncoated insert. The results of these tests are presented in the 

following section. 

6.4 Process Damping Coefficient Versatility 

A series of stability tests were conducted for single and multiple DOF milling and 

turning setups to examine the versatility of the experimental process damping coefficient. 

To avoid any effects from tool flank wear, the material chosen for each test was 6061-T6 

aluminum. Additionally, the same coated milling insert (SPEB322 KC725M) was used in 

each of the cutting tests.  

The test plan included the process damping coefficient identification for: first, the 

SDOF leaf-type flexure (fn ≈ 250 Hz), followed by a SDOF setup of much higher natural 

frequency. Previous experiments using steel workpieces showed that reducing the system’s 

natural frequency had less than a 5% change in coefficient value. Increasing the system’s 

natural frequency by greater than 200% would substantiate or refute the robustness of each 

identified process damping coefficient. Next, the same milling insert was seated in the 

MDOF turning flexure and the tubular orthogonal testing was repeated. The process 

damping value obtained was compared to the previous turning experiments using the 7° 

insert as well as the milling tests.  
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The stability testing procedure, which applied the least residual sum squared method to 

identify the process damping coefficient as described in Chapter 5, was used for the 11° 

relief insert geometry, 6061-T6 aluminum workpiece material, and parallelogram leaf-type 

flexure. The setup for this experiment is presented in Figure 6.15. Similar to the MDOF 

milling tests, the aluminum workpieces were pre-machined to have a fin geometry, to 

eliminate any nose radius effects. 

 

Figure 6.15: SDOF parallelogram leaf-type flexure for orthogonal stability testing with 
6061-T6 aluminum finned workpieces. 

 

An accelerometer was adhered to the flexure to gain insight into the stability of the 

cutting operation. The time and frequency domain signals of a stable and unstable test cut 

are illustrated in Figure 6.16. After performing test cuts over a specified grid of chip width 

- spindle speed combinations, a process damping coefficient of C = 1.80×105 N/m was 

identified, see Figure 6.17. This C value corresponds closely to value of C = 1.60×105 N/m 

for the MDOF aluminum tests with the same insert.  
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Figure 6.16: Accelerometer time domain signals of stable (top-left) and unstable (bottom-
left) cutting parameters and the accompanied frequency domain stable (top-right) and 
unstable (bottom-right) signals. 

 

 

Figure 6.17: Grid of stable ('o'), unstable ('x'), and marginally stable ('square') test points 
with the final stability boundary corresponding to C = 1.80×105 N/m. 
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To further reinforce the idea that the same process damping coefficient can be used for 

a wide range flexible cutting systems, an additional SDOF notch-type flexure was 

constructed and the same testing procedure was used to find the process damping 

coefficient. The setup for the SDOF system is depicted in Figure 6.18, with a schematic of 

the flexure in top-right of the image. The modal parameters of the higher natural frequency 

system are: fn = 815 Hz, k = 8.90×106 N/m, and ζ = 0.47%. For reference, the lower natural 

frequency system’s modal parameters for the aluminum tests were: fn = 257 Hz, k = 

5.58×106 N/m, and ζ = 1.6%. 

 

Figure 6.18: SDOF milling setup with system's natural frequency approximately fn = 815 
Hz. A schematic of the flexure is shown in the top right corner of the image. 

 

Similar to the previous SDOF freedom stability tests, an accelerometer was attached 

during the orthogonal machining of finned-aluminum workpieces. The dynamic signals in 

the time and frequency domains are illustrated in Figure 6.19. A best-fit stability 

corresponded to a process damping coefficient value of C = 1.70×105 N/m, see Figure 6.20. 
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Figure 6.19: Accelerometer time domain signals of stable (top-left) and unstable (bottom-
left) cutting parameters and the accompanied frequency domain stable (top-right) and 
unstable (bottom-right) signals for the fn = 815 Hz system. 

 

Figure 6.20: Grid of stable ('o') and unstable ('x') test points with the final stability 
boundary corresponding to C = 1.70×105 N/m. 
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Examining the tests performed thus far, it is observed that there is relatively low 

variability between systems of low and high natural frequency as well as between single 

and multiple degrees of freedom systems. To address the large discrepancy of the process 

damping coefficient between milling and turning operations, the same insert geometry used 

in the milling tests was mounted in the MDOF flexure used in the turning stability tests, 

see Figure 6.21.  

