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ABSTRACT 

 

 

ZIAUL HAQ ADNAN. Bullwhip effect in pricing in varying supply chain structures and 

contracts using a game theoretical frameworks (Under the direction of Dr. E. C. 

OZELKAN) 

 

 

Bullwhip effect in Pricing (BP) refers to the amplified variability of prices in a 

supply chain. When the amplification takes place from the upstream (i.e. supplier’s side) 

towards the downstream (i.e. retail side) of a supply chain, this is referred as the Reverse 

Bullwhip effect in Pricing (RBP). On the other hand, if an absorption in price variability 

takes place from the upstream towards the downstream of a supply chain, we refer this 

phenomenon as the Forward Bullwhip effect in Pricing (FBP).  

In this research, we analyze the occurrence of BP in the case of different game 

structures and supply chain contracts. We consider three game scenarios (e.g. 

simultaneous, wholesale-leading, and retail-leading) and two supply chain contracts (e.g. 

buyback and revenue-sharing). We analyze the occurrence of BP for some common 

demand functions (e.g. log-concave, linear, isoelastic, negative exponential, logarithmic, 

logit etc.). We consider some common pricing practices such as a fixed-dollar and fixed-

percentage markup pricing and the optimal pricing game. 

We discuss the conditions for the occurrence of BP based on the concavity 

coefficient and the cost-pass-through. We analyze the price variation analytically and then 

illustrate the results through numerical simulations. We extend the cost-pass-through 

analysis for a N-stage supply chain and conjecture the BP ratios for a N-stage supply chain. 

We compute cost-pass-through under both a buyback and a revenue-sharing contract. We 

compared the BP ratios between a revenue-sharing contract and a no-contract cases. We 
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include both the deterministic and stochastic demand functions with an additive and a 

multiplicative uncertainty.  

The results indicate that the occurrence of BP depends on the concavity coefficient 

of the demand functions. For example: RBP occurs for an isoelastic demand, FBP occurs 

for a linear demand, No BP occurs for a negative exponential demand etc. This study also 

shows that, FBP and RBP occur in varying magnitude for different types of games and 

supply chain contracts. The comparison between the stochastic model and the risk-less 

model shows that the additive or multiplicative uncertainty changes the price fluctuation. 

The comparison between contract and no-contract cases shows that the contract minimizes 

FBP or RBP in some cases.   
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CHAPTER 1: INTRODUCTION 
 

 

1.1 Introduction   

Pricing decision is critical as it is responsible for significant share (e.g. up to 90%) 

of the final product cost (Davenport & Kalagnanam, 2001). Pricing is directly related to 

sales, revenues, and profits. In order to improve the customer service or to attract more 

customers, many companies apply dynamic pricing strategy. Many a times, companies 

fluctuate price to adjust with the supply or to cope up with the competition in the market. 

Thus, it benefits both the seller and the buyer (Dugar, Jain, Rajawat, & Bhattacharya, 

2015). However, fluctuation of prices can lead to market speculation and increased 

uncertainty. It creates information distortion in order quantity and inventory (also known 

as the ‘Bullwhip Effect’) which adversely affects the supply chain in terms of excess 

inventories, backorders, inefficient use of resources etc (Lee, Padmanabhan, and Whang, 

2004). Therefore, it is necessary to study the fluctuation of price in the supply chain.  

Price variation may occur due to internal or external factors such as managerial 

decisions, cost changes, scarcity of resources, supplier quantity discounts, promotional 

sales, or future market speculations. In this study, we consider external cost changes and 

then analyze the impact of the cost change on the supply chain optimal pricing.  

Interestingly, price variation does not remain constant always across the various 

stages of supply chain. It may propagate in an increased or decreased fashion towards 

downstream (i.e. customer side) supply chain depending on the demand function, supply 
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chain structure etc. We name the amplified or absorbed variability of prices as the 

‘Bullwhip effect in Pricing (BP)’. If variability of price is increased towards the 

downstream supply chain, then researchers named it as ‘Reverse Bullwhip effect in Pricing 

(RBP)’ (Özelkan & Çakanyıldırım, 2009). On the other hand, if variability of price is 

absorbed towards the downstream supply chain, we name it as ‘Forward Bullwhip effect 

in Pricing (FBP)’. The ‘reverse’ and ‘forward’ directions refer to the direction of the 

classical Bullwhip effect in order quantity and inventory decision.  In classical bullwhip 

effect, the variability of order information towards upstream is higher. Hence, if the 

variability of price towards downstream is higher, then the direction is referred as ‘reverse’; 

on the other hand, if the variability of price towards downstream is less, then the direction 

is referred as ‘forward’.  

Using real market data, figure 1.1 and 1.2 shows the empirical evidences of an 

amplified and reduced variation in price respectively. Figure 1.1 shows amplified 

variability in the case of U.S. beef market and potato prices in Chicago, IL. This is an 

example of RBP. Figure 1.2 shows decreased variability in oil retail prices. This is an 

example of FBP. Empirical research in U.S. coffee market shows, a 10% increase in the 

cost resulting a 3% increase in the retail price (Leibtag, Nakamura, Nakamura, & Zerom, 

2007). German coffee market also shows reduced variability in retail price (Bonnet, 

Dubois, Villas Boas, & Klapper, 2013). We can say, FBP occurs in the case of coffee 

market.  
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Figure 1.1: Amplified variability1 in beef and potato prices towards downstream supply 

chain 

 

                                                           
1 In this figure, we compare the standard deviations (𝜎) of the real beef price data from USDA and potato 

price data from FRED. Similar conclusion can be drawn by comparing the price index data (e.g. CPI, PPI 

etc.) from Bureau of Labor Statistic database (Ozelkan and Lim, 2008). 
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Figure 1.2: Decreased fluctuation of retail oil price. [Image adapted from Borenstein and 

Cameron (1992) and further edited] 

 

Existing research is centered on the occurrence of RBP. Therefore, one research 

question may be asked, “can bullwhip effect in pricing propagate towards forward 

direction?”. This same question can be rephrased as, “Does Forward Bullwhip effect in 

Pricing (FBP) occur?”. In order to figure out the required conditions for the occurrence of 

RBP, existing literature considered game theoretic model of a multi-stage linear supply 

chain, where a leader-follower type ‘Stackelberg’ game was considered in which a supplier 

or an upstream supply chain player act as the leader. However, previous research did not 

consider the reverse direction of game where powerful retailers (or downstream supply 
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chain players) may act as leaders too. A simultaneous game structure was not considered 

either. The occurrence of BP in the case of advanced supply chain contracts2 was also 

unanswered. Based on previous studies, research questions that we are trying to answer can 

be summarized as follows:  

1. Can bullwhip effect in pricing propagate in the forward direction? Alternately, does 

FBP occur? 

2. Does bullwhip effect in pricing exist if retailers or downstream supply chain players 

act as leaders in ‘Stackelberg’ game?  

3. How does BP occur in the case of simultaneous supply chain pricing games? 

4. What is the effect of Buyback contracts on BP? 

5. What is the effect of Revenue-sharing contracts on BP? 

 

The objective of this research is to analyze the price variability across the supply 

chain stages considering various game structures and supply chain contracts. In next 

chapter, we review the literatures. Then in Chapter 3, we analyze the conditions for the 

occurrence of BP and conclude the occurrence of BP for some common demand functions 

and pricing practices. In Chapter 4, we analyze the occurrence of BP for optimal pricing in 

three game-settings. After that, to analyze the occurrence of BP in the case of supply chain 

contracts3, we consider buyback (Chapter 5) and revenue-sharing contracts (Chapter 6 and 

7) in our model. In the case of buyback contract4, the demand is stochastic and the problem 

                                                           
2 Supply chain contracts enables earning more profit. G. P. Cachon (2003) reviewed various contracts’ 

performance in coordinating the supply chain. 
3 Some popular supply chain contracts are revenue-sharing, buyback/return/markdown, cost-plus, sales 

rebate, quantity discount, price-discount/bill-back, quantity flexibility etc. (G. P. Cachon, 2003) 
4 In the case buyback contract, there is no deterministic demand case. Because, for deterministic demand, 

there is no need of return-policy/buyback. 
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is modeled as a newsvendor case (Chapter 5). In the case of revenue-sharing contract we 

consider both deterministic and stochastic demand. In the deterministic demand case 

(Chapter 6), the problem is modeled as markup-pricing games (similar to Chapter 4). In 

the stochastic demand case (Chapter 7), the problem is modeled as a newsvendor case 

(similar to Chapter 5). In stochastic demand cases (Chapter 5 and 7), we consider both 

additive and multiplicative type demand uncertainties. We conduct analytical analysis and 

illustrate the results with numerical simulations in each of the chapters (4,5,6, and 7). Then 

finally, in Chapter 8, we summarize the major research, discuss the limitations and suggest 

future directions.  

 



 

 
 

CHAPTER 2: LITERATURE REVIEW 

 
 

2.1 Introduction 

In this chapter, we review several streams of literatures related to the research such 

as the effect of price variation on bullwhip effect, bullwhip effect in pricing, price variation, 

pricing database, game theory applications in supply chains, newsvendor model, buyback 

contracts, and revenue-sharing contracts.  

2.1 Effect of Price Variation on Bullwhip effect 

The term ‘Bullwhip effect’ was originally introduced by H. L. Lee, Padmanabhan, 

and Whang (1997). Since then, it has been a buzzword in the supply chain analysis. There 

are numerous analytical (L. Chen & Lee, 2009; Ma, Wang, Che, Huang, & Xu, 2013) and 

empirical analysis to quantify and reduce the bullwhip effect in various supply chain 

structure. For a recent comprehensive review about bullwhip effect, the reader may check 

the review paper by X. Wang and Disney (2015). F. Chen, Drezner, Ryan, and Simchi-

Levi (2000) quantified the Bullwhip effect in supply chain considering simple supply 

chain. They also illustrated the existence of bullwhip effect even considering centralized 

demand. H. L. Lee, Padmanabhan, and Whang (2004) identified four sources of bullwhip 

effect (e.g. demand signal processing, rationing game, order batching, and price variations). 

Later, other researchers found many other sources of bullwhip effect (Bhattacharya & 

Bandyopadhyay, 2011). Among various causes, Paik and Bagchi (2007) considered price 
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variations as one of three most significant causes of bullwhip effect in order quantity and 

inventory. Therefore, reducing price variation may reduce bullwhip effect. Mujaj, Leukel, 

and Kirn (2007) also suggested that pricing strategy (e.g. reverse pricing) could reduce the 

bullwhip effect in order quantity. They used agent-based simulation in their analysis to 

support their claim.  

2.2 Bullwhip effect in pricing 

Researchers identified amplified fluctuation in prices towards downstream supply 

chain and referred it as ‘Reverse Bullwhip effect in Pricing (RBP)’ (Özelkan & 

Çakanyıldırım, 2009; Özelkan & Lim, 2008). Özelkan and Çakanyıldırım (2009) 

considered leader-follower game framework in the supply chain and related the cost-pass-

through to capture the ratio of price-variances. They derived the conditions on price-

sensitive demand function for which price-variation may be amplified. Özelkan and Lim 

(2008) extended the previous analysis5 considering stochastic demand function and added 

some stronger and weaker conditions on the demand function. Both of these papers focused 

on the reverse bullwhip effect in pricing but did not consider the plausibility of forward 

direction of bullwhip effect in pricing. Literature related bullwhip effect in pricing is very 

limited. To our best knowledge, no other paper discusses bullwhip effect in pricing, 

however, there are numerous papers that discussed the concept from dynamic pricing and 

cost-pass-through perspectives which are reviewed in the next section.  

                                                           
5 The paper of Özelkan and Çakanyıldırım (2009) was originally published online on 2007 that was cited 

by Özelkan and Lim (2008) 
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2.3 Price Variation 

Among the literatures of dynamic pricing, there are analytical models, as well as 

empirical models.  

In the analytical analysis of price change, cost-pass-through is a great economic 

tool (Weyl, 2008). Cost-pass-through is the marginal rate of price-changes in cost. The 

cost-pass-through reflects the retailer’s optimal pricing response to manufacturer’s price 

change. Tyagi (1999) shows the conditions on customer demand to conclude about the 

cost-pass-through. Based on the cost-pass-through, Weyl (2008) extracted conclusions 

about profits and markup in simultaneous and wholesale leading game. However, he did 

not consider the retail leading game. He also differentiated between cost amplifying and 

absorbing, increasing and decreasing cost-pass-through. Weyl (2008) considered canonical 

simple supply chain structure with two stages (retailer and manufacturer). Unlike that, 

Gaudin (2016) calculated pass-through in vertical contracts considering bargaining power. 

While Fabinger and Weyl (2012) discussed the cost-pass-through; Cowan (2004) discussed 

demand curvature; Spengler (1950) talked about profit margin in double marginalization; 

Bresnahan and Reiss (1985) compared the margins between retailer and wholesaler; 

Adachi and Ebina (2014) connected the work of Weyl-Fabinger and Cowan with the work 

of Spengler and Bresnahan-Reiss. Adachi and Ebina (2014) related the cost-pass-through 

with profit margins in double marginalization.  

Villas-Boas (2007) empirically analyzed price-variations in yogurt market. They 

use the data from IRI set and considered vertical relations, various supply chain structures, 

linear and non-linear pricing.  E. Nakamura and Zerom (2010) analyzed the incomplete 

cost-pass-through empirically in coffee industry. Bonnet et al. (2013) did empirical 
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analysis of cost-pass-through in German coffee market. Some researchers used large-scale 

dataset to analyze price dynamics at grocery level (A. O. Nakamura, Nakamura, & 

Nakamura, 2011). 

2.4 Pricing Database 

In order to study empirical examples of price variation, we look for dataset of retail 

prices, wholesale prices, commodity prices etc. ERS division of USDA compared the farm 

price, wholesale price and retail price by commodity types (e.g. beef, orange, broccoli etc.). 

Federal Reserve Economic Data (FRED) by Bank of St. Louis provides economic data in 

various categories including commodity prices at various frequency level (e.g. weekly, 

monthly, annual etc.). The US Bureau of Labor Statistics (BLS) provides price indexes 

(e.g. Consumer Price Index (CPI) and Producer Price Index (PPI)) for various categories 

of products.   

A good database for academicians is IRI dataset6. It contains store data (e.g. sales, 

pricing, promotion etc.) at UPC level for 11 years in 47 markets (e.g. 11,300 grocery stores; 

7,500 drug stores). Advertising data is also available for some early years. Bronnenberg, 

Kruger, and Mela (2008) discussed about this dataset in details.  

Kilt Center for Marketing from The University of Chicago Booth School of 

Business maintains and promotes both public and subscription-based databases for 

academic researchers7. For academic purpose, public databases (e.g. Dominick’s, ERIM, 

Bayesm etc.) are good resources. The Dominick’s Finer Foods database8 is popular for 

                                                           
6 IRI academic dataset: https://www.iriworldwide.com/en-US/solutions/Academic-Data-Set ;  

Processing and handling charge: $1000; Data: 350+ gigabyte; Media: USB drive;   

Key measures and application of IRI dataset: http://www.whartonwrds.com/datasets/iri/  
7 Marketing Databases: https://research.chicagobooth.edu/kilts/marketing-databases  
8 Dominick's dataset: https://research.chicagobooth.edu/kilts/marketing-databases/dominicks/general-files  
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academic research. This database contain data from a single retail chain (E. Nakamura, 

2008). 

Various research reports (e.g. eMarketer, Statista, ThomsonONE etc.) use Nielson 

(formerly known as AC Nielsen) data. It is a rich (in terms of size, scope, breadth, 

longitudinal timeframe etc.) commercial dataset that provides scanner panel data of retail 

prices at UPC (Universal Product Code) level. The academic version of this dataset is 

referred as ‘Nielsen Datasets at the Kilts Center for Marketing’9, which is a partnership 

between ‘The University of Chicago Booth School of Business’ and ‘The Nielsen 

Company’. The Kilts Center has been licensed by Nielsen to provide approved academics 

(around the world) with access to several Nielsen datasets. This dataset contains consumer 

panel data (consisting of 40 to 60 thousand US households) since 2004 and retail scanner 

data (e.g. prices, point of sales information etc. of 90 retail chains) since 2006. Nielson 

mostly contains data from the large retail chains (except Wal-Mart), but not from the 

independent supermarkets, which is a major share of U.S. markets (E. Nakamura, 2008). 

Moreover, household buys less amount of a particular UPC and often shifts among UPCs 

(of the same types of product); therefore, the data represents very small cross-section of 

identical items. (E. Nakamura, 2008). Broda and Weinstein (2010) discussed about Nielsen 

datasets in details.  

Unlike retail price data, wholesale prices are not readily available. Wholesale trade 

deals are more complex and confidential. Wholesale/manufacturer prices of some grocery 

chains (from 50+ markets) are available from PromoData and commodity prices can be 

                                                           
9 Nielsen Datasets at the Kilt Center for Marketing: https://research.chicagobooth.edu/nielsen/  
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available from New York Board of Trade or New York Physicals market data (Leibtag et 

al., 2007; E. Nakamura & Zerom, 2010). 

 

2.5 Games Theory Applications in Supply Chains  

Game theoretical framework is commonly used in supply chain analysis. The game 

rule can be applied among players within the same echelon of supply chain (e.g. retailer vs 

retailer, supplier vs supplier etc.) (see examples in Dowrick (1986); Gal-Or (1985); Y. Li 

(2014) etc.) or different echelon of supply chain (e.g. wholesaler vs retailer) (see examples 

in Cai, Zhang, and Zhang (2009); E. Lee and Staelin (1997); Moorthy and Fader (1989) 

etc.). The former type is called a horizontal game and the latter is called a vertical game. A 

combination of the horizontal and vertical game is also seen in the supply chain literature 

(Yu & Huang, 2010). The game players can decide on their strategies simultaneously or 

one player can decide after the other player had committed on its strategy (i.e. sequential 

move). Simultaneous game is often referred as Nash game and sequential leader-follower 

type game is referred as Stackelberg game. Stackelberg game can be wholesale leading or 

retail leading depending on who is committing first on its strategy. The leadership role can 

be endogenous or exogenous (i.e. defined by the market type). The game could be quantity 

setting or price setting or a combination of these two (e.g. wholesaler decides on wholesale 

price and retailer decides on order quantity) (Ingene & Parry, 1998; Yang & Zhou, 2006). 

The cost information can be unknown or a common knowledge (Albæk, 1992). 

Gerard P. Cachon and Netessine (2004) provided a comprehensive review of game 

theory application in supply chain management. Kogan and Tapiero (2008) discussed the 

application of supply chain games from an operation management and risk valuation 
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perspective. He, Prasad, Sethi, and Gutierrez (2007) reviewed the applications of 

Stackelberg differential game in supply and marketing channel.  

Followings are some of the examples of game application in supply chain analysis 

from the literatures. Ingene and Parry (1998) applied game theory to decide on optimal 

wholesale price policy considering competing retailers. Yang and Zhou (2006) considered 

wholesaler as a Stackelberg leader and then among the competing retailers’ they considered 

three types of competing behaviors (e.g. Cournot, Collusion and Stackelberg). Cai et al. 

(2009) analyzed a dual channel competition from three game-theoretical perspectives- 

supplier-stackelberg, retailer-stackelberg and nash game. They compared between two 

situations where the supplier enters in a direct channel or the supplier operates through a 

retail channel. Tsao et al. (2014) applied a Retailer-Stackelberg game in the supply chain 

of category products where manufacturers offer trade allowances. Amin-Naseri and 

Khojasteh (2015) showed the application of the Stackelberg game between two supply 

chain and also between two players of the same supply chain. They considered both the 

manufacturer-leading and retail-leading game. Lantz (2009) applied the game theory to 

solve the double marginalization problem of transfer pricing and recommended a two-part 

tariff. Leng and Parlar (2010) applied a cooperative and a non-cooperative game in an 

assembly supply chain. X. Y. Zhang and Huang (2010) applied Nash bargaining model 

between one platform-product manufacturer and multiple cooperative suppliers. They 

developed an iterative algorithm to find the subgame perfect equilibrium. Yu and Huang 

(2010) applied dual simultaneous non-cooperative game framework in vendor-managed 

inventory. They developed the model as a dual Nash game model (two sub-games – 

retailer-retailer, and manufacturer-retailers). They applied Genetic Algorithm to find out 
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the Nash equilibrium. SeyedEsfahani et al. (2011) applied Nash and Stackelberg 

(wholesale and retail lead) games in a vertically cooperative pricing and advertising 

decision. Nie (2012) showed the application of Stackelberg game with leadership in-turn 

under open loop and close loop information system. Widodo, Pujawan, Santosa, Takahashi, 

and Morikawa (2013) applied adjusted-Stackelberg game in their analysis of dual channel 

supply chain. Y. Li (2014) applied a simultaneous and a sequential game in vertically 

differentiated market (i.e. products with higher and lower quality). Konur and Geunes 

(2016) applied Stackelberg game between the supplier and retail chain considering 

horizontal centralization and joint procurement.   

A relevant question may occur in the readers’ mind if there is any advantage or 

disadvantage in leadership of the Stackelberg game. Researchers commented on this issue. 

Dowrick (1986) argued that in the case of horizontal pricing game, if the reaction function 

is downward sloping, both firms prefer to be leader in order to get more profit. On the other 

hand, in the case of upward sloping reaction function, both firms prefer to be follower. In 

such case, if the firms are allowed to choose their leadership role, they cannot agree. 

Similarly, if the leadership is assigned exogenously, the Stackelberg leader gets greater (or 

less) profits than the follower if the reaction functions of the players are downward (or 

upward) sloping respectively (Gal-Or, 1985). Cyrenne (1997) considered horizontal game 

(between manufacturer-manufacture and retailer-retailer) with vertical relations 

(manufacturer-retailer) and showed that the price leadership is not always advantageous in 

the case of vertical relationship. In the case of vertical pricing game, if the decision of the 

wholesaler and retailer are strategic substitutes (i.e. if one raises margin, then other finds it 

optimal to reduce), then the leader gets advantage. On the other hand, if one finds it optimal 
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to increase its margin more when the other had increased the margin (i.e. strategic 

complements); then the follower gets advantage (E. Lee & Staelin, 1997; Moorthy & Fader, 

1989). Albæk (1992) analyzed the emergence of endogenous leadership in the case of 

unknown cost information and argued that the assumption of unknown cost may create 

incentives for the leadership role; however, there will be situation when the supply chain 

players cannot agree on the leadership role. Konur and Geunes (2016) also commented on 

the advantage or disadvantage of leadership in the supply chain of one wholesaler and 

coordinated retail chain.  

2.6 Newsvendor Model 

In our research, we consider a price-setting newsvendor model to model the 

contracts with stochastic demand (Chapter 5 and 7). Newsvendor model is primarily used 

for inventory management of perishable products. This model can also be applied to other 

seasonal products having short-lifecycle such as fashion goods (Petruzzi & Dada, 1999; 

Stalk Jr & Hout, 1990). The original idea came from the concept of a ‘Newsboy’10 case, 

where a seller buys certain amount of newspaper at the beginning of the day and he sells 

those newspapers within that day, otherwise the newspaper become obsolete. Therefore, 

the seller needs to forecast the demand of the day accurately. If he runs out of order (i.e. 

understocking), then he loses potential sales that may impact his goodwill (e.g. losing 

customer). The loss of goodwill can be considered as a penalty cost. On the other hand, in 

                                                           
10 Historically, Edgeworth (1888) was the first to discuss the newsvendor problem in a bank industry to 

satisfy the demand of cash flows. He suggested using the normal distribution to satisfy an ‘enough’ potion 

of the demand. Later Morse and Kimball (1951) introduced the term ‘Newsboy’. Among researchers, this 

problem was also known as ‘Christmas Tree Problem’ and ‘Newsperson Problem’. Currently, the term 

‘Newsvendor’ (suggested by Matthew Sobel) is commonly used (Porteus 2008).    
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the case of overstocking, he may incur a complete loss or may receive a salvage for the 

leftovers. There are many versions of the newsvendor model. The basic version compares 

the cost of overstocking and the cost of understocking. Thus, it calculates the optimal 

service level that generates maximum payoff for the company. Newsvendor model usually 

consider a single product for a single period.  

Many researches have been done in the field of newsvendor model. Choi (2012), 

Qin, Wang, Vakharia, Chen, and Seref (2011), and Khouja (1999) provided extensive 

reviews of newsvendor model. In the case of newsvendor model, the demand can be either 

price-independent or price-sensitive (Jammernegg & Kischka, 2013). It is to be noted, a 

suboptimal decision may generate if the price-sensitivity of demand is not considered (Ye 

& Sun, 2016). In the price-setting newsvendor model, the demand is price sensitive. In 

such model, the newsvendor decides on optimal order quantity & price. Examples of earlier 

works in the price setting newsvendor are Whitin (1955), Zabel (1970), Thowsen (1975), 

Mills (1959), Karlin and Carr (1962), Young (1978) etc. Petruzzi and Dada (1999) 

reviewed price-setting newsvendor, and considered both additive and multiplicative 

uncertainty types. In Petruzzi and Dada (1999)’s model, joint decision of stocking quantity 

and selling price were considered. The demand or supply can be uncertain in the price-

setting newsvendor model. M. Xu, Chen, and Xu (2010) analyzed the effects of uncertain 

demand, and M. Xu and Lu (2013) analyzed the effects of uncertain supply in a price-

setting newsvendor model. Hsieh, Chang, and Wu (2014) also considered the demand 

uncertainty in their price-setting newsvendor model along with competing manufacturers 

and a retailer. Yao, Chen, and Yan (2006) considered an additive uncertainty in the 

demand. Jammernegg and Kischka (2013), and X. Xu, Cai, and Chen (2011) considered a 
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multiplicative uncertainty in the demand. Abad (2014) and Kocabiyikoglu and Popescu 

(2011) considered both types of additive and multiplicative uncertainty. It is to be 

mentioned, the additive uncertainty has constant variance. In the case of multiplicative 

uncertainty, the variance is price-dependent but the coefficient of variation is constant 

(Abad, 2014; Petruzzi and Dada,1999). Additive type model is easier to analyze and 

explore (Abad, 2014).    

X. Xu et al. (2011) provided a solution framework for the price setting newsvendor 

problem considering a general demand setting. Jammernegg and Kischka (2013) assumed 

quasi-concavity of the objective function to narrow the range of enumeration. They 

calculated the optimal stocking factor and provided conditions for the existence of solution 

for both price-independent and price-sensitive demands. Many researchers derived 

necessary and sufficient conditions for unimodality of the objective function in the price-

setting newsvendor model (Kocabiyikoglu & Popescu, 2011; Lu & Simchi‐Levi, 2013).  

In newsvendor modeling, the service level approach is preferable than the shortage 

cost approach, because the shortage cost is difficult to forecast and it is product-specific 

(Abad, 2014). Both of Lu and Simchi‐Levi (2013) and Kocabiyikoglu and Popescu (2011) 

did not use shortage cost in their model. Kocabiyikoglu and Popescu (2011) introduced 

lost-sale elasticity in their model. Abad (2014) focused on service level approach to 

determine optimal policy for price-setting newsvendor problem. Jammernegg and Kischka 

(2013) considered the service level and probability of negative profit as constraints in 

solving for the optimal price and order quantity.  

Typically, newsvendor model considers single product for single season. However, 

there are models that consider multiple complementary and substitute products (Kachani 
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& Shmatov, 2011). Hsieh, Chang, and Wu (2014) also considered differentiated products 

from multiple manufacturers. In the case of single product, price sensitive demand is only 

sensitive to its own price but in the case of availability of complementary and substitute 

products, the cross price-sensitivity should also be considered. Kachani and Shmatov 

(2011) considered sensitivities to own price, to competitor’s price, and to other products’ 

price. 

Ye and Sun (2016) incorporated strategic behavior of consumers in price-sensitive 

newsvendor model. The strategic and forward thinking consumer tend to delay their order 

until the products are available at salvage or discounted price. Ye and Sun (2016) analyzed 

the effect of additive and multiplicative type price-sensitivity of demand, and determined 

optimal selling price and stock quantity that maximize the profit. The results indicated that, 

the strategic behavior of consumer impacts newsvendor’s profit positively (Ye & Sun, 

2016). Like the strategic consumers, strategic retailers can also postpone their ordering or 

pricing decisions. Strategic retailers may set the price immediately after experiencing the 

demand uncertainty. Granot and Yin (2008) analyzed the effect of price postponement and 

order postponement in decentralized newsvendor model. The demand was price-sensitive 

and the uncertainty was of multiplicative type.  

In order to boost up sales or profits, supply chain experts often promote various 

contracts that may eventually increase the overall supply chain profit. Various popular 

contracts include but not limited to buyback, revenue-sharing, cost-plus, sales rebate, 

quantity discount, franchise-contracts etc. We are considering buyback and revenue share 

contract in our analysis. Under any contract, a supply chain is said to be coordinated if 

individual’s best action improves the overall profit of the supply chain. Contracts inspire 
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participation among decentralized firms, such that they behave like a centralized coherent 

system (Giannoccaro & Pontrandolfo, 2004).  Moreover, the supply chain players would 

be interested to participate in any contract if their individual profit increases under contract 

situation compared to no-contract situation. Gérard P. Cachon (2003) reviewed various 

contracts’ performance considering newsvendor model (both fixed-price and price-setting 

types). He also discussed the scenarios when simpler contracts (i.e. sub-optimal actions) 

with less administrative cost is preferred over a perfect coordination. Gérard P. Cachon 

(2003) also analyzed the joint consideration of price and quantity decision in newsvendor 

model and concluded that coordination with contract is difficult in such cases, because of 

conflicting incentives. In next sections, we discuss two popular contracts- buyback and 

revenue sharing.  

 

2.7 Buyback contract 

Buyback contract is suitable for products with limited life expectancy (Höhn, 

2010). This contract is very popular in markets like books, pharmaceuticals, apparels, 

computers, newspapers etc. (Padmanabhan & Png, 1995). 30-35% of the new hardcover 

books are returned to the publisher (Cachon & Terwiesch, 2012; Chopra & Meindl, 2015). 

Other markets and companies that practice the buyback contract includes but not limited 

to toys company such as DoodleTop (Leccese, 1993), computer companies such as HP and 

IBM (Anonymous, 2001), Intel (Roos, 2003; Spiegel, 2002), apparel industry (Choi, 2013; 

Xiao & Jin, 2011) etc.  

In the case of buyback practice, the geographical location plays an important 

because of the associated shipping cost. Hence, local suppliers may offer this contract as 
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an added service in a competitive supplier market (e.g. Choi (2013).). For distant suppliers, 

a modified version of the buyback can be implemented where the retailer need not to return 

the good physically, but salvages at the retailer’s location and the wholesaler credits an 

amount back for the leftovers (Cachon, 2003). In Apparel industry, the ‘buyback credit’ is 

known as ‘markdown money’ that is offered as a subsidy for the clearance items. For 

examples, manufacturers like Tommy Hilfiger, Liz Claiborne, Ralph Lauren, Jones 

Apparel Group etc. offer markdown money to retailers like Federated (also known as 

Macy’s), Dillard's, Saks, Kohl's, J.C. Penney etc. (Kratz, 2005; Rozhon, Petutschnig, 

Wrzaczek, & Jonak, 2005; Wang & Webster, 2007). 

Researchers applied the buyback contract in various supply chain structures such 

as a single supply chain (Wang & Webster, 2007); a supply chain with two production 

modes (Donohue, 2000); a supply chain with effort dependent demand (Cachon, 2003; 

Taylor, 2002); a supply chain with loss-averse retailer (Wang & Webster, 2007); a supply 

chain of mass-customization etc.  

Two of the main objectives of applying supply chain contracts is to coordinate11  

the supply chain and to increase the profitability of the supply chain. In the case of a fixed 

price model, the buyback contract coordinates the supply chain (Pasternack, 1985), hence 

eliminates the double marginalization problem. In the case of a price-setting newsvendor 

model, the buyback contract cannot coordinate the system12  (Kandel, 1996). However, the 

                                                           
11 A supply chain is referred as coordinated if each members’ optimal action optimizes the overall supply 

chain. That means, each members’ profit function should be an affine transformation of the system’s profit 

function (Cachon, 2003). 
12 A modified version of buyback (e.g. price-discount contract) may coordinate the price-setting newsvendor 

model where the wholesaler dictates the retail price (e.g. retail price maintenance) (Kandel (1996); Cachon 

(2003)). Moreover, it is to be mentioned, according to Marvel and Peck (1995) and Bernstein and Federgruen 

(2005), buyback can coordinate the supply chain if the supplier earns zero profit (Höhn, 2010). Giri, Bardhan, 

and Maiti (2016) claimed that their composite contract (a combination of the buyback contract, a sales rebate, 
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contract still incurs greater profits for the retailer and wholesaler. Emmons and Gilbert 

(1998) analyzed the application of buyback contract in a single supply chain with 

multiplicative demand uncertainty and showed that the buyback contract can increase the 

wholesaler’s profit. Padmanabhan (2004) applied buyback contract in a market of one 

manufacturer and multiple competing retailers with demand uncertainty and showed that 

buyback (also referred as a return policy) improves manufacturer’s profitability. Hsieh and 

Lu (2010) also applied return policy in the context of manufacturer-Stackelberg game and 

competing risk-averse retailers. Wu (2013) showed that buyback is profitable in both cases 

of single supply chain or a competing supply chain. He assumed a vertical integration and 

a Stackelberg game. In both cases, the buyback turned out to be profitable. There are 

examples of modified versions of buyback contracts as well (Cachon, 2003; Giri et al., 

2016). Cachon (2003) discussed the price discount contract as a modified version of the 

buyback contract. Giri et al. (2016) combined the buyback contract with a sales rebate and 

a penalty contracts.  

In this research, we are considering a single supply chain with stochastic demand 

(e.g. newsvendor model) where the wholesaler offers the buyback contract. Since, the 

buyback contract is widely practiced in the supply chain market; we are interested to 

analyze the price variation in this case.  

  

2.8 Revenue-sharing contract 

Revenue-sharing contract is very popular in video rental industry. Gérard P Cachon 

and Lariviere (2005) discussed the application, strengths, and limitations of the revenue-

                                                           
and a penalty contracts) coordinates the decentralized three-layer supply chain with stochastic demand and 

random yield.   
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sharing contract considering a newsvendor model. They showed that revenue-sharing 

contract is equivalent to buy-back (or price-discount) contract in the case of fixed-price (or 

price-setting) newsvendor model. Pfeiffer (2016) compared the revenue-sharing contract 

with conventional wholesale-price contract and cost-plus contract and concluded that in 

the case of greater cost-uncertainty, revenue-sharing contract outperforms the wholesale-

price contract. Many researchers showed the application of revenue-sharing contract in 

coordinating the supply chain (Gérard P Cachon & Lariviere, 2005; Giannoccaro & 

Pontrandolfo, 2004; Hu, Meng, Xu, & Son, 2016; Kebing, Chengxiu, & Yan, 2007; S. Li, 

Zhu, & Huang, 2009; W.-G. Zhang, Fu, Li, & Xu, 2012) 

 In the case of revenue-sharing contracts, retailers share their private information 

(e.g. sales) with the wholesaler; therefore, there is risk of potential cheating (e.g. 

underreporting sales). However, supplier’s audit limits the cheating of the retailer. Thus, a 

revenue-sharing contract requires administrative investments. Therefore, this contract is 

popular in video rental and book industry, where tracking of retail sales is cheap 

administratively. Heese and Kemahlıoğlu-Ziya (2016) analyzed revenue-sharing contract 

with asymmetric information and dishonest retailer.  

Revenue-sharing contract is more applicable to the type of industries where sales 

are less dependent on retailer’s effort (e.g. local promotion, advertisement, solicitation 

etc.).  In such industries, sales are mostly influenced by the national brand effect. Thus, 

availability of goods in the retail shops is important to satisfy the customer demand. 

Revenue-sharing contract inspires retailers to order more; hence, market availability of the 

product increases. Under revenue share contract, wholesaler sells the products at a cheaper 

rate and get a share from the sales revenue. The share percentage is mutually agreed upon, 
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and often influenced by the bargaining power of the supply chain players.  However, in the 

case of fixed retail price model, the optimized share percentage that maximizes the overall 

profit, can also be calculated and agreed upon (Giannoccaro & Pontrandolfo, 2009; S. Li 

et al., 2009; Pfeiffer, 2016). Revenue-sharing contract reduces prices and inspires the 

retailer to order more. Thus, market availability and sales are increased under the revenue-

sharing contract.  In the literature of revenue-sharing contract, two-echelon supply chain is 

commonly considered; however, the analysis can be extended for three-stage (Giannoccaro 

& Pontrandolfo, 2004; Hu et al., 2016) or n-stage supply chain (Feng, Moon, & Ryu, 2014) 

as well.  

Researchers have introduced several variations of revenue-sharing contracts 

recently. Feng et al. (2014) analyzed Revenue-sharing contract considering the reliability 

of the firms (RCR) and concluded that in some cases, their modified approach gives more 

profit than the classical revenue-sharing contract. In that approach, the arbitrary profit 

sharing allocation is adjusted based on the comparative reliability of the firms, hence it 

inspires the firms to improve their reliability. Vafa Arani, Rabbani, and Rafiei (2016) 

merged the option contract with revenue-sharing contract and claimed that the profit of the 

supply chain is increased and the double marginalization effect is reduced. They considered 

various leadership role (e.g. wholesale-leading, retail-leading etc.) in the game analysis for 

different types of market. Hu et al. (2016) applied revenue-sharing contract, compared the 

coordination of the supply chain between two scenarios- loss averse vs loss neutral retailer, 

and concluded that loss-neutral retailer gains greater profits and a greater utility compared 

to loss-averse scenario. S. Li et al. (2009) considered revenue-sharing contract along with 

consignment contract (which is popular in online markets). In their Nash bargaining model, 
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the retailer decides on the share percentage and the manufacturer decides on retail price 

and order quantity.  

Even if the revenue-sharing contract coordinates (i.e. maximizes the total profit) 

the supply chain, but the supply chain players may not be agreed on the parameters of the 

contracts (e.g. profit allocation etc.). Considering such case, Giannoccaro and Pontrandolfo 

(2009) applied agent based simulation to figure out the scenarios (i.e. parameters of 

revenue-sharing contract) that inspire the firms to participate under revenue-sharing 

contract. Chauhan and Proth (2005) suggested supply chain partnership by applying 

revenue-sharing contract where the profit allocation is based on the associated risk of the 

firms. 

2.9  Conclusions and Contribution of this research  

In this chapter, we reviewed the literatures on bullwhip effects, price variation, 

game theory applications in supply chain, and various supply chain contracts. Existing 

researches of bullwhip effect in pricing (Özelkan & Çakanyıldırım, 2009; Özelkan & Lim, 

2008) considered a Stackelberg wholesale leading game, a wholesale-price contract, and a 

linear supply chain. In our best knowledge, no researcher considered retail-leading or 

simultaneous game, buyback and revenue-sharing contract in the analysis of bullwhip 

effect in pricing. This research aims at contributing in these issues. Moreover, existing 

research of cost-pass-through is mostly limited in wholesale leading 2-stage supply chain; 

this research also aims at extending the analysis for a n-stage supply chain along with 

considering the retail leading and simultaneous type game relations.  

Primarily, we follow Özelkan and Çakanyıldırım (2009)’s methodology of relating 

cost-pass-through to conjecture the price variation ratio. We extend the analysis by 
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considering different types (retail leading and simultaneous) of games, buyback-

newsvendor model, and revenue-sharing contract. In order to consider simultaneous and 

retail leading game, we model markup pricing game (J.-C. Wang, Lau, & Lau, 2013).  

For the cost-pass-through calculations, we are following the methodology of Tyagi 

(1999) and Weyl (2008). We extend their analysis in the case of n-stage supply chain and 

relate that with the bullwhip effect in pricing.  

In the case of buyback contract, we consider a price-setting newsvendor model. We 

adapt Petruzzi-Dada’s (1999) model where the retailer decides on both order quantity and 

price for a given wholesale price and a buyback price. After deciding on optimal actions, 

we analyze the optimal price variation for the changing wholesale price.     

In the case of revenue-sharing contract with deterministic demand, we follow a 

supply chain structure similar to Gaudin (2016), but the game rules are different. Gaudin 

(2016) only considered wholesale leading game in a 2-stage supply chain. We analyze 

retail leading and simultaneous games as well. After that, we benchmark the results with 

no-contract situation.  

In the case of a revenue-sharing contract with stochastic demand, we model the 

supply chain as a price-setting newsvendor model, and analyze the price variation for 

different values of the revenue-share percentage.  

Hence, we contribute the literature in several directions by analyzing bullwhip 

effect in pricing considering three game structures, two contracts, various demand 

functions, and two types of demand uncertainty.     



 

 

 

CHAPTER 3: CONDITIONS FOR THE OCCURRENCE OF BP 

 

 

3.1 Introduction:  

In this chapter, we identify the conditions for the occurrence of Bullwhip effect in 

Pricing (BP) and relate it with the concavity coefficient and the cost-pass-through. After 

that, we discuss the occurrence of BP for some common demand functions. We also show 

numerical illustrations of BP in the case of two markup pricing strategies.  

3.2 Conditions for the occurrence of BP: 

 We relate the conditions with both cost-pass-through of prices and concavity 

coefficient of the demand functions. The discussion is as follows- 

3.2.1 Cost-pass-through and The Occurrence of BP:  

In order to quantify the Bullwhip effect in Price (BP), we check the ratios of 

standard deviations of prices between two stages (
𝜎𝑛

𝜎𝑛+1
), referred as BP ratios. Özelkan and 

Çakanyıldırım (2009) related the ratios of the standard deviations with the cost-pass-

through (i.e. rate of change of prices with respect to cost). 

The relation between the cost-pass-through and the BP ratio can be explained using 

a simple example case. Let assume, 𝑝 = 𝑎𝑐 + 𝑏 and 𝑤 = 𝐴𝑐 + 𝐵, where 𝑝 denotes the 

retail price, 𝑤 is the wholesale price, 𝑐 is the cost, and {𝑎, 𝑏, 𝐴, 𝐵} are constants. Hence, 

𝑑𝑝

𝑑𝑐
= 𝑎,

𝑑𝑤

𝑑𝑐
= 𝐴, 𝑉𝑎𝑟(𝑝) = 𝑎2×𝑉𝑎𝑟(𝑐), 𝑉𝑎𝑟(𝑤) = 𝐴2×𝑉𝑎𝑟(𝑐). Therefore, 

𝜎𝑝

𝜎𝑐
= 𝑎 and 



27 

 

𝜎𝑤

𝜎𝑐
= 𝐴. Then, algebraically, we can show, 

𝜎𝑝

𝜎𝑤
=
𝑎

𝐴
. Thus, we can conjecture the BP ratio 

from the cost-pass-through. For a formal and detail proof of the relation, please check the 

proposition 8 of Özelkan and Çakanyıldırım (2009). In their analysis, they assumed 𝑝 and 

𝑤 as random variables and related as 𝑝 = 𝑔(𝑤). They concluded, if 
𝑑𝑔(𝑥)

𝑑𝑥
 is greater or equal 

to a constant (for all 𝑥 > 0), then 
𝜎𝑝

𝜎𝑤
 is also greater or equal to that constant (Özelkan and 

Çakanyıldırım, 2009). 

Accordingly, if the cost-pass-through is greater than one, then the BP ratio is also 

greater than one, hence ‘Reverse Bullwhip effect in Pricing’ (RBP) occurs (Özelkan and 

Lim 2008; Özelkan & Çakanyıldırım, 2009). Similarly, if the cost-pass-through or BP ratio 

is less than one, then we conclude that FBP occurs. If the BP ratio equals to one, we 

conclude that no BP occurs.   

3.2.1 Concavity Coefficient and The Occurrence of BP:  

Tyagi (1999) defined the concavity coefficient as Φ =
𝑞𝑞′′

(𝑞′)2
, where 𝑞′ and 𝑞′′ are 

the first order and second order derivative of the demand function, 𝑞 in price 𝑝 

respectively13. Cowan (2004) referred this term as the ‘relative curvature’. The second 

order condition on the profit function (i.e. profit function to be concave in price) ensures 

that the concavity coefficient, Φ is less than two.14 However, based on the structure of the 

demand function, the concavity coefficient Φ can be greater/less/equal to one. Tyagi (1999) 

                                                           

13 Tyagi (1999)’s original notation was 
 2p

pp

q

qq




  

14 Let, 𝑝 = retail price, 𝑤 = wholesale price, and 𝜋 = retail profit. The demand 𝑞 is a decreasing function in 

price, therefore, 𝑞′ < 0. The retail profit, 𝜋 = (𝑝 − 𝑤)𝑞. The first order condition follows: 
𝑑𝜋

𝑑𝑝
= 0 ⇒

(𝑝 − 𝑤) =
−𝑞

𝑞′
 . Then, the second order condition follows: 

𝑑2𝜋

𝑑𝑝2
< 0 ⇒

𝑞𝑞′′

(𝑞′)2
< 2 . 
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related the cost-pass-through as 
𝑑𝑝

𝑑𝑤
= (2 − Φ)−1. Hence, if Φ is between 1 and 2, 

𝑑𝑝

𝑑𝑤
 is 

greater than one, which results in RBP (Özelkan & Çakanyıldırım, 2009). Here, in addition, 

we recognize that if Φ < 1 is less than one, then, the cost-pass-through, 
𝑑𝑝

𝑑𝑤
 and the BP 

ratio, 
𝜎𝑝

𝜎𝑤
 are also less than one; thus, FBP occurs. Similarly, if Φ = 1, then, the cost-pass-

through, 
𝑑𝑝

𝑑𝑤
 and the BP ratio, 

𝜎𝑝

𝜎𝑤
 are equals to one which results no BP.  

Proposition 1: For a linear supply chain with one retailer and one wholesaler in a wholesale 

leading game framework, 

a. If Φ =
𝑞𝑞′′

(𝑞′)2
< 1, then, 

𝑑𝑝

𝑑𝑤
< 1 and 

𝜎𝑝

𝜎𝑤
< 1; thus, FBP occurs.  

b. If Φ =
𝑞𝑞′′

(𝑞′)2
= 1, then, 

𝑑𝑝

𝑑𝑤
= 1 and 

𝜎𝑝

𝜎𝑤
= 1; thus, no BP occur.  

Here, 𝑞′ and 𝑞′′ are the first and second order derivatives of the demand function, 𝑞 in the 

retail price, 𝑝. 

3.3 Occurrence of BP for some common demand functions:  

Concavity coefficients, cost-pass-throughs and occurrence of BP for some 

commonly used demand functions are shown in Table 3.1. It is to be mentioned, some of 

the results are adapted from Özelkan and Çakanyıldırım (2009) and Adachi and Ebina 

(2014)15. Ozelkan and Cakayindirim (2009) discussed that for isoelastic demand, RBP 

always occur; for logarithmic demand, RBP occurs if 𝑢𝑒−𝑏−1 < 𝑝 < 𝑢𝑒−1; for linear and 

logit demands, RBP do not occur. However, they didn’t focus on the occurrence of FBP or 

                                                           
15 Adachi and Ebina (2014) discussed the amplifying and absorbing cost-pass-throughs at retail and wholesale 

stages. 
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no BP which are included in the following table along with some additional demand 

functions.  

 

Table 3.1: BP in some common demand functions 

Demand 

Functions 

Concavity 

Coefficients, 

 𝚽 =
𝒒𝒒′′

(𝒒′)𝟐
 

Cost-pass-through, 
𝒅𝒑

𝒅𝒘
= (𝟐 − 𝚽)−𝟏 

Occurrence 

of BP 

Log-concave, 

(𝑎 − 𝑏𝑝)1/𝑣 

0 < 𝑎, 𝑏 

1 − 𝑣 < 1 
1

1 + 𝑣
< 1 FBP 

Linear, 𝑎 − 𝑏𝑝 0 1/2 FBP 
16Logit, 

𝑎
𝑒𝑢−𝑝

1 + 𝑒𝑢−𝑝
 

0 < 𝑎;  𝑝 < 𝑢 

1 − exp(𝑢 − 𝑝) < 1  
1

1 + exp(𝑢 − 𝑝)
< 1 FBP 

Type I extreme value 

distribution17, 

1 − 𝑒−ⅇ
𝑎−𝑝

 

; 𝑎 > 𝑝 > 0 

−𝑒−𝑎(−1

+ 𝑒ⅇ
𝑎−𝑝
)(𝑒𝑎 − 𝑒𝑝) 

1

2 + 𝑒−𝑎(−1 + 𝑒ⅇ
𝑎−𝑝
)(𝑒𝑎 − 𝑒𝑝)

< 1 

FBP 

Isoelastic,  

𝑎𝑝−𝑏 

0 < 𝑎; 1 < 𝑏 
1 <

𝑏 + 1

𝑏
< 2 1 <

𝑏

𝑏 − 1
 RBP 

Logarithmic, 

𝑎 (− ln
𝑝

𝑢
)
𝑏

 

0 < 𝑎, 𝑏;  𝑝 < 𝑢 

1 −
1 + ln

𝑝
𝑢

𝑏
 (1 +

1 + ln
𝑝
𝑢

𝑏
)

−1

 

RBP, 

FBP, 

No BP 

Negative Exponential, 

𝑎 exp (
−𝑝

𝑏
) 

1 1 No BP 

 

Proposition 2: Occurrence of BP for some common demand functions are as follows- 

a. For a log-concave, linear, logit, and Type I extreme value distribution type demand 

functions, FBP occurs.  

b. For an isoelastic demand function, RBP occurs 

                                                           
16 Alternate representation: 𝑎

1

1+exp(𝑝−𝑢)
 (logistic demand). See example in Adachi and Ebina (2014). 

17 See example in Cowan (2012) and Adachi and Ebina (2014); 1 − 𝑒−ⅇ
𝑎−𝑝

∈ (0,1); 𝑎 > 𝑝 > 0. Type I 

extreme value distribution is also known as Gumbel distribution.   
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c. For a logarithmic demand function, RBP occurs if 𝑢𝑒−𝑏−1 < 𝑝∗ < 𝑢𝑒−1; FBP 

occurs if 𝑢𝑒−1 < 𝑝∗; and no BP occurs if 𝑝∗ = 𝑢𝑒−1 

d. For a negative exponential demand function, no BP occurs. 

 

3.4 Occurrence of BP in the common markup-pricing practices 

Let’s consider a common pricing strategy ‘markup pricing’. There are two types of 

markup pricing: dollar-markup and percentage-markup (J.-C. Wang, Lau, & Lau, 2013). 

Dollar-markup is common for high cost products such as jewelry (Lewison & DeLozier, 

1989), while percentage-markup is common in retailing (Clower, Graves, & Sexton, 1988). 

It is to be mentioned that a fixed markup (dollar or percentage) strategy is sub-optimal (Lee 

& Staelin, 1997). While fixed dollar and percentage markup pricing is discussed in the 

following sub-sections, optimal markup pricing strategies in a game theoretical framework 

will be investigated in the next chapter.  

3.4.1 BP in Fixed Dollar-Markup Pricing 

Let’s assume, both the retailer and the wholesaler add a fixed markup ($𝑢) with 

their per-unit cost. Thus, the per unit wholesale price would be 𝑤 = 𝑐 + 𝑢 and the per unit 

retail price would be 𝑝 = 𝑤 + 𝑢 = 𝑐 + 2𝑢. Therefore, the cost-pass-through is 1 (i.e. 
𝑑𝑝

𝑑𝑤
=

𝑑𝑤

𝑑𝑐
=
𝑑𝑝

𝑑𝑐
= 1). Furthermore, it is relatively easy to verify that the standard deviation of 

prices and cost are same, 1
c

p

c

w

w

p












 [see Figure 3.1 for a numerical illustration]. 

Hence, the price variability is constant. Therefore, we conclude no BP occur in the case of 

fixed dollar-markup pricing.   
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Figure 3.1: Constant or amplified variability of retail prices in the case of fixed-dollar 

(left) and fixed-percentage (right) markup pricing. [p = retail price, w = wholesale price, c 

= cost ($8~$10), uniform distribution, 300 simulation run]. 

 

3.4.2 BP in Fixed Percentage-Markup Pricing 

Let’s assume, both the retailer and wholesaler add a fixed percentage-markup 

(100u%) with their cost. Thus, the per unit wholesale price would be  ucw  1 and the 

per unit retail price would be    211 ucuwp  . Therefore, the cost-pass-through is 

greater than one.  

11  u
dc

dw

dw

dp
 ;    11

2
 u

dc

dp
 

Which indicates,  

1
c

w

w

p








 ; cwp    

Figure 3.1 presents simulation results which show that the standard deviation of the 

retail price is more than that of the wholesale price and the standard deviation of the 

wholesale price is more than that of the cost [Figure 3.1]. Hence, the price variation is 
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amplifying towards downstream supply chain. We conclude, RBP occurs in the case of 

fixed percentage markup pricing.   

3.5 Conclusion:  

In this chapter, we discussed the conditions for the occurrence of BP. If the 

concavity coefficient is less than one, then the cost-pass-through is also less than one that 

eventually creates FBP. If the concavity coefficient equals to one, then the cost-pass-

through also equals one that results no BP. We discussed occurrence of BP in some 

common demand functions- such as isoelastic demand gives RBP, log-concave (or linear 

as a special case) and logit demand gives FBP, negative exponential demand gives no BP, 

logarithmic demand gives RBP, FBP, or no BP based on the range of the optimal price. 

We also discussed the occurrence of BP is a sub-optimal markup-pricing model. In the case 

of fixed dollar-markup pricing, no BP occur; in the case of fixed percentage-markup 

pricing, RBP occurs. It is to be mentioned, in this chapter, the concavity coefficient and 

the cost-pass-through rates are calculated assuming a single supply chain with deterministic 

demand following a wholesale leading Stackelberg game model. Other game structures 

(e.g. simultaneous and retail leading) are considered in the next chapter.     

 



 

 

 

CHAPTER 4: BP IN DIFFERENT GAME STRUCTURES 

 

 

4.1 Introduction 

In this chapter, we consider a simple linear supply chain with centralized demand 

(Chen, Drezner, Ryan, & Simchi-Levi, 2000). We consider the game theory model to 

identify the optimal markup pricing. If the associated manufacturing/procurement cost 

changes due to external reasons (e.g. tax increment, change of exchange rate, scarcity of 

resources etc.), then the optimal prices will also change accordingly. Thus, both the retail 

and wholesale prices will fluctuate because of the cost changes. We analyze the fluctuation 

of prices and conclude whether RBP or FBP occur in different game structures. 

We are interested in a price-setting game, where supply chain firms (e.g. 

wholesaler, retailer etc.) decide on their prices to maximize their profit. We consider three 

types of games- simultaneous, wholesale leading, and retail leading game. The leadership 

role (i.e. Who is committing first?) is exogenously determined by the market. In our 

analysis, we consider three common18 types of demand functions- isoelastic ( ), 

negative exponential ( ), and a log-concave type19 ( ). 

                                                           
18 Linear, isoelastic, and negative exponential demand functions are very commonly used among researchers 

because these demand forms are tractable and give constant pass-throughs (Bulow & Pfleiderer, 1983; 

Fabinger & Weyl, 2012). Empirical examples can be found in the literature for linear demand in the 

automobile market (Bresnahan & Reiss, 1985), and for isoelastic demand in beer market (Ornstein, 1980; 

Phelps, 1988; Weimer & Vining, 2015). 
19 Log-concave type demand ( ) takes the form of linear (if ), concave (if ) and convex 

(if ) demand (See example in SeyedEsfahani, Biazaran, & Gharakhani (2011)).   

lapq 

 bpaq  exp   v
bpaq

/1


  v
bpaq

/1
 1v 1v

1v
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In the next section, we discuss the game theoretic model. Then we conduct 

analytical analysis for 2-stage (section 4.3) and N-stage (section 4.4) supply chain. After 

that, we show some numerical examples for illustration purposes (section 4.5). After 

discussing the results and illustrations, we derive conclusions. 

4.2 Mark-Up Pricing Game Description 

We are considering a price-setting game where the wholesaler and the retailer 

decide on their per-unit markups ‘uw’ and ‘ur’, respectively. Thus, per-unit wholesale price 

‘w’ is the sum of the manufacturing cost ‘c’ and the wholesale markup ‘uw’. Similarly, per-

unit retail price ‘p’ is the sum of wholesale price ‘w’ and the retail markup ‘ur’. Demand 

‘q’ is a decreasing function in retail price ‘p’ (i.e. 0
dp

dq
). As, 

ruwp   and
wucw  , we 

can write the demand function ‘q’ as q(p) or ),( ruwq  or ),,( rw uucq interchangeably. 

Manufacturing cost ‘c’ is known to both parties (i.e. wholesaler and retailer). Both the 

retailer and wholesaler intend to maximize their own profit ‘Πw’ and ‘Πr’, respectively by 

charging higher markups. On the other hand, higher markup results to higher price that 

adversely affects the demand quantity and eventually affects the earned profit. Moreover, 

each of their decision affects both of their profits. Therefore, both the wholesaler and the 

retailer need to consider the reaction function of their decision. 

We consider three types of game scenarios (e.g. simultaneous, wholesale leading 

and retail leading) between the wholesaler and the retailer. In a simultaneous game, we 

solve for the Nash equilibrium where both wholesaler and retailer decide on their optimal 

markup considering other player’s markup as unknown. In a sequential game, we solve for 

the Stackelberg equilibrium, considering one player (i.e. wholesaler or retailer) as the 

leader and another as the follower in decision-making. In the case of a wholesale leading 
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game, the wholesaler declares its markup first then the retailer decides on its markup. In 

the case of a retail leading game, the retailer announces its markup first, and then the 

wholesaler sets its markup. Detail game descriptions are available in Appendix 1. 

