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Abstract

The use of graph theory models is widespread in biological pathway analyses as it is
often desired to evaluate the position of genes and proteins in their interaction
networks of the biological systems. In this article, we argue that the common standard
graph centrality measures do not sufficiently capture the informative topological
organizations of the pathways, and thus, limit the biological inference. While key
pathway elements may appear both upstream and downstream in pathways, standard
directed graph centralities attribute significant topological importance to the upstream
elements and evaluate the downstream elements as having no importance.
We present a directed graph framework, Source/Sink Centrality (SSC), to address the
limitations of standard models. SSC separately measures the importance of a node in
the upstream and the downstream of a pathway, as a sender and a receiver of
biological signals, and combines the two terms for evaluating the centrality. To validate
SSC, we evaluate the topological position of known human cancer genes and mouse
lethal genes in their respective KEGG annotated pathways and show that SSC-derived
centralities provide an effective framework for associating higher positional importance
to the genes with higher importance from a priori knowledge. While the presented
work challenges some of the modeling assumptions in the common pathway analyses,
it provides a straight-forward methodology to extend the existing models. The SSC
extensions can result in more informative topological description of pathways, and
thus, more informative biological inference.
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Introduction
Biological pathways represent sets of bio-molecular entities, such as genes and proteins,
and their cascades of interactions which associate with certain cellular functions [1].
The abundance and availability of annotated pathways is a key element in bridging the
gap between molecular level dynamics and high-level biological insight [2–5]. Although
changes in individual moleculesmay trigger variations in the cellular programs, many bio-
logical functions emerge from the systematic behaviour of entities and interactions. This
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systems biology concept positions the use of pathways in a significant value for discovery,
treatment, diagnosis, and prediction in biomedical studies [6–9].
The term “Pathway Analyses” describes a category of models that leverage biologi-

cal interaction networks for the study of molecular-level data, such as gene expression.
Many of these tools are built on the premise of a well-established body of literature which
indicates that the position of genes/proteins in their associated interaction networks can
determine their importance in biological systems of interest [10–12]. For example, several
network-based pathway enrichment analysis models (N-PEM) use graph theory concepts
to prioritize topologically important differential expressions in the pathways and produce
functional interpretations [13–21].
Graph centrality models are the premier methods for evaluating the topological posi-

tions of individual network entities [22]. While these models have been successfully
utilized in pathway analyses for functional interpretation, their abstractions of network
organizations do not necessarily capture key topological features of pathways, suggesting
a potential for a more biologically relevant assessment of pathways. Biological pathways,
particularly signaling pathways, appear as an upstream-to-downstream organization,
indicating a temporal and biochemical order of interactions between associated genes and
proteins. In a directed graph model, upstream pathway elements are mostly represented
as nodes with no incoming edges and downstream elements are represented as nodes
with no out-going edges. Subsequently, standard centrality model for directed graphs,
such as PageRank and Katz, do not assign any topological importance of the downstream
elements, many of which have been shown to be key elements of biological functions.
The goal of this study is to quantitatively show the limitation of the standard centrality

models and provide a plausible alternative to improve the utility of topological evalua-
tions of pathways.We hypothesize that a directed centrality model which accounts for the
topological position of key elements at downstream and upstream ends of pathways can
provide a more meaningful characterization of biological networks. To achieve our goal,
we first formalize the standard centrality models into three categories of Source, Sink, and
undirected frameworks. The Source framework indicates a version of centrality models
that can capture the importance of a node as a sender of information, which relates to
the directed graph models used in typical pathway analyses. The Sink framework aims to
capture to identify important receivers of biological information/signals. We then intro-
duce Source/Sink centrality (SSC) concept, which is a flexible framework that works by
applying any centrality model to a graph and its transposed graph simultaneously, and
combining the two resulting profiles. SSC produces a centrality score for each node in a
network that quantifies the importance of each gene both upstream and downstream of a
pathway while accounting for the order and the direction of the interactions.
In a recent preliminary study, we reported that the SSC framework of common cen-

trality models provides a more informative characterization of key pathway elements’
positions in contrast to the standard directed models [23]. In particular, we showed that
the centrality scores produced by SSC have a stronger correlation and more descriptive
linear relationship with the probability of a gene to be important based on a priori known
biological functions. In another study, we showed an application of SSC modification of
Katz centrality in network-based enrichment analysis to prioritize the differential expres-
sion topologically important genes. In that case, we showed that the SSC framework
produces a more biologically relevant functional interpretation of disease genomic data
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[24]. Following that in a recent study, Zaffaroni et al. leveraged the SSC modification of
Katz centrality for predicting the driver pathways of cellular transition [25, 26].
In this study, we expand SSC modeling to multiple spectral centrality models and val-

idate it using additional and updated background data. In particular, we investigate a
battery of standard graph centrality models and their SSC extensions for describing the
organization of a priori known important genes. For a priori important genes, we focus
on human cancer genes and mouse lethal genes, also known as essential genes, i.e. genes
whose knockdown results in the death of organisms. The rationale for choosing the
cancer-related genes is the intuition that cancers are regarded as diseases of pathways,
i.e. cancers are primarily driven by perturbation/alteration of pathways [7, 27]. Subse-
quently, the dysfunction of one or more cancer-related genes can result in dysfunction of
their associated pathways [7]. Therefore, understanding the topological position of cancer
associated genes may reveal insight regarding the topological organization of key path-
way drivers/regulators. The rationale for choosing mouse lethal genes is the existence
of an extensive literature on the relationship between centrality and lethality in protein-
protein interaction networks, where it has been shown that higher centrality correlates
with higher probability of being lethal (essential) [28–30].
From multiple perspectives, we show that the SSC extensions, in comparison to the

standard models, produce a more descriptive topological framework for the positions
of cancer gene in human pathways, as well as that of essential genes in mouse path-
ways. These results show that the SSCmethodology contributes to the biological pathway
analyses and inference methods by providing a more realistic framework for measuring
network positions.

