
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/2246

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.



i

From STM

A transfer of technology
feasibility study

To Nanomemory :

A thesis presented to the

University of Warwick 

in the year 1994 for the degree of

Doctor of Philosophy

by Jimmie Andrew Miller

© 1994, all rights reserved



ii

ABSTRACT

Recent years have seen exponential increase in memory capacity for

computer data storage. Increased bit density has been produced by

decreasing feature sizes in microelectronic fabrication. As minimum

microelectronic feature sizes are realized, new methods are being

investigated to continue the increase in recording bit density.

This report examines features which are necessary to produce an

electron-tunneling based memory which is postulated to increase the data

density by a factor of 105-106 over current manufactured memories. A

description is given for combining tunneling microscopy with memory

technology to achieve this high density memory. Experiments using a

tunneling tip to produce nanometer scale features on a surface are

recounted. The repeatability and durability of the produced features are

investigated with a summary of these aspects included for various materials

reported in the literature. Some necessary mechanical and electrical design

criteria for a tunneling memory are obtained. Observed and reported

inconsistency in nanometer lithography are attributed to nonpredictable

tunneling currents and resulting tip-sample separations. Experimental and

theoretical work scrutinizing tunneling currents as a function of tip-sample

displacement is included. Other factors affecting the practicality of a tunneling

based memory are also incorporated.     
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LAYOUT OF THE THESIS

Chapter 1 describes the basic historical developments of information

storage and the scanning tunneling microscope (STM). STM and memory

technology are related in such a way as to describe the basis for a

nanomemory. 

Chapters 2-5 form a group relating to surface lithography experiments.

Chapter 2 gives various techniques for using a tunneling probe to produce

nanometer-sized surface modifications which could be readable as computer

bits. Chapter 3 is a literature survey of concurrent and prior art dealing with

altering a surface according to the techniques discussed in chapter 2 and is

organized according to alteration methods. Since much of the work is

concurrent and seldom builds upon previous experiments, it is alphabetically

sequenced by author of the related work. Chapter 4 describes tunneling

theory and uses it for the development of experiments to assess field induced

alteration of surfaces on a nanometer scale.  Chapter 5 summarizes the

memory related properties of the promising materials and is based on the

discussions of chapters 3 and 4. The chapter is organized alphabetically

according to material studied. The chapter concludes the lithography series

with a set of tables for quick reference on the relevant properties for each

material.

 Chapter 6 discusses the performance requirements of electrical and

mechanical design with respect to field induced surface alteration and speed

of a memory. The chapter concludes with a table of design criteria 
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for a tunneling based memory. 

Chapters 7 and 8 form a group relating tunneling current versus

tip-sample displacement experiments and theory. Chapter 7 describes

experiments related to measuring and characterizing the tunneling current as

a function of tip sample displacement. Described is a direct x-ray

interferometer calibrated translation system for such measurements. Also,

ambient effects on the tunneling characteristics were examined and

discussed with respect to their influence on a tunneling memory. A more

detailed theory is developed in chapter 8 to explain observation of the

nonlinearity of the natural log of the tunneling current as a function of tip-

sample displacement. Included is consideration of image forces along with a

more accurate exponential equation to replace Simmons' (1961)

approximation of the classical summation approach describing the image

potential. Also investigated is the effect of lateral surface currents on the

atomic images obtained by STM. Observation of recoverable electronic

surface changes is reported. These are used to account for some "quirks" of

measured tunneling currents. 

Chapter 9 discusses various topics which, although related to atomic

bit processing, do not readily fit into the other chapters. Such things as the

changing of surfaces due to contamination and tip related effects are

described and illustrated. Findings are related to their implications for a

tunneling based nanomemory. 

Chapter 10 summarizes the reported work and gives some general

advice for methods and materials to be used for a practical nanomemory.
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All STM images shown in this thesis are the authors work. The STM

images are captioned as images instead of figures with a separate numbering

system. 

 Any abbreviated author and date references can be looked up in the

bibliography for full detail.

The thesis is written using the standardized spelling of American

English.
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INTRODUCTION

Manipulation of matter and energy has always been utilized to the

benefit (or sometimes the detriment) of civilization. Energy contained in

chunks of coal is released to raise the temperature of water. The water

changes in form to steam, then increases in pressure resulting in a force

being applied to a piece of iron, which moves, causing another piece of iron

to rotate on a constrained iron rail. The result is that energy of heat is

transformed into kinetic energy in tons of iron. Structures are constructed in

such a way that a person can utilize the motion of the iron and travel from one

place to another.

By knowing how to repeatably produce and control the release of

energy from coal in such a way as to generate the motion of what we call a

train, a technology is born. With the development and subsequent transfer of

other technologies, i.e. chemical and electrical, the diesel train is developed

which has no need of frequent stops to take on water and then the electric

train which has no need of stopping for fuel either. However, it is still

preferable to stop for the convenience of passengers and those loading and

unloading freight. 

This evolution and cultivation of applications is at least as old as

recorded history, being revealed in the equity of law where a decision in one

case is applied to another case. Similarly, the providential discovery of

penicillin from mold led to a multitude of other antibiotics being produced from

other molds. Archimedes is reported to have demonstrated the principle in

warfare when he drew from the technology of optics to
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make mirrors to focus light from the sun onto enemy ships setting them on

fire. 

1.1 The nanomemory concept

The purpose of this thesis is to examine a technology transfer from the

field of scanning tunneling microscopy to the field of high density computer

memory. The feasibility of manufacturing a computer memory with an areal

bit density 105-106 times greater than present storage devices has been

investigated. Quate1 [1986] postulated that this high density memory, herein

referred to as nanomemory , could be manufactured utilizing the

electromagnetic field between an atomically sharp tunneling probe and the

conducting surface to alter the surface. Employing the same or similar

tunneling probe to distinguish between an altered and an unaltered surface,

provides the foundation for a computer bit memory structure (e.g. altered is a

one, unaltered is a zero). 