Analytical results of the cost-pass-throughs and BP ratios for 2-stage and N-stage 

are discussed in the following sections. 

4.3 Two-stage supply chain 

We consider a two-stage supply chain (i.e. One retailer and one wholesaler) and 

solve for specific demand functions (e.g. Log-concave, Isoelastic and Negative 

exponential) considering three different game scenarios. Table 4.1 shows the cost pass-

throughs20 (e.g. 
dc

dw
and

dc

dp
) and Table 4.2 shows the BP ratio.  

For the log-concave type demand function21 [e.g.   v
bpaq

/1
 ], the cost-pass-

throughs at wholesale and retail prices are less than one, and their interrelation can be 

expressed as 1
dc

dw

dc

dp
. In the case of the wholesale-leading and the retail-leading games, 

for linear demand, the cost-pass-through at retail price is 0.25; for convex demand, it is 

between 0.25 and 1; and for concave demand, it is less than 0.25. That means, for $1 change 

in cost, the retail price will be changed by $0.25 for linear demand (or less than $0.25 for 

concave demand). In the case of the simultaneous game, the cost-pass-through at retail 

                                                           

20 Cost-pass-throughs reflect the changes in prices for a unit change in cost. We refer 
dc

dw
as the cost-pass-

through at wholesale price and 
dc

dp
as the cost-pass-through at retail price.   

 

21 For log-concave demand function, the concavity coefficient (
 2q

qq




 ) is less than one. For linear 

demand, φ is zero. 
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price is 1/3 for linear demand. For convex demand, it is between 1/3 and 1; for concave 

demand, it is less than 1/3. Other values of cost-pass-throughs are interpreted in similar 

fashion. (Table 4.1) 

Table 4.1: Cost-pass-through (2-stage) 

Demand function 

Simultaneous  

game 

Wholesale  

leading game 

Retail  

leading game 
Relation 

RBP 

or 

FBP? 

dc

dw
 

dc

dp
 

dc

dw
 

dc

dp
 

dc

dw
 

dc

dp
 

         

L
o

g
-c

o
n

ca
v

e,
 

𝑞
=
( 𝑎
−
𝑏
𝑝
)1
/𝑣

 

Linear 
 1v  3

2
 

3

1
 

2

1
 

4

1
 

4

3
 

4

1
 

1
dc

dw

dc

dp
 

(<1)  

FBP 

 

Convex 
 1v  3

2
  

3

1
  

2

1
  

4

1
  

4

3
  

4

1
  

Concave  
 1v  3

2
  

3

1
  

2

1
  

4

1
  

4

3
  

4

1
  

         

Iso-elastic, 

 
lapq  ,  2l  2

1





l

l
 

2l

l
 

1l

l
 

2

1









l

l
  2

2

1

1





l

ll  
2

1









l

l  
dc

dp

dc

dw
1  

(>1) 

RBP 

 

    

Negative 

Exponential, 

 






 


b

p
aq exp  

1 dc

dp

dc

dw
1  

(=1)  

No 

RBP 

/FBP 

 

Table 4.2: BP ratio between the retail price and the wholesale price 

Demand  

function 

Simultaneous 

 game 

Wholesale 
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For isoelastic demand function22, the cost-pass-throughs at wholesale and retail 

prices are greater than one, and the interrelation can be expressed as 
dc

dp

dc

dw
1 . In the case 

of the wholesale leading and the retail leading game, for isoelastic demand, the cost-pass-

through at retail price is 
2

1









l

l that is greater than one but the value varies based on the 

elasticity, l . That means, if 3l , then for $1 change in cost, the retail price will be changed 

by $2.25 























2

2

3
. In the case of the simultaneous game, the cost-pass-through at retail 

price is 
2l

l
. If 3l , then for $1 increase/decrease in cost, the retail price will be 

increased/decreased by $3. Other values of cost-pass-throughs are interpreted in similar 

fashion. (Table 4.1) 

For negative exponential demand function (e.g.  bpaq  exp ), the cost-pass-

throughs at wholesale price and retail price are equal to one in all game scenarios23. For $1 

change in cost, the wholesale and retail prices will be changed by $1.24 

From the quantitative values of 
dc

dw
and 

dc

dp
 (Table 3.1), we can conjecture the 

values of 
C

W




and 

C

P




. Then, algebraically, we can calculate the value of 

W

P




(Table 

                                                           
22 For isoelastic demand function, the concavity coefficient is greater than one. 
23 For negative exponential demand, the concavity coefficient equals to one. Moreover, for this demand 

function, the optimal markup for both parties (the wholesaler and retailer) is constant (i.e. $ b ) (Fabinger & 

Weyl, 2012). Thus, for this demand function, optimal markup pricing is equivalent to the fixed dollar ($ b ) 

markup pricing (similar to the example provided in Section 4.1). Hence, no RBP or FBP occur. 
24Our results conform Tyagi (1999)’s conclusion. Tyagi (1999) considered wholesale leading game, derived 

conditions on demand function, and concluded that for linear and concave demand functions, the cost-pass-

through is less than one but for a subset of convex demand (e.g. isoelastic demand), the cost-pass-through is 

greater than one.  
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4.2). The BP ratios (e.g. 
C

W




,

C

P



 ,
W

P



 etc.) are less, greater or equal to one for linear, 

isoelastic, or negative exponential demand functions, respectively.  

For linear demand, the retail price fluctuates less than the wholesale price (Table 

4.2). In the case of the simultaneous and wholesale leading game, the BP ratio between 

retail and wholesale price is ½. We interpret this result as the retail price fluctuates less 

(i.e. 50%) compared to the wholesale price. In the case of the retail leading game, the BP 

ratio between the retail and wholesale price is 1/3; that means, the retail price’s fluctuation 

is one third of the fluctuation of the wholesale price. 

For isoelastic demand, the retail price fluctuates more than the wholesale price. In 

the case of the simultaneous and wholesale leading game, the BP ratio between the retail 

and wholesale price is 
1l

l
, where l  is the elasticity of the demand function. In the case 

of the retail leading game, the BP ratio is 
 12

2

 ll

l , which is also greater than one.  

For negative exponential demand, the retail price fluctuates at the same rate with 

respect to the wholesale price (i.e. 1
W

P




). 

4.4 N-stage supply chain 

In this section, we extend the results of section 4.3 for N-stage supply chain (Table 

4.3 and 4.4). N is the total numbers of stages in the supply chain and n refers to any stage 

in the supply chain. n=1 refers to the bottom stage and n=N refers to the top stage.  

For type demand function (or linear demand as a special case), the cost 

pass through at any stage (i.e. ) is less than one and decreasing towards downward. In 

the case of the wholesale leading and the retail leading game, the cost-pass-through at retail 

  vbpaq
1



dc

dpn
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price (i.e. ) is  (or for linear demand). In the case of simultaneous game, the 

cost-pass-through at retail price (i.e. ) is (or  for linear demand).  

For isoelastic demand function, in the case of wholesale-leading and retail-leading 

game, the cost-pass-through at retail price is . In the case of simultaneous game, it 

is . Let assume, elasticity, and the total number of stages in the supply chain, 

. Then, the cost-pass-through at retail price would be , in the case of the 

wholesale-leading and retail-leading game. In the case of the simultaneous game, it would 

be . That means, $1 increase in cost will result $2.44 increase in the retail price in 

the case of wholesale-leading and retail-leading game. In the case of simultaneous game, 

the retail price will be increased by $5 for $1 increase in cost.   

Table 4.3. Cost pass-through (N-stage) 

(Total stage N, any stage n, top stage n=N, bottom stage n=1)  

[Detail version of this table is available in Appendix 2a] 
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Table 4.4: BP ratio between two consecutive stages (N-stage)  

(Total stage N, any stage n, top stage n=N, bottom stage n=1)  

[Detail version of this table is available in Appendix 2b, 2c] 

 

Demand  

function 

 

Relation 

RBP 

or 

FBP? Simultaneous  

game 

Wholesale  
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in n 
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Isoelastic,  
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in n 

RBP 
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  No 

BP  

 

Based on the value of the cost-pass-through ( ), the BP ratio between two 

consecutive stages ( ) is calculated (Table 4.4). For both linear and isoelastic demand 

functions, the ratio is less than one. In the case of wholesale-leading game, the BP ratios 

are constant. For the linear demand function, it is ½ and for the isoelastic demand function, 

it is . In the case of simultaneous and retail leading game, the ratio is decreasing in n. 

In the case of simultaneous game, the BP ratio does not depend on the number of total 

stages. That means, in the case of simultaneous game, irrespective of the total numbers 

(e.g. 2, 3..or N), the BP ratio between the retail and the wholesale price (i.e. between the 

bottom two stages, ) will be same. Figure 4.1 illustrates the BP ratios for a 4-

stage supply chain. 
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Figure 4.1: BP ratios (4-stage) [1 is the bottom stage; 4 is the top supplier stage] 

 

4.5 Simulation Results 

In this section, we run simulations to illustrate the analytical results of previous 

sections. We consider a two-stage supply chain (retailer and wholesaler). We randomly 

fluctuate the cost, calculate the optimal wholesale and retail price for each random cost. 

The parameters (e.g. distribution function, demand function parameters, upper or lower 

limit of cost, number of stages etc.) for the simulation are chosen randomly (but within the 

limit of the constraints) for illustration purpose. Similar results can be obtained for other 
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parameters as well.  In this simulation, the cost is uniformly distributed between $8~$10. 

The demand functions are pq  20  (linear), 
5.2 apq (isoelastic) and  8exp paq   

(negative exponential). We run the simulation for 300 times. Then, finally compare the 

standard deviation of the costs, the wholesale prices and the retail prices.  

Here, we consider nine scenarios (three demand functions and three game structures). 

The results of this simulation are summarized in Table 4.5 and illustrated in Figure 4.2 and 

4.3. 

Table 4.5: Results of simulation (Markup pricing game) 

  Simultaneous Wholesale 

leading 

Retail  

leading 

 C  W   P  W   P  W   P  

Linear, pq  20  0.605 0.403 > 0.202 0.302 > 0.151 0.454 > 0.151 

Isoelastic, 
5.2 apq  

1.814 < 3.024 1.008 < 1.680 1.277 < 1.680 

Negative Exponential, 
 8exp paq   

0.605 

 

 For linear demand, the standard deviation of the retail price is less than the standard 

deviation of the wholesale price and the cost. Hence, price variation absorbed. In the case 

of simultaneous, wholesale-leading, and retail-leading game, the ratios of standard 

deviation of retail price to wholesale price are  501.0
403.0

202.0
 , 5.0

302.0

151.0
 , and 33.0

454.0

151.0
  

respectively. These ratios match very closely with the BP ratio mentioned in Table 4.2 as 

expected.  

For isoelastic demand, the standard deviation of retail price is greater than the 

standard deviation of the wholesale price and the cost. Hence, price variation is amplified. 

In the case of simultaneous, wholesale-leading, and retail-leading game, the ratios of 

standard deviation of retail price to wholesale price are  667.1
814.1

024.3
 , 667.1

008.1

68.1
 , and 
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316.1
277.1

68.1
  respectively. Analytical results of BP ratios from Table 4.2 are 

667.1
15.2

5.2

1





l

l
 and 

 
 

   
316.1

15.25.2

5.2

1
2

2

2

2





 ll

l
. The results of Table 4.5 match 

the results of Table 4.2 as expected. 

From figure 4.2, it is clearly visible that, for linear (or isoelastic) demand, the price 

variability is decreased (or amplified) towards downstream supply chain. For negative 

exponential demand, the variability of the cost, wholesale price, and retail price remain 

constant (Figure 4.3). 
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Figure 4.3: Price variation (Markup pricing game; Negative Exponential Demand) 

 

4.6 Price variation, markups, game structure: 

If we compare the price variation among various game structures, from figure 4.2 

and 4.3, and table 4.5 it is seen that for linear (or isoelastic) demand, the retail price 

variability is same in the case of wholesale leading and retail leading game but more (or 

less) in the case of simultaneous game. The reason behind is that for linear (or isoelastic) 

demand, the optimal retail price is less (or more) in the case of simultaneous game 

compared to the case of wholesale leading and retail leading game. Moreover, it is also 
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visible, that for linear (or isoelastic) demand, the more the markups the less (or more) the 

variability of prices. In other words, the closer the price to the cost, it captures more of the 

variability of the cost. For linear (or isoelastic) demand, the far the price from the cost, the 

variability is absorbed (amplified) more. This phenomenon contributes to the different 

values of cost-pass-through and BP ratios for different game structures.   

 

4.7 Summary and Conclusion:  

In this research, we analyzed the price variation analytically and then simulated the 

results. We considered markup-pricing model, three game rules (e.g. simultaneous, 

wholesale leading, and retail leading) and three types of demand functions (e.g. log-

concave type (linear as a special case), isoelastic, and negative exponential). We extend 

the cost-pass-through analysis to N-stage supply chain and conjecture the BP ratios for N-

stage supply chain. We compared the BP ratios among various game scenarios. The results 

can be summarized as follows- 

 The cost-pass-throughs are less than one for type demand function. For 

Isoelastic demand function, the cost-pass-throughs are greater than one. For 

negative exponential demand function, the cost-pass-throughs equal one. Cost-

pass-through at retail price (i.e. or ) is same in the case of wholesale-leading 

and retail-leading game. It is and for linear and isoelastic demand 

respectively. The cost-pass-throughs are also absorbing or amplifying towards 

downstream supply chain for  type demand or isoelastic demand 

function respectively. 
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 BP ratio at retail and wholesale price between two consecutive stages   

is constant in the case of wholesale-leading game for linear and isoelastic demand 

function. In the case of simultaneous and retail leading game, it is decreasing in n.  

 The standard deviation of the retail (i.e. most bottom stage) price remains same for 

the wholesale-leading and retail-leading games but differs for the simultaneous 

game. The standard deviation of prices is absorbed or amplified towards 

downstream supply chain for linear or isoelastic demand respectively.  

The analytical and simulation results help us to understand the nature of price variation for 

various supply chain structures.  
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CHAPTER 5: BP UNDER A BUYBACK CONTRACT  

 
 

5.1 Introduction:  

 In this chapter, we model the retailer’s problem in the case of a buyback contract 

where a newsvendor model dictates the inventory replenishment decisions. In a 

newsvendor model, a retailer commits the order quantity before the start of the selling 

season based on the demand forecast which is stochastic. Hence, if the realized demand is 

less than the order quantity, then the retailer salvages the leftover at a lower price. On the 

other hand, if the realized demand is more than the order, then the retailer incurs a cost due 

to shortage or loss of goodwill. Therefore, the retailer makes a tradeoff between the overage 

and underage cost; and thus, decides on the order quantity. This is what is called the 

traditional ‘Newsvendor Problem’25 (Edgeworth, 1888; Morse & Kimball, 1951; Porteus, 

1990, 2008). Typically, in such a problem, the retail price is considered as exogenous. A 

variation of the newsvendor model is the price-setting newsvendor model where the retailer 

decides both the order quantity and the retail price (Mills, 1959, 1962; Whitin, 1955). In 

such case, the stochastic demand is price-sensitive. Another variation of the price-setting 

newsvendor model is the consideration of supply chain contracts (Cachon, 2003).  

                                                           
25 Other names for the ‘Newsvendor Problem’ are as follows - Newsboy (Morse & Kimball, 1951), 

Newsperson, Christmas Tree problem etc. (Porteus 2008) 
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Buyback contract is quite popular in industries26 such as the book industry and 

textiles with brand-fashion items (Höhn, 2010). In a buyback contract, the wholesaler buys 

the leftover goods back at a price greater than the salvage price. This contract is also called 

a return policy (Cachon, 2003). Following such contract, the wholesaler incites the retailer 

to order more because the return practice offsets some of the retailer’s risk associated with 

the leftover. The increased order size increases the expected profit of both the wholesaler 

and retailer. Brand reputation also motivates to apply this contract, where companies don’t 

want their product to be placed in the salvage shelf of the store (Padmanabhan & Png, 

1995). Stock rebalancing can be another motivation for applying a buyback contract (Höhn, 

2010).   

Let’s consider a retailer who order 𝑞 number of goods, pays the wholesaler $𝑤 per 

unit and sells it at the price of $𝑝 per unit. The demand can be expressed as 𝐷 = 𝑦 + 𝜖 

(additive) or 𝐷 = 𝑦𝜖 (multiplicative) where 𝑦 is the deterministic part and 𝜖 is the uncertain 

part of the demand 𝐷. We are considering both additive (Mills, 1959) and multiplicative 

(Emmons & Gilbert, 1998) uncertainties here. We also assume, 𝜖 is distributed on the 

interval [𝐴, 𝐵], 𝜇 is the expected value of 𝜖 and 𝜎2 is the variance of 𝜖.  

The wholesaler buys the leftover goods back at a unit-price 𝛽. It is necessary to 

assume that the buyback price 𝛽 is less than the wholesale price w, otherwise the retailer 

would order infinite number of goods and return it back to the wholesaler while earning a 

positive amount of profit for each unsold item. However, another variation of the buyback 

contract can be such as – the retailer need not to return the goods physically, but salvages 

                                                           
26 The application of buyback contract in various industries (e.g. books, apparels etc.) are discussed 

elaborately in Chapter 2.7 
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it at his own location at a price 𝑣, then the wholesaler credits an amount 𝛽1 per unit back 

for the leftover/salvaged items. Thus, the retailer earns the amount 𝛽 = 𝑣 + 𝛽1 for each 

unsold product. In the case of physical return of the goods, the wholesaler pays 𝛽 = 𝑣 +

𝛽1 to the retailer and salvages the leftover at the wholesaler’s location. In both cases, the 

retailer’s payoff for each unsold product remains the same as 𝛽. Our model captures both 

types of buyback contracts. 

We adapt the price-setting newsvendor model of Petruzzi and Dada (1999) and 

modify the model to include the buyback policy. We determine the optimal actions; then, 

we compare the retail price variation with respect to the wholesale price variation by 

analyzing the cost-pass-through27. Following the analytical modeling, we also conduct 

numerical analysis for illustration purpose.  

5.2 Model: 

In the case of price-setting newsvendor model, the retailer’s profit can be expressed 

as following, 

𝜋𝑟 =
𝑝𝐷 − 𝑤𝑞 + 𝛽(𝑞 − 𝐷)

𝑝𝑞 − 𝑤𝑞 − 𝑆(𝐷 − 𝑞)
   
; 𝐷 ≤ 𝑞
;𝐷 > 𝑞

 
(1) 

Since, 𝐷 = 𝑦 + 𝜖 (additive case) or 𝐷 = 𝑦𝜖 (multiplicative case), by assuming28 

𝑧 = 𝑞 − 𝑦 (additive case) or 𝑧 = 𝑞/𝑦 (multiplicative case), the retailer’s profit 𝜋𝑟(𝑞, 𝑝) 

can be expressed as 𝜋𝑟(𝑧, 𝑝). The corresponding optimal policy is the order quantity, 𝑞∗ =

𝑦(𝑝∗) + 𝑧∗ (additive case) or 𝑞∗ = 𝑧∗𝑦(𝑝∗) (multiplicative case). Here 𝑧 is called the 

stocking factor and can be expressed as 𝑧 = 𝜇 + 𝜎 ∗ (safety factor) 

                                                           
27 Cost-pass-through refers to the change in price for marginal change in cost. If the retail price is 𝑝 and the 

wholesale price is 𝑤, then the retail cost-pass-through is 
𝑑𝑝

𝑑𝑤
 . 

28 Such assumption provides mathematical convenience. We adapt this solution method from Petruzzi and 

Dada (1999). 
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The retailer’s objective is to maximize its expected profit, 𝐸[𝜋𝑟(𝑧, 𝑝)] where 

𝜋𝑟(𝑧, 𝑝) is the retailer’s profit and the optimal action is to determine 𝑧∗ and 𝑝∗. This is a 

joint optimization problem in 𝑝 and 𝑧. Therefore, we take partial derivatives of the expected 

profit in 𝑝 and 𝑧, and check if the second order conditions are fulfilled. If 𝐸[𝜋𝑟] is concave 

in 𝑧 for a given 𝑝 (i.e. 
𝜕2

𝜕𝑧2
(𝐸[𝜋𝑟(𝑧|𝑝)]) < 0) and concave in 𝑝 for a given 𝑧 (i.e. 

𝜕2

𝜕𝑝2
(𝐸[𝜋𝑟(𝑝|𝑧)]) < 0), then we can solve the joint optimization problem following either 

the stocking decision approach or the pricing decision approach as follows-  

Stocking decision approach: By replacing 𝑝∗(𝑧), the expected profit equation 

would be transformed into a single variable problem in 𝑧 (Zabel 1970). Following Zabel’s 

(1970) method, Petruzzi and Dada (1999) derived conditions for the existence of unique 

optimal actions in the case of newsvendor model. They showed that 𝐸[𝜋𝑟(𝑧, 𝑝
∗(𝑧))] 

reaches its maximum at the unique value of 𝑧 ≠ 𝐵 that satisfies, 
𝑑

𝑑𝑧
𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))] = 0. 

The conditions are fulfilled by exponential, uniform (Zabel, 1970), normal (Nevins, 1966), 

log-normal (Young 1978) distributions etc. Petruzzi and Dada’s (1999) conditions are 

slightly more general. Their theorem is analogous in our buyback setting. We refer this 

method as the stocking decision approach.  

Pricing decision approach: Another method of solving the joint optimization 

problem is to replace 𝑧∗(𝑝) into the expected profit equation; then the expected profit 

equation would be transformed into a single variable problem in 𝑝 (Whitin 1955, Porteus 

1990). We refer this method as the pricing decision approach. Emmons and Gilbert (1998) 

followed pricing decision method in buyback-newsvendor setting assuming multiplicative 

uncertainty, uniform distribution and linear demand form with no shortage cost.  
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Both stocking decision approach and pricing decision approach give the same 

optimal results. Stocking decision approach is mathematically convenient and pricing 

decision approach has managerial application. For price variation comparison, the pricing 

decision approach is convenient sometimes.  

Table 5.1: Description of Parameters 

Notation Description 

𝜋𝑟 Retailer’s profit 

𝑝 Retail price 

𝑤 Wholesale price 

𝐷 Demand 

For additive case, 𝐷 = 𝑦 + 𝜖 
For multiplicative case, 𝐷 = 𝑦𝜖 

𝑦 Deterministic part of the demand 

𝜖 Random part of the demand 

𝑞 Order quantity 

𝛽 Buyback price 

𝑆 Shortage cost 

𝑧 Stocking factor 

For additive case, 𝑧 = 𝑞 − 𝑦 

For multiplicative case, 𝑧 = 𝑞/𝑦 

𝑏 Elasticity of the demand function 

𝜇 Expected value of the random variable 𝜖 
Θ(𝑧) 

∫ (𝑢 − 𝑧)𝑓(𝑢)𝑑𝑢
𝐵

𝑧

 

For additive case, E[shortage] = Θ(𝑧) 
For multiplicative case, E[shortage] = yΘ(𝑧) 

Λ(𝑧) 
∫ (𝑧 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑧

𝐴

 

For additive case, E[leftover] = Λ(𝑧) 
For multiplicative case, E[leftover] = yΛ(𝑧) 

𝜇 − 𝛩(𝑧) = 𝑧 − Λ Expected sales 
𝛬

(𝜇 − Θ)
 

𝐸[𝑙𝑒𝑓𝑡𝑜𝑣𝑒𝑟]

𝐸[𝑠𝑎𝑙𝑒𝑠]
 

𝐹(𝑧) Cumulative Distribution Function 

𝑓(𝑧) Probability Density Function 

𝑟(𝑧) =
𝑓(𝑧)

1 − 𝐹(𝑧)
 

Hazard rate 

𝑑𝛬

𝑑𝑧
= 𝐹(𝑧) ;  

𝑑𝛩

𝑑𝑧∗
= −[1 − 𝐹(𝑧)] 

 

 

Derivatives of 𝛬 and 𝛩 in 𝑧 

 



53 

 

We conduct the analytical and numerical analysis considering two types of 

(additive and multiplicative) demand uncertainty. We assume a linear and isoelastic 

demand form with additive and multiplicative uncertainty following a uniform distribution. 

The detail problem formulations and solutions are discussed in Appendix 1A (Additive 

case) and Appendix 2A (Multiplicative case). The parameters are introduced in Table 5.1 

and lemmas and propositions are mentioned in the following subsections. 

5.2.1 Additive Demand Uncertainty Case:  

Lemma 1a: Following the pricing decision approach for the single period buyback-

newsvendor model with additive demand uncertainty, the optimal stocking factor 𝑧∗ is 

determined as, 𝑧∗(𝑝) = 𝐹−1 [
𝑝+𝑆−𝑤

𝑝+𝑆−𝛽
] and the optimal 𝑝∗ is the 𝑝 that satisfies 

𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = 0. Hence:  

1. For linear demand, 𝑝∗(𝑤) = {𝑝|−𝑝 +
𝑎+𝑏𝑤

2𝑏
+
𝜇 −Θ(𝑧∗(𝑝))

2𝑏
= 0} 

2. For isoelastic demand, 𝑝∗(𝑤) = {𝑝|−𝑝 +
𝑏

(𝑏−1)
𝑤 +

𝜇−Θ(𝑧∗(𝑝))

(𝑏−1)𝑎𝑝−𝑏−1
= 0}  

Proof: Appendix 1-B-i. 

Lemma 1b: Following the stocking decision approach for the single period buyback-

newsvendor model considering linear29 demand with additive uncertainty, the optimal 

price 𝑝∗ is determined as30 𝑝∗(𝑧) =
𝑎+𝑏𝑤+𝜇

2𝑏
−
Θ(𝑧)

2𝑏
 and the optimal 𝑧∗ is the unique 𝑧 in the 

region [𝐴, 𝐵] that satisfies 
𝑑𝐸[Π𝑟(𝑧,𝑝(𝑧))]

𝑑𝑧
= 0. Hence, 

                                                           
29 Following the stocking decision approach, it is difficult to obtain a close-form solution of 𝑝∗(𝑧) in the case 

of an isoelastic demand with an additive uncertainty. However, we can solve the problem following the 

pricing decision approach which is mentioned in Lemma 1a.  
30 The optimal price in the case of additive certainty is less than the risk-less price. This result was shown by 

Mills (1959) and Petruzzi and Dada (1999).  



54 

 

𝑧∗(𝑤) = {𝑧|−(𝑤 − 𝛽) + (
𝑎 + 𝑏𝑤
2𝑏

+
μ − Θ(𝑧)
2𝑏

+ 𝑆 − 𝛽) [1 − 𝐹(𝑧)] = 0} 

Proof: Appendix 1-B-ii.  

Proposition 1: In the case of a buyback-newsvendor model with additive demand 

uncertainty, the retail cost-pass-through is as follows- 

1. For a linear demand (𝑦 = 𝑎 − 𝑏𝑝), 
𝑑𝑝∗

𝑑𝑤
=
1

2
(1 −

1+𝐹

2𝑏(𝑝∗+𝑆−𝛽)𝑟−(1−𝐹)
) 

2. For an isoelastic demand (𝑦 = 𝑎𝑝−𝑏), 
𝑑𝑝∗

𝑑𝑤
=

1

𝑟(𝑝+𝑆−𝛽)
−𝑏𝑎𝑝−1−𝑏

1−𝐹

𝑟(𝑝+𝑆−𝛽)
+𝑎𝑏𝑝−2−𝑏((𝑏−1)𝑝−(𝑏+1)𝑤)

 

Here, 𝐹(. ) is the cumulative distribution function, 𝑓(. ) is the probability density function, 

𝑟(. ) =
𝑓(.)

1−𝐹(.)
 is the hazard rate. 

Proof: Appendix 1-D.  

Corollary 1a: For 2𝑏(𝑝∗ + 𝑆 − 𝛽)
𝑟

(1−𝐹)
> 1, FBP occurs in the case of buyback-

newsvendor model under linear demand with additive uncertainty. 

Proof: For 2𝑏(𝑝∗ + 𝑆 − 𝛽)
𝑟

(1−𝐹)
> 1,   

𝑑𝑝∗

𝑑𝑤
<
1

2
< 1; hence, FBP occur 

Corollary 1b: Occurrence of FBP or RBP in the case of buyback-newsvendor model under 

isoelastic demand with additive uncertainty, depends on the parametric values.  

5.2.2 Multiplicative Demand Uncertainty Case:  

Lemma 2a: Following the pricing decision approach for the single period buyback-

newsvendor model with multiplicative demand uncertainty, the optimal stocking factor 𝑧∗ 

is determined as, 𝑧∗(𝑝) = 𝐹−1 [
𝑝+𝑆−𝑤

𝑝+𝑆−𝛽
] and the optimal 𝑝∗ is the 𝑝 that satisfies 

𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = 0. Hence:  

1. For a linear demand, 𝑝∗(𝑤) = {𝑝|−𝑝 +
𝑎+𝑏𝑤

2𝑏
+
1

2
∗ 𝑋(𝑧∗(𝑝)) = 0} 



55 

 

2. For an isoelastic demand,  𝑝∗(𝑤) = {𝑝|−𝑝 +
𝑏

𝑏−1
𝑤 +

𝑏

𝑏−1
∗ 𝑋(𝑧∗(𝑝)) = 0}  

Here, 𝑋 =
(𝑤−𝛽)Λ(𝑧∗(𝑝))+𝑆Θ(𝑧∗(𝑝))

(𝜇−Θ(𝑧∗(𝑝)))
 

Proof: Appendix 2-B-i 

Lemma 2b: Following the stocking decision approach for the single period buyback-

newsvendor model with multiplicative uncertainty, the optimal 𝑝∗ is determined as: 

1. For linear demand, 𝑝∗(𝑧) =
𝑎+𝑏𝑤

2𝑏
+
1

2
𝑋(𝑧) 

2. For isoelastic demand, 𝑝∗(𝑧) =
𝑏

𝑏−1
𝑤 +

𝑏

𝑏−1
𝑋(𝑧) 

And the optimal 𝑧∗ is the 𝑧 is that satisfies 
𝑑𝐸[Π𝑟(𝑧,𝑝

∗(𝑧))]

𝑑𝑧
= 0. 

𝑧∗(𝑤) = {𝑧|𝑦 (−(𝑤 − 𝛽) + (𝑝∗(𝑧) + 𝑆 − 𝛽)(1 − 𝐹(𝑧))) = 0} 

Here, 𝑦 = 𝑎𝑝∗(−𝑏) for isoelastic demand and 𝑦 = 𝑎 − 𝑏𝑝∗ for linear demand. 

Proof: Appendix 2-B-ii 

Lemma 3: Let’s define, 𝑋 =
(𝑤−𝛽)∗𝐸[𝑙ⅇ𝑓𝑡𝑜𝑣ⅇ𝑟]+𝑆∗𝐸[𝑠ℎ𝑜𝑟𝑡𝑎𝑔ⅇ]

𝐸[𝑠𝑎𝑙ⅇ𝑠]
  and 𝑊 =

1−𝐹

𝑓(𝑝+𝑆−𝛽)
∗
𝜕𝑋

𝜕𝑧
 

Then it follows- 

1. If 𝑆 = 0, then 
𝜕𝑋

𝜕𝑧
> 0 

2. If 𝑆 > 0, then  

a. 
𝜕𝑋

𝜕𝑧
> 0 if (𝑤 − 𝛽) (

𝐹

(1−𝐹)
−

𝛬

(𝜇−Θ)
) > 𝑆

𝜇

(𝜇−Θ)
 

b. 
𝜕𝑋

𝜕𝑧
< 0 if  (𝑤 − 𝛽) (

𝐹

(1−𝐹)
−

𝛬

(𝜇−Θ)
) < 𝑆

𝜇

(𝜇−Θ)
 

3. 𝑊 follows the sign of 
𝜕𝑋

𝜕𝑧
 . 

Here, 
𝐹

(1−𝐹)
>

𝛬

(𝜇−Θ)
 is given  

Proof: Appendix 2-C 
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Remark: In further discussion, we will be using these two variables 𝑋 and 𝑊. 

Proposition 2: The expected profit, 𝐸[𝛱𝑟(𝑝, 𝑧
∗(𝑝))] is concave in 𝑝 or 𝐸[𝛱𝑟(𝑧, 𝑝

∗(𝑧))] 

is concave in 𝑧 for the given conditions- 

1. For 𝑦 = 𝑎 − 𝑏𝑝, 
1

2
𝑊 < 1 

2. For 𝑦 = 𝑎𝑝−𝑏, 𝑏 > 1,  
𝑏

𝑏−1
𝑊 < 1  

where, 𝑊 is defined in Lemma 3.  

Proof: Appendix 2-D-i (pricing decision approach) and Appendix 2-D-ii (stocking 

decision approach). 

Proposition 3: In the case of buyback-newsvendor model with multiplicative uncertainty, 

the retail cost-pass-through is as follows-  

1. For linear demand (i.e. 𝐷 = (𝑎 − 𝑏𝑝)𝜖), 
𝑑𝑝∗

𝑑𝑤
=
1

2
(1 +

𝛬

(𝜇−𝛩)
+(
1

2
−

1

1−𝐹
)𝑊

1−
1

2
𝑊

) 

2. For isoelastic demand (i.e. 𝐷 = (𝑎𝑝−𝑏)𝜖), 
𝑑𝑝∗

𝑑𝑤
=

𝑏

𝑏−1
(1 +

𝛬

(𝜇−Θ)
+(

𝑏

𝑏−1
−

1

1−𝐹
)𝑊

1−
𝑏

𝑏−1
𝑊

)  

Where, 𝑊 is defined in Lemma 3 and Proposition 2, 𝐹(. ) is the cumulative distribution 

function 

Proof: Appendix 2-E-i (pricing decision approach) and Appendix 2-E-ii (stocking decision 

approach). 

Corollary 2: Comparisons of the retail cost-pass-throughs between the case of buyback 

newsvendor model with multiplicative demand uncertainty and the risk-less model are as 

follows in table 5.2. 
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Table 5.2: Comparison of the cost-pass-through between the optimal price and the risk-

less price. 

 

 Retail Cost-pass-through Condition 
L

in
ea

r 
D

em
an

d
 

𝑑𝑝∗

𝑑𝑤
< 1 0 <

𝑊

2
< 1 

𝑑𝑝∗

𝑑𝑤
>
1

2
 

𝑊

2
<

𝛬

(𝜇 − Θ)
∗
(1 − 𝐹)

(1 + 𝐹)
< 1 

𝑑𝑝∗

𝑑𝑤
<
1

2
 

𝛬

(𝜇 − Θ)
∗
(1 − 𝐹)

(1 + 𝐹)
<
𝑊

2
< 1 

𝑑𝑝∗

𝑑𝑤
=
1

2
 

𝑊

2
=

𝛬

(𝜇 − Θ)
∗
(1 − 𝐹)

(1 + 𝐹)
< 1 

Is
o
el

as
ti

c 
D

em
an

d
 

𝑑𝑝∗

𝑑𝑤
>

𝑏

𝑏 − 1
 

𝑏

(𝑏 − 1)
𝑊 <

𝛬

(𝜇 − Θ)

(1 − 𝐹)

(𝐹 −
1
𝑏
)
 

𝑑𝑝∗

𝑑𝑤
<

𝑏

𝑏 − 1
 

𝛬

(𝜇 − Θ)

(1 − 𝐹)

(𝐹 −
1
𝑏
)
<

𝑏

(𝑏 − 1)
𝑊 < 1 

𝑑𝑝∗

𝑑𝑤
=

𝑏

𝑏 − 1
 

𝑏

(𝑏 − 1)
𝑊 =

𝛬

(𝜇 − Θ)

(1 − 𝐹)

(𝐹 −
1
𝑏
)
< 1 

  

Proof: Appendix 2-E-iii. 

5.2.3. Discussion on the Propositions and the Corollary: 

We are interested to analyze the change of 𝑝∗ in 𝑤 which is mentioned in 

Proposition 1 and 3 in term of cost-pass-through for additive and multiplicative case 

respectively. From Chapter 3, we know that the cost-pass-through is related with the BP 

ratio. If 
𝑑𝑝∗

𝑑𝑤
< 1, then retail price fluctuates less than the wholesale price (i.e. FBP occur) 
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and if 
𝑑𝑝∗

𝑑𝑤
> 1, then the retail price fluctuates more than the wholesale price (i.e. RBP 

occur).  

For a linear demand, the cost-pass-through in the case of risk-less-model (i.e. no 

newsvendor) is ½.31 Lemma 1 tells that the optimal price is less than the risk-less-price; 

hence, the cost-pass-through is less than ½ which is conformed by Proposition 1.  Since, in 

the case of buyback-newsvendor model for linear demand with additive uncertainty, 
𝑑𝑝∗

𝑑𝑤
<

1

2
< 1, hence, FBP occur in this setting.   

In the case of a multiplicative demand uncertainty,  
𝑑𝑝∗

𝑑𝑤
 can be less or greater than 

1

2
.  However, the value of 

𝑑𝑝∗

𝑑𝑤
 cannot exceed 1 for linear demand if 0 < 𝑊. [Corollary 2]. 

Hence, FBP occurs in the case of a linear demand with multiplicative uncertainty. 

For isoelastic demand, in the case of a risk-less model, the cost-pass-through is 

clearly greater than one (i.e. 
𝑑𝑝0

𝑑𝑤
=

𝑏

𝑏−1
> 1). Considering the risk associated terms, 

𝑑𝑝∗

𝑑𝑤
 can 

be less or greater than 
𝑏

𝑏−1
. In order to conclude for any valid condition that would make 

𝑑𝑝∗

𝑑𝑤
 less than one for isoelastic demand, the argument −1 <

𝛬

(𝜇−Θ)
+(

𝑏

𝑏−1
−

1

1−𝐹
)𝑊

1−
𝑏

𝑏−1
𝑊

< −
1

𝑏
 is 

needed to be verified where 0 <
𝛬

(𝜇−Θ)
< 1, 

𝑏

𝑏−1
𝑊 < 1, 𝑏 > 2, and 0 < 𝐹 < 1 are given. 

[Appendix 2-E-iii]. Otherwise, 
𝑑𝑝∗

𝑑𝑤
 is greater than one for isoelastic demand. Hence, RBP 

occurs. 

                                                           
31 In the case of risk-less model (for linear demand), 𝑝0 =

𝑎+𝑏𝑤+𝜇

2𝑏
⇒

𝑑𝑝0

𝑑𝑤
=
1

2
< 1 
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5.3 Numerical analysis:  

The price fluctuation, cost-pass-through rates and the occurrence of FBP can be 

illustrated through numerical analysis. The parameters are chosen randomly for illustration 

purpose (Table 5.3). 

Table 5.3: Parameters used in the numerical simulation 

Deterministic part, 𝑦 Uncertainty type Distribution, 𝜖 Shortage 

cost, 𝑆 

Buyback 

price, 𝛽 

Price 

Range 

Linear  

(𝑦 = 100 − 𝑝) 

Additive  Uniform[−5,5], 
Uniform[−10,10] 

10 15, 70 N/A 

Isoelastic  

(𝑦 = 106𝑝−3) 

Additive  Uniform[−5,5] 10 15 Smaller and 

larger price 

Linear  

(𝑦 = 50 − 𝑝) 

Multiplicative Uniform[1,5] 2 1 N/A 

Isoelastic  

(𝑦 = 𝑎𝑝−3) 

Multiplicative Uniform[1,5] 2 1 N/A 

 

5.3.1 Additive Uncertainty Case [Details are in Appendix 1-E]: 

Let’s assume, the deterministic part of the demand follows a linear form, 𝑦 =

100 − 𝑝, the additive uncertainty is uniformly distributed on the interval [−5,5] or 

[−10,10], buyback price,  𝛽 = 15 𝑜𝑟 70, shortage cost, 𝑆 = 10. We consider two uniform 

distributions and two buyback prices for comparison purpose.  

Optimal retail prices and optimal base prices for varying wholesale prices are 

illustrated in Figure 5.1 for 𝛽 = 15 & 70 and the corresponding cost-pass-through is 

illustrated in Figure 5.2. Optimal prices are calculated for two uniform distributions (e.g. 

[−5,5] and [−10,10]). The base price corresponds to the optimal price in the case of a risk-

less model. Figure 5.1 and 5.2 shows that the optimal retail price is less than the base price 

(Mills 1959, Petruzzi & Dada 1999) and the cost-pass-through of the optimal price is less 

than ½. In Figure 5.3, for randomized values of stocking factor, we plot the corresponding 
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wholesale prices and the optimal retail prices and base prices. It shows that the retail price 

fluctuates less than the wholesale price, hence FBP occurs in this setting.  

 

 
Figure 5.1: Price comparison in Buyback Newsvendor Model (linear demand, additive 

uncertainty) 
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Figure 5.2: Cost-pass-through in Buyback Newsvendor Model (linear demand, additive 

uncertainty) 
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Figure 5.3: Occurrence of FBP (Linear demand, additive uncertainty) 

 

We also consider an isoelastic form (e.g. 𝑦 =
106

𝑝3
) for the deterministic part of the 

demand.  Figure 5.4 shows the price comparison that reflects the optimal price is less than 

the risk-less price and Figure 5.5 shows the corresponding cost-pass-through. From figure 

5.5, we see that the cost-pass-through changing from greater to less than one. Hence, based 

on the value of the wholesale price, both RBP and FBP can occur in the case of isoelastic 

demand with additive uncertainty. Figure 5.6 also shows similar conclusion in terms of 

standard deviations. Figure 5.6 shows, occurrence of RBP and FBP for two different range 

of the wholesale price. In the case of the selected parameters, when the wholesale price is 

close to $25, then RBP occurs; when the wholesale price is close to $45, then FBP occurs. 
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Figure 5.4: Price comparison in Buyback Newsvendor Model (Isoelastic demand, 

additive uncertainty) 

 
Figure 5.5: Cost-pass-through in Buyback Newsvendor Model (Isoelastic demand, 

additive uncertainty) 
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Figure 5.6: Occurrence of FBP (Isoelastic demand, additive uncertainty) 

 

 

5.3.2 Multiplicative Uncertainty Case [Details are in Appendix 2-F]:  

Let’s assume, the multiplicative uncertainty is uniformly distributed on the interval 

[1,5]32, shortage price, 𝑆 = 2, buyback price, 𝛽 = 1. The minimum value of the wholesale 

price is the buyback price and the maximum wholesale price33 is that price for which the 

corresponding demand is zero. We consider two forms (linear (𝑦 = 100 − 𝑝) and 

isoelastic (𝑦 = 1000𝑝−3)) for the deterministic part of the demand. The optimal results 

are discussed in the following subsections.  

                                                           
32 The multiplicative case (with constant elasticity) require 𝐴 > 0 in order to avoid the occurrence of negative 

demand (Petruzzi and Dada 1999). It is to be mentioned, Emmons and Gilbert (1998) assumed uniform 

distribution on the interval [0,2] with mean=1 for simplification; that worked there, because they assumed a 

linear form of demand. 
33 For isoelastic demand, the maximum wholesale price is +∞ and the corresponding demand → 0 
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5.3.2.1 Linear Demand: 

Considering a linear demand with multiplicative uncertainty (e.g. 𝐷 = (100 −

𝑝)𝜖), figure 5.7 illustrates the optimal retail prices and base prices for varying wholesale 

prices. Figure 5.8 illustrates the corresponding cost-pass-through. Figure 5.9 shows the 

price fluctuations. Figure 5.7 shows that the optimal price is greater than the risk-less price 

(because of the multiplicative uncertainty) (Karlin & Carr, 1962, Petruzzi & Dada, 1999).  

The corresponding varying cost-pass-through remain less than one (Figure 5.8) for a linear 

demand. Hence, FBP occurs, which is shown in Figure 5.9. From Figure 5.9, we can also 

see how variance is absorbed in retail price compared to the wholesale price.  

 

 
Figure 5.7: Price comparison in buyback-newsvendor model (linear demand with 

multiplicative uncertainty) 
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Figure 5.8: Cost-pass-through in buyback-newsvendor model (Linear demand with 

multiplicative uncertainty) 

 
Figure 5.9: Occurrence of FBP under a buyback newsvendor model (Linear demand with 

multiplicative uncertainty) 
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5.3.2.2 Isoelastic demand: 

Considering an isoelastic demand with multiplicative uncertainty (e.g. 𝐷 =

(1000𝑝−3)𝜖), the optimal prices are illustrated in Figure 5.10. Figure 5.11 shows the 

corresponding cost-pass-through and Figure 5.12 illustrates the price fluctuation. Figure 

5.10 shows that the optimal price is greater than the risk-less price; and the corresponding 

cost-pass-through (figure 5.11) is greater than 3/2 which is the cost-pass-through of the 

risk-less price. Therefore, the cost-pass-through remains greater than 1. Hence, RBP occurs 

for isoelastic demand with multiplicative uncertainty with greater BP ratio. Figure 5.12 

shows an example for the amplified variability in price.  

 

 
Figure 5.10: Price Comparison under a buyback contract (Isoelastic demand with 

multiplicative uncertainty) 
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Figure 5.11: Cost-pass-through in a buyback newsvendor model (Isoelastic demand with 

multiplicative uncertainty) 

 
Figure 5.12: RBP under buyback contract for an isoelastic demand with multiplicative uncertainty 
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5.4 Conclusion:  

Comparing the results of this chapter with the results of chapter 4, we see that 

consideration of buyback contract doesn’t change the occurrence of BP. However, the BP 

ratio changes because of the demand uncertainty. In the case of additive demand 

uncertainty, as the price decreases than the risk-less price, the cost-pass-through is also 

reduces. In the case of multiplicative demand uncertainty, the optimal price is higher than 

the risk-less price, but the cost-pass-through changes from less to greater than the risk-less 

cost-pass-through.       

 



 

 

 

CHAPTER 6: BP IN REVENUE SHARE CONTRACT (DETERMINISTIC DEMAND) 

 

 

6.1 Introduction  

In this chapter, we are considering a simple supply chain of one wholesaler and one 

retailer operating under a revenue-sharing contract. Both the wholesaler and the retailer are 

independent and decide on their optimal prices that maximize their own profits. The profit 

allocation is exogenous. The retailer shares a portion (i.e. 0 < 𝑘 < 1) of its revenue with 

the wholesaler. The share portion ‘𝑘’ is mutually agreed upon and constant in this game. 

The wholesaler decides on the per unit wholesale price, 𝑤 and retailer decides on the per 

unit retail markup, 𝑢𝑟. Both intend to maximize their own profit 𝛱𝑤 and 𝛱𝑟 respectively. 

Per unit retail price ‘p’ is the sum of the wholesale price ‘w’ and the retail markup ‘ur’. 

Demand ‘q’ is endogenous and is a decreasing function in retail price ‘p’ (i.e. 
𝑑𝑞

𝑑𝑝
< 0). As, 

𝑝 = 𝑤 + 𝑢𝑟, we can rewrite the endogenous demand function ‘q’ as q(p) or  

interchangeably. Manufacturing cost ‘c’ is known to both parties (i.e. wholesaler and 

retailer). 34 

  

s.t. and  
  

s.t.  and  

                                                           
34 The game (𝑤, 𝑢𝑟) in this chapter is equivalent to the game (𝑢𝑤 , 𝑢𝑟) in the chapter 4; because, the 

manufacturing cost, c is known to both parties. Therefore, the retailer can calculate the wholesale markup, 

𝑢𝑤 from the declared wholesale price, 𝑤. 
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Similar to Chapter 4, we consider three types of game scenarios (e.g. simultaneous, 

wholesale-leading and retail-leading) between the wholesaler and the retailer. Three types 

of demand functions (e.g. linear, isoelastic, and negative exponential) are considered.  

 

6.1 Analytical results 

We identify the conditions for which the optimality holds and the non-negativity 

constraints (of profits and demand) are satisfied (Table 6.1). We solve for the optimal 

prices and then calculate the cost-pass-throughs (Table 6.2) and BP ratios (Table 6.3). From 

the cost-pass-throughs and the BP ratios, we conclude if RBP or FBP occurs. Given the 

conditions on the value of ‘k’ from Table 6.1, the cost pass-throughs and BP ratios are less 

than one for linear demand and greater than one for isoelastic demand function. Moreover, 

for linear demand, the cost-pass-through at the retail price is less than the cost-pass-through 

at the wholesale price; and for isoelastic demand, the cost-pass-through at retail price is 

greater than the cost-pass-through at wholesale price for isoelastic demand. (Table 6.2). 

Thus, we conclude, FBP occurs for linear demand and RBP occurs for isoelastic demand. 

For negative exponential demand, the cost-pass-through at the retail price is one but the 

cost-pass-through at the wholesale price is less than one (Table 6.2) and the BP ratio 

between the retail and the wholesale price is greater than one (Table 6.3). Hence, for a 

negative exponential demand function (in the case of revenue-sharing contract), no BP 

occurs between the cost and the retail price, but FBP occurs between the cost and the 

wholesale price and RBP occurs between the wholesale price and the retail price.  

Then, we compare the results (e.g. cost-pass-throughs and BP ratios) between the 

contract versus no-contract cases (Table 6.2 and 6.3). The results indicate that a revenue-
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sharing contract doesn’t affect the cost-pass-through of the retail price (i.e. ) in case of 

a simultaneous price-setting game; but it does affect the cost-pass-through in the case of a 

sequential game. For a linear demand, the cost-pass-through of the retail price increases in 

contract situation in the case of a wholesale-leading game. Similarly, for a linear demand, 

the cost-pass-through of the retail price decreases in contract situation in the case of a retail-

leading game. For an isoelastic demand, the cost-pass-through of the retail price decreases 

with a contract structure in the case of a wholesale-leading game; similarly, the cost-pass-

through of the retail price increases with a contract structure in the case of a retail-leading 

game. For a negative exponential demand, the cost-pass-through of the retail price remains 

constant (=1) irrespective of the game changing structures and contracts. The change of 

cost-pass-throughs of the retail price can be explained by the value of optimal retail prices 

in various situations.  For a linear demand under the wholesale leading game, the optimal 

retail price in a contract structure is less than the optimal retail price with no-contract. As 

we know, for linear demand, the cost-pass-through of retail price is absorbing. Hence, for 

lower retail prices (i.e. closer to the cost), the corresponding cost-pass-through is expected 

to be greater. That’s why, in case of wholesale leading game and linear demand, the cost-

pass-through of retail price in contract is greater than that of no-contract case. Other 

changes in the cost-pass-through of the retail prices can be explained in a similar fashion.  

The cost-pass-through at wholesale price (i.e. ) is reduced for the contract case 

(Table 6.2). In case of a simultaneous game,  is reduced by  times for linear, 

isoelastic and negative exponential demand functions. In case of a wholesale-leading and 

dc

dp

dc

dw

dc

dw
k1
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retail-leading game,  is also reduced. Hence, we can conclude that the wholesale price 

fluctuates less in revenue-sharing contracts compared to the no-contract case. 

BP ratios between the retail-price and the wholesale-price are increased by 

times in revenue-sharing contract compared to the no-contract case for simultaneous and 

wholesale leading games (Table 6.3). In the case of retail leading game, comparing 

between revenue-sharing and no-contract cases, the BP ratio remains same for a linear 

demand but increased for isoelastic and negative exponential demand functions.   

 

 

Table 6.1: Conditions for optimality35 and non-negativity constraints36  

(Revenue-sharing contract) 

 

Demand 

function 

Simultaneous  

game 

 

Wholesale  

leading game 

Retail  

leading game 

Linear, 

 ;  

; 

  

   

Isoelastic, 

 

;  

 

;  

 

;  

 

Negative 

Exponential

,  

;

 

   

 

 

                                                           
35 We check the second order condition if the profit equation is concave in price. 
36 , , and  
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k1
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Table 6.3: BP ratio between the retail and wholesale price in the case of revenue-sharing 

contract  

[Results for no-contract situation are adapted from Table 4.2] 

 

Demand  

function 

 

Contract? 

RBP or FBP? 

[within the  

limit of ‘k’] Simultaneous 

 game 

Wholesale 

 leading 

game 

Retail 

 leading game 

Linear,  

 

   
Revenue-

sharing 

(<1) FBP >
 

>
 

=
  

   No contract 

Isoelastic,  

 

   
Revenue-

sharing 

(>1) RBP >
 

>
 

>
  

   No contract 

Negative  

Exponential,  

 

 
Revenue-

sharing 
(>1) RBP 

>
   

 No contract 
(=1) No 

RBP/FBP 

 

 

6.2 Simulation results 

Numerical simulations were run to illustrate the analytical results from the previous 

section. Simulation parameters were selected to satisfy the conditions shown in Table 6.3. 

Cost is assumed to be uniformly distributed between $8 and $10. It is to be mentioned, 

similar analysis can also be done assuming other types of distribution functions (i.e. 

Normal, Weibull etc.).  Simulations were run for 300 times. Thus, we have 300 randomized 

cost data. Then we calculate the optimal wholesale and retail prices for the corresponding 

costs. Then, we compare the standard deviation of the cost and the prices. We consider 

W

P





bpaq 

 k12

1

 k12

1

3

1

2

1

2

1

3

1

lapq 

 kl

l











 1

1

1  kl

l











 1

1

1    11 22

2

 lkll

l

1l

l

1l

l

 12

2

 ll

l

b

p

aeq





k1

1

1



76 

 

linear (𝑞 = 20 − 𝑝), isoelastic (𝑞 = 𝑎𝑝−2.5), and negative exponential (𝑞 = 𝑎 exp (−
𝑝

8
)) 

demand functions. Table 6.4 shows the allowable limit of revenue share ‘k’ based on the 

parameter of this simulation. The limits are calculated based on Table 6.1. In this 

simulation, we consider 10% revenue-sharing (i.e. 𝑘 = 0.1) that satisfies the condition 

(Table 6.4) for all nine possible situations (i.e. 3 demand functions in 3 game settings).  

Figure 6.1 shows the fluctuation of prices for linear, isoelastic, and negative exponential 

demand in different game settings, considering revenue share contracts. 

Table 6.5 shows that the standard deviation of prices is gradually decreasing for a 

linear demand and increasing for a isoelastic demand. In other words, the fluctuation is 

damping for linear demand and amplifying for isoelastic demand functions. If we recall 

from section 6.3, the cost-pass-through for linear demand is less than one and for isoelastic 

demand, it is greater than one. Hence, FBP (i.e. decreased fluctuation) occurs for linear 

demand and RBP (i.e. amplified fluctuation) occurs for isoelastic demand when revenue-

sharing contracts are considered. These conclusions of contract cases are similar to that of 

no-contract cases. However, in the case of a negative exponential demand, there is a 

remarkable difference in the fluctuation behavior. For a negative exponential demand 

function, we see the standard deviation is decreased when the wholesale price is compared 

to the cost, and then increased when the retail price compared to the wholesale price (Table 

6.5). The standard deviation of the retail price is same as of cost. Thus, we can say that the 

wholesale price fluctuates less than the cost, and the retail price fluctuates more than the 

wholesale price but at the same rate as the cost. Figure 6.1 also shows, in case of a negative 

exponential demand, the fluctuation is reduced and then increased from cost to the 

wholesale price to the retail price. Moreover, the ratios of the standard deviations from 



77 

 

simulation (Table 6.5) also match with the analytical values of the cost-pass-throughs 

(Table 6.2) as expected.  (e.g. for linear demand with wholesale leading game, 

; ).  

Let’s compare the results of simulation between revenue-sharing contract versus 

no-contract cases (Table 6.5). We use the same random seed for both simulations. 

Therefore, the randomized cost data is same; hence, the standard deviation of the cost is 

same ( ). The standard deviation of the wholesale price is reduced under a contract 

situation compared to the no-contract situation. The standard deviation of the retail price 

remains same under both contract and no-contract situations in case of simultaneous games. 

In the case of wholesale-leading game, the standard deviation of the retail price is increased 

under a contract situation for linear demand and the standard deviation of the retail price is 

decreased under a contract situation for isoelastic demand. In case of the retail-leading 

game, it is vice versa. For a negative exponential demand, the standard deviation of the 

retail price remains the same as of the cost.  
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6.3 Conclusion 

In this chapter, we calculate the cost-pass-through and BP ratio considering a 

revenue-sharing contract and benchmark the results with that of the no-contract case. RBP 

occurs for the isoelastic demand function and FBP occurs for the linear demand function.  

For a negative exponential demand, FBP occurs at the wholesale stage and RBP occurs at 

the retail stage. The revenue share percentage also affects the quantitative value of the BP 

ratio. The fluctuation of the wholesale price is smoothed in case of a revenue-sharing 

contract. The standard deviation of the retail price remains same in the case of a 

simultaneous game. In the case of a wholesale-leading game, the standard deviation of the 

retail price decreases for an isoelastic demand and increases for a linear demand. In the 

case of a retail-leading game, it is vice versa.   
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CHAPTER 7: BP IN REVENUE-SHARE CONTRACT (STOCHASTIC DEMAND) 

 

 

7.1 Introduction: 

In this chapter, we consider the retailer problem as a price-setting newsvendor 

model37 under a revenue sharing contract. The problem formulation for this newsvendor 

model is similar to what has been discussed in Chapter 5. The difference is the 

consideration of a revenue sharing contract.  In such contract, the retailer keeps 𝜙 portion38 

of the revenue and shares 1 − 𝜙 portion with the wholesaler. It is to be mentioned, 0 <

𝜙 < 1.  We apply a revenue-sharing contract in the Petruzzi-Dada’s (1999) price-setting 

newsvendor model along with additive and multiplicative uncertainty. We deduce the 

optimal prices, analyze the retail cost-pass-through, and compare the price variation 

between the retail and the wholesale prices. 