Material andmethods
Graphmodeling of pathways

Let a directed graph, G = (V ,E), represent a pathway where V (G) = {v1, v2, . . . , vn} is
the set of nodes and E(G) = {e1, e2, . . . , em} is the set of edges. Each edge, ek = (

vi, vj
)
,

is an ordered pair that indicates a directed relationship from gene-encoded element vi to
vj. A graph can be alternatively represented as an undirected graph where the edges are
unordered pairs.
For any graph, the neighborhood of a node vi, N(vi), is the set of all adjacent nodes

of vi, NG(vi) = {
vj|

(
vi, vj

) ∈ E(G)
}
. The degree of a node is defined as the size of its

neighborhood, deg (vi) = |NG (vi)|. For a directed graph, the former notion of degree is
referred to as out-degree, deg+(v). For a directed graph, neighborhood and degree can be
also defined based on in-coming edges, i.e. in-degree, deg−(vi) = ∣

∣{vj | (
vj, vi

) ∈ E
}∣∣. A

graph with n vertices has an equivalent representation of a n × n adjacency matrix, AG.
Formally:

[AG]ij =
{
1,

(
vi, vj

) ∈ E
0, otherwise

(1)

The transpose of a graph,GT , is a graph with reversed edge directions, where V
(
GT) =

V (G) and E
(
GT) = {(u, v)|(v,u) ∈ E(G)}, thus AGT = AT

G. A graph centrality is a func-
tion, C(v), C : V (G) → R, for describing a topological scoring (importance) of the nodes
in a network [22].



Yeganeh et al. BioDataMining            (2020) 13:5 Page 4 of 23

Degree Centrality of each node is the size of its neighborhood. Studies have shown that
the degree of nodes in protein-protein interaction networks of different organisms corre-
lates with their essentiality, meaning the likelihood of a protein’s removal, e.g. knockdown,
to be lethal for the model organism [10, 29, 30]. Here, we calculated degree centrality
as the sum of in-degree and out-degree, which the same as the degree centrality in the
underlying undirected graph:

Cdeg(v) = deg+(v) + deg−(v) (2)

PageRank Centrality is a spectral centrality measure where the importance of a node is
a function of the centrality of its neighbors. In its original definition, PageRank describes
the probability distribution of a uniform random walk with restart being present at each
node of a graph after a large number of steps [22, 31, 32]. In graph theory terms, the
PageRank of a node v is based on the PageRank of the nodes with links to v, divided by
their out degrees. Formally:

Cpgr(vi) = βi + α
∑

vj|vi∈NG(vj)

Cpgr(vj)
|NG(vj)| (3)

βi’s are constant values that relate the probability of restarting at node vi. The parameter
α is a dampening factor that relates to the transition probability of the random walk. The
Formula 3 can be expressed in a vectorized format as following:

Cpgr = β + αATD−1Cpgr (4)

where Cpgr is the vector of centralities and β is the vector of initial values. D is the diag-
onal (out) degree matrix such that [D]ii = max

(
deg(+)(vi), 1

)
. A closed form solution of

Formula 3 is achieved by solving for Cpgr [22]. Formally:

Cpgr =
(
I − αATD−1

)−1
β (5)

PageRank can be used for both directed and undirected graphs. Closely related notions of
PageRank have been used in applications of pathway analysis [14, 17].
We define the PageRank Sink centrality as the standard PageRank of a directed graph.

The original concept of PageRank, as described by Brin and Page, measures the impor-
tance of a website based on the importance of the websites that have a link to it [31].
Likewise, in the Sink component of the PageRank, the downstream nodes have the higher
importance. This is because a randomwalk will not be present at any nodewithout incom-
ing edges, unless by a restart event. The PageRank Sink centrality captures the importance
of a node as a receiver of information. Formally we define the Sink PageRank centrality
(CSi

pgr) as:

CSi
pgr(v) := Cpgr(v) (6)

To modify PageRank in such a way that captures the importance of nodes as source of
signal, we derive a PageRank score when applied to the transpose of a graph. Formally, we
define the PageRank Source

(
CSo
pgr

)
as:

CSo
pgr(vi) = βi + α

∑

vj|vi∈NGT (vj)

CSo
pgr(vj)

|NGT (vj)| (7)

βi and α are constants that relate to the restart and transition probabilities. The PageR-
ank Source of a node is calculated based on the centrality of a its neighbors in the
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transposed graphs. Define the diagonal in-degree matrix, D′, of G such that [D′]ii =
max(1, deg−(vi)). Similar to the equations for deriving the standard PageRank, the Source
component can be solved as following:

CSo
pgr =

(
I − αAD′−1

)−1
β (8)

Directed centralities only gives importance to either upstream nodes or downstream
ones. To address this issue we define the Source/Sink PageRank. The fundamental concept
of Source/Sink modeling is to measure the centrality of nodes as both sources and sinks
of information. We adapt the Source/Sink concept to the PageRank by calculating Source
and Sink Centrality values individually and summing them:

CSS
pgr(v) = CSo

pgr(v) + CSi
pgr(v) (9)

The above definition has no limitation of using different constant parameters for CSo
pgr

and CSi
pgr , this study uses the same values of α and β for both components.

Katz Centrality is another spectral centrality model where the importance of a node is
calculated relative to the sum of centrality of its neighbors. Formally:

Cktz(vi) = βi + α
∑

vj∈NG(vi)
Cktz(vj) (10)

In the above formula, β is a constant factor and α is dampening factor. The convergence
of the Formula 10 depends on the largest eigenvalue of the adjacencymatrix. In particular,
α < 1/λ1 is a sufficient condition for convergence, with λ1 being the largest positive
eigenvalue of the adjacency matrix. Rearranging Formula 10 gives a closed form solution
of Katz centrality. Formally:

Cktz = (I − αA)−1 β (11)

where Cktz is the vector of centrality values. Katz centrality is closely related to the formu-
lations of Cdist and NetGSA for pathway enrichment analysis [16, 18, 24]. Throughout
this document, Katz centrality refers to the directed graph. Although Katz centrality is
well defined on undirected graphs we will not analyze this model on the dataset of this
study since it would impose a small global α. We define Source Katz (CSo

ktz) component as
the standard Katz centrality of a directed graph.