As Eric Drexler observed, "Our ability to arrange atoms lies at the

foundation of technology"2. Whether the technology is on the level of a

blacksmith who shapes metal into horseshoes or the chemist who has

developed a recipe for manufacturing a particular polymer, in the final

analysis it is atoms which are arranged to suit a particular need. Even though

"we are still forced to handle atoms in unruly herds"2, we should not always

expect to be limited in this way. As Richard Feynman said, "The principles of

physics... do not speak against the possibility of maneuvering things atom by

atom. It is not an attempt to violate any
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 laws; it is something, in principle, which can be done."3

This investigation assesses those areas which would make this

technology practical. These areas include: 1. alterability, the ability to modify

a surface on an atomic scale, i. e. write a bit, 2. reproducibility, the ability of a

set of applied physical parameters to repeatably produce the desired surface

alteration, 3. durability, the ability of the altered surface to remain in the same

altered state for an indefinite period of time, and 4. readability, the ability to

distinguish between an altered and an unaltered area of the surface. During

the various investigations of this thesis, discussion is focused primarily on

these four criteria. However, other relevant areas relating to the development

of such a memory will be included where appropriate.   

By examining the similar details of operation of two seemingly

distinctive technologies, a combination may be obtained which can develop a

new generation technology. The following sections describe the history and

principles of storage technology and scanning tunneling microscopy with

emphasis on how the two may be integrated to produce a nanomemory.

 

1.2 A survey of information storage developments

Writing and drawing are some of the oldest forms of information

storage. Whether the information is an idea or a beautiful location we desire

to recall or relate, the marks on a piece of paper or other medium refresh our

minds and inform others. Writing and drawing, however, 
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require a human intermediary to record the words or visual image. Other

mechanical, optical or electro-magnetic information media have now been

developed. These will be briefly reviewed below. 

1.2.1 Visual developments

The first known device which enhanced drawing was the camera

obscura  (dark chamber). Developed in the 1500's, the device was a box

large enough for a person to occupy and allowed no light except that which

entered in through a small hole in one of its walls. The hole produced a faint

inverted image on the opposite wall. This image was traced to give more

accurate detail than freehand drawing. The addition of a lens in the 1600's

made the image larger and produced greater contrast. In the early 1800's, the

need for the human intermediary was eliminated by Joseph Niépce who

exposed a metal plate that was chemically sensitive to light to capture an

image. The exposure took 8 hours. A subsequent engraving process (etching)

made the image permanent.4     

1.2.2 Audio developments

The recording of sound came in 1877 with Thomas Edison's invention

of the phonograph . The recording surface was a tin foil covered cylinder. As

the cylinder was rotated, indentations were made in the tin by a stylus

connected to a diaphragm that was voice modulated. When the stylus was

allowed to retrace the indentions, it vibrated the diaphragm which reproduced

the recorded sound. Inexpensive cylinders of cardboard covered with wax

were used by the graphophone  invented by Charles
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Tainter and Chichester Bell in 1885. Emile Berliner's 1887 gramophone  used

a disc instead of a cylinder for recording.4 

1.2.3 Electromagnetic developments

While cameras use a light induced electrochemical reaction to facilitate

the storage of a visual image, the phonograph, graphophone, and

gramophone use a mechanically induced material topography change to

record and reproduce sound. However, the development of electromagnetism

produced remarkable advances in sound recording. In 1888, Oberlin Smith

disclosed the idea of magnetic recording using magnetic dust particles. In

1898, Valdemer Poulson demonstrated voice recording on a steel wire

connected between two walls. A telephone voice coil was connected in series

with a battery and electromagnet. The electromagnet was held by a moving

carriage against the wire. As the carriage was moved, Poulson spoke into the

voice coil. Connecting a telephone receiver in place of the battery and voice

coil, and again moving the carriage across the wire, his words were

reproduced. He also demonstrated that the recording was erasable by sliding

a permanent magnet across the wire, preparing it for subsequent recording.

The invention was called the telegraphone . One of the major applications

was that of recording telephone messages. An early production design

utilized a cylinder wound in wire for recording. He also investigated recording

on tape, cylinders, and discs made of magnetic materials. Electrochemically

deposited magnetic thin films were used for recording as early as 1906.5 

Although sound was the first application of magnetic recording, the 
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application to video and data recording also later became practical with

similar technology. Recording advanced along with the development of

materials processing, precision manufacturing, and more sophisticated

techniques such as high frequency modulation. 

1.2.4 Numerical storage and calculations

One of the earliest known numerical storage devices was the Chinese

abacus , used also by the ancient Romans and Greeks. Analogous to the

contemporary shift register in an arithmetic processor, it stored one number at

a time for future calculation. The Inca indians used a combination of colored

strings and knots called a quipu  (c. 1500) to store an accurate count.4 

 Blaise Pascal produced the first numerical mechanical wheel calculator

in 1642. Gottfried Liebniz followed with the mechanical multiplier in 1673.

These devices used mechanically stored numbers for their calculations.

Joseph Jacquard used encoded punched cards as early as 1801 for

controlling looms weaving elaborate fabric designs. This was one of the first

precursors to computer numerically controlled machines. Punched card

machines were also used by Herman Holerith for the census of 1890. A

machine for four function arithmetic was first produced by Charles Xavier

Thomas in 1820. Building on the key-set adding and printing machine

developed by William Burroughs, the first commercial calculator with a

mechanical keyboard was produced in 1911 by Jay Monroe.6 
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1.2.5 Three generations of computers

With the advent of the electronic vacuum tube, mechanical

computation was eclipsed. John Vincent Atanasoff and Clifford Berry

produced the first electronic computer in 1939 called the ABC  (Atanasoff-

Berry Computer). The ABC used capacitors for storage. Using Anatasoff's

principles, John Mauchly and J. Presper Eckert built the ENIAC (Electronic

Numerical Integrator And Calculator) in 1946.6 The ENIAC utilized electronic

vacuum tube based flip-flops for storage along with acoustic delay lines for

registers.7 Remington Rand Corporation's 1951 UNIVAC (UNIVersal

Automatic Computer) included a magnetic drum capable of storing 16,000

characters6 along with vacuum tube memory. Computers like the ABC,

ENIAC, and UNIVAC using vacuum tubes are considered first generation

computers. 

