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ABSTRACT

Linkage studies of complex traits frequently yield
multiple linkage regions covering hundreds of
genes. Testing each candidate gene from every
region is prohibitively expensive and computational
methods that simplify this process would benefit
genetic research. We present a new method based
on commonality of functional annotation (CFA) that
aids dissection of complex traits for which multiple
causal genes act in a single pathway or process.
CFA works by testing individual Gene Ontology (GO)
terms for enrichment among candidate gene pools,
performs multiple hypothesis testing adjustment
using an estimate of independent tests based on
correlation of GO terms, and then scores and
ranks genes annotated with significantly-enriched
terms based on the number of quantitative trait
loci regions in which genes bearing those annota-
tions appear. We evaluate CFA using simulated
linkage data and show that CFA has good
power despite being conservative. We apply CFA
to published linkage studies investigating age-
of-onset of Alzheimer’s disease and body mass
index and obtain previously known and new candi-
date genes. CFA provides a new tool for studies in
which causal genes are expected to participate in a
common pathway or process and can easily be
extended to utilize annotation schemes in addition
to the GO.

INTRODUCTION

Analysis of Mendelian traits is characterized by pheno-
types being highly informative about the underlying
genotypes (1). In contrast, analysis of complex traits is
characterized by phenotypes being uninformative about
the underlying genotypes (1). Complex traits are typically
weakly correlated to many genes or chromosomal regions
distributed across the genome. If a trait is quantitatively
measured, regions of the genome containing genetic
variation that influences the quantitative trait being
considered are called quantitative trait loci (QTL). One
limitation of linkage analysis is that its resolution is
generally low, such that potentially hundreds of genes may
be contained within a single QTL. Narrowing the list
of positional candidate genes via comprehensive wet-lab
experimentation is often prohibitively laborious and
expensive.
If multiple genes correlate to the same trait, then it is

reasonable to hypothesize that those genes are more likely
to share one or more annotations compared with genes
not correlated to that trait (2). If the hypothesis is correct,
then one way to narrow a list of candidate genes resulting
from a genome-wide linkage study is to search for
annotations that are enriched among the candidate genes
relative to randomly sampled genes and then prioritize
candidate genes on the basis of those annotations. The
benefit is a reduced amount of wet-lab experimentation
required to identify causal genes. In the past few years,
several groups have published bioinformatic methods
for narrowing lists of candidate genes using a variety of
gene annotations, such as gene length, expression profiles
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and patterns of gene duplication (3). If the hypothesis
is incorrect, so long as the prioritization procedure
does not result in the removal of any genes from the
list or introduce misinformation, then there is minimal
cost.
In this study, we used a statistical bioinformatic

approach based on Gene Ontology (GO) annotation
(4) to prioritize candidate genes from multiple QTL. The
GO is a controlled vocabulary of terms that are organized
in parent-child relationships, in which each term may have
one or more parent terms. All terms ultimately descend
from one of three roots: molecular function, cellular
component, or biological process. These roots and their
descendent child terms represent three different ways of
categorizing knowledge about genes and gene products:
(i) their known or predicted molecular function (e.g. type
of biochemical activity), (ii) cellular locale (e.g. nucleus),
or (iii) their biological role (e.g. transcription, learning
and memory). A given gene, depending on the level of
knowledge about it, can be annotated with terms from any
of these three parts of the GO, which are also sometimes
called sub-ontologies.
The GO has been used extensively in recent years as a

way to mine large data sets obtained from genome-scale
experiments. The typical approach has been to determine
which GO terms are enriched among a given group of
‘interesting genes’, such as a list of differentially expressed
genes obtained from an expression microarray experiment
[see the review (5)]. Enriched GO terms serve as a
description of molecular functions, cellular components,
or biological processes that are most relevant to the trait
under investigation.
Enrichment of GO terms for a list of genes is commonly

evaluated using Fisher’s exact test (5,6), which is based on
the hypergeometric distribution for sampling without
replacement (7). One limitation of this approach, however,
is that terms are tested one at a time, ignoring the
relationships between terms. As a result, subsequent
corrections for multiple hypothesis testing tend to be too
extreme, since tests of highly correlated terms (e.g. parents
and their children) are incorrectly treated as independent.
Another issue is that although the three sub-ontologies are
structurally disjoint, terms both within and between sub-
ontologies may be further correlated due to the fact that
genes may be annotated by many terms from any of the
three sub-ontologies simultaneously. To account for both
sources of correlation, we developed a method that
achieves dimension reduction, through principal compo-
nents analysis, of the correlation structure across all
GO terms in conjunction with testing for enrichment of
GO terms. We then applied this method to the task of
candidate gene identification and implemented a novel
scoring scheme for prioritizing all candidate genes under
each of any arbitrary number of QTL. We named this
method Commonality of Functional Annotation (CFA).
We assessed the false positive error rate and power
of CFA through simulation. Finally, we applied CFA to
real data sets for two quantitative, complex human traits:
(i) for age-of-onset of Alzheimer’s disease and (ii) for body
mass index (BMI).

MATERIALS AND METHODS

Materials

For the data set for Alzheimer’s disease, we considered a
set of three QTL shown in Table 1. The quantitative trait
was age-of-onset and none of the three QTL was specific
for early- versus late-onset disease (8). For the data set for
BMI, we performed a PubMed search to identify genome-
wide linkage scans in humans. BMI is an anthropometric
measure defined as weight in kilograms divided by the
square of height in meters. BMI is thus a continuous
measure and can be used as a quantitative trait. A BMI
from 25 to 30 kg/m2 refers to overweight and a BMI in
excess of 30 kg/m2 refers to obese (http://win.niddk.nih.
gov/publications/glossary/AthruL.htm). The compiled list
of 18 QTL for BMI (9–18) is displayed in Table 2.

Methods

Figure 1 depicts the flow of data through the CFA
procedure. A collection of Python scripts, R code, data
files and documentation is freely available at http://
www.transvar.org/candi_gene. The details of each step
are described below.