CSo
ktz(v) := Cktz(v) (12)

Next, we define the Sink Katz
(
CSi
ktz

)
component as the Katz centrality of the transposed

graph. In this context, the centrality of a node relates to the centrality of its neighbors in
the transposed graph. Formally:

CSi
ktz(vi) := βi + α

∑

vj∈NT
G (vi)

CSi
ktz(vj)

CSi
ktz =

(
I − αAT

)−1
β

(13)

In a similar fashion to Source/Sink PageRank. we define the Source/Sink Katz as the
direct summation of the two individual Source and Sink components. Katz Source/Sink
Centrality is then defined as:

CSS
ktz(v) = CSo

ktz(v) + CSi
ktz(v) (14)
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Although the above definition has no limitation of using different constant parameters
for individual Source and Sink centralities, this study uses the same values of α and β for
both components. Also, it can be shown that Source and Sink components have the same
convergence criteria when using the same β and α.
Laplacian graph influence measures are a family of models that capture the amount

of effect a node has on the other nodes. These measures are the core of the heat dif-
fusion kernels of graphs as they relate to the Laplacians of the graph, D − A [32–35].
Graph Laplacians are generally defined for undirected graphs [32, 35]. There are modifi-
cations for directed graphs either on strongly connected graphs or directed acyclic graphs
[34, 36]. In this study, we use a specific version for directed graphs that is related to the
model used by Shojaie and Michailidis for pathway enrichment analysis (proof of model
equivalence in the Appendix)[19]. Though this model is not discussed in the literature
with any specific names, to the best of our knowledge, we will refer to it as Laplacian Cen-
trality, for the lack of a better terminology. The Laplacian model in this study indicates
that the centrality of a node relates to the average centrality of its neighbors. Formally:

Clap(vi) = βi + α
∑

vj∈NG(vi)

Clap(vj)
|N(vi)| (15)

By expressing the above formulation in matrix format and rearranging for the vector of
centralities we get

Clap := (
I − αD−1A

)−1
β (16)

We define the Laplacian Source component as the Laplacian centrality of the directed
graph:

CSo
lap := Clap (17)

Similar to the other measures, we define the Laplacian Sink component is the Laplacian
centrality of the transposed graph:

CSi
lap :=

(
I − αD′−1AT

)−1
β (18)

The Source/Sink Laplacian is then defined as the sum of the two components:

CSS
lap := CSo

lap + CSi
lap (19)

TheUndirected Laplacian is trivial for the connected components of the graphs since all
members of a component can have any equal value for centrality. Therefore, the Laplacian
model defined in this report will be only used in directed formats.
The definition of Source/Sink models can be generalized into a format where the con-

tribution of the Source and the Sink components to the total centrality value are weighted.
Interested readers may refer to [23, 24] for examples of the weighted definitions– where
we have shown that equal weights (as assumed in this article) can generate a SSC value
that is most different the individual Source and Sink components.

Background pathways and genes

Human pathways and cancer genes

Human pathways from Kyoto Encyclopedia of Genes and Genomes (KEGG) were
retrieved (n = 330, April 2019). We pre-processed pathways and excluded the entries that
exhibited 1- more than 1000 nodes and more than 4000 interactions (n = 2) 2- less or
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equal to 20 nodes or 20 edges (n = 86) 3- largest eigenvalues larger than 10 (n = 16). In
addition, pathways with a single unique value for any of the centrality measures (e.g. all
degrees being 10) were excluded from the analysis, resulting in 216 pathways passing the
initial quality criteria.
Human cancer genes were retrieved from relevant classifications of Broad Institute’s

MSigDB: Oncogenes, Tumor Suppressors, and Translocated cancer genes (n = 417, June
2018) [37]. Cancer Gene Census from Sanger Institute was used as an additional reference
list for cancer-related genes (n= 719, June 2018) [38].
Pathways with 5 or less cancer associated genes were excluded from analysis for consis-

tency of p-value calculations (n = 61). The final set of pathways contained 157 entries. The
pathways were retrieved and analyzed using R-packages “KEGGGraph” and “Pathview”
[39, 40].

Mouse pathways and lethal genes

Mouse pathways were retrieved from KEGG databased (n= 326, April 2019). We used
the same quality criteria (edges, nodes, and eigenvalue limits), resulting in 219 pathways.
Mouse lethal genes were retrieved from International Mouse Phenotyping Consortium
(IMPC) through its online portal (n = 1053, June 2018) [41]. The IMPC’s gene family
classifications of the related genes were Lethal, Viable, and Sub-viable.
Pathways with 5 or less Lethal genes were excluded from analysis for consistency of

p-value calculations. The final set of pathways contained 123 entries.

Experimental methods and analyses

We examine different formats of each centrality model through three aspects. 1– The lin-
ear relationship between the centrality scores and the percentage of the genes that are
biologically important. 2– The distribution of centrality scores of important genes and
other genes (normal). 3– The mean difference between the centrality scores of important
genes versus normal genes for each pathway. Since the subjects of study are multiple path-
ways, rather than a single global graph, normalization and ranking procedures were used
to create a unified framework.
This study uses β = 0.15 · 1n×1, and α = 0.85 for different formats of PageRank,

as previously recommended in the original PageRank paper [31]. For all Katz centrality
formats, the parameter setting was α = 0.1, β = 1n×1. Katz models parameters are
restricted to be smaller than one over the largest eigenvalue of a graph [24], and thus,
we chose the aforementioned parameter to allow for analysis of a reasonable number of
pathways. We did not analyze for Undirected Katz because of limitation of the largest
eigenvalues. For all Laplacian centrality formats, the parameters were β = 1n×1, and
α = 0.85. The Laplacian model parameters were chosen to be consistent with PageRank
parameters.