The arrival of the second generation of computers in 1959 was

precipitated by the development of the transistor in 1947 by John Bardeen

and Walter Brattain8. The lower cost semiconductor based transistor replaced

the unreliable and costly vacuum tube. The tube based memories were also

replaced by less expensive core memories. Core memories are ferromagnetic

donuts about the size of a grain of salt6 and wound with wires for their

magnetization and subsequent reading. The short-lived second generation

was replaced by the third generation in 1964 using solid state technology and

integrated circuits. 

Current information storage is accomplished in one of two fundamental

methods. Direct recording is used when exact analog 
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electronic waveforms are desired to be stored. Digital recording is used when

the information is stored as a numerical binary code of electromagnetic

pulses of the same magnitude. The binary code is comparable to Morse code

where a unique series of two distinct sounds represent a specific symbol. The

digital information  may be directly generated by a computer or an analog to

digital converter. State of the art computers use the binary code for

calculations and decision making.

1.2.6 Storage technology

Memory media include integrated circuits, hard (rigid) and floppy

(flexible) magnetic discs, magnetic tape or drums, punched paper tape, or

laser read optical discs. The methods are not necessarily contemporary

(punched paper cards were used by Jacquard in 1801 and by Holerith in the

1890's; magnetic discs, tape, and cylinders were examined by Poulson in the

early 1900's). However, the processing technology for these methods

involves improved materials and processing which make computer storage

facilities substantially smaller, faster, and less expensive.

The purpose of the computer ultimately determines its size and

composition. From fingernail sized single integrated circuit chips which

monitor processes in an automobile to room sized supercomputers with

parallel processing and large data handling networks, the computer uses

media which satisfy its operating requirements. Information capacity,

expense, size, and speed are among the things which are considered in the

design of a computer.
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There are two basic memory requirements for a computer. First there

is the high speed random access memory (RAM) used by the command

processor. The RAM temporarily stores the programs which the processor

uses to determine the decisions the computer makes. Also, RAM is a working

area for the processor to calculate, store, and manipulate information. The

second kind of memory is long term storage of pre- or post-processed

information, reference tables, or processing programs not currently in use.   

Integrated circuits with access speeds near 70 ns are standard for

RAM memory in order to reduce processing time. They are also used for

preprogrammed dedicated use computers. For an access time of

milliseconds, and large storage and retrieval capacity, hard magnetic discs

are normally chosen. For personal use, and transferring smaller programs,

soft disc use is routine. For machine program storage, paper tape is often

used, but as personal computers become more available, more programming

is loaded to the machines from operator programmable computers. For

nonwritable high density information access, optical discs are growing in

popularity. For backup of large programs and data, magnetic or paper tape is

selected. Magnetic drum memories are no longer in common use due to large

volume to surface area ratio, that is volume per bit is much smaller for discs

or tape. So we see that most methods have their selective purposes.

1.2.7 Magnetic storage operation

The magnetic ring head of Figure 1 illustrates the basic principles 
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Figure 1:1  Basic design of a
magnetic ring recording head. 

of conventional magnetic storage of

information. The continuous relative

motion between the flying head, the

magnetizable medium, and the air

between  them produces a self-acting

air bearing. This air bearing lifts the

head above the medium giving it the

appearance of flying and allowing it

to float within 5009 nm of the medium's surface. The aerodynamic floating of

the head was serendipitously discovered while examining the crashing of the

head into a drum. Willful attempts to produce a head crash during motion

were more difficult than expected9. 

The read/write electronics are capable of supplying a current to the coil

around the highly permeable head. The fringing field at the gap in the head is

used to change the magnetic field in the medium. These magnetic reversals

are used to store information along a track. This magnetically written

information is read back by retracing the same path that was used to record.

The reversal in the magnetic field of the medium as it passes the head

induces an electric current in the coil which is detected by the read

electronics.9 The address (location) of the data is determined by a unique

prerecorded (i.e. by formatting) magnetic pattern in the tracks which are on

either side of the stored information. The head follows these address tracks

to the correct location and then reads or stores the information.
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The magnetizable medium does not have to be a homogeneous

material but usually consists of one or more layers of magnetizable thin films.

"Head assemblies vary in width from 20 µm to 50 mm, while individual tracks

range from some 10 µm to 6 mm. Up to 100 head elements have been built in

a single stack using film fabrication technology."10 These heads can produce

an upper limit information density of around 100 kbit/mm2 (>3 µm2/bit).  

Although the presented dual pole style of head is the most common in

personal computers, heads exist based upon Faraday rotation (magneto-

optic), magnetoresistance, and for Hall effect which "respond to magnetic flux

rather than its rate of change"10. 

1.3 Scanning tunneling microscopy (STM) development and operation

The ability to measure the topography of surfaces lies at the heart of

making precision parts and devices. In order to manufacture to a given

specification, you must be able to measure the part to a greater accuracy to

be assured that the piece is within tolerance.

1.3.1 Optical microscopes

Optical microscopes were first used to enhance observation of surface

features. Reticles used for measuring feature dimensions have a resolution of

a few micrometers. Using interferometric techniques, where two

monochromatic rays of light are allowed to interfere, their limit in the lateral

direction is about one-half the wavelength of the light used. Vertical resolution

has been improved to less than one-half the
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wavelength of light using multiple reflections between the optics and the

sample. However, this decreases the lateral resolution due to misalignment of

surface and optics. By using piezoelectric displacement of the optics and

CCD cameras, vertical resolutions of 1 nm are obtained using computer

fringe analysis. Other methods for obtaining high vertical resolution are ultra-

beam microscopy (10-20 nm) and laser confocal microscopy (5 nm).11

1.3.2 Scanning electron microscopes

Optical microscopes allow the simultaneous viewing of many parts of

the surface under inspection. However, it was with the development of

electronic techniques which enabled an image to be constructed one spot at

a time using scanning metrologies.