Collecting genes and GO annotations. We obtained the
genomic coordinates for each marker from the primary
reference or from the International HapMap Project
(http://www.hapmap.org). If provided in the primary
reference, we used the stated confidence intervals to
determine genomic coordinates for QTL. If a confidence

Table 1. QTL analyzed for Alzheimer’s disease

Chromosome Nucleotide start Nucleotide end Reference

6q27 136356912 156040884 (8)
11q25 119605730 134256682 (8)
14q22 35284307 77866250 (8)

Table 2. QTL analyzed for body mass index

Chromosome Nucleotide start Nucleotide end Reference

1p36 1 13368006 (18)
1p22 81686191 101686191 (17)
2q14 114345119 134345119 (18)
3q22 138413583 158413583 (17)
3q27 167105819 187105819 (16)
4q12 47597526 67597526 (18)
5q12 56263229 76263229 (14)
5q32 135232609 155232609 (14)
6p25 765305 12968512 (15)
6q23-25 137282655 162104889 (12)
7p21 18028844 27780107 (15)
7q32 121695999 141695999 (13)
10p11 18725142 31684305 (14)
11q14 117235383 128161860 (12)
13q14 42330695 62330695 (13)
16p11-12 23004204 26125659 (11)
19q13 50237821 70237821 (10)
20q13 28737193 48737193 (9)
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interval was not provided, we assumed that the interval
spanned �10 Mb centered on the marker. Assuming that
1Mb corresponds to 1 cM, this width corresponds to a
confidence interval of �10 cM (19). This parameter is user-
definable for use with any data set. We then used the
UCSC Genome Informatics DAS/1 server (http://genome.
ucsc.edu) [NCBI B35 assembly (20)] to retrieve GenBank
accessions for mRNAs mapping to each QTL. A list of
unique Entrez Gene ids corresponding to the retrieved
mRNA accessions (a many-to-one mapping) was gener-
ated using the 9 May 2006 release of the gene2accession
file available from the NCBI Entrez Gene ftp site (ftp://
ftp.ncbi.nlm.nih.gov/gene). All GO annotations for
unique Entrez Gene ids (a one-to-many mapping) were
retrieved from the 9 May 2006 release of the gene2go file,
also available from the NCBI Entrez Gene ftp site (ftp://
ftp.ncbi.nlm.nih.gov/gene).

Constructing a genome-wide GO term correlation
matrix. The gene2go file release used in this study
included 5147 GO terms annotating 16 114 Homo sapiens
genes. For each term, we recorded the number of unique
Entrez Gene ids annotated with that term. Let fi represent
the count of genes annotated by the i-th term and let
pi ¼ fi=n with n=16114 genes. Then, for each pair of GO
terms, we recorded the number of genes annotated with
both of those terms. Let fij represent the count of genes
annotated by both the i-th and j-th terms, for i 6¼ j. We
built a genome-wide correlation matrix R of dimensions
n� n from these counts using the Pearson correlation
coefficient for binomially distributed data, also known
as the phi coefficient (http://www.visualstatistics.net/
Visual%20Statistics%20Multimedia/crosstabulation.
htm), defined as

rij ¼
pij � pipjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pið1� pjÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pjð1� pjÞ
p :

To illustrate, consider GO:0005634 and GO:0003700,
which represent the cellular component ‘nucleus’ and
molecular function ‘transcription factor activity’, respec-
tively. The number of unique Entrez Gene ids annotated
with ‘nucleus’ is f1=3701, the number of unique Entrez
Gene ids annotated with ‘transcription factor activity’ is
f2=890 and the number of unique Entrez Gene ids
annotated with both ‘nucleus’ and ‘transcription factor
activity’ is f12=868. Using n=16114, the phi coefficient
between ‘nucleus’ and ‘transcription factor activity’ is
rij=0.429.
Additionally, conditional probabilities can be used to

demonstrate that there is a relationship between terms that
belong to disjoint sub-ontologies. For example, the
conditional probability of a gene being annotated with
‘nucleus’, given that the gene is annotated with ‘transcrip-
tion factor activity’, is pr(p1/p2)=0.975. Similarly, the
conditional probability of a gene being annotated with
‘transcription factor activity’, given that the gene is
annotated with ‘nucleus’, is pr(p1/p2)=0.234. Thus, there
is strong correlation between these two terms even though
they belong to disjoint sub-ontologies.

Testing for GO term enrichment. Consider the union of all
K genes and L terms over all QTL linked to a trait. Table 3
shows the set-up for testing GO terms for enrichment. Let
A represent the observed count of genes in the list
annotated by a GO term. Let A+B represent the total
count of genes annotated by a GO term among all genes.

Figure 1. Workflow diagram. The flow of data from each step is
schematically depicted. The genome-wide correlation matrix is com-
puted for all GO terms and saved for subsequent analysis with different
data sets. Genes overlapping with QTL regions and their associated
GO annotations are obtained from the UCSC Genome Informatics
DAS/1 server and the Entrez Gene database, respectively. For each
data set, a study-specific correlation matrix is blocked from the
genome-wide correlation matrix. Genes from each QTL are combined
to form a study-wide gene list and each term is then tested for over-
representation using Fisher’s exact test. The effective number of
independent tests is estimated using Velicer’s minimum average partial
test, and P-values obtained are adjusted upward based on the effective
number of independent tests. Genes are then scored using weights
computed from principal components of the study-specific correlation
matrix and the number of QTL containing genes with enriched
annotations. Rectangles indicate products of data processing and
cylinders indicate databases.

Table 3. 2� 2 Table for Fisher’s exact test for enrichment of a Gene

Ontology term

Gene in list Gene not
in list

Total

Gene annotated
with term

A B A+B

Gene not annotated
with term

C D C+D

Total A+C B+D A+B+C+D
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Let K=A+C represent the total number of genes in the
list. Let A+B+C+D represent the total number of
genes, which is also given by n=16114. Enrichment for
the GO term was determined using a one-tailed Fisher’s
exact test.

Adjusting for multiple, correlated tests. A popular method
for controlling the false positive error rate among m
independent tests is the full Bonferroni correction, which
involves decreasing the per comparison significance level
from � to �/m. If the tests are correlated, then a partial
Bonferroni correction is more appropriate, with the
correction being some value smaller than m. Since tests
of GO term enrichment are correlated, a partial
Bonferroni correction is more appropriate than a full
Bonferroni correction.
To determine an appropriate correction factor for

multiple tests in the presence of correlation, we first
partitioned the genome-wide correlation matrix as

R ¼
R1 R2

R3 R4

� �
,

in which R1 is an L�L block corresponding to the L
observed GO terms relevant to the data set being
analyzed. Then, we performed Velicer’s minimum average
partial (MAP) test on R1 to estimate the number of
principal components that should be retained (21,22).
Briefly, Velicer’s MAP test involves partialling out
principal components from the correlation matrix and
computing the average squared partial correlation (22).
The number of retained principal components minimizes
the average squared partial correlation (22). Since each
principal component is associated with one eigenvector,
and eigenvectors are orthogonal, we equated the number
of retained principal components to the effective number
of independent tests and all P-values were multiplied by
this value. If all principal components were retained, then
the partial and full Bonferroni corrections were identical.
If only some principal components were retained, then the
partial Bonferroni correction was smaller than the full
Bonferroni correction, allowing for more rejections and
retaining more power. The criterion for declaring a test
for enrichment significant was that the adjusted P-value
be <0.05.