Regression analysis

Our regression analysis pipeline initially ranks the node of each pathway using one cen-
trality measure at a time. The pipeline then aligns the centrality ranks of within each
pathway through 100 quantiles. The 100th quantile indicates most central genes in a path-
way and 1st quantile indicates the lowest importance. Formally, let Ca,j(vi) denote the
centrality of a node vi in pathway j using model a. The quantile ranking of a node i,Qj(vi),
is then defined as:
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Qj(vi) =
[
100 × Ca,j(vi)

|Vj|
]

(20)

In the above formula, Vj is the set of nodes in pathway j. The quantile ranking allows to
compare the centrality rankings among all pathways because different pathways have dif-
ferent number of nodes by assigning the most central node in the highest quantile score.
To investigate the relationship between a priori importance of a gene and its centrality,
the proportion of important genes were calculated on each quantile across all pathways,
with the important genes coming from the cancer genes and lethal genes. The relation-
ship between the centrality and importance were investigated separately based on the
gene type, once for cancer genes in human pathways and once for lethal genes in mouse
pathways.
Let Qij denote the set of genes belonging to i-th quantile in pathway j — Qij =

{
v | v ∈ Vj,Qj(v) = i

}
. Let R denote the set of all genes in a class of a priori important

genes, i.e., cancer or lethal. We define the percentage of the a priori important genes in
i-th quantile, Fic, as:

Fic = 100 ×
∑

j
∣
∣{v | v ∈ R ∩ Qij

}∣∣
∑

j
∣
∣{v | v ∈ Qij

}∣∣ (21)

Although some genes were occurring in multiple pathways, each occurrence was
treated as an unique gene because the purpose was to evaluate the centrality with respect
to pathways. Fic was then tested against the level of quantile for assessing linear relation-
ships. In the below formula, i indicates the index value of a quantile group, e.g. 1 for the
1st quantile and 10 for the 10th quantile. Let a1 and a0 be the coefficients of the linear
regression. Formally:

Fic = a1 · i + a0 (22)

For each centrality measure the above linear regression was fitted and the adjusted
r-squared (coefficient of determination) were evaluated. The above procedures were
applied to lethal mouse genes and human cancer genes separately in their respective
annotated and pre-processed pathways.

Comparison of cumulative densities

To compare the distribution of centrality values from a global perspective, the centrality
scores were normalized within each pathway using the following formula:

Na,j(vi) = Ca,j(vi) − μa,j

σa,j
(23)

where μa,j and σa,j are the mean and standard deviation of centrality scores of pathway j
using method a. Accordingly,Na,j(vi) is the normalized centrality score of node vi in path-
way j, using the centrality method a. The normalized score for all pathways were placed in
100 quantiles. The distribution of quantile scores for the types of genes “Important” and
“Others” were compared by Kolmogorov-Smirnov (KS) test on cumulative distribution
function (CDF) of important and normal genes. The p-values were calculated based on
the alternative hypothesis of the CDF of the important genes lying below that of the nor-
mal. In this test, the CDF of all genes combined would follow a straight line. The described
procedure was ran separately for mouse lethal genes and human cancer genes on their
respective pre-processed pathways.
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Within pathways two-Sample testing

For each pathway, the difference of the mean raw centrality values between a priori
important genes and other genes were evaluated using Welch’s t-test. Formally:

t = μ̂a,c − μ̂a,n√
s2a,c
Nc

+ s2a,n
Nn

H0 : μa,c = μa,n

HA : μa,c > μa,n

(24)

where μ̂a,c and μ̂a,n are the estimated means of centrality values for cancer and normal
genes by model a. Similarly, s2a,c and s2a,n are the variance estimates of the centrality scores
of important and normal genes, using model a. Nc and Nn denote the sample size of
important genes and normal genes. H0 is the null hypothesis of important and normal
genes having the same mean. HA is the alternative hypothesis where the important genes
have a higher mean.
Since the underlying distribution of the centrality values is unknown, we also used

Wilcox non-parametric test to evaluate the null hypothesis of important and non-
important genes having the same mean. Wilcox test ranks individual observations and
evaluates the difference between the sum of the ranking in two classes of the hypothe-
sis. While Wilcox test is the more appropriate choice for testing this study’s hypotheses,
we present both parametric (Welch) and non-parametric (Wilcox) two-sample tests for
comparison.
For each centralitymodel, the p-values from Formula 24 andWilcox test were calculated

across all pathways. Because of the large number of pathways, multiple-hypothesis testing
corrected criterion was used to determine significant p-values. In particular, Benjamini-
Hochberg False Discovery Rate was applied to all calculated p-values for each centrality
method to control type-I error at %5 (FDR < 0.05) [42]. The same procedure was applied
to both parametric and non-parametric approaches. The sets of significant pathways for
each centrality model were contrasted against each other. The described procedure in
this subsection was applied to human cancer genes and mouse lethal genes in separate
analyses.

Results
Pathway centrality of human cancer genes

The regression analysis shows an evident increase in the percentage of cancer genes with
the increased centrality scores from Degree, Katz Source/Sink, Laplacian Source/Sink,
and all PageRank formats (Fig. 1, Table 1). For all of the other models, the analysis fails to
identify any linear relationship between the centrality scores and the percentage.
For the Degree centrality, as shown in Fig. 1, the higher values of quantile scores corre-

spond to higher percentages points of cancer genes, and low quantile scores exhibit lower
percentage of cancer genes. The analysis supports this observation by showing a linear
relationship between the scores and the percentage of genes that are cancer-related with
an adjusted r-squared (Adj r2) of 0.27. The regression analysis shows a statistically signif-
icant positive coefficient of 1.37×10−1 for the quantile scores (Adj p-value = 3.96×10−8,
Table 1).
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Fig. 1 Linear regression fit of the quantile-normalized centrality scores (Eq. 20) and the percentage human
pathway genes that are cancer-related (Eq. 21). The Source/Sink extension of the centrality models show
higher slope and adjusted coefficient of determination (Adjusted r-squared) in comparison to the standard
variations of the centrality models (Table 1)