7.2 Model: 

The problem formulation and the solution procedure39 is similar to that of Chapter 

5. However, the results are significantly different because of the adaptation of the revenue-

sharing contract. The key difference under revenue-sharing practice is that the retailer 

                                                           
37 Price-setting newsvendor model is discussed in Chapter 5. 
38 In chapter 6, the retailer keeps 1 − 𝑘 portion of the revenue. Hence, the results of this section (i.e. Chapter 

7) can be benchmarked with the results of Chapter 6, according to the following relation: 𝜙 = 1 − 𝑘 
39 Stocking decision approach and pricing decision approach 
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shares sales revenue, and salvages at a reduced price 𝑣 if leftover occurs. The retailer’s 

profit can be expressed as following, 

𝜋𝑟 =
𝜙𝑝𝐷 − 𝑤𝑞 + 𝑣(𝑞 − 𝐷)

𝜙𝑝𝑞 − 𝑤𝑞 − 𝑆(𝐷 − 𝑞)
   
; 𝐷 ≤ 𝑞
;𝐷 > 𝑞

  
(1) 

Table 7.1: Description of Parameters 

Notation Description 

𝜋𝑟 Retailer’s profit 

𝜙 Retailer’s share from the sales revenue 

𝑝 Retail price 

𝑤 Wholesale price 

𝐷 Demand 

For additive case, 𝐷 = 𝑦 + 𝜖 
For multiplicative case, 𝐷 = 𝑦𝜖 

𝑦 Deterministic part of the demand 

𝜖 Random part of the demand 

𝑞 Order quantity 

𝑣 Salvage price 

𝑆 Shortage cost 

𝑧 Stocking factor 

For additive case, 𝑧 = 𝑞 − 𝑦 

For multiplicative case, 𝑧 = 𝑞/𝑦 

𝑏 Elasticity of the demand function 

𝜇 Expected value of the random variable 𝜖 
Θ(𝑧) 

∫ (𝑢 − 𝑧)𝑓(𝑢)𝑑𝑢
𝐵

𝑧

 

For additive case, E[shortage] = Θ(𝑧) 
For multiplicative case, E[shortage] = yΘ(𝑧) 

Λ(𝑧) 
∫ (𝑧 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑧

𝐴

 

For additive case, E[leftover] = Λ(𝑧) 
For multiplicative case, E[leftover] = yΛ(𝑧) 

𝜇 − Θ(z) Expected sales 
𝛬

(𝜇 − Θ)
 

𝐸[𝑙𝑒𝑓𝑡𝑜𝑣𝑒𝑟]

𝐸[𝑠𝑎𝑙𝑒𝑠]
 

𝐹(𝑧) Cumulative Distribution Function 

𝑓(𝑧) Probability Density Function 

𝑟(𝑧) =
𝑓(𝑧)

1 − 𝐹(𝑧)
 

Hazard rate 

𝑑𝛬

𝑑𝑧
= 𝐹(𝑧) ; 

𝑑𝛩

𝑑𝑧
= −[1 − 𝐹(𝑧)] 

 

 

Derivatives of 𝛬 and 𝛩 in 𝑧 
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The details of the problem formulation is mentioned in Appendix 1-A (additive 

demand uncertainty case) and 2-A (multiplicative demand uncertainty case), and the model 

parameters are described in Table 7.1. The lemmas and propositions are mentioned in the 

following sub-sections. In our analysis, we are using two forms of demand function such 

as a linear (𝑦 = 𝑎 − 𝑏𝑝) and an isoelastic (𝑦 = 𝑎𝑝−𝑏) demand function.  

7.2.1 Additive Demand Uncertainty Case: 

Lemma 1a: Following the pricing decision approach for the single period buyback-

newsvendor model with additive demand uncertainty, the optimal stocking factor 𝑧∗ is 

determined as, 𝑧∗(𝑝) = 𝐹−1 [
𝜙𝑝+𝑆−𝑤

𝜙𝑝+𝑆−𝑣
]; and the optimal 𝑝∗ is the 𝑝 that satisfies 

𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = 0. Hence,  

1. For a linear demand,  𝑝∗(𝑤) = {𝑝|−𝑝 +
𝜙𝑎+𝑏𝑤

2𝜙𝑏
+
𝜇 −Θ(𝑧∗(𝑝))

2𝑏
= 0};  

2. For an isoelastic demand, 𝑝∗(𝑤) = {𝑝|−𝑝 +
𝑏

𝜙(𝑏−1)
𝑤 +

𝜇−Θ(𝑧∗(𝑝))

(𝑏−1)𝑎𝑝−𝑏−1
= 0}. 

Proof: Appendix 1-B-i 

Lemma 1b: Following the stocking decision approach for the single period revenue-

sharing-newsvendor model under a linear40 demand with an additive uncertainty, the 

optimal price 𝑝∗ is determined as 𝑝∗(𝑧) =
𝜙𝑎+𝑏𝑤

2𝜙𝑏
+
𝜇−𝛩(𝑧)

2𝑏
 and the optimal 𝑧∗ is the unique 

𝑧 in the region [𝐴, 𝐵] that satisfies 
𝑑𝐸[Π𝑟(𝑧,𝑝(𝑧))]

𝑑𝑧
= 0. Hence, 

𝑧∗(𝑤) = {𝑧|−(𝑤 − 𝑣) + (
𝜙𝑎+𝑏𝑤

2𝑏
+
𝜙(𝜇−𝛩(𝑧))

2𝑏
+ 𝑆 − 𝑣) [1 − 𝐹(𝑧)] = 0}  

                                                           
40 For an isoelastic demand with additive uncertainty, the stocking decision approach is difficult due to lack 

of a closed-form solution of 𝑝∗(𝑧).  
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Proof: Appendix 1-B-ii 

Proposition 1: In the case of a revenue-sharing-newsvendor model with an additive demand 

uncertainty, the retail cost-pass-throughs are as follows- 

1. For a linear demand (i.e. 𝐷 = 𝑎 − 𝑏𝑝 + 𝜖), 
𝑑𝑝∗

𝑑𝑤
=

1

2𝜙
(1 −

𝜙(1+𝐹)

2𝑏𝑟(𝜙𝑝+𝑆−𝑣)−𝜙(1−𝐹)
)  

2. For an isoelastic demand (i.e. 𝐷 = 𝑎𝑝−𝑏 + 𝜖), 

 
𝑑𝑝∗

𝑑𝑤
=

(1−𝐹)2𝑝2+𝑏𝜙−𝑎𝑏𝑝𝑓(𝑤−𝑣)

(1−𝐹)3𝑝2+𝑏𝜙2−𝑎𝑏𝑓(𝑤−𝑣)(𝑤(𝑏+1)−𝑝𝜙(𝑏−1)) 
 

where, 𝑓(. ) is the probability density function, 𝐹(. ) is the cumulative distribution function, 

𝑟(. ) =
𝑓(.)

1−𝐹(.)
 is the hazard rate, 𝜙 is the retailer’s share 

Proof: Appendix 1-D. 

Corollary 1a: For 2𝑏(𝜙𝑝∗ + 𝑆 − 𝑣)
𝑟

𝜙(1−𝐹)
> 1, FBP occurs in the case of revenue-sharing 

newsvendor model under linear demand with additive uncertainty. 

Corollary 1b: The occurrence of RBP or FBP depends on the parametric values in the case 

of revenue-sharing newsvendor model under an isoelastic demand with additive 

uncertainty. 

7.2.2 Multiplicative Demand Uncertainty Case: 

Lemma 2a: Following the pricing decision approach for the single period revenue-sharing 

newsvendor model with a multiplicative demand uncertainty, the optimal stocking factor 

𝑧∗ is determined as, 𝑧∗(𝑝) = 𝐹−1 [
𝜙𝑝+𝑆−𝑤

𝜙𝑝+𝑆−𝑣
] and the optimal 𝑝∗ is the 𝑝 that satisfies 

𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = 0. Hence:  

1. For a linear demand, 𝑝∗ = {𝑝|−𝑝 +
𝜙𝑎+𝑏𝑤

2𝜙𝑏
+

1

2𝜙
∗ 𝑋(𝑤, 𝑧∗(𝑝)) = 0}  
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2. For an isoelastic demand, 𝑝∗ = {𝑝|−𝑝 +
𝑏

(𝑏−1)𝜙
𝑤 +

𝑏

(𝑏−1)𝜙
∗ 𝑋(𝑤, 𝑧∗(𝑝)) = 0}   

Where, 𝑋 =
(𝑤−𝑣)Λ(𝑧∗(𝑝))+𝑆Θ(𝑧∗(𝑝))

(𝜇−Θ(𝑧∗(𝑝)))
 

Proof: Appendix 2-B-i. 

Lemma 2b: Following the stocking decision approach for the single period revenue-sharing 

newsvendor model with a multiplicative demand uncertainty, the optimal 𝑝∗ is determined 

as: 

1. For a linear demand, 𝑝∗(𝑧) =
𝜙𝑎+𝑏𝑤

2𝜙𝑏
+

1

2𝜙
∗ 𝑋(𝑧) 

2. For an isoelastic demand, 𝑝∗(𝑧) =
𝑏

(𝑏−1)𝜙
𝑤 +

𝑏

(𝑏−1)𝜙
∗ 𝑋(𝑧) 

And the optimal 𝑧∗ is the 𝑧 is that satisfies 
𝑑

𝑑𝑧
(𝐸[Π𝑟(𝑧, 𝑝

∗(𝑧))]) = 0. 

𝑧∗(𝑤) = {𝑧|𝑦 (−(𝑤 − 𝑣) + (𝜙𝑝∗(𝑧) + 𝑆 − 𝑣)(1 − 𝐹(𝑧))) = 0} 

Here, 𝑦 = 𝑎𝑝∗(−𝑏) for an isoelastic demand and 𝑦 = 𝑎 − 𝑏𝑝∗ for a linear demand. 

Proof: Appendix 2-B-ii 

Lemma 3: Let’s define, 𝑋 =
(𝑤−𝑣)∗𝐸[𝑙ⅇ𝑓𝑡𝑜𝑣ⅇ𝑟]+𝑆∗𝐸[𝑠ℎ𝑜𝑟𝑡𝑎𝑔ⅇ]

𝐸[𝑠𝑎𝑙ⅇ𝑠]
 and 𝑊 =

𝜙(1−𝐹)

𝑓(𝜙𝑝+𝑆−𝛽)
∗
𝜕𝑋

𝜕𝑧
 

Then it follows- 

1. If 𝑆 = 0, then 𝑊 > 0 

2. If 𝑆 > 0, then  

a. 𝑊 > 0 if (𝑤 − 𝑣) (
𝐹

(1−𝐹)
−

𝛬

(𝜇−𝛩)
) > 𝑆

𝜇

(𝜇−𝛩)
  

b. 𝑊 < 0 if  (𝑤 − 𝑣) (
𝐹

(1−𝐹)
−

𝛬

(𝜇−𝛩)
) < 𝑆

𝜇

(𝜇−𝛩)
 

3. 𝑊 follows the sign of 
𝜕𝑋

𝜕𝑧
 . 
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Here,  
𝐹

(1−𝐹)
>

𝛬

(𝜇−Θ)
 is given. 

Proof: Appendix 2C 

Remark: In further discussion, we will be using these two parameters 𝑋 and 𝑊 frequently. 

Proposition 2: The expected profit, 𝐸[𝛱𝑟(𝑝, 𝑧
∗(𝑝))] is concave in 𝑝; or 𝐸[𝛱𝑟(𝑧, 𝑝

∗(𝑧))] is 

concave in 𝑧 for the given conditions- 

1. For 𝑦 = 𝑎 − 𝑏𝑝, 
1

2𝜙
𝑊 < 1 

2. For 𝑦 = 𝑎𝑝−𝑏, 𝑏 > 1,  
𝑏

(𝑏−1)𝜙
𝑊 < 1  

where, 𝑊 is defined in Lemma 3.  

Proof: Appendix 2-D-i and 2-D-ii 

Proposition 3: In the case of revenue-sharing newsvendor model with a multiplicative 

uncertainty in demand, the retail cost-pass-throughs are as follows-  

1. For linear demand (i.e. 𝐷 = (𝑎 − 𝑏𝑝)𝜖), 
𝑑𝑝∗

𝑑𝑤
=

1

2𝜙
(1 +

𝛬

(𝜇−Θ)
−(

1

(1−𝐹)
−
1

2
)∗
𝑊

𝜙

1−
1

2
∗
𝑊

𝜙

) 

2. For isoelastic demand (i.e. 𝐷 = (𝑎𝑝−𝑏)𝜖), 
𝑑𝑝∗

𝑑𝑤
=

𝑏

(𝑏−1)𝜙
(1 +

𝛬

(𝜇−Θ)
−(

1

1−𝐹
−

𝑏

(𝑏−1)
)
𝑊

𝜙

1−
𝑏

(𝑏−1)
∗
𝑊

𝜙

) 

where, 𝑊 is defined in Lemma 3 and Proposition 2, and 𝐹(. ) is the cumulative distribution 

function.  

Proof: Appendix 2-E-i (pricing decision approach) and Appendix 2-E-ii (stocking decision 

approach). 

Corollary 2: Comparisons of the retail cost-pass-throughs between the case of a revenue-

sharing newsvendor model with multiplicative demand uncertainty and a revenue-sharing 

risk-less model are as follows in Table 7.2. 
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Table 7.2: Comparison of the cost-pass-through between the optimal price and the risk-

less price. 

 

 Retail Cost-pass-through Condition 

L
in

ea
r 

D
em

an
d

 
𝑑𝑝∗

𝑑𝑤
< 1 0 <

𝑊

2
< 1 

𝑑𝑝∗

𝑑𝑤
>
1

2𝜙
 

𝑊

2𝜙
<

𝛬

(𝜇 − Θ)
∗
(1 − 𝐹)

(1 + 𝐹)
< 1 

𝑑𝑝∗

𝑑𝑤
<
1

2𝜙
 0 <

𝛬

(𝜇 − Θ)
∗
(1 − 𝐹)

(1 + 𝐹)
<
𝑊

2𝜙
< 1 

𝑑𝑝∗

𝑑𝑤
=
1

2𝜙
 0 <

𝑊

2𝜙
=

𝛬

(𝜇 − Θ)
∗
(1 − 𝐹)

(1 + 𝐹)
< 1 

Is
o
el

as
ti

c 
D

em
an

d
 

𝑑𝑝∗

𝑑𝑤
>

𝑏

(𝑏 − 1)𝜙
 

𝛬

(𝜇 − Θ)
> (

1

1 − 𝐹
−

𝑏

𝑏 − 1
)
𝑊

𝜙
 

𝑑𝑝∗

𝑑𝑤
<

𝑏

(𝑏 − 1)𝜙
 0 <

𝛬

(𝜇 − Θ)
< (

1

1 − 𝐹
−

𝑏

𝑏 − 1
)
𝑊

𝜙
 

𝑑𝑝∗

𝑑𝑤
=

𝑏

(𝑏 − 1)𝜙
 0 <

𝛬

(𝜇 − Θ)
= (

1

1 − 𝐹
−

𝑏

𝑏 − 1
)
𝑊

𝜙
< 1 

 

Proof: Appendix 2-E-iii 

7.2.3 Discussion on the propositions and corollary:  

We analyze the change of 𝑝∗ in 𝑤 by exploring the cost-pass-through rates which 

are mentioned in Proposition 1 and 3, and Corollary 1 and 2.  

The cost-pass-through of the risk-less-price for a linear demand under a revenue-

share contract is 
1

2𝜙
 .41  In the case of an additive demand uncertainty, the optimal price is 

                                                           
41 
𝑑𝑝0

𝑑𝑤
=

𝑑

𝑑𝑤
(
𝜙𝑎+𝑏𝑤

2𝜙𝑏
) =

1

2𝜙
 ; It also conforms the results of chapter 6 in the case of wholesale leading game.  
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less than the risk-less-price [see Lemma 1]; hence, the cost-pass-through of the optimal 

price is less than 
1

2𝜙
 [see Proposition 1]. Therefore, the cost-pass-through doesn’t exceed 

1. Therefore, FBP occurs for the linear demand with an additive uncertainty. In the case of 

a multiplicative demand uncertainty, the cost-pass-through of the optimal price varies but 

remains less than one [Corollary 2]. Therefore, FBP occur in this setting as well. 

For an isoelastic demand, the cost-pass-through of the risk-less price in the case of 

a revenue-sharing contract is 
𝑏

(𝑏−1)𝜙
> 1. The cost-pass-through of the optimal price varies 

from less than 
𝑏

(𝑏−1)𝜙
 to greater than 

𝑏

(𝑏−1)𝜙
 . When, the cost-pass-through is equal or greater 

than 
𝑏

(𝑏−1)𝜙
, it is clearly greater than one. Hence, RBP occurs. If 

𝑑𝑝∗

𝑑𝑤
 is less than 

𝑏

(𝑏−1)𝜙
, 

there are two possible scenarios such as 
𝑑𝑝∗

𝑑𝑤
 remains greater than one or it reduces to less 

than one. In order to conclude for any valid condition that would make 
𝑑𝑝∗

𝑑𝑤
 less than one, 

the argument 0 <
1+

𝛬

(𝜇−Θ)
−(

1

1−𝐹
)
𝑊

𝜙

1−(
𝑏

𝑏−1
)
𝑊

𝜙

<
(𝑏−1)𝜙

𝑏
 is needed to be verified where 0 <

𝛬

(𝜇−Θ)
< 1, 

(
𝑏

𝑏−1
)
𝑊

𝜙
< 1, 𝑏 > 1, and 0 < 𝐹 < 1 are given. Otherwise, 

𝑑𝑝∗

𝑑𝑤
 is greater than one for 

isoelastic demand in all possible scenarios. Hence, RBP occurs for isoelastic demand under 

a revenue sharing contract. 

7.3 Numerical analysis:  

In this section, we present the results of the numerical analysis for the revenue 

sharing contract case [Details are provided in Appendix 1-E and 2-F]. In the case of 

additive uncertainty case, we follow the stocking decision approach for a linear demand 

and the pricing decision approach for an isoelastic demand. For the multiplicative demand 
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uncertainty case, we follow the pricing decision approach for both a linear and an isoelastic 

demand. We consider three different values of the revenue-share percentage (e.g. 𝜙 =

{1,0.85,0.7} )42. The parameters are chosen randomly for illustration purpose (Table 7.3). 

The results are illustrated in the following sub-sections.  

Table 7.3: Parameters used in the numerical simulation 

Deterministic 

part 

Uncertainty Distribution, 𝜖 Shortage 

cost, 𝑆 

Salvage 

price, 𝑣 

Retailer’s 

share, 𝜙  

Price 

Range 

Linear  

(𝑦 = 100 −
𝑝) 

Additive  Uniform[−10,10] 10 15 0.7, 0.85, 1 N/A 

Isoelastic  

(𝑦 = 106𝑝−3)  

Additive Uniform[−5,5]  10 15 0.7, 0.85, 1 Smaller 

and larger 

price 

Linear 

(𝑦 = 100 −
𝑝) 

Multiplicative  Uniform[1,3] 20 5 0.8, 0.9, 1 N/A 

Isoelastic  

(𝑦 = 𝑎𝑝−3) 

Multiplicative Uniform[1,3] 20 5 0.8, 0.9, 1 N/A 

 

7.3.1 Additive Demand Uncertainty Case: 

Let’s assume a linear demand (𝐷 = 100 − 𝑝 + 𝜖) and an isoelastic demand 

(𝐷 =
106

𝑝3
+ 𝜖), a shortage cost of 𝑆 = 10, and a salvage price of 𝑣 = 15, and a uniform 

distribution on the interval  [−10,10] for the linear case and [−5,5] for the isoelastic case. 

The optimal results are as follows-  

7.3.1.1 Linear demand: 

Figure 7.1 shows the price comparison and Figure 7.2 shows the corresponding cost 

past through for three different revenue-sharing percentages. It also shows that the cost-

pass-through of the optimal price is less than that of the risk-less price. The cost-pass-

                                                           
42 𝜙 = 1 corresponds to no-revenue share contract; 𝜙 = 0.85 refers to a revenue-sharing contract where 

retailer keeps 85% of the sales revenue.   
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through remains less than 1 for various values of the revenue-share percentages. Figure 7.3 

illustrates the price fluctuations that shows the variability is absorbed in retail price 

compared to the wholesale price. Hence, FBP occurs for the linear demand with an additive 

demand uncertainty. 

 
Figure 7.1: Price Comparison (Linear Demand; additive uncertainty) 
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Figure 7.2: Cost-pass-through (Linear Demand, Additive Uncertainty) 

 
Figure 7.3: Occurrence of FBP (Linear demand; additive uncertainty) 
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7.3.1.2 Isoelastic demand:  

 Figure 7.4 shows the price comparison that reflects optimal retail price is less than 

risk-less price as expected. The dotted line shows the risk-less price. The slope of the risk-

less is price is a constant but the slope of the optimal retail prices is concave.  It is evident 

from the figure, that the slope is gradually decreasing in price. Figure 7.5 shows more 

clearly, that the cost-pass-through is decreasing and cross the horizontal line with slope=1 

at certain point. This phenomenon is crucial. Because it reflects, that the cost-pass-through 

is greater than for some price but less than one for some other range of prices. Hence, 

isoelastic demand with additive uncertainty shows both RBP and FBP (Ozelkan and Lim 

2008). For different revenue-share percentages, the cost-pass-through changes.  

 
Figure 7.4: Price Comparison (Isoelastic Demand; additive uncertainty) 
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Figure 7.5: Cost-pass-through (Isoelastic Demand; additive uncertainty) 

 

 
Figure 7.6: RBP and FBP (Isoelastic Demand; additive uncertainty) 
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It is seen from figure 7.5 that RBP and FBP both exist for different ranges of the optimal 

price; similarly, figure 7.6 illustrates the phenomenon in terms of standard deviations. 

Figure 7.6 compares two cases of larger and smaller retail prices for both with (𝜙 = 0.85) 

or without (𝜙 = 1) a revenue-sharing contract.  

 

7.3.2 Multiplicative Demand Uncertainty Case: 

We assume a shortage cost of 𝑆 = 20, salvage price of 𝑣 = 5, and a uniform 

distribution on the interval [1,3]. We consider a linear (𝐷 = (100 − 𝑝)𝜖) and an isoelastic 

(𝑦 = (𝑎𝑝−3)𝜖) demand. 

7.3.2.1 Linear Demand: 

Figure 7.7 and 7.8 shows the price comparison and the corresponding cost-pass-

through for a linear demand (𝑦 = 100 − 𝑝) with multiplicative uncertainty (uniform[1,3]). 

As Corollary 2 dictates, the cost pass through varies from less than half to greater than half. 

However, the cost-pass-through remains less than one for 𝜙 = 0.8, 0.9 and 1. Hence, FBP 

occurs in these settings as well which is also illustrated in Figure 7.9.  
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Figure 7.7: Price Comparison (Linear demand; Multiplicative uncertainty) 

 
Figure 7.8: Cost-pass-through (Linear Demand; Multiplicative uncertainty; Revenue-

share) 
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Figure 7.9: Occurrence of FBP (Linear Demand; Multiplicative uncertainty; Revenue-

sharing) 

 

7.3.2.2 Isoelastic Demand: 

Here, we consider an isoelastic demand (𝑦 = 1000𝑝−3) with multiplicative 

uncertainty. For 𝑏 = 3 (as we assumed in this numerical analysis), the cost-pass-through 

of the risk-less price is 
3

2𝜙
 which is greater than one. Figure 7.10 shows, the cost-pass-

through of the optimal price is more than that of the risk-less-price; hence, remains more 

than one (Figure 7.11). Therefore, RBP occurs for isoelastic demand (Figure 7.12). Figure 

7.10, 7.11, and 7.12 also shows that the cost-pass-through is increasing for decreasing 

values of 𝜙 (i.e. retailer’s share).  
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Figure 7.10: Price Comparison (Isoelastic demand; Multiplicative Uncertainty) 

 
Figure 7.11: Cost-pass-through (Isoelastic demand, Multiplicative Uncertainty) 
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Figure 7.12: Occurrence of RBP (Isoelastic Demand; Multiplicative Uncertainty) 

 

From simulations, we observe that the cost-pass-through is inversely proportional 

to the value of 𝜙 (Figure 7.2, 7.5, 7.8, and 7.11). Increased cost-pass-through implies that 

price is changing more for marginal change in cost. Therefore, the retail price fluctuation 

is increased for a revenue share contract (Figure 7.3, 7.6, 7.9, and 7.12).  

 

7.5 Conclusion:  

We analyze the cost-pass-through in the case of a revenue-sharing contract with a 

stochastic demand, and conclude on the occurrence of Bullwhip effect in Price (BP). 

Compared to the deterministic case, the stochasticity increases or decreases the optimal 

price in the case of a multiplicative or an additive demand uncertainty cases respectively. 
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Hence, the cost-pass-through also changes. However, the value of cost-pass-through 

doesn’t exceed one for a linear demand or doesn’t reduce to less than one for isoelastic 

demand. Therefore, the occurrence of BP doesn’t change with the consideration of 

stochasticity. However, the value of the cost-pass-through and the BP ratio changes for 

different values of revenue-share percentage. Compared to a no-revenue share case, retail 

price fluctuation increases for the case of revenue share contract.  
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CHAPTER 8: SUMMARY, CONCLUSIONS, LIMITATIONS, AND FUTURE 

RESEARCH 

 

 

In this section, we summarize the research outcomes, identify limitations, and suggest 

some future directions. 

8.1 Summary and Major Conclusions 

In this research, we analyzed both the amplified and the absorbed fluctuations in a 

product’s price in a linear supply chain, and named it as the Bullwhip effect in Pricing 

(BP). We showed some empirical evidences of BP from beef, potato, oil, and coffee 

markets.  

We analyzed the conditions for the occurrence of BP (Chapter 3), and found that 

the demand functions with a ‘concavity coefficient’ less than one results in a ‘cost-pass-

through’ that is less than one, which eventually creates Forward Bullwhip Effect in Pricing 

(i.e. absorbed variability in retail prices). If the ‘concavity coefficient’ is equal to one, then 

no BP occurs (i.e. price fluctuation neither amplified nor absorbed).  

We discussed the occurrence of BP for some common demand functions. The 

analysis showed that FBP occurs for log-concave (e.g. a linear demand as a special case), 

logit, and logistic demand functions, and RBP occurs for isoelastic demand functions. A 

logarithmic demand function can result in RBP, FBP or no BP depending on the range of 

the optimal price. Negative exponential demand creates no BP.  
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We also discussed the occurrence of BP in some common pricing practices such as 

the fixed-dollar markup, and the fixed-percentage markup pricing.   A fixed dollar-markup 

pricing gives no BP; on the other hand, a fixed-percentage markup pricing strategy creates 

RBP. It is to be mentioned, in the case of the fixed markup pricing, the demand functions 

do not play any role in the pricing.  

In the case of optimal pricing, the pricing decision is directly related to the demand 

functions and the supply chain structures. Primarily, the condition for the occurrence of BP 

was identified based on the concavity coefficient. We assumed a linear two-firm model 

where a retailer and a wholesaler interact following the Stackelberg wholesale-leading 

game structure. Later, we also considered a Nash (simultaneous) game and a Stackelberg 

retail-leading game structures.  The pricing results for different game structures gives 

different rates of the cost-pass-through that eventually change the BP ratios. However, the 

direction of BP remains the same. FBP occurs for a log-concave, and a linear demand; RBP 

occurs for an isoelastic demand; no BP occurs for a negative exponential demand. For 

different game structures, BP ratios change. For example, under a linear demand, in the 

case of a simultaneous and a wholesale leading game, the retail price fluctuates 50% less 

than the wholesale price; while in the case of a retail leading game, the retail price 

fluctuation is 33.33% of the wholesale price fluctuation.  In contrast, under an isoelastic 

demand with a price-elasticity of 3, the retail price fluctuates 1.5 times more than the 

wholesale price in the case of simultaneous and wholesale-leading games, while in the case 

of a retail-leading game, the retail price fluctuates 1.28 times more than the wholesale price.   

We also extended the cost-pass-through and BP-ratio analysis for an N-stage linear 

supply chain. We see that the cost-pass-throughs are decreasing towards downward for a 
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linear demand, increasing towards downward for an isoelastic demand, and remaining 

constant at 1 for a Negative exponential demand. The BP ratio between two consecutive 

stages is a constant for a wholesale leading game; but for a simultaneous and a retail leading 

game, the BP ratio changes with the number of the stages.  

To analyze the effect of supply chain contracts on BP, we considered two popular 

contracts: the Buyback and the Revenue-sharing contracts. To apply the buyback contract, 

we considered a stochastic model (It is to be mentioned, there is no need of applying a 

buyback/return policy for a deterministic model). After that, we analyzed the revenue 

sharing contract in both deterministic and stochastic demand cases.  

We considered a newsvendor model under a buyback contract with two types of 

demand uncertainties, additive and multiplicative types. Compared to a risk-less model (i.e. 

no uncertainty in demand), an additive uncertainty decreases the optimal price and a 

multiplicative uncertainty increases the optimal price. Hence, the cost-pass-throughs and 

BP ratios changes. We benchmarked the cost-pass-throughs of the buyback model with 

that of a risk-less model. We identified conditions for various ranges of the cost-pass-

through and hence decided on the occurrence of BP. We presented numerical simulations 

considering two buyback prices and two uniform distributions. While, RBP and FBP still 

occur under a buyback contract for an isoelastic and a linear demand, respectively, the cost-

pass-throughs and BP ratios vary based on the selected parameters.   

In the case of a revenue-sharing contract with a deterministic demand, the results 

are similar to the optimal markup pricing games discussed earlier. However, the cost-pass-

through rates and BP ratios are inversely proportional to the retailer’s share from the sales 

revenue. A remarkable difference occurs in the case of a negative exponential demand, 
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where FBP occurs at the wholesale stage and RBP occurs at the retail stage. Compared to 

a no-contract cases, the variability of the retail and wholesale prices are also changed under 

a revenue-sharing contract that is explained by the corresponding markups under the 

contract situation.  

In the case of a revenue-sharing contract with a stochastic demand, we followed a 

newsvendor model. We proposed the condition to identify the range of the cost-pass-

throughs under revenue-sharing contracts with additive and multiplicative demand 

uncertainties. We analyzed the effect of different revenue-share percentages on the cost-

pass-throughs under revenue-sharing contracts with a stochastic demand. We benchmarked 

the price variations of the optimal retail and base prices; we also benchmarked the price-

variation between the revenue-sharing contract case and the no-contract case.   

Hence, we analyzed the conditions for the occurrence of BP in different game 

structures and supply chain contracts cases. We illustrated examples in each case through 

numerical simulations. In the following sub-sections, we discuss some of the limitations of 

our research and suggest the future directions.   

8.2 Limitations of This Research and Future Directions:   

In our model, we considered a single objective of profit maximization. Other 

objectives beside the profit maximization (e.g. economic, environmental and social 

performances etc.) can also be considered. Multi-objective decision making may be 

applicable here (e.g. Boukherroub, Ruiz, Guinet, & Fondrevelle, 2015; Chankong & 

Haimes, 2008).  
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In our game model, we assumed the participants as risk-neutral. Consideration of 

human behaviors (e.g. risk aversion or seeking) may make the model more realistic. 

(Anupindi & Bassok, 1999; Wu, Roundy, Storer, & Martin-Vega, 1997).   

We considered two popular contracts: Buyback and Revenue-Sharing contracts. 

Effects of other contracts (e.g. quantity discount, price discount, sales rebate etc.) on BP 

may be analyzed in future.  

In the numerical analysis, we selected various values of parameters randomly. A 

better ‘design of experiments’ can be implemented while selecting the parameters for the 

simulation. 

In chapters 4 and 6, we explained some of the amplification and absorption in 

variations by analyzing the corresponding per-unit markups. More attention can be given 

to explore the formal relationship between the bullwhip effect in pricing and the supply 

chain profit. In tying the relationship between profit and the occurrence of BP, our results 

can be merged with the result of with Adachi and Ebina (2014b). Adachi and Ebina (2014b) 

related the cost-pass-through with the retail markup and wholesale markup. However, they 

only considered a wholesale leading game. To match with our results, simultaneous and 

retail leading games, and the supply chain contracts cases need to be considered as well. 

As a future research direction, we suggest to do the analysis for competing retailers. 

In the case of pricing competition among retailers, Moorthy (2005)’s methodology can be 

followed to calculate the cost-pass-through. Moorthy (2005) considered two retailers with 

catalog goods and brand items; then calculated cost-pass-throughs assuming Bertrand 

competition (i.e. pricing decision). Adachi and Ebina (2014a) calculated cost-pass-
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throughs for competing retailers under Cournot competition (i.e. quantity decision). Both 

models can be helpful in analyzing BP for competing retailers. 

We also suggest to analyze the interaction between BP and BW effect in order 

quantity. In tying the relationship between BP and BW, researchers may follow the 

argument of Lee, Padmanabhan, and Whang (2004) where Lee argued the price variation 

as a cause for BW.  

We conclude that this dissertation helps us to understand the occurrence and the 

directions of the Bullwhip effect in Pricing (BP). Since, empirical data from various 

markets shows different types of price fluctuations, the analytical models of this 

dissertation can help to explore the price fluctuations in various market structures. The 

amplified or absorbed price fluctuation reflects retailer responses to wholesaler’s trade 

deals. We also explained how the cost-change passes through various stages of the supply 

chain in the case of pricing decisions. The models (e.g. different games, contracts, and 

demand functions) of this dissertation set the foundation for future analytical and empirical 

analysis of price fluctuations for various products and markets.  Finally, we believe that 

further research along with analytical models and numerical simulations can shed more 

lights in the analysis of the Bullwhip effect in Pricing.   
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APPENDIX 
 

Appendix for Chapter 4: BP in Varying Game Structures 
 
1. Game description:  
 

Simultaneous game:  

Both wholesaler and the retailer decide on their markup prices simultaneously. 

Retailer’s objective: max
𝑢𝑟
Π𝑅 = 𝑢𝑟 ∗ 𝑞(𝑤, 𝑢𝑟) subject to, 𝑢𝑟 , 𝑞(𝑤, 𝑢𝑟) > 0. 

Wholesaler’s objective: max
𝑢𝑤

Π𝑊 = 𝑢𝑤 ∗ 𝑞(𝑐, 𝑢𝑤 , 𝑢𝑟) subject to, 𝑢𝑤, 𝑞(𝑐, 𝑢𝑤, 𝑢𝑟) > 0. 

Decisions: 

𝑢𝑟|𝜕Π𝑅
𝜕𝑢𝑟

=0
=

−𝑞(𝑤,𝑢𝑟)
𝜕𝑞(𝑤,𝑢𝑟)

𝜕𝑢𝑟

=
−𝑞(𝑐,𝑢𝑤,𝑢𝑟)
𝜕𝑞(𝑐,𝑢𝑤,𝑢𝑟)

𝜕𝑢𝑟

 . 3(1) 

𝑢𝑤|𝜕Π𝑊
𝜕𝑢𝑤

=0
=

−𝑞(𝑐,𝑢𝑤,𝑢𝑟)
𝜕𝑞(𝑐,𝑢𝑤,𝑢𝑟)

𝜕𝑢𝑤

 . 3(2) 

 

Solving Equation 3(1) and 3(2), we get 
𝑢𝑟
∗

𝑢𝑤
∗ =

𝜕𝑞(𝑐,𝑢𝑤
∗ ,𝑢𝑟

∗)

𝜕𝑢𝑤
∗

𝜕𝑞(𝑐,𝑢𝑤
∗ ,𝑢𝑟

∗)

𝜕𝑢𝑟
∗

= 1. As, 𝑤 = 𝑐 + 𝑢𝑤
∗ (𝑐) and 𝑝 =

𝑐 + 𝑢𝑤
∗ (𝑐) + 𝑢𝑟

∗(𝑐), therefore we can calculate 
𝑑𝑤

𝑑𝑐
 and 

𝑑𝑝

𝑑𝑐
. 

 

Wholesale leading game: 

The wholesaler declares its wholesale markup first, then the retailer decides on its 

retail markup price considering the wholesale price (i.e. sum of cost and wholesale markup) 

as given. As the retail price governs the demand function, the wholesaler considers the 

reaction function of the retailer for its own decision (i.e. wholesale markup price). The 

wholesaler anticipates the retailer’s reaction as- max
𝑢𝑟̅̅̅̅
Π𝑅̅̅ ̅̅ = 𝑢𝑟̅̅ ̅𝑞(𝑤, 𝑢𝑟̅̅ ̅)  subject to, 

𝑢𝑟̅̅ ̅ , 𝑞(𝑤, 𝑢𝑟̅̅ ̅) > 0. Hence,  

𝑢𝑟|𝜕Π𝑅
𝜕𝑢𝑟

=0
=

−𝑞(𝑤,𝑢𝑟)

𝜕𝑞(𝑤,𝑢𝑟)

𝜕𝑢𝑟

=
−𝑞(𝑐,𝑢𝑤,𝑢𝑟)

𝜕𝑞(𝑐,𝑢𝑤,𝑢𝑟)

𝜕𝑢𝑟

. 3(3) 

Wholesaler’s objective: max
𝑢𝑤

Π𝑊 = 𝑢𝑤𝑞(𝑐, 𝑢𝑤, 𝑢𝑟̅̅ ̅(𝑢𝑤)) s.t. 𝑢𝑤 , 𝑞(𝑐, 𝑢𝑤, 𝑢𝑟̅̅ ̅(𝑢𝑤)) > 0 

𝑢𝑤
∗ |𝜕Π𝑊

𝜕𝑢𝑤
=0
=

−𝑞(𝑐,𝑢𝑤,𝑢𝑟(𝑤))

𝜕𝑞(𝑐,𝑢𝑤,𝑢𝑟(𝑤))

𝜕𝑢𝑤

. 
3(4) 

In Equation 3(3), by setting 𝑢𝑤 = 𝑢𝑤
∗  , we calculate the retailer’s optimal decision, 𝑢𝑟

∗ =
−𝑞(𝑐,𝑢𝑤

∗ ,𝑢𝑟
∗)

𝜕𝑞(𝑐,𝑢𝑤
∗ ,𝑢𝑟

∗)

𝜕𝑢𝑟
∗

. As, 𝑤 = 𝑐 + 𝑢𝑤
∗ (𝑐)and 𝑝 = 𝑤(𝑐) + 𝑢𝑤

∗ (𝑐), therefore we can calculate 
𝑑𝑤

𝑑𝑐
 and 

𝑑𝑝

𝑑𝑐
. Using the chain rule, we can also calculate 

𝑑𝑝

𝑑𝑤
, because 𝑝 can be expressed as a function 

of w in case of wholesale leading game. 
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Retail leading game:  

Retailer declares it retail markup first, then the wholesaler decides on its wholesale 

markup price considering the cost and the retail markup as given. As wholesale price 

affects the retailer’s profit, therefore the retailer considers the reaction function of the 

wholesaler for its own decision (i.e. retail markup price). In the case of a retail leading 

game, the decision order and functional relation can be written as, 

𝑐 → 𝑢𝑟
∗(𝑐) → 𝑢𝑤

∗ (𝑐, 𝑢𝑟
∗) → 𝑤(𝑐, 𝑢𝑤

∗ ) → 𝑝(𝑤, 𝑢𝑟
∗) ≡ 𝑝 (𝑤 (𝑐, 𝑢𝑤

∗ (𝑐, 𝑢𝑟
∗(𝑐))) , 𝑢𝑟

∗(𝑐)) 

Retailer anticipates the wholesaler’s reaction as, max
𝑢𝑤

Π𝑊 = 𝑢𝑤 ∗ 𝑞(𝑐, 𝑢𝑤 , 𝑢𝑟) subject to, 

𝑢𝑤, 𝑞(𝑐, 𝑢𝑤, 𝑢𝑟) > 0 

    
 
 

w

rw

rw

u
w

u

uucq

uucq
u

w

W












,,

,,
0

   3(5) 

The solution of equation 3(5) is 𝑢𝑤(𝑐, 𝑢𝑟). Hence, the retailer faces the demand as 

𝑞(𝑐, 𝑢𝑤(𝑐, 𝑢𝑟), 𝑢𝑟) that can be written as 𝑞(𝑐, 𝑢𝑟). 
Retailer’s decision problem: max

𝑢𝑟
Π𝑅 = 𝑢𝑟𝑞(𝑐, 𝑢𝑟) subject to, 𝑢𝑟 ≥ 0 , 𝑞(𝑐, 𝑢𝑟) ≥ 0 

 
 
 

r

r

r

u
r

u

ucq

ucq
u

r

R












,

,
0

 3(6) 

The solution of equation 3(6) is  cur

*
. In Equation 3(5), by setting 𝑢𝑟 = 𝑢𝑟

∗ , we calculate 

the wholesaler’s optimal decision as,  

  
 

*

**

**
*

,,

,,

w

rw

rw
w

u

uucq

uucq
u






  3(7) 

The solution of equation 3(7) is 𝑢𝑤
∗ (𝑐, 𝑢𝑟

∗(𝑐)). 

Since, 𝑤(𝑐) = 𝑐 + 𝑢𝑤
∗ (𝑐, 𝑢𝑟

∗(𝑐)) and 𝑝(𝑐) = 𝑐 + 𝑢𝑤
∗ (𝑐, 𝑢𝑟

∗(𝑐)) + 𝑢𝑟
∗(𝑐) and, 

therefore we can calculate 
𝑑𝑤

𝑑𝑐
 and 

𝑑𝑝

𝑑𝑐
. It is to be noted, unlike a wholesale leading game, 

we cannot apply chain rule to obtain 
𝑑𝑝

𝑑𝑤
 in the case of a retail leading Stackelberg game, 

because 𝑝 cannot be expressed as complete function of w. However, partial derivative can 

be obtained from the equation 𝑝 = 𝑤 + 𝑢𝑟  but that does not give much insight about the 

pass-through between the wholesale and retail price.  
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2. Cost pass-throughs and BP ratios for N-stage markup price 

 

a. Cost pass-through (Total stage N, Any stage n, top stage n=N, bottom stage n=1) 
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function 
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b. FBP for linear demand. 
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e. Order quantity  
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f. profits 

Table: Profit comparison across various game structure 
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function 
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Appendix for Chapter 5: BP in the case of Buyback Newsvendor Model 
 

1. Additive Demand Uncertainty Case: 
 

A. Problem formulation: 

The retailer’s profit can be expressed as following, 

𝜋𝑟 =
𝑝𝐷 − 𝑤𝑞 + 𝛽(𝑞 − 𝐷)

𝑝𝑞 − 𝑤𝑞 − 𝑆(𝐷 − 𝑞)
   
; 𝐷 ≤ 𝑞
;𝐷 > 𝑞

 
(1) 

Assuming additive uncertainty, the demand can be expressed as 𝐷 = 𝑦 + 𝜖. Let’s assume44 

𝑧 = 𝑞 − 𝑦, where 𝑧 is called the stocking factor and can be expressed as 𝑧 = 𝜇 + 𝜎 ∗
(safety factor). Then the retailer’s profit can be expressed as Equation 2 and the 

corresponding optimal policy is the order quantity, 𝑞∗ = 𝑦(𝑝∗) + 𝑧∗.   

𝜋𝑟 =
𝑝(𝑦 + 𝜖) − 𝑤(𝑦 + 𝑧) + 𝛽(𝑧 − 𝜖)

𝑝(𝑦 + 𝑧) − 𝑤(𝑦 + 𝑧) − 𝑆(𝜖 − 𝑧)
     
; 𝜖 ≤ 𝑧
; 𝜖 > 𝑧

    
→ 𝑙𝑒𝑓𝑡𝑜𝑣𝑒𝑟
→ 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒

 
(2) 

From Equation 2, the expected retail profit, 

𝐸[𝜋𝑟] = ∫ [𝑝(𝑦 + 𝑢) + 𝛽(𝑧 − 𝑢)]𝑓(𝑢)𝑑𝑢
𝑧

𝐴

+∫ [𝑝(𝑦 + 𝑧) − 𝑆(𝑢 − 𝑧)]𝑓(𝑢)𝑑𝑢
𝐵

𝑧

− 𝑤(𝑦 + 𝑧)
= (𝑝 − 𝑤)(𝑦 + 𝜇) − [(𝑤 − 𝛽)Λ(𝑧) + (𝑝 + 𝑆 − 𝑤)Θ(𝑧)]
= Ψ(𝑝) − 𝐿(𝑧, 𝑝) 

(3) 

Hence, the expected profit is the sum of the riskless profit Ψ(𝑝) = (𝑝 − 𝑤)(𝑦 + 𝜇) minus 

the loss due to uncertainty, 𝐿(𝑧, 𝑝) = [(𝑤 − 𝛽)𝛬(𝑧) + (𝑝 + 𝑆 − 𝑤)𝛩(𝑧)] (i.e. we obtain 

the expected profit by subtracting the loss function from the riskless profit). Here, Λ(𝑧) =

∫ (𝑧 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑧

𝐴
= expected leftover and Θ(𝑧) = ∫ (𝑢 − 𝑧)𝑓(𝑢)𝑑𝑢

𝐵

𝑧
= expected 

shortage. The loss function is the sum of the overstocking and understocking cost (i.e. 

𝐿𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 ∗  𝐸(𝑙𝑒𝑓𝑡𝑜𝑣𝑒𝑟)  +  𝑢𝑛𝑑𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 ∗ 𝐸(𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒)). 
The retailer’s objective is to maximize 

𝐸[𝜋𝑟(𝑧, 𝑝)] = (𝑝 − 𝑤)(𝑦 + 𝜇) − [(𝑤 − 𝛽)Λ(𝑧) + (𝑝 + 𝑆 − 𝑤)Θ(𝑧)]  (4) 

Taking partial derivatives in 𝑧 and 𝑝 - 
𝜕

𝜕𝑧
(𝐸[𝜋𝑟(𝑧|𝑝)]) = −(𝑤 − 𝛽) + (𝑝 + 𝑆 − 𝛽)[1 − 𝐹(𝑧)]  

(5) 

𝜕2

𝜕𝑧2
(𝐸[𝜋𝑟(𝑧|𝑝)]) = −(𝑝 + 𝑆 − 𝛽)𝑓(𝑧) < 0  

 

(6) 

𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑝|𝑧)]) =

𝑑

𝑑𝑝
[Ψ(𝑝)] −

𝜕

𝜕𝑝
[𝐿(𝑧, 𝑝)] = 𝑦′ [𝑝 − 𝑤 +

𝑦

𝑦′
] + 𝜇 − Θ(𝑧)  (7) 

For a linear demand, 𝑦 = 𝑎 − 𝑏𝑝, 
𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑝|𝑧)]) = −2𝑏 [𝑝 −

𝑎+𝑏𝑤

2𝑏
] + 𝜇 − Θ(𝑧)  

(8) 

                                                           
44 Such assumption provides mathematical convenience. We adapt this solution method from Petruzzi and 

Dada (1999). 
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𝜕2

𝜕𝑝2
(𝐸[𝜋𝑟(𝑝|𝑧)]) = −2𝑏 < 0  (9) 

Equation 6 tells us that 𝐸[𝜋𝑟] is concave in 𝑧 for a given 𝑝. Equation 9 tells us that 𝐸[𝜋𝑟] 
is concave in 𝑝 for a given 𝑧.  
 

B. Proof of Lemma 1 

 

i. Pricing decision approach 

Setting 
𝜕

𝜕𝑧
(𝐸[𝜋𝑟(𝑧|𝑝)]) = 0, we obtain, 

𝐹[𝑧∗(𝑝)] =
𝑝+𝑆−𝑤

𝑝+𝑆−𝛽
⇒ 𝑧∗(𝑝) = 𝐹−1 [

𝑝+𝑆−𝑤

𝑝+𝑆−𝛽
]  

Linear demand: 

Replacing the 𝑧∗(𝑝) into 𝜕𝐸/𝜕𝑝: 
𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝)]) = 2𝑏 [−𝑝 +
𝑎+𝑏𝑤

2𝑏
+
𝜇 −Θ(𝑧∗(𝑝))

2𝑏
]  

Hence, the optimal 𝑝∗ is the 𝑝 that satisfies 
𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝)]) = 0.  

Since 2𝑏 > 0,  

𝑝∗(𝑤) = {𝑝|−𝑝 +
𝑎+𝑏𝑤

2𝑏
+
𝜇 −Θ(𝑧∗(𝑝))

2𝑏
= 0}  

The derivation of the optimal 𝑝∗ requires to prove that the expected profit, 𝐸[𝜋𝑟(𝑝, 𝑧
∗(𝑝))] 

is concave and unimodal in 𝑝 which is mentioned in Appendix 1-C-i.   

Isoelastic demand: 

For an isoelastic demand, 𝑦 = 𝑎𝑝−𝑏, 
𝑑

𝑑𝑝
[Ψ(𝑝)] = −𝑏𝑎𝑝−𝑏−1 [𝑝 − 𝑤 +

𝑎𝑝−𝑏

−𝑏𝑎𝑝−𝑏−1
] + 𝜇 = −𝑏𝑎𝑝−𝑏−1 [𝑝 (

𝑏−1

𝑏
) − 𝑤] + 𝜇 =

−(𝑏 − 1)𝑎𝑝−𝑏−1 [𝑝 −
𝑏

𝑏−1
𝑤] + 𝜇   

𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑝|𝑧)]) = −(𝑏 − 1)𝑎𝑝

−𝑏−1 [𝑝 −
𝑏

𝑏−1
𝑤] + 𝜇 − Θ(𝑧)  

Replacing the 𝑧∗(𝑝) into 𝜕𝐸/𝜕𝑝: 
𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝)]) = (−𝑝 +
𝑏

(𝑏−1)
𝑤) (𝑏 − 1)𝑎𝑝−𝑏−1 + 𝜇 − Θ(𝑧∗(𝑝))   

Hence, the optimal 𝑝∗ is the 𝑝 that satisfies 
𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝)]) = 0.  

𝑝∗(𝑤) = {𝑝| (−𝑝 +
𝑏

(𝑏−1)
𝑤) (𝑏 − 1)𝑎𝑝−𝑏−1 + 𝜇 − Θ(𝑧∗(𝑝)) = 0}  

The derivation of the optimal 𝑝∗ requires to prove that the expected profit, 𝐸[𝜋𝑟(𝑝, 𝑧
∗(𝑝))] 

is concave and unimodal in 𝑝 which is mentioned in Appendix 1-C-ii. 

 

ii. Stocking decision approach:  

Solving 
𝜕

𝜕𝑝
(𝐸[𝜋𝑟]) = −2𝑏 [𝑝 −

𝑎+𝑏𝑤

2𝑏
] + 𝜇 − Θ(𝑧) = 0 , we can obtain 𝑝∗ =

𝑎+𝑏𝑤+𝜇

2𝑏
−

Θ(𝑧)

2𝑏
 . Then replacing 𝑝∗ into the equation 

𝜕

𝜕𝑧
(𝐸[𝜋𝑟]) = 0 would give the single variable 

equation in 𝑧∗: 
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𝑑

𝑑𝑧
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))]) = −(𝑤 − 𝛽) + (
𝑎+𝑏𝑤

2𝑏
−
μ−Θ(𝑧)

2𝑏
+ 𝑆 − 𝛽) [1 − 𝐹(𝑧)] = 0  

The derivation of optimal 𝑧∗ requires to prove that the expected profit, 𝐸[𝜋𝑟(𝑧, 𝑝
∗(𝑧))] is 

concave and unimodal in 𝑧 which is mentioned in Appendix 1-C-i.   

 

C. Condition for concavity 

i. Linear demand:  

Stocking decision approach:  

We need to show that the expected profit, 𝐸[Π𝑟(𝑧, 𝑝(𝑧))] is concave and unimodal in 𝑧. 
We adapt the proof from Petruzzi and Dada (1999) and edit it to reflect our setting. In 

buyback contract, the retailer’s problem remains similar to the newsvendor model of 

Petruzzi-Dada (1999). From retailer’s perspective, the difference is that the single period 

holding cost is replaced by a non-negative buyback price less than the wholesale price (0 <
𝛽 < 𝑤). Interested readers may check the proof of Theorem 1 of Petruzzi and Dada 

(1999)45 and replace their holding cost parameter ‘−ℎ’ by the buyback price parameter ‘𝛽’ 

to obtain the proof required in our setting. For readers’ convenience, we showed the detail 

proof here as follows-   

Replacing 𝑝∗(𝑧) into the expected profit equation, 

𝐸[𝜋𝑟(𝑧, 𝑝
∗(𝑧))] = (𝑝∗ − 𝑤)(𝑎 − 𝑏𝑝∗ + 𝜇) − [(𝑤 − 𝛽)Λ(𝑧) + (𝑝∗ + 𝑆 − 𝑤)Θ(𝑧)]   

Taking derivative in 𝑧,  
𝑑

𝑑𝑧
𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))] =
𝑑𝑝∗

𝑑𝑧
(𝑎 − 𝑏𝑝∗ + 𝜇) + (𝑝∗ − 𝑤) (−𝑏

𝑑𝑝∗

𝑑𝑧
) − [(𝑤 − 𝛽)𝐹(𝑧) +

𝑑𝑝∗

𝑑𝑧
𝛩(𝑧) − (𝑝∗ + 𝑆 − 𝑤)(1 − 𝐹(𝑧))]   

=
(1−𝐹(𝑧))

2𝑏
(𝑎 − 𝑏𝑝∗ + 𝜇) + (𝑝∗ −𝑤) (−

(1−𝐹(𝑧))

2
) − [(𝑤 − 𝛽)𝐹(𝑧) +

(1−𝐹(𝑧))

2𝑏
𝛩(𝑧) −

(𝑝∗ + 𝑆 − 𝑤)(1 − 𝐹(𝑧))]  

= (1 − F(𝑧)) (
𝑎

2𝑏
−
𝑝∗

2
+

𝜇

2𝑏
−
𝑝∗

2
+
𝑤

2
−
Θ(𝑧)

2𝑏
+ 𝑝∗ + 𝑆 − 𝑤) − (𝑤 − 𝛽)F(𝑧)  

= (1 − F(𝑧)) (
𝑎

2𝑏
+

𝜇

2𝑏
+
𝑤

2
−
Θ(𝑧)

2𝑏
+ 𝑆 − 𝑤) − (𝑤 − 𝛽) + (𝑤 − 𝛽) − (𝑤 − 𝛽)F(𝑧)  

                                                           
 45 Theorem 1 of Petruzzi-Dada (1999) stated that-  

“…𝑧∗ is determined according to the following: 

a) If 𝐹(. ) is an arbitrary distribution function, then an exhaustive search over all values of z in the 

region [𝐴, 𝐵] will determine 𝑧∗. 

b) If 𝐹(. ) is a distribution function satisfying the condition 2𝑟(𝑧)2 +
𝑑

𝑑𝑧
𝑟(𝑧) > 0 for 𝐴 ≤ 𝑧 ≤  𝐵, 

where 𝑟(. ) ≡
𝑓(.)

1−𝐹(.)
 is the Hazard rate, then 𝑧∗ is the largest 𝑧 in the region [𝐴, 𝐵] that satisfies 

𝑑𝐸[Π𝑟(𝑧,𝑝(𝑧))]

𝑑𝑧
=  0.” 

If the condition for (b) is met and 𝑎 − 𝑏(𝑤 − 2𝑆) + 𝐴 > 0, then 𝑧∗ is the unique 𝑧 in the region [𝐴, 𝐵] 

that satisfies 
𝑑𝐸[Π𝑟(𝑧,𝑝(𝑧))]

𝑑𝑧
=  0.” 
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= (1 − F(𝑧)) (
𝑎+𝑏𝑤+𝜇

2𝑏
−
Θ(𝑧)

2𝑏
+ 𝑆 − 𝑤) − (𝑤 − 𝛽) + (𝑤 − 𝛽)(1 − F(𝑧))  

= −(𝑤 − 𝛽) + (1 − F(𝑧)) (
𝑎+𝑏𝑤+𝜇

2𝑏
−
Θ(𝑧)

2𝑏
+ 𝑆 − 𝛽)  

Alternate method: Instead of substituting 𝑝∗ into the expected profit equation, substituting 

𝑝∗ into 
𝜕

𝜕𝑧
𝐸[𝜋𝑟], also gives the same result.  