Scanning electron microscopes use magnetic fields to focus a beam of

high energy electrons (1-50keV) down to nanometers in dimensions. This fine

beam of electrons causes secondary electrons to be emitted from the

surface. The number of emitted electrons is related to the angle of incidence

and any sharp edges in the region. As the beam is also magnetically raster

scanned across the surface, the change in emission for each point is shown

in grey-scale on a cathode-ray tube (CRT) to produce an image of the

surface. Lateral measurement ranges from nanometers to millimeters are

possible. Although the lateral resolution can be nanometers, vertical

information is difficult to obtain. Also the energetic electrons can cause

heating of the sample and subsequent transformation. The vacuum can also

be damaging. 



13

1.3.3 Mechanically contacting stylus instruments12,13

Common engineering profile measurements are made with stylus

instruments. Similar in operation to a phonograph pick-up, a diamond stylus is

traced across a surface at speeds of around 10 )m/s to 1 mm/s, while a

transducer registers the displacement of the stylus. Most transducers are one

of three types, Linear Variable Differential Transformer or Inductor (LVDT or

LVDI) or a capacitance probe. An x-y recorder is used to log multiple

topographic traces of the surface. The vertical resolution is on the order of

nanometers. The lateral resolution depends on the stylus tip radius. However,

the stylus contact force is typically on the order of milli-Newtons causing

deformation of the surface and leaving furrows.

1.3.4 The Topografiner 14

The topografiner was developed around 1971 as a noncontacting

means of obtaining topographic information about a surface. A field

emission15 probe is positioned via three orthogonal piezoelectric ceramic

elements (piezos). As two piezo rods scan the probe in the x and y directions,

a servo circuit causes the z piezo to expand or contract to keep the voltage

between the probe and sample approximately constant for a preset current.

The voltages applied to the piezos are used to generate a 3-dimensional

image of the surface. The probe hovers about 20 nm above the surface for

field emission currents. Young et al.14 reported a qualitative deviation of

current characteristics from field emission theory as the tip-probe separation

decreased below 2 nm. In this
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range, the tunneling current follows the metal-vacuum-metal (MVM) theory of

Simmons16. They were not able to operate in this range due to vibration. The

lateral range was limited to 7.6 )m by the piezos. The lateral resolution was

not determined, but the vertical resolution was limited to about 3 Å due to

electronic noise and mechanical vibrations. It was originally thought that the

prototype instrument needed to be expanded in range to 0.254 mm square

area to be useful as a microtopography tool.               

1.3.5 Scanning tunneling microscope: development

Going in the opposite direction that Young proposed for improving the

Topografiner and unaware of Young's work17, Binnig et al.18 developed a

similar instrument which demonstrated Angstrom resolution. By stabilizing the

probe-tip separation to below 0.2 Å, and operating in the tunneling19 regime

instead of the field emission regime, atomic steps on surfaces were reported

in 1982 and atomic resolution in 1983. These results, along with others,

precipitated the awarding of Nobel Prizes to Binnig and Rohrer. The improved

instrument became known as the Scanning Tunneling Microscope20 (STM). 

1.3.6 Scanning tunneling microscope: operation

 In this instrument, atomically sharp conducting probes, made by

etching, grinding, or cutting are scanned in a X-Y raster fashion over the

surface whose topography is desired. The grinding and cutting processes do

not necessarily produce symmetrically sharp tips, but do produce many

microtips which are atomically sharp. Micrometer range scanning 
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Figure 1:2 . Illustrations of the principles of STM, showing (a) current flow
between the tip and sample, (b) the nanometer separation of tip and sample,
and (c) multiple trace formation of 3-D image. 

displacements are usually accomplished by piezoelectric ceramics.

If there exists an externally applied electric potential between this tip

and a conducting sample, and if the probe tip is brought to within Angstroms

of the surface, a quantum mechanical tunneling current can be detected.

Since the tip must be within Angstroms of the surface to tunnel, the microtip

closest to the sample becomes the tunneling probe. This tunneling current is

exponentially dependent19 on the spacing between the probe and sample,

such that, if the spacing decreases by 1 Å, the current increases,

theoretically, to about 7-10 times the original current (see chapter 4 for

greater detail). The tunneling current is typically on the order of nanoamps for

a tip-sample spacing of a 1-10 Angstroms and 0.1-1 volt potential. This

current is dependent on both the geometry and the electronic properties21 of

the surface layers of atoms and tip.  

As the probe is scanned horizontally and servoed in the vertical

direction to maintain a constant current, a two dimensional (vertical and

lateral, or z versus x) trace of the surface can be obtained (as shown in
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Figure 1:2(a). Since the current is dependent on geometry and electronic

properties, the trace reflects both. Figure 1:2(b) illustrates the possibility of

obtaining atomic resolution if the tip is atomically sharp and the sample is

sufficiently flat and homogeneous (The circular shapes represent the

electronic orbitals of each atom). This trace is similar to that obtained by a

contact surface profilometer with the exception that the STM probe does not,

theoretically, come in contact with the surface.

 Three dimensional topography can be established by making a z

versus x trace, displacing the probe a nominal amount in the y direction and

making another z versus x trace as shown in Figure 1:2(c). If this process is

repeated, a series of x,z traces can be used to created a three dimensional

representation of the topography of the surface. The scanning is usually

accomplished using computer control, and for each coordinate the height of

the probe is also digitally recorded from the servoing feedback circuits.  Since

we now have the x,y,z data stored digitally, we can generate an image on a

computer monitor which corresponds to the nanometer topography of the

sample surface (hence it is microscopy). A typical STM topographical image

revealing individual traces is shown in Image 1:2(a). Image 1:2(b) shows the

same data as Image 1:2(a) but in a greyscale form and as viewed from

directly above the sample. A higher position of the surface is represented by

a lighter region in the greyscale image.