Scoring genes. Let M represent a binary incidence matrix
of k=1,2, . . .,K rows (genes) and l=1,2,. . .,L columns
(GO terms). Values in the incidence matrix are

Mkl ¼

1 if gene k annotated with

significantly enriched GO term l

0 otherwise

8><
>: :

Let P represent the L�L matrix of orthonormalized
eigenvectors calculated from the L�L correlation matrix
R1. Eigenvectors are used to model the correlation among
GO terms so that redundant information represented by
correlated GO terms is not double-counted in the score for
a given gene. Let w represent a L� 1 vector of weights, in
which weights were assigned to each term by counting the

number of QTL in which that term annotated at least one
gene. A K� 1 vector of weighted scores was calculated as
s=MPw. For the list of genes under a QTL, scores were
ranked and the top ranked gene (or genes, in the case of
ties) was considered to be the prioritized candidate gene
for that QTL. This weighting scheme yields higher scores
for enriched GO terms associated with multiple QTL.
This scheme is based on the assumption that the
recurrence of a significantly enriched GO term, with
respect to multiple QTL, increases our belief that
concluding significant enrichment for that particular GO
term reflects a true positive result.

Assessment of the false positive error rate. To assess the
false positive error rate for GO term enrichment, we
simulated data under the null hypothesis that a GO term
annotates genes contained in the QTL as often as it
annotates genes not in the QTL. To randomly generate a
QTL, we randomly sampled a genomic position, using
probabilities proportional to chromosome length, and
defined the QTL as the interval covering 20Mb centered
on that position. The false positive error rate was defined
as the percent of GO terms that were determined to be
significantly enriched. We simulated data sets of two sizes,
one containing three non-overlapping QTL and one
containing six non-overlapping QTL. For both sizes, we
generated 100 independent replicates (i.e. data sets).

Assessment of power. To assess power, we simulated data
under the alternative hypothesis. Under the alternative
hypothesis, a GO term annotates genes in the QTL more
often that it annotates genes not in the QTL. To simulate
data under this alternative hypothesis, we randomly
sampled a GO term that annotated at least as many
genes as QTL we were simulating and then randomly
sampled genes annotated by that term. These genes were
treated as quantitative trait genes and were used to seed
the QTL. We then defined a QTL as the interval
containing 20Mb centered on the quantitative trait gene.
We simulated data sets of two sizes, one containing
three non-overlapping QTL and one containing six non-
overlapping QTL. For both sizes, we generated 100
independent replicates. We defined power as the percent
of replicates for which the true GO term was determined
to be significantly enriched at an experiment-wide
significance level �=5.0%.

Fold-enrichment. Consider a QTL containing N total
genes. In the absence of any information with which to
prioritize genes within the QTL, genes can be arbitrarily
ranked from 1 (highest) to N (lowest). Let ug represent the
rank of the g-th gene, g=1,2,. . .,N. The average rank for
a gene is �u ¼ Nþ 1ð Þ=2. In the presence of information
with which to prioritize genes within the QTL, causal
genes should move toward the top of the list. We defined
fold-enrichment (FE) for the g-th gene in the QTL as the
average rank of a gene before prioritization divided by the
rank of the g-th gene after prioritization,

FEg ¼
�u

ug
:
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Plausibility analysis. Some GO terms that CFA identified
as significantly enriched for a particular data set may have
been previously associated with the relevant phenotype.
To test the biological plausibility of the GO terms
identified as significantly enriched, we assessed the
co-occurrence of those terms in both the Entrez Gene
and Online Mendelian Inheritance in Man (OMIM,
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=
OMIM) databases. First, we searched the current records
in Entrez Gene using the phenotype, GO term and
organism. An example of such a query was ‘Alzheimer’s
and ‘‘membrane’’ [GO] and Homo sapiens’. We recorded
all unique genes returned by this query. We repeated this
search using all significantly enriched GO terms for a
phenotype and compiled all genes into a single list. For
each gene in this list, we reviewed its corresponding record
in OMIM and searched for the occurrence of the relevant
phenotype in the gene’s description. The proportion of
genes in OMIM associated with the phenotype among the
genes in Entrez Gene also associated with the phenotype
provides a measure of consistency across the two
databases.

RESULTS

Characterization of the genome-wide GO term
correlation matrix

In the 9 May 2006 release of the gene2go file, there were
16 114 unique human genes annotated by 5147 distinct
GO terms. Annotations included 2308 molecular function
terms, 548 cellular component terms and 2291 biological
process terms. Among all pairs of GO terms, 99.27% of
the correlation coefficients were negative and 0.73% were
positive. This result indicated that for the vast majority of
pairs of GO terms, explicit co-annotation with multiple
terms is very uncommon.

The smallest correlation coefficient was �0.287 and the
largest correlation coefficient was 1. Figure 2 shows the
distribution of correlation coefficients larger than 0.2.
Annotation guidelines published on the GO web site
advise annotators to consider the GO True Path rule when
assigning annotations to gene products. Because annota-
tion with a child term implies annotation by all parental
terms, GO annotations for a given genome should not
include examples of co-annotation by parents and their
descendents. We counted 576 correlation coefficients equal
to one for pairs of terms within the same sub-ontology.
Only seven of these correlation coefficients involved terms
in ancestor-descendent relationships. Among all correla-
tion coefficients larger than 0.2 for pairs of terms within
the same sub-ontology, 6.6% involved terms in ancestor-
descendent relationships.

There were more correlation coefficients larger than 0.2
between terms between sub-ontologies, which was surpris-
ing given disjoint sub-ontologies. A total of 515 correlation
coefficients between terms between sub-ontologies were
one. By definition, none of these correlation coefficients
involved terms in ancestor-descendent relationships.
Hence, �97% of large, positive correlation coeffici-
ents did not reflect ancestor-descendent relationships.

Furthermore, these results indicated that 1091 GO terms
were redundant, in the sense that annotation with one term
implied annotation by the other in this vocabulary.