𝑑

𝑑𝑧
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))])  

= −(𝑤 − 𝛽) + (𝑝∗ + 𝑆 − 𝛽)[1 − 𝐹(𝑧)]  

= −(𝑤 − 𝛽) + (
𝑎+𝑏𝑤+𝜇

2𝑏
−
Θ(𝑧)

2𝑏
+ 𝑆 − 𝛽)[1 − 𝐹(𝑧)]  

𝑑2

𝑑𝑧2
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))])  

= −(
𝑎+𝑏𝑤+𝜇

2𝑏
+ 𝑆 − 𝛽 −

Θ(𝑧)

2𝑏
) 𝑓(𝑧) +

[1−𝐹(𝑧)]2

2𝑏
  

= −
𝑓(𝑧)

2𝑏
{2𝑏 (

𝑎+𝑏𝑤+𝜇

2𝑏
+ 𝑆 − 𝛽) − Θ(𝑧) +

1−𝐹(𝑧)

(
𝑓(𝑧)

1−𝐹(𝑧)
)
 }  

𝑑3

𝑑𝑧3
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))])  

=
𝑑𝑓(𝑧)

𝑑𝑧
[(

1

𝑓(𝑧)
)
𝑑2(𝐸[𝜋𝑟(𝑧,𝑝

∗(𝑧))])

𝑑𝑧2
] −

𝑓(𝑧)

2𝑏
{[1 − 𝐹(𝑧)] +

𝑑

𝑑𝑧
(
1−𝐹(𝑧)

(
𝑓(𝑧)

1−𝐹(𝑧)
)
) }  

=
𝑑𝑓(𝑧)

𝑑𝑧
[(

1

𝑓(𝑧)
)
𝑑2(𝐸[𝜋𝑟(𝑧,𝑝

∗(𝑧))])

𝑑𝑧2
] −

𝑓(𝑧)

2𝑏
{[1 − 𝐹(𝑧)] +

𝑓(𝑧)

(
𝑓(𝑧)

1−𝐹(𝑧)
)
+

1−𝐹(𝑧)

(
𝑓(𝑧)

1−𝐹(𝑧)
)
2 ∗

𝑑

𝑑𝑧
(
𝑓(𝑧)

1−𝐹(𝑧)
) }  

=
𝑑𝑓(𝑧)

𝑑𝑧
[(

1

𝑓(𝑧)
)
𝑑2(𝐸[𝜋𝑟(𝑧,𝑝

∗(𝑧))])

𝑑𝑧2
] −

𝑓(𝑧)[1−F(z)]

2𝑏(
𝑓(𝑧)

1−𝐹(𝑧)
)
2 {2 (

𝑓(𝑧)

1−𝐹(𝑧)
)
2

+
𝑑

𝑑𝑧
(
𝑓(𝑧)

1−𝐹(𝑧)
) }  

 

𝑑3

𝑑𝑧3
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))])|𝑑2(𝐸[𝜋𝑟(𝑧,𝑝∗(𝑧))])
𝑑𝑧2

=0
= −

𝑓(𝑧)[1−F(z)]

2𝑏(
𝑓(𝑧)

1−𝐹(𝑧)
)
2 {2 (

𝑓(𝑧)

1−𝐹(𝑧)
)
2

+
𝑑

𝑑𝑧
(
𝑓(𝑧)

1−𝐹(𝑧)
) }  

As argued by Petruzzi and Dada (1999), if {2 (
𝑓(𝑧)

1−𝐹(𝑧)
)
2

+
𝑑

𝑑𝑧
(
𝑓(𝑧)

1−𝐹(𝑧)
) } > 0, then 

𝑑

𝑑𝑧
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))]) is monotone or unimodal and thus having at most two roots. 

Moreover, for 𝑧 = 𝐵, 
𝑑

𝑑𝑧
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))]) = −(𝑤 − 𝛽) < 0. Therefore, if 
𝑑

𝑑𝑧
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))]) has only one root, it indicates a change in sign from positive to 

negative. It corresponds to a local maximum of 𝐸[𝜋𝑟(𝑧, 𝑝
∗(𝑧))] 

If  
𝑑

𝑑𝑧
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))]) has two roots, the larger (smaller) of the two corresponds to a local 

maximum (minimum) of 𝐸[𝜋𝑟(𝑧, 𝑝
∗(𝑧))]. In either case, 𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))] has only one 

local maximum, identified either as the unique value (or as the larger of two values) of z 

that satisfies 
𝑑

𝑑𝑧
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))]) = 0 . Since 𝐸[𝜋𝑟(𝑧, 𝑝
∗(𝑧))] is unimodal if 

𝑑

𝑑𝑧
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))]) has only one root (assuming {2 (
𝑓(𝑧)

1−𝐹(𝑧)
)
2

+
𝑑

𝑑𝑧
(
𝑓(𝑧)

1−𝐹(𝑧)
) } > 0), a 

sufficient condition for unimodality of 𝐸[𝜋𝑟(𝑧, 𝑝
∗(𝑧))] is 

𝑑

𝑑𝑧
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))])|
𝑧=𝐴

> 0 or 

equivalently,  
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2𝑏 ∗
𝑑

𝑑𝑧
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))])|
𝑧=𝐴

> 0,  

⇒ −2𝑏(𝑤 − 𝛽) + (2𝑏 (
𝑎+𝑏𝑤+𝜇

2𝑏
+ 𝑆 − 𝛽) − Θ(𝐴)) [1 − 𝐹(𝐴)] > 0  

⇒ −2𝑏(𝑤 − 𝛽) + (𝑎 + 𝑏𝑤 + 𝜇 + 2𝑏(𝑆 − 𝛽) − (μ − A)) > 0   

⇒ 𝑎 − 𝑏(𝑤 − 2𝑆) + 𝐴 > 0  
Petruzzi & Dada (1999) summarized the conditions for concavity and unimodality. Similar 

conditions were proposed by Ernest (1970), Young (1978), Bulow and Proschan (1975). It 

is to be mentioned, PF2 distributions and log-normal distributions (that have non-

decreasing hazard rate, 𝑟(. ) =
𝑓(.)

1−𝐹(.)
) satisfy the above-mentioned conditions.  

Hence, if  2 (
𝑓(𝑧)

1−𝐹(𝑧)
)
2

+
𝑑

𝑑𝑧
(
𝑓(𝑧)

1−𝐹(𝑧)
) > 0, then 𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))] is concave and unimodal in 

𝑧. 

Pricing decision approach:  

Differentiating 𝐹[𝑧∗(𝑝)] =
𝑝+𝑆−𝑤

𝑝+𝑆−𝛽
 with respect to 𝑝, 

𝑓 ∗
𝑑𝑧∗

𝑑𝑝
=

1

𝑝+𝑆−𝛽
−

𝑝+𝑆−𝑤

(𝑝+𝑆−𝛽)2
=

1

𝑝+𝑆−𝛽
−

𝐹

(𝑝+𝑆−𝛽)
=

1−𝐹

(𝑝+𝑆−𝛽)
  

Therefore, 
𝑑𝑧∗

𝑑𝑝
=

1−𝐹

𝑓(𝑝+𝑆−𝛽)
=

1

𝑟(𝑝+𝑆−𝛽)
  

Here, 𝑟 =
𝑓

1−𝐹
= hazard rate 

We need to show that 𝐸[Π𝑟(𝑝, 𝑧
∗(𝑝))] is concave in 𝑝.   

 

Replacing the 𝑧∗(𝑝) into 𝜕𝐸/𝜕𝑝: 
𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝)]) = 2𝑏 [−𝑝 +
𝑎+𝑏𝑤

2𝑏
+
𝜇 −Θ(𝑧∗(𝑝))

2𝑏
]  

We need to find zeros of 
𝑑

𝑑𝑝
(𝐸[𝜋𝑟]): 

𝑑2

𝑑𝑝2
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = 2𝑏 [−1 +
 (1−𝐹(𝑧∗))

𝑑𝑧∗

𝑑𝑝
 

2𝑏
] = −2𝑏 + 

(1−𝐹)

𝑟(𝑝+𝑆−𝛽)
  

𝑑3

𝑑𝑝3
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) =
𝑑

𝑑𝑝
[
(1−𝐹)

𝑟(𝑝+𝑆−𝛽)
] =

−𝑓∗
𝑑𝑧∗

𝑑𝑝

𝑟(𝑝+𝑆−𝛽)
−

(1−𝐹)

𝑟2(𝑝+𝑆−𝛽)2
𝑑

𝑑𝑝
[𝑟(𝑝 + 𝑆 − 𝛽)] =

−𝑓

𝑟2(𝑝+𝑆−𝛽)2
−

(1−𝐹)

𝑟2(𝑝+𝑆−𝛽)2
[
𝑑𝑟

𝑑𝑧∗
∗
𝑑𝑧∗

𝑑𝑝
(𝑝 + 𝑆 − 𝛽) + 𝑟] = −

𝑓

𝑟2(𝑝+𝑆−𝛽)2
−
(1−𝐹)[𝑟+

1

𝑟
∗
𝑑𝑟

𝑑𝑧∗
]

𝑟2(𝑝+𝑆−𝛽)2
=

−
𝑓+(1−𝐹)[𝑟+

1

𝑟
∗
𝑑𝑟

𝑑𝑧∗
]

𝑟2(𝑝+𝑆−𝛽)2
= −

(1−𝐹)[
𝑓

1−𝐹
+𝑟+

1

𝑟
∗
𝑑𝑟

𝑑𝑧∗
]

𝑟2(𝑝+𝑆−𝛽)2
= −

(1−𝐹)[2𝑟+
1

𝑟
∗
𝑑𝑟

𝑑𝑧∗
]

𝑟2(𝑝+𝑆−𝛽)2
= −

(1−𝐹)
1

𝑟
[2𝑟2+

𝑑𝑟

𝑑𝑧∗
]

𝑟2(𝑝+𝑆−𝛽)2
=

−
(1−𝐹)[2𝑟2+

𝑑𝑟

𝑑𝑧∗
]

𝑟3(𝑝+𝑆−𝛽)2
  

Since 𝑟 =
𝑓

1−𝐹
> 0, therefore, for 2𝑟2 +

𝑑𝑟

𝑑𝑧∗
> 0,  

𝑑3

𝑑𝑝3
(𝐸[𝜋𝑟]) < 0 that follows that 

𝑑

𝑑𝑝
(𝐸[𝜋𝑟]) is either monotone or unimodal.  

It is to be mentioned, the condition 2𝑟2 +
𝑑𝑟

𝑑𝑧∗
> 0 is the same condition from the stocking 

decision approach as expected.  
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ii. Isoelastic Demand:  

We adapt the proof from Arcelus et al. 2005 
𝜕

𝜕𝑧
(𝐸[𝜋𝑟(𝑧|𝑝)]) = −(𝑤 − 𝛽) + (𝑝 + 𝑆 − 𝛽)[1 − 𝐹(𝑧)]  

𝜕2

𝜕𝑧2
(𝐸[𝜋𝑟(𝑧|𝑝)]) = −(𝑝 + 𝑆 − 𝛽)𝑓(𝑧) < 0  

Setting 
𝜕𝐸[𝜋𝑟]

𝜕𝑧
= 0, we obtain 1 − 𝐹 =

𝑤−𝛽

𝑝+𝑆−𝛽
 . Therefore, 

𝜕2𝐸[𝜋𝑟]

𝜕𝑧2
= −

𝑤−𝛽

1−𝐹
𝑓  

𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑝|𝑧)]) =

𝑑

𝑑𝑝
[Ψ(𝑝)] −

𝜕

𝜕𝑝
[𝐿(𝑧, 𝑝)] = 𝑦′(𝑝 − 𝑤) + 𝑦 + 𝜇 − Θ(𝑧)  

setting 
𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑝|𝑧)]) = 0, we obtain, ⇒ (𝑝 − 𝑤) =

Θ(𝑧)−𝑦−𝜇

𝑦′
= −

1

𝑦′
(𝑦 + 𝜇 − Θ) 

𝜕2𝐸[𝜋𝑟]

𝜕𝑝2
= 𝑦′′(𝑝 − 𝑤) + 2𝑦′ = −

𝑦′′

𝑦′
(𝑦 + 𝜇 − Θ) + 2𝑦′ = −

𝑦𝑦′′

𝑦′
(1 +

𝜇−Θ

𝑦
) + 2𝑦′ =

𝑦′ (2 −
𝑦𝑦′′

(𝑦′)2
(1 +

𝜇−Θ

𝑦
))  

Since, 𝑦′ < 0, therefore, 
𝜕2𝐸[𝜋𝑟]

𝜕𝑝2
< 0 if 

𝑦𝑦′′

(𝑦′)2
(1 +

𝜇−Θ

𝑦
) < 2 

𝜕2𝐸[𝜋𝑟]

𝜕𝑝𝜕𝑧
=

𝜕

𝜕𝑝
(
𝜕𝐸[𝜋𝑟]

𝜕𝑧
) =

𝜕

𝜕𝑧
(
𝜕𝐸[𝜋𝑟]

𝜕𝑝
) = 1 − 𝐹 > 0  

𝜕2𝐸[𝜋𝑟]

𝜕𝑧2
×
𝜕2𝐸[𝜋𝑟]

𝜕𝑝2
− (

𝜕2𝐸[𝜋𝑟]

𝜕𝑝𝜕𝑧
)
2

= −
𝑤−𝛽

1−𝐹
𝑓𝑦′ (2 −

𝑦𝑦′′

(𝑦′)2
(1 +

𝜇−Θ

𝑦
)) − (1 − 𝐹 )2  

𝜕2𝐸[𝜋𝑟]

𝜕𝑧2
×
𝜕2𝐸[𝜋𝑟]

𝜕𝑝2
− (

𝜕2𝐸[𝜋𝑟]

𝜕𝑝𝜕𝑧
)
2

> 0 if  

⇒ −
𝑤−𝛽

1−𝐹
𝑓𝑦′ (2 −

𝑦𝑦′′

(𝑦′)2
(1 +

𝜇−Θ

𝑦
)) > (1 − 𝐹 )2 ⇒ 𝑓 >

(1−𝐹 )3

−(𝑤−𝛽)𝑦′(2−
𝑦𝑦′′

(𝑦′)
2(1+

𝜇−Θ

𝑦
))

  

It is to be mentioned, the denominator is positive, because  𝑦′ < 0 and 
𝑦𝑦′′

(𝑦′)2
(1 +

𝜇−Θ

𝑦
) <

2. Moreover, since, 𝑓 ≤ 1, we can write the condition as 

 1 ≥ 𝑓 >
(1−𝐹 )3

−(𝑤−𝛽)𝑦′(2−
𝑦𝑦′′

(𝑦′)
2(1+

𝜇−Θ

𝑦
))

  

For an isoelastic demand, 𝑦 = 𝑎𝑝−𝑏, 𝑦′ = −𝑏𝑎𝑝−𝑏−1 =
−𝑏𝑦

𝑝
< 0 ,  

𝑦′′ =
−𝑏𝑦′

𝑝
−
−𝑏𝑦

𝑝2
= −

𝑦′

𝑝
(𝑏 + 1) =

𝑏𝑦

𝑝2
(𝑏 + 1) > 0 , 

𝑦𝑦′′

(𝑦′)2
=
𝑦
𝑏𝑦

𝑝2
(𝑏+1)

(
−𝑏𝑦

𝑝
)
2 =

𝑏+1

𝑏
> 1 

For 𝑏 > 1, 1 <
𝑏+1

𝑏
< 2, therefore, 1 <

𝑦𝑦′′

(𝑦′)2
< 2 

  

Hence, for 𝑦 = 𝑎𝑝−𝑏, the condition is, 
𝑏+1

𝑏
(1 +

𝜇−Θ

𝑎𝑝−𝑏
) < 2 and 1 ≥ 𝑓 >

(1−𝐹 )3

(𝑤−𝛽)
𝑏𝑦

𝑝
(2−

𝑏+1

𝑏
(1+

𝜇−Θ

𝑎𝑝−𝑏
))

> 0 
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D. Cost-pass-through 

i. Linear demand:  

i. Stocking decision approach 

𝑧∗ has to satisfy 
𝑑

𝑑𝑧
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))]) = 0,  

⇒ −(𝑤 − 𝛽) + (
𝑎+𝑏𝑤+𝜇

2𝑏
−
Θ(𝑧∗)

2𝑏
+ 𝑆 − 𝛽) [1 − 𝐹(𝑧∗)] = 0  

Differentiating it with respect to 𝑤,  

−1 + (
1

2
+
1−𝐹

2𝑏
∗
𝑑𝑧∗

𝑑𝑤
) (1 − 𝐹) − (

𝑎+𝑏𝑤+𝜇

2𝑏
−
Θ(𝑧∗)

2𝑏
+ 𝑆 − 𝛽)𝑓

𝑑𝑧∗

𝑑𝑤
= 0  

⇒ −1 +
(1−𝐹)

2
+
(1−𝐹)2

2𝑏
∗
𝑑𝑧∗

𝑑𝑤
− (

𝑎+𝑏𝑤+𝜇

2𝑏
−
Θ(𝑧∗)

2𝑏
+ 𝑆 − 𝛽) 𝑓

𝑑𝑧∗

𝑑𝑤
= 0  

⇒ −1 +
(1−𝐹)

2
= [(

𝑎+𝑏𝑤+𝜇

2𝑏
−
Θ(𝑧∗)

2𝑏
+ 𝑆 − 𝛽)𝑓 −

(1−𝐹)2

2𝑏
] ∗

𝑑𝑧∗

𝑑𝑤
  

⇒
−1−𝐹

2
= (1 − 𝐹) [(

𝑎+𝑏𝑤+𝜇

2𝑏
−
Θ(𝑧∗)

2𝑏
+ 𝑆 − 𝛽) 𝑟 −

(1−𝐹)

2𝑏
] ∗

𝑑𝑧∗

𝑑𝑤
  

⇒
𝑑𝑧∗

𝑑𝑤
= −

1+𝐹

2(1−𝐹)[(
𝑎+𝑏𝑤+𝜇

2𝑏
−
Θ(𝑧∗)

2𝑏
+𝑆−𝛽)𝑟−

(1−𝐹)

2𝑏
]
  

 

From 
𝑑

𝑑𝑝
(𝐸[𝜋𝑟)]) = 0, 

  𝑝∗(𝑤, 𝑧) =
𝑎+𝑏𝑤+𝜇

2𝑏
−
Θ(𝑧∗)

2𝑏
 

Differentiating with respect to 𝑤, 
𝑑𝑝∗

𝑑𝑤
=
1

2
+
1−F

2𝑏
∗
𝑑𝑧∗

𝑑𝑤
 

𝑑𝑝∗

𝑑𝑤
=
1

2
−
1−F

2𝑏
∗

1+𝐹

2(1−𝐹)[(
𝑎+𝑏𝑤+𝜇

2𝑏
−
Θ(𝑧∗)

2𝑏
+𝑆−𝛽)𝑟−

(1−𝐹)

2𝑏
]
=
1

2
−
1

2
∗

1+𝐹

[2𝑏(𝑝∗+𝑆−𝛽)𝑟−(1−𝐹)]
  

⇒
𝑑𝑝∗

𝑑𝑤
=
1

2
(1 −

1+𝐹

2𝑏(𝑝∗+𝑆−𝛽)𝑟−(1−𝐹)
)  

 

ii. Pricing Decision approach:   

From, the standard newsvendor result, 𝐹[𝑧∗(𝑝, 𝑤)] =
𝑝+𝑆−𝑤

𝑝+𝑆−𝛽
 

Taking derivative in 𝑤, 

𝑓(𝑧∗(𝑝, 𝑤))
𝑑

𝑑𝑤
(𝑧∗(𝑝, 𝑤)) =

(
𝑑𝑝

𝑑𝑤
−1)

(𝑝+𝑆−𝛽)
−

𝑝+𝑆−𝑤

(𝑝+𝑆−𝛽)2
∗
𝑑𝑝

𝑑𝑤
=

(
𝑑𝑝

𝑑𝑤
−1)

(𝑝+𝑆−𝛽)
−
𝐹[𝑧∗(𝑝,𝑤)]∗

𝑑𝑝

𝑑𝑤

(𝑝+𝑆−𝛽)
=

(1−𝐹[𝑧∗(𝑝,𝑤)])

(𝑝+𝑆−𝛽)
∗
𝑑𝑝

𝑑𝑤
−

1

(𝑝+𝑆−𝛽)
  

⇒
𝑑𝑧∗

𝑑𝑤
=

1−𝐹

𝑓(𝑝+𝑆−𝛽)
∗
𝑑𝑝

𝑑𝑤
−

1

𝑓(𝑝+𝑆−𝛽)
=

1−𝐹

𝑓(𝑝+𝑆−𝛽)
[
𝑑𝑝

𝑑𝑤
−

1

1−𝐹
]  

For a linear demand, 𝑦 = 𝑎 − 𝑏𝑝, 𝑝∗ has to satisfy this equation,  

−𝑝∗ +
𝑎+𝑏𝑤

2𝑏
+
𝜇 −Θ(𝑧∗)

2𝑏
= 0  

Taking derivative in 𝑤, −
𝑑𝑝∗

𝑑𝑤
+
1

2
+

1 

2𝑏
(1 − F)

d𝑧∗

𝑑𝑤
= 0 

⇒ −
𝑑𝑝∗

𝑑𝑤
+
1

2
+

1 

2𝑏
∗

(1−𝐹)

𝑟(𝑝+𝑆−𝛽)
[
𝑑𝑝

𝑑𝑤
−

1

1−𝐹
] = 0  

⇒
1

2
−

1 

2𝑏
∗

1

𝑟(𝑝+𝑆−𝛽)
=
𝑑𝑝∗

𝑑𝑤
(1 −

1 

2𝑏
∗

(1−𝐹)

𝑟(𝑝+𝑆−𝛽)
)  
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⇒
𝑑𝑝∗

𝑑𝑤
=
1

2

(1−
1 

𝑏
∗

1

𝑟(𝑝+𝑆−𝛽)
)

(1−
1 

2𝑏
∗

(1−𝐹)

𝑟(𝑝+𝑆−𝛽)
)
=
1

2

(1−
1 

2𝑏
∗

(1−𝐹)

𝑟(𝑝+𝑆−𝛽)
±
1 

2𝑏
∗

(1−𝐹)

𝑟(𝑝+𝑆−𝛽)
−
1 

𝑏
∗

1

𝑟(𝑝+𝑆−𝛽)
)

(1−
1 

2𝑏
∗

(1−𝐹)

𝑟(𝑝+𝑆−𝛽)
)

  

=
1

2
(1 −

(
1+𝐹

2𝑏𝑟(𝑝+𝑆−𝛽)
)

(1−
1−𝐹

2𝑏𝑟(𝑝+𝑆−𝛽)
)
) =

1

2
(1 −

1+𝐹

2𝑏𝑟(𝑝+𝑆−𝛽)−(1−𝐹)
)  

 
 

ii. Isoelastic demand: 

We will be following pricing decision approach here. Therefore, from the previous 

appendix, we adapt the result of  
𝑑𝑧∗

𝑑𝑤
=

1

𝑟(𝑝+𝑆−𝛽)
(
𝑑𝑝

𝑑𝑤
−

1

1−𝐹
) where, =

𝑓

1−𝐹
 . It is to be 

mentioned the result of 
𝑑𝑧∗

𝑑𝑤
 doesn’t depend on the form of demand function. 

 

For an isoelastic demand, 𝑦 = 𝑎𝑝−𝑏, 𝑝∗ satisfy this equation,  

(−𝑝 +
𝑏

(𝑏−1)
𝑤) (𝑏 − 1)𝑎𝑝−𝑏−1 + 𝜇 − Θ(𝑧∗(𝑝)) = 0  

Taking derivative in 𝑤, 

(−
𝑑𝑝

𝑑𝑤
+

𝑏

(𝑏−1)
) (𝑏 − 1)𝑎𝑝−𝑏−1 + (−𝑝 +

𝑏

(𝑏−1)
𝑤) (−𝑏 − 1)(𝑏 − 1)𝑎𝑝−𝑏−2

𝑑𝑝

𝑑𝑤
+ (1 −

𝐹)
𝑑𝑧∗

𝑑𝑤
= 0  

Substituting 
𝑑𝑧∗

𝑑𝑤
 , 

⇒ (−
𝑑𝑝

𝑑𝑤
+

𝑏

(𝑏−1)
) (𝑏 − 1)𝑎𝑝−𝑏−1 + (−𝑝 +

𝑏

(𝑏−1)
𝑤) (−𝑏 − 1)(𝑏 − 1)𝑎𝑝−𝑏−2

𝑑𝑝

𝑑𝑤
+

1−𝐹

𝑟(𝑝+𝑆−𝛽)
(
𝑑𝑝

𝑑𝑤
−

1

1−𝐹
) = 0  

 

⇒ −
𝑑𝑝

𝑑𝑤
(𝑏 − 1)𝑎𝑝−𝑏−1 + 𝑏𝑎𝑝−𝑏−1 + (−𝑝 +

𝑏

(𝑏−1)
𝑤) (−𝑏 − 1)(𝑏 − 1)𝑎𝑝−𝑏−2

𝑑𝑝

𝑑𝑤
+

𝑑𝑝

𝑑𝑤
∗

1−𝐹

𝑟(𝑝+𝑆−𝛽)
−

1

𝑟(𝑝+𝑆−𝛽)
= 0  

 

⇒ (−𝑝 +
𝑏

(𝑏−1)
𝑤) (−𝑏 − 1)(𝑏 − 1)𝑎𝑝−𝑏−2

𝑑𝑝

𝑑𝑤
+
𝑑𝑝

𝑑𝑤
∗

1−𝐹

𝑟(𝑝+𝑆−𝛽)
−
𝑑𝑝

𝑑𝑤
(𝑏 − 1)𝑎𝑝−𝑏−1 =

1

𝑟(𝑝+𝑆−𝛽)
− 𝑏𝑎𝑝−𝑏−1  

⇒
𝑑𝑝

𝑑𝑤
=

1

𝑟(𝑝+𝑆−𝛽)
−𝑏𝑎𝑝−1−𝑏

1−𝐹

𝑟(𝑝+𝑆−𝛽)
−(𝑏−1)𝑎𝑝−1−𝑏−𝑎(𝑏+1)(𝑏−1)𝑝−2−𝑏(−𝑝+

𝑏𝑤

𝑏−1
)
=

1

𝑟(𝑝+𝑆−𝛽)
−𝑏𝑎𝑝−1−𝑏

1−𝐹

𝑟(𝑝+𝑆−𝛽)
+𝑎𝑏(𝑏−1)𝑝−1−𝑏−𝑎𝑏(𝑏+1)𝑤𝑝−2−𝑏

=

1

𝑟(𝑝+𝑆−𝛽)
−𝑏𝑎𝑝−1−𝑏

1−𝐹

𝑟(𝑝+𝑆−𝛽)
+𝑎(𝑏+1)(𝑏−1)𝑝−2−𝑏(

𝑏

𝑏+1
𝑝−

𝑏

𝑏−1
𝑤)

   

⇒
𝑑𝑝

𝑑𝑤
=

1

𝑟(𝑝+𝑆−𝛽)
−𝑏𝑎𝑝−1−𝑏

1−𝐹

𝑟(𝑝+𝑆−𝛽)
+𝑎𝑏𝑝−2−𝑏((𝑏−1)𝑝−(𝑏+1)𝑤)
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E. Numerical Analysis 

i. Linear demand: 

Case 1: Uniform[-5,5] 

𝑎 = 100, 𝑏 = 1, 𝑆 = 10, uniform[−5,5] 

𝜇 = 0; 𝑓(𝑢) = 0.1; 𝐹(𝑢) =
𝑢+5

10
 ; 𝐹[𝑧∗] =

𝑧∗+5

10
; 1 + 𝐹 =

𝑧∗+15

10
; 1 − 𝐹 =

5−𝑧∗

10
 ; 𝑟 =

𝑓

1−𝐹
=

1

5−𝑧∗
 ;  Θ(𝑧∗(𝑝)) =

1

10
∫ (𝑢 − 𝑧∗)𝑑𝑢
5

𝑧∗
=

1

20
(𝑧∗ − 5)2;  

Following stocking decision approach- 

Condition: 𝑎 − 𝑏(𝑤 − 2𝑆) + 𝐴 > 0 ⇒ 100 − (𝑤 − 20) − 5 > 0 ⇒ 115 > 𝑤 

 

Let’s consider a buyback price of 𝛽 = 15 

𝑧∗ satisfy: 

−(𝑤 − 𝛽) + (
𝑎+𝑏𝑤

2𝑏
+
μ−Θ(𝑧)

2𝑏
+ 𝑆 − 𝛽) [1 − 𝐹(𝑧)] = 0  

⇒ −(𝑤 − 15) + (
100+𝑤

2
+
−
1

20
(𝑧∗−5)2

2
+ 10 − 15) [1 −

𝑧∗+5

10
] = 0  

⇒ −(𝑤 − 15) + (45 +
w

2
−

1

40
(𝑧∗ − 5)2) (

5−𝑧∗

10
) = 0  

The solution of this equation: 𝑧∗ = 5 −
−5400−60𝑤

6151 3⁄ 𝑋1 3⁄ +
251 3⁄ 𝑋1 3⁄

32 3⁄  

Where, 𝑋 = (−675 + 45𝑤 + √15√−698625 − 28350𝑤 − 135𝑤2 − 𝑤3)  
This expression is tedious and let’s define 𝑤 = 𝑔(𝑧∗), then the solution can be expressed 

as follows- 

−(𝑤 − 15) + (45 +
w

2
−

1

40
(𝑧∗ − 5)2) (

5−𝑧∗

10
) = 0  

⇒ −𝑤 + 15 +
w

2
(
5−𝑧∗

10
) + (45 −

1

40
(𝑧∗ − 5)2) (

5−𝑧∗

10
) = 0  

⇒ 15 + (45 −
1

40
(𝑧∗ − 5)2) (

5−𝑧∗

10
) = 𝑤 (1 −

5−𝑧∗

20
)  

⇒ 𝒘 = (𝟏𝟓 + (𝟒𝟓 −
(𝒛∗−𝟓)𝟐

𝟒𝟎
) (

𝟓−𝒛∗

𝟏𝟎
)) (

𝟐𝟎

𝟏𝟓+𝒛∗
)  

𝑤|𝑧∗=−5 = (15 + (45 −
(−5−5)2

40
) (

5+5

10
)) (

20

15−5
) = 115  

𝑤|𝑧∗=5 = (15 + (45 −
(5−5)2

40
) (

5−5

10
)) (

20

15+5
) = 15  

We know the range of 𝑧∗ is [−5,5]. Using that, we obtain the range of 𝑤 as [15,115]. Then 

we calculate the corresponding retail price.  

𝑝∗ can be obtained as, 𝑝∗(𝑧) =
𝑎+𝑏𝑤

2𝑏
+
μ−Θ(𝑧)

2𝑏
=
100+𝑤

2
−
(𝑧∗−5)2

40
 

The corresponding cost-pass-through, 
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𝑑𝑝∗

𝑑𝑤
=
1

2
(1 −

1+𝐹

2𝑏(𝑝∗+𝑆−𝛽)𝑟−(1−𝐹)
) =

1

2
(1 −

𝑧∗+15

10

2(𝑝∗−5)
1

5−𝑧∗
−
5−𝑧∗

10

)  

𝑑𝑝∗

𝑑𝑤
|
𝑧∗=−5

=
1

2
(1 −

−5+15

10

2(𝑝∗−5)
1

5+5
−
5+5

10

) =
1

2
(1 −

1
1

5
(𝑝∗−5)−1

) <
1

2
  

𝑑𝑝∗

𝑑𝑤
|
𝑧∗=4<5

=
1

2
(1 −

4+15

10

2(𝑝∗−5)
1

5−4
−
5−4

10

) =
1

2
(1 −

19

10

2(𝑝∗−5)−
1

10

) <
1

2
  

 

Let’s consider a buyback price of 𝛽 = 70 

𝑧∗ satisfy: −(𝑤 − 𝛽) + (
𝑎+𝑏𝑤

2𝑏
+
μ−Θ(𝑧)

2𝑏
+ 𝑆 − 𝛽) [1 − 𝐹(𝑧)] = 0 

⇒ −(𝑤 − 70) + (
100+𝑤

2
+
−
1

20
(𝑧∗−5)2

2
+ 10 − 70) (1 −

𝑧∗+5

10
) = 0  

⇒ 𝒘 = (𝟕𝟎 + (−𝟏𝟎 −
(𝒛∗−𝟓)𝟐

𝟒𝟎
) (

𝟓−𝒛∗

𝟏𝟎
)) (

𝟐𝟎

𝟏𝟓+𝒛∗
)   

𝑤(𝑧∗ = −5) = (70 + (−10 −
(−5−5)2

40
) (

5+5

10
)) (

20

15−5
) = 115  

𝑤(𝑧∗ = 5) = (70 + (−10 −
(5−5)2

40
) (

5−5

10
)) (

20

15+5
) = 70  

We see that lower limit of 𝑤 is determined by the buyback price and upper limit of 𝑤 is 

determined by the shortage cost.   

𝑝∗ can be obtained as, 𝑝∗(𝑧) =
𝑎+𝑏𝑤

2𝑏
+
μ−Θ(𝑧)

2𝑏
=
100+𝑤

2
−
(𝑧∗−5)2

40
  

The corresponding cost-pass-through, 

𝑑𝑝∗

𝑑𝑤
=
1

2
(1 −

1+𝐹

2𝑏(𝑝∗+𝑆−𝛽)𝑟−(1−𝐹)
) =

1

2
(1 −

𝑧∗+15

10

2(𝑝∗−60)
1

5−𝑧∗
−
5−𝑧∗

10

)  

𝑑𝑝∗

𝑑𝑤
|
𝑧∗=−5

=
1

2
(1 −

−5+15

10

2(𝑝∗−60)
1

5+5
−
5+5

10

) =
1

2
(1 −

1
1

5
(𝑝∗−60)−1

) <
1

2
  

𝑑𝑝∗

𝑑𝑤
|
𝑧∗=4<5

=
1

2
(1 −

4+15

10

2(𝑝∗−60)
1

5−4
−
5−4

10

) =
1

2
(1 −

19

10

2(𝑝∗−60)−
1

10

) <
1

2
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Case 2: Uniform[-10,10] 

 

𝑎 = 100, 𝑏 = 1, 𝑆 = 10, uniform[−10,10] 

𝜇 = 0; 𝑓(𝑢) =
1

20
; 𝐹(𝑢) =

𝑢+10

20
 ; 𝐹[𝑧∗] =

𝑧∗+10

20
; 1 + 𝐹 =

𝑧∗+30

20
; 1 − 𝐹 =

10−𝑧∗

20
 ; 𝑟 =

𝑓

1−𝐹
=

1

10−𝑧∗
 

Θ(𝑧∗(𝑝)) =
1

20
∫ (𝑢 − 𝑧∗)𝑑𝑢
10

𝑧∗
=

1

40
(𝑧∗ − 10)2;  

Following stocking decision approach- 

Condition (Petruzzi and Dada, 1999): 𝑎 − 𝑏(𝑤 − 2𝑆) + 𝐴 > 0 ⇒ 100 − (𝑤 − 20) −
10 > 0 ⇒ 110 > 𝑤 
 

Let’s consider a buyback price of 𝛽 = 15 

 

𝑧∗ satisfy: −(𝑤 − 𝛽) + (
𝑎+𝑏𝑤

2𝑏
+
μ−Θ(𝑧)

2𝑏
+ 𝑆 − 𝛽) [1 − 𝐹(𝑧)] = 0 

⇒ −(𝑤 − 15) + (
100+𝑤

2
+
−
1

40
(𝑧∗−10)2

2
+ 10 − 15) (1 −

𝑧∗+10

20
) = 0  

⇒ 𝑤 = (15 + (45 −
1

80
(𝑧∗ − 10)2) (

10−𝑧∗

20
)) (

40

30+𝑧∗
)  

⇒ 𝑤(𝑧∗ = −10) = (15 + (45 −
1

80
(−10 − 10)2) (

10+10

20
)) (

40

30−10
) = 110  

⇒ 𝑤(𝑧∗ = 10) = 15  

𝑝∗ can be obtained as, 𝑝∗(𝑧) =
𝑎+𝑏𝑤

2𝑏
+
μ−Θ(𝑧)

2𝑏
=
100+𝑤

2
−
(𝑧∗−10)2

80
 

The corresponding cost-pass-through, 

𝑑𝑝∗

𝑑𝑤
=
1

2
(1 −

1+𝐹

2𝑏(𝑝∗+𝑆−𝛽)𝑟−(1−𝐹)
) =

1

2
(1 −

𝑧∗+30

20

2(𝑝∗−5)
1

10−𝑧∗
−
10−𝑧∗

20

)  

𝑑𝑝∗

𝑑𝑤
|
𝑧∗=−10

=
1

2
(1 −

−10+30

20

2(𝑝∗−5)
1

10+10
−
10+10

20

) =
1

2
(1 −

1
1

10
(𝑝∗−5)−1

) <
1

2
  

𝑑𝑝∗

𝑑𝑤
|
𝑧∗=9<10

=
1

2
(1 −

9+30

20

2(𝑝∗−5)
1

10−9
−
10−9

20

) =
1

2
(1 −

39

20

2(𝑝∗−5)−1
) <

1

2
  

Let’s consider a buyback price of 𝛽 = 70 where the retail, wholesale, and buyback prices 

are closer. 

𝑧∗ satisfy: −(𝑤 − 𝛽) + (
𝑎+𝑏𝑤

2𝑏
+
μ−Θ(𝑧)

2𝑏
+ 𝑆 − 𝛽) [1 − 𝐹(𝑧)] = 0 

⇒ −(𝑤 − 70) + (
100+𝑤

2
+
−
1

40
(𝑧∗−10)2

2
+ 10 − 70) (1 −

𝑧∗+10

20
) = 0  

⇒ 𝑤 = (70 + (−10 −
1

80
(𝑧∗ − 10)2) (

10−𝑧∗

20
)) (

40

30+𝑧∗
)  
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𝑤(𝑧∗ = −10) = (70 + (−10 −
1

80
(−10 − 10)2) (

10+10

20
)) (

40

30−10
) = 110  

𝑤(𝑧∗ = 10) = 70  

𝑝∗ can be obtained as, 𝑝∗(𝑧) =
𝑎+𝑏𝑤

2𝑏
+
μ−Θ(𝑧)

2𝑏
=
100+𝑤

2
−
(𝑧∗−10)2

80
 

The corresponding cost-pass-through, 

𝑑𝑝∗

𝑑𝑤
=
1

2
(1 −

1+𝐹

2𝑏(𝑝∗+𝑆−𝛽)𝑟−(1−𝐹)
) =

1

2
(1 −

𝑧∗+30

20

2(𝑝∗−60)
1

10−𝑧∗
−
10−𝑧∗

20

)  

𝑑𝑝∗

𝑑𝑤
|
𝑧∗=−10

=
1

2
(1 −

−10+30

20

2(𝑝∗−60)
1

10+10
−
10+10

20

) =
1

2
(1 −

1
1

10
(𝑝∗−60)−1

) <
1

2
  

𝑑𝑝∗

𝑑𝑤
|
𝑧∗=9<10

=
1

2
(1 −

9+30

20

2(𝑝∗−60)
1

10−9
−
10−9

20

) =
1

2
(1 −

39

20

2(𝑝∗−60)−
1

20

) <
1

2
  

 

 
Figure: Optimal stocking factor  

(linear demand, additive uncertainty, buyback price $15 (left) and $70 (right)) 

 

ii. Isoelastic demand 

Let assume an isoelastic demand function 𝑦 = 𝑎𝑝−3, a per unit shortage cost of 𝑆 = 10, a per-unit 

buyback price of 𝛽 = 15, and the uncertainty is uniformly distributed on the interval [−5,5]. 
Therefore, it follows, 

𝜇 = 0; 𝑓(𝑢) = 0.1; 𝐹(𝑢) =
𝑢+5

10
 ;  

𝐹[𝑧∗] =
𝑧∗+5

10
=

𝑝+10−𝑤

𝑝+10−15
⇒ 𝑧∗ =

5(25+𝑝−2𝑤)

−5+𝑝
  

Θ(𝑧∗(𝑝)) =
1

10
∫ (𝑢 − 𝑧∗)𝑑𝑢
5

𝑧∗
=

1

20
(𝑧∗ − 5)2 =

1

20
(
5(25+𝑝−2𝑤)

−5+𝑝
− 5)

2

=
5(−15+𝑤)2

(−5+𝑝)2
;  

Following pricing decision approach, 
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𝑝∗satisfy, (−𝑝 +
𝑏

(𝑏−1)
𝑤) (𝑏 − 1)𝑎𝑝−𝑏−1 + 𝜇 − Θ(𝑧∗(𝑝)) = 0 

⇒ (−𝑝 +
3

2
𝑤)2𝑎𝑝−4 −

5(−15+𝑤)2

(−5+𝑝)2
= 0  

The solution in 𝑝 is very tedious, therefore, obtaining the solution as an inverse function, 

𝑤 = 𝑔(𝑝∗) ⇒ 𝑝∗ = 𝑔−1(𝑤) 

𝑤 = −
1

10
(−5 + 𝑝)2 (−

150

(−5 + 𝑝)2
−
3𝑎

𝑝4
±√

𝑎(9𝑎(−5 + 𝑝)2 + 20(45 − 2𝑝)𝑝4)

(−5 + 𝑝)2𝑝8
) 

Accepting the solution that satisfy 𝑤 ≤ 𝑝 

𝑤 = −
1

10
(−5 + 𝑝)2 (−

150

(−5+𝑝)2
−
3𝑎

𝑝4
+√

𝑎(9𝑎(−5+𝑝)2+20(45−2𝑝)𝑝4)

(−5+𝑝)2𝑝8
)  

Assuming 𝑎 = 1000000, 

𝑤 = −
1

10
(−5 + 𝑝)2 (−

150

(−5+𝑝)2
−
3000000

𝑝4
+ 1000√

9000000(−5+𝑝)2+20(45−2𝑝)𝑝4

(−5+𝑝)2𝑝8
)  

The minimum value of the wholesale price is the buyback price 𝛽 = 15 and the maximum 

value is +∞. It is to be mentioned, as 𝑤 → ∞, the demand 𝑦 → 0. 

For 𝑝 ∈ [15,60], the illustration plot is shown in Figure 5.4. 

The corresponding cost-pass-through is 
𝑑𝑝

𝑑𝑤
=

1

𝑟(𝑝+𝑆−𝛽)
−𝑏𝑎𝑝−1−𝑏

1−𝐹

𝑟(𝑝+𝑆−𝛽)
+𝑎𝑏𝑝−2−𝑏((𝑏−1)𝑝−(𝑏+1)𝑤)

  

Substituting, =
𝑝+𝑆−𝑤

𝑝+𝑆−𝛽
; 1 − 𝐹 = 

𝑤−𝛽

𝑝+𝑆−𝛽
; 𝑟 =

𝑓

1−𝐹
=

𝑝+𝑆−𝛽

10(𝑤−𝛽)
 , we obtain, 

⇒
𝑑𝑝

𝑑𝑤
=

−𝑎𝑏𝑝−1−𝑏+
10(𝑤−𝛽)

(𝑝+𝑆−𝛽)2

𝑎𝑏𝑝−2−𝑏((−1+𝑏)𝑝−(1+𝑏)𝑤)+
10(𝑤−𝛽)2

(𝑝+𝑆−𝛽)3

  

Substituting 𝑆 = 10, 𝛽 = 15, ⇒
𝑑𝑝

𝑑𝑤
=

−𝑎𝑏𝑝−1−𝑏+
10(𝑤−15)

(𝑝−5)2

10(𝑤−15)2

(𝑝−5)3
+𝑎𝑏𝑝−2−𝑏((−1+𝑏)𝑝−(1+𝑏)𝑤)

  

For, 𝑎 = 1000000 and 𝑝 ∈ [15,60], the cost-pass-through is illustrated in Figure 5.5. 
 

From Appendix 1c-ii, the condition for optimality is 
𝑏+1

𝑏
(1 +

𝜇−Θ

𝑎𝑝−𝑏
) < 2 and 1 ≥ 𝑓 >

(1−𝐹 )3

(𝑤−𝛽)
𝑏𝑦

𝑝
(2−

𝑏+1

𝑏
(1+

𝜇−Θ

𝑎𝑝−𝑏
))

> 0 

For our selected parameter, the condition is  

4

3
(1 +

𝑝3(
1

10
−
5(−15+𝑤)2

(−5+𝑝)2
)

106
) < 2  and  

1 ≥
1

10
>

(
𝑤−15

𝑝−5
)
3

(𝑤−15)
𝑏106𝑝−3

𝑝

(

 
 
2−

4

3
(1+

𝑝3(
1
10
−
5(−15+𝑤)2

(−5+𝑝)2
)

106
)

)

 
 

> 0  

Or equivalently, 
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⇒ 1 >
𝑝4(−15+𝑤)2

105∗𝑏(−5+𝑝)3

(

 
 
2−

4

3
(1+

𝑝3(
1
10
−
5(−15+𝑤)2

(−5+𝑝)2
)

106
)

)

 
 

> 0  

Let define, 𝐶1 =
4

3
(1 +

𝑝3(
1

10
−
5(−15+𝑤)2

(−5+𝑝)2
)

106
) and 𝐶2 =

𝑝4(−15+𝑤)2

105∗𝑏(−5+𝑝)3

(

 
 
2−

4

3
(1+

𝑝3(
1
10
−
5(−15+𝑤)2

(−5+𝑝)2
)

106
)

)

 
 

 

Hence, the equivalent conditions are 𝐶1 < 2 and 1 > 𝐶2 > 0. For 𝑝 ∈ [15,60], it can be plotted 

as follows that shows that the conditions are fulfilled for the selected parameters. 

 
Figure: Conditions for the optimality for the selected parameters 

 

 

 

 

2. Multiplicative Demand Uncertainty Case:  
 

A. Problem Formulation: 

From equation 1, the retailer’s profit is, 

𝜋𝑟 =
𝑝𝐷 − 𝑤𝑞 + 𝛽(𝑞 − 𝐷)

𝑝𝑞 − 𝑤𝑞 − 𝑆(𝐷 − 𝑞)
   
; 𝐷 ≤ 𝑞
;𝐷 > 𝑞
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Assuming multiplicative uncertainty, the demand can be expressed as 𝐷 = 𝑦𝜖. Let’s 

assume 𝑧 = 𝑞/𝑦, where 𝑧 is called the stocking factor and can be expressed as 𝑧 = 𝜇 + 𝜎 ∗
(𝑠𝑎𝑓𝑒𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟). Then the retailer’s profit can be expressed as Equation 2 and the 

corresponding optimal policy is the order quantity, 𝑞∗ = 𝑦(𝑝∗)𝑧∗.   

𝜋𝑟 =
𝑝𝑦𝜖 − 𝑤𝑦𝑧 + 𝛽𝑦(𝑧 − 𝜖)

𝑝𝑦𝑧 − 𝑤𝑦𝑧 − 𝑆𝑦(𝜖 − 𝑧)
     
; 𝜖 ≤ 𝑧
; 𝜖 > 𝑧

    
→ 𝑙𝑒𝑓𝑡𝑜𝑣𝑒𝑟
→ 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒

 
(2) 

From Equation 2a, the expected retail profit, 

𝐸[𝜋𝑟] = ∫ [𝑝𝑦𝑢 + (𝛽)𝑦(𝑧 − 𝑢)]𝑓(𝑢)𝑑𝑢
𝑧

𝐴

+∫ [𝑝𝑦𝑧 − 𝑆𝑦(𝑢 − 𝑧)]𝑓(𝑢)𝑑𝑢
𝐵

𝑧

− 𝑤𝑦𝑧 = (𝑝 − 𝑤)𝑦𝜇 − [(𝑤 − 𝛽)yΛ(𝑧) + (𝑝 + 𝑆 − 𝑤)yΘ(𝑧)]
= Ψ(𝑝) − 𝐿(𝑧, 𝑝) 

(3a) 

Hence, the expected profit is the sum of the riskless profit Ψ(𝑝) = (𝑝 − 𝑤)𝑦𝜇 minus the 

loss due to uncertainty, 𝐿(𝑧, 𝑝) = [(𝑤 − 𝛽)yΛ(𝑧) + (𝑝 + 𝑆 − 𝑤)yΘ(𝑧)] (i.e. subtracting 

the loss function from the riskless profit). Here, yΛ(𝑧) = 𝑦 ∫ (𝑧 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑧

𝐴
= expected 

leftover and yΘ(𝑧) = 𝑦 ∫ (𝑢 − 𝑧)𝑓(𝑢)𝑑𝑢
𝐵

𝑧
= expected shortage. The loss function is the 

sum of the overstocking and understocking cost (i.e. 𝐿𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 ∗
 𝐸(𝑙𝑒𝑓𝑡𝑜𝑣𝑒𝑟)  +  𝑢𝑛𝑑𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 ∗ 𝐸(𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒)).  
The retailer’s objective is to maximize, 

𝐸[𝜋𝑟(𝑧, 𝑝)] = (𝑝 − 𝑤)𝑦𝜇 − [(𝑤 − 𝛽)yΛ(𝑧) + (𝑝 + 𝑆 − 𝑤)yΘ(𝑧)] (4a) 

This is a joint optimization problem in 𝑝 and 𝑧. Therefore, we take partial derivatives of 

the expected profit in 𝑝 and 𝑧, and check if the second order conditions are fulfilled.  
𝜕

𝜕𝑧
(𝐸[𝜋𝑟(𝑧|𝑝)]) = 𝑦[−(𝑤 − 𝛽) + (𝑝 + 𝑆 − 𝛽)[1 − 𝐹(𝑧)]]  (5a) 

𝜕2

𝜕𝑧2
(𝐸[𝜋𝑟(𝑧|𝑝)]) = −𝑦(𝑝 + 𝑆 − 𝛽)𝑓(𝑧) < 0  (6a) 

𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑝|𝑧)]) =

𝑑

𝑑𝑝
[Ψ(𝑝)] −

𝜕

𝜕𝑝
[𝐿(𝑧, 𝑝)] = 𝑦′𝜇 [𝑝 − 𝑤 +

𝑦

𝑦′
] − yΘ(𝑧) −

𝑦′[(𝑤 − 𝛽)Λ(𝑧) + (𝑝 + 𝑆 − 𝑤)Θ(𝑧)]  
(7a) 

For, 𝑦 = 𝑎 − 𝑏𝑝, 
𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑝|𝑧)]) = 2𝑏(𝜇 − Θ(𝑧)) [−𝑝 + 𝑝

0 +
1

2
∗
(𝑤−𝛽)𝛬(𝑧)+𝑆𝛩(𝑧)

(𝜇−Θ(𝑧))
]  

where 𝑝0 =
𝑎+𝑏𝑤

2𝑏
 

(8a) 

𝜕2

𝜕𝑝2
(𝐸[𝜋𝑟(𝑝|𝑧)]) = −2𝑏(𝜇 − Θ(𝑧)) < 0  (9a) 

For, 𝑦 = 𝑎𝑝−𝑏, 
𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑝|𝑧)]) = (𝑏 − 1)𝑎𝑝

−𝑏−1{𝜇 − Θ(𝑧)} [−𝑝 + 𝑝0 +

𝑏

𝑏−1
{
(𝑤−𝛽)Λ(𝑧)+𝑆Θ(𝑧)

(𝜇−Θ(𝑧))
}] , 

where 𝑝0 =
𝑏

𝑏−1
𝑤 

(10a) 

𝜕2

𝜕𝑝2
(𝐸[𝜋𝑟(𝑝|𝑧)]) = −

𝑏+1

𝑝
∗
𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑝|𝑧)]) − (𝑏 − 1)𝑎𝑝

−𝑏−1{𝜇 − Θ(𝑧)}  (11a) 

𝜕2

𝜕𝑝2
(𝐸[𝜋𝑟(𝑝|𝑧)])| 𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑝|𝑧)])=0

= −(𝑏 − 1)𝑎𝑝−𝑏−1{𝜇 − Θ(𝑧)} < 0  (12a) 
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Equation 6a tells us that 𝐸[𝜋𝑟] is concave in 𝑧 for a given 𝑝. In equation 8a and 10, 𝑝0 is 

the price that maximizes the riskless profit. We can obtain the riskless optimal price as 𝑝0 

by setting the 
𝑑

𝑑𝑝
[Ψ(𝑝)] = 0. In equation 9a and 12a, the non-negativities hold because 

𝜇 − Θ(𝑧) ≥ 𝜇 − Θ(𝐴) = 𝐴 > 0. Therefore, 𝐸[𝜋𝑟] is concave in 𝑝 for a given 𝑧.  
 

B. Proof of Lemma 2 
 

i. Lemma 2a: 

Setting 
𝜕

𝜕𝑧
(𝐸[𝜋𝑟(𝑧|𝑝)]) = 0, we obtain,  

𝜕

𝜕𝑧
(𝐸[𝜋𝑟(𝑧|𝑝)]) = 𝑦[−(𝑤 − 𝛽) + (𝑝 + 𝑆 − 𝛽)[1 − 𝐹(𝑧)]] = 0 ⇒ 𝑧∗(𝑝) = 𝐹−1 [

𝑝+𝑆−𝑤

𝑝+𝑆−𝛽
]  

This is the standard newsvendor result of stocking factor, 𝑧∗(𝑝) when 𝑝 is fixed (Porteus 

1990). Then substituting 𝑧∗(𝑝) into the expected profit (Eq. 4a), it will convert the joint 

optimization problem into a single variable decision problem46. Alternatively, we can also 

substitute 𝑧∗(𝑝) into the partial derivative of the expected profit equation with respect to 𝑝 

(Eq. 7a),  
𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑧

∗(𝑝), 𝑝)])  

= 𝑦′𝜇 [𝑝 − 𝑤 +
𝑦

𝑦′
] − yΘ(𝑧∗) − 𝑦′[(𝑤 − 𝛽)Λ(𝑧∗) + (𝑝 + 𝑆 − 𝑤)Θ(𝑧∗)]  

For 𝑦 = 𝑎 − 𝑏𝑝 (from Eq. 8a),  
𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = 2𝑏(𝜇 − Θ(𝑧∗)) [−𝑝 +
𝑎+𝑏𝑤

2𝑏
+
1

2
∗
(𝑤−𝛽)𝛬(𝑧∗)+𝑆𝛩(𝑧∗)

(𝜇−Θ(𝑧∗))
]  

For 𝑦 = 𝑎𝑝−𝑏 (from Eq.10a), 
𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = (𝑏 − 1)𝑎𝑝−𝑏−1(𝜇 − Θ(𝑧∗)) [−𝑝 +
𝑏

𝑏−1
𝑤 +

𝑏

𝑏−1
{
(𝑤−𝛽)𝛬(𝑧∗)+𝑆𝛩(𝑧∗)

(𝜇−Θ(z∗))
}]  

If 𝐸[𝜋𝑟(𝑝, 𝑧
∗(𝑝)] is concave in 𝑝 [Proposition 2], then 𝑝∗ is the 𝑝 that satisfies 

𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = 0. Since 𝜇 − Θ(𝑧∗) > 0,  

For 𝑦 = 𝑎 − 𝑏𝑝, 𝑝∗(𝑤) = {𝑝|−𝑝 +
𝑎+𝑏𝑤

2𝑏
+
1

2
∗
(𝑤−𝛽)𝛬(𝑧∗(𝑝))+𝑆𝛩(𝑧∗(𝑝))

(𝜇−Θ(𝑧∗(𝑝)))
= 0}   

For 𝑦 = 𝑎𝑝−𝑏, 𝑝∗(𝑤) = {𝑝|−𝑝 +
𝑏

𝑏−1
𝑤 +

𝑏

𝑏−1
∗
(𝑤−𝛽)Λ(𝑧∗(𝑝))+𝑆Θ(𝑧∗(𝑝))

(𝜇−Θ(𝑧∗(𝑝)))
= 0}   

 

                                                           
46 Single variable decision problem in p:  

𝐸[𝜋𝑟(𝑧
∗(𝑝), 𝑝)] = 𝑦 [(𝑝 − 𝑤)𝜇 − (𝑤 − 𝛽) ∫ (𝐹−1 [

𝑝+𝑆−𝑤

𝑝+𝑆−𝛽
] − 𝑢) 𝑓(𝑢)𝑑𝑢

𝐹−1[
𝑝+𝑆−𝑤

𝑝+𝑆−𝛽
]

𝐴
− (𝑝 + 𝑆 −

𝑤) ∫ (𝑢 − 𝐹−1 [
𝑝+𝑆−𝑤

𝑝+𝑆−𝛽
]) 𝑓(𝑢)𝑑𝑢

𝐵

𝐹−1[
𝑝+𝑆−𝑤

𝑝+𝑆−𝛽
]

]  
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ii. Lemma 2b: 

Solving 
𝜕

𝜕𝑝
(𝐸[𝜋𝑟]) = 0 (Eq. 8a and 10a), we can obtain, 𝑝∗(𝑧) =

𝑎+𝑏𝑤

2𝑏
+
1

2
𝑋(𝑧) [for linear 

demand] or 𝑝∗(𝑧) =
𝑏

𝑏−1
𝑤 +

𝑏

𝑏−1
𝑋(𝑧) [for isoelastic demand] where, (𝑧) =

(𝑤−𝛽)𝛬(𝑧)+𝑆𝛩(𝑧)

(𝜇−Θ(𝑧))
 .  

Then replacing 𝑝∗(𝑧) into the equation 
𝜕

𝜕𝑧
(𝐸[𝜋𝑟]) = 0 (Eq. 5a) would give the single 

variable equation in 𝑧∗: 
𝑑

𝑑𝑧
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))]) = 𝑦(𝑝∗(𝑧)) (−(𝑤 − 𝛽) + (𝑝∗(𝑧) + 𝑆 − 𝛽)(1 − 𝐹(𝑧))) = 0 

The derivation of the optimal 𝑧∗ requires to prove that the expected profit, 𝐸[𝜋𝑟(𝑧, 𝑝
∗(𝑧))] 

is concave in 𝑧 which is analyzed in Proposition 2.   
 