Piezoelectric ceramics can expand or contract on the order of 



17

nanometers per volt applied. Since digital to analog (D/A) converters are 

capable of millivolt resolution, sub-Angstrom positioning becomes possible.

Since D/A converters exist which are capable of resolution below one part per

million and providing the subsequent electronics are capable of this extremely

high precision, topography can be obtained with tens of micrometers of range

and sub-Angstrom resolution. However, one usually does not obtain these

detailed images over micrometer ranges because of the substantial amount

of memory required to store the x,y,z data22. 

1.4 Technology comparison

Comparing similarities in operation between STM and magnetic

memory technology will enable us to visualize a memory based on STM

principles. 
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1.4.1 Non-contact nature

Notice first of all that, in principle, both are non-contact methods. The

STM probe tip remains separated from the surface of the sample by dynamic

feedback while the magnetic head is maintained in a flying position by

aerodynamic forces between the head and medium. 

1.4.2 Reading capabilities

Secondly, notice that both the STM probe and head are detecting

(i.e.'reading') changes in material state. The STM reads the relative z position

of the probe necessary to maintain a constant current between the tip and

sample. More precisely, the STM probe detects the tunneling current which

affects the feedback electronics which in turn can be 'read' to obtain height or

current information. The magnetic memory head detects the flux reversals

near the surface of the magnetic medium.  Similarly, we 'read' the current

induced by the magnetic reversals. 

1.4.3 Size comparison

The most obvious difference is the size of what is detected. Magnetic

memory detects micrometer sized magnetic reversals, while STM can detect

sub-Angstrom scale differences in topography. If these differences in surface

topography were intentionally generated to be memory 'bits', then we have a

non-contact memory reading device. The bit reading scheme could involve

any one of the following:

a. Change or rate of change of height of tip.

b. Current or rate of change of current between tip and    

sample, between consecutive tip positions (with digital   
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control).

c. The ac conductance between tip and sample.

If the bits were on the order of 3 nanometers in major dimension, the effective

areal information density could be increased by a factor of one million over

magnetic storage devices.

1.4.4 Positioning (or addressing) techniques

The position (address) for memory bits of a magnetic style memory

rely on additional tracking heads which read other encoded magnetic bit

patterns. The x,y position reading for an STM image is usually not read but

assigned for each z data position. The assigned position is determined by the

digital values of the D/A converters which control probe positioning. These

assigned values may need to be software generated to give more accurate

positioning if the piezoelectric ceramic displacements are known but not

linear, but we will neglect this for the purpose of the present discussion. This

is justified because the tip only needs to return to the same place each time

and that place does not have to be known in an absolute sense. So, instead

of reading the position of the probe, we effectively place (address) it where

we desire it to be (repeatably, but not exactly), and use some method to

retrieve the desired information at that point (address), whether topographical

and/or memory bit. 

1.5 Synthesis of an STM Memory

The basics principles of a memory device are addressing, reading, and

writing. We have shown that an STM actually reads information and 
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Figure 1:3 Synthesized STM based memory.

is effectively addressed. Assume that we do have the capability to alter a

surface by STM technology and that these alterations may be read as

information. Let's assign a 1 to an altered position. 

Figure 1:3 illustrates that we now have a stratagem for development of

an STM based memory. The probe can be rastered in an x,y pattern to give

us the addressing that we require. In the x direction, there is the need for

more step positions per nanometer than reading (bit) positions so that

comparison can be made for the determination of the state of the bit (altered

or unaltered, i.e. 1 or 0). In Figure 1:3, the probe is shown at the x2,y4 bit

position. This bit would be read as altered and it's state determined as a 1.

Similarly, if we read addresses (x1-x5,y3) we determine the encoded

information to be 10110. 

The 3 nm spacing between read positions has been chosen to give 
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a 1 nm2 bit area and 2 nm of non-altered spacing between bits for

comparison. The more than 20 surface atoms in the 1 nm2 area would need

to be altered in some way to be recognized as an information bit. We will

discuss this concern in the next few chapters.
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Chapter 2.

Scanning Tunneling Lithography: Techniques

Having described, in the previous chapter, a possible tunneling based

nanomemory, the problem remains to utilize the STM probe to act as a

means to lithographically 'write' information. Lithography here is used in the

broader sense of marking a surface encompassing any technique. Quate1

[1986] has obtained a general patent on the idea of using tunneling

technology to produce memory bits. His patent suggests using an

electromagnetic pulse between the tip and sample to produce a change

(lithography) on the sample surface which can be detected. 

Expanding on Quate's ideas, let us consider some possible tip-sample

configurations which may be used to produce detectable changes in the

sample surface. The following sections expound schema which may be able

to produce the bits to be used in the memory and focuses on schema which

work at room temperature and without the necessity of housing the probe and

surface in vacuum. Discussion will involve both the basic pros and cons of

the suggested memory schema with more detail given in subsequent relevant

chapters.

       

2.1 Mechanical contact

We have mentioned in the previous chapter that the STM probe does

not theoretically contact, but hovers within a nanometer of the surface to

maintain a constant tunneling current. If the probe were forced 
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Tip

Trace
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a. Before
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b. During
contact

c. After
 contact

Figure 2:1 . Mechanical contact method of altering surface, showing
surface appearance and tip positions a) before, b) during, and c) after
contact.

to momentarily contact the surface, the possible result would be an altered

surface.2 This is similar to machining with the probe acting as a cutting tool or

as a mechanical indentor much like Edison's original phonograph. 

Figure 2:1 illustrates this mechanical contact scheme. The tip is

brought to within tunneling distance of a surface [Fig. 2:1(a)]. Then, the tip is

forced to indent the surface [Fig. 2:1(b)], provided the tip is harder than the

substrate3. This could be accomplished by removing the bias, causing the

current to drop, effecting a servo response of the tip toward and into the

surface. Another possible method would be to temporarily disable the servo

feedback and mechanically or electrically displace the probe into the surface.