Assessment of the false positive error rate

To assess the validity of CFA, we generated data sets
under the null hypothesis of no significant enrichment of
GO terms. To generate a data set under the null
hypothesis, we randomly sampled a nucleotide position
from a randomly sampled chromosome. A QTL was
defined as the 20Mb region centered on the nucleotide
position. To match the size of the Alzheimer’s data set, we
generated three QTL per simulated data set. We repeated
this process to randomly generate 100 simulated data sets.
On average, a data set contained 275 genes annotated by a
total of 554 distinct GO terms.
We then assessed how many GO terms were declared

significantly enriched by the CFA method. Since data were
simulated under the null hypothesis, any finding of
significant enrichment represents a false positive finding.
Using a full Bonferroni correction (assuming indepen-
dence among tests), the false positive error rate for
enriched GO terms was 0.93%. Using a partial
Bonferroni correction (accounting for correlated tests),
the false positive error rate for enriched GO terms was
2.0%. Both of these false positive error rates were smaller
than the experiment-wide significance level �=5.0%,
indicating that there were too few rejections of the null
hypothesis. Thus, both the full and partial Bonferroni
corrections for multiple tests were conservative.
Furthermore, the partial Bonferroni correction was less
conservative than the full Bonferroni correction.
We then assessed how CFA behaves with larger data

sets. We considered two approaches to increase the size of
data sets: (i) increase the size of QTL or (ii) increase the
number of QTL. To a wet-lab experimentalist, a larger

Figure 2. Distributions of positive correlation coefficients. (A)
Correlation coefficients >0.2 for term pairs in which both terms
belong to the same sub-ontology. (B) Correlation coefficients >0.2 for
term pairs in which the terms belong to different sub-ontologies.
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QTL implies a loss of mapping resolution and is less
likely to occur in studies utilizing whole-genome, high-
throughput tools such as array- or bead-based SNP
assays. On the other hand, the latter approach of
increasing the number of QTL is more consistent with
the genetics underlying complex traits, which are typically
associated with multiple QTL. We therefore chose to
implement the latter approach by doubling the number of
simulated QTL per data set. We randomly generated 100
data sets, with each data set consisting of six randomly
generated, unlinked QTL. Each QTL was 20Mb long.
On average, each data set contained 525 genes annotated
by a total of 848 distinct GO terms. The false positive
error rates using the full and partial Bonferroni correc-
tions were 0.67 and 1.3%, respectively. These results
indicated that both the full and partial Bonferroni
corrections became increasingly conservative with larger
data sets (i.e. as the number of tests increased) and that the
partial Bonferroni correction remained less conservative
than the full Bonferroni correction.

Assessment of power

In order to assess the power of CFA, we generated data
sets under the alternative hypothesis of significant enrich-
ment of GO terms among putative causal genes. To
generate a data set under the alternative hypothesis, we
first randomly sampled one GO term from all GO terms
from the human annotation set. Then, we randomly
sampled three genes annotated by that GO term to
represent causal genes. As before, QTL were defined as
20Mb regions centered on those genes. We repeated this
process to randomly generate 100 simulated data sets for
100 randomly selected terms. We found that the randomly
sampled GO term was significantly enriched in 71% of the
simulations; that is, CFA successfully detected a true
pattern of enrichment among genes under the three
simulated QTL with 71% power.
We further assessed the ability of CFA to identify a

causal gene among all genes within a QTL. CFA scores
each gene in a QTL based on annotation by significantly
enriched GO terms. Genes can be prioritized by ranking
these scores. Based on rankings, the average enrichment
was �12-fold across all replicates, that is, the average
number of genes that would have to be experimentally
tested before the causal gene was found was reduced
�12-fold. This corresponded to causal genes being among
the top 23% of ranked candidates, on average. One of the
causal genes was the top-ranked gene in 14% of all
simulated QTL sets. Conditional on the true GO term
being significantly enriched, the average enrichment
increased to �15-fold. This corresponded to causal genes
being among the top 13% of ranked candidates, on
average.
To assess the effect of larger data sets on power, we

again doubled the number of simulated QTL per data set.
We randomly sampled one GO term from all GO terms
from the human annotation set and then we randomly
sampled six genes annotated by that GO term to represent
causal genes. QTL were defined as 20Mb regions centered
on those genes. We repeated this process to randomly

generate 100 simulated data sets. The randomly sampled
GO term was significantly enriched in 78% of the
simulations. This result indicated that power increased
with more information represented by sharing a GO term
across more QTL, despite the increased conservativeness
of controlling the false positive error rate when perform-
ing more tests in larger data sets. The average enrichment
was �13-fold across all replicates. This corresponded to
causal genes being among the top 22% of ranked
candidates, on average. The causal gene was the top-
ranked gene in 17% of all QTL. Conditional on the true
GO term being significantly enriched, the average enrich-
ment increased to �15-fold. This corresponded to causal
genes being among the top 16% of ranked candidates, on
average. Assuming that all causal genes exposed in
multiple QTL conform to the expectation that they
share some common annotation, these results demonstrate
that CFA gains power as the number of QTL increases
and therefore will work best with traits associated with
greater numbers of QTL.

Application to QTL linked to Alzheimer’s disease

We next applied the CFA method to an analysis of three
QTL for age-of-onset of Alzheimer’s disease (Table 1).
These three QTL covered 449 genes, of which 341 were
annotated by 629 GO terms; the remaining 108 genes were
not annotated. Velicer’s MAP test (22) performed on the
correlation matrix for the 629 GO terms indicated that
only 50 principal components were required to minimize
the average squared partial correlation. We therefore
adjusted the P-values from the 629 Fisher’s exact tests
using a partial Bonferroni correction for 50 tests. Of the
629 GO terms, 11 had adjusted P-values <0.05 and were
therefore considered to be significantly enriched (Table 4).
These 11 terms range from general to more specific
annotations, spanning six levels of the GO hierarchies.
Table S1 presents the list of 341 Alzheimer’s candidate
genes, sorted by QTL, and ranked by score within
each QTL.

The QTL at chromosome 6q27 illustrates the correlation
of terms between sub-ontologies in this data set. The 11
significantly enriched terms included the biological process
‘antigen presentation’, the molecular function ‘MHC
class I receptor activity’, and the cellular component

Table 4. Significantly enriched Gene Ontology terms for Alzheimer’s

disease

Term Adjusted P-value

MHC class I protein complex 0.0017
Antigen presentation 0.0020
MHC class I receptor activity 0.0057
Integral to membrane 0.0080
Olfactory receptor activity 0.0081
Sensory perception of smell 0.0087
Palmitoyl-CoA hydrolase activity 0.0090
Estrogen receptor activity 0.0223
Photoreceptor cell maintenance 0.0223
Endoplasmic reticulum 0.0321
Membrane 0.0398
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‘MHC class I protein complex’. Each of these three terms
annotated each of six genes located at chromosome 6q27,
including: retinoic acid early transcript 1E (RAET1E),
retinoic acid early transcript 1G (RAET1G), retinoic acid
early transcript 1L (RAET1L), the top-scoring gene in this
QTL (Table S1) UL16 binding protein 1 (ULBP1, also
known as RAET1I), UL16 binding protein 2 (ULBP2, also
known as RAET1H) and UL16-binding protein 3
(ULBP3, also known as RAET1N).