C. Proof of Lemma 3: Defining X and W 

 

 

Let’s define,  

𝑋 = {
(𝑤−𝛽)𝐸[𝑙ⅇ𝑓𝑡𝑜𝑣ⅇ𝑟]+𝑆∗𝐸[𝑠ℎ𝑜𝑟𝑡𝑎𝑔ⅇ]

𝐸[𝑠𝑎𝑙ⅇ𝑠]
} = {

(𝑤−𝛽)𝑦𝛬(𝑧)+𝑆𝑦𝛩(𝑧)

𝑦(𝜇−𝛩(𝑧))
} = {

(𝑤−𝛽)𝛬+𝑆𝛩

𝜇−𝛩
}  

𝜕𝑋

𝜕𝑧
=
(𝑤−𝛽)𝐹−𝑆(1−𝐹)

(𝜇−Θ)
−
(𝑤−𝛽)Λ+𝑆Θ

(𝜇−Θ)2
(1 − 𝐹) =

(𝑤−𝛽)𝐹(𝜇−𝛩)−𝑆(1−𝐹)(𝜇−𝛩)−(𝑤−𝛽)𝛬(1−𝐹)−𝑆𝛩(1−𝐹)

(𝜇−𝛩)2
=
(𝑤−𝛽)(𝐹(𝜇−Θ)−𝛬(1−𝐹))−𝑆(1−𝐹)𝜇

(𝜇−𝛩)2
=

(𝑤−𝛽)(𝜇−Θ)(1−𝐹)(
𝐹

(1−𝐹)
−

𝛬

(𝜇−Θ)
)−𝑆(1−𝐹)𝜇

(𝜇−𝛩)2
=
(1−𝐹)(𝜇−Θ)

(𝜇−𝛩)2
[(𝑤 − 𝛽) (

𝐹

(1−𝐹)
−

𝛬

(𝜇−Θ)
) − 𝑆

𝜇

(𝜇−Θ)
] =

(1−𝐹)

(𝜇−Θ)
[(𝑤 − 𝛽) (

𝐹

(1−𝐹)
−

𝛬

(𝜇−Θ)
) − 𝑆

𝜇

(𝜇−Θ)
]  

Here, 
𝐶𝐷𝐹

1−𝐶𝐷𝐹
=

𝐹

(1−𝐹)
> 1 >

𝛬

(𝜇−Θ)
=
𝐸[𝑙ⅇ𝑓𝑡𝑜𝑣ⅇ𝑟]

𝐸[𝑠𝑎𝑙ⅇ𝑠]
 .  

 

Therefore, for zero shortage cost (i.e. 𝑆 = 0), 
𝜕𝑋

𝜕𝑧
 is positive. For non-negative shortage 

cost, 
𝜕𝑋

𝜕𝑧
 is positive if (𝑤 − 𝛽) (

𝐹

(1−𝐹)
−

𝛬

(𝜇−Θ)
) > 𝑆

𝜇

(𝜇−Θ)
; otherwise, 

𝜕𝑋

𝜕𝑧
 is negative if 

(𝑤 − 𝛽) (
𝐹

(1−𝐹)
−

𝛬

(𝜇−Θ)
) < 𝑆

𝜇

(𝜇−Θ)
 . 

 

Now let’s define, 𝑊 =
1−𝐹

𝑓(𝑝+𝑆−𝛽)
∗
𝜕𝑋

𝜕𝑧
 

Since (1 − 𝐹), 𝑓, (𝑝 + 𝑆 − 𝛽) are non-negative terms, therefore, the sign of 𝑊 follows 

the sign of 
𝜕𝑋

𝜕𝑧
 . It is to be mentioned, following the pricing decision approach, 

𝜕𝑋

𝜕𝑝
=
𝜕𝑋

𝜕𝑧
∗

𝜕𝑧

𝜕𝑝
 takes the value of 𝑊.  
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In further derivation, we will be using these two variables 𝑋 and 𝑊 frequently. 

 

D. Condition for concavity 

 

i. Pricing decision approach:  

Proposition:  

𝐸[Π𝑟(𝑝, 𝑧
∗(𝑝))] is concave in 𝑝 for the given conditions- 

1. For 𝑦 = 𝑎 − 𝑏𝑝, 
1

2
𝑊 < 1 

2. For 𝑦 = 𝑎𝑝−𝑏, 𝑏 > 1,  
𝑏

𝑏−1
𝑊 < 1  

where, 𝑊 =
1−𝐹

𝑓(𝑝+𝑆−𝛽)
∗
𝜕𝑋

𝜕𝑧
. Hence, the optimal 𝑝∗ is the 𝑝 that satisfies 

𝑑𝐸[Π𝑟(𝑝,𝑧
∗(𝑝))]

𝑑𝑝
=  0.  

Proof: 

We obtain 𝑧∗(𝑝) from, 𝐹(𝑧∗(𝑝)) =
𝑝+𝑆−𝑤

𝑝+𝑆−𝛽
 

Taking derivative in 𝑝, 

𝑓 ∗
𝑑𝑧∗

𝑑𝑝
=

1

𝑝+𝑆−𝛽
−

𝑝+𝑆−𝑤

(𝑝+𝑆−𝛽)2
=

1

𝑝+𝑆−𝛽
−

𝐹

(𝑝+𝑆−𝛽)
=

1−𝐹

(𝑝+𝑆−𝛽)
  

⇒
𝑑𝑧∗

𝑑𝑝
=

1−𝐹

𝑓(𝑝+𝑆−𝛽)
  

Replacing the 𝑧∗(𝑝) into 𝜕𝐸/𝜕𝑝: 

 

Linear Demand 

For 𝑦 = 𝑎 − 𝑏𝑝, 
𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = 2𝑏(𝜇 − Θ(𝑧∗)) [−𝑝 +
𝑎+𝑏𝑤

2𝑏
+
1

2
∗ 𝑋(𝑧∗(𝑝))]  

𝑑2

𝑑𝑝2
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = 2𝑏(1 − 𝐹)
𝑑𝑧∗

𝑑𝑝
[−𝑝 +

𝑎+𝑏𝑤

2𝑏
+
1

2
∗ 𝑋] + 2𝑏(𝜇 − Θ) [−1 +

1

2
∗

𝑑𝑋

𝑑𝑧∗
∗
𝑑𝑧∗

𝑑𝑝
]  

𝑑2

𝑑𝑝2
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) =
(1−𝐹)

(𝜇−Θ)
∗
𝑑𝑧∗

𝑑𝑝
∗
𝑑(𝐸[𝜋𝑟])

𝑑𝑝
+ 2𝑏(𝜇 − Θ) [−1 +

1

2
∗ 𝑊]  

 

Here, 𝑊 =
𝑑𝑋

𝑑𝑧∗
∗
𝑑𝑧∗

𝑑𝑝
=

1−𝐹

𝑓(𝑝+𝑆−𝛽)
∗
(1−𝐹)

(𝜇−Θ)
[(𝑤 − 𝛽) (

𝐹

(1−𝐹)
−

𝛬

(𝜇−Θ)
) − 𝑆

𝜇

(𝜇−Θ)
] 

 
𝑑2(𝐸[𝜋𝑟(𝑝,𝑧

∗(𝑝))])

𝑑𝑝2
|𝑑(𝐸[𝜋𝑟(𝑝,𝑧∗(𝑝))])

𝑑𝑝
=0
= 2𝑏(𝜇 − Θ) [−1 +

1

2
∗ 𝑊]    

Since 2𝑏(𝜇 − Θ) > 0, therefore for 
𝑊

2
< 1, 

𝑑2(𝐸[𝜋𝑟(𝑝,𝑧
∗(𝑝))])

𝑑𝑝2
|𝑑(𝐸[𝜋𝑟(𝑝,𝑧∗(𝑝))])

𝑑𝑝
=0
< 0 
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Hence, 𝐸[Π𝑟(𝑝, 𝑧
∗(𝑝))] is concave in 𝑝 and the optimal 𝑝∗ is the 𝑝 that satisfies 

𝑑𝐸[Π𝑟(𝑝,𝑧
∗(𝑝))]

𝑑𝑝
=  0.  

 

 

Isoelastic Demand 

For 𝑦 = 𝑎𝑝−𝑏, 
𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = (𝑏 − 1)𝑎𝑝−𝑏−1{𝜇 − Θ(𝑧∗(𝑝))} [−𝑝 +
𝑏

𝑏−1
𝑤 +

𝑏

𝑏−1
𝑋(𝑧∗(𝑝))]  

Let’s define, 𝑅(𝑝) = −𝑝 +
𝑏

𝑏−1
𝑤 +

𝑏

𝑏−1
𝑋 

𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = (𝑏 − 1)𝑎𝑝−𝑏−1{𝜇 − Θ}𝑅(𝑝)  

𝑑2

𝑑𝑝2
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = (𝑏 − 1) [−(𝑏 + 1)𝑎𝑝−𝑏−1−1(𝜇 − Θ)𝑅 + 𝑎𝑝−𝑏−1(1 −

𝐹)
𝑑𝑧∗

𝑑𝑝
𝑅 + 𝑎𝑝−𝑏−1(𝜇 − Θ)

𝑑𝑅

𝑑𝑝
]  

= (𝑏 − 1)𝑎𝑝−𝑏−1 [−(𝑏 + 1)𝑝−1(𝜇 − Θ)𝑅 + (1 − 𝐹)
𝑑𝑧∗

𝑑𝑝
𝑅 + (𝜇 − Θ)

𝑑𝑅

𝑑𝑝
]  

𝑑𝑅(𝑝)

𝑑𝑝
= −1 +

𝑏

𝑏−1
∗
𝑑𝑋

𝑑𝑧∗
∗
𝑑𝑧∗

𝑑𝑝
= −1 +

𝑏

𝑏−1
∗ 𝑊  

Here, 𝑊 =
𝑑𝑋

𝑑𝑧∗
∗
𝑑𝑧∗

𝑑𝑝
=

1−𝐹

𝑓(𝑝+𝑆−𝛽)
∗
(1−𝐹)

(𝜇−Θ)
[(𝑤 − 𝛽) (

𝐹

(1−𝐹)
−

𝛬

(𝜇−Θ)
) − 𝑆

𝜇

(𝜇−Θ)
] 

Substituting 
𝑑𝑅(𝑝)

𝑑𝑝
,  

𝑑2

𝑑𝑝2
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = (𝑏 − 1)𝑎𝑝−𝑏−1 [−(𝑏 + 1)𝑝−1(𝜇 − Θ)𝑅 + (1 − 𝐹)
𝑑𝑧∗

𝑑𝑝
𝑅 +

(𝜇 − Θ) (−1 +
𝑏

𝑏−1
𝑊)]  

= −(𝑏 + 1)𝑝−1
𝑑

𝑑𝑝
(𝐸[𝜋𝑟]) +

(1−𝐹)

(𝜇−Θ)
∗
𝑑𝑧∗

𝑑𝑝
∗
𝑑

𝑑𝑝
(𝐸[𝜋𝑟]) + (𝑏 − 1)𝑎𝑝

−𝑏−1(𝜇 − Θ) (−1 +

𝑏

𝑏−1
𝑊)  

𝑑2(𝐸[𝜋𝑟(𝑝,𝑧
∗(𝑝))])

𝑑𝑝2
|𝑑(𝐸[𝜋𝑟(𝑝,𝑧∗(𝑝))])

𝑑𝑝
=0
= (𝑏 − 1)𝑎𝑝−𝑏−1(𝜇 − Θ) (−1 +

𝑏

𝑏−1
𝑊)  

Since (𝑏 − 1)𝑎𝑝−𝑏−1(𝜇 − Θ) > 0, therefore for 
𝑏

𝑏−1
𝑊 < 1,  

𝑑2(𝐸[𝜋𝑟(𝑝,𝑧
∗(𝑝))])

𝑑𝑝2
|𝑑(𝐸[𝜋𝑟(𝑝,𝑧∗(𝑝))])

𝑑𝑝
=0
< 0  

Hence, 𝐸[Π𝑟(𝑝, 𝑧
∗(𝑝))] is concave in 𝑝 for the given condition and the optimal 𝑝∗ is the 𝑝 

that satisfies 
𝑑𝐸[Π𝑟(𝑝,𝑧

∗(𝑝))]

𝑑𝑝
=  0.  

 

 

ii. Stocking Decision Approach:  

Proposition:  

𝐸[Π𝑟(𝑧, 𝑝
∗(𝑧))] is concave in 𝑧 for the given conditions- 

1. For 𝑦 = 𝑎 − 𝑏𝑝, 
1

2
𝑊 < 1 
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2. For 𝑦 = 𝑎𝑝−𝑏, 𝑏 > 1,  
𝑏

𝑏−1
𝑊 < 1  

where, 𝑊 =
1−𝐹

𝑓(𝑝+𝑆−𝛽)
∗
𝜕𝑋

𝜕𝑧
. Hence, the optimal 𝑧∗ is the 𝑧 that satisfies 

𝑑𝐸[Π𝑟(𝑧,𝑝
∗(𝑧))]

𝑑𝑧
=  0.  

Proof: 

 

Linear Demand Form: 

Replacing the 𝑝∗(𝑧) into 𝜕𝐸/𝜕𝑧: 

𝑑

𝑑𝑧
𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))] = (𝑎 − 𝑏𝑝∗) (−(𝑤 − 𝛽) + (𝑝∗ + 𝑆 − 𝛽)(1 − 𝐹(𝑧)))  

𝑑2

𝑑𝑧2
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))]) = −𝑏
𝑑𝑝∗

𝑑𝑧
∗
𝑑

𝑑𝑧
𝐸[𝜋𝑟]

𝑎−𝑏𝑝∗ 
+ (𝑎 − 𝑏𝑝∗) ((

𝑑𝑝∗

𝑑𝑧
) (1 − 𝐹) − (𝑝∗ + 𝑆 − 𝛽)𝑓)   

𝑑2(𝐸[𝜋𝑟(𝑧,𝑝
∗(𝑧))])

𝑑𝑧2
|𝑑(𝐸[𝜋𝑟(𝑧,𝑝∗(𝑧))])

𝑑𝑧
=0
= (𝑎 − 𝑏𝑝∗) ((

𝑑𝑝∗

𝑑𝑧
) (1 − 𝐹) − (𝑝∗ + 𝑆 − 𝛽)𝑓) =

−(𝑎 − 𝑏𝑝∗)(𝑝∗ + 𝑆 − 𝛽)𝑓 (1 −
(1−𝐹)

(𝑝∗+𝑆−𝛽)𝑓
(
𝑑𝑝∗

𝑑𝑧
))  

From, 𝑝∗(𝑧) =
𝑎

2𝑏
+
𝑤+𝑋

2
 , 

𝑑𝑝∗

𝑑𝑧
=
1

2

𝑑𝑋(𝑧)

𝑑𝑧
=
1

2
∗
(1−𝐹)

(𝜇−Θ)
[(𝑤 − 𝛽) (

𝐹

(1−𝐹)
−

𝛬

(𝜇−Θ)
) − 𝑆

𝜇

(𝜇−Θ)
]  

Hence, substituting 
𝑑𝑝∗

𝑑𝑧
 ,   

𝑑2(𝐸[𝜋𝑟(𝑧,𝑝
∗(𝑧))])

𝑑𝑧2
|𝑑(𝐸[𝜋𝑟(𝑧,𝑝∗(𝑧))])

𝑑𝑧
=0
= −(𝑎 − 𝑏𝑝∗)(𝑝∗ + 𝑆 − 𝛽)𝑓 (1 −

1

2
∗

(1−𝐹)

(𝑝∗+𝑆−𝛽)𝑓
∗

(
𝑑𝑋(𝑧)

𝑑𝑧
)) = −(𝑎 − 𝑏𝑝∗)(𝑝∗ + 𝑆 − 𝛽)𝑓 (1 −

1

2
∗ 𝑊)  

Since, (𝑎 − 𝑏𝑝∗)(𝑝∗ + 𝑆 − 𝛽)𝑓 > 0, therefore, for 
1

2
∗ 𝑊 < 1,   

𝑑2(𝐸[𝜋𝑟(𝑧,𝑝
∗(𝑧))])

𝑑𝑧2
|𝑑(𝐸[𝜋𝑟(𝑧,𝑝∗(𝑧))])

𝑑𝑧
=0
< 0  

Therefore, 𝐸[𝜋𝑟(𝑧, 𝑝
∗(𝑧))] is concave in 𝑧 and the optimal 𝑧∗ is the 𝑧 that satisfy 

𝑑

𝑑𝑧
𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))] = 0. 
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Isoelastic Demand Form:  

 

Replacing the 𝑝∗(𝑧) into 𝜕𝐸/𝜕𝑧: 

𝑑

𝑑𝑧
𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))] = (𝑎𝑝∗(−𝑏)) (−(𝑤 − 𝛽) + (𝑝∗ + 𝑆 − 𝛽)(1 − 𝐹(𝑧)))  

𝑑2

𝑑𝑧2
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))]) = −𝑏𝑎𝑝∗(−𝑏−1)
𝑑𝑝∗

𝑑𝑧
∗

𝑑

𝑑𝑧
𝐸[𝜋𝑟]

𝑎𝑝∗(−𝑏) 
+ (𝑎𝑝∗(−𝑏)) ((

𝑑𝑝∗

𝑑𝑧
) (1 − 𝐹) −

(𝑝∗ + 𝑆 − 𝛽)𝑓)   

𝑑2(𝐸[𝜋𝑟(𝑧,𝑝
∗(𝑧))])

𝑑𝑧2
|𝑑(𝐸[𝜋𝑟(𝑧,𝑝∗(𝑧))])

𝑑𝑧
=0
= (𝑎𝑝∗(−𝑏)) ((

𝑑𝑝∗

𝑑𝑧
) (1 − 𝐹) − (𝑝∗ + 𝑆 − 𝛽)𝑓) =

−(𝑎𝑝∗(−𝑏))(𝑝∗ + 𝑆 − 𝛽)𝑓 (1 −
(1−𝐹)

(𝑝∗+𝑆−𝛽)𝑓
(
𝑑𝑝∗

𝑑𝑧
))  

From, 𝑝∗(𝑧) =
𝑏

𝑏−1
(𝑤 + 𝑋) , 

𝑑𝑝∗

𝑑𝑧
=

𝑏

𝑏−1

𝑑𝑋(𝑧)

𝑑𝑧
=

𝑏

𝑏−1
∗
(1−𝐹)

(𝜇−Θ)
[(𝑤 − 𝛽) (

𝐹

(1−𝐹)
−

𝛬

(𝜇−Θ)
) − 𝑆

𝜇

(𝜇−Θ)
]  

Hence, substituting 
𝑑𝑝∗

𝑑𝑧
 ,   

𝑑2(𝐸[𝜋𝑟(𝑧,𝑝
∗(𝑧))])

𝑑𝑧2
|𝑑(𝐸[𝜋𝑟(𝑧,𝑝∗(𝑧))])

𝑑𝑧
=0
= −(𝑎𝑝∗(−𝑏))(𝑝∗ + 𝑆 − 𝛽)𝑓 (1 −

𝑏

𝑏−1
∗

(1−𝐹)

(𝑝∗+𝑆−𝛽)𝑓
∗

(
𝑑𝑋(𝑧)

𝑑𝑧
)) = −(𝑎𝑝∗(−𝑏))(𝑝∗ + 𝑆 − 𝛽)𝑓 (1 −

𝑏

𝑏−1
∗ 𝑊)  

Since, (𝑎𝑝∗(−𝑏))(𝑝∗ + 𝑆 − 𝛽)𝑓 > 0, therefore, for 
𝑏

𝑏−1
∗ 𝑊 < 1,   

𝑑2(𝐸[𝜋𝑟(𝑧,𝑝
∗(𝑧))])

𝑑𝑧2
|𝑑(𝐸[𝜋𝑟(𝑧,𝑝∗(𝑧))])

𝑑𝑧
=0
< 0  

Therefore, 𝐸[𝜋𝑟(𝑧, 𝑝
∗(𝑧))] is concave in 𝑧 and the optimal 𝑧∗ is the 𝑧 that satisfy 

𝑑

𝑑𝑧
𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))] = 0. 

 

E. Cost-pass-through 

 

Proposition: In the case of newsvendor model with multiplicative uncertainty, the retail 

cost-pass-through is as follows-  
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1. For linear demand (i.e. 𝐷 = (𝑎 − 𝑏𝑝)𝜖), 
𝑑𝑝∗

𝑑𝑤
=
1

2
(1 +

𝛬

(𝜇−𝛩)
+(
1

2
−

1

1−𝐹
)𝑊

1−
1

2
𝑊

) 

2. For isoelastic demand (i.e. 𝐷 = (𝑎𝑝−𝑏)𝜖), 
𝑑𝑝∗

𝑑𝑤
=

𝑏

𝑏−1
(1 +

𝛬

(𝜇−Θ)
+(

𝑏

𝑏−1
−

1

1−𝐹
)𝑊

1−
𝑏

𝑏−1
𝑊

)  

where, 𝑊 =
(1−𝐹)

𝑓(𝑝+𝑆−𝛽)
∗
𝜕𝑋

𝜕𝑧
 

  

Proof:  

 

i. Pricing Decision Approach: 

 

𝐹[𝑧∗(𝑝, 𝑤)] =
𝑝+𝑆−𝑤

𝑝+𝑆−𝛽
  

Taking derivative in 𝑤, 

𝑓(𝑧∗(𝑝, 𝑤))
𝑑

𝑑𝑤
(𝑧∗(𝑝, 𝑤)) =

(
𝑑𝑝

𝑑𝑤
−1)

(𝑝+𝑆−𝛽)
−

𝑝+𝑆−𝑤

(𝑝+𝑆−𝛽)2
∗
𝑑𝑝

𝑑𝑤
=

(
𝑑𝑝

𝑑𝑤
−1)

(𝑝+𝑆−𝛽)
−
𝐹[𝑧∗]∗

𝑑𝑝

𝑑𝑤

(𝑝+𝑆−𝛽)
=
(1−𝐹[𝑧∗])

(𝑝+𝑆−𝛽)
∗

𝑑𝑝

𝑑𝑤
−

1

(𝑝+𝑆−𝛽)
  

⇒
𝑑𝑧∗

𝑑𝑤
=

1−𝐹

𝑓(𝑝+𝑆−𝛽)
∗
𝑑𝑝

𝑑𝑤
−

1

𝑓(𝑝+𝑆−𝛽)
=

1−𝐹

𝑓(𝑝+𝑆−𝛽)
[
𝑑𝑝

𝑑𝑤
−

1

1−𝐹
]  

 

We defined,  

𝑋(𝑤, 𝑧∗(𝑝, 𝑤)) =
(𝑤−𝑣)𝛬(𝑧∗(𝑝))+𝑆𝛩(𝑧∗(𝑝))

𝜇−𝛩(𝑧∗(𝑝))
  

𝑑𝑋

𝑑𝑤
=
𝜕𝑋

𝜕𝑤
+

𝜕𝑋

𝜕𝑧∗
∗
𝑑𝑧∗

𝑑𝑤
=

𝛬

(𝜇−Θ)
+

𝜕𝑋

𝜕𝑧∗
∗

1−𝐹

𝑓(𝑝+𝑆−𝛽)
[
𝑑𝑝

𝑑𝑤
−

1

1−𝐹
]  

⇒
𝑑𝑋

𝑑𝑤
=

𝛬

(𝜇−Θ)
+𝑊 [

𝑑𝑝

𝑑𝑤
−

1

1−𝐹
]  

 

Linear Demand: 

 

For 𝑦 = 𝑎 − 𝑏𝑝, 𝑝∗ has to satisfy this equation (from Lemma 2a),  

−𝑝∗ +
𝑎+𝑏𝑤

2𝑏
+
1

2
∗ 𝑋(𝑤, 𝑧∗(𝑝∗, 𝑤)) = 0  

Taking derivative in 𝑤, 

−
𝑑𝑝∗

𝑑𝑤
+
1

2
+
1

2
∗
𝑑𝑋

𝑑𝑤
= 0  (B-a-1) 

Then substituting “
𝑑𝑋

𝑑𝑤
” back into the equation B-a-1,   

−
𝑑𝑝∗

𝑑𝑤
+
1

2
+
1

2
[

𝛬

(𝜇−Θ)
−

𝑊

1−𝐹
+𝑊 ∗

𝑑𝑝∗

𝑑𝑤
] = 0  

⇒
1

2
(1 +

𝛬

(𝜇−Θ)
−

𝑊

(1−𝐹)
) = (1 −

𝑊

2
)
𝑑𝑝∗

𝑑𝑤
  

⇒
𝑑𝑝∗

𝑑𝑤
=

1

2
(1+

𝛬

(𝜇−Θ)
−

𝑊

(1−𝐹)
)

(1−
𝑊

2
)

=
1

2

(1−
𝑊

2
+

𝛬

(𝜇−Θ)
−

𝑊

(1−𝐹)
+
𝑊

2
)

(1−
𝑊

2
)

=
1

2
(1 +

𝛬

(𝜇−Θ)
+(
1

2
−

1

1−𝐹
)𝑊

(1−
1

2
𝑊)

)  
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Isoelastic Demand: 

 

For 𝑦 = 𝑎𝑝−𝑏, 𝑝∗ has to satisfy this equation,  

−𝑝∗ +
𝑏

𝑏−1
𝑤 +

𝑏

𝑏−1
∗ 𝑋(𝑤, 𝑧∗(𝑝∗, 𝑤)) = 0  

Taking derivative in 𝑤, 

−
𝑑𝑝∗

𝑑𝑤
+

𝑏

𝑏−1
+

𝑏

𝑏−1
∗
𝑑𝑋

𝑑𝑤
= 0  

Substituting “
𝑑𝑋

𝑑𝑤
”, 

−
𝑑𝑝∗

𝑑𝑤
+

𝑏

𝑏−1
+

𝑏

𝑏−1
∗ [

𝛬

(𝜇−Θ)
−

𝑊

1−𝐹
+𝑊 ∗

𝑑𝑝∗

𝑑𝑤
] = 0  

⇒
𝑏

𝑏−1
∗ [1 +

𝛬

(𝜇−Θ)
−

𝑊

1−𝐹
] = [1 −

𝑏

𝑏−1
∗ 𝑊]

𝑑𝑝∗

𝑑𝑤
  

⇒
𝑑𝑝∗

𝑑𝑤
=

𝑏

𝑏−1
(
1+

𝛬

(𝜇−Θ)
−
𝑊

1−𝐹

1−
𝑏

𝑏−1
∗𝑊

) =
𝑏

𝑏−1
(
1−

𝑏𝑊

𝑏−1
+

𝛬

(𝜇−Θ)
+
𝑏𝑊

𝑏−1
−
𝑊

1−𝐹

1−
𝑏

𝑏−1
𝑊

) =
𝑏

𝑏−1
(1 +

𝛬

(𝜇−Θ)
+(

𝑏

𝑏−1
−
1

1−𝐹
)𝑊

1−
𝑏

𝑏−1
𝑊

)  

 

 

ii. Stocking Decision Approach: 

 

𝑑𝑋(𝑤,𝑧∗)

𝑑𝑤
=
𝜕𝑋

𝜕𝑤
+

𝜕𝑋

𝜕𝑧∗
∗
𝑑𝑧∗

𝑑𝑤
=

𝛬

(𝜇−Θ)
+

𝜕𝑋

𝜕𝑧∗
∗
𝑑𝑧∗

𝑑𝑤
=

𝛬

(𝜇−Θ)
+
(1−𝐹)

(𝜇−Θ)
[(𝑤 − 𝛽) (

𝐹

(1−𝐹)
−

𝛬

(𝜇−Θ)
) −

𝑆
𝜇

(𝜇−Θ)
] ∗

𝑑𝑧∗

𝑑𝑤
  

Linear Demand: 

Optimal price, 𝑝∗(𝑧∗) =
𝑎+𝑏𝑤

2𝑏
+
1

2
{
(𝑤−𝛽)𝛬(𝑧∗)+𝑆𝛩(𝑧∗)

𝜇−𝛩(𝑧∗)
} ⇒ 𝑝∗(𝑧) =

𝑎

2𝑏
+
𝑤+𝑋

2
 

Taking derivatives in w, 
𝑑𝑝∗

𝑑𝑤
=
1

2
(1 +

𝑑𝑋

𝑑𝑤
) =

1

2
(1 +

𝛬

(𝜇−Θ)
+

𝜕𝑋

𝜕𝑧∗
∗
𝑑𝑧∗

𝑑𝑤
) 

𝑧∗ has to satisfy- 
𝑑

𝑑𝑧
𝐸[𝜋𝑟(𝑧

∗, 𝑝∗(𝑧∗))] = 0 

⇒ (𝑎 − 𝑏𝑝∗)[−(𝑤 − 𝛽) + (𝑝∗ + 𝑆 − 𝛽)(1 − 𝐹)] = 0  

Since, 𝑦 = 𝑎 − 𝑏𝑝∗ > 0,  

⇒ [−(𝑤 − 𝛽) + (𝑝∗ + 𝑆 − 𝛽)(1 − 𝐹)] = 0  

Therefore, 𝑧∗ has to satisfy, [−(𝑤 − 𝛽) + (
1

2
(𝑤 + 𝑋) + 𝑆 − 𝛽) (1 − 𝐹)] = 0 

Differentiating this equation w.r.t. w, 

−1 +
1

2
(1 +

𝑑𝑋

𝑑𝑤
) (1 − 𝐹) − (

1

2
(𝑤+𝑋)+ 𝑆 − 𝛽)𝑓

𝑑𝑧∗

𝑑𝑤
= 0  
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⇒ −1+
1

2
(1 +

𝛬

(𝜇−Θ)
+
𝜕𝑋

𝜕𝑧∗
∗
𝑑𝑧∗

𝑑𝑤
) (1 − 𝐹) − (𝑝∗ + 𝑆− 𝛽)𝑓

𝑑𝑧∗

𝑑𝑤
= 0  

⇒ −1+
1

2
(1 +

𝛬

(𝜇−Θ)
) (1 − 𝐹) = ((𝑝∗ + 𝑆 − 𝛽)𝑓 −

1

2
(
𝜕𝑋

𝜕𝑧∗
) (1 − 𝐹))

𝑑𝑧∗

𝑑𝑤
  

⇒ −
1

(1−𝐹)
+
1

2
(1 +

𝛬

(𝜇−Θ)
) = ((𝑝∗ + 𝑆 − 𝛽)

𝑓

1−𝐹
−
1

2
(
𝜕𝑋

𝜕𝑧∗
))
𝑑𝑧∗

𝑑𝑤
  

⇒
𝑑𝑧∗

𝑑𝑤
=

1

2
(1+

𝛬
(𝜇−Θ)

)−
1

(1−𝐹)

(𝑝∗+𝑆−𝛽)
𝑓

1−𝐹
−
1

2
(
𝜕𝑋

𝜕𝑧∗
)
= −

1

2
(1+

𝛬
(𝜇−Θ)

)−
1

(1−𝐹)

1

2
(
𝜕𝑋

𝜕𝑧∗
)−(𝑝∗+𝑆−𝛽)

𝑓

1−𝐹

= −
1

2

𝛬
(𝜇−Θ)

+(
1

2
−

1

(1−𝐹)
)

1

2
(
𝜕𝑋

𝜕𝑧∗
)−(𝑝∗+𝑆−𝛽)

𝑓

1−𝐹

=
1−𝐹

(𝑝∗+𝑆−𝛽)𝑓
∗

−
1

2

𝛬
(𝜇−Θ)

−(
1

2
−

1

(1−𝐹)
)

[
1

2
∗

1−𝐹
(𝑝∗+𝑆−𝛽)𝑓

(
𝜕𝑋

𝜕𝑧∗
)−1]

=
1−𝐹

(𝑝∗+𝑆−𝛽)𝑓
∗
1

2

𝛬
(𝜇−Θ)

+(
1

2
−

1

(1−𝐹)
)

[1−
1

2
∗𝑊]

  

Hence,  

𝜕𝑋

𝜕𝑧∗
∗
𝑑𝑧∗

𝑑𝑤
=

𝜕𝑋

𝜕𝑧∗
∗

1−𝐹

(𝑝∗+𝑆−𝛽)𝑓
∗

1

2

𝛬

(𝜇−Θ)
+(
1

2
−

1

(1−𝐹)
)

[1−
1

2
∗𝑊]

= 𝑊 ∗

1

2

𝛬

(𝜇−Θ)
+(
1

2
−

1

(1−𝐹)
)

[1−
1

2
∗𝑊]

  

𝑑𝑝∗

𝑑𝑤
=
1

2
(1 +

𝛬

(𝜇−Θ)
+

𝜕𝑋

𝜕𝑧∗
∗
𝑑𝑧∗

𝑑𝑤
) =

1

2
(1 +

𝛬

(𝜇−Θ)
+𝑊 ∗

1

2

𝛬

(𝜇−Θ)
+(
1

2
−

1

(1−𝐹)
)

[1−
1

2
∗𝑊]

) =

1

2
(1 +

𝛬

(𝜇−Θ)
+(
1

2
−

1

(1−𝐹)
)𝑊

1−
1

2
∗𝑊

)  

 

Isoelastic Demand Form: 

Optimal price, 𝑝∗(𝑧∗) =
𝑏𝑤

(𝑏−1)
+

𝑏

𝑏−1
{
(𝑤−𝛽)𝛬(𝑧∗)+𝑆𝛩(𝑧∗)

𝜇−𝛩(𝑧∗)
} ⇒ 𝑝∗(𝑧) =

𝑏

𝑏−1
(𝑤 + 𝑋) 

Taking derivatives in w, 
𝑑𝑝∗

𝑑𝑤
=

𝑏

𝑏−1
(1 +

𝑑𝑋

𝑑𝑤
) =

𝑏

𝑏−1
(1 +

𝛬

(𝜇−Θ)
+

𝜕𝑋

𝜕𝑧∗
∗
𝑑𝑧∗

𝑑𝑤
) 

𝑧∗ has to satisfy, 
𝑑

𝑑𝑧
𝐸[𝜋𝑟(𝑧

∗, 𝑝∗(𝑧∗))] = 0 

⇒ 𝑎𝑝∗
(−𝑏)[−(𝑤 − 𝛽) + (𝑝∗ + 𝑆 − 𝛽)(1 − 𝐹)] = 0  

Since, 𝑦 = 𝑎𝑝∗
(−𝑏) > 0, 

⇒ [−(𝑤 − 𝛽) + (𝑝∗ + 𝑆 − 𝛽)(1 − 𝐹)] = 0  

Therefore, 𝑧∗ has to satisfy- 

⇒ [−(𝑤 − 𝛽) + (
𝑏

𝑏−1
(𝑤 + 𝑋) + 𝑆 − 𝛽) (1 − 𝐹)] = 0  
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Differentiating this equation w.r.t. w, 

⇒ −1 + (1 − 𝐹)
𝑏

𝑏−1
(1 +

𝑑𝑋

𝑑𝑤
) − (

𝑏

𝑏−1
(𝑤 + 𝑋) + 𝑆 − 𝛽)𝑓

𝑑𝑧∗

𝑑𝑤
= 0  

⇒ −1 + (1 − 𝐹)
𝑏

𝑏−1
(1 +

𝛬

(𝜇−Θ)
+

𝜕𝑋

𝜕𝑧∗
∗
𝑑𝑧∗

𝑑𝑤
) − (

𝑏

𝑏−1
(𝑤 + 𝑋) + 𝑆 − 𝛽)𝑓

𝑑𝑧∗

𝑑𝑤
= 0  

⇒ −1 + (1 − 𝐹)
𝑏

𝑏−1
(1 +

𝛬

(𝜇−Θ)
) = [(

𝑏

𝑏−1
(𝑤 + 𝑋) + 𝑆 − 𝛽)𝑓 − (1 − 𝐹)

𝑏

𝑏−1

𝜕𝑋

𝜕𝑧∗
]
𝑑𝑧∗

𝑑𝑤
  

⇒ −1 +
𝑏

𝑏−1
(1 − 𝐹) (1 +

𝛬

(𝜇−Θ)
) = [(𝑝∗ + 𝑆 − 𝛽)𝑓 −

𝑏

𝑏−1
(1 − 𝐹)

𝜕𝑋

𝜕𝑧∗
]
𝑑𝑧∗

𝑑𝑤
  

⇒ −
1

(1−𝐹)
+

𝑏

𝑏−1
(1 +

𝛬

(𝜇−Θ)
) = [(𝑝∗ + 𝑆 − 𝛽)

𝑓

(1−𝐹)
−

𝑏

𝑏−1

𝜕𝑋

𝜕𝑧∗
]
𝑑𝑧∗

𝑑𝑤
  

⇒
𝑑𝑧∗

𝑑𝑤
=

−
1

(1−𝐹)
+

𝑏

𝑏−1
(1+

𝛬

(𝜇−Θ)
)

(𝑝∗+𝑆−𝛽)
𝑓

(1−𝐹)
−

𝑏

𝑏−1

𝜕𝑋

𝜕𝑧∗

= −

𝑏

𝑏−1
(1+

𝛬

(𝜇−Θ)
)−

1

(1−𝐹)

𝑏

𝑏−1
(
𝜕𝑋

𝜕𝑧∗
)−(𝑝∗+𝑆−𝛽)

𝑓

(1−𝐹)

= −

𝑏

𝑏−1
(

𝛬

(𝜇−Θ)
)+(

𝑏

𝑏−1
−

1

(1−𝐹)
)

𝑏

𝑏−1
(
𝜕𝑋

𝜕𝑧∗
)−(𝑝∗+𝑆−𝛽)

𝑓

(1−𝐹)

=

1−𝐹

(𝑝∗+𝑆−𝛽)𝑓

𝑏

𝑏−1
(

𝛬

(𝜇−Θ)
)+(

𝑏

𝑏−1
−

1

(1−𝐹)
)

1−
𝑏

𝑏−1

1−𝐹

(𝑝∗+𝑆−𝛽)𝑓
(
𝜕𝑋

𝜕𝑧∗
)

  

⇒
𝜕𝑋

𝜕𝑧∗
∗
𝑑𝑧∗

𝑑𝑤
=

1−𝐹

(𝑝∗+𝑆−𝛽)𝑓

𝜕𝑋

𝜕𝑧∗
∗

𝑏

𝑏−1
(

𝛬

(𝜇−Θ)
)+(

𝑏

𝑏−1
−

1

(1−𝐹)
)

1−
𝑏

𝑏−1

1−𝐹

(𝑝∗+𝑆−𝛽)𝑓
(
𝜕𝑋

𝜕𝑧∗
)
= 𝑊 ∗

𝑏

𝑏−1
(

𝛬

(𝜇−Θ)
)+(

𝑏

𝑏−1
−

1

(1−𝐹)
)

1−
𝑏

𝑏−1
𝑊

  

Hence, 

𝑑𝑝∗

𝑑𝑤
=

𝑏

𝑏−1
(1 +

𝛬

(𝜇−Θ)
+

𝜕𝑋

𝜕𝑧∗
∗
𝑑𝑧∗

𝑑𝑤
) =

𝑏

𝑏−1
(1 +

𝛬

(𝜇−Θ)
+𝑊 ∗

𝑏

𝑏−1
(

𝛬

(𝜇−Θ)
)+(

𝑏

𝑏−1
−

1

(1−𝐹)
)

1−
𝑏

𝑏−1
𝑊

) =

𝑏

𝑏−1
(1 +

𝛬

(𝜇−Θ)
+(

𝑏

𝑏−1
−

1

(1−𝐹)
)𝑊

1−
𝑏

𝑏−1
𝑊

)  

iii. Proof of Corollary 2 

 

Linear demand:  

𝑑𝑝∗

𝑑𝑤
=
1

2
(1 +

𝛬

(𝜇−Θ)
+(
1

2
−

1

1−𝐹
)𝑊

(1−
1

2
𝑊)

) =
1

2
(1 +

𝛬

(𝜇−Θ)
−
(1+𝐹)

(1−𝐹)
∗
𝑊

2

1−
𝑊

2

)  

In order to decide if 
𝑑𝑝∗

𝑑𝑤
 is less or greater than 

1

2
 , which is the cost-pass-through in risk less 

situation for linear demand, we need to check if 

𝛬

(𝜇−Θ)
−
(1+𝐹)

(1−𝐹)
∗
𝑊

2

1−
𝑊

2

 is positive or negative.  It is 

to be mentioned, 0 <
𝛬

(𝜇−Θ)
=
𝐸(𝑙ⅇ𝑓𝑡𝑜𝑣ⅇ𝑟)

𝐸(𝑠𝑎𝑙ⅇ𝑠)
< 1 and 

𝑊

2
< 1 [Appendix 2D]. W can be positive 

or negative.  
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The denominator, 1 −
𝑊

2
 has a positive value for both positive and negative 𝑊, because 

𝑊

2
< 1. Therefore, the numerator 

𝛬

(𝜇−Θ)
−
(1+𝐹)

(1−𝐹)
∗
𝑊

2
 determine the sign of the term. 

Condition for 
𝑑𝑝∗

𝑑𝑤
>
1

2
: 

𝛬

(𝜇−Θ)
−
(1+𝐹)

(1−𝐹)
∗
𝑊

2
> 0 ⇒

𝑊

2
<

𝛬

(𝜇−Θ)
∗
(1−𝐹)

(1+𝐹)
⇒

𝑊

2
<

𝛬

(𝜇−Θ)
∗
(1−𝐹)

(1+𝐹)
< 1  

This condition is satisfied by all negative values and some positive values of 𝑊.  

Now we are interested to check if 
𝑑𝑝∗

𝑑𝑤
 can exceed 1!  

For positive 𝑊, the numerator (
𝛬

(𝜇−Θ)
−
(1+𝐹)

(1−𝐹)
∗
𝑊

2
) is less than the denominator (1 −

𝑊

2
) 

because 
𝛬

(𝜇−𝛩)
< 1 and 

(1+𝐹)

(1−𝐹)
∗
𝑊

2
>
𝑊

2
. Therefore, the value of 

𝑑𝑝∗

𝑑𝑤
 cannot exceed 1 for linear 

demand in the case of 0 < 𝑊.  

Now let’s see if 
𝑑𝑝∗

𝑑𝑤
 can exceed 1 for negative W. Let’s define, 𝑍 = −𝑊 

⇒
𝑑𝑝∗

𝑑𝑤
=
1

2
(1 +

𝛬

(𝜇−Θ)
+
(1+𝐹)

(1−𝐹)
∗
𝑍

2

1+
𝑍

2

) =
1

2
(1 +

𝛬

(𝜇−Θ)
+

2𝐹

(1−𝐹)
∗
𝑍

2
+
𝑍

2

1+
𝑍

2

)  

𝑑𝑝∗

𝑑𝑤
 can exceed 1 if 

𝛬

(𝜇−Θ)
+
(1+𝐹)

(1−𝐹)
∗
𝑍

2
> 1 +

𝑍

2
⇒ (

(1+𝐹)

(1−𝐹)
− 1)

𝑍

2
> 1 −

𝛬

(𝜇−Θ)
⇒

𝐹

(1−𝐹)
𝑍 > 1 −

𝛬

(𝜇−Θ)
⇒

−
𝐹

(1−𝐹)
𝑊 > 1 −

𝛬

(𝜇−Θ)
  

⇒ 𝑊 < −(1 −
𝛬

𝜇−Θ
)
1−𝐹

𝐹
  

This is the required condition for which 
𝑑𝑝∗

𝑑𝑤
 can exceed 1 in the case of linear demand. 

However, it is unusual to obtain a cost-pass-through greater than one in the case of linear 

demand. Therefore, we recommend further verification of the plausibility of the condition 

(𝑊 < −(1 −
𝛬

𝜇−Θ
)
1−𝐹

𝐹
) .  

  

Condition for 
𝑑𝑝∗

𝑑𝑤
<
1

2
: 

𝛬

(𝜇−Θ)
−
(1+𝐹)

(1−𝐹)
∗
𝑊

2
< 0 ⇒

𝑊

2
>

𝛬

(𝜇−Θ)
∗
(1−𝐹)

(1+𝐹)
  

⇒
𝛬

(𝜇−Θ)
∗
(1−𝐹)

(1+𝐹)
<
𝑊

2
< 1  

This condition is satisfied by some positive values of 𝑊 

Hence for some positive values of 𝑊, 
𝑑𝑝∗

𝑑𝑤
  increases from less than half to greater than half. 

Condition for 
𝑑𝑝∗

𝑑𝑤
=
1

2
 : 

𝛬

(𝜇−Θ)
−
(1+𝐹)

(1−𝐹)
∗
𝑊

2
= 0 ⇒

𝑊

2
=

𝛬

(𝜇−Θ)
∗
(1−𝐹)

(1+𝐹)
< 1  

 

Isoelastic demand: 

𝑑𝑝∗

𝑑𝑤
=

𝑏

𝑏−1
(1 +

𝛬

(𝜇−Θ)
+(

𝑏

𝑏−1
−
1

1−𝐹
)𝑊

1−
𝑏

𝑏−1
𝑊

) =
𝑏

𝑏−1
(1 +

𝛬

(𝜇−Θ)
−

𝑏(𝐹−
1
𝑏
)

(𝑏−1)(1−𝐹)
𝑊

1−
𝑏

𝑏−1
𝑊

)  
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In order to decide if 
𝑑𝑝∗

𝑑𝑤
 is less or greater than 

𝑏

𝑏−1
 , which is the cost-pass-through in the 

risk less situation for isoelastic demand, we need to check if 

𝛬

(𝜇−Θ)
−

𝑏(𝐹−
1
𝑏
)

(𝑏−1)(1−𝐹)
𝑊

1−
𝑏

𝑏−1
𝑊

 is positive or 

negative.  It is to be mentioned, 0 <
𝛬

(𝜇−Θ)
=
𝐸(𝑙ⅇ𝑓𝑡𝑜𝑣ⅇ𝑟)

𝐸(𝑠𝑎𝑙ⅇ𝑠)
< 1 and 

𝑏

𝑏−1
𝑊 < 1 [Appendix 

2D]. 𝑊 can be positive or negative [Appendix 2C]. The denominator, 1 −
𝑏

𝑏−1
𝑊 has a 

positive value for both positive and negative 𝑊, because 
𝑏

𝑏−1
𝑊 < 1. Therefore, the 

numerator 
𝛬

(𝜇−Θ)
−
(𝐹−

1

𝑏
)

(1−𝐹)

𝑏

(𝑏−1)
𝑊 determine the sign of the term. 

Let’s assume, 𝑏 is sufficiently large so that 𝐹 −
1

𝑏
> 1 − 𝐹 > 0 

Condition for 
𝑑𝑝∗

𝑑𝑤
>

𝑏

𝑏−1
 :  

𝛬

(𝜇−Θ)
−
(𝐹−

1

𝑏
)

(1−𝐹)

𝑏

(𝑏−1)
𝑊 > 0 ⇒

𝛬

(𝜇−Θ)

(1−𝐹)

(𝐹−
1

𝑏
)
>

𝑏

(𝑏−1)
𝑊 

Condition for 
𝑑𝑝∗

𝑑𝑤
<

𝑏

𝑏−1
 :  

𝛬

(𝜇−Θ)
−
(𝐹−

1

𝑏
)

(1−𝐹)

𝑏

(𝑏−1)
𝑊 < 0 ⇒

𝛬

(𝜇−Θ)

(1−𝐹)

(𝐹−
1

𝑏
)
<

𝑏

(𝑏−1)
𝑊 < 1 

Condition for 
𝑑𝑝∗

𝑑𝑤
=

𝑏

𝑏−1
: 

𝛬

(𝜇−Θ)
−
(𝐹−

1

𝑏
)

(1−𝐹)

𝑏

(𝑏−1)
𝑊 = 0 ⇒

𝑏

(𝑏−1)
𝑊 =

𝛬

(𝜇−Θ)

(1−𝐹)

(𝐹−
1

𝑏
)
  

We are interested to check if check if 
𝑑𝑝∗

𝑑𝑤
 can reduce below 1!  

Required condition: 
𝑑𝑝∗

𝑑𝑤
=

𝑏

𝑏−1
(1 +

𝛬

(𝜇−Θ)
−

𝑏(𝐹−
1
𝑏
)

(𝑏−1)(1−𝐹)
𝑊

1−
𝑏

𝑏−1
𝑊

) < 1 ⇒

𝛬

(𝜇−Θ)
−

𝑏(𝐹−
1
𝑏
)

(𝑏−1)(1−𝐹)
𝑊

1−
𝑏

𝑏−1
𝑊

< −
1

𝑏
⇒

−

𝑏(𝐹−
1
𝑏
)

(𝑏−1)(1−𝐹)
𝑊−

𝛬

(𝜇−Θ)

1−
𝑏

𝑏−1
𝑊

< −
1

𝑏
⇒

𝑏(𝐹−
1
𝑏
)

(𝑏−1)(1−𝐹)
𝑊−

𝛬

(𝜇−Θ)

1−
𝑏

𝑏−1
𝑊

>
1

𝑏
⇒

𝑏(𝐹−
1

𝑏
)𝑏

(𝑏−1)(1−𝐹)
𝑊 −

𝑏𝛬

(𝜇−Θ)
> 1 −

𝑏

𝑏−1
𝑊 ⇒

(𝐹−
1

𝑏
)𝑏

(1−𝐹)
(

𝑏

(𝑏−1)
𝑊 −

(1−𝐹)

(𝐹−
1

𝑏
)

𝛬

(𝜇−Θ)
) > 1 −

𝑏

𝑏−1
𝑊 

 

Let’s check the validity of  

𝛬

(𝜇−Θ)
−

𝑏(𝐹−
1
𝑏
)

(𝑏−1)(1−𝐹)
𝑊

1−
𝑏

𝑏−1
𝑊

< −
1

𝑏
 ,  

where 0 <
𝛬

(𝜇−Θ)
< 1, 

𝑏

𝑏−1
𝑊 < 1, 𝑏 > 2, 0 < 𝐹 < 1, and −1 <

𝛬

(𝜇−Θ)
−

𝑏(𝐹−
1
𝑏
)

(𝑏−1)(1−𝐹)
𝑊

1−
𝑏

𝑏−1
𝑊

 are 

given.  
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𝛬

(𝜇−Θ)
−

𝑏(𝐹−
1
𝑏
)

(𝑏−1)(1−𝐹)
𝑊

1−
𝑏

𝑏−1
𝑊

= −
−

𝛬

(𝜇−Θ)
+

𝑏(𝐹−
1
𝑏
)

(𝑏−1)(1−𝐹)
𝑊

𝑏(
1

𝑏
−

1

𝑏−1
𝑊)

= −
1

𝑏
∗
(
1

𝑏
−

1

𝑏−1
𝑊)−

1

𝑏
−

𝛬

(𝜇−Θ)
+
𝑏(𝐹−

1
𝑏
)+(1−𝐹)

(𝑏−1)(1−𝐹)
𝑊

(
1

𝑏
−

1

𝑏−1
𝑊)

= −
1

𝑏
∗

{1 +
−
1

𝑏
−

𝛬

(𝜇−Θ)
+
𝑏(𝐹−

1
𝑏
)+(1−𝐹)

(𝑏−1)(1−𝐹)
𝑊

(
1

𝑏
−

1

𝑏−1
𝑊)

} = −
1

𝑏
∗ {1 +

−1−
𝛬

(𝜇−Θ)
𝑏+𝑏

𝑏(𝐹−
1
𝑏
)

(𝑏−1)(1−𝐹)
𝑊+

𝑏

(𝑏−1)
𝑊

(1−
𝑏

𝑏−1
𝑊)

} = −
1

𝑏
∗ {1 +

−1+(
𝑏

(𝑏−1)
𝑊−

𝛬

(𝜇−Θ)
∗
(1−𝐹)

(𝐹−
1
𝑏
)
)
𝑏(𝐹−

1
𝑏
)

(1−𝐹)
+

𝑏

(𝑏−1)
𝑊

(1−
𝑏

𝑏−1
𝑊)

} = −
1

𝑏
∗ {1 −

1−
𝑏

(𝑏−1)
𝑊−(

𝑏

(𝑏−1)
𝑊−

𝛬

(𝜇−Θ)
∗
(1−𝐹)

(𝐹−
1
𝑏
)
)
𝑏(𝐹−

1
𝑏
)

(1−𝐹)

(1−
𝑏

𝑏−1
𝑊)

}   

 

𝛬

(𝜇−Θ)
−

𝑏(𝐹−
1
𝑏
)

(𝑏−1)(1−𝐹)
𝑊

1−
𝑏

𝑏−1
𝑊

= −
−

𝛬

(𝜇−Θ)
+

𝑏(𝐹−
1
𝑏
)

(𝑏−1)(1−𝐹)
𝑊

𝑏(
1

𝑏
−

1

𝑏−1
𝑊)

= −
1

𝑏
∗
(
1

𝑏
−

1

𝑏−1
𝑊)−

1

𝑏
−

𝛬

(𝜇−Θ)
+
𝑏(𝐹−

1
𝑏
)+(1−𝐹)

(𝑏−1)(1−𝐹)
𝑊

(
1

𝑏
−

1

𝑏−1
𝑊)

= −
1

𝑏
∗

{1 +
−
1

𝑏
−

𝛬

(𝜇−Θ)
+
𝑏(𝐹−

1
𝑏
)+(1−𝐹)

(𝑏−1)(1−𝐹)
𝑊

(
1

𝑏
−

1

𝑏−1
𝑊)

} = −
1

𝑏
∗ {1 +

−1−
𝛬

(𝜇−Θ)
𝑏+𝑏

𝑏(𝐹−
1
𝑏
)

(𝑏−1)(1−𝐹)
𝑊+

𝑏

(𝑏−1)
𝑊

(1−
𝑏

𝑏−1
𝑊)

}   

 

It is very difficult to analyze analytically; numerical analysis may be helpful.  

 

F. Numerical Analysis  
 

We are following the pricing decision approach here. Let’s assume: shortage price, 𝑆 = 2, 

buyback price, 𝛽 = 1, and a uniform distribution on the interval [1,5],47  

𝜇 = 3; 𝑓(𝑢) =
1

4
; 𝐹(𝑢) =

𝑢−1

4
 ;  

𝐹(𝑧∗(𝑝)) = [
𝑝+𝑆−𝑤

𝑝+𝑆−𝛽
] ⇒

𝑧∗−1

4
=
𝑝+𝑆−𝑤

𝑝+𝑆−𝛽
⇒ 𝑧∗(𝑝) = 1 + 4

𝑝+𝑆−𝑤

𝑝+𝑆−𝛽
  

Λ(𝑧∗(𝑝)) = ∫ (𝑧∗(𝑝) − 𝑢)𝑓(𝑢)𝑑𝑢
𝑧∗(𝑝)

1
=
(𝑧∗(𝑝)−1)2

8
= 2(

𝑝+𝑆−𝑤

𝑝+𝑆−𝛽
)
2

= 2(
𝑝+2−𝑤

𝑝+1
)
2

  

Θ(𝑧∗(𝑝)) = ∫ (𝑢 − 𝑧)𝑓(𝑢)𝑑𝑢
5

𝑧∗(𝑝)
=
(𝑧∗(𝑝)−5)2

8
= 2(

−𝑤+𝛽

𝑝+𝑆−𝛽
)
2

= 2(
−𝑤+1

𝑝+1
)
2

  

𝛬

(𝜇−Θ)
=

2(
𝑝+2−𝑤

𝑝+1
)
2

3−2(
−𝑤+1

𝑝+1
)
2 =

2(2+𝑝−𝑤)2

1+6𝑝+3𝑝2+4𝑤−2𝑤2
  

𝐹(𝑧) =
𝑝+2−𝑤

𝑝+1
 ; (1 − 𝐹) = 1 −

𝑝+2−𝑤

𝑝+1
=
−1+𝑤

1+𝑝
 

                                                           
47 The multiplicative case (with constant elasticity) require 𝐴 > 0 in order to avoid the occurrence of 

negative demand (Petruzzi and Dada 1999). However, Emmons and Gilbert (1998) assumes uniform 

distribution on the interval [0,2] with mean=1 for simplification. That worked there, because their model 

didn’t have shortage cost parameter (i.e. S=0).  
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; 
(1+𝐹)

(1−𝐹)
=
1+

𝑝+2−𝑤

𝑝+1

1−
𝑝+2−𝑤

𝑝+1

=
3+2𝑝−𝑤

−1+𝑤
 ; 

𝐹

(1−𝐹)
=

𝑝+2−𝑤

𝑝+1

1−
𝑝+2−𝑤

𝑝+1

=
2+𝑝−𝑤

−1+𝑤
 

 

i. Linear Demand: 

In the case of linear demand (𝑦 = 𝑎 − 𝑏𝑝), let’s assume = 50, 𝑏 = 1 . 

𝑃∗ satisfy the following equation- 

−𝑝 +
𝑎+𝑏𝑤

2𝑏
+
1

2
∗
(𝑤−𝛽)𝛬(𝑧∗(𝑝))+𝑆𝛩(𝑧∗(𝑝))

(𝜇−Θ(𝑧∗(𝑝)))
= 0  

−𝑝 +
50+𝑤

2
+
1

2
∗
(𝑤−1)∗2∗(𝑝+2−𝑤)2+2∗2∗(−𝑤+1)2

3(𝑝+1)2−2(−𝑤+1)2
= 0  

−𝑝 + 25 +
𝑤

2
+
(𝑤−1)(𝑝+2−𝑤)2+2(−𝑤+1)2

3(𝑝+1)2−2(−𝑤+1)2
= 0  

The solution in p is tedious48, therefore, defining 𝑤 = 𝑔(𝑝∗), the solution can be written 

as- 

𝑤 =
1

204
(209 + 10𝑝 + 5𝑝2 ± (1 + 𝑝)√62449 − 2398𝑝 + 25𝑝2) 

We accept one of the roots because the other root gives greater wholesale price than the 

retail price which is not acceptable.  