The result would be an indentation in the surface as shown in Fig. 2:1(c). 

Using a microhardness indenter, Gane and Cox [1970a] tested

annealed and cold-worked gold using a 200 nm radius spherical tungsten 
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probe. They found that as the indentations approached 200 nm, the hardness

appeared to increase by a factor of 2-3. In a further study on Au, Al, Cu, Ni,

Fe, and Zn, Gane [1970b] found that the apparent hardness increase was

due to hydrocarbon contamination on the indenter or sample. The

contamination allowed the surface to slip (during plastic deformation) with

respect to the indenter, inducing lateral stress relief. Using a Berkovitch

diamond4, Pethica [1983] made indentations as shallow as 20 nm, which

showed a piling up of material on the periphery.  

This method has the advantage in that it is very simple to facilitate.

However, since there is mechanical contact, material from the surface may

deposit on the probe altering its geometry and tunneling properties. Also,

since the spacing of bits we desire is on the order of nanometers, such a

method would almost certainly cause the assumed position of the tip

(addressing) to be corrupted after a series of indentions. This method also

has the disadvantage that it could not be implemented "on the fly", that is, the

tip must stop over a particular position, which would increase memory writing

time. 

2.2 Field evaporation of surface atoms

Pulses superimposed on the normal voltage between the tip and

sample have been found to produce nanometer scale surface modification on

graphite and metals.5 This technique can be used to create a memory bit by

the following procedure:

1. The tip is scanned close enough to the sample to induce
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Figure 2:2 . Simple surface alteration scheme for making nanometer scale
memory bits.
 

measurable tunneling [see Fig. 2:2(a)].

2. A voltage pulse is superimposed on the normal bias causing

"field evaporation" of atoms near the surface 

[see Fig. 2:2(b)].

3. The resulting hole is read as a memory bit by once again

scanning the surface and using the incremental change in

height, delta Z, or current as a criterion for the existence of a

memory bit [see Fig. 2:2(c)].

Notice the change in position of the tip during the voltage pulse. This

could result from the response of the servo feedback to induced currents.

These induced currents could come from increased tip-sample current or from

ac currents due to stray capacitances6. 

It is relatively easy to implement this scheme since the only materials

necessary are the tip and conducting surface. The conducting surface needs

to be free from any surface roughness comparable in size to the desired bit in

order to be able to differentiate the bit from intrinsic surface structure.

Conducting crystalline samples may be able to provide 
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Figure 2:3 . Simple thin film surface alteration scheme for making
nanometer scale memory bits.

the necessary surface smoothness, but they are expensive. The required flat

surface may be produced by depositing a thin conducting film on polished

glass or other flat surface which does not conduct as well. The field

evaporation scheme for a thin film on a crystalline or smooth surface is shown

in Figure 2:3. Atoms in the thin film are field evaporated using the previous

scheme to expose the substrate and leave a hole similar to the one in Figure

2:2. 

The material which has been field evaporated must end up somewhere

else. If the material deposits on the tunneling tip or elsewhere in the memory

area, the schemes of Figures 2:2 and 2:3 could be corrupted in the following

four ways:

1. The material deposits on the tip changing the composition

requiring a different voltage pulse to modify the substrate.

2. The material deposits on the tip changing the position of the

point of the asperity closest to the sample. If, after making

hundreds of thousands of bits, the effective position of the tip

changes by the bit separation, tracking would be 
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Figure 2:4 . Tip deposition scheme for making nanometer scale memory
bits.

destroyed.

3. The material from the tip could redeposit in a previously made

bit (hole), filling it up, therefore reversing the information in that

bit.

4. Voltage pulses applied between a tunneling tip and surface

have been shown to cause diffusion of adsorbate atoms.7 If the

holes which have been created diffuse across the surface or

reconstruct over a period of time, then the stored information can

be lost, changed, or destroyed. 

2.3 Field deposition onto substrate

It has been shown in the literature8 that it is possible to deposit material

onto a substrate from the tip, from organometallic gases, and from liquids.

Figure 2:4 illustrates the simple case where the material comes from the tip.

Figure 2:5 illustrates the concept for a liquid or gas environment. The

procedure is similar to that described for field evaporation, with the exception

that the material comes from the tip or 
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Figure 2:5 . Gas/liquid environment alteration scheme for making
nanometer scale memory bits.

ambient instead of the substrate. The material in the gas or liquid could be

deposited either directly onto the sample or indirectly by contacting the tip first

[see Fig. 2:5(b)]. 

When material leaves the tip [see Fig. 2:4(b)], its shape is changed.

Again, after many bits have been made, the position of the point on the tip

would be changed enough to corrupt any tracking scheme. Material that is

deposited from a gas or liquid would have to bond or react with the surface to

prevent the material from being reabsorbed into the liquid or gas, and also

prevent corruption of the bit by surface diffusion. If a liquid or gas scheme

were incorporated into a manufactured memory, problems would arise with

packaging the memory to prevent leakage of the ambient, while also adding

additional expense.
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Figure 2:6 . Field induced chemical and/or structural alteration scheme within
a liquid or gaseous ambient. 

2.4 Field induced chemical alteration of surface

This technique9 utilizes an applied electric field to chemically modify a

compound's structure. An applied voltage pulse between the STM tip and

compound provides the energy necessary to break or induce bonding. This

altered bonding changes the electrical properties and/or topography of the

surface. Such a scheme involving the presence of a liquid or gas is illustrated

in Figure 2:6. The voltage pulse invokes a change in the surface allowing

material deposited from the ambient [Fig. 2:6(a)] to react with the surface [Fig.

2:6(b)] which produces a reaction product which is reabsorbed into the

ambient. The resulting surface topography has been changed by the induced

reaction [Fig. 2:6(c)].