The QTL at chromosome 11q25 was notable for
containing many members of a multi-gene family encod-
ing odorant receptors. Eighteen odorant receptor genes
were tied for the top score, and two additional odorant
receptor genes were tied for the second highest score
(Table S1). No genes in the other two QTL were
annotated with the molecular function ‘odorant receptor
activity’ or the biological process ‘sensory perception of
smell’, suggesting that significant enrichment of these two
correlated terms may reflect gene duplication within this
one QTL. An alternative candidate, SORL1 directs
trafficking of amyloid precursor protein into recycling
pathways and has recently been reported to be associated
with late-onset Alzheimer’s disease (23). The score for
SORL1 was tied for sixth in rank (Table S1). The QTL at
chromosome 14q22 may represent linkage to presenilin 1
(PSEN1). PSEN1 has been linked to early-onset
Alzheimer’s disease (24,25). The score for PSEN1 was
tied for second in rank (Table S1).

One of the most straightforward methods of testing the
biological plausibility of the GO terms identified as

significantly enriched is to examine the co-occurrence of
those terms along with the term ‘Alzheimer’s’ in databases
such as Entrez Gene and OMIM (Tables 5 and S2). For
each significant term, we searched Entrez Gene using a
query that retrieved records containing both the GO term
and the keyword ‘Alzheimer’s’. For example, querying
Entrez Gene using the keyword ‘Alzheimer’s’ and the GO
term ‘membrane’ retrieved 113 human genes. Searches
using the terms ‘integral to membrane’ and ‘endoplasmic
reticulum’ in combination with ‘Alzheimer’s’ retrieved 39
and 18 gene records, respectively. Of the 11 significantly
enriched GO terms in Table 4, six co-occurred in
Entrez Gene with ‘Alzheimer’s’, yielding a total of 115
co-annotated human genes. These results indicated that
these six significantly enriched GO terms have already
been associated with Alzheimer’s disease and represented
confirmatory findings, and the other five represented novel
findings, suggesting new hypotheses regarding the mole-
cular basis of Alzheimer’s disease. Cross-referencing the
QTL locations (Table 1) with the chromosomal locations
of these 115 genes (Tables 5 and S2) uncovered four
additional candidate genes, including ESR1 at 6q25 (the
score was 10th in rank), ESR2 at 14q23 (the score was 9th
in rank), PTGER2 at 14q22 (the score was 10th in rank)
and TMED10 at 14q22 (the score was 11th in rank)
(Table S1).
Another source of confirmation of the biological

plausibility is the occurrence of the term ‘Alzheimer’ in
the Online Mendelian Inheritance in Man (OMIM)
database for genes identified in the Entrez Gene analysis.

Table 5. Enriched GO terms cross-referenced with occurrence of term and Alzheimer’s in Entrez Gene and OMIM among human genes

GO Term

Gene Membrane
(113 total)

Integral to
membrane
(39 total)

Endoplasmic
reticulum

Estrogen
receptor

MHC Class 1
protein complex

Sensory
perception
of smell

Chromosome

APH1A X X 1p36-q31
APP X X X 21q21
BCHE X 3q26
CASP7 X X 10q25
CYP19A1 X X 15q21
CYP46A1 X X X 14q32
CYP7B1 X X 8q21
DHCR24 X X X 1p33-31
ESR1 X X 6q25
ESR2 X 14q23
GNAS X X 20q13
HFE X X 6p21
HMOX1 X X 22q13
HSD17B10 X X X Xp11
ITGB1 X X X 10p11
NCSTN X X 1q22-23
OPRS1 X X 9p13
PRNP X X 20p13
PSEN1 X X 14q24
PSEN2 X X X 1q31-42
PSENEN X X 19q13
STX8 X X 17p12

The terms ‘antigen presentation’, ‘MHC Class I receptor activity’, ‘photoreceptor cell maintenance’, ‘olfactory’ and ‘palmitoyl-CoA hydrolase
activity’ did not return any human genes containing the GO term and ‘Alzheimer’s’ from Entrez Gene. Only a partial listing for genes annotated with
‘membrane’ or ‘integral to membrane’ is shown. Genes that contain ‘Alzheimer’ in their OMIM reference are indicated in bold. Chromosomal regions
for genes that co-localize with QTL included in this study are indicated in bold italics.
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For example, GNAS (annotated with significantly
enriched GO terms ‘membrane’ and ‘sensory perception
of smell’) does not co-occur with ‘Alzheimer’ in OMIM,
whereas HFE (annotated with significantly enriched GO
terms ‘membrane’ and ‘MHC Class I protein complex’)
does co-occur with ‘Alzheimer’ (OMIM #104300). Of the
115 genes for which ‘Alzheimer’ and a significantly
enriched GO term co-occurred in Entrez Gene, 44 were
associated with ‘Alzheimer’ in OMIM (Tables 5 and S2).
These results are encouraging in the sense of reliability
across these two different databases, an important
consideration given the currently incomplete states of
the databases.

Application to QTL linked to BMI

We next analyzed a larger data set of QTL linked to BMI,
which is a measure of obesity. A total of 18 QTL from 10
different studies were included in this analysis (Table 2).
The QTL together included 2150 genes, of which 1655
were annotated by 1678 GO terms; the remaining 495
genes were not annotated. Analysis of the GO term
co-annotation correlation matrix revealed that the GO
terms were reducible to 140 principal components. After
correcting for 140 effectively independent tests, 12 GO
terms were significantly enriched (Table 6). These 12 terms
span four levels of the GO hierarchies.
The list of 1655 genes, sorted by QTL and ranked by

score within each QTL, is shown in Table S3. None of the
top-scoring genes have been previously linked to BMI.
Genes in all 18 QTL were annotated by the significantly
enriched terms ‘metal ion binding’, ‘nucleus’, ‘regulation
of transcription, DNA-dependent’, ‘membrane’, ‘trans-
cription’, and ‘protein binding’. Based on these results, we
hypothesize that multiple transcription factors are linked
to BMI [for possible examples of other transcriptional
regulators associated with BMI, see (26–28)]. The sig-
nificantly enriched GO term ‘cell adhesion’ annotated
genes in 16 of the 18 QTL. Three of the 16 QTL (5q32,
13q14 and 20q13) included members of the cadherin
superfamily. Like the odorant receptors in the Alzheimer’s
disease data, the cadherin superfamily is notable for gene
duplication (Table S3). For the QTL at chromosomes
5q32, 13q14 and 20q13, protocadherin or cadherin genes

were the top-scoring genes. Since these three QTL were
identified in three independent studies (Table 2), we
suggest that this novel result is more likely to represent
a true positive finding rather than a false positive finding
and we therefore hypothesize that cadherin superfamily
genes are also linked to BMI.