 

 

Figure 6.21: 11 degree milling insert mounted to MDOF flexible turning tool for 
orthogonal stability tests. 

 

Upon remounting the flexure as described in Chapter 5, there were noted changes in 

the system’s dynamics, see Table 6.10. Particularly, the damping ratios in the feed direction 

increased when remounting the flexure for the 11° relief angle tests. 
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Table 6.10: Feed direction modal parameters for 7° and 11° relief angle setups. 

 
Viscous damping ratio 

(%) 

Modal stiffness  

(×10
7
 N/m) 

Natural frequency 

(Hz) 

 7° relief angle setup 

Mode 1 3.56 0.85 304 

Mode 2 5.46 1.17 394 

Mode 3 0.99 2.69 1410 

 11° relief angle setup 

Mode 1 6.23 0.80 303 

Mode 2 9.01 0.96 405 

Mode 3 1.68 1.88 1433 

 

A similar grid of chip width-spindle speed combinations were tested as the original 

turning experiments and the stability was analyzed. A process damping coefficient of C 

=1.70×105 N/m was calculated to best fit the grid of test points. However, it was observed 

that the grid of stable and unstable points changed relatively little between the two tests, 

see Figure 6.22. Due to the slight changes in dynamics between the sensitive modes of 

vibration, the intersection of the stability boundaries also changes. The intersection of the 

two lower stability boundaries, which occurred at approximately 1200 rpm and 1.5 mm 

previously, now occurs near 500 rpm and 2.5 mm. The stability boundary is truncated in 

such a way that it is now the lower boundary (corresponding to the more flexible mode of 

vibration) which determines the ‘best fit’ process damping coefficient.  

It is concluded that there is a decision to make when analyzing MDOF systems. Either 

the user can fit the stability boundary while taking into consideration all modes of vibration, 

or the user can consider only the most flexible mode of vibration when calculating the 
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process damping coefficient. The former method may lead to higher, perhaps artificial, 

process damping coefficient values. The latter method of taking into consideration the most 

flexible mode of vibration has been shown to lead to process damping values which agree 

for single and multiple DOF systems in milling and turning. 

 

Figure 6.22:Grid of stable ('o') and unstable ('x') test points with the final stability 
boundary corresponding to C = 1.70×105 N/m for turning tests with 11° relief angle 
insert. 
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CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

In this research, an analytical stability solution was developed that considers process 

damping in milling and turning applications. Derivation of the model, which includes a 

single process damping coefficient, C, was presented for single and multi-degree of 

freedom systems and verification was completed using experiments. 

Accurate stability prediction at low machining speeds is sensitive to the workpiece 

material, tool geometry, and frequency of surface vibrations during cutting. Process 

damping due to flank-workpiece interference serves to increase the stability at these low 

cutting speeds. The approach used to model the process damping effect included an 

equivalent viscous damping force. This process damping force depended proportionally on 

the chip width and cutter velocity and inversely proportionally on the cutting speed. In 

addition, the damping force was proportional to a process damping coefficient, which is 

analogous to the specific cutting force, Ks, approach used to model cutting force. Due to 

the chip width and cutting speed dependence of the process damping force, the new 

stability analysis followed an iterative, converging approach to produce the stability 

boundary. The limiting chip width values were observed to increase for individual stability 

lobes as spindle speeds decreased in the process damping regime.
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For initial experiments, a single tooth indexable end mill was used to mill AISI 1018 

steel workpieces secured to a single DOF parallelogram flexure. The stability limit was 

identified over a grid of stable/unstable axial depths of cut and spindle speeds. Cutting 

stability was identified in two ways: 1) the frequency content of an accelerometer secured 

to the flexure; and 2) qualitative analysis of the machined surface using a digital 

microscope. Using the experimental stability boundary, the process damping coefficient 

was determined in a best-fit manner. The effects of the cutting insert relief angle and tool 

wear were examined. The flexure dynamics were also adjusted to determine the sensitivity 

of the process damping coefficient to changes in the system dynamics. 

For a 50% radial immersion up milling cut, the stability boundary was discovered to 

increase as the spindle speed decreased and a value for the process damping coefficient 

was obtained. Substituting the original 15° relief angle insert for an 11° relief angle insert 

and repeating the cutting tests revealed that the process damping coefficient increased by 

approximately 30%. This indicated that the decreased relief face angle increases process 

damping, as expected. Tests were also completed using both new and worn inserts. Under 

worn conditions, the process damping coefficient increased by approximately 15% 

compared to new conditions. Finally, the dynamic properties of the system were adjusted 

by increasing the mass fixed to the flexure. No appreciable change in the process damping 

coefficient was observed.  