Figure 2:7 illustrates a similar process in which there is no 
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Figure 2:7 . Chemical alteration due to an applied electric field with or
without an ambient reaction. 

discharged reaction product. The field induces a chemical change with or

without a reactant from the ambient [Fig.  2:7(a)]. Since tunneling depends on

tip and sample chemical properties10, the resulting surface may experience no

actual topographical change [Fig. 2:7(b)] and yet give the illusion of an

apparent topography change. For small constant voltages, the predominant

term affecting the current can be approximated11  as e-ks, where k =

1.151½/[Å(eV)½], 1 is the average work functions (3-6 eV) of the tip and

sample, and s is the tip-sample separation in Angstroms. If the work function

decreases by half, the separation changes to about 1.4 of its initial value. For

a normal tunneling current of 1 nA, the separation is less than a nanometer12,

which yields a height change on the order of a few Angstroms. Such a small

height change may not be large enough to be detected above normal surface

roughness. There could also be a simultaneous topography change which is

detectable (Compare Fig. 2:5c). Additionally, the presence of light13 on the

surface could be added into the chemical process to induce surface 
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Figure 2:8 . Si-Si2N3-Metal application of a substrate-insulator-metal
scheme for making nanometer scale memory bits.

chemical/topographical alteration. The effect of the light would only be

observed over the tunneling region, if both photons and electric field were

necessary for alteration of the surface. 

2.5 Electrical charging of insulator interlayer

By using a sandwich structure consisting of a conducting substrate, a

hole or electron trapping insulator, and a couple of monolayers of a

conducting thin film surface, it may be possible to create a memory using

trapped charges14 in the insulator to change the dc conductivity of the surface.

This scheme is illustrated in Figure 2:8 using a Si-Si2N3-Metal (silicon-silicon

nitride-metal) sandwich structure. The memory would work in the following

manner:

1. The tip is scanned within tunneling distance of the sample

[see Fig. 2:8(a)],

2. A short duration (µS) voltage pulse superimposed on the bias

causes charges to overcome the potential barrier 
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between the silicon and nitride, some of which get trapped in naturally

occurring traps in the silicon nitride [see Fig 2:8(b)].

3. The charges trapped in the nitride produce an image charge

in the thin metal film on the nitride changing the films

conductance, causing a change in the tip position as it scans

over the newly manufactured bit [see Fig 2:8(c)]. 

This method overcomes the problems associated with material particulates

contaminating the memory surface or probe tip. However, a drawback to the

substrate-insulator-metal method is that the charges may detrap over time if

the surrounding potential barriers are not sufficiently large. Another problem

would be manufacturing the surface film thin enough to be affected by the

image charge. In the above particular example, getting a metal to adhere to

the Si2N3 and forming a uniform 20 ' nanometrically flat film is by no means

trivial. Using electrets as substrates would not work as well since their

surrounding electric field degradation is higher than a monopolar charge.

2.6 Magnetizable interlayer

Another possible way of writing bits involves an insulating  magnetic

interlayer such as CrO2 between a substrate and thin conducting film. The

scheme is illustrated in Figure 2:9. The bit writing procedure is as follows:

1. The tip is scanned within tunneling distance of the                    
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Figure 2:9 . Magnetized interlayer scheme for making nanometer scale
memory bits.

sandwich structure surface [Fig. 2:9(a)].

2. A magnetic field pulse is applied between the tip and magnetic

interlayer changing the magnetic orientation of the interlayer

[see Fig. 2:9(b)].

3. The changed magnetic orientation of the interlayer affects the

dc conductance of the surface film producing a height variation

in the tip position as it scans. The bit is read by the rate of

change of the tip height, delta Z, [Fig. 2:9(c)].

 The minimum size for single domain magnetic particles is about 20 nm

with smaller sizes becoming super paramagnetic.15 This limits the bit size to

20 nm. However, the magnetized interlayer method conquers the problems of

loose nanodust corruption and surface diffusion. However, any magnetic dust

allowed in the vicinity may be attracted to the surface. Also, the question

arises as to whether we will be able to sufficiently magnetize the interlayer

and, if so, will the magnetization affect the 
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conductance a detectable amount:  away from magnetized area.F
qv × B
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Another problem is changing the magnetic flux on such a small scale.

Additionally, the application of a magnetic pulse will produce an attractive

force between the tip and substrate. The tip should be constructed in such a

way as to prevent mechanical contact during the presence of this force. 

2.7 Alternate schema of reading the manufactured bits

This section gives a brief description of possible methods to produce a

displacement in the height position of the z-axis to represent the existence of

a bit. Since it is practically impossible to deposit thin films without some

inherent nanometer scale topography, the manufactured bits must cause

characteristic changes in height greater than that of the deposited films.

Alternate methods of detecting (reading) the bits should be considered, if

other techniques are found inadequate. 

2.7.1 Bit reading via ac conductance 

An ac signal could be superimposed on the tip to sample dc potential

with a frequency much higher than the servo response of the probe. The ac

conductance could be measured with lock-in-amplifier type circuits. This ac

conductance may be sensitive enough to detect the type of changes the bit

manufacturing schemes produce. The ac conductance would depend on the

dc current, surface free electron density, work functions of the tip and sample,

and the tip-sample geometry. Although 
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Figure 2:10 . Conjectured ac conductances of the bit-making schemes of
Figures 2:2-2:9.

the required electronics are the same, this technique differs from

capacitance16 methods in that it detects electronically induced current

changes (in phase with signal) rather than geometry induced charge

displacements (out of phase). 

Illustration of the expected ac bit detection measurements are shown in

Figure 2:10. The bits could be detected by changes in the ac conductance. 

Figure 2:10(a) shows that there should be very little change in the ac

conductance because the substrate material the tip sees remains intrinsically

the same. Although there is some topography, the tip remains 
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at a constant height above the substrate. If there is enough material removed

from thin film to expose the substrate, as in Figure 2:10(b) the ac conductance

would be different for each of the two different surface materials. Similarly if

material from the tip were deposited on the substrate as in Figure 2:10(c),

then the ac conductance should be higher between two like materials.