The results of the search for significantly enriched GO
terms and ‘body mass index’ or ‘BMI’ in Entrez Gene are
shown in Table 7. As with the Alzheimer’s disease data,
the more general GO terms such as ‘membrane’ returned
the most genes co-annotated by the GO term along with
‘body mass index’ or ‘BMI’. Of the 12 significantly
enriched GO terms in Table 6, nine co-occurred in
Entrez Gene with disease terms ‘body mass index’ or
‘BMI’ for a total of 34 co-annotated human genes
(Table 7). These results indicated that nine significantly
enriched GO terms associated with BMI represented
confirmatory findings and that CFA generated three
novel findings. Comparing QTL locations (Table 2) with
the chromosomal locations of these 34 genes (Table 7)
revealed seven additional candidate genes, including
TGFBI (the score was 9th in rank), ADRB2 (the score
was 13th in rank) and NR3C1 (the score was 21st in rank)
at 5q32; ESR1 (the score was 8th in rank) at 6q25;
TNFRSF1B (the score was 7th in rank) at 1p36; IL6 at
7p21 (the score was 16th in rank) and LEP at 7q31 (the
score was 17th in rank) (Table S3).

Of the 34 genes for which a significantly enriched GO
term co-occurred with ‘body mass index’ or ‘BMI’
in Entrez Gene, 21 were associated with either ‘body
mass index’ or ‘BMI’ in OMIM (Table 7). The level of
co-annotation between Entrez Gene and OMIM for BMI
(21/34=62%) was higher than the level of co-annotation
between Entrez Gene and OMIM for Alzheimer’s disease
(44/115=38%), indicating a higher degree of concor-
dance between Entrez Gene and OMIM for previously
suspected candidate genes for BMI.

DISCUSSION

In this study, we describe CFA, a method for prioritizing
candidate genes from genome-wide linkage studies. The
fundamental assumption of the method is that genes
linked to a complex trait are more likely to share
annotation (such as GO annotation) than genes chosen
at random, such that some shared annotations will be
enriched among genes linked to the trait. Of 163 genes
involved in 29 diseases for which at least three genes are
reported to affect risk, 80% shared an annotation with
another gene for the same disease (29). Researchers have
taken advantage of this enrichment to identify genes
involved in breast cancer (30). Ritchie et al. (31) identified
four SNPs in three genes from the estrogen metabolism
pathway that are strongly associated with sporadic breast
cancer. Pathway information has been used to identify
candidate genes in expression-based studies for autism
(32) and prostate cancer (33). Recently, a follow-up study
to the identification of the involvement of complement
factor H in age-related macular degeneration (34)
identified several SNPs in the complement pathway,

Table 6. Significantly enriched Gene Ontology terms for body mass

index

Term Adjusted P-value

Homophilic cell adhesion 1.727e-23
Calcium-dependent cell-cell adhesion 1.366e-8
Cell adhesion 3.520e-8
Transcription 2.570e-6
Regulation of transcription, DNA-dependent 1.526e-6
Synaptogenesis 2.920e-5
Protein binding 2.932e-4
Serine-type endopeptidase inhibitor activity 0.0101
Nucleus 0.0133
Metal ion binding 0.0148
Lipid binding 0.0182
Membrane 0.0426
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indicating that other genes in the complement pathway
besides factor H may be involved in this disease (35). On
the other hand, it is possible that complex traits are
characterized by genetic heterogeneity such that annota-
tions are not enriched among genes correlated to the same
trait. For such traits, CFA is a valid statistical procedure
in the sense that the false positive error rate is properly
controlled, but will have no power to detect true positives.

CFA utilizes principal components analysis to account
for the correlation structure both within and between the
three GO sub-ontologies. Furthermore, since the genome-
wide correlation matrix is constructed by considering all
possible pairs of terms, CFA is completely independent of
the location of terms within the GO hierarchy, allowing
terms to be compared regardless of their generality. We test
for enrichment of GO terms using Fisher’s exact test. We
stress that the unit of testing is a GO term and not a gene.
Principal components analysis further allows for dimen-
sion reduction, thereby mitigating multiple testing. As the
GO hierarchy acquires more terms and the level of
annotation of human gene products deepen, the problems

related to multiple hypothesis testing will become more
severe, thus increasing the need for estimating the true
number of independent tests using the PCA approach
presented here. As an additional benefit, the principal
components analysis can be used in conjunction with any
term-by-term test, not just Fisher’s exact test. We develop a
scoring function in which a gene score is determined by the
presence or absence of annotation by significantly enriched
GO terms for that gene. Genes annotated with more sig-
nificantly enriched GO terms have higher scores. Genes
can be prioritized by ranking them on the basis of their
scores in descending order, such that genes with higher
scores receive higher priority. We tested CFA using simu-
lated data and found that it was conservative (in our
opinion, acceptably so for an exploratory, data-mining
task), but had good power. We used this method to
prioritize candidate genes for QTL linked to two complex
traits, Alzheimer’s disease and BMI (Tables S1 and S3,
respectively).
To our knowledge, CFA is the first method to use prin-

cipal components analysis to account for the correlation

Table 7. Enriched GO terms cross-referenced with occurrence of term body mass index or BMI in Entrez Gene and OMIM

GO Term

Gene Metal ion
binding

Nucleus Regulation of
transcription,
DNA-dependent

Membrane Transcription Protein
binding

Cell Adhesion Serine-type
endopeptidase
inhibitor activity

Lipid
binding

Chromosome

ACE X X 17q23
ADRB1 X X 10q24-26
ADRB2 X X X X 5q31-32
ADRB3 X 8p11-12
AGT X 1q42-43
APOC3 X 11q23
BDNF X 11p13
CYP17A1 X 10q24
DGAT1 X 8q24
DRD4 X 11p15
ENPP1 X 6q22-23
ESR1 X X X X X X X 6q25
IL1RN X 2q14
IL6 X 7p21
INS X 11p15
LEP X 7q31
LEPR X X 1p31
LPL X 8p22
MAOA X Xp11
NR3C1 X X X X X X 5q31
NTRK2 X X 9q22
PPARA X X X X X 22q13
PPARD X X X 6p21
PPARG X X X X X 3p25
PPP1R3A X 7q31
SERPINE1 X X 7q21-22
SORBS1 X X 10q23-24
TFRC X 3q29
TGFBI X X 5q31
TNF X X X X X 6p21
TNFRSF1B X X 1p36
UCP1 X X 4q31
UCP3 X 11q13
VDR X X X X X 12q13