Repeat testing was performed in order to observe the variability in the process damping 

coefficient. A total of four stability grids were evaluated using the same experimental 

conditions and a confidence interval for the stability boundary was established. Results 



 

103 
indicated acceptable repeatability in the process damping coefficient identified using the 

experimental approach. 

Process damping is particularly important for exotic metals, such as titanium, nickel 

super alloys, and hardened steels. With an established method to identify the process 

damping regime using a single coefficient, a database of process modeling coefficients was 

produced for selected hard-to-machine materials:  AISI 1018 steel, 6Al-4V titanium, AISI 

304 stainless steel, and Inconel 718. The reference tables were established to tabulate not 

only the process damping coefficient, but also the cutting force model coefficients, and 

Taylor tool-life model parameters. Process damping and cutting force parameters were 

reported for both low and moderate wear levels.  

Stability testing was completed using the single DOF parallelogram flexure to identify 

the process damping behavior for low-speed milling. Two inserted cutting tools were used 

with relief angles of 11° and 15°; the rake and helix angles were zero for both single-insert 

cutters. It was demonstrated that a reduction in the relief angle and an increase in flank 

wear on the cutting edge resulted in an increased process damping effect for each of the 

materials tested. 

The analytical MDOF turning model was validated as well using experimental testing. 

Orthogonal stability testing was completed using a custom parallelogram notch hinge 

flexible tool to cut a tubular workpiece. The cutting tool was designed to have two primary 

vibratory modes in the feed direction of the cutting process. Cutting vibration, cutting 

forces, and surface finish observation were used to distinguish stable and unstable cutting 

conditions for a defined grid of low spindle speed, chip width pairs. A process damping 

coefficient of  𝐶𝐶 = 2.6 × 105 N/m was calculated to best fit the grid of test points using a 
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residual sum squared minimization for 6061-T6 aluminum. The average specific cutting 

force was calculated at both 500 and 1000 rpm for b = 1 mm and feed rate of 0.13 mm/rev 

to be approximately Ks = 1343±32 N/mm2 and β = 55.0°. The turning experiments 

described were performed using inserts with a 7° relief angle. 

The MDOF milling model was evaluated using similar experimental testing.  Stability 

experiments were performed using a custom double-parallelogram notch hinge flexure, 

upon which a finned 6061-T6 aluminum workpiece was mounted. The flexure was 

designed to have two primary vibratory modes along the feed direction of the cutting 

process. Vibration of the flexure/workpiece system was used to determine the stability of 

the cutting process at selected spindle speed and axial depth of cut combinations.  A process 

damping coefficient of C = 1.8×105 N/m was calculated using RSS minimization to best 

fit the stability boundary. At 1000 rpm and feedrates from 0.010 to 0.076 mm/tooth, the 

specific cutting force was identified as Ks = 1368 N/mm2 with β = 50.7°. The MDOF 

milling experiments were performed with the 11° relief angle cutter described in the single 

DOF experiments. The decrease in process damping coefficient between milling and 

turning experiments could be explained as an artifact of the stability algorithm, whereby a 

truncation of the stability boundary occurs at low speeds. 

7.2 Future Work 

This work describes an analytical stability model that includes process damping for 

single and multiple DOF vibrating systems in turning and milling operations. This model 

includes contributions from the frequency response function of the vibratory system, as 

well as a process damping force, which is a function of the depth of cut, cutting surface 

speed, and an empirically-determined process damping coefficient, C. It was demonstrated 
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that the process damping coefficient and related process modeling coefficients can be 

readily and repeatedly identified using the detailed procedure. Next steps will include 

continuing the procedure for relating the C values identified here to a single-parameter 

exponential function that describes the low spindle speed stability boundary due to process 

damping (see Appendix B).   
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APPENDIX A:  ANALYTICAL SOLUTION FOR RADIAL IMMERSION PROCESS 

DAMPING 

This appendix describes a method to produce analytical radial depth of cut stability 

lobe diagrams that include process damping. The stability limit was defined using the 

radial, rather than axial, depth due to the path planning approach for many computer-aided 

manufacturing (CAM) programs, which remove material layer-by-layer with a varying 

radial immersion. Experimental validation of the predicted stability limits was performed 

and the results are presented for both the process damping (low cutting speed) range and 

higher cutting speeds. 