The standard directed variation of Katz centrality (the Source component) fails to iden-
tify an evidence (Adj p-value = 0.167) for linear relationship (Fig. 1), and the linear
regression model accounts for an insignificant fraction of the variance (Adj r2 = 0.021).
Similarly, the Katz Sink Component produces an Adj r2 = 0.00026 and Adj p-value =
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Table 1 Linear regression fit of the quantile-normalized centrality scores (Eq. 20) and the percentage
human pathway genes that are cancer-related

Centrality term estimate std.error statistic p.value

Degree (Intercept) 1.50e+01 1.30e+00 1.15e+01 4.98e-20

Degree Coefficient 1.37e-01 2.24e-02 6.11e+00 2.01e-08

Katz-Sink (Intercept) 2.55e+01 2.31e+00 1.11e+01 8.26e-19

Katz-Sink Coefficient 6.23e-03 3.93e-02 1.58e-01 8.74e-01

Katz-Source (Intercept) 2.84e+01 2.57e+00 1.10e+01 1.49e-18

Katz-Source Coefficient -5.97e-02 4.28e-02 -1.39e+00 1.67e-01

Katz-SSC (Intercept) 1.45e+01 1.12e+00 1.30e+01 4.23e-23

Katz-SSC Coefficient 1.38e-01 1.93e-02 7.13e+00 1.64e-10

Lap-Sink (Intercept) 2.49e+01 1.89e+00 1.32e+01 1.92e-23

Lap-Sink Coefficient 1.65e-02 3.23e-02 5.12e-01 6.09e-01

Lap-Source (Intercept) 2.91e+01 2.50e+00 1.17e+01 8.94e-20

Lap-Source Coefficient -7.29e-02 4.14e-02 -1.76e+00 8.18e-02

Lap-SSC (Intercept) 1.27e+01 1.03e+00 1.24e+01 8.89e-22

Lap-SSC Coefficient 1.78e-01 1.78e-02 9.99e+00 1.12e-16

PageRank-Sink (Intercept) 1.33e+01 2.28e+00 5.85e+00 7.09e-08

PageRank-Sink Coefficient 1.91e-01 3.86e-02 4.93e+00 3.43e-06

PageRank-Source (Intercept) 1.27e+01 1.54e+00 8.23e+00 1.37e-12

PageRank-Source Coefficient 1.77e-01 2.55e-02 6.94e+00 5.88e-10

PageRank-SSC (Intercept) 7.58e+00 9.78e-01 7.76e+00 7.88e-12

PageRank-SSC Coefficient 2.67e-01 1.69e-02 1.58e+01 8.22e-29

PageRank-Und (Intercept) 9.06e+00 9.39e-01 9.65e+00 6.36e-16

PageRank-Und Coefficient 2.33e-01 1.62e-02 1.43e+01 6.49e-26

0.874. In contrast, the combined value of the two components, Source/Sink Katz, shows
that the linear relationship explains a statistically significant portion of the variance (Adj
r2 = 0.34). In this case, the regression analysis shows a statistically significant positive
coefficient of 1.38 × 10−1 for the quantile scores (Adj p-value = 4.50 × 10−10, Table 1).
For different formats of Katz centrality, comparison of cumulative distribution function

(CDF) between the cancer genes and normal genes shows that the CDF of cancer genes
lies below that of the normal genes (Fig. 2). Although all of the differences are statisti-
cally significant, amount of differences depends on the specific variation of centrality. For
example, more than 65% of the cancer genes have a normalized quantile score greater than
50 when measuring centrality using Katz Source/Sink method. The pathway-by-pathway
two-sample tests also show that each variation of Katz centrality is able to detect a num-
ber of pathways to have a higher mean of centrality for cancer genes (Tables 2 and 3). The
number of identified pathways in the non-parametric model are higher in comparison to
a regular t-test. For example, the two-sample t-test detects five pathways with higher cen-
trality of cancer genes using Katz Source/Sink, while the Wilcox rank-sum test identifies
13 pathways (FDR < 0.05).
Comparison of different PageRank centrality formats also shows that the SSC frame-

work produces a better description of the pathway organizations compared to the
individual Source and Sink components. The centrality values of individual Source (Adj
p-value = 1.29 × 10−9 and Adj r2 = 0.35) and Sink (Adj p-value = 5.39 × 10−6, and
Adj r2 = 0.20) components of PageRank have linear relationship with the percentage of
cancer genes. The combination of the two components as in the Source/Sink PageRank
produces a more descriptive and stronger linear relationship in term of both the adjusted
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Fig. 2 Comparison of the cumulative density between cancer-related genes and normal genes. The data
points represent the quantile-scores calculated based on normalized centrality (Formula 23) across all
pathways. Each panel includes the p-value of Kolmogorov-Smirnov test for the hypothesis of the CDF of
cancer genes being below that of the normal genes. The panels show that cancer genes tend to have higher
centrality values according to all of the models. This indicates the individual values of source and sink
components for capturing the topological importance of cancer genes. Asterisk marks denote the p-values
generate by the KS test method in R

r-squared and the regression coefficient (Adj p-value = 9.04 × 10−28 and Adj r2 = 0.72).
Undirected PageRank also provides a stronger linear relationship in comparison to the
individual Source and Sink components (Adj p-value = 3.57 × 10−25 and Adj r2 = 0.68).
For different formats of PageRank, comparison of the CDF between the cancer genes

and normal genes shows that the CDF of cancer genes lies below that of the normal
genes (Fig. 2). Although all of the differences are statistically significant, amount of dif-
ferences depends on the specific variation of centrality. This indicates that each format
of PageRank shows higher values of centrality for cancer genes in the distribution of the
scores, even though the distinctionmay not be apparent according to the linear regression
model. For example, more than 70% of the cancer genes have a normalized quantile score
greater than 50 when measuring centrality using PageRank Source/Sink method. The
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Table 2 Pathways identified with higher mean centrality for cancer genes by t-test