The terms ‘homophilic cell adhesion’, ‘calcium-dependent cell–cell adhesion’, other more general related terms such as ‘calcium-dependent adhesion’,
and ‘synaptogenesis’ did not return any hits when searched for co-occurrence with ‘body mass index’ or ‘BMI’ in Entrez Gene. Genes that contain
‘body mass index’ or ‘BMI’ in their OMIM reference are indicated in bold. Chromosomal regions for genes that co-localize with QTL included in this
study are indicated in bold italics.
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structure among all GO terms. In concept, this approach
is similar to the use of principal components analysis
of gene expression data for groups of genes (36–38). The
correlation structure among GO terms affects analysis in
two ways: (i) tests for enrichment for individual GO terms
are dependent and (ii) weights for GO terms in the gene
scores are correlated. Several methods have been developed
that account for dependencies within sub-ontologies but do
not (as yet) account for dependencies between sub-
ontologies (39–43). For gene expression data,
Delongchamp et al. (44) developed a meta-analytic
method to combine P-values that accounts for the
correlation of P-values within a group of genes defined
by a single GO term but does not account for correlation
among groups. Several groups have developed resampling-
based procedures to assess significance (37,45).
Permutation testing and bootstrapping of gene expression
data do not require estimation of the correlation structure
but are computationally expensive. Pinto et al. (46) used
bootstrapping to assess significance of correlation coeffi-
cients between distance measures for gene expression and
annotation measures. Our use of Velicer’s MAP test to
achieve dimension reduction and the use of this dimension
reduction to mitigate multiple testing appears to be novel.
Velicer’sMAP test has a statistically justified basis and does
not require subjective thresholding in terms of the
proportion of variance explained when determining the
number of principal components to retain (22).
Bioinformatic methods for identifying candidate genes

employing GO annotation include SUSPECTS (47,48),
G2D (49,50) and POCUS (29). Of these methods, CFA is
most similar to POCUS. In contrast to SUSPECTS and
G2D, POCUS and CFA do not require training sets.
A critical limitation of training sets is that only candidate
genes sharing annotation with training genes can be
detected; true candidate genes not sharing annotation with
training genes cannot be detected. POCUS bases it score
on the frequency with which genes from more than one
locus share a given annotation. POCUS’s power was
estimated to be 65% for data sets containing an average of
20 genes, 19% for data sets containing an average of 94
genes and 15% for data sets containing an average of 187
genes (29). In comparison, CFA’s power was estimated to
be 71% for data sets containing three loci of �130 genes
each and 78% for data sets containing six loci of �137
genes each. Whereas POCUS loses power as the size of the
data set increases, CFA gains power. A full Bonferroni
correction is more conservative than a partial Bonferroni
correction, and this difference increases with larger data
sets. By accounting for correlations among GO terms, a
partial Bonferroni correction based on principal compo-
nents analysis of the correlation matrix effectively
preserves power for larger data sets. Furthermore, for
similarly sized data sets, CFA appears to be substantially
more powerful than POCUS. POCUS requires more than
one susceptibility locus; CFA works with any number of
susceptibility loci. POCUS further assumes sharing events
(i.e. GO terms) are independent; CFA explicitly accounts
for two sources of correlation among GO terms.
We applied the CFA method to the results from studies

investigating the genetic basis of two different quantitative

traits: BMI and age-of-onset for Alzheimer’s disease. Our
analyses revealed several previously known candidate
genes and proposed several new candidate genes influen-
cing these traits. However, our findings may represent
false positives, and we give five reasons for why this might
be the correct explanation. First, QTL reported in the
original studies might be false positives. Our simulation
demonstrated that CFA retained validity in the absence of
true positive QTL, so this possibility is unlikely. Second,
genes may be incorrectly located on the current assembly
of the human genome. Third, given the low resolution of
linkage studies, a region of 20Mb centered on the nearest
significant marker may have missed the true linked
gene(s). Given that significant linkage indicates either
QTL with small effects close to the marker or QTL with
large effects distant from the marker, and given that
complex traits generally involve many loci with small
effects, we believe this possibility to be unlikely. Fourth,
the annotation of genes in GO is incomplete and biased
toward highly studied genes; thus, novel or poorly
characterized genes could be missed. Fifth, significantly
small P-values from Fisher’s exact test might represent
false positives, even after correcting for multiple tests. Our
simulation indicated that power to detect true patterns of
enriched GO terms is >70%, strongly suggesting that the
candidate genes reported here may represent true
positives.

A recurrent finding of CFA is that significant enrich-
ment of GO terms appears to result from linkage of genes
from the same family arising from gene duplication.
Duplication can give rise to genes in the same QTL that
are more likely to share annotations than are unrelated
genes. If one QTL contains many such duplicates, the
associated annotations may remain significantly enriched
even when combined across multiple QTL. This phenom-
enon may apply to the antigen presentation genes and
odorant receptor genes for Alzheimer’s disease and the
cadherin superfamily genes forBMI. In the former two
cases, relevant GO terms annotated genes in only one
QTL, and we may be more inclined to believe that
significant enrichment resulted solely from gene duplica-
tion. In contrast, in the latter case, cell adhesion GO terms
annotated genes in 16 of 18 QTL, with QTL derived from
multiple studies, and we may be more inclined to believe
that significant enrichment resulted from true common-
ality. A possible implication of these findings is that QTL
for complex traits may tend to contain gene duplicates,
such that the duplication may be a predictive correlate to
disease susceptibility (51).

Candidate genes associated with Alzheimer’s disease
have been identified for the QTL at 11q25 (SORL1) (23)
and 14q22 (PSEN1) (24,25). No clear identification of
candidate genes exists for the QTL at 6q27. Based on
our results, we hypothesize that candidate genes at this
QTL may affect age-on-onset via MHC class I antigen
presentation. Interestingly, ULBP expression renders cells
sensitive to cytotoxicity mediated by natural killer
cells and is blocked by human cytomegalovirus glycopro-
tein UL16 (52). At this time, it is unclear if this process
reflects infection, possibly with a herpesvirus (53), or an
autoimmunity-related phenomenon.
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For the BMI data, none of the top-scoring genes has
been previously associated with this quantitative trait.
We observed two potentially meaningful groupings of
significantly enriched GO terms. One group annotated
transcription factors and the other group annotated cell
adhesion molecules. Cell adhesion is the biological process
defined as ‘the attachment of a cell, either to another cell or
to an underlying substrate such as the extracellular matrix,
via cell adhesion molecules’ (http://www.godatabase.org).
For these GO terms, several of the top-scoring genes are
members of the cadherin superfamily. According to Entrez
Gene, cadherin superfamily genes, such as PCDH17,
PCDH20, CDH22 and PCDHB7, are speculated to affect
cell–cell neural connections. Based on our results, we
hypothesize that there may be an association between BMI
and genes in the cadherin superfamily. In support of this
hypothesis, the cadherin gene fat was recently found to
affect organ size in Drosophila (54).