 Radial Depth Analytical Solution. 

The analytical solution for developing constant radial depth of cut stability lobe 

boundaries for milling is described in Chapter 4. The spindle speed versus radial depth of 

cut stability lobe diagram is produced using the following sequence of steps. 

 

1. Specify the system dynamics, tool geometry, and force model, including both the 
cutting force and process damping coefficients. 
 

2. Select the desired spindle speed range and axial depth of cut. 
 

3. Generate the spindle speed versus axial depth stability lobe diagram for the selected 
dynamic system using the smallest desired radial depth of cut. 
 

4. Use the collection of stability lobes from step 3 to identify the limiting axial depth 
of cut as a function of spindle speed. 

 
5. Determine the spindle speeds at which the limiting axial depth is equal to the 

desired axial depth from step 2. Store these {spindle speed, radial depth} pairs. 
 

6. Increment the radial depth of cut to a larger value and repeat steps 3-5. Continue 
until the radial depth is increased to the tool diameter. 
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7. Collect all {spindle speed, radial depth} pairs from steps 3-6. The result is the 

limiting radial depth of cut as a function of spindle speed. Because the axial depth 
of cut stability analysis includes process damping, the final radial depth stability 
limit also incorporates process damping effects. 

 

The procedure steps are demonstrated through an example and the corresponding 

figures. For the example, the selected spindle speed range is zero to 10000 rpm and the 

desired axial depth of cut is 3 mm. The spindle speed versus axial depth of cut stability 

lobe diagram for an up (conventional) milling radial depth of cut equal to 25% of the tool 

diameter (i.e., a 25% radial immersion) is displayed in Figure A.1. This represents the result 

from step 3. Figure A.2 shows the axial depth stability limit after step 4. The spindle speeds 

where the limiting axial depth is equal to the desired axial depth (b = 3 mm) for the final 

radial depth stability lobe diagram are identified in Figure A.3 (step 5). For comparison 

purposes, the step 5 result for a 50% radial immersion is shown in Figure A.4. It is observed 

that number of speeds is reduced with the increased radial depth because the axial depth 

stability limit is lowered. The final radial depth of cut stability lobe diagram (step 7) is 

displayed in Figure A.5. The corresponding diagram for a desired axial depth of 5 mm is 

provided in Figure A.6. As expected, the radial depth stability limit is lowered with the 

increased axial depth. 
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Figure A.1: Limiting axial depth of cut versus spindle speed for a 25% radial immersion. 

 

 

Figure A.2: Axial depth stability limit for a 25% radial immersion. 
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Figure A.3:  Axial depth stability limit for a 25% radial immersion with the b = 3 mm 
spindle speeds identified (circles). 

 

 

Figure A.4: Axial depth stability limit for a 50% radial immersion with the b = 3 mm 
spindle speeds identified (circles). 
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Figure A.5: Limiting radial depth of cut, alim, versus spindle speed for an axial depth of 3 
mm. 

 

Figure A.6:  Limiting radial depth of cut versus spindle speed for an axial depth of 5 mm. 

 

 Experimental Results for Radial Immersion Testing 

Milling experiments were performed to observe the effects of varying the radial depth 

of cut while maintaining a constant axial depth. A single tooth, 19.05 mm diameter, 
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indexable end mill was used to machine AISI 1018 steel test coupons. The cutting inserts 

had a 0° rake angle and an 11° relief angle. The specific cutting force, Ks, and cutting force 

angle, β, were measured to be 2531.0 N/mm2 and 62.0°, respectively, using a cutting force 

dynamometer (Kistler 9257B). A linear regression to the mean cutting force over a range 

of feed per tooth values was used to identify the force model values. A process damping 

coefficient of C = 1.65 x 105 N/m was determined using the procedure described in. 

A parallelogram, leaf-type flexure was constructed to provide a flexible base for the 

test coupons; see Figure A.7. The compliance of the platform in its flexible direction was 

approximately 10 times greater than that of the most flexible mode for the cutting tool-

holder-spindle-machine assembly. The modal parameters for the flexure are provided in 

Table A.1. 