𝑤 =
1

204
(209 + 10𝑝 + 5𝑝2 − (1 + 𝑝)√62449 − 2398𝑝 + 25𝑝2) 

From the risk-less part of the price (𝑝0 =
𝑎+𝑏𝑤

2𝑏
=
50+𝑤

2
), the highest value of 𝑤 and 𝑝0 is 

50 for which the corresponding deterministic demand is zero (𝑦 = 𝑎 − 𝑏𝑝0 = 0). The 

minimum value of  𝑝0 is 25 for 𝑤 = 0. Hence, we conduct the numerical analysis within 

this limit. However, we avoid the boundary value in the simulation considering the effect 

of the random part.  

Solving numerically, for  𝑤 = {1.61~44.99}, 𝑝 = {26~49}, 𝑝0 = {25.8~47.496}, Δ𝑤 =
43.38, Δ𝑝 = 23, Δ𝑝0 = 21.696 
The results are illustrated in the main section.  

The corresponding cost-pass-through: 
𝑑𝑝∗

𝑑𝑤
=
1

2
(1 +

𝛬

(𝜇−Θ)
−
(1+𝐹)

(1−𝐹)
∗
𝑊

2

1−
𝑊

2

) 

𝑊 =
(1−𝐹)2

(𝜇−𝛩)𝑓(𝑝+𝑆−𝛽)
[(𝑤 − 𝛽) (

𝐹

(1−𝐹)
−

𝛬

(𝜇−𝛩)
) − 𝑆

𝜇

(𝜇−𝛩)
]  

𝑊 =
(
−1+𝑤

1+𝑝
)
2

(3−2(
−𝑤+1

𝑝+1
)
2
)
1

4
(𝑝+1)

[(𝑤 − 1) (
2+𝑝−𝑤

−1+𝑤
−

2(2+𝑝−𝑤)2

1+6𝑝+3𝑝2+4𝑤−2𝑤2
) − 2

3

(3−2(
−𝑤+1

𝑝+1
)
2
)
]   

=
4(−1+𝑤)2(4+5𝑝+3𝑝2−9𝑤−5𝑝𝑤+2𝑤2)

(−1−6𝑝−3𝑝2−4𝑤+2𝑤2)2
  

 

                                                           
48  

𝑝 =
1

18
(136 + 5𝑤) + 

(−23716−1540𝑤−25𝑤2)

18𝑋
 −

1

18
𝑋  

Where, 𝑋 = (−3602692 − 454884𝑤 + 38022𝑤2 − 125𝑤3 +

54√34√−3627478 + 6849644𝑤 − 2803618𝑤2 − 431909𝑤3 + 13486𝑤4 − 125𝑤5)
1 3⁄
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𝑑𝑝∗

𝑑𝑤
=
1

2
(1 +

2(2+𝑝−𝑤)2

1+6𝑝+3𝑝2+4𝑤−2𝑤2
−
3+2𝑝−𝑤

−1+𝑤
∗
2(−1+𝑤)2(4+5𝑝+3𝑝2−9𝑤−5𝑝𝑤+2𝑤2)

(−1−6𝑝−3𝑝2−4𝑤+2𝑤2)
2

1−
2(−1+𝑤)2(4+5𝑝+3𝑝2−9𝑤−5𝑝𝑤+2𝑤2)

(−1−6𝑝−3𝑝2−4𝑤+2𝑤2)
2

)   

=
(1+𝑝)(25+54𝑝+15𝑝2−20𝑤−24𝑝𝑤+10𝑤2)

2(−7+9𝑝+27𝑝2+9𝑝3+42𝑤+36𝑝𝑤−36𝑤2−18𝑝𝑤2+10𝑤3)
  

 

ii. Isoelastic demand: 

In the case of isoelastic demand (𝑦 = 𝑎𝑝−𝑏), assuming 𝑏 = 3,  𝑝∗ is the 𝑝 that satisfies– 

−𝑝 +
𝑏

𝑏−1
𝑤 +

𝑏

𝑏−1
∗
(𝑤−𝛽)Λ(𝑧∗(𝑝))+𝑆Θ(𝑧∗(𝑝))

(𝜇−Θ(𝑧∗(𝑝)))
= 0  

⇒ −𝑝 +
3

2
𝑤 + 3 ∗

(𝑤−1)(𝑝+2−𝑤)2+2(−𝑤+1)2

3(𝑝+1)2−2(−𝑤+1)2
= 0  

The solution of this equation in 𝑝 is tedious49. Let’s define, 𝑤 = 𝑔(𝑝 ∗); then, the solution 

of this equation can be written as,  

𝑤1 =
27+46𝑝+15𝑝2−√3√(1+𝑝)2(147+198𝑝+11𝑝2)

4(3+4𝑝)
, 𝑤2 =

27+46𝑝+15𝑝2+√3√(1+𝑝)2(147+198𝑝+11𝑝2)

4(3+4𝑝)
  

Accepting one of the roots (that satisfies 𝑝 > 𝑤), 

𝑤 =
27+46𝑝+15𝑝2−√3√(1+𝑝)2(147+198𝑝+11𝑝2)

4(3+4𝑝)
  

For the range of 𝑝 on the interval [−8,8], this equation can be plotted as- 

 
Solving numerically, for 𝑤 = {1~2.62}, we obtain 𝑝 = {1.5~5}, 𝑝0 = {1.5~3.94}. We 

are interested to analyze the change is prices which are Δ𝑤 = 69.52, Δ𝑝 = 115, Δ𝑝0 =
104.28. The figure (in main section) shows the cost-pass-through for both the riskless 

situation and the buyback-newsvendor situation.  

The corresponding cost-pass-through: 
𝑑𝑝∗

𝑑𝑤
=

𝑏

𝑏−1
(1 +

𝛬

(𝜇−Θ)
+(

𝑏

𝑏−1
−

1

1−𝐹
)𝑊

1−
𝑏

𝑏−1
𝑊

)  

                                                           
49 𝑝∗ =

1

12
(−11 + 9𝑤 +

47−114𝑤−33𝑤2

𝑋1 3⁄ − 𝑋1 3⁄ ) , where  

𝑋 = (−145 + 909𝑤 − 1683𝑤2 − 81𝑤3 +

12√3√−(−1 + 𝑤)2(−289 + 1781𝑤 − 2927𝑤2 + 367𝑤3 + 68𝑤4))   

 

5 5

1

2

3

4
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𝑊 =
(1−𝐹)2

(𝜇−𝛩)𝑓(𝑝+𝑆−𝛽)
[(𝑤 − 𝛽) (

𝐹

(1−𝐹)
−

𝛬

(𝜇−𝛩)
) − 𝑆

𝜇

(𝜇−𝛩)
]  

𝑊 =
(
−1+𝑤

1+𝑝
)
2

(3−2(
−𝑤+1

𝑝+1
)
2
)
1

4
(𝑝+1)

[(𝑤 − 1) (
2+𝑝−𝑤

−1+𝑤
−

2(2+𝑝−𝑤)2

1+6𝑝+3𝑝2+4𝑤−2𝑤2
) − 2

3

(3−2(
−𝑤+1

𝑝+1
)
2
)
]   

=
4(−1+𝑤)2(4+5𝑝+3𝑝2−9𝑤−5𝑝𝑤+2𝑤2)

(−1−6𝑝−3𝑝2−4𝑤+2𝑤2)2
  

𝑑𝑝∗

𝑑𝑤
=
3

2
(1 +

2(2+𝑝−𝑤)2

1+6𝑝+3𝑝2+4𝑤−2𝑤2
+(
3

2
−
1+𝑝

−1+𝑤
)
4(−1+𝑤)2(4+5𝑝+3𝑝2−9𝑤−5𝑝𝑤+2𝑤2)

(−1−6𝑝−3𝑝2−4𝑤+2𝑤2)2

1−
3

2
∗
4(−1+𝑤)2(4+5𝑝+3𝑝2−9𝑤−5𝑝𝑤+2𝑤2)

(−1−6𝑝−3𝑝2−4𝑤+2𝑤2)2

)   

 =
3(1+𝑝)2(15𝑝2−6𝑝(−9+4𝑤)+5(5−4𝑤+2𝑤2))

2(−23+36𝑝3+9𝑝4+110𝑤−132𝑤2+62𝑤3−8𝑤4+𝑝2(24+60𝑤−30𝑤2)+6𝑝(−3+23𝑤−19𝑤2+5𝑤3))
   

 

 

 
 

For 𝑝∗ = uniform[1,5],  

 
which is too clumsy to visualize properly, therefore, for better illustration, let’s assume 

𝑝∗ = uniform[30,35]. The corresponding figure is mentioned in the main section.  
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G. Detail calculation of Equations 
 

𝜋𝑟 =
𝑝𝐷 − 𝑤𝑞 + (𝛽)(𝑞 − 𝐷)

𝑝𝑞 − 𝑤𝑞 − 𝑆(𝐷 − 𝑞)
   
; 𝐷 ≤ 𝑞
;𝐷 > 𝑞

  
(1) 

𝜋𝑟 =
𝑝𝑦𝜖 − 𝑤𝑦𝑧 + (𝛽)𝑦(𝑧 − 𝜖)

𝑝𝑦𝑧 − 𝑤𝑦𝑧 − 𝑆𝑦(𝜖 − 𝑧)
     
; 𝜖 ≤ 𝑧
; 𝜖 > 𝑧

    
→ 𝑙𝑒𝑓𝑡𝑜𝑣𝑒𝑟
→ 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒

  
(2) 

𝐸[𝜋𝑟] = ∫ [𝑝𝑦𝑢 + (𝛽)𝑦(𝑧 − 𝑢)]𝑓(𝑢)𝑑𝑢
𝑧

𝐴
+ ∫ [𝑝𝑦𝑧 − 𝑆𝑦(𝑢 − 𝑧)]𝑓(𝑢)𝑑𝑢

𝐵

𝑧
−

𝑤𝑦𝑧  

= 𝑦 [∫ [𝑝𝑢 + (𝛽)(𝑧 − 𝑢)]𝑓(𝑢)𝑑𝑢
𝑧

𝐴
+ ∫ [𝑝𝑧 − 𝑆(𝑢 − 𝑧)]𝑓(𝑢)𝑑𝑢

𝐵

𝑧
− 𝑤𝑧]  

= 𝑦 [𝑝 ∫ 𝑢𝑓(𝑢)𝑑𝑢
𝑧

𝐴
+ (𝛽)∫ (𝑧 − 𝑢)𝑓(𝑢)𝑑𝑢

𝑧

𝐴
+ 𝑝∫ 𝑧𝑓(𝑢)𝑑𝑢

𝐵

𝑧
− 𝑆∫ (𝑢 −

𝐵

𝑧

𝑧)𝑓(𝑢)𝑑𝑢 − 𝑤𝜇 − 𝑤(𝑧 − 𝜇)]  

= 𝑦 [𝑝 ∫ 𝑢𝑓(𝑢)𝑑𝑢
𝑧

𝐴
+ 𝑝∫ 𝑢𝑓(𝑢)𝑑𝑢

𝐵

𝑧
− 𝑝∫ 𝑢𝑓(𝑢)𝑑𝑢

𝐵

𝑧
+ 𝑝∫ 𝑧𝑓(𝑢)𝑑𝑢

𝐵

𝑧
+

(𝛽)∫ (𝑧 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑧

𝐴
− 𝑆 ∫ (𝑢 − 𝑧)𝑓(𝑢)𝑑𝑢

𝐵

𝑧
− 𝑤𝜇 − 𝑤 (∫ (𝑧 − 𝑢)𝑓(𝑢)𝑑𝑢

𝑧

𝐴
+

∫ (𝑧 − 𝑢)𝑓(𝑢)𝑑𝑢
𝐵

𝑧
)]  

= 𝑦 [𝑝𝜇 − 𝑝∫ (𝑢 − 𝑧)𝑓(𝑢)𝑑𝑢
𝐵

𝑧
+ (𝛽)∫ (𝑧 − 𝑢)𝑓(𝑢)𝑑𝑢

𝑧

𝐴
− 𝑆∫ (𝑢 −

𝐵

𝑧

𝑧)𝑓(𝑢)𝑑𝑢 − 𝑤𝜇 − 𝑤∫ (𝑧 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑧

𝐴
+ 𝑤 ∫ (𝑢 − 𝑧)𝑓(𝑢)𝑑𝑢

𝐵

𝑧
]  

= 𝑦 [𝑝𝜇 − 𝑤𝜇 − 𝑤 ∫ (𝑧 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑧

𝐴
+ (𝛽) ∫ (𝑧 − 𝑢)𝑓(𝑢)𝑑𝑢

𝑧

𝐴
− 𝑝∫ (𝑢 −

𝐵

𝑧

𝑧)𝑓(𝑢)𝑑𝑢 − 𝑆 ∫ (𝑢 − 𝑧)𝑓(𝑢)𝑑𝑢
𝐵

𝑧
+ 𝑤∫ (𝑢 − 𝑧)𝑓(𝑢)𝑑𝑢

𝐵

𝑧
]  

= (𝑝 − 𝑤)𝑦𝜇 − (𝑤 − 𝛽)𝑦 ∫ (𝑧 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑧

𝐴
− (𝑝 + 𝑆 − 𝑤)𝑦 ∫ (𝑢 −

𝐵

𝑧

𝑧)𝑓(𝑢)𝑑𝑢  

= (𝑝 − 𝑤)𝑦𝜇 − [(𝑤 − 𝛽)yΛ(𝑧) + (𝑝 + 𝑆 − 𝑤)yΘ(𝑧)]  
= Ψ(𝑝) − 𝐿(𝑧, 𝑝)  

(3) 

𝐸[𝜋𝑟(𝑧, 𝑝)] = (𝑝 − 𝑤)𝑦𝜇 − [(𝑤 − 𝛽)yΛ(𝑧) + (𝑝 + 𝑆 − 𝑤)yΘ(𝑧)]  (4) 
𝜕

𝜕𝑧
(𝐸[𝜋𝑟(𝑧|𝑝)]) = −𝑦[(𝑤 − 𝛽)F(𝑧) − (𝑝 + 𝑆 − 𝑤)(1 − F(𝑧))] = −𝑦[(𝑤 −

𝛽 + 𝑝 + 𝑆 − 𝑤)𝐹(𝑧) − (𝑝 + 𝑆 − 𝑤)] = 𝑦[𝑝 + 𝑠 − 𝑤 − (𝑝 + 𝑆 − 𝛽)𝐹(𝑧)] =
𝑦[−(𝑤 − 𝛽) + (𝑝 + 𝑆 − 𝛽)[1 − 𝐹(𝑧)]]  

(5) 

𝜕2

𝜕𝑧2
(𝐸[𝜋𝑟(𝑧|𝑝)]) = −𝑦(𝑝 + 𝑆 − 𝛽)𝑓(𝑧) < 0   (6) 

𝑑

𝑑𝑝
[Ψ(𝑝)] = 𝑦′𝜇 [𝑝 − 𝑤 +

𝑦

𝑦′
]  

𝜕

𝜕𝑝
[𝐿(𝑧, 𝑝)] =

𝜕

𝜕𝑝
[𝑦[(𝑤 − 𝛽)Λ(𝑧) + (𝑝 + 𝑆 − 𝑤)Θ(𝑧)]] = [(𝑤 − 𝛽)Λ(𝑧)𝑦′ +

yΘ(𝑧) + (𝑝 + 𝑆 − 𝑤)Θ(𝑧)𝑦′] = yΘ(𝑧) + 𝑦′[(𝑤 − 𝛽)Λ(𝑧) + (𝑝 + 𝑆 − 𝑤)Θ(𝑧)]  
𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑝|𝑧)]) =

𝑑

𝑑𝑝
[Ψ(𝑝)] −

𝜕

𝜕𝑝
[𝐿(𝑧, 𝑝)] = 𝑦′𝜇 [𝑝 − 𝑤 +

𝑦

𝑦′
] − yΘ(𝑧) −

𝑦′[(𝑤 − 𝛽)Λ(𝑧) + (𝑝 + 𝑆 − 𝑤)Θ(𝑧)]  

(7) 

For, 𝑦 = 𝑎 − 𝑏𝑝, (8) 
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𝑑

𝑑𝑝
[Ψ(𝑝)] = −𝑏𝜇 [𝑝 − 𝑤 +

𝑎−𝑏𝑝

−𝑏
] = 𝜇[−2𝑏𝑝 + 𝑏𝑤 + 𝑎] = −2𝑏𝜇 [𝑝 −

𝑎+𝑏𝑤

2𝑏
] =

−2𝑏𝜇[𝑝 − 𝑝0]  
𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑧, 𝑝)]) = −2𝑏𝜇[𝑝 − 𝑝

0] − (𝑎 − 𝑏𝑝)𝛩(𝑧) + 𝑏[(𝑤 − 𝛽)𝛬(𝑧) + (𝑝 +

𝑆 − 𝑤)𝛩(𝑧)]  

= 𝑏 [−2𝜇𝑝 + 2𝜇𝑝0 −
𝑎

𝑏
𝛩(𝑧) + 𝑝𝛩(𝑧) + (𝑤 − 𝛽)𝛬(𝑧) + 𝑝𝛩(𝑧) + 𝑆𝛩(𝑧) −

𝑤𝛩(𝑧)]   

= 𝑏 [−2𝜇𝑝 + 2𝜇𝑝0 − (
𝑎

𝑏
+ 𝑤)𝛩(𝑧) + 2𝑝𝛩(𝑧) + (𝑤 − 𝛽)𝛬(𝑧) + 𝑆𝛩(𝑧)]  

= 𝑏[−2𝜇𝑝 + 2𝜇𝑝0 − 2𝑝0𝛩(𝑧) + 2𝑝𝛩(𝑧) + (𝑤 − 𝛽)𝛬(𝑧) + 𝑆𝛩(𝑧)]  

= 𝑏[2(𝑝0 − 𝑝)(𝜇 − Θ(𝑧)) + (𝑤 − 𝛽)𝛬(𝑧) + 𝑆𝛩(𝑧)]  

= 2𝑏(𝜇 − Θ(𝑧)) [−𝑝 + 𝑝0 +
1

2
∗
(𝑤−𝛽)𝛬(𝑧)+𝑆𝛩(𝑧)

(𝜇−Θ(𝑧))
]  

where 𝑝0 =
𝑎+𝑏𝑤

2𝑏
 

𝜕2

𝜕𝑝2
(𝐸[𝜋𝑟(𝑝|𝑧)]) = −2𝑏(𝜇 − Θ(𝑧)) < 0  (9) 

For, 𝑦 = 𝑎𝑝−𝑏, 
𝑑

𝑑𝑝
[Ψ(𝑝)] = −𝑏𝑎𝑝−𝑏−1𝜇 [𝑝 − 𝑤 +

𝑎𝑝−𝑏

−𝑏𝑎𝑝−𝑏−1
] = −𝑏𝑎𝑝−𝑏−1𝜇 [𝑝 − 𝑤 +

𝑝

−𝑏
] =

𝑎𝑝−𝑏−1𝜇[−𝑏𝑝 + 𝑏𝑤 + 𝑝] = 𝜇𝑎𝑝−𝑏−1[𝑏𝑤 − (𝑏 − 1)𝑝] = −(𝑏 −

1)𝜇𝑎𝑝−𝑏−1 [𝑝 −
𝑏𝑤

𝑏−1
] = −(𝑏 − 1)𝜇𝑎𝑝−𝑏−1[𝑝 − 𝑝0]  

Here, 𝑝0 =
𝑏𝑤

𝑏−1
 is the price that maximizes the riskless profit.50 We can obtain the 

riskless optimal price as 
𝑏𝑤

𝑏−1
 by setting the 

𝑑

𝑑𝑝
[Ψ(𝑝)] = 0 where 𝑦 = 𝑎𝑝−𝑏.  

𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑝|𝑧)]) = −(𝑏 − 1)𝜇𝑎𝑝

−𝑏−1[𝑝 − 𝑝0] − 𝑎𝑝−𝑏 ∗ Θ(𝑧) + 𝑏𝑎𝑝−𝑏−1[(𝑤 −

𝛽)Λ(𝑧) + (𝑝 + 𝑆 − 𝑤)Θ(𝑧)]  

= (𝑏 − 1)𝑎𝑝−𝑏−1 [−𝜇[𝑝 − 𝑝0] −
𝑝

𝑏−1
∗ Θ(𝑧) +

𝑏

𝑏−1
[(𝑤 − 𝛽)Λ(𝑧) + (𝑝 + 𝑆 −

𝑤)Θ(𝑧)]]  

= (𝑏 − 1)𝑎𝑝−𝑏−1 [−𝜇𝑝 + 𝜇𝑝0 −
𝑝

𝑏−1
∗ Θ(𝑧) +

𝑏

𝑏−1
(𝑤 − 𝛽)Λ(𝑧) +

𝑏

𝑏−1
𝑝Θ(𝑧) +

𝑏

𝑏−1
𝑆Θ(𝑧) −

𝑏

𝑏−1
𝑤Θ(𝑧)]  

= (𝑏 − 1)𝑎𝑝−𝑏−1 [−𝜇𝑝 + 𝜇𝑝0 −
𝑝

𝑏−1
∗ Θ(𝑧) +

𝑏

𝑏−1
𝑝Θ(𝑧) +

𝑏

𝑏−1
(𝑤 − 𝛽)Λ(𝑧) +

𝑏

𝑏−1
𝑆Θ(𝑧) − 𝑝0Θ(𝑧)]  

(10) 

                                                           

50 Petruzzi and Dada argued that “Ψ(𝑝) reached its maximum at 𝑝0 =
𝑏𝑤

𝑏−1
 , because 

−(𝑏 − 1)𝜇𝑎𝑝−𝑏−1 < 0 for 𝑝 < ∞, thus Ψ(𝑝) is increasing for 0 < 𝑝 <
𝑏𝑤

𝑏−1
 and 

decreasing for 
𝑏𝑤

𝑏−1
< 𝑝 < ∞” (Petruzzi and Dada, 1999). 
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= (𝑏 − 1)𝑎𝑝−𝑏−1 [𝜇𝑝0 − 𝑝0Θ(𝑧) − 𝜇𝑝 + 𝑝Θ(𝑧) +
𝑏

𝑏−1
{(𝑤 − 𝛽)Λ(𝑧) +

𝑆Θ(𝑧)}]  

= (𝑏 − 1)𝑎𝑝−𝑏−1 [(𝜇 − Θ(𝑧))(𝑝0 − 𝑝) +
𝑏

𝑏−1
{(𝑤 − 𝛽)Λ(𝑧) + 𝑆Θ(𝑧)}]  

= (𝑏 − 1)𝑎𝑝−𝑏−1{𝜇 − Θ(𝑧)} [−𝑝 + 𝑝0 +
𝑏

𝑏−1
{
(𝑤−𝛽)Λ(𝑧)+𝑆Θ(𝑧)

(𝜇−Θ(𝑧))
}]  

where 𝑝0 =
𝑏

𝑏−1
𝑤 

𝜕2

𝜕𝑝2
(𝐸[𝜋𝑟(𝑝|𝑧)]) = −

𝑏+1

𝑝
∗
𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑝|𝑧)]) − (𝑏 − 1)𝑎𝑝

−𝑏−1{𝜇 − Θ(𝑧)}  (11) 

𝜕2

𝜕𝑝2
(𝐸[𝜋𝑟(𝑝|𝑧)])| 𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑝|𝑧)])=0

= −(𝑏 − 1)𝑎𝑝−𝑏−1{𝜇 − Θ(𝑧)} < 0  (12) 

𝜕

𝜕𝑧
(𝐸[𝜋𝑟(𝑧|𝑝)]) = 𝑦[−(𝑤 − 𝛽) + (𝑝 + 𝑆 − 𝛽)[1 − 𝐹(𝑧)]] = 0  

⇒ 𝑧∗(𝑝) = 𝐹−1 [
𝑝+𝑆−𝑤

𝑝+𝑆−𝛽
]  

(13) 

 𝐸[𝜋𝑟(𝑧
∗(𝑝), 𝑝)] = 𝑦 [(𝑝 − 𝑤)𝜇 − (𝑤 − 𝛽)∫ (𝐹−1 [

𝑝+𝑆−𝑤

𝑝+𝑆−𝛽
] −

𝐹−1[
𝑝+𝑆−𝑤

𝑝+𝑆−𝛽
]

𝐴

𝑢) 𝑓(𝑢)𝑑𝑢 − (𝑝 + 𝑆 − 𝑤)∫ (𝑢 − 𝐹−1 [
𝑝+𝑆−𝑤

𝑝+𝑆−𝛽
]) 𝑓(𝑢)𝑑𝑢

𝐵

𝐹−1[
𝑝+𝑆−𝑤

𝑝+𝑆−𝛽
]

]    

(14) 

𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑧

∗(𝑝), 𝑝)]) = 𝑦′𝜇 [𝑝 − 𝑤 +
𝑦

𝑦′
] − yΘ(𝑧∗) − 𝑦′[(𝑤 − 𝛽)Λ(𝑧∗) + (𝑝 +

𝑆 − 𝑤)Θ(𝑧∗)]  

(15) 

For 𝑦 = 𝑎 − 𝑏𝑝, 
𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = 2𝑏(𝜇 − Θ(𝑧∗)) [−𝑝 + 𝑝0 +
1

2
∗
(𝑤−𝛽)𝛬(𝑧∗(𝑝))+𝑆𝛩(𝑧∗(𝑝))

(𝜇−Θ(𝑧∗))
]  

where, 𝑝0 =
𝑎+𝑏𝑤

2𝑏
 

(16) 

Since 𝜇 − Θ(𝑧∗) > 0, 

𝑝∗(𝑤) = {𝑝|−𝑝 +
𝑎+𝑏𝑤

2𝑏
+
1

2
∗
(𝑤−𝛽)𝛬(𝑧∗(𝑝))+𝑆𝛩(𝑧∗(𝑝))

(𝜇−Θ(𝑧∗(𝑝)))
= 0}  

(17) 

Similarly, for 𝑦 = 𝑎𝑝−𝑏, 

𝑝∗(𝑤) = {𝑝|−𝑝 +
𝑏

𝑏−1
𝑤 +

𝑏

𝑏−1
∗
(𝑤−𝛽)Λ(𝑧∗(𝑝))+𝑆Θ(𝑧∗(𝑝))

(𝜇−Θ(𝑧∗(𝑝)))
= 0}  

(18) 
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Appendix for Chapter 7: BP in the case of Revenue Sharing Contract (Stochastic Demand) 
 

1. Additive Demand Uncertainty Case 
 

A. Problem Formulation:  

 

Let’s assume 𝑧 = 𝑞 − 𝑦, where 𝑧 is called the stocking factor and can be expressed as 𝑧 =
𝜇 + 𝜎 ∗ (safety factor). Then the retailer’s profit can be expressed as Equation 2 and the 

corresponding optimal policy is the order quantity, 𝑞∗ = 𝑦(𝑝∗) + 𝑧∗.   

𝜋𝑟 =
𝜙𝑝(𝑦 + 𝜖) − 𝑤(𝑦 + 𝑧) + 𝑣(𝑧 − 𝜖)

𝜙𝑝(𝑦 + 𝑧) − 𝑤(𝑦 + 𝑧) − 𝑆(𝜖 − 𝑧)
     
; 𝜖 ≤ 𝑧
; 𝜖 > 𝑧

    
→ 𝑙𝑒𝑓𝑡𝑜𝑣𝑒𝑟
→ 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒

 
(2) 

From Equation 2, the expected retail profit, 

𝐸[𝜋𝑟] = ∫ [𝜙𝑝(𝑦 + 𝑢) + 𝑣(𝑧 − 𝑢)]𝑓(𝑢)𝑑𝑢
𝑧

𝐴

+∫ [𝜙𝑝(𝑦 + 𝑧) − 𝑆(𝑢 − 𝑧)]𝑓(𝑢)𝑑𝑢
𝐵

𝑧

− 𝑤(𝑦 + 𝑧)

= (𝜙𝑝 − 𝑤)(𝑦 + 𝜇) − [(𝑤 − 𝑣)𝛬(𝑧) + (𝜙𝑝 + 𝑆 − 𝑤)𝛩(𝑧)]

= 𝛹(𝑝) − 𝐿(𝑧, 𝑝) 

(3) 

Hence, the expected profit is the sum of the riskless profit Ψ(𝑝) = (𝜙𝑝 − 𝑤)(𝑦 + 𝜇) 
minus the loss due to uncertainty, 𝐿(𝑧, 𝑝) = [(𝑤 − 𝑣)𝛬(𝑧) + (𝜙𝑝 + 𝑆 − 𝑤)𝛩(𝑧)] (i.e. we 

obtain the expected profit by subtracting the loss function from the riskless profit). Here, 

Λ(𝑧) = ∫ (𝑧 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑧

𝐴
= expected leftover and Θ(𝑧) = ∫ (𝑢 − 𝑧)𝑓(𝑢)𝑑𝑢

𝐵

𝑧
= expected 

shortage. The loss function is the sum of the overstocking and understocking cost (i.e. 

𝐿𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 ∗  𝐸(𝑙𝑒𝑓𝑡𝑜𝑣𝑒𝑟)  +  𝑢𝑛𝑑𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 ∗ 𝐸(𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒)). 
The retailer’s objective is to maximize, 

𝐸[𝜋𝑟(𝑧, 𝑝)] = (𝜙𝑝 − 𝑤)(𝑦 + 𝜇) − [(𝑤 − 𝑣)𝛬(𝑧) + (𝜙𝑝 + 𝑆 − 𝑤)𝛩(𝑧)] (4) 

This is a joint optimization problem in 𝑝 and 𝑧. Therefore, we take partial derivatives of 

the expected profit in 𝑝 and 𝑧, and also check if the second order conditions are fulfilled. 
𝜕

𝜕𝑧
(𝐸[𝜋𝑟(𝑧|𝑝)]) = −(𝑤 − 𝑣) + (𝜙𝑝 + 𝑆 − 𝑣)[1 − 𝐹(𝑧)]  (5) 

𝜕2

𝜕𝑧2
(𝐸[𝜋𝑟(𝑧|𝑝)]) = −(𝜙𝑝 + 𝑆 − 𝑣)𝑓(𝑧) < 0  (6) 

𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑝|𝑧)]) =

𝑑

𝑑𝑝
[Ψ(𝑝)] −

𝜕

𝜕𝑝
[𝐿(𝑧, 𝑝)] = 𝜙 [𝑦′ (𝑝 −

𝑤

𝜙
+

𝑦

𝑦′
) + 𝜇 − Θ(𝑧)]  (7) 

For, 𝑦 = 𝑎 − 𝑏𝑝, 

𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑝|𝑧)]) = −2𝜙𝑏 [𝑝 −

𝜙𝑎+𝑏𝑤

2𝜙𝑏
−
𝜇−𝛩(𝑧)

2𝑏
]  

(8) 
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𝜕2

𝜕𝑝2
(𝐸[𝜋𝑟(𝑝|𝑧)]) = −2𝜙𝑏 < 0  (9) 

 

Equation 6 tells us that 𝐸[𝜋𝑟] is concave in 𝑧 for a given 𝑝. Equation 9 tells us that 𝐸[𝜋𝑟] 
is concave in 𝑝 for a given 𝑧.  
B. Proof of Lemma 1:  

 

i. Pricing decision approach 

Setting 
𝜕

𝜕𝑧
(𝐸[𝜋𝑟(𝑧|𝑝)]) = 0, we obtain, 𝐹[𝑧∗(𝑝)] =

𝜙𝑝+𝑆−𝑤

𝜙𝑝+𝑆−𝑣
⇒ 𝑧∗(𝑝) = 𝐹−1 [

𝜙𝑝+𝑆−𝑤

𝜙𝑝+𝑆−𝑣
] 

Replacing the 𝑧∗(𝑝) into 𝜕𝐸/𝜕𝑝: 
𝑑𝐸[𝜋𝑟(𝑝,𝑧

∗(𝑝))]

𝑑𝑝
= 𝑦′(𝜙𝑝 − 𝑤) + 𝜙(𝑦 + 𝜇 − Θ(𝑧∗(𝑝)))  

Linear demand: 

For a linear demand, 𝑦 = 𝑎 − 𝑏𝑝, 
𝑑𝐸[𝜋𝑟(𝑝,𝑧

∗(𝑝)]

𝑑𝑝
= 2𝜙𝑏 [−𝑝 +

𝜙𝑎+𝑏𝑤

2𝜙𝑏
+
𝜇−𝛩(𝑧∗(𝑝)) 

2𝑏
]. Hence, 

the optimal 𝑝∗ is the 𝑝 that satisfies 
𝑑𝐸[𝜋𝑟(𝑝,𝑧

∗(𝑝)]

𝑑𝑝
= 0.  

Since 2𝜙𝑏 > 0, 𝑝∗(𝑤) = {𝑝|−𝑝 +
𝜙𝑎+𝑏𝑤

2𝜙𝑏
+
𝜇 −Θ(𝑧∗(𝑝))

2𝑏
= 0} . 

Isoelastic demand: 

For an isoelastic demand, 𝑦 = 𝑎𝑝−𝑏,  
𝑑𝐸[𝜋𝑟(𝑝,𝑧

∗(𝑝))]

𝑑𝑝
= −

𝑏𝑎𝑝−𝑏

𝑝
(𝜙𝑝 − 𝑤) + 𝜙(𝑎𝑝−𝑏 + 𝜇 − Θ(𝑧)) = (−𝛩 + 𝜇)𝜙 +

𝑎𝑝−1−𝑏(𝑝𝜙 + 𝑏(𝑤 − 𝑝𝜙)) = (−𝛩 + 𝜇)𝜙 + 𝜙(𝑏 − 1)𝑎𝑝−1−𝑏 (−𝑝 +
𝑏

𝜙(𝑏−1)
𝑤) =

𝜙 [(−𝑝 +
𝑏

𝜙(𝑏−1)
𝑤) (𝑏 − 1)𝑎𝑝−1−𝑏 + (𝜇 − 𝛩)] . 

The optimal 𝑝∗ is the 𝑝 that satisfies 
𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝)]) = 0. Since, 𝜙 > 0, hence, 

𝑝∗(𝑤) = {𝑝| (−𝑝 +
𝑏

𝜙(𝑏−1)
𝑤) (𝑏 − 1)𝑎𝑝−𝑏−1 + 𝜇 − Θ(𝑧∗(𝑝)) = 0}.  

Or, equivalently, 𝑝∗(𝑤) = {𝑝|−𝑝 +
𝑏

𝜙(𝑏−1)
𝑤 +

𝜇−Θ(𝑧∗(𝑝))

(𝑏−1)𝑎𝑝−𝑏−1
= 0}. 

 

The derivation of the optimal 𝑝∗ requires to prove that the expected profit, 𝐸[𝜋𝑟(𝑝, 𝑧
∗(𝑝))] 

is concave and unimodal in 𝑝 which is mentioned in Appendix 1-C-2 and 1-C-3. 

 

ii. Stocking decision approach 

 

Solving 
𝜕

𝜕𝑝
(𝐸[𝜋𝑟]) = −2𝜙𝑏 [𝑝 −

𝜙𝑎+𝑏𝑤

2𝜙𝑏
−
𝜇−𝛩(𝑧)

2𝑏
] = 0, we can obtain 𝑝∗ =

𝜙𝑎+𝑏𝑤

2𝜙𝑏
+

𝜇−𝛩(𝑧)

2𝑏
 . Then replacing 𝑝∗ into the equation, 

𝜕

𝜕𝑧
(𝐸[𝜋𝑟]) = 0 would give the single variable 

equation in 𝑧∗, 

 
𝑑

𝑑𝑧
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))]) = −(𝑤 − 𝑣) + (
𝜙𝑎+𝑏𝑤

2𝑏
+
𝜙(𝜇−𝛩(𝑧))

2𝑏
+ 𝑆 − 𝑣) [1 − 𝐹(𝑧)] = 0  

The derivation of optimal 𝑧∗ requires to prove that the expected profit, 𝐸[Π𝑟(𝑧, 𝑝(𝑧))] is 

concave and unimodal in 𝑧 which is mentioned in Appendix 1-C-1.  
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C. Condition for concavity 

1. Stocking decision approach:  

We need to show that the expected profit, 𝐸[Π𝑟(𝑧, 𝑝(𝑧))] is concave and unimodal in 𝑧. 
We adapt the proof (in case of newsvendor model) from Petruzzi and Dada (1999) and 

modify it to reflect our revenue-sharing contract setting. Interested readers may check the 

proof of Theorem 1 of Petruzzi and Dada (1999)51 and replace their holding cost parameter 

‘−ℎ’ by the salvage price parameter ‘𝑣’ and retail revenue parameter ‘𝑝’ by ‘𝜙𝑝’ to obtain 

the proof required in our setting. For readers’ convenience, we showed the detail proof here 

as follows-   

From lemma 1, 𝑝∗(𝑧) =
𝜙𝑎+𝑏𝑤

2𝜙𝑏
+
𝜇−𝛩(𝑧)

2𝑏
⇒

𝑑𝑝∗

𝑑𝑧
=
(1−𝐹(𝑧))

2𝑏
 

Replacing 𝑝∗(𝑧) into the expected profit equation, 

𝐸[𝜋𝑟(𝑧, 𝑝
∗(𝑧))] = (𝜙𝑝∗ − 𝑤)(𝑦 + 𝜇) − [(𝑤 − 𝑣)𝛬(𝑧) + (𝜙𝑝∗ + 𝑆 − 𝑤)𝛩(𝑧)]   

Taking derivative in 𝑧,  
𝑑

𝑑𝑧
𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))] = 𝜙
𝑑𝑝∗

𝑑𝑧
(𝑎 − 𝑏𝑝∗ + 𝜇) + (𝜙𝑝∗ − 𝑤) (−𝑏

𝑑𝑝∗

𝑑𝑧
) − [(𝑤 − 𝑣)𝐹(𝑧) +

𝜙
𝑑𝑝∗

𝑑𝑧
𝛩(𝑧) − (𝜙𝑝∗ + 𝑆 − 𝑤)(1 − 𝐹(𝑧))]   

=
(1−F(𝑧))

2𝑏
𝜙(𝑎 − 𝑏𝑝∗ + 𝜇) + (𝜙𝑝∗ − 𝑤) (−

(1−F(𝑧))

2
) − [(𝑤 − 𝑣)F(𝑧) +

𝜙
(1−F(𝑧))

2𝑏
Θ(𝑧) − (𝜙𝑝∗ + 𝑆 − 𝑤)(1 − F(𝑧))]  

= 𝜙(1 − F(𝑧)) (
𝑎

2𝑏
−
𝑝∗

2
+

𝜇

2𝑏
−
𝑝∗

2
+

𝑤

2𝜙
−
Θ(𝑧)

2𝑏
+ 𝑝∗ +

𝑆

𝜙
−
𝑤

𝜙
) − (𝑤 − 𝑣)F(𝑧)  

= 𝜙(1 − F(𝑧)) (
𝑎

2𝑏
+

𝑤

2𝜙
+

𝜇

2𝑏
−
Θ(𝑧)

2𝑏
+
𝑆

𝜙
−
𝑤

𝜙
) − (𝑤 − 𝑣) + (𝑤 − 𝑣) − (𝑤 − 𝑣)F(𝑧)  

= 𝜙(1 − F(𝑧)) (
𝜙𝑎+𝑏𝑤

2𝑏𝜙
+
𝜇−Θ(𝑧)

2𝑏
+
𝑆

𝜙
−
𝑤

𝜙
) − (𝑤 − 𝑣) + (𝑤 − 𝑣)(1 − F(𝑧))  

= 𝜙(1 − F(𝑧)) (𝑝∗ +
𝑆

𝜙
−
𝑤

𝜙
) − (𝑤 − 𝑣) + (𝑤 − 𝑣)(1 − F(𝑧))  

= (1 − F(𝑧))(𝜙𝑝∗ + 𝑆 − 𝑤) − (𝑤 − 𝑣) + (𝑤 − 𝑣)(1 − F(𝑧))  

= −(𝑤 − 𝑣) + (1 − 𝐹(𝑧))(𝜙𝑝∗ + 𝑆 − 𝑣)  

                                                           
51 Theorem 1 of Petruzzi-Dada (1999) stated that-  

“…𝑧∗ is determined according to the following: 

c) If 𝐹(. ) is an arbitrary distribution function, then an exhaustive search over all values of z in the 

region [𝐴, 𝐵] will determine 𝑧∗. 

d) If 𝐹(. ) is a distribution function satisfying the condition 2𝑟(𝑧)2 +
𝑑

𝑑𝑧
𝑟(𝑧) > 0 for 𝐴 ≤ 𝑧 ≤  𝐵, 

where 𝑟(. ) ≡
𝑓(.)

1−𝐹(.)
 is the Hazard rate, then 𝑧∗ is the largest 𝑧 in the region [𝐴, 𝐵] that satisfies 

𝑑𝐸[Π𝑟(𝑧,𝑝(𝑧))]

𝑑𝑧
=  0.” 

If the condition for (b) is met and 𝑎 − 𝑏(𝑤 − 2𝑆) + 𝐴 > 0, then 𝑧∗ is the unique 𝑧 in the region [𝐴, 𝐵] 

that satisfies 
𝑑𝐸[Π𝑟(𝑧,𝑝(𝑧))]

𝑑𝑧
=  0.” 



166 

 
 

Alternate method: Instead of substituting 𝑝∗ into the expected profit equation, substituting 

𝑝∗ into 
𝜕

𝜕𝑧
𝐸[𝜋𝑟], also gives the same result.  

𝑑

𝑑𝑧
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))]) = −(𝑤 − 𝑣) + (𝜙𝑝∗(𝑧) + 𝑆 − 𝑣)[1 − 𝐹(𝑧)]  

𝑑2

𝑑𝑧2
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))]) = 𝜙
𝑑𝑝∗(𝑧)

𝑑𝑧
[1 − 𝐹(𝑧)] − (𝜙𝑝∗(𝑧) + 𝑆 − 𝑣)𝑓(𝑧) = 𝜙

[1−𝐹(𝑧)]2

2𝑏
−

(𝜙𝑝∗(𝑧) + 𝑆 − 𝑣)𝑓(𝑧) = −
𝑓(𝑧)

2𝑏
{2𝑏(𝜙𝑝∗(𝑧) + 𝑆 − 𝑣) − 𝜙

1−𝐹(𝑧)

𝑟
}  

Here, 𝑟 = (
𝑓(𝑧)

1−𝐹(𝑧)
) =hazard rate 

𝑑3

𝑑𝑧3
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))])  

=
𝑑𝑓(𝑧)

𝑑𝑧
[(

1

𝑓(𝑧)
)
𝑑2(𝐸[𝜋𝑟(𝑧,𝑝

∗(𝑧))])

𝑑𝑧2
] −

𝑓(𝑧)

2𝑏
{2𝑏 ∗ 𝜙 ∗

[1−𝐹(𝑧)]

2𝑏
− 𝜙

𝑑

𝑑𝑧
(
1−𝐹(𝑧)

𝑟
)}  

=
𝑑𝑓(𝑧)

𝑑𝑧
[(

1

𝑓(𝑧)
)
𝑑2(𝐸[𝜋𝑟(𝑧,𝑝

∗(𝑧))])

𝑑𝑧2
] −

𝑓(𝑧)

2𝑏
{𝜙[1 − 𝐹(𝑧)] − 𝜙 (−

𝑓(𝑧)

𝑟
−
1−𝐹(𝑧)

𝑟2
𝑑𝑟

𝑑𝑧
 )}  

=
𝑑𝑓(𝑧)

𝑑𝑧
[(

1

𝑓(𝑧)
)
𝑑2(𝐸[𝜋𝑟(𝑧,𝑝

∗(𝑧))])

𝑑𝑧2
] − 𝜙

𝑓(𝑧)

2𝑏
{1 − 𝐹(𝑧) +

𝑓(𝑧)

𝑟
+
1−𝐹(𝑧)

𝑟2
𝑑𝑟

𝑑𝑧
}  

=
𝑑𝑓(𝑧)

𝑑𝑧
[(

1

𝑓(𝑧)
)
𝑑2(𝐸[𝜋𝑟(𝑧,𝑝

∗(𝑧))])

𝑑𝑧2
] − 𝜙

𝑓(𝑧)[1−𝐹(𝑧)]

2𝑏𝑟2
{𝑟2 +

𝑓(𝑧)

1−𝐹(𝑧)
𝑟 +

1

𝑟2
𝑑𝑟

𝑑𝑧
}  

=
𝑑𝑓(𝑧)

𝑑𝑧
[(

1

𝑓(𝑧)
)
𝑑2(𝐸[𝜋𝑟(𝑧,𝑝

∗(𝑧))])

𝑑𝑧2
] − 𝜙

𝑓(𝑧)[1−𝐹(𝑧)]

2𝑏𝑟2
{2𝑟2 +

𝑑𝑟

𝑑𝑧
}  

 

𝑑3

𝑑𝑧3
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))])|𝑑2(𝐸[𝜋𝑟(𝑧,𝑝∗(𝑧))])
𝑑𝑧2

=0
= −𝜙

𝑓(𝑧)[1−F(z)]

2𝑏(
𝑓(𝑧)

1−𝐹(𝑧)
)
2 {2 (

𝑓(𝑧)

1−𝐹(𝑧)
)
2

+
𝑑

𝑑𝑧
(
𝑓(𝑧)

1−𝐹(𝑧)
) }  

Following Petruzzi and Dada (1999)’s argument analogously in a revenue-sharing setting,  

if {2 (
𝑓(𝑧)

1−𝐹(𝑧)
)
2

+
𝑑

𝑑𝑧
(
𝑓(𝑧)

1−𝐹(𝑧)
) } > 0, then 

𝑑

𝑑𝑧
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))]) is monotone or unimodal and 

thus having at most two roots. Moreover, for 𝑧 = 𝐵, 
𝑑

𝑑𝑧
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))]) = −(𝑤 − 𝑣) <

0. Therefore, if 
𝑑

𝑑𝑧
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))]) has only one root, it indicates a change in sign from 

positive to negative. It corresponds to a local maximum of 𝐸[𝜋𝑟(𝑧, 𝑝
∗(𝑧))] 

If  
𝑑

𝑑𝑧
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))]) has two roots, the larger (smaller) of the two corresponds to a local 

maximum (minimum) of 𝐸[𝜋𝑟(𝑧, 𝑝
∗(𝑧))]. In either case, 𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))] has only one 

local maximum, identified either as the unique value (or as the larger of two values) of 𝑧 

that satisfies 
𝑑

𝑑𝑧
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))]) = 0 . Since 𝐸[𝜋𝑟(𝑧, 𝑝
∗(𝑧))] is unimodal if 

𝑑

𝑑𝑧
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))]) has only one root (assuming {2 (
𝑓(𝑧)

1−𝐹(𝑧)
)
2

+
𝑑

𝑑𝑧
(
𝑓(𝑧)

1−𝐹(𝑧)
) } > 0), a 

sufficient condition for unimodality of 𝐸[𝜋𝑟(𝑧, 𝑝
∗(𝑧))] is 

𝑑

𝑑𝑧
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))])|
𝑧=𝐴

> 0  

or equivalently, 2𝑏 ∗
𝑑

𝑑𝑧
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))])|
𝑧=𝐴

> 0,  

⇒ −2𝑏(𝑤 − 𝑣) + 2𝑏 (
𝜙𝑎+𝑏𝑤

2𝑏
+
𝜙(𝜇−Θ(𝐴))

2𝑏
+ 𝑆 − 𝑣) [1 − 𝐹(𝐴)] > 0  

⇒ −2𝑏(𝑤 − 𝑣) + (𝜙𝑎 + 𝑏𝑤 + 𝜙(𝜇 − μ + A) + 2𝑏(𝑆 − 𝑣)) > 0   

⇒ 𝜙𝑎 − 𝑏(𝑤 − 2𝑆) + 𝜙𝐴 > 0  
Petruzzi & Dada (1999) summarized the conditions for concavity and unimodality. Similar 

conditions were proposed by Ernest (1970), Young (1978), Bulow and Proschan (1975). It 
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is to be mentioned, PF2 distributions and log-normal distributions (that have non-

decreasing hazard rate, 𝑟(. ) =
𝑓(.)

1−𝐹(.)
) satisfy the above mentioned conditions.  

Hence, if  2 (
𝑓(𝑧)

1−𝐹(𝑧)
)
2

+
𝑑

𝑑𝑧
(
𝑓(𝑧)

1−𝐹(𝑧)
) > 0, then 𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))] is concave and unimodal in 

𝑧. 
 

2. Pricing decision approach:  
 

We need to show that 𝐸[Π𝑟(𝑝, 𝑧
∗(𝑝))] is concave in 𝑝.  

𝐹[𝑧∗(𝑝)] =
𝜙𝑝+𝑆−𝑤

𝜙𝑝+𝑆−𝑣
⇒ 𝑧∗(𝑝) = 𝐹−1 [

𝜙𝑝+𝑆−𝑤

𝜙𝑝+𝑆−𝑣
]  

Differentiating 𝐹[𝑧∗(𝑝)] =
𝜙𝑝+𝑆−𝑤

𝜙𝑝+𝑆−𝑣
 with respect to 𝑝, 

𝑓 ∗
𝑑𝑧∗

𝑑𝑝
=

𝜙

𝜙𝑝+𝑆−𝑣
− 𝜙

𝜙𝑝+𝑆−𝑤

(𝜙𝑝+𝑆−𝑣)2
= 𝜙 (

1

𝜙𝑝+𝑆−𝑣
−

𝐹

𝜙𝑝+𝑆−𝑣
) = 𝜙

1−𝐹

(𝜙𝑝+𝑆−𝑣)
  

Therefore, 
𝑑𝑧∗(𝑝)

𝑑𝑝
= 𝜙

1−𝐹

𝑓(𝜙𝑝+𝑆−𝑣)
=

𝜙

𝑟(𝜙𝑝+𝑆−𝑣)
  

Here, 𝑟 =
𝑓

1−𝐹
= hazard rate 

Replacing the 𝑧∗(𝑝) into 𝜕𝐸/𝜕𝑝: 
𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝)]) = 2𝜙𝑏 [−𝑝 +
𝜙𝑎+𝑏𝑤

2𝜙𝑏
+
𝜇 −Θ(𝑧∗(𝑝)) 

2𝑏
]  

We need to find zeros of 
𝑑

𝑑𝑝
(𝐸[𝜋𝑟]): 

𝑑2

𝑑𝑝2
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = 2𝜙𝑏 [−1 +
 (1−𝐹(𝑧∗))

𝑑𝑧∗

𝑑𝑝
 

2𝑏
] = −2𝑏 + 

𝜙(1−𝐹)

𝑟(𝜙𝑝+𝑆−𝑣)
  

𝑑3

𝑑𝑝3
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) =
𝑑

𝑑𝑝
[
𝜙(1−𝐹)

𝑟(𝜙𝑝+𝑆−𝑣)
] = 𝜙 {

−𝑓∗
𝑑𝑧∗

𝑑𝑝

𝑟(𝜙𝑝+𝑆−𝑣)
−

(1−𝐹)

𝑟2(𝜙𝑝+𝑆−𝑣)2
𝑑

𝑑𝑝
[𝑟(𝜙𝑝 + 𝑆 −

𝑣)]} = 𝜙 {
−𝜙𝑓

𝑟2(𝜙𝑝+𝑆−𝑣)2
−

(1−𝐹)

𝑟2(𝜙𝑝+𝑆−𝑣)2
[
𝑑𝑟

𝑑𝑧∗
∗
𝑑𝑧∗

𝑑𝑝
∗ (𝜙𝑝 + 𝑆 − 𝑣) + 𝜙𝑟]} =

𝜙 {−
𝜙𝑓

𝑟2(𝜙𝑝+𝑆−𝑣)2
−
(1−𝐹)[𝜙𝑟+

𝜙

𝑟
∗
𝑑𝑟

𝑑𝑧∗
]

𝑟2(𝜙𝑝+𝑆−𝑣)2
} = −𝜙2 {

𝑓+(1−𝐹)[𝑟+
1

𝑟
∗
𝑑𝑟

𝑑𝑧∗
]

𝑟2(𝑝+𝑆−𝑣)2
} = −

𝜙2(1−𝐹)[
𝑓

1−𝐹
+𝑟+

1

𝑟
∗
𝑑𝑟

𝑑𝑧∗
]

𝑟2(𝑝+𝑆−𝑣)2
=

−
𝜙2(1−𝐹)[2𝑟+

1

𝑟
∗
𝑑𝑟

𝑑𝑧∗
]

𝑟2(𝑝+𝑆−𝑣)2
= −

𝜙2(1−𝐹)
1

𝑟
[2𝑟2+

𝑑𝑟

𝑑𝑧∗
]

𝑟2(𝑝+𝑆−𝑣)2
= −

𝜙2(1−𝐹)[2𝑟2+
𝑑𝑟

𝑑𝑧∗
]

𝑟3(𝑝+𝑆−𝑣)2
  

Since 𝑟 =
𝑓

1−𝐹
> 0, therefore, for 2𝑟2 +

𝑑𝑟

𝑑𝑧∗
> 0,  

𝑑3

𝑑𝑝3
(𝐸[𝜋𝑟]) < 0 that follows that 

𝑑

𝑑𝑝
(𝐸[𝜋𝑟]) is either monotone or unimodal.  

It is to be mentioned, the condition 2𝑟2 +
𝑑𝑟

𝑑𝑧∗
> 0 is the same condition from the stocking 

decision approach as expected.  