Deg Katz Lap Pgr

Deg Sink So SSC Sink So SSC So Si SSC Und

Degree 5 0 2 4 0 2 1 0 1 0 2

Katz-Sink 6 0 1 5 0 1 2 0 2 1

Katz-Source 2 2 0 2 1 0 1 0 0

Katz-SSC 5 1 2 1 0 1 0 1

Lap-Sink 17 0 4 3 0 3 1

Lap-Source 8 2 0 1 0 0

Lap-SSC 15 2 1 2 1

Pgr-Sink 5 1 3 1

Pgr-Source 2 1 1

Pgr-SSC 5 2

Pgr-Und 7

pathway-by-pathway two-sample tests also show that each variation of PageRank central-
ity is able to detect pathways with a higher mean of centrality for cancer genes (Tables 2
and 3). In this case, the number of identified pathways in the non-parametric model are
higher in comparison to a regular t-test. For example, the two-sample t-test detects five
pathways with higher centrality of cancer genes using PageRank Source/Sink, while the
Wilcox rank-sum test identifies 31 pathways (FDR < 0.05).
The Laplacian model also detects a linear relationship only when considering the

Source/Sink formatting (Adj p-value = 4.12 × 10−16 and Adj r2 = 0.50). For different
formats of Laplacian , comparison of the CDF between the cancer genes and normal
genes shows that the CDF of cancer genes lies below that of the normal genes (Fig. 2).
The pathway-by-pathway two-sample tests also show that each variation of Laplacian
centrality is able to detect a number of pathways to have a higher mean of centrality
for cancer genes (Tables 2, and 3). In this case, the number of identified pathways in
the non-parametric model are similar to a regular t-test. For example, the two-sample
t-test detects fifteen pathways with higher centrality of cancer genes using Laplacian
Source/Sink, the same number as the Wilcox rank-sum (FDR < 0.05).
We wondered whether the differences between the SSC framework and other variations

were sensitive to the choice of model-specific parameters. To address this question, we

Table 3 Pathways identified with higher mean centrality for cancer genes by Wilcox test

Deg Katz Lap Pgr

Deg Sink So SSC Sink So SSC So Si SSC Und

Degree 9 1 4 9 1 2 2 1 3 3 9

Katz-Sink 13 1 2 10 1 3 12 2 10 7

Katz-Source 9 5 1 5 2 4 6 4 8

Katz-SSC 13 2 2 2 3 4 5 11

Lap-Sink 20 2 6 13 2 11 6

Lap-Source 8 3 4 7 4 5

Lap-SSC 15 7 5 6 3

Pgr-Sink 25 8 20 13

Pgr-Source 16 12 9

Pgr-SSC 31 15

Pgr-Und 29
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repeated the regression analysis for the four variations of PageRank across the values of
α ∈[ 0.1, 0.9] with 0.01 increments (across all the pathways, n = 157). We then compared
the adjusted r-squared of the linear regression models according to Formula 22 (Fig. 3).
We used Fisher’s Z-transformation of correlation coefficients of the linear fits to measure
the statistical difference between SSC and undirected PageRank across the range of α.
The results are suggestive that PageRank SSC produces the highest adjusted r-squared
among all the variations for the most of the search range, and as well as the undirected
model for some part of the range. In particular, SSC produces the highest r-squared for
any variation of PageRank at any alpha at α = 0.58.
We also tested the linear regression framework for closeness centrality, as an example

of a centrality method that is not spectral (details in Appendix). Our analysis shows that
Source/Sink closeness centrality is able to identify a linear relationship between quantile-
scores and percentage points of cancer genes (Adj r2 = 0.27) while individual Source
and Sink components fail to identify. Also, undirected closeness centrality shows a lower
coefficient of determination (Adj r2 = 0.11) in comparison to the SSC variation (Fig. 4).

Pathway centrality of mouse lethal genes

The regression analysis shows an evident increase in the percentage of the genes
that are lethal in mouse pathways with the increased centrality scores from PageRank
Source/Sink, Laplacian Source/Sink, and undirected PageRank (Fig. 5). For all of the other
models, the analysis fails to identify any linear relationship between the centrality scores
and the percentages.
The Source PageRank centrality fails to identify any evidence (Adj p-value = 0.649) for

linear relationship (Fig. 5), and the linear regression model accounts for an insignificant
fraction of the variance (Adj r2 = 0.0022), similar to values for the PageRank Sink Com-
ponent ( Adj r2 = 0.004 and Adj p-value = 0.55). In contrast, the combined value of the
two components, Source/Sink PageRank, shows that the linear relationship explains a

Fig. 3 Sensitivity analysis of PageRank variations in the linear regression analysis with respect to the α

parameter. Panel A shows the adjusted r-squared of the linear fit per α(Formula 22). Panel B displays the
negative log p-value of the difference between the correlation coefficients of SSC PageRank versus
undirected PageRank. The red line in panel B denotes the significance threshold of p-value = 0.05
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Fig. 4 Linear regression fit of the quantile-normalized centrality scores (Eq. 20) and the percentage genes
that are cancer-related (Eq. 21). The Source/Sink extension of the centrality models show higher slope and
adjusted coefficient of determination (Adjusted r-squared) in comparison to the standard variations of the
centrality models

statistically significant portion of the variance (Adj r2 = 0.21). In this case, the regres-
sion analysis shows a statistically significant positive regression coefficient of 5.24× 10−2

(Table 4).
For different formats of all centrality models, comparison of CDF between the cancer

genes and normal genes shows that the CDF of lethal genes lies below that of the nor-
mal genes (Fig. 6). The two-sample tests shows statistical power in detecting pathways
with higher centrality of lethal genes using a less conservative FDR threshold (Tables 5,
and 6). The pathway-by-pathway two-sample tests also show that each variation of Lapla-
cian centrality and some formats of PageRank are able to detect a number of pathways to
have a higher mean of centrality for cancer genes. For Laplacian centrality, the number
of identified pathways in the non-parametric model is similar in comparison to a regular
t-test.