 

 

Figure A.7: Photograph of milling setup. The test coupon was bolted to the flexure. An 
accelerometer was used to measure the vibration during x-direction cutting and identify 
stable and unstable conditions. 
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Table A.1: Modal parameters for the SDOF flexure setup. 

Direction 
Modal 

stiffness (N/m) 
Viscous 

damping ratio 
Natural 

frequency (Hz) 
x 6.60×106 2.1 247.2 
y 338.0×106 1.5 1214 

 

The flexure’s modal parameters, the tool geometry, and the cutting force model were 

used to generate radial depth of cut stability lobe diagrams for selected axial depths as 

described previously. To verify the stability predictions, cuts were completed at multiple 

{spindle speed, radial depth} pairs. A piezoelectric accelerometer (PCB Piezotronics 

model 352B10) was used to measure the flexure vibration during cutting. The frequency 

content of the accelerometer signal and the machined surface finish were used to 

characterize the stability. Cuts that exhibited significant frequency content near to the 

flexure’s natural frequency, rather than at the tooth passing frequency and its harmonics 

were considered unstable. A comparison of surfaces from unstable and stable cuts is 

provided in Figure A.8; the images were obtained using a portable digital microscope. 

 

 

Figure A.8: Images of surfaces for unstable (left) and stable (right) cutting conditions. 
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Figure A.9: Limiting radial depth of cut versus spindle speed for the flexure setup with a 
3 mm axial depth. 

 

Cutting tests were performed at two axial depths: 3 mm and 5 mm. In each case, a range 

of {spindle speed, radial depth} pairs were tested. Figure A.9 shows the predicted stability 

limit (•), as well as the stable (○) and unstable cuts (×). Good agreement between the 

predicted limit and experimental results is observed for both the process damping regime 

(<1000 rpm) and higher cutting speeds. Figures A.10–A.13 show the accelerometer 

frequency content at the test points labeled A through D in Figure A.9, respectively. Figure 

A.11 and A.13 demonstrate unstable cutting conditions (points B and D in Figure A.9); 

significant content is seen near the flexure’s natural frequency of 247.2 Hz in addition to 

the tooth passing frequency and its harmonics. Figure A.10 and A.12 identify stable cuts 

with content at the tooth passing frequency and its harmonics only (points A and C). 
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Figure A.10: Frequency content for a stable cut at a spindle speed of 3600 rpm, a radial 
depth of 5 mm, and an axial depth of 3 mm. 

 

Figure A.11: Frequency content for an unstable cut at a spindle speed of 2675 rpm, a 
radial depth of 4 mm, and an axial depth of 3 mm. 
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Figure A.12: Frequency content for a stable cut at a spindle speed of 300 rpm, a radial 
depth of 10 mm, and an axial depth of 3 mm. 

 

 

Figure A.13: Frequency content for an unstable cut at a spindle speed of 500 rpm, a radial 
depth of 10 mm, and an axial depth of 3 mm. Note the change in vertical scale relative to 
Figures A.10-A.12. 
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Figure A.14: Limiting radial depth of cut versus spindle speed for the flexure setup with a 
5 mm axial depth. 

 

Figure A.14 displays the predicted stability limit and experimental results for an axial 

depth of 5 mm. The increase in axial depth yields a decrease in the allowable radial depth 

relative to Figure A.9 (3 mm axial depth). Good agreement is again observed between the 

prediction and experimental results. Figures A.15 and A.18 show the frequency content for 

the points labeled A through D in Figure A.14. Points A and C (Figures A.15 and A.17) 

represent stable cuts, while points B and D (Figures A.16 and A.18) represent unstable 

cuts. 
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Figure A.15: Frequency content for a stable cut at a spindle speed of 3500 rpm, a radial 
depth of 3 mm, and an axial depth of 5 mm. 

 

 

Figure A.16: Frequency content for an unstable cut at a spindle speed of 3250 rpm, a 
radial depth of 3 mm, and an axial depth of 3 mm. 
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Figure A.17: Frequency content for a stable cut at a spindle speed of 300 rpm, a radial 
depth of 6 mm, and an axial depth of 5 mm. 

 

 

Figure A.18: Frequency content for an unstable cut at a spindle speed of 500 rpm, a radial 
depth of 6 mm, and an axial depth of 5 mm. Note the change in vertical scale relative to 
Figs. A.15-A.17. 
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 Radial Immersion Tests Conclusions 

Radial depth of cut stability lobe diagrams were produced and verified experimentally. 