There are many possible extensions to this work. First,
more linkage studies could be examined, and a scheme that
weights for replicability of QTL across studies could be
devised. Second, GO annotations are accompanied by
evidence codes that also have a hierarchical structure of
reliability. A weighting scheme that incorporates this
information could be devised [for one example see (55)].
Third, tests for composite annotation could be investigated
(56). Fourth, additional sources of information such as
gene expression, protein–protein interaction networks,
tissue specificity, KEGG or BioCarta pathways and
sequence homology, could be integrated into a combined
statistic in a manner similar to Maestro (57) or Endeavour
(58). For these types of integrative methods, it is critical to
account for the covariance of the different data sources.
Principal components analysis provides a way to account
for covariance while also allowing for dimension reduc-
tion. Fifth, biological confirmation of the candidate genes
should be performed. Sixth, more powerful methods of
correcting for multiple tests could be implemented (59).
Interestingly, for both real data analyses, the partial
Bonferroni correction and the Benjamini–Hochberg false
discovery rate yield the same number of rejected null
hypotheses (data not shown), suggesting that these
two post hoc methods are comparably powerful. Seventh,
by taking advantage of extensive GO annotations avail-
able for multiple species, we have generated genome-
wide GO term correlation matrices for Arabidopsis
thaliana, Drosophila melanogaster, Mus musculus and
Saccharomyces cerevisiae. Thus, CFA can be readily
applied to linkage data from these model organisms.

Taken together, our work has generated a promising
new set of candidate genes that may assist in defining
genetic factors linked to Alzheimer’s disease and BMI.
If confirmed, these genes may offer new targets for
diagnosis and treatment. More broadly, CFA can generate
a prioritized set of candidate genes that may assist in
defining genes linked to complex traits.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Özdelen,E., Tuncman,G., Görgün,C., Glimcher,L.H. and
Hotamisligil,G.S. (2004) Endoplasmic reticulum stress links obesity,
insulin action, and type 2 diabetes. Science, 306, 457–461.

28. Rankinen,T., Zuberi,A., Chagnon,Y.C., Weisnagel,S.J.,
Argyropoulos,G., Walts,B., Pérusse,L. and Bouchard,C. (2006) The
human obesity gene map: the 2005 update. Obesity, 14, 529–644.

29. Turner,F.S., Clutterbuck,D.R. and Semple,C.A. (2003) POCUS:
mining genomic sequence annotation to predict disease genes.
Genome Biol., 4, R75.

30. Kristensen,V.N., Edvardsen,H., Tsalenko,A., Nordgard,S.H.,
Sorlie,T., Sharan,R., Vailaya,A., Ben-Dor,A., Lonning,P.E., Lien,S.
et al. (2006) Genetic variation in putative regulatory loci controlling
gene expression in breast cancer. Proc. Natl Acad. Sci. USA, 103,
7735–7740.

31. Ritchie,M.D., Hahn,L.W., Roodi,N., Bailey,L.R., Dupont,W.D.,
Parl,F.F. and Moore,J.H. (2001) Multifactor-dimensionality reduc-
tion reveals high-order interactions among estrogen-metabolism
genes in sporadic breast cancer. Am. J. Hum. Genet., 69, 138–147.

32. Yonan,A.L., Palmer,A.A., Smith,K.C., Feldman,I., Lee,H.K.,
Yonan,J.M., Fischer,S.G., Pavlidis,P. and Gilliam,T.C. (2003)
Bioinformatic analysis of autism positional candidate genes using
biological databases and computational gene network prediction.
Genes, Brain Behav., 2, 303–320.

33. Manoli,T., Gretz,N., Grone,H.J., Kenzelmann,M., Eils,R. and
Brors,B. (2006) Group testing for pathway analysis improves
comparability of different microarray datasets. Bioinformatics, 22,
2500–2506.

34. Klein,R.J., Zeiss,C., Chew,E.Y., Tsai,J.Y., Sackler,R.S., Haynes,C.,
Henning,A.K., SanGiovanni,J.P., Mane,S.M., Mayne,S.T. et al.
(2005) Complement factor H polymorphism in age-related macular
degeneration. Science, 308, 385–389.

35. Dinu,V., Miller,P.L. and Zhao,H. (2007) Evidence for association
between multiple complement pathway genes and AMD. Genet.
Epidemiol., 31, 224–237.

36. Jiang,Z. and Gentleman,R. (2007) Extensions to gene set enrich-
ment. Bioinformatics, 23, 306–313.

37. Kong,S.W., Pu,W.T. and Park,P.J. (2006) A multivariate approach
for integrating genome-wide expression data and biological knowl-
edge. Bioinformatics, 22, 2373–2380.

38. Kustra,R., Shioda,R. and Zhu,M. (2006) A factor analysis model
for functional genomics. BMC Bioinformatics, 7, 216.

39. Falcon,S. and Gentleman,R. (2007) Using GOstats to test gene lists
for GO term association. Bioinformatics, 23, 257–258.

40. Kirac,M., Ozsoyoglu,G. and Yang,J. (2006) Annotating proteins by
mining protein interaction networks. Bioinformatics, 22, e260–e270.

41. Alexa,A., Rahnenführer,J. and Lengauer,T. (2006) Improved
scoring of functional groups from gene expression data by
decorrelating GO graph structure. Bioinformatics, 22, 1600–1607.

42. Brameier,M. and Wiuf,C. (2007) Co-clustering and visualization of
gene expression data and gene ontology terms for Saccharomyces
cerevisiae using self-organizing maps. J. Biomed. Inform., 40,
160–173.

43. Sevilla,J.L., Segura,V., Podhorski,A., Guruceaga,E., Mato,J.M.,
Martı́nez-Cruz,L.A., Corrales,F.J. and Rubio,A. (2005) Correlation
between gene expression and GO semantic similarity. IEEE/ACM
Trans. Comput. Biol. Bioinform., 2, 330–338.

44. Delongchamp,R., Lee,T. and Velasco,C. (2006) A method for
computing the overall statistical significance of a treatment effect
among a group of genes. BMC Bioinformatics, 7 (Suppl. 2), S11.

45. Barry,W.T., Nobel,A.B. and Wright,F.A. (2005) Significance
analysis of functional categories in gene expression studies: a
structured permutation approach. Bioinformatics, 21, 1943–1949.

46. Pinto,F.R., Cowart,L.A., Hannun,Y.A., Rohrer,B. and
Almeida,J.S. (2005) Local correlation of expression profiles with
gene annotations - proof of concept for a general conciliatory
method. Bioinformatics, 21, 1037–1045.

47. Adie,E.A., Adams,R.R., Evans,K.L., Porteous,D.J. and
Pickard,B.S. (2005) Speeding disease gene discovery by sequence
based candidate prioritization. BMC Bioinformatics, 6, 55.

48. Adie,E.A., Adams,R.R., Evans,K.L., Porteous,D.J. and
Pickard,B.S. (2006) SUSPECTS: enabling fast and effective prior-
itization of positional candidates. Bioinformatics, 22, 773–774.

49. Perez-Iratxeta,C., Bork,P. and Andrade,M.A. (2002) Association of
genes to genetically inherited diseases using data mining. Nat.
Genet., 31, 316–319.

50. Perez-Iratxeta,C., Wjst,M., Bork,P. and Andrade,M.A. (2005) G2D:
a tool for mining genes associated with disease. BMC Genet., 6, 45.
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