Discussion
Regression analysis of the topological position of cancer genes in human pathways shows
that the graph centrality models can account for the percentage of the known important
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Fig. 5 Linear regression fit of the quantile-normalized centrality scores (Eq. 20) and the percentage mouse
pathway genes that are lethal (Eq. 21). The Source/Sink extension of the centrality models show higher slope
and adjusted coefficient of determination (Adjusted r-squared) in comparison to the standard variations of
the centrality models (Table 4)

genes, particularly when formulated in Source/Sink modeling. Individual source or sink
components of Katz and Laplacian fail to identify evidence for the linear relationship of
centrality with the percentage of the genes that are cancer-related, noting these models
have been applied in different pathway analysis methods [15, 16, 18]. In contrast, the SSC
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Table 4 Linear regression fit of the quantile-normalized centrality scores (Eq. 20) and the percentage
of mouse pathway genes that are lethal

Centrality term estimate std.error statistic p.value

Degree (Intercept) 8.08e+00 5.86e-01 1.38e+01 1.19e-24

Degree Coefficient 1.14e-02 1.01e-02 1.13e+00 2.62e-01

Katz-Sink (Intercept) 1.08e+01 1.07e+00 1.01e+01 9.91e-17

Katz-Sink Coefficient -2.27e-02 1.79e-02 -1.27e+00 2.08e-01

Katz-Source (Intercept) 1.32e+01 1.09e+00 1.21e+01 6.70e-21

Katz-Source Coefficient -5.63e-02 1.83e-02 -3.08e+00 2.69e-03

Katz-Source-Sink (Intercept) 8.47e+00 6.78e-01 1.25e+01 4.66e-22

Katz-Source-Sink Coefficient 6.40e-03 1.17e-02 5.46e-01 5.86e-01

Lap-Sink (Intercept) 1.03e+01 1.15e+00 8.89e+00 4.62e-14

Lap-Sink Coefficient -1.06e-02 1.94e-02 -5.48e-01 5.85e-01

Lap-Source (Intercept) 1.30e+01 1.15e+00 1.13e+01 3.82e-19

Lap-Source Coefficient -4.50e-02 1.93e-02 -2.33e+00 2.20e-02

Lap-SSC (Intercept) 5.51e+00 7.05e-01 7.82e+00 5.70e-12

Lap-SSC Coefficient 6.65e-02 1.22e-02 5.46e+00 3.54e-07

PageRank-Sink (Intercept) 8.72e+00 1.05e+00 8.28e+00 1.17e-12

PageRank-Sink Coefficient 1.04e-02 1.74e-02 6.01e-01 5.50e-01

PageRank-Source (Intercept) 9.15e+00 1.15e+00 7.93e+00 4.85e-12

PageRank-Source Coefficient 8.83e-03 1.94e-02 4.56e-01 6.49e-01

PageRank-SSC (Intercept) 5.92e+00 5.84e-01 1.01e+01 5.26e-17

PageRank-SSC Coefficient 5.24e-02 1.01e-02 5.20e+00 1.09e-06

PageRank-Und (Intercept) 7.12e+00 5.26e-01 1.35e+01 2.81e-24

PageRank-Und Coefficient 2.67e-02 9.08e-03 2.94e+00 4.03e-03

format of Katz and Laplacian models exhibit a statistically significant linear relationship
between the centrality and the percentage of the genes that are cancer-related (Table 1).
This improvement is due to SSC assigning centrality values to nodes that are downstream
terminal but topologically important as receivers of information.
Similarly, SSC PageRank shows significant improvement in comparison to the stan-

dard directed formats in explaining the topological importance of cancer genes. These
observations provide a noteworthy insight as different tools leverage directed formats of
PageRank in pathway analysis applications [14, 17]. The higher adjusted r2 of SSC com-
pared to other standard variations (Fig. 3) may be explained by noting that SSC PageRank
is sensitive both to the directionality and the position at the upstream/downstream orga-
nization of pathways. Consistently, for every one of the centrality models the adjusted
r2 and the slope of the linear regression coefficient increase when using the Source/Sink
framework.
The analysis of lethal genes in mouse pathways provide additional validation for SSC

methodology. The association of lethal genes with topological importance in biological
networks has been extensively studied in the context of protein-protein interaction net-
works, namely centrality-lethality rule [28–30]. Our results provide an account for the
centrality-lethality rule in the biological pathways, noting that the pattern is statistically
significant when leveraging SSC modeling. As evident in Fig. 5, SSC formats of Lapla-
cian and PageRank, and undirected PageRank to some extent provide evidence for the
centrality-lethality rule.
Lack of linear relationship in topological importance versus the percentage of biolog-

ically important genes may not dismiss the utility of a centrality model. As evident in
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Fig. 6 Comparison of the cumulative density between lethal genes and normal (non-lethal) genes. The data
points represent the quantile-scores calculated based on normalized centrality (Formula 23) across all
pathways. Each panel includes the p-value of Kolmogorov-Smirnov test for the hypothesis of the CDF of lethal
genes being below that of the normal genes. The panels show that lethal genes tend to have higher centrality
values according to some of the models, including Source/Sink PageRank and Source/Sink Laplacian

CDF analysis and two-samples tests, a centrality model may exhibit distinct patterns
between cancer ( lethal) and non-cancer (non-lethal) genes. This CDF evidence may
explain why the combination of the source and sink components is more informative. We
believe that the evidence of increasing linear relationship between the topological impor-
tance and the percentage of biologically important genes provides a critical insight with
respect to the appropriate choice of directed graph modeling in pathways. In particular,
our results strongly indicate that the knowledge of the topological importance of down-
stream nodes is as valuable as that of upstream nodes, and should not be dismissed as
irrelevant as assumed by current pathway analysis models [14, 15, 18]. In fact, our results
demonstrate a setting wherein the use of SSC and Undirected modeling is superior to the
directed formats. In these conditions, the PageRank SSC can provide a better explana-
tion of the linear relationship in comparison to the undirected model for several possible
values of α.
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Table 5 Pathways identified with higher mean centrality for mouse lethal genes by Wilcox test
(FDR < 0.25)