The motivation for describing the stability limit as radial, rather than axial, depth is the 

format for many CAM programs, which remove material layer-by-layer with a varying 

radial immersion. The analytical milling stability solution applied to identify the stability 

lobe diagrams included process damping, where the process damping model relied on a 

single coefficient, C. This is analogous to the specific cutting force, Ks, approach to 

modeling cutting force. Process damping is particularly important for hard-to-machine 

materials, such as titanium, nickel super alloys, and hardened steels. In these instances, tool 

wear generally prohibits higher surface speeds and the use of the large stable zones 

available at high spindle speeds. 
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APPENDIX B: SUPPLEMENTARY PROCESS DAMPING MODEL 

A supplementary parameter is proposed that enables the traditional analytical stability 

model to be augmented to incorporate the process damping stability increase observed at 

low cutting speeds. 

As described previously, process damping can be described as an interference 

phenomenon between the relief face of the tool and the machined surface. As the 

wavelength of the surface undulations decreases for a fixed amplitude, the likelihood of 

energy dissipation through this interference increases. Therefore, the process damping 

phenomenon can be modeled as a function of a parameter which is analogous to the 

vibration wavelength, where a shorter ‘wavelength’ gives increased stability. In this study, 

the functional form: 

 

 Λ = 𝑏𝑏lim,cr𝑒𝑒1 (Ω𝜆𝜆)2⁄  (75) 

was selected, where Λ defines the process damping behavior, bcr is the critical (asymptotic) 

stability limit from the traditional stability analysis, Ω, the spindle speed, is expressed in 

rpm, and 𝜆𝜆 is the supplementary process damping parameter (in m). Note that Λ takes the 

units of blim,cr. Figure B.1 shows the process damping stability limit and Λ for 50% radial 

immersion, 15° relief angle, low wear up milling tests in 1018 steel (C = 1.25×105 N/m, 𝜆𝜆 

= 2.2×10-3 m). For the traditional stability analysis that does not include process damping, 

𝜆𝜆 could be superimposed on the stability limit to identify the new, low cutting speed 

stability boundary. Each 𝜆𝜆 was selected based on the minimum residual sum of squares 

(RSS) between the blim,cr curve that includes process damping and Λ.  
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Figure B.1: Stability boundary for 50% radial immersion, 15° relief angle, low wear up 
milling tests in 1018 steel (C = 1.3×105 N/m) with multiplier, Λ (𝜆𝜆 = 2.2×10-3 m). 

 

An equivalent process damping parameter, 𝜆𝜆, can be identified for each of the process 

damping coefficients identified in the process model database, as shown in Table 

B.1andTable B.2. It has been demonstrated that the process damping coefficient, C, is 

relatively insensitive to changes in dynamics. To ascertain whether this equivalent process 

damping parameter, 𝜆𝜆, shares the same characteristics, a series of virtual experiments were 

conducted to observe any variability in 𝜆𝜆 as the dynamics of the cutting system are changed. 
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Table B.1: Process damping parameters, λ, for the 11° relief angle tool geometry. 

 Process damping parameter, 𝜆𝜆 (mm) 
Material Low insert wear  

(FWW < 0.100 µm) 
Moderate insert wear  

(0.150 µm < FWW < 0.250 µm) 
1018 Steel 1.8 1.5 
Ti 6Al-4V 1.0 0.86 

304 SS 0.47 0.44 
Inconel 718 2.2 2.0 

6061 Al 1.5 N/A 
 

Table B.2: Process damping parameters, λ, for the 15° relief angle tool geometry. 

 Process damping pavelength, 𝜆𝜆 (mm) 
Material Low insert wear  

(FWW < 0.100 µm) 
Moderate insert wear  

(0.150 µm < FWW < 0.250 µm) 
1018 Steel 2.2 1.9 
Ti 6Al-4V 1.5 1.0 

304 SS 0.62 0.55 
Inconel 718 2.5 2.2 

 

The process begins with the modal and force parameters determined for cutting AISI 

1018 steel on the parallel leaf-type flexure. The parameters for obtaining the stability 

boundary are provided in Table B. 3: Process parameters for determining process damping 

parameter,  𝜆𝜆, sensitivity. Each study was performed using a single tooth (Nt = 1) and 50% 

radial immersion up milling operation. 