 

3. Another method (Arcelus et al. 2005)   

We modify the proof from Arcelus et al. 2005 according to the revenue-sharing contract.  
𝜕

𝜕𝑧
(𝐸[𝜋𝑟(𝑧|𝑝)]) = −(𝑤 − 𝑣) + (𝜙𝑝 + 𝑆 − 𝑣)[1 − 𝐹(𝑧)]  

𝜕2

𝜕𝑧2
(𝐸[𝜋𝑟(𝑧|𝑝)]) = −(𝜙𝑝 + 𝑆 − 𝑣)𝑓(𝑧) < 0  
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Setting 
𝜕𝐸[𝜋𝑟]

𝜕𝑧
= 0, we obtain 1 − 𝐹 =

𝑤−𝑣

𝜙𝑝+𝑆−𝑣
 . Therefore, 

𝜕2𝐸[𝜋𝑟]

𝜕𝑧2
= −

𝑤−𝑣

1−𝐹
𝑓  

𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑝|𝑧)]) =

𝑑

𝑑𝑝
[Ψ(𝑝)] −

𝜕

𝜕𝑝
[𝐿(𝑧, 𝑝)] = 𝑦′(𝜙𝑝 − 𝑤) + 𝜙(𝑦 + 𝜇 − Θ(𝑧))  

Setting 
𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑝|𝑧)]) = 0, we obtain, ⇒ (𝜙𝑝 − 𝑤) = −

𝜙

𝑦′
(𝑦 + 𝜇 − Θ) 

𝜕2𝐸[𝜋𝑟]

𝜕𝑝2
= 𝑦′′(𝜙𝑝 − 𝑤) + 2𝜙𝑦′ = −

𝑦′′𝜙

𝑦′
(𝑦 + 𝜇 − Θ) + 2𝜙𝑦′ = 𝜙 [−

𝑦𝑦′′

𝑦′
(1 +

𝜇−Θ

𝑦
) +

2𝑦′] = 𝜙𝑦′ (2 −
𝑦𝑦′′

(𝑦′)2
(1 +

𝜇−Θ

𝑦
))  

Since, 𝜙 > 0 and 𝑦′ < 0, therefore, 
𝜕2𝐸[𝜋𝑟]

𝜕𝑝2
< 0 if 

𝑦𝑦′′

(𝑦′)2
(1 +

𝜇−Θ

𝑦
) < 2 

𝜕2𝐸[𝜋𝑟]

𝜕𝑝𝜕𝑧
=

𝜕

𝜕𝑝
(
𝜕𝐸[𝜋𝑟]

𝜕𝑧
) =

𝜕

𝜕𝑧
(
𝜕𝐸[𝜋𝑟]

𝜕𝑝
) = 𝜙(1 − 𝐹) > 0  

𝜕2𝐸[𝜋𝑟]

𝜕𝑧2
×
𝜕2𝐸[𝜋𝑟]

𝜕𝑝2
− (

𝜕2𝐸[𝜋𝑟]

𝜕𝑝𝜕𝑧
)
2

= −
𝑤−𝑣

1−𝐹
𝑓𝜙𝑦′ (2 −

𝑦𝑦′′

(𝑦′)2
(1 +

𝜇−Θ

𝑦
)) − 𝜙2(1 − 𝐹 )2  

𝜕2𝐸[𝜋𝑟]

𝜕𝑧2
×
𝜕2𝐸[𝜋𝑟]

𝜕𝑝2
− (

𝜕2𝐸[𝜋𝑟]

𝜕𝑝𝜕𝑧
)
2

> 0 if  

⇒ −
𝑤−𝑣

1−𝐹
𝑓𝜙𝑦′ (2 −

𝑦𝑦′′

(𝑦′)2
(1 +

𝜇−Θ

𝑦
)) > 𝜙2(1 − 𝐹 )2 ⇒ 𝑓 >

𝜙(1−𝐹 )3

−(𝑤−𝑣)𝑦′(2−
𝑦𝑦′′

(𝑦′)
2(1+

𝜇−Θ

𝑦
))

  

It is to be mentioned, the denominator is positive, because  𝑦′ < 0 and 
𝑦𝑦′′

(𝑦′)2
(1 +

𝜇−Θ

𝑦
) <

2. Moreover, since, 𝑓 ≤ 1, we can write the condition as 1 ≥ 𝑓 >
𝜙(1−𝐹 )3

−(𝑤−𝑣)𝑦′(2−
𝑦𝑦′′

(𝑦′)
2(1+

𝜇−Θ

𝑦
))

  

For a linear demand, 𝑦 = 𝑎 − 𝑏𝑝, 𝑦′ = −𝑏 < 0, 𝑦′′ = 0, 
𝑦𝑦′′

(𝑦′)2
= 0 

Hence, for 𝑦 = 𝑎 − 𝑏𝑝, the condition is, 1 ≥ 𝑓 >
𝜙(1−𝐹 )3

2𝑏(𝑤−𝑣)
 

For an isoelastic demand, 𝑦 = 𝑎𝑝−𝑏, 𝑦′ = −𝑏𝑎𝑝−𝑏−1 =
−𝑏𝑦

𝑝
< 0 , 𝑦′′ =

−𝑏𝑦′

𝑝
−
−𝑏𝑦

𝑝2
=

−
𝑦′

𝑝
(𝑏 + 1) =

𝑏𝑦

𝑝2
(𝑏 + 1) > 0 , 

𝑦𝑦′′

(𝑦′)2
=
𝑦
𝑏𝑦

𝑝2
(𝑏+1)

(
−𝑏𝑦

𝑝
)
2 =

𝑏+1

𝑏
> 1 

For 𝑏 > 1, 1 <
𝑏+1

𝑏
< 2, therefore, 1 <

𝑦𝑦′′

(𝑦′)2
< 2 

  

Hence, for 𝑦 = 𝑎𝑝−𝑏, the condition is, 
𝑏+1

𝑏
(1 +

𝜇−Θ

𝑎𝑝−𝑏
) < 2 and 1 ≥ 𝑓 >

𝜙(1−𝐹 )3

(𝑤−𝑣)
𝑏𝑦

𝑝
(2−

𝑏+1

𝑏
(1+

𝜇−Θ

𝑎𝑝−𝑏
))

> 0 
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D. Cost-pass-through 

1. Linear demand 

i. Stocking decision approach 

 

𝑧∗ has to satisfy 
𝑑

𝑑𝑧
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))]) = 0,  

⇒ −(𝑤 − 𝑣) + (𝜙𝑝∗(𝑧) + 𝑆 − 𝑣)[1 − 𝐹(𝑧)] = 0  

⇒ −(𝑤 − 𝑣) + (
𝜙𝑎+𝑏𝑤

2𝑏
+
𝜙(𝜇−𝛩(𝑧))

2𝑏
+ 𝑆 − 𝑣) [1 − 𝐹(𝑧∗)] = 0  

Differentiating it with respect to 𝑤,  

−1 + (
1

2
+ 𝜙

1−𝐹

2𝑏
∗
𝑑𝑧∗

𝑑𝑤
) (1 − 𝐹) − (

𝜙𝑎+𝑏𝑤

2𝑏
+
𝜙(𝜇−𝛩(𝑧))

2𝑏
+ 𝑆 − 𝑣) 𝑓

𝑑𝑧∗

𝑑𝑤
= 0  

⇒ −1 +
(1−𝐹)

2
+ 𝜙

(1−𝐹)2

2𝑏
∗
𝑑𝑧∗

𝑑𝑤
− (

𝜙𝑎+𝑏𝑤

2𝑏
+
𝜙(𝜇−𝛩(𝑧))

2𝑏
+ 𝑆 − 𝑣) 𝑓

𝑑𝑧∗

𝑑𝑤
= 0  

⇒ −1 +
(1−𝐹)

2
= [(

𝜙𝑎+𝑏𝑤

2𝑏
+
𝜙(𝜇−𝛩(𝑧))

2𝑏
+ 𝑆 − 𝑣) 𝑓 − 𝜙

(1−𝐹)2

2𝑏
] ∗

𝑑𝑧∗

𝑑𝑤
  

⇒
−1−𝐹

2
= (1 − 𝐹) [(

𝜙𝑎+𝑏𝑤

2𝑏
+
𝜙(𝜇−𝛩(𝑧))

2𝑏
+ 𝑆 − 𝑣) 𝑟 − 𝜙

(1−𝐹)

2𝑏
] ∗

𝑑𝑧∗

𝑑𝑤
  

⇒
𝑑𝑧∗

𝑑𝑤
= −

1+𝐹

2(1−𝐹)[(
𝜙𝑎+𝑏𝑤

2𝑏
+
𝜙(𝜇−𝛩(𝑧))

2𝑏
+𝑆−𝑣)𝑟−𝜙

(1−𝐹)

2𝑏
]
  

From 
𝑑

𝑑𝑝
(𝐸[𝜋𝑟)]) = 0, 𝑝∗(𝑤, 𝑧) =

𝜙𝑎+𝑏𝑤

2𝜙𝑏
+
𝜇−𝛩(𝑧)

2𝑏
  

Differentiating with respect to 𝑤, 
𝑑𝑝∗

𝑑𝑤
=

1

2𝜙
+
1−F

2𝑏
∗
𝑑𝑧∗

𝑑𝑤
  

⇒
𝑑𝑝∗

𝑑𝑤
=

1

2𝜙
−
1−𝐹

2𝑏
∗

1+𝐹

2(1−𝐹)[(
𝜙𝑎+𝑏𝑤

2𝑏
+
𝜙(𝜇−𝛩(𝑧))

2𝑏
+𝑆−𝑣)𝑟−𝜙

(1−𝐹)

2𝑏
]
=

1

2𝜙
−

1

2𝑏
∗

1+𝐹

2[(𝜙𝑝∗+𝑆−𝑣)𝑟−𝜙
(1−𝐹)

2𝑏
]
=

1

2𝜙
−
1

2
∗

1+𝐹

[2𝑏(𝜙𝑝∗+𝑆−𝑣)𝑟−𝜙(1−𝐹)]
=

1

2𝜙
−

1

2𝜙
∗

𝜙(1+𝐹)

[2𝑏(𝜙𝑝∗+𝑆−𝑣)𝑟−𝜙(1−𝐹)]
=

1

2𝜙
(1 −

𝜙(1+𝐹)

2𝑏𝑟(𝜙𝑝+𝑆−𝑣)−𝜙(1−𝐹)
)  

 

ii. Pricing Decision approach:   

𝐹[𝑧∗(𝑝, 𝑤)] =
𝜙𝑝+𝑆−𝑤

𝜙𝑝+𝑆−𝑣
  

Differentiating with respect to 𝑤, 

𝑓(𝑧∗(𝑝, 𝑤))
𝑑

𝑑𝑤
(𝑧∗(𝑝, 𝑤)) =

(𝜙
𝑑𝑝

𝑑𝑤
−1)

(𝜙𝑝+𝑆−𝑣)
−

𝜙𝑝+𝑆−𝑤

(𝜙𝑝+𝑆−𝑣)2
∗ 𝜙

𝑑𝑝

𝑑𝑤
=

(𝜙
𝑑𝑝

𝑑𝑤
−1)

(𝜙𝑝+𝑆−𝑣)
−
𝐹[𝑧∗(𝑝,𝑤)]∗𝜙

𝑑𝑝

𝑑𝑤

(𝜙𝑝+𝑆−𝑣)
=

(1−𝐹[𝑧∗(𝑝,𝑤)])

(𝜙𝑝+𝑆−𝑣)
∗ 𝜙

𝑑𝑝

𝑑𝑤
−

1

(𝜙𝑝+𝑆−𝑣)
  

⇒
𝑑𝑧∗

𝑑𝑤
=

1−𝐹

𝑓(𝜙𝑝+𝑆−𝑣)
∗ 𝜙

𝑑𝑝

𝑑𝑤
−

1

𝑓(𝜙𝑝+𝑆−𝑣)
=

1−𝐹

𝑓(𝜙𝑝+𝑆−𝑣)
[𝜙

𝑑𝑝

𝑑𝑤
−

1

1−𝐹
] =

1

𝑟(𝜙𝑝+𝑆−𝑣)
[𝜙

𝑑𝑝

𝑑𝑤
−

1

1−𝐹
]  

For 𝑦 = 𝑎 − 𝑏𝑝, 𝑝∗ has to satisfy this equation, −𝑝∗ +
𝜙𝑎+𝑏𝑤

2𝜙𝑏
+
𝜇 −Θ(𝑧∗(𝑝∗))

2𝑏
= 0  

Taking derivative in 𝑤, −
𝑑𝑝∗

𝑑𝑤
+

1

2𝜙
+

1 

2𝑏
(1 − 𝐹)

𝑑𝑧∗

𝑑𝑤
= 0  

Substituting 
𝑑𝑧∗

𝑑𝑤
 ,  



170 

 
 

⇒ −
𝑑𝑝∗

𝑑𝑤
+

1

2𝜙
+

1 

2𝑏
∗

(1−𝐹)

𝑟(𝜙𝑝+𝑆−𝑣)
[𝜙

𝑑𝑝

𝑑𝑤
−

1

1−𝐹
] = 0  

⇒
1

2𝜙
−

1 

2𝑏
∗

1

𝑟(𝜙𝑝+𝑆−𝑣)
=
𝑑𝑝∗

𝑑𝑤
(1 −

𝜙 

2𝑏
∗

(1−𝐹)

𝑟(𝜙𝑝+𝑆−𝑣)
)  

⇒
1

2𝜙
(1 −

𝜙 

𝑏
∗

1

𝑟(𝜙𝑝+𝑆−𝑣)
) =

𝑑𝑝∗

𝑑𝑤
(1 −

𝜙 

2𝑏
∗

(1−𝐹)

𝑟(𝜙𝑝+𝑆−𝑣)
)  

⇒
𝑑𝑝∗

𝑑𝑤
=

1

2𝜙
∗
(1−

𝜙 

𝑏
∗

1

𝑟(𝜙𝑝+𝑆−𝑣)
)

(1−
𝜙 

2𝑏
∗

(1−𝐹)

𝑟(𝜙𝑝+𝑆−𝑣)
)
=

1

2𝜙
∗
(1−

𝜙 

2𝑏
∗

(1−𝐹)

𝑟(𝜙𝑝+𝑆−𝑣)
−1+

𝜙 

2𝑏
∗

(1−𝐹)

𝑟(𝜙𝑝+𝑆−𝑣)
+1−

𝜙 

𝑏
∗

1

𝑟(𝜙𝑝+𝑆−𝑣)
)

(1−
𝜙 

2𝑏
∗

(1−𝐹)

𝑟(𝜙𝑝+𝑆−𝑣)
)

=
1

2𝜙
∗

(1 +
(
𝜙 

2𝑏
∗

(1−𝐹)

𝑟(𝜙𝑝+𝑆−𝑣)
−
𝜙 

𝑏
∗

1

𝑟(𝜙𝑝+𝑆−𝑣)
)

(1−
𝜙 

2𝑏
∗

(1−𝐹)

𝑟(𝜙𝑝+𝑆−𝑣)
)

) =
1

2𝜙
∗ (1 +

(𝜙(1−𝐹)−2𝜙)

2𝑏𝑟(𝜙𝑝+𝑆−𝑣)−𝜙(1−𝐹)
) =

1

2𝜙
(1 −

𝜙(1+𝐹)

2𝑏𝑟(𝜙𝑝+𝑆−𝑣)−𝜙(1−𝐹)
)  

 

Substituting (𝜙𝑝 + 𝑆 − 𝑣) =
𝑤−𝑣

1−𝐹
,  

⇒
𝑑𝑝∗

𝑑𝑤
=

1

2𝜙
(1 −

𝜙(1+𝐹)

2𝑏
𝑓

1−𝐹
∗
𝑤−𝑣

1−𝐹
−𝜙(1−𝐹)

) =
1

2𝜙
(1 −

(1−𝐹)2(1+𝐹)𝜙

2𝑏𝑓(𝑤−𝑣)−(1−𝐹)3𝜙
)  

 

2. Isoelastic demand: 

From, 
𝑑𝐸[𝜋𝑟]

𝑑𝑧
= −(𝑤 − 𝑣) + (𝜙𝑝 + 𝑆 − 𝑣)[1 − 𝐹(𝑧)] = 0, taking derivative in 𝑤, 

−1 + 𝜙
𝑑𝑝

𝑑𝑤
[1 − 𝐹] − (𝜙𝑝 + 𝑆 − 𝑣)𝑓

𝑑𝑧∗

𝑑𝑤
= 0 ⇒ 𝜙

𝑑𝑝

𝑑𝑤
−

1

1−𝐹
= (𝜙𝑝 + 𝑆 − 𝑣)𝑟

𝑑𝑧∗

𝑑𝑤
  

⇒
𝑑𝑧∗

𝑑𝑤
=

1

(𝜙𝑝+𝑆−𝑣)𝑟
(𝜙

𝑑𝑝

𝑑𝑤
−

1

1−𝐹
) =

1−𝐹

(𝑤−𝑣)𝑟
(𝜙

𝑑𝑝

𝑑𝑤
−

1

1−𝐹
) =

(1−𝐹)2

(𝑤−𝑣)𝑓
(𝜙

𝑑𝑝

𝑑𝑤
−

1

1−𝐹
)  

For an isoelastic demand, 𝑦 = 𝑎𝑝−𝑏, 𝑝∗ satisfy this equation,  

(−𝑝 +
𝑏

𝜙(𝑏−1)
𝑤) (𝑏 − 1)𝑎𝑝−𝑏−1 + 𝜇 − Θ(𝑧∗(𝑝)) = 0  

Taking derivative in 𝑤, 

(−
𝑑𝑝

𝑑𝑤
+

𝑏

𝜙(𝑏−1)
) (𝑏 − 1)𝑎𝑝−𝑏−1 + (−𝑝 +

𝑏

𝜙(𝑏−1)
𝑤) (−𝑏 − 1)(𝑏 − 1)𝑎𝑝−𝑏−2

𝑑𝑝

𝑑𝑤
+ (1 −

𝐹)
𝑑𝑧∗

𝑑𝑤
= 0  

Substituting 
𝑑𝑧∗

𝑑𝑤
 , 

⇒ (−
𝑑𝑝

𝑑𝑤
+

𝑏

𝜙(𝑏−1)
) (𝑏 − 1)𝑎𝑝−𝑏−1 + (−𝑝 +

𝑏

𝜙(𝑏−1)
𝑤) (−𝑏 − 1)(𝑏 − 1)𝑎𝑝−𝑏−2

𝑑𝑝

𝑑𝑤
+

(1−𝐹)3

(𝑤−𝑣)𝑓
(𝜙

𝑑𝑝

𝑑𝑤
−

1

1−𝐹
) = 0  

⇒
𝑑𝑝

𝑑𝑤
= −

𝑝(𝑎𝑏𝑓(𝑣−𝑤)+(−1+𝐹)2𝑝1+𝑏𝜙)

(−1+𝐹)3𝑝2+𝑏𝜙2−𝑎𝑏𝑓(𝑣−𝑤)(𝑤+𝑏𝑤+𝑝𝜙−𝑏𝑝𝜙)
=

(1−𝐹)2𝑝2+𝑏𝜙−𝑎𝑏𝑝𝑓(𝑤−𝑣)

(1−𝐹)3𝑝2+𝑏𝜙2−𝑎𝑏𝑓(𝑤−𝑣)(𝑤(𝑏+1)−𝑝𝜙(𝑏−1)) 
=

(1−𝐹)𝑝2+𝑏𝜙−𝑎𝑏𝑝𝑟(𝑤−𝑣)

(1−𝐹)2𝑝2+𝑏𝜙2−𝑎𝑏𝑟(𝑤−𝑣)(𝑤(𝑏+1)−𝑝𝜙(𝑏−1)) 
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E: Numerical Analysis 

1. Linear demand: 

𝑎 = 100, 𝑏 = 1, 𝑆 = 10, 𝑣 = 15, uniform[−10,10] 

𝜇 = 0; 𝑓(𝑢) =
1

20
; 𝐹(𝑢) =

𝑢+10

20
 ; 𝐹[𝑧∗] =

𝑧∗+10

20
; 

Θ(𝑧∗) =
1

20
∫ (𝑢 − 𝑧∗)𝑑𝑢
10

𝑧∗
=

1

40
(𝑧∗ − 10)2;  

Following stocking decision approach- 

Condition: 𝜙𝑎 − 𝑏(𝑤 − 2𝑆) + 𝜙𝐴 > 0 ⇒ 0.9 ∗ 100 − (𝑤 − 20) − 0.9 ∗ 10 > 0 ⇒
101 > 𝑤  

𝑧∗ satisfy: 

−(𝑤 − 𝑣) + (𝜙𝑝∗(𝑧∗) + 𝑆 − 𝑣)[1 − 𝐹(𝑧∗)] = 0  

⇒ −(𝑤 − 𝑣) + (
𝜙𝑎+𝑏𝑤

2𝑏
+𝜙

𝜇−𝛩(𝑧∗)

2𝑏
+ 𝑆 − 𝑣) [1 − 𝐹(𝑧∗)] = 0  

⇒ −𝑤 + 15 + (50𝜙 +
𝑤

2
− 𝜙

(𝑧∗−10)2

80
− 5) (

10−𝑧∗

20
) = 0  

⇒ 𝑤 = (15 + (50𝜙 −
𝜙

80
(𝑧∗ − 10)2 − 5) (

10−𝑧∗

20
)) (

40

30+𝑧∗
)  

The solution of this equation in 𝑧∗is tedious, therefore, we express the solution in 𝑤 

defining 𝑤 = 𝑔(𝑧∗).  

𝑝∗ can be obtained as, 𝑝∗(𝑧) =
𝜙𝑎+𝑏𝑤

2𝜙𝑏
+
𝜇−𝛩(𝑧)

2𝑏
= 50 +

𝑤

2𝜙
−
(𝑧∗−10)2

80
  

The corresponding cost-pass-through, 

𝑑𝑝∗

𝑑𝑤
=

1

2𝜙
(1 −

𝜙(1+𝐹)

2𝑏𝑟(𝜙𝑝+𝑆−𝑣)−𝜙(1−𝐹)
) =

1

2𝜙
(1 −

𝜙
𝑧∗+30

20

2(𝜙𝑝−5)
1

10−𝑧∗
−𝜙

10−𝑧∗

20

)  

For 𝜙 = 0.85,  

𝑤 = (15 + (40 −
0.85(𝑧∗−10)2

80
) (

10−𝑧∗

20
)) (

40

30+𝑧∗
)  

𝑤|𝑧∗=−10 = (15 + (40 −
0.85(−10−10)2

80
) (

10+10

20
)) (

40

30−10
) = 101  

𝑤|𝑧∗=10 = (15 + (40 −
0.85(10−10)2

80
) (

10−10

20
)) (

40

30+10
) = 15  

𝑝∗(𝑧) = 50 +
𝑤

2∗0.85
−
(𝑧∗−10)2

80
  

𝑑𝑝∗

𝑑𝑤
=

1

2∗0.85
(1 −

0.85∗
𝑧∗+30

20

2(0.85∗𝑝−5)
1

10−𝑧∗
−0.85∗

10−𝑧∗

20

)  

 

2. Isoelastic demand: 

Let assume an isoelastic demand function 𝑦 = 𝑎𝑝−3, a per unit shortage cost of 𝑆 = 10, a per-unit 

salvage price of 𝑣 = 15, and the uncertainty is uniformly distributed on the interval [−5,5]. 
Therefore, it follows, 

𝜇 = 0; 𝑓(𝑢) = 0.1; 𝐹(𝑢) =
𝑢+5

10
 ;  

𝐹[𝑧∗] =
𝑧∗+5

10
=

𝜙𝑝+10−𝑤

𝜙𝑝+10−15
⇒ 𝑧∗ =

5(25+𝑝−2𝑤)

−5+𝑝
=
5(25−2𝑤+𝑝𝜙)

−5+𝑝𝜙
  ; 1 − 𝐹 =

𝑤−15

𝜙𝑝−5
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Θ(𝑧∗(𝑝)) =
1

10
∫ (𝑢 − 𝑧∗)𝑑𝑢
5

𝑧∗
=

1

20
(𝑧∗ − 5)2 =

1

20
(
5(25−2𝑤+𝑝𝜙)

−5+𝑝𝜙
− 5)

2

=
5(−15+𝑤)2

(−5+𝑝𝜙)2
;  

Following the pricing decision approach, 

𝑝∗satisfy, (−𝑝 +
𝑏

𝜙(𝑏−1)
𝑤) (𝑏 − 1)𝑎𝑝−𝑏−1 + 𝜇 − Θ(𝑧∗(𝑝)) = 0 

⇒ (−𝑝 +
3

2𝜙
𝑤)2𝑎𝑝−4 −

5(−15+𝑤)2

(−5+𝑝𝜙)2
= 0 ⇒

𝑎(3𝑤−2𝑝𝜙)

𝑝4𝜙
−
5(−15+𝑤)2

(−5+𝑝𝜙)2
= 0   

The solution in 𝑝 is very tedious, therefore, we obtain the solution as an inverse function, 

𝑤 = 𝑔(𝑝∗) ⇒ 𝑝∗ = 𝑔−1(𝑤). The solution in 𝑤, gives two roots, we accept the one that 

satisfy 𝑤 ≤ 𝑝. 

For 𝜙 = 1, 

 𝑤 = −
1

10
(−5 + 𝑝)2 (−

150

(−5+𝑝)2
−
3𝑎

𝑝4
+√

𝑎(9𝑎(−5+𝑝)2+20(45−2𝑝)𝑝4)

(−5+𝑝)2𝑝8
)  

For 𝜙 = 0.85, 

𝑤 = −
1

10
(5 −

17𝑝

20
)
2

(−
150

(5−
17𝑝

20
)
2 −

60𝑎

17𝑝4
+
20

17
√
𝑎(9𝑎(100−17𝑝)2−680𝑝4(−450+17𝑝))

(100−17𝑝)2𝑝8
)   

For 𝜙 = 0.7, 

𝑤 = −
1

10
(5 −

7𝑝

10
)
2

(−
15000

(50−7𝑝)2
−
30𝑎

7𝑝4
+
10

7
√
𝑎(9𝑎(50−7𝑝)2+280(225−7𝑝)𝑝4)

(50−7𝑝)2𝑝8
)   

The minimum value of the wholesale price is the salvage price 𝑣 = 15 and the maximum 

value is +∞. It is to be mentioned, as 𝑤 → ∞, the demand 𝑦 → 0. We select a range of 

retail prices such that the corresponding wholesale price remain greater than the salvage 

price 15. Assuming 𝑎 = 1000000, for 𝑝 ∈ [33,60], the price-comparison plot is shown in 

Figure 7.4. 

 

The corresponding cost-pass-through is ⇒
𝑑𝑝

𝑑𝑤
=

(1−𝐹)2𝑝2+𝑏𝜙−𝑎𝑏𝑝𝑓(𝑤−𝑣)

(1−𝐹)3𝑝2+𝑏𝜙2−𝑎𝑏𝑓(𝑤−𝑣)(𝑤(𝑏+1)−𝑝𝜙(𝑏−1))
=

(
𝑤−15

𝜙𝑝−5
)
2
𝑝5𝜙−

3𝑎

10
𝑝(𝑤−15)

(
𝑤−15

𝜙𝑝−5
)
3
𝑝5𝜙2−

3𝑎

10
(𝑤−15)(4𝑤−2𝜙𝑝)

= −
(𝑝(−5+𝑝𝜙)(−10𝑝4(−15+𝑤)𝜙+3𝑎(−5+𝑝𝜙)2))

(2(5𝑝5(−15+𝑤)2𝜙2−3𝑎(2𝑤−𝑝𝜙)(−5+𝑝𝜙)3))
  

 

For, 𝜙 = {0.7,0.85,1}, 𝑎 = 1000000 and 𝑝 ∈ [33,60], the cost-pass-through and price 

fluctuation plots are illustrated in Figure 7.5 and 7.6 respectively. 

 

It is enough to check the condition for optimality for 𝜙 = 1 only, because both conditions 

have ‘less than’ constraints. For 𝜙 = 1, the conditions are similar to what is presented in 

the numerical section of Chapter 5.  

 

 

F. Detail calculation of equations 
 

𝜋𝑟 =
𝜙𝑝𝐷 − 𝑤𝑞 + 𝑣(𝑞 − 𝐷)

𝜙𝑝𝑞 − 𝑤𝑞 − 𝑆(𝐷 − 𝑞)
   
; 𝐷 ≤ 𝑞
;𝐷 > 𝑞

 
(1) 
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𝜋𝑟 =
𝜙𝑝(𝑦 + 𝜖) − 𝑤(𝑦 + 𝑧) + 𝑣(𝑧 − 𝜖)

𝜙𝑝(𝑦 + 𝑧) − 𝑤(𝑦 + 𝑧) − 𝑆(𝜖 − 𝑧)
     
; 𝜖 ≤ 𝑧
; 𝜖 > 𝑧

    
→ 𝑙𝑒𝑓𝑡𝑜𝑣𝑒𝑟
→ 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒

 
(2) 

𝐸[𝜋𝑟] = ∫ [𝜙𝑝(𝑦 + 𝑢) + 𝑣(𝑧 − 𝑢)]𝑓(𝑢)𝑑𝑢
𝑧

𝐴
+ ∫ [𝜙𝑝(𝑦 + 𝑧) − 𝑆(𝑢 −

𝐵

𝑧

𝑧)]𝑓(𝑢)𝑑𝑢 − 𝑤(𝑦 + 𝑧)  

= ∫ 𝜙𝑝(𝑦 + 𝑢)𝑓(𝑢)𝑑𝑢
𝑧

𝐴
+ ∫ 𝑣(𝑧 − 𝑢)𝑓(𝑢)𝑑𝑢

𝑧

𝐴
+ ∫ 𝜙𝑝(𝑦 + 𝑢 − 𝑢 +

𝐵

𝑧

𝑧)𝑓(𝑢)𝑑𝑢 − ∫ 𝑆(𝑢 − 𝑧)𝑓(𝑢)𝑑𝑢
𝐵

𝑧
− 𝑤(𝑦 + 𝜇 − 𝜇 + 𝑧)  

= ∫ 𝜙𝑝(𝑦 + 𝑢)𝑓(𝑢)𝑑𝑢
𝑧

𝐴
+ ∫ 𝑣(𝑧 − 𝑢)𝑓(𝑢)𝑑𝑢

𝑧

𝐴
+ ∫ 𝜙𝑝(𝑦 + 𝑢)𝑓(𝑢)𝑑𝑢

𝐵

𝑧
−

∫ 𝜙𝑝(𝑢 − 𝑧)𝑓(𝑢)𝑑𝑢
𝐵

𝑧
− ∫ 𝑆(𝑢 − 𝑧)𝑓(𝑢)𝑑𝑢

𝐵

𝑧
− 𝑤(𝑦 + 𝜇) − 𝑤(𝑧 − 𝜇)  

= 𝜙𝑝(𝑦 + 𝜇) − 𝑤(𝑦 + 𝜇) + ∫ 𝑣(𝑧 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑧

𝐴
− ∫ (𝜙𝑝 + 𝑆)(𝑢 −

𝐵

𝑧

𝑧)𝑓(𝑢)𝑑𝑢 − 𝑤(𝑧 − 𝜇)  

= (𝜙𝑝 − 𝑤)(𝑦 + 𝜇) + ∫ 𝑣(𝑧 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑧

𝐴
− ∫ 𝑤(𝑧 − 𝑢)𝑓(𝑢)𝑑𝑢

𝑧

𝐴
− ∫ 𝑤(𝑧 −

𝐵

𝑧

𝑢)𝑓(𝑢)𝑑𝑢 − ∫ (𝜙𝑝 + 𝑆)(𝑢 − 𝑧)𝑓(𝑢)𝑑𝑢
𝐵

𝑧
  

= (𝜙𝑝 − 𝑤)(𝑦 + 𝜇) − ∫ (𝑤 − 𝑣)(𝑧 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑧

𝐴
+ ∫ 𝑤(𝑢 − 𝑧)𝑓(𝑢)𝑑𝑢

𝐵

𝑧
−

∫ (𝜙𝑝 + 𝑆)(𝑢 − 𝑧)𝑓(𝑢)𝑑𝑢
𝐵

𝑧
  

= (𝜙𝑝 − 𝑤)(𝑦 + 𝜇) − (𝑤 − 𝑣)∫ (𝑧 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑧

𝐴
− (𝜙𝑝 + 𝑆 − 𝑤)∫ (𝑢 −

𝐵

𝑧

𝑧)𝑓(𝑢)𝑑𝑢  

= (𝜙𝑝 − 𝑤)(𝑦 + 𝜇) − [(𝑤 − 𝑣)Λ(𝑧) + (𝜙𝑝 + 𝑆 − 𝑤)Θ(𝑧)]  

= Ψ(𝑝) − 𝐿(𝑧, 𝑝)  

(3) 

𝐸[𝜋𝑟(𝑧, 𝑝)] = (𝜙𝑝 − 𝑤)(𝑦 + 𝜇) − [(𝑤 − 𝑣)𝛬(𝑧) + (𝜙𝑝 + 𝑆 − 𝑤)𝛩(𝑧)] (4) 

𝜕

𝜕𝑧
(𝐸[𝜋𝑟])  

= −[(𝑤 − 𝑣)𝐹(𝑧) − (𝜙𝑝 + 𝑆 − 𝑤)(1 − 𝐹(𝑧))]  

= −[(𝑤 − 𝑣 + 𝜙𝑝 + 𝑆 − 𝑤)𝐹(𝑧) − (𝜙𝑝 + 𝑆 − 𝑤)]  

= −[(𝜙𝑝 + 𝑆 − 𝑣)𝐹(𝑧) − (𝜙𝑝 + 𝑆 − 𝑣 − 𝑤 + 𝑣)]  

= −[(𝜙𝑝 + 𝑆 − 𝑣)𝐹(𝑧) − (𝜙𝑝 + 𝑆 − 𝑣) + (𝑤 − 𝑣) ]  

(5) 
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= −(𝑤 − 𝑣) + (𝜙𝑝 + 𝑆 − 𝑣)[1 − 𝐹(𝑧)]  

𝜕2

𝜕𝑧2
(𝐸[𝜋𝑟(𝑧|𝑝)]) = −(𝜙𝑝 + 𝑆 − 𝑣)𝑓(𝑧) < 0 , because 𝜙𝑝 > 𝑣 (6) 

𝑑

𝑑𝑝
[Ψ(𝑝)] = 𝜙(𝑦 + 𝜇) + (𝜙𝑝 − 𝑤)𝑦′ = 𝜙 [𝑦′ (𝑝 −

𝑤

𝜙
+

𝑦

𝑦′
) + 𝜇]  

𝜕

𝜕𝑝
[𝐿(𝑧, 𝑝)] =

𝜕

𝜕𝑝
[(𝑤 − 𝑣)Λ(𝑧) + (𝜙𝑝 + 𝑆 − 𝑤)Θ(𝑧)] = 𝜙Θ(𝑧)  

𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝜙𝑝|𝑧)]) =

𝑑

𝑑𝑝
[Ψ(𝜙𝑝)] −

𝜕

𝜕𝑝
[𝐿(𝑧, 𝜙𝑝)] = 𝜙 [𝑦′ (𝑝 −

𝑤

𝜙
+

𝑦

𝑦′
) + 𝜇 −

Θ(𝑧)]  

(7) 

For 𝑦 = 𝑎 − 𝑏𝑝, 

𝑑

𝑑𝑝
[Ψ(𝑝)] = 𝜙 [−𝑏 (𝑝 −

𝑤

𝜙
+
𝑎−𝑏𝑝

−𝑏
) + 𝜇] = −2𝜙𝑏 [𝑝 −

𝜙𝑎+𝑏𝑤

2𝜙𝑏
] + 𝜙𝜇  

𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑝|𝑧)]) = 𝜙 [−2𝑏 [𝑝 −

𝜙𝑎+𝑏𝑤

2𝜙𝑏
] + 𝜇 − 𝛩(𝑧)] = −2𝜙𝑏 [𝑝 −

𝜙𝑎+𝑏𝑤

2𝜙𝑏
−

𝜇−𝛩(𝑧)

2𝑏
]  

(8) 

 
𝜕2

𝜕𝑝2
(𝐸[𝜋𝑟(𝑝|𝑧)]) = −2𝜙𝑏 < 0  (9) 
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2. Multiplicative Demand Uncertainty Case 

 

A. Problem formulation 
 

Let’s assume 𝑧 = 𝑞/𝑦, where 𝑧 is called the stocking factor and can be expressed as 𝑧 =
𝜇 + 𝜎 ∗ (𝑠𝑎𝑓𝑒𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟). Then the retailer’s profit can be expressed as Equation 2 and 

the corresponding optimal policy is the order quantity, 𝑞∗ = 𝑦(𝑝∗)𝑧∗.   

𝜋𝑟 =
𝜙𝑝𝑦𝜖 − 𝑤𝑦𝑧 + 𝑣𝑦(𝑧 − 𝜖)

𝜙𝑝𝑦𝑧 − 𝑤𝑦𝑧 − 𝑆𝑦(𝜖 − 𝑧)
     
; 𝜖 ≤ 𝑧
; 𝜖 > 𝑧

    
→ 𝑙𝑒𝑓𝑡𝑜𝑣𝑒𝑟
→ 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒

 
(2a) 

From Equation 2, the expected retail profit, 

𝐸[𝜋𝑟] = ∫ [𝜙𝑝𝑦𝑢 + 𝑣𝑦(𝑧 − 𝑢)]𝑓(𝑢)𝑑𝑢
𝑧

𝐴

+∫ [𝜙𝑝𝑦𝑧 − 𝑆𝑦(𝑢 − 𝑧)]𝑓(𝑢)𝑑𝑢
𝐵

𝑧

− 𝑤𝑦𝑧 = (𝜙𝑝 − 𝑤)𝑦𝜇 − [(𝑤 − 𝑣)yΛ(𝑧) + (𝜙𝑝 + 𝑆 − 𝑤)yΘ(𝑧)]

= Ψ(𝑝) − 𝐿(𝑧, 𝑝) 

(3a) 

 

Hence, the expected profit is the sum of the riskless profit Ψ(𝑝) = (𝜙𝑝 − 𝑤)𝑦𝜇 minus the 

loss due to uncertainty, 𝐿(𝑧, 𝑝) = [(𝑤 − 𝑣)yΛ(𝑧) + (𝜙𝑝 + 𝑆 − 𝑤)yΘ(𝑧)] (i.e. subtracting 

the loss function from the riskless profit). Here, yΛ(𝑧) = 𝑦 ∫ (𝑧 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑧

𝐴
= expected 

leftover and yΘ(𝑧) = 𝑦 ∫ (𝑢 − 𝑧)𝑓(𝑢)𝑑𝑢
𝐵

𝑧
= expected shortage. The loss function is the 

sum of the overstocking and understocking cost (i.e. 𝐿𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 ∗
 𝐸(𝑙𝑒𝑓𝑡𝑜𝑣𝑒𝑟)  +  𝑢𝑛𝑑𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 ∗ 𝐸(𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒)).  
The retailer’s objective is to maximize, 

𝐸[𝜋𝑟(𝑧, 𝑝)] = (𝜙𝑝 − 𝑤)𝑦𝜇 − [(𝑤 − 𝑣)𝑦𝛬(𝑧) + (𝜙𝑝 + 𝑆 − 𝑤)𝑦𝛩(𝑧)] (4a) 

This is a joint optimization problem in 𝑝 and 𝑧. Therefore, we take partial derivatives of 

the expected profit in 𝑝 and 𝑧, and check if the second order conditions are fulfilled.  
𝜕

𝜕𝑧
(𝐸[𝜋𝑟(𝑧|𝑝)]) = 𝑦[−(𝑤 − 𝑣) + (𝜙𝑝 + 𝑆 − 𝑣)[1 − 𝐹(𝑧)]]  (5a) 

𝜕2

𝜕𝑧2
(𝐸[𝜋𝑟(𝑧|𝑝)]) = −𝑦(𝑝 + 𝑆 − 𝑣)𝑓(𝑧) < 0  (6a) 

𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑝|𝑧)]) =

𝑑

𝑑𝑝
[Ψ(𝑝)] −

𝜕

𝜕𝑝
[𝐿(𝑧, 𝑝)] = 𝜙𝑦′𝜇 [𝑝 −

𝑤

𝜙
+

𝑦

𝑦′
] − 𝜙𝑦Θ(𝑧) −

𝑦′[(𝑤 − 𝑣)Λ(𝑧) + (𝜙𝑝 + 𝑆 − 𝑤)Θ(𝑧)]  
(7a) 

For, 𝑦 = 𝑎 − 𝑏𝑝, 

𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑝|𝑧)]) = 2𝜙𝑏(𝜇 − Θ(𝑧)) [−𝑝 + 𝑝

0 +
1

2𝜙
∗
[(𝑤−𝑣)Λ(𝑧)+SΘ(𝑧)]

(𝜇−Θ(𝑧))
]  

where 𝑝0 =
𝜙𝑎+𝑏𝑤

2𝜙𝑏
 

(8a) 
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𝜕2

𝜕𝑝2
(𝐸[𝜋𝑟(𝑝|𝑧)]) = −2𝜙𝑏(𝜇 − Θ(𝑧)) < 0  (9a) 

For, 𝑦 = 𝑎𝑝−𝑏, 

𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑝|𝑧)]) = 𝜙(𝑏 − 1)𝑎𝑝

−𝑏−1{𝜇 − Θ(𝑧)} [−𝑝 + 𝑝0 +

𝑏

(𝑏−1)𝜙
{
(𝑤−𝑣)Λ(𝑧)+𝑆Θ(𝑧)

𝜇−Θ(𝑧)
}] , where 𝑝0 =

𝑏𝑤

(𝑏−1)𝜙
  

(10a) 

𝜕2

𝜕𝑝2
(𝐸[𝜋𝑟(𝑝|𝑧)]) = −

𝑏+1

𝑝
∗
𝜕

𝜕𝑝
(𝐸[𝜋𝑟]) − 𝜙(𝑏 − 1)𝑎𝑝

−𝑏−1{𝜇 − Θ(𝑧)}  (11a) 

𝜕2

𝜕𝑝2
(𝐸[𝜋𝑟(𝑝|𝑧)])| 𝜕

𝜕𝑝
(𝐸[𝜋𝑟(𝑝|𝑧)])=0

= −𝜙(𝑏 − 1)𝑎𝑝−𝑏−1{𝜇 − Θ(𝑧)} < 0   (12a) 

 

Equation 6a tells us that 𝐸[𝜋𝑟] is concave in 𝑧 for a given 𝑝. In equation 8a and 10a, 𝑝0 is 

the price that maximizes the riskless profit. We can obtain the riskless optimal price as 𝑝0 

by setting the 
𝑑

𝑑𝑝
[Ψ(𝑝)] = 0. In equation 9a and 12a, the non-negativities hold because 

𝜇 − Θ(𝑧) ≥ 𝜇 − Θ(𝐴) = 𝐴 > 0. Therefore, 𝐸[𝜋𝑟] is concave in 𝑝 for a given 𝑧.  
 

B. Proof of Lemma 2 

i. Lemma 2a: 

 

Setting 
𝜕

𝜕𝑧
(𝐸[𝜋𝑟(𝑧|𝑝)]) = 0, we obtain the standard newsvendor result of stocking factor, 

𝑧∗(𝑝) when 𝑝 is fixed (Porteus 1990).  
𝜕

𝜕𝑧
(𝐸[𝜋𝑟(𝑧|𝑝)]) = 𝑦[−(𝑤 − 𝑣) + (𝜙𝑝 + 𝑆 − 𝑣)[1 − 𝐹(𝑧)]] = 0  

⇒ 𝑧∗(𝑝) = 𝐹−1 [
𝜙𝑝+𝑆−𝑤

(𝜙𝑝+𝑆−𝑣)
]  

Then substituting 𝑧∗(𝑝) into the expected profit (Eq. 4a) will convert the joint optimization 

problem into a single variable decision problem52. Alternatively, we can also substitute 

𝑧∗(𝑝) into the partial derivative of the expected profit equation with respect to 𝑝 (Eq. 7a), 
𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑧

∗(𝑝), 𝑝)]) = 𝑦′𝜇 [𝜙𝑝 − 𝑤 + 𝜙
𝑦

𝑦′
] − y𝜙Θ(𝑧∗) − 𝑦′[(𝑤 − 𝑣)Λ(𝑧∗) +

(𝜙𝑝 + 𝑆 − 𝑤)Θ(𝑧∗)]  
(13a) 

                                                           
52 Single variable decision problem in p: 

𝐸[𝜋𝑟(𝑧
∗(𝑝), 𝑝)] = 𝑦 ((𝜙𝑝 − 𝑤)𝜇 − (𝑤 − 𝑣) ∫ (𝐹−1 [

𝜙𝑝+𝑆−𝑤

(𝜙𝑝+𝑆−𝑣)
] − 𝑢)𝑓(𝑢)𝑑𝑢

𝐹−1[
𝜙𝑝+𝑆−𝑤
(𝜙𝑝+𝑆−𝑣)

]

𝐴
−

(𝜙𝑝 + 𝑆 − 𝑤) ∫ (𝑢 − 𝐹−1 [
𝜙𝑝+𝑆−𝑤

(𝜙𝑝+𝑆−𝑣)
]) 𝑓(𝑢)𝑑𝑢

𝐵

𝐹−1[
𝜙𝑝+𝑆−𝑤
(𝜙𝑝+𝑆−𝑣)

]
)  
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For 𝑦 = 𝑎 − 𝑏𝑝 (from Eq. 8a),  
𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = 2𝜙𝑏(𝜇 − Θ(𝑧∗)) [−𝑝 +
𝜙𝑎+𝑏𝑤

2𝜙𝑏
+

1

2𝜙
∗

(𝑤−𝑣)Λ(𝑧∗)+SΘ(𝑧∗)

𝜇−Θ(𝑧∗)
]  

(14a) 

For 𝑦 = 𝑎𝑝−𝑏 (from Eq.10) 
𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = 𝜙(𝑏 − 1)𝑎𝑝−𝑏−1{𝜇 − Θ(𝑧∗)} [−𝑝 +
𝑏𝑤

(𝑏−1)𝜙
+

𝑏

(𝑏−1)𝜙
{
(𝑤−𝑣)Λ(𝑧)+𝑆Θ(𝑧)

𝜇−Θ(𝑧)
}]  

 

If 𝐸[𝜋𝑟(𝑝, 𝑧
∗(𝑝)] is concave in 𝑝 [Proposition 2], then 𝑝∗ is the 𝑝 that satisfies 

𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = 0. Since 𝜇 − Θ(𝑧∗) > 0,   

For 𝑦 = 𝑎 − 𝑏𝑝,  𝑝∗(𝑤) = {𝑝|−𝑝 +
𝜙𝑎+𝑏𝑤

2𝜙𝑏
+

1

2𝜙
∗
(𝑤−𝑣)𝛬(𝑧∗(𝑝))+𝑆𝛩(𝑧∗(𝑝))

𝜇−𝛩(𝑧∗(𝑝))
= 0}  

For 𝑦 = 𝑎𝑝−𝑏,  𝑝∗(𝑤) = {𝑝|−𝑝 +
𝑏

(𝑏−1)𝜙
𝑤 +

𝑏

(𝑏−1)𝜙
∗
(𝑤−𝑣)𝛬(𝑧∗(𝑝))+𝑆𝛩(𝑧∗(𝑝))

(𝜇−𝛩(𝑧∗(𝑝)))
= 0} 

 

 

ii. Lemma 2b: 

Solving 
𝜕

𝜕𝑝
(𝐸[𝜋𝑟]) = 0 (Eq. 8a and 10a), we can obtain, 𝑝∗(𝑧) =

𝜙𝑎+𝑏𝑤

2𝜙𝑏
+

1

2𝜙
𝑋(𝑧) [for 

linear demand] or 𝑝∗(𝑧) =
𝑏𝑤

(𝑏−1)𝜙
+

𝑏

(𝑏−1)𝜙
𝑋(𝑧) [for isoelastic demand] where, (𝑧) =

(𝑤−𝑣)𝛬(𝑧)+𝑆𝛩(𝑧)

(𝜇−Θ(𝑧))
 .  

Then replacing 𝑝∗(𝑧) into the equation 
𝜕

𝜕𝑧
(𝐸[𝜋𝑟]) = 0 (Eq. 5a) would give the single 

variable equation in 𝑧∗: 
𝑑

𝑑𝑧
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))]) = 𝑦(𝑝∗(𝑧)) (−(𝑤 − 𝑣) + (𝜙𝑝∗(𝑧) + 𝑆 − 𝑣)(1 − 𝐹(𝑧))) = 0 

The derivation of the optimal 𝑧∗ requires to prove that the expected profit, 𝐸[𝜋𝑟(𝑧, 𝑝
∗(𝑧))] 

is concave in 𝑧 which is analyzed in Proposition 2.   
 

 

C. Proof of Lemma 3: Defining 𝑋 and 𝑊 

 

Let’s define, 𝑋 = {
(𝑤−𝑣)𝐸[𝑙ⅇ𝑓𝑡𝑜𝑣ⅇ𝑟]+𝑆∗𝐸[𝑠ℎ𝑜𝑟𝑡𝑎𝑔ⅇ]

𝐸[𝑠𝑎𝑙ⅇ𝑠]
} = {

(𝑤−𝑣)𝑦𝛬(𝑧)+𝑆𝑦𝛩(𝑧)

𝑦(𝜇−𝛩(𝑧))
} = {

(𝑤−𝑣)𝛬+𝑆𝛩

𝜇−𝛩
}  

 
𝜕𝑋

𝜕𝑧∗
=
(𝑤−𝑣)𝐹(𝑧∗)−𝑆(1−𝐹(𝑧∗))

(𝜇−𝛩(𝑧∗))
−
[(𝑤−𝑣)𝛬(𝑧∗)+𝑆𝛩(𝑧∗)]∗(1−𝐹(𝑧∗))

(𝜇−𝛩(𝑧∗))
2 =

(𝑤−𝑣)𝐹(𝜇−𝛩)−𝑆(1−𝐹)(𝜇−𝛩)−(𝑤−𝑣)𝛬(1−𝐹)−𝑆𝛩(1−𝐹)

(𝜇−𝛩)2
=
(𝑤−𝑣)(𝐹(𝜇−Θ)−𝛬(1−𝐹))−𝑆(1−𝐹)𝜇

(𝜇−𝛩)2
=
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(𝑤−𝑣)(𝜇−Θ)(1−𝐹)(
𝐹

(1−𝐹)
−

𝛬

(𝜇−Θ)
)−𝑆(1−𝐹)𝜇

(𝜇−𝛩)2
=
(1−𝐹)(𝜇−Θ)

(𝜇−𝛩)2
[(𝑤 − 𝑣) (

𝐹

(1−𝐹)
−

𝛬

(𝜇−Θ)
) − 𝑆

𝜇

(𝜇−Θ)
] =

(1−𝐹)

(𝜇−Θ)
[(𝑤 − 𝑣) (

𝐹

(1−𝐹)
−

𝛬

(𝜇−Θ)
) − 𝑆

𝜇

(𝜇−Θ)
]  

 

Here, 
𝐶𝐷𝐹

1−𝐶𝐷𝐹
=

𝐹

(1−𝐹)
> 1 >

𝛬

(𝜇−Θ)
=
𝐸[𝑙ⅇ𝑓𝑡𝑜𝑣ⅇ𝑟]

𝐸[𝑠𝑎𝑙ⅇ𝑠]
 .  

Therefore, for zero shortage cost (i.e. 𝑆 = 0), 
𝜕𝑋

𝜕𝑧
 is positive. For positive shortage cost, 

𝜕𝑋

𝜕𝑧
 

is positive if (𝑤 − 𝑣) (
𝐹

(1−𝐹)
−

𝛬

(𝜇−Θ)
) > 𝑆

𝜇

(𝜇−Θ)
; otherwise, 

𝜕𝑋

𝜕𝑧
 is negative if (𝑤 −

𝑣) (
𝐹

(1−𝐹)
−

𝛬

(𝜇−Θ)
) < 𝑆

𝜇

(𝜇−Θ)
 . 

 

Now let’s define, 𝑊 =
𝜙(1−𝐹)

𝑓(𝜙𝑝+𝑆−𝑣)

𝜕𝑋

𝜕𝑧∗
  

Since 𝜙, (1 − 𝐹), 𝑓, (𝑝 + 𝑆 − 𝛽) are non-negative terms, therefore, the sign of 𝑊 follows 

the sign of 
𝜕𝑋

𝜕𝑧
 . It is to be mentioned, following the pricing decision approach, 

𝜕𝑋

𝜕𝑝
=
𝜕𝑋

𝜕𝑧
∗

𝜕𝑧

𝜕𝑝
 takes the value of 𝑊.  

In further calculations, we will be using these two variables 𝑋 and 𝑊 frequently. 

 

D. Condition for concavity 

i. Pricing Decision Approach 

Proposition:  

𝐸[Π𝑟(𝑝, 𝑧
∗(𝑝))] is concave in 𝑝 for the given conditions- 

1. For 𝑦 = 𝑎 − 𝑏𝑝, 
1

2𝜙
𝑊 < 1 

2. For 𝑦 = 𝑎𝑝−𝑏, 𝑏 > 1,  
𝑏

(𝑏−1)𝜙
𝑊 < 1  

where, 𝑊 =
𝜙(1−𝐹)

𝑓(𝜙𝑝+𝑆−𝛽)
∗
𝜕𝑋

𝜕𝑧
.  

Hence, the optimal 𝑝∗ is the 𝑝 that satisfies 
𝑑𝐸[Π𝑟(𝑝,𝑧

∗(𝑝))]

𝑑𝑝
=  0.  

Proof:  

We can obtain 𝑧∗(𝑝) from 𝐹[𝑧∗(𝑝)] =
𝜙𝑝+𝑆−𝑤

(𝜙𝑝+𝑆−𝑣)
 

Differentiating 𝐹[𝑧∗(𝑝)] =
𝜙𝑝+𝑆−𝑤

(𝜙𝑝+𝑆−𝑣)
 with respect to 𝑝, 

𝑓 ∗
𝑑𝑧∗

𝑑𝑝
=

𝜙

𝜙𝑝+𝑆−𝑣
− 𝜙

𝜙𝑝+𝑆−𝑤

(𝜙𝑝+𝑆−𝑣)2
=

𝜙

𝜙𝑝+𝑆−𝑣
−

𝜙𝐹

𝜙𝑝+𝑆−𝑣
= 𝜙

1−𝐹

(𝜙𝑝+𝑆−𝑣)
  

Therefore, 
𝑑𝑧∗

𝑑𝑝
= 𝜙

1−𝐹

𝑓(𝜙𝑝+𝑆−𝑣)
> 0 . Hence 𝑧∗ is increasing in 𝑝 
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Replacing the 𝑧∗(𝑝) into 𝜕𝐸/𝜕𝑝: 

 

Linear Demand 

For 𝑦 = 𝑎 − 𝑏𝑝, 
𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = 2𝜙𝑏 (𝜇 − Θ(𝑧∗(𝑝))) [−𝑝 +
𝜙𝑎+𝑏𝑤

2𝜙𝑏
+

1

2𝜙
∗ 𝑋(𝑧∗(𝑝))]  

 
𝑑2

𝑑𝑝2
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = 2𝜙𝑏(1 − 𝐹)
𝑑𝑧∗

𝑑𝑝
[−𝑝 +

𝜙𝑎+𝑏𝑤

2𝜙𝑏
+

1

2𝜙
∗ 𝑋] + 2𝜙𝑏(𝜇 −

Θ)
𝑑

𝑑𝑝
[−𝑝 +

𝜙𝑎+𝑏𝑤

2𝑏𝜙
+

1

2𝜙
∗ 𝑋]  

 
𝑑2

𝑑𝑝2
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) =
(1−𝐹)

(𝜇−Θ)
∗
𝑑𝑧∗

𝑑𝑝
∗
𝑑(𝐸[𝜋𝑟])

𝑑𝑝
+ 2𝜙𝑏(𝜇 − Θ) [−1 +

1

2𝜙

𝑑𝑋

𝑑𝑧∗
∗
𝑑𝑧∗

𝑑𝑝
] =

(1−𝐹)

(𝜇−Θ)
∗
𝑑𝑧∗

𝑑𝑝
∗
𝑑(𝐸[𝜋𝑟])

𝑑𝑝
+ 2𝜙𝑏(𝜇 − Θ) [−1 +

1

2𝜙
𝑊]  

Here, 𝑊 =
𝑑𝑋

𝑑𝑧∗
∗
𝑑𝑧∗

𝑑𝑝
=

𝜙(1−𝐹)

𝑓(𝜙𝑝+𝑆−𝛽)
∗
(1−𝐹)

(𝜇−Θ)
[(𝑤 − 𝛽) (

𝐹

(1−𝐹)
−

𝛬

(𝜇−Θ)
) − 𝑆

𝜇

(𝜇−Θ)
] 

 
𝑑2(𝐸[𝜋𝑟(𝑝,𝑧

∗(𝑝))])

𝑑𝑝2
|𝑑(𝐸[𝜋𝑟(𝑝,𝑧∗(𝑝))])

𝑑𝑝
=0
= 2𝜙𝑏(𝜇 − Θ) [−1 +

1

2𝜙
𝑊]  

Since 2𝑏(𝜇 − Θ) > 0, therefore for 
1

2𝜙
𝑊 < 1, 

𝑑2(𝐸[𝜋𝑟(𝑝,𝑧
∗(𝑝))])

𝑑𝑝2
|𝑑(𝐸[𝜋𝑟(𝑝,𝑧∗(𝑝))])

𝑑𝑝
=0
< 0 

Hence, 𝐸[Π𝑟(𝑝, 𝑧
∗(𝑝))] is concave in 𝑝 for the given condition and the optimal 𝑝∗ is the 𝑝 

that satisfies 
𝑑𝐸[Π𝑟(𝑝,𝑧

∗(𝑝))]

𝑑𝑝
=  0.  

 

Isoelastic Demand 

 

For 𝑦 = 𝑎𝑝−𝑏, 
𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = 𝜙(𝑏 − 1)𝑎𝑝−𝑏−1{𝜇 − Θ(𝑧∗)} [−𝑝 +
𝑏𝑤

(𝑏−1)𝜙
+

𝑏

(𝑏−1)𝜙
𝑋(𝑧∗(𝑝)) ]  

Let’s define, 𝑅(𝑝) = −𝑝 +
𝑏𝑤

(𝑏−1)𝜙
+

𝑏

(𝑏−1)𝜙
𝑋 

𝑑

𝑑𝑝
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = 𝜙(𝑏 − 1)𝑎𝑝−𝑏−1{𝜇 − Θ}𝑅(𝑝)  

𝑑2

𝑑𝑝2
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = 𝜙(𝑏 − 1) [−(𝑏 + 1)𝑎𝑝−𝑏−1−1(𝜇 − Θ)𝑅 + 𝑎𝑝−𝑏−1(1 −

𝐹)
𝑑𝑧∗

𝑑𝑝
𝑅 + 𝑎𝑝−𝑏−1(𝜇 − Θ)

𝑑𝑅

𝑑𝑝
]  

= 𝜙(𝑏 − 1)𝑎𝑝−𝑏−1 [−(𝑏 + 1)𝑝−1(𝜇 − Θ)𝑅 + (1 − 𝐹)
𝑑𝑧∗

𝑑𝑝
𝑅 + (𝜇 − Θ)

𝑑𝑅

𝑑𝑝
]  

𝑑𝑅(𝑝)

𝑑𝑝
= −1 +

𝑏

(𝑏−1)𝜙

𝑑𝑋

𝑑𝑧∗
∗
𝑑𝑧∗

𝑑𝑝
= −1 +

𝑏

(𝑏−1)𝜙
𝑊  

Substituting 
𝑑𝑅(𝑝)

𝑑𝑝
,  
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𝑑2

𝑑𝑝2
(𝐸[𝜋𝑟(𝑝, 𝑧

∗(𝑝))]) = 𝜙(𝑏 − 1)𝑎𝑝−𝑏−1 [−(𝑏 + 1)𝑝−1(𝜇 − Θ)𝑅 + (1 − 𝐹)
𝑑𝑧∗

𝑑𝑝
𝑅 +

(𝜇 − Θ) (−1 +
𝑏

(𝑏−1)𝜙
𝑊)]  

= −(𝑏 + 1)𝑝−1
𝑑

𝑑𝑝
(𝐸[𝜋𝑟]) + (1 − 𝐹) ∗

𝑑𝑧∗

𝑑𝑝
∗
𝑑

𝑑𝑝
(𝐸[𝜋𝑟]) + 𝜙(𝑏 − 1)𝑎𝑝

−𝑏−1(𝜇 −

Θ) (−1 +
𝑏

(𝑏−1)𝜙
𝑊)  

𝑑2(𝐸[𝜋𝑟(𝑝,𝑧
∗(𝑝))])

𝑑𝑝2
|𝑑(𝐸[𝜋𝑟(𝑝,𝑧∗(𝑝))])

𝑑𝑝
=0
= 𝜙(𝑏 − 1)𝑎𝑝−𝑏−1(𝜇 − Θ) (−1 +

𝑏

(𝑏−1)𝜙
𝑊)   

Since 𝜙(𝑏 − 1)𝑎𝑝−𝑏−1(𝜇 − Θ) > 0, therefore for 
𝑏

(𝑏−1)𝜙
𝑊 < 1, 

𝑑2(𝐸[𝜋𝑟(𝑝,𝑧
∗(𝑝))])

𝑑𝑝2
|𝑑(𝐸[𝜋𝑟(𝑝,𝑧∗(𝑝))])

𝑑𝑝
=0
< 0 

Hence, 𝐸[Π𝑟(𝑝, 𝑧
∗(𝑝))] is concave in 𝑝 for the given condition and the optimal 𝑝∗ is the 𝑝 

that satisfies 
𝑑𝐸[Π𝑟(𝑝,𝑧

∗(𝑝))]

𝑑𝑝
=  0.  