Lap Pgr

Sink So SSC Sink So SSC

Lap-Sink 1 0 1 0 1 0

Lap-Source 1 0 0 1 1

Lap-SSC 4 0 2 0

Pgr-Sink 2 0 0

Pgr-Source 6 2

Pgr-SSC 4

A limitation of the present study is the requirement of having sufficient information
on the underlying network of pathways. Pathway databases can contain several entries
with insufficient number of interaction between genes and other bio-molecular enti-
ties. In such cases, topological analysis is not feasible and some intermediate steps, such
as data-driven prediction of interactions, may be necessary before using any network-
based modeling [20]. Another limitation of SSC modeling is the requirement of having
information on the directionality of interactions, which can be absent in some pathway
datasets.
While SSC modeling is simple and straightforward, any potential application in other

centrality methods should be handled with caution. We only focused on spectral cen-
trality models because of their widespread use in biological network analysis and their
compatibility to theoretically express the SSC framework. For other centrality types, SSC
framework may or may not be the best option. For example, betweenness centrality –
which measure importance of a node relative to the number of shortest paths that pass
through it – does not produce a meaningful Source Sink variation. If a node k falls within
a vu shortest path in a graph G, it also falls within the uv shortest path in GT . In another
example in the Appendix and Fig. 4, we demonstrate the linear regressionmodel of cancer
genes in human pathways using SSC modeling in closeness centrality, which is consistent
with the presented results.
The presented results are concordant with our hypothesis that accounting for the

upstream and downstream organization of pathways provides more biologically relevant
assessment of organization of pathways. The presented results also explain the success
of Source/Sink modeling in achieving higher sensitivity and biological relevance in the
enrichment analysis and functional interpretation of genomic data as was presented in
our previous research [24]. When considering the biological context, our results formal-
ize the intuitive observation that the key pathway elements may appear at any stage of
the pathways. The presented results also highlight a disadvantage of the directed path-
way analysis models that fundamentally assume a higher importance for the upstream

Table 6 Pathways identified with higher mean centrality for mouse lethal genes by t-test
(FDR < 0.25)

Lap Pgr

Sink SSC Sink

Lap-Sink 1 1 0

Lap-SSC 6 0

Pgr-Sink 1



Yeganeh et al. BioDataMining            (2020) 13:5 Page 20 of 23

pathway elements and neglect the changes/perturbations of downstream elements. The
appropriate choice of centrality measures for biological network analyses may vary
depending onmodel assumptions and the underlying data. However, when applicable, our
results recommend adapting SSC framework for fully leveraging the underlying structure
of the networks.

Conclusion
This study investigated the explanatory power of different centrality models with respect
to a priori important pathway genes. We tested standard and novel centrality models,
and presented a novel alternative with a better topological description of the pathways
that accounts for the importance of the pathway elements with respect to the upstream
and downstream positions. The two case examples in this study were cancer/non-cancer
genes in human and lethal/viable genes in mouse. For both groups there exists literature
on their positions and importance in their corresponding biological networks.
Regression analysis, subsequent comparison of CDFs, and two-sample tests of the path-

ways show that spectral importance determines the topological importance of cancer
genes. In particular, the SSC modeling results in more distinct and clear separation of the
a priori important genes. These results show that using directions while giving impor-
tance to terminal nodes in pathways may give higher explanatory power which should be
of particular interest to the research in biological networks and pathway analysis.

Appendix
Closeness centrality

Closeness centrality describes a model where the importance of each node is calculated
as the sum of its shortest distance from all the other nodes. Formally:

Ccls(v) :=
∑

u∈V (G)

1
d(v,u)

(25)

where d(v,u) denotes the length of the shortest paths between v and u. Similar to the
other models, we define source closeness as the standard closeness centrality.

CSo
cls(v) := Ccls(v) (26)

We define sink closeness as:

CSi
cls(v) :=

∑

u∈V (G)

1
d(u, v)

(27)

Subsequently, we defined the Source Sink closeness centrality as:

CSS
cls := CSo

cls + CSi
cls (28)

We analyzed the linear regression fit of quantile-normalized closeness centrality values
versus the percentage of genes that are cancer-related in human pathways. The results
show a higher adjusted r-squared for the SSC variation compared to the other models.
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Proofs

For an adjacency matrix of a directed graph, A, define the weight normalized matrix L
using a positive real value d as following:

Lij(d) = Aij

d + ∑n
j=1 |Aij| (29)

L = lim
d→0

L(d) (30)

Define the influence matrix, L∗, as the geometric series of L. In the case of undirected
graphs, this notion is related to the concept of normalized Laplacian and heat diffusion
kernels [32].

L∗ =
∞∑

i=0
Li (31)

On the condition of convergence, the above summation can be written as:

L∗ = lim
d→0

(I − L(d))−1 (32)

According to Shojaie and Michailidis, choice of d as small as 0.01 would produce con-
sistent and stable results. However, to eliminate the need for the parameter d, we rewrite
an equivalent formulation for the matrix L as :

L := D−1A (33)

where D is the diagonal degree matrix with the same definition as in D of PageRank. As
noted in [22], for undirected graphs, the solution to the matrix L in a matrix geomet-
ric series uniquely exist. That is, the matrix L∗ from Formula 31 is only guaranteed to
uniquely exist when we use the symmetric matrix of the undirected graph.
However, the case might be different for directed graphs. Therefore, including a shrink-

ing factor, α < 1, that ensures the convergence in a geometric summation. We then
re-define:

L := αD−1A (34)

Using the above Formula, we define the Laplacian centrality of a node as the aggregated
influence of a node i on all other nodes. This is obtained from Formula 31:

Clap = L∗1

= (
I − αD−1A

)−1
1

(35)
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