 

Table B. 3: Process parameters for determining process damping parameter,  𝜆𝜆, sensitivity. 

k (N/m) fn (Hz) ζ (%) Ks (N/mm2) β (deg) C (N/m) 

2.77×106 229 6.3 2359.1 63.5 1.3×105 

 

The sensitivity of the process damping parameter, 𝜆𝜆, was evaluated by selectively 

changing one of the modal parameters over a range of values while the other remained 

unchanged. The variables and range over which they were changed are provided in Table 
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B.4. The following will discuss the trends and effects changing each modal parameter has 

on 𝜆𝜆. 

Table B.4: Range of modal parameters for λ sensitivity study. 

Modal parameter Minimum  Maximum Step size 

k (N/m) 1.0×106 4.0×106 0.1×106 

fn (Hz) 100 900 25 

ζ (%)  1.5 7.0 0.5 

 

While keeping all parameters constant, the value of λ was calculated while varying the 

modal stiffness, k, over the range of values specified in Table B.4 and the values of λ that 

which best fit the stability boundaries are plotted versus the modal stiffness. From Figure 

B.2, there is no apparent trend as the stiffness of the system is changed over a relatively 

large range of values. 

 

 

Figure B.2: Change in λ as a function of modal stiffness, k. 

1 1.5 2 2.5 3 3.5 4
x 106

2

2.05

2.1

2.15

2.2

2.25

Stiffness, k (N/m)

λ 
(m

m
)



 

127 
 

The process was repeated for the natural frequency (fn) values specified in Table B.4. 

Here, a strong power law trend in λ is observed for increasing values of fn as shown in 

Figure B.3. The trend follows the expression: 𝜆𝜆(𝑓𝑓𝑛𝑛) = 𝑚𝑚(𝑓𝑓𝑛𝑛)𝑏𝑏, where a = 544 and b = -

1.017 with R2 = 0.99. To illustrate this effect, Figure B.4 and Figure B.5 represent the 

stability boundaries for the highest and lowest natural frequency values. It is observed that, 

as the system’s natural frequency increases, the stability lobes shift toward the right and 

increasing spindle speed. With the same process damping coefficient, C, value, the process 

damping regime to the left of the stability boundary increases. This, in turn, leads to 

decreased values of λ which best fit the boundary. 

,  

Figure B.3: Trend in λ as a function of natural frequency fn. 
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Figure B.4: Initial Stability boundary for 50% radial immersion, milling for 1018 steel (C 
= 1.3×105 N/m) with multiplier, Λ (𝜆𝜆 = 5.00×10-3 m) and fn = 100 Hz. 

 

 

Figure B.5: Final Stability boundary for 50% radial immersion, milling for 1018 steel (C = 
1.3×105 N/m) with multiplier, Λ (λ = 0.57×10-3 m) and fn = 900 Hz. 
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In [2], Tlusty analyzes the process damping effect with a plot of blim versus cutting 

velocity for mild carbon steels for varying natural frequency systems. In Figure B.6, the 

process damping effect is shown to increase with increase in the system’s natural 

frequency. As a comparison, the augmented Λ stability boundary is plotted versus the 

cutting velocity in Figure B.7 for the range of natural frequencies tested. In general, the 

trend of increasing process damping with increase in natural frequency is consistent. 

Recall, that each of the boundaries shown are captured with the same process damping 

coefficient, C. 

 

 

Figure B.6: Low cutting speed process damping effects with varying system natural 
frequency for mild steel, Tlusty [2]. 
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Figure B.7: Augmented stability boundary blim (mm) versus V (m/min) for fn = 100, 200, 
500, and 1000 Hz. 

 

Finally, the damping ratio was varied while the modal stiffness and natural frequency 

were returned to the original values in Table B.3. As shown in Figure B.7, there is a strong 

linear decrease in λ as ζ is increased from 1% to 7%. The linear trend follows the 

expression: 𝜆𝜆(𝜁𝜁) =  𝑚𝑚𝜁𝜁 + 𝑏𝑏, where a = -6.61 (mm)  and b = 2.59 (mm) with R2 = 0.98. It 

should be noted that, when increasing the system’s natural frequency, the decrease in λ was 

nearly 90% of the original value, while the percent change in λ that is observed when 

increasing the damping ratio is only approximately 15%. It may then be concluded that 

changes in the system’s natural frequency have a predominant effect when determining the 

equivalent process damping parameter, λ.  
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Figure B.8: Trend in λ as a function of damping ratio, ζ. 
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