 

ii. Stocking Decision Approach:  

Proposition:  

𝐸[Π𝑟(𝑧, 𝑝
∗(𝑧))] is concave in 𝑧 for the given conditions- 

1. For 𝑦 = 𝑎 − 𝑏𝑝, 
1

2𝜙
𝑊 < 1 

2. For 𝑦 = 𝑎𝑝−𝑏, 𝑏 > 1,  
𝑏

(𝑏−1)𝜙
𝑊 < 1  

where, 𝑊 =
𝜙(1−𝐹)

𝑓(𝜙𝑝+𝑆−𝛽)
∗
𝜕𝑋

𝜕𝑧
.  

Hence, the optimal 𝑧∗ is the 𝑧 that satisfies 
𝑑𝐸[Π𝑟(𝑧,𝑝

∗(𝑧))]

𝑑𝑧
=  0.  

Proof: 

 

Linear Demand Form: 

Replacing the 𝑝∗(𝑧) into 𝜕𝐸/𝜕𝑧: 

𝑑

𝑑𝑧
𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))] = (𝑎 − 𝑏𝑝∗) (−(𝑤 − 𝛽) + (𝜙𝑝∗ + 𝑆 − 𝛽)(1 − 𝐹(𝑧)))  

𝑑2

𝑑𝑧2
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))]) = −𝑏
𝑑𝑝∗

𝑑𝑧
∗
𝑑

𝑑𝑧
𝐸[𝜋𝑟]

𝑎−𝑏𝑝∗ 
+ (𝑎 − 𝑏𝑝∗) (𝜙 (

𝑑𝑝∗

𝑑𝑧
) (1 − 𝐹) −

(𝜙𝑝∗ + 𝑆 − 𝛽)𝑓)   
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𝑑2(𝐸[𝜋𝑟(𝑧,𝑝
∗(𝑧))])

𝑑𝑧2
|𝑑(𝐸[𝜋𝑟(𝑧,𝑝∗(𝑧))])

𝑑𝑧
=0
= (𝑎 − 𝑏𝑝∗) (𝜙 (

𝑑𝑝∗

𝑑𝑧
) (1 − 𝐹) − (𝜙𝑝∗ + 𝑆 − 𝛽)𝑓) =

−(𝑎 − 𝑏𝑝∗)(𝜙𝑝∗ + 𝑆 − 𝛽)𝑓 (1 −
𝜙(1−𝐹)

(𝜙𝑝∗+𝑆−𝛽)𝑓
(
𝑑𝑝∗

𝑑𝑧
))  

From, 𝑝∗(𝑧) =
𝜙𝑎+𝑏𝑤

2𝜙𝑏
+

𝑋

2𝜙
 , 

𝑑𝑝∗

𝑑𝑧
=

1

2𝜙

𝑑𝑋(𝑧)

𝑑𝑧
=

1

2𝜙
∗
(1−𝐹)

(𝜇−Θ)
[(𝑤 − 𝛽) (

𝐹

(1−𝐹)
−

𝛬

(𝜇−Θ)
) − 𝑆

𝜇

(𝜇−Θ)
]  

Hence, substituting 
𝑑𝑝∗

𝑑𝑧
 ,   

𝑑2(𝐸[𝜋𝑟(𝑧,𝑝
∗(𝑧))])

𝑑𝑧2
|𝑑(𝐸[𝜋𝑟(𝑧,𝑝∗(𝑧))])

𝑑𝑧
=0
= −(𝑎 − 𝑏𝑝∗)(𝜙𝑝∗ + 𝑆 − 𝛽)𝑓 (1 −

1

2𝜙
∗

𝜙(1−𝐹)

(𝜙𝑝∗+𝑆−𝛽)𝑓
∗

(
𝑑𝑋(𝑧)

𝑑𝑧
)) = −(𝑎 − 𝑏𝑝∗)(𝜙𝑝∗ + 𝑆 − 𝛽)𝑓 (1 −

1

2𝜙
∗ 𝑊)   

Since, (𝑎 − 𝑏𝑝∗)(𝜙𝑝∗ + 𝑆 − 𝛽)𝑓 > 0, therefore, for 
1

2𝜙
∗ 𝑊 < 1,   

𝑑2(𝐸[𝜋𝑟(𝑧,𝑝
∗(𝑧))])

𝑑𝑧2
|𝑑(𝐸[𝜋𝑟(𝑧,𝑝∗(𝑧))])

𝑑𝑧
=0
< 0  

Therefore, 𝐸[𝜋𝑟(𝑧, 𝑝
∗(𝑧))] is concave in 𝑧 and the optimal 𝑧∗ is the 𝑧 that satisfy 

𝑑

𝑑𝑧
𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))] = 0. 

 

Isoelastic Demand Form:  

Replacing the 𝑝∗(𝑧) into 𝜕𝐸/𝜕𝑧: 

𝑑

𝑑𝑧
𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))] = (𝑎𝑝∗(−𝑏)) (−(𝑤 − 𝛽) + (𝜙𝑝∗ + 𝑆 − 𝛽)(1 − 𝐹(𝑧)))  

𝑑2

𝑑𝑧2
(𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))]) = −𝑏𝑎𝑝∗(−𝑏−1)
𝑑𝑝∗

𝑑𝑧
∗

𝑑

𝑑𝑧
𝐸[𝜋𝑟]

𝑎𝑝∗(−𝑏) 
+ (𝑎𝑝∗(−𝑏)) (𝜙 (

𝑑𝑝∗

𝑑𝑧
) (1 − 𝐹) −

(𝜙𝑝∗ + 𝑆 − 𝛽)𝑓)   

𝑑2(𝐸[𝜋𝑟(𝑧,𝑝
∗(𝑧))])

𝑑𝑧2
|𝑑(𝐸[𝜋𝑟(𝑧,𝑝∗(𝑧))])

𝑑𝑧
=0
= (𝑎𝑝∗(−𝑏)) (𝜙 (

𝑑𝑝∗

𝑑𝑧
) (1 − 𝐹) − (𝜙𝑝∗ + 𝑆 − 𝛽)𝑓) =

−(𝑎𝑝∗(−𝑏))(𝜙𝑝∗ + 𝑆 − 𝛽)𝑓 (1 −
𝜙(1−𝐹)

(𝜙𝑝∗+𝑆−𝛽)𝑓
(
𝑑𝑝∗

𝑑𝑧
))  
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From, 𝑝∗(𝑧) =
𝑏

(𝑏−1)𝜙
(𝑤 + 𝑋) , 

𝑑𝑝∗

𝑑𝑧
=

𝑏

(𝑏−1)𝜙

𝑑𝑋(𝑧)

𝑑𝑧
=

𝑏

(𝑏−1)𝜙
∗
(1−𝐹)

(𝜇−Θ)
[(𝑤 − 𝛽) (

𝐹

(1−𝐹)
−

𝛬

(𝜇−Θ)
) − 𝑆

𝜇

(𝜇−Θ)
]  

Hence, substituting 
𝑑𝑝∗

𝑑𝑧
 ,   

𝑑2(𝐸[𝜋𝑟(𝑧,𝑝
∗(𝑧))])

𝑑𝑧2
|𝑑(𝐸[𝜋𝑟(𝑧,𝑝∗(𝑧))])

𝑑𝑧
=0
= −(𝑎𝑝∗(−𝑏))(𝜙𝑝∗ + 𝑆 − 𝛽)𝑓 (1 −

𝑏

(𝑏−1)𝜙
∗

𝜙(1−𝐹)

(𝜙𝑝∗+𝑆−𝛽)𝑓
∗
𝑑𝑋(𝑧)

𝑑𝑧
) = −(𝑎𝑝∗(−𝑏))(𝜙𝑝∗ + 𝑆 − 𝛽)𝑓 (1 −

𝑏

(𝑏−1)𝜙
∗ 𝑊)  

Since, (𝑎𝑝∗(−𝑏))(𝜙𝑝∗ + 𝑆 − 𝛽)𝑓 > 0, therefore, for 
𝑏

(𝑏−1)𝜙
∗ 𝑊 < 1,   

𝑑2(𝐸[𝜋𝑟(𝑧,𝑝
∗(𝑧))])

𝑑𝑧2
|𝑑(𝐸[𝜋𝑟(𝑧,𝑝∗(𝑧))])

𝑑𝑧
=0
< 0  

Therefore, 𝐸[𝜋𝑟(𝑧, 𝑝
∗(𝑧))] is concave in 𝑧 and the optimal 𝑧∗ is the 𝑧 that satisfy 

𝑑

𝑑𝑧
𝐸[𝜋𝑟(𝑧, 𝑝

∗(𝑧))] = 0. 

 

E. Cost-pass-through:  

 

Proposition 3: In the case of revenue-sharing newsvendor model with multiplicative 

uncertainty in demand, the retail cost-pass-through is as follows-  

1. For linear demand (i.e. 𝐷 = (𝑎 − 𝑏𝑝)𝜖), 
𝑑𝑝∗

𝑑𝑤
=

1

2𝜙
(1 +

𝛬

(𝜇−Θ)
−(

1

(1−𝐹)
−
1

2𝜙
)𝑊

1−
1

2𝜙
𝑊

) 

2. For isoelastic demand (i.e. 𝐷 = (𝑎𝑝−𝑏)𝜖), 
𝑑𝑝∗

𝑑𝑤
=

𝑏

(𝑏−1)𝜙
(1 +

𝛬

(𝜇−Θ)
−(

1

1−𝐹
−

𝑏

(𝑏−1)𝜙
)𝑊

1−
𝑏

(𝑏−1)𝜙
𝑊

) 

where, 𝑊 =
𝜙(1−𝐹)

 𝑓(𝜙𝑝+𝑆−𝑣)
∗
𝜕𝑋

𝜕𝑧
 

Proof:  

i. Pricing Decision Approach: 

𝐹[𝑧∗(𝑝, 𝑤)] =
𝜙𝑝+𝑆−𝑤

𝜙𝑝+𝑆−𝑣
  

Taking derivative in 𝑤, 

 

𝑓(𝑧∗(𝑝, 𝑤))
𝑑

𝑑𝑤
(𝑧∗(𝑝, 𝑤)) =

(𝜙
𝑑𝑝

𝑑𝑤
−1)

(𝜙𝑝+𝑆−𝑣)
−

𝜙𝑝+𝑆−𝑤

(𝜙𝑝+𝑆−𝑣)2
∗ 𝜙

𝑑𝑝

𝑑𝑤
=

𝜙
𝑑𝑝

𝑑𝑤

(𝜙𝑝+𝑆−𝑣)
−

1

(𝜙𝑝+𝑆−𝑣)
−

𝐹∗𝜙
𝑑𝑝

𝑑𝑤

(𝜙𝑝+𝑆−𝑣)
=
𝜙
𝑑𝑝

𝑑𝑤
(1−𝐹)

(𝜙𝑝+𝑆−𝑣)
−

1

(𝜙𝑝+𝑆−𝑣)
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⇒
𝑑𝑧∗(𝑤,𝑝)

𝑑𝑤
=

𝜙(1−𝐹)

(𝜙𝑝+𝑆−𝑣)𝑓
∗
𝑑𝑝

𝑑𝑤
−

1

(𝜙𝑝+𝑆−𝑣)𝑓
=

𝜙(1−𝐹)

(𝜙𝑝+𝑆−𝑣)𝑓
(
𝑑𝑝

𝑑𝑤
−

1

𝜙(1−𝐹)
)  

 

We defined, 𝑋(𝑤, 𝑧∗(𝑝, 𝑤)) =
(𝑤−𝑣)𝛬(𝑧∗(𝑝))+𝑆𝛩(𝑧∗(𝑝))

𝜇−𝛩(𝑧∗(𝑝))
 

𝑑𝑋

𝑑𝑤
=
𝜕𝑋

𝜕𝑤
+

𝜕𝑋

𝜕𝑧∗
∗
𝑑𝑧∗

𝑑𝑤
=

𝛬

(𝜇−Θ)
+

𝜕𝑋

𝜕𝑧∗
∗

𝜙(1−𝐹)

𝑓(𝜙𝑝+𝑆−𝑣)
[
𝑑𝑝

𝑑𝑤
−

1

𝜙(1−𝐹)
]  

⇒
𝑑𝑋

𝑑𝑤
=

𝛬

(𝜇−Θ)
+𝑊 [

𝑑𝑝

𝑑𝑤
−

1

𝜙(1−𝐹)
]  

 

Linear Demand: 

 

For 𝑦 = 𝑎 − 𝑏𝑝, 𝑝∗ has to satisfy the following equation (from Lemma 2a),  

−𝑝∗ +
𝜙𝑎+𝑏𝑤

2𝜙𝑏
+

1

2𝜙
∗ 𝑋(𝑤, 𝑧∗(𝑝∗, 𝑤)) = 0  

Taking derivative in 𝑤, −
𝑑𝑝∗

𝑑𝑤
+

1

2𝜙
+

1

2𝜙
∗
𝑑𝑋

𝑑𝑤
= 0 

By substituting 
𝑑𝑋

𝑑𝑤
 ,   −

𝑑𝑝∗

𝑑𝑤
+

1

2𝜙
+

1

2𝜙
∗ (

𝛬

(𝜇−Θ)
−

𝑊

𝜙(1−𝐹)
+𝑊 ∗

𝑑𝑝∗

𝑑𝑤
) = 0 

⇒
1

2𝜙
(1 +

𝛬

(𝜇−Θ)
−

𝑊

𝜙(1−𝐹)
) = (1 −

𝑊

2𝜙
)
𝑑𝑝∗

𝑑𝑤
  

⇒
𝑑𝑝∗

𝑑𝑤
=

1

2𝜙
(1+

𝛬

(𝜇−Θ)
−

𝑊

𝜙(1−𝐹)
)

(1−
𝑊

2𝜙
)

=
1

2𝜙

(1−
𝑊

2𝜙
+
𝑊

2𝜙
−

𝑊

𝜙(1−𝐹)
+

𝛬

(𝜇−Θ)
)

(1−
𝑊

2𝜙
)

=
1

2𝜙
(1 +

(
1

2𝜙
−

1

𝜙(1−𝐹)
)𝑊+

𝛬

(𝜇−Θ)

(1−
𝑊

2𝜙
)

)  

⇒
𝑑𝑝∗

𝑑𝑤
=

1

2𝜙
(1 +

𝛬

(𝜇−Θ)
−(

1

1−𝐹
−
1

2
)
𝑊

𝜙

1−
1

2𝜙
𝑊

)  

 

Isoelastic Demand: 

 

For 𝑦 = 𝑎𝑝−𝑏, 𝑝∗ has to satisfy this equation,  

−𝑝∗ +
𝑏

(𝑏−1)𝜙
𝑤 +

𝑏

(𝑏−1)𝜙
∗ 𝑋(𝑤, 𝑧∗(𝑝∗, 𝑤)) = 0  

Taking derivative in 𝑤, −
𝑑𝑝∗

𝑑𝑤
+

𝑏

(𝑏−1)𝜙
+

𝑏

(𝑏−1)𝜙
∗
𝑑𝑋

𝑑𝑤
= 0  

Substituting “
𝑑𝑋

𝑑𝑤
”,  

−
𝑑𝑝∗

𝑑𝑤
+

𝑏

(𝑏−1)𝜙
+

𝑏

(𝑏−1)𝜙
∗ (

𝛬

(𝜇−Θ)
−

𝑊

𝜙(1−𝐹)
+𝑊 ∗

𝑑𝑝∗

𝑑𝑤
) = 0  

⇒
𝑏

(𝑏−1)𝜙
∗ [1 +

𝛬

(𝜇−Θ)
−

𝑊

𝜙(1−𝐹)
] = [1 −

𝑏

(𝑏−1)𝜙
∗ 𝑊]

𝑑𝑝∗

𝑑𝑤
  

⇒
𝑑𝑝∗

𝑑𝑤
=

𝑏

(𝑏−1)𝜙
(
1+

𝛬

(𝜇−Θ)
−

𝑊

𝜙(1−𝐹)

1−
𝑏

(𝑏−1)𝜙
∗𝑊

) =
𝑏

(𝑏−1)𝜙
(
1−

𝑏𝑊

(𝑏−1)𝜙
+

𝛬

(𝜇−Θ)
+

𝑏𝑊

(𝑏−1)𝜙
−

𝑊

𝜙(1−𝐹)

1−
𝑏

(𝑏−1)𝜙
𝑊

) =
𝑏

(𝑏−1)𝜙
(1 +

𝛬

(𝜇−Θ)
−(

1

1−𝐹
−

𝑏

(𝑏−1)
)
𝑊

𝜙

1−
𝑏

(𝑏−1)𝜙
𝑊

)  
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ii. Stocking Decision Approach:  

 

We define, 𝑋(𝑤, 𝑧∗(𝑤)) =
(𝑤−𝑣)𝛬(𝑧∗)+𝑆𝛩(𝑧∗)

𝜇−𝛩(𝑧∗)
  

⇒
𝑑𝑋

𝑑𝑤
=

𝜕𝑋

𝜕𝑤
+

𝜕𝑋

𝜕𝑧∗
∗
𝑑𝑧∗

𝑑𝑤
=

𝛬

(𝜇−Θ)
+

𝜕𝑋

𝜕𝑧∗
∗
𝑑𝑧∗

𝑑𝑤
  

 

Linear Demand: 

𝑧∗ has to satisfy, 
𝑑

𝑑𝑧
𝐸[𝜋𝑟(𝑧

∗, 𝑝∗(𝑧∗))] = 0 

⇒ (𝑎 − 𝑏𝑝∗)[−(𝑤 − 𝛽) + (𝜙𝑝∗(𝑧∗) + 𝑆 − 𝛽)(1 − 𝐹)] = 0  

Since, 𝑦 = 𝑎 − 𝑏𝑝∗ > 0,  

⇒ [−(𝑤 − 𝛽) + (𝜙𝑝∗(𝑤, 𝑧∗) + 𝑆 − 𝛽)(1 − 𝐹)] = 0  

Differentiating this equation w.r.t. w, 

−1 + (𝜙
𝑑𝑝∗(𝑤,𝑧∗(𝑤)) 

𝑑𝑤
) (1 − 𝐹) − (𝜙𝑝∗(𝑧∗) + 𝑆 − 𝛽)𝑓

𝑑𝑧∗

𝑑𝑤
= 0  

⇒ −1 + (𝜙
𝑑𝑝∗(𝑤,𝑧∗(𝑤)) 

𝑑𝑤
) (1 − 𝐹) = (𝜙𝑝∗(𝑧∗) + 𝑆 − 𝛽)𝑓

𝑑𝑧∗

𝑑𝑤
  

⇒
𝑑𝑧∗

𝑑𝑤
= −

1

(𝜙𝑝∗(𝑧∗)+𝑆−𝛽)𝑓
+

𝜙(1−𝐹)

(𝜙𝑝∗(𝑧∗)+𝑆−𝛽)𝑓
∗
𝑑𝑝∗(𝑤,𝑧∗(𝑤)) 

𝑑𝑤
  

Optimal price, 𝑝∗(𝑤, 𝑧∗(𝑤)) =
𝜙𝑎+𝑏𝑤

2𝜙𝑏
+

1

2𝜙
∗ 𝑋(𝑤, 𝑧∗) 

Taking derivatives in w,  

𝑑𝑝∗

𝑑𝑤
=

1

2𝜙
(1 +

𝑑

𝑑𝑤
𝑋(𝑤, 𝑧∗)) =

1

2𝜙
(1 +

𝛬

(𝜇−Θ)
+

𝜕𝑋

𝜕𝑧∗
∗
𝑑𝑧∗

𝑑𝑤
)  

Substituting 
𝑑𝑧∗

𝑑𝑤
, 

𝑑𝑝∗

𝑑𝑤
=

1

2𝜙
(1 +

𝛬

(𝜇−Θ)
+

𝜕𝑋

𝜕𝑧∗
∗ (−

1

(𝜙𝑝∗+𝑆−𝛽)𝑓
+

𝜙(1−𝐹)

(𝜙𝑝∗+𝑆−𝛽)𝑓
∗
𝑑𝑝∗ 

𝑑𝑤
))  

⇒
𝑑𝑝∗

𝑑𝑤
=

1

2𝜙
(1 +

𝛬

(𝜇−Θ)
+ (−

𝜕𝑋

𝜕𝑧∗

(𝜙𝑝∗+𝑆−𝛽)𝑓
+

𝜙(1−𝐹)
𝜕𝑋

𝜕𝑧∗

(𝜙𝑝∗+𝑆−𝛽)𝑓
∗
𝑑𝑝∗ 

𝑑𝑤
)) =

1

2𝜙
(1 +

𝛬

(𝜇−Θ)
−

𝜕𝑋

𝜕𝑧∗

(𝜙𝑝∗+𝑆−𝛽)𝑓
+𝑊 ∗

𝑑𝑝∗ 

𝑑𝑤
)  
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⇒
𝑑𝑝∗

𝑑𝑤
−

𝑊

2𝜙
(
𝑑𝑝∗ 

𝑑𝑤
) =

1

2𝜙
(1 +

𝛬

(𝜇−Θ)
−

𝜕𝑋

𝜕𝑧∗

(𝜙𝑝∗+𝑆−𝛽)𝑓
)  

⇒
𝑑𝑝∗

𝑑𝑤
=

1

2𝜙
(1+

𝛬

(𝜇−Θ)
−

𝜕𝑋
𝜕𝑧∗

(𝜙𝑝∗+𝑆−𝛽)𝑓
)

1−
𝑊

2𝜙

=

1

2𝜙
(1+

𝛬

(𝜇−Θ)
−

1

𝜙(1−𝐹)
𝑊)

1−
𝑊

2𝜙

=

1

2𝜙
(1−

𝑊

2𝜙
+
𝑊

2𝜙
+

𝛬

(𝜇−Θ)
−

1

𝜙(1−𝐹)
𝑊)

1−
𝑊

2𝜙

=

1

2𝜙
(1 +

𝛬

(𝜇−Θ)
−(

1

(1−𝐹)
−
1

2
)
𝑊

𝜙
 

1−
𝑊

2𝜙

)  

 

Isoelastic Demand Form: 

Optimal price,  𝑝∗(𝑧∗) =
𝑏

(𝑏−1)𝜙
(𝑤 + 𝑋(𝑤, 𝑧∗)) 

Taking derivatives in w, 

𝑑𝑝∗

𝑑𝑤
=

𝑏

(𝑏−1)𝜙
(1 +

𝑑𝑋

𝑑𝑤
) =

𝑏

(𝑏−1)𝜙
(1 +

𝛬

(𝜇−Θ)
+

𝜕𝑋

𝜕𝑧∗
∗
𝑑𝑧∗

𝑑𝑤
)  

𝑧∗ has to satisfy: 
𝑑

𝑑𝑧
𝐸[𝜋𝑟(𝑧

∗, 𝑝∗(𝑧∗))] = 0 

⇒ 𝑎𝑝∗
(−𝑏)[−(𝑤 − 𝛽) + (𝜙𝑝∗ + 𝑆 − 𝛽)(1 − 𝐹)] = 0  

Since, 𝑦 = 𝑎𝑝∗
(−𝑏) > 0,  

⇒ [−(𝑤 − 𝛽) + (𝜙𝑝∗ + 𝑆 − 𝛽)(1 − 𝐹)] = 0  

Differentiating this equation w.r.t. w, 

−1 + (𝜙
𝑑𝑝∗

𝑑𝑤
) (1 − 𝐹) − (𝜙𝑝∗ + 𝑆 − 𝛽)𝑓

𝑑𝑧∗

𝑑𝑤
= 0  

⇒ −1 +
𝑏

(𝑏−1)
(1 +

𝛬

(𝜇−Θ)
+

𝜕𝑋

𝜕𝑧∗
∗
𝑑𝑧∗

𝑑𝑤
) (1 − 𝐹) − (𝜙𝑝∗ + 𝑆 − 𝛽)𝑓

𝑑𝑧∗

𝑑𝑤
= 0  

⇒ −
1

1−𝐹
+

𝑏

(𝑏−1)
(1 +

𝛬

(𝜇−Θ)
+

𝜕𝑋

𝜕𝑧∗
∗
𝑑𝑧∗

𝑑𝑤
) −

(𝜙𝑝∗+𝑆−𝛽)𝑓

1−𝐹

𝑑𝑧∗

𝑑𝑤
= 0  

⇒ −
1

1−𝐹
+

𝑏

(𝑏−1)
(1 +

𝛬

(𝜇−Θ)
) =

(𝜙𝑝∗+𝑆−𝛽)𝑓

1−𝐹

𝑑𝑧∗

𝑑𝑤
−

𝑏

(𝑏−1)

𝜕𝑋

𝜕𝑧∗
∗
𝑑𝑧∗

𝑑𝑤
  

⇒
𝑑𝑧∗

𝑑𝑤
=
−

1

1−𝐹
+

𝑏
(𝑏−1)

(1+
𝛬

(𝜇−Θ)
)

(𝜙𝑝∗+𝑆−𝛽)𝑓

1−𝐹
−

𝑏
(𝑏−1)

𝜕𝑋

𝜕𝑧∗

=
1

(𝜙𝑝∗+𝑆−𝛽)𝑓

1−𝐹

∗
−

1

1−𝐹
+

𝑏
(𝑏−1)

(1+
𝛬

(𝜇−Θ)
)

1−
𝑏

(𝑏−1)
∗

1−𝐹
(𝜙𝑝∗+𝑆−𝛽)𝑓

∗
𝜕𝑋

𝜕𝑧∗

=
1−𝐹

(𝜙𝑝∗+𝑆−𝛽)𝑓
∗

𝑏
(𝑏−1)

∗
𝛬

(𝜇−Θ)
−

1

1−𝐹
+

𝑏
(𝑏−1)

1−
𝑏

(𝑏−1)𝜙
∗𝑊
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⇒
𝜕𝑋

𝜕𝑧∗
∗
𝑑𝑧∗

𝑑𝑤
=

𝜕𝑋

𝜕𝑧∗
∗

1−𝐹

(𝜙𝑝∗+𝑆−𝛽)𝑓
∗

𝑏

(𝑏−1)
∗

𝛬

(𝜇−Θ)
−

1

1−𝐹
+

𝑏

(𝑏−1)

1−
𝑏

(𝑏−1)𝜙
∗𝑊

=
𝑊

𝜙
∗

𝑏

(𝑏−1)
∗

𝛬

(𝜇−Θ)
−

1

1−𝐹
+

𝑏

(𝑏−1)

1−
𝑏

(𝑏−1)𝜙
∗𝑊

  

Hence, 

𝑑𝑝∗

𝑑𝑤
=

𝑏

(𝑏−1)𝜙
(1 +

𝛬

(𝜇−Θ)
+

𝜕𝑋

𝜕𝑧∗
∗
𝑑𝑧∗

𝑑𝑤
) =

𝑏

(𝑏−1)𝜙
(1 +

𝛬

(𝜇−Θ)
+
𝑊

𝜙
∗

𝑏

(𝑏−1)
∗

𝛬

(𝜇−Θ)
−

1

1−𝐹
+

𝑏

(𝑏−1)

1−
𝑏

(𝑏−1)𝜙
∗𝑊

) =

𝑏

(𝑏−1)𝜙
(1 +

𝛬

(𝜇−Θ)
−(

1

1−𝐹
−

𝑏

𝑏−1
)
𝑊

𝜙

1−
𝑏

(𝑏−1)𝜙
∗𝑊

)  

 

iii. Proof of Corollary 2 

Linear Demand:  

𝑑𝑝∗

𝑑𝑤
=

1

2𝜙
(1 +

𝛬

(𝜇−Θ)
−(

1

(1−𝐹)
−
1

2
)
𝑊

𝜙
 

1−
𝑊

2𝜙

) =
1

2𝜙
(1 +

𝛬

(𝜇−Θ)
−(
1+𝐹

1−𝐹
)
𝑊

2𝜙
 

1−
𝑊

2𝜙

)  

In order to decide if 
𝑑𝑝∗

𝑑𝑤
 is less or greater than 

1

2𝜙
 , which is the cost-pass-through in risk-

less situation for linear demand, we need to check if 

𝛬

(𝜇−Θ)
−(
1+𝐹

1−𝐹
)
𝑊

2𝜙
 

1−
𝑊

2𝜙

 is positive or negative.  

It is to be mentioned, 0 <
𝛬

(𝜇−Θ)
=
𝐸(𝑙ⅇ𝑓𝑡𝑜𝑣ⅇ𝑟)

𝐸(𝑠𝑎𝑙ⅇ𝑠)
< 1 and 

1

2𝜙
𝑊 < 1 [Appendix D]. W can be 

positive or negative [Appendix C]. The denominator, 1 −
1

2𝜙
𝑊 has a positive value for 

both positive and negative 𝑊, because 
1

2𝜙
𝑊 < 1. Therefore, the numerator 

𝛬

(𝜇−Θ)
−

(
1+𝐹

1−𝐹
)
𝑊

2𝜙
 determine the sign of the term. 

Condition for 
𝑑𝑝∗

𝑑𝑤
>

1

2𝜙
: 

𝛬

(𝜇−Θ)
− (

1+𝐹

1−𝐹
)
𝑊

2𝜙
> 0 ⇒

𝛬

(𝜇−Θ)
> (

1+𝐹

1−𝐹
)
𝑊

2𝜙
⇒

𝑊

2𝜙
<

𝛬

(𝜇−Θ)

(
1+𝐹

1−𝐹
)
  

⇒
𝑊

2𝜙
<

𝛬

(𝜇−Θ)

(
1+𝐹

1−𝐹
)
<

𝛬

(𝜇−Θ)
< 1  

 

This condition is satisfied by some positive values and all negative values of 𝑊 

 

Condition for 
𝑑𝑝∗

𝑑𝑤
<

1

2𝜙
: 

𝛬

(𝜇−Θ)
− (

1+𝐹

1−𝐹
)
𝑊

2𝜙
< 0 ⇒

𝛬

(𝜇−Θ)
< (

1+𝐹

1−𝐹
)
𝑊

2𝜙
⇒

𝛬

(𝜇−Θ)

(
1+𝐹

1−𝐹
)
<

𝑊

2𝜙
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⇒ 0 <

𝛬

(𝜇−Θ)

(
1+𝐹

1−𝐹
)
<

𝑊

2𝜙
< 1  

 

This condition is satisfied by some positive values of 𝑊 

Hence, for some positive values of 𝑊, 
𝑑𝑝∗

𝑑𝑤
  increases from less than 

1

2𝜙
 to greater than 

1

2𝜙
. 

Condition for 
𝑑𝑝∗

𝑑𝑤
=

1

2𝜙
 : 

𝛬

(𝜇−Θ)
− (

1+𝐹

1−𝐹
)
𝑊

2𝜙
= 0 ⇒

𝛬

(𝜇−Θ)
= (

1+𝐹

1−𝐹
)
𝑊

2𝜙
  

⇒ 0 <
𝑊

2𝜙
=

𝛬

(𝜇−Θ)

(
1+𝐹

1−𝐹
)
< 1  

Hence, for positive values of 𝑊, 
𝑑𝑝∗

𝑑𝑤
  changes from less than 

1

2𝜙
 to equals 

1

2𝜙
 to greater than 

1

2𝜙
. We are interested to know, if 

𝑑𝑝∗

𝑑𝑤
 can exceed 1. Assuming positive values of 𝑊, from  

𝑑𝑝∗

𝑑𝑤
=

1

2𝜙
(1 +

𝛬

(𝜇−Θ)
−(
1+𝐹

1−𝐹
)
𝑊

2𝜙
 

1−
𝑊

2𝜙

), the numerator of the right term inside the parenthesis, 

𝛬

(𝜇−Θ)
− (

1+𝐹

1−𝐹
)
𝑊

2𝜙
  is greater than the denominator 1 −

𝑊

2𝜙
 because, 

𝛬

(𝜇−Θ)
< 1 and (

1+𝐹

1−𝐹
) >

1. Therefore,  
𝑑𝑝∗

𝑑𝑤
 cannot exceed 1 for linear demand. 

 

 

Isoelastic Demand: 

𝑑𝑝∗

𝑑𝑤
=

𝑏

(𝑏−1)𝜙
(1 +

𝛬

(𝜇−Θ)
−(

1

1−𝐹
−

𝑏

𝑏−1
)
𝑊

𝜙

1−
𝑏

(𝑏−1)
∗
𝑊

𝜙

)  

In order to decide if 
𝑑𝑝∗

𝑑𝑤
 is less or greater than 

𝑏

(𝑏−1)𝜙
 , which is the cost-pass-through in 

risk less situation for isoelastic demand in the case of revenue-sharing contract, we need to 

check if 

𝛬

(𝜇−Θ)
−(

1

1−𝐹
−

𝑏

𝑏−1
)
𝑊

𝜙

1−
𝑏

(𝑏−1)
∗
𝑊

𝜙

 is positive or negative.  It is to be mentioned, 0 <
𝛬

(𝜇−Θ)
=

𝐸(𝑙ⅇ𝑓𝑡𝑜𝑣ⅇ𝑟)

𝐸(𝑠𝑎𝑙ⅇ𝑠)
< 1 and 

𝑏

(𝑏−1)𝜙
𝑊 < 1 [Appendix D]. 𝑊 can be positive or negative [Appendix 

C]. The denominator, 1 −
𝑏

(𝑏−1)𝜙
𝑊 has a positive value for both positive and negative 𝑊, 

because 
𝑏

(𝑏−1)𝜙
𝑊 < 1. Therefore, the numerator 

𝛬

(𝜇−Θ)
− (

1

1−𝐹
−

𝑏

𝑏−1
)
𝑊

𝜙
 determine the sign 

of the term. 

Condition for 
𝑑𝑝∗

𝑑𝑤
>

𝑏

(𝑏−1)𝜙
 : 

𝛬

(𝜇−Θ)
− (

1

1−𝐹
−

𝑏

𝑏−1
)
𝑊

𝜙
> 0 ⇒

𝛬

(𝜇−Θ)
> (

1

1−𝐹
−

𝑏

𝑏−1
)
𝑊

𝜙
  

Equivalently, 

⇒
𝛬

(𝜇−Θ)
>

𝑏𝐹−1

𝑏(1−𝐹)
∗

𝑏

𝑏−1
∗
𝑊

𝜙
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Condition for 
𝑑𝑝∗

𝑑𝑤
=

𝑏

(𝑏−1)𝜙
: 

𝛬

(𝜇−Θ)
− (

1

1−𝐹
−

𝑏

𝑏−1
)
𝑊

𝜙
= 0 ⇒

𝛬

(𝜇−Θ)
= (

1

1−𝐹
−

𝑏

𝑏−1
)
𝑊

𝜙
  

Condition for 
𝑑𝑝∗

𝑑𝑤
<

𝑏

(𝑏−1)𝜙
 : 

𝛬

(𝜇−Θ)
− (

1

1−𝐹
−

𝑏

𝑏−1
)
𝑊

𝜙
< 0 ⇒

𝛬

(𝜇−Θ)
< (

1

1−𝐹
−

𝑏

𝑏−1
)
𝑊

𝜙
  

We are interested to know, if 
𝑑𝑝∗

𝑑𝑤
 can reduce to less than one. Required condition for that 

is 0 <
𝑑𝑝

𝑑𝑤
< 1. That follows- 0 <

𝑏

(𝑏−1)𝜙
(1 +

𝛬

(𝜇−Θ)
−(

1

1−𝐹
−

𝑏

𝑏−1
)
𝑊

𝜙

1−
𝑏

(𝑏−1)
∗
𝑊

𝜙

) < 1 

⇒ 0 <
1+

𝛬

(𝜇−Θ)
−
1

1−𝐹

𝑊

𝜙

1−
𝑏

(𝑏−1)
∗
𝑊

𝜙

<
(𝑏−1)𝜙

𝑏
  

where 0 <
𝛬

(𝜇−Θ)
< 1, (

𝑏

𝑏−1
)
𝑊

𝜙
< 1, 𝑏 > 1, and 0 < 𝐹 < 1 are given. 

 

F. Numerical Analysis 
 

We are following the stocking decision approach here. Let’s assume: shortage price, 𝑆 =
20, buyback price, 𝑣 = 5, and a uniform distribution on the interval [1,3],53  

𝜇 = 2; 𝑓(𝑢) =
1

2
; 𝐹(𝑢) =

𝑢−1

2
 ; 𝑟 =

𝑓

1−𝐹
=

1

3−𝑧
 

 𝐹(𝑧∗) =
𝑧∗−1

2
 ; 1 + 𝐹 =

1+𝑧∗

2
 ; 1 − 𝐹 =

3−𝑧∗

2
  ;  

𝐹

(1−𝐹)
=
𝑧∗−1

3−𝑧∗
  ; 
(1+𝐹)

(1−𝐹)
=
1+𝑧∗

3−𝑧∗
  

Λ(𝑧∗) = ∫ (𝑧∗ − 𝑢)𝑓(𝑢)𝑑𝑢
𝑧∗

1
=
(𝑧∗−1)2

4
  ;  Θ(𝑧∗) = ∫ (𝑢 − 𝑧)𝑓(𝑢)𝑑𝑢

3

𝑧∗
=
(𝑧∗−3)2

4
 

𝛬

(𝜇−Θ)
=

(𝑧∗−1)2

4

2−
(𝑧∗−3)2

4

=
(𝑧∗−1)2

8−(𝑧∗−3)2
 ;    

𝜇

(𝜇−Θ)
=

2

2−
(𝑧∗−3)2

4

=
8

8−(𝑧∗−3)2
 

(𝑤 − 𝑣) (
𝐹

(1−𝐹)
−

𝛬

(𝜇−𝛩)
) = (𝑤 − 5) (

𝑧∗−1

3−𝑧∗
−

(𝑧∗−1)2

8−(𝑧∗−3)2
) = (𝑤 − 5)

2(𝑧2−1)

(𝑧−3)(𝑧2−6𝑧+1)
  ; this 

expression is greater than zero for 1 ≤ 𝑧 < 3 

𝑆
𝜇

(𝜇−𝛩)
= 𝑆 ∗

8

8−(𝑧∗−3)2
= 𝑆 ∗

8

−(𝑧2−6𝑧+1)
 ; this expression is greater than zero for 1 ≤ 𝑧 <

3 

For 𝑆 = 0, (𝑤 − 5)
2(𝑧2−1)

(𝑧−3)(𝑧2−6𝑧+1)
> 𝑆 ∗

8

−(𝑧2−6𝑧+1)
 

For a large value of 𝑆 (e.g. 20), the LHS can be either greater or less than the RHS 

depending on the value of 𝑤. 

                                                           
53 The multiplicative case (with constant elasticity) require 𝐴 > 0 to avoid the occurrence of negative demand 

(Petruzzi and Dada 1999). However, Emmons and Gilbert (1998) assumed a linear demand with uniform 

distribution on the interval [0,2] with mean=1 for simplification.  
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𝑋(𝑧) =
(𝑤−𝑣)𝛬+𝑆𝛩

𝜇−𝛩
=
(𝑤−5)

(𝑧∗−1)2

4
+20∗

(𝑧∗−3)2

4

2−
(𝑧∗−3)2

4

=
20(−3+𝑧)2+(−5+𝑤)(−1+𝑧)2

8−(𝑧∗−3)2
  

𝜕𝑋

𝜕𝑧
=

(1−𝐹)

(𝜇−Θ)
[(𝑤 − 𝑣) (

𝐹

(1−𝐹)
−

𝛬

(𝜇−Θ)
) − 𝑆

𝜇

(𝜇−Θ)
]  

⇒
𝜕𝑋

𝜕𝑧
=

3−𝑧∗

2

2−
(𝑧∗−3)2

4

[(𝑤 − 5)
2(𝑧2−1)

(𝑧−3)(𝑧2−6𝑧+1)
−

20∗8

−(𝑧2−6𝑧+1)
] =

4(𝑤(−1+𝑧2)−5(47−16𝑧+𝑧2))

(1−6𝑧+𝑧2)2
  

𝑊 =
𝜙(1−𝐹)

𝑓(𝜙𝑝+𝑆−𝛽)
∗
𝜕𝑋

𝜕𝑧
= 𝜙 ∗

3−𝑧

(𝜙𝑝+15)
∗
4𝑤(−1+𝑧2)−20(47−16𝑧+𝑧2)

(1−6𝑧+𝑧2)2
  

 

Linear Demand: 

Following the stocking decision approach- 

For a linear demand (𝐷 = (100 − 𝑝)𝜖), 

𝑝∗ can be obtained as, 𝑝∗(𝑧) =
𝜙𝑎+𝑏𝑤

2𝜙𝑏
+

1

2𝜙
∗ 𝑋(𝑧) 

⇒ 𝑝∗ = 50 +
1

2𝜙
(𝑤 + 𝑋) = 50 +

1

2𝜙
(𝑤 +

20(−3+𝑧)2+(−5+𝑤)(−1+𝑧)2

8−(𝑧∗−3)2
)  

The corresponding cost-pass-through, 

𝑑𝑝∗

𝑑𝑤
=

1

2𝜙
(1 +

𝛬

(𝜇−Θ)
−(

1

(1−𝐹)
−
1

2
)∗
𝑊

𝜙

1−
1

2
∗
𝑊

𝜙

)  

=
1

2𝜙
(1 +

(𝑧−1)2

8−(𝑧−3)2
−(

2

3−𝑧
−
1

2
)∗

3−𝑧

(𝜙𝑝+15)
∗
4𝑤(−1+𝑧2)−20(47−16𝑧+𝑧2)

(1−6𝑧+𝑧2)2

1−
1

2
∗

3−𝑧

(𝜙𝑝+15)
∗
4𝑤(−1+𝑧2)−20(47−16𝑧+𝑧2)

(1−6𝑧+𝑧2)2

)  

𝑧∗ satisfy: −(𝑤 − 𝑣) + (𝜙𝑝∗(𝑧) + 𝑆 − 𝑣)(1 − 𝐹) = 0  

⇒ −(𝑤 − 5) + (50𝜙 +
1

2
(𝑤 +

20(−3+𝑧)2+(−5+𝑤)(−1+𝑧)2

8−(𝑧−3)2
) + 15)

3−𝑧

2
= 0  

Even after assuming numeric values of 𝜙, the solution in 𝑧 is very tedious that may lead to 

erroneous solution as well (due to exceeding the numerical ability of advanced software). 

Therefore, we define the solution as 𝑤 = 𝑔(𝑧∗) ⇒ 𝑧∗ = 𝑔−1(𝑤).  
For 𝜙 = 1, 

𝑧∗ satisfy: −(𝑤 − 5) + (50 +
1

2
(𝑤 +

20(−3+𝑧)2+(−5+𝑤)(−1+𝑧)2

8−(𝑧−3)2
) + 15)

3−𝑧

2
= 0 

𝑤 =
5(23+417𝑧−207𝑧2+23𝑧3)

−4+12𝑧
 ; 𝑤|𝑧=3 = 5 ; 𝑤|𝑧=1 = 160 

Optimal price, 𝑝∗ = 50 +
1

2
(𝑤 +

20(−3+𝑧)2+(−5+𝑤)(−1+𝑧)2

8−(𝑧∗−3)2
) 

The corresponding cost-pass-through, 

𝑑𝑝∗

𝑑𝑤
=
1

2
(1 +

(−1+𝑧)2

(−11+𝑧)2
−
2(1+𝑧)(𝑤(−1+𝑧2)−5(47−16𝑧+𝑧2))

(15+𝑝)(1−6𝑧+𝑧2)
2

1+
2(−3+𝑧)(𝑤(−1+𝑧2)−5(47−16𝑧+𝑧2))

(15+𝑝)(1−6𝑧+𝑧2)
2

)  

Substituting w, 

 
𝑑𝑝∗

𝑑𝑤
=
2(𝑝(−61+561𝑧−1268𝑧2+420𝑧3−55𝑧4+3𝑧5)−10(10074−5984𝑧−1585𝑧2+1493𝑧3−205𝑧4+7𝑧5))

(−11+𝑧)2(2𝑝(−1+9𝑧−19𝑧2+3𝑧3)+5(−501+384𝑧+38𝑧2−120𝑧3+23𝑧4))
   

𝑑𝑝∗

𝑑𝑤
|
𝑧=1

=
95+𝑝

110+2𝑝
< 1 ;  

𝑑𝑝∗

𝑑𝑤
|
𝑧=3

=
17

32
< 1 

 

For 𝜙 = 0.9, 
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𝑧∗ satisfy: −(𝑤 − 5) + (50 ∗ 0.9 +
1

2
(𝑤 +

20(−3+𝑧)2+(−5+𝑤)(−1+𝑧)2

8−(𝑧−3)2
) + 15)

3−𝑧

2
= 0  

𝑤 =
5(29+379𝑧−189𝑧2+21𝑧3)

−4+12𝑧
 ; 𝑤|𝑧=3 = 5 ; 𝑤|𝑧=1 = 150 

Optimal price, 𝑝∗ = 50 +
10

2∗9
(𝑤 +

20(−3+𝑧)2+(−5+𝑤)(−1+𝑧)2

8−(𝑧∗−3)2
)  

𝑑𝑝∗

𝑑𝑤
=
5

9
(1 +

(−1+𝑧)2

(−11+𝑧)2
−
20(1+𝑧)(𝑤(−1+𝑧2)−5(47−16𝑧+𝑧2))

3(50+3𝑝)(1−6𝑧+𝑧2)
2

1+
20(−3+𝑧)(𝑤(−1+𝑧2)−5(47−16𝑧+𝑧2))

3(50+3𝑝)(1−6𝑧+𝑧2)
2

)  

Substituting w, 

 
𝑑𝑝∗

𝑑𝑤
=
10(9𝑝(−61+561𝑧−1268𝑧2+420𝑧3−55𝑧4+3𝑧5)−100(9711−5797𝑧−1247𝑧2+1307𝑧3−180𝑧4+6𝑧5))

9(−11+𝑧)2(9𝑝(−1+9𝑧−19𝑧2+3𝑧3)+25(−483+372𝑧+22𝑧2−108𝑧3+21𝑧4))
   

𝑑𝑝∗

𝑑𝑤
|
𝑧=1

=
5(950+9𝑝)

9(550+9𝑝)
< 1 [Numerically, it can be shown that for 𝑝 > 0, 

𝑑𝑝∗

𝑑𝑤
< 1]  

𝑑𝑝∗

𝑑𝑤
|
𝑧=3

=
85

144
< 1  

 

For 𝜙 = 0.8, 

𝑧∗ satisfy: −(𝑤 − 5) + (50 ∗ 0.8 +
1

2
(𝑤 +

20(−3+𝑧)2+(−5+𝑤)(−1+𝑧)2

8−(𝑧−3)2
) + 15)

3−𝑧

2
= 0 

𝑤 =
5(35+341𝑧−171𝑧2+19𝑧3)

−4+12𝑧
  ; 𝑤|𝑧=3 = 5 ; 𝑤|𝑧=1 = 140 

Optimal price, 𝑝∗ = 50 +
10

2∗8
(𝑤 +

20(−3+𝑧)2+(−5+𝑤)(−1+𝑧)2

8−(𝑧∗−3)2
)  

Cost-pass-through, 

𝑑𝑝∗

𝑑𝑤
=
5

8
(1 +

(−1+𝑧)2

(11−𝑧)2
−
(−
1
2
+
2
3−𝑧

)(3−𝑧)(4𝑤(−1+𝑧2)−20(47−16𝑧+𝑧2))

(15+
4𝑝
5
)(1−6𝑧+𝑧2)

2

1−
(3−𝑧)(4𝑤(−1+𝑧2)−20(47−16𝑧+𝑧2))

2(15+
4𝑝
5
)(1−6𝑧+𝑧2)

2

)  

Substituting 𝑤 = 𝑔(𝑧∗),  
𝑑𝑝∗

𝑑𝑤
=
5(2𝑝(−61+561𝑧−1268𝑧2+420𝑧3−55𝑧4+3𝑧5)−25(9348−5610𝑧−909𝑧2+1121𝑧3−155𝑧4+5𝑧5))

(−11+𝑧)2(8𝑝(−1+9𝑧−19𝑧2+3𝑧3)+25(−465+360𝑧+6𝑧2−96𝑧3+19𝑧4))
  

𝑑𝑝∗

𝑑𝑤
|
𝑧=1

=
5(475+4𝑝)

8(275+4𝑝)
  ; 
𝑑𝑝∗

𝑑𝑤
|
𝑧=3

=
85

128
< 1 

Hence, for 𝑧∗ ∈ [1,3], we can obtain the values of 𝑤 , 𝑝∗, and 
𝑑𝑝∗

𝑑𝑤
 ; that are plotted 

in Figure 7.7 and 7.8. The minimum value of 𝑤 is the salvage price of 𝑣 = 5, and the 

maximum feasible value of 𝑤 is {100,90,80} for 𝜙 = {1,0.9,0.8} respectively. We 

calculate the maximum feasible value of 𝑤 from these two equations: 𝑦 = 100 − 𝑝0 and 

𝑝0 =
100𝜙+𝑤

2𝜙𝑏
. Here, the maximum 𝑝0 is 100 for which the corresponding deterministic 

demand is zero (𝑦 = 100 − 𝑝0 = 0).  

To illustrate the fluctuation in terms of the standard deviation, we consider some 

randomized values of 𝑧∗. For randomized drawing, we can use the original range [1,3] or 

any range in between such as [1.5,2.5]. The spread of the boundary values will change the 

corresponding standard deviations but the BP ratio will remain same. Figure 7.9 illustrates 

the price fluctuation and the corresponding standard deviations of the wholesale price and 

the retail price. 
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Isoelastic demand: 

Following the stocking decision approach- 

For an isoelastic linear demand (𝐷 = (𝑎𝑝−3)𝜖), 
𝑝∗ can be obtained as,  

𝑝∗(𝑧) =
𝑏

(𝑏−1)𝜙
(𝑤 + 𝑋(𝑧)) =

3

2𝜙
(𝑤 +

20(−3+𝑧)2+(−5+𝑤)(−1+𝑧)2

8−(𝑧∗−3)2
)  

The corresponding cost-pass-through, 

𝑑𝑝∗

𝑑𝑤
=

𝑏

(𝑏−1)𝜙
(1 +

𝛬

(𝜇−Θ)
−(

1

(1−𝐹)
−

𝑏

(𝑏−1)
)∗
𝑊

𝜙

1−
𝑏

(𝑏−1)
∗
𝑊

𝜙

)  

=
3

2𝜙
(1 +

(𝑧−1)2

8−(𝑧−3)2
−(

2

3−𝑧
−
3

2
)∗

3−𝑧

(𝜙𝑝+15)
∗
4𝑤(−1+𝑧2)−20(47−16𝑧+𝑧2)

(1−6𝑧+𝑧2)2

1−
3

2
∗

3−𝑧

(𝜙𝑝+15)
∗
4𝑤(−1+𝑧2)−20(47−16𝑧+𝑧2)

(1−6𝑧+𝑧2)2

)  

=
3

2𝜙
(1 +

(−1+𝑧)2

(−11+𝑧)2
−
2(−5+3𝑧)(𝑤(−1+𝑧2)−5(47−16𝑧+𝑧2))

(1−6𝑧+𝑧2)2(15+𝑝𝜙)

1+
6(−3+𝑧)(𝑤(−1+𝑧2)−5(47−16𝑧+𝑧2))

(1−6𝑧+𝑧2)2(15+𝑝𝜙)

)  

 

𝑧∗ satisfy,  

−(𝑤 − 𝑣) + (𝜙𝑝∗(𝑧) + 𝑆 − 𝑣)(1 − 𝐹) = 0  

⇒ −(𝑤 − 5) + (
3

2
(𝑤 +

20(−3+𝑧)2+(−5+𝑤)(−1+𝑧)2

8−(𝑧−3)2
) + 15)

3−𝑧

2
= 0  

The solution in 𝑧 is very tedious54 that may lead to erroneous solution as well (due to 

exceeding the numerical ability of advanced software). Therefore, we define the solution 

as 𝑤 = 𝑔(𝑧∗) ⇒ 𝑧∗ = 𝑔−1(𝑤).  

⇒
4𝑤(−1−3𝑧+2𝑧2)+5(−293+165𝑧−35𝑧2+3𝑧3)

4(1−6𝑧+𝑧2)
= 0  

For 1 − 6𝑧 + 𝑧2 ≠ 0 ⇒ 𝑧 ≠ 3 ± 2√2, 

⇒ 𝑤 = −
5(−293+165𝑧−35𝑧2+3𝑧3)

4(−1−3𝑧+2𝑧2)
  ; 𝑤|𝑧=3 = 5 ;  𝑤|𝑧=2 =

395

4
 ;  𝑤|𝑧=1 = −100 

 
Figure: 𝑤 vs 𝑧∗ 
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𝑧∗ =
1

45
(175 − 8𝑤) −

6500+2260𝑤−64𝑤2

90𝑥1 3⁄ +
2

45
𝑥1 3⁄   

Where, 𝑥 = (8000 − 16950𝑤 + 3390𝑤2 − 64𝑤3 +

45√3√716875 + 692125𝑤 + 291525𝑤2 − 3905𝑤3 − 68𝑤4) 
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We don’t accept the values of 𝑧∗ for which the corresponding wholesale price 𝑤 is 

negative. The minimum value of 𝑤 is the salvage price of 𝑣 = 5 for 𝑧∗ = 3. The maximum 

value of 𝑤 tends to +∞ for 𝑧∗ →
1

4
(3 + √17) = 1.781 . Therefore, we consider 1.781 <

𝑧∗ ≤ 3. 

 

For 𝜙 = 1, 

Optimal price, 𝑝∗ =
3

2
(𝑤 +

20(−3+𝑧)2+(−5+𝑤)(−1+𝑧)2

8−(𝑧∗−3)2
)  

The corresponding cost-pass-through, 

𝑑𝑝∗

𝑑𝑤
=
3

2
(1 +

(−1+𝑧)2

(−11+𝑧)2
−
2(−5+3𝑧)(𝑤(−1+𝑧2)−5(47−16𝑧+𝑧2))

(15+𝑝)(1−6𝑧+𝑧2)
2

1+
6(−3+𝑧)(𝑤(−1+𝑧2)−5(47−16𝑧+𝑧2))

(15+𝑝)(1−6𝑧+𝑧2)
2

)  

 

For 𝜙 = 0.9, 

Optimal price, 𝑝∗ =
3∗10

2∗9
(𝑤 +

20(−3+𝑧)2+(−5+𝑤)(−1+𝑧)2

8−(𝑧∗−3)2
)  

𝑑𝑝∗

𝑑𝑤
=
5

3
(1 +

(−1+𝑧)2

(−11+𝑧)2
−
2(−5+3𝑧)(𝑤(−1+𝑧2)−5(47−16𝑧+𝑧2))

(15+
9𝑝
10
)(1−6𝑧+𝑧2)

2

1+
6(−3+𝑧)(𝑤(−1+𝑧2)−5(47−16𝑧+𝑧2))

(15+
9𝑝
10
)(1−6𝑧+𝑧2)

2

)  

 

For 𝜙 = 0.8, 

Optimal price, 𝑝∗ =
3∗10

2∗8
(𝑤 +

20(−3+𝑧)2+(−5+𝑤)(−1+𝑧)2

8−(𝑧∗−3)2
)  

Cost-pass-through, 

𝑑𝑝∗

𝑑𝑤
=
15

8
(1 +

(−1+𝑧)2

(−11+𝑧)2
−
2(−5+3𝑧)(𝑤(−1+𝑧2)−5(47−16𝑧+𝑧2))

(15+
4𝑝
5
)(1−6𝑧+𝑧2)

2

1+
6(−3+𝑧)(𝑤(−1+𝑧2)−5(47−16𝑧+𝑧2))

(15+
4𝑝
5
)(1−6𝑧+𝑧2)

2

)  

 

Hence, for 𝑧∗ ∈ [2,3], we can obtain the values of 𝑤 , 𝑝∗, and 
𝑑𝑝∗

𝑑𝑤
 ; that are plotted 

in Figure 7.10 and 7.11.  

To illustrate the fluctuation in terms of the standard deviation, we consider some 

randomized values of 𝑧∗. For randomized drawing, we can use the previous range [2,3] or 

a smaller range in between such as [2.7,3] which gives better illustration of the price 

fluctuation. The spread of the boundary values change the standard deviations but the 

corresponding BP ratios give similar conclusions. Figure 7.12 illustrates the price 

fluctuation and the corresponding standard deviations of the wholesale price and the retail 

price. 

  

 

 

 
 