Likewise, a particle deposited from a gas or liquid onto a surface would have a

different conductance than that of the surrounding substrate as in Figure

2:10(d). Although the surface material doesn't change in Fig 2:10(e), the

conductance is changed by the underlying static charge. Similarly, the

underlying magnetization of the surface in Figure 2:10(f) may have a sufficient

effect on the surface to change the conductance. The hard part of

implementing this scheme is getting the conductance detector close enough to

the tip so that it is not affected by stray fields. Another problem will be getting

enough ac amplification to detect the picoamp changes in current. This

method could be particularly useful in overcoming problems associated with

intrinsic sample topography.

2.8 Reported Experiments

Chapter 3, Scanning Tunneling Lithography: State of the Art, and

Chapter 4, Scanning Tunneling Lithography: Experiments, give examples of

research into modifying the surfaces of materials using a STM probe. The

reported experiments will give further insight into the alterability,

reproducibility, durability, and readability issues which must be 
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confronted. Chapter 5, Scanning Tunneling Lithography: Material Précis, gives

a material oriented analysis for propensity as a memory basis.

2.9 Summary  

We have described several possibilities for altering a surface in such a

way as to be detectable as a memory bit. These include mechanical  contact,

field evaporation and deposition, field induced chemical alteration, and

charging or magnetization of an interlayer under a thin film. Each method has

its limitations and problems such as tip transformation resulting in corrupted

addressing. The simplest methods are intentional tip-substrate contact and

field evaporation/deposition of a surface. These methods require a minimum

of processing procedures. Field methods are preferred over mechanical

contact since it can be accomplished with the tip moving and thus reducing

writing time. Evaporation is preferable to tip deposition since we desire the tip

to maintain its addressing integrity. Our experiments, reported in Chapter 4,

have been limited to field methods for their simplicity. Likewise we have relied

on topography height changes for determination of alteration.     
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Chapter 3.

Scanning Tunneling Lithography: State of the Art

This chapter reviews the state of the art in surface alteration

techniques using a scanning tunneling microscope. Application of this body of

knowledge to the alterability, reproducibility, durability, and readability

necessary for the development of a nanomemory will be discussed in

separate sections in Chapter 5. The results of investigations for this thesis will

be mentioned only briefly in this chapter with a more detailed description

included in Chapter 4. The present body of knowledge is discussed including

the variety of methods and parameters used for surface alteration and some

postulated mechanisms. Discussion uses terminology of the previous chapter

on proposed bit writing techniques. Unless otherwise noted, all work was

carried out under ambient conditions. The works are classified according to

the alteration method for easier comparison with Chapter 2 on techniques.

Some papers are mentioned under more than one heading where there was

more than one procedure reported. This chapter forms a detailed summary of

the results as they are relevant to the fabrication of a nanomemory.

Additionally, the results are classified and discussed by material in Chapter 5.

This chapter along with Chapter 4 are important for the foundation of Chapter

5. However, for those interested in a summary of the experimental results,

this chapter may be skipped and used as a detailed reference for Chapter 5.

Since the works are summarized here, and in order to conserve space, the

paper references are given at the 
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beginning of the discussion and do not appear at the end of the chapter, but

are detailed in the bibliography at the end of the thesis. Other relevant

references not the immediate subject of discussion are included as chapter

endnotes. Tables summarizing each sections reports are included at the end

of the chapter.  

3.1 Mechanical contact surface alteration

Abraham et al. [1986] Surface alteration of Au in UHV with a W STM

tip produced 10 nm sized features with an identifiable deformation region

extending 50 nm away in major dimension. By reducing the tunneling

resistance to 200 ohms, the feedback caused the probe to contact the

surface. They also reported that the contact sometimes caused changes

resulting in shifts and distortions of the tip, so that, they were no longer

positioned over the same area of the surface. 

Garfunkel et al. [1989] A crystalline surface of the low conductivity

oxide Rb0.3MoO3 was altered by reducing the STM tunneling voltage to 10 mV

forcing the tip to penetrate the surface layer to maintain the preset tunneling

current. Features as small as 0.3 nm deep and 6 nm across were etched in

the surface. Lines, 150 nm long by 8 nm wide by <1 nm deep, and a 100 nm

square were formed by abrasively dragging the tip along the surface. The

features produced were stable and did not degrade in time over a 4 hour

period.  

Gimzewski et al.[1987]  For an iridium STM tip displacement of 3 nm

towards the surface, a hillock 10 nm wide and 2 nm high was 
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formed on a silver film on silicon in UHV.They also produced indentations

with a degraded tip, which could be diagnosed from changes in the current-

voltage I(V) characteristic. They attributed the hillock formation to clean metal

surfaces forming a cohesive bond which resulted in tensile necking as the tip

was withdrawn. Cleanliness of the tip was determined by current vs tip-

sample displacement I(S) characteristics. The indentations were thought to

form when there was contamination present which prohibits cohesive

bonding. Indentations <1 nm deep, disappeared before subsequent scans

were completed.

Harmer et al. [1991] STM imaging of the high temperature

superconductor, YBa2Cu3O7-x was found to alter the surface over time. The

nucleation of holes was followed by growth and coalescence upon repeated

rastering. Nucleation was presumed to occur at surface defects. The material

was transformed using both, positive and negative, scan biases. They believe

the transformation to be due to a mechanical tip-sample interaction. They

propose that this interaction was due to adsorbate layers present in air.

Rough surfaces were flattened, and squares and lines were formed while

scanning with a bias of 1.51 V (insufficient for tunneling) and a current of 0.26

nA.  

Jaklevic et al. [1988] A flat (111) terrace on a gold surface under UHV

was touched by a tungsten STM tip producing monolayer deep craters. Some

were only big enough to hold 3200 atoms (a 20 nm dia hole 1 nm deep). They

suggest that the atoms from the crater may be forced into the bulk as

interstitials. Sometimes tip contact caused a loss or gain 
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of asperity atoms resulting in a translation of the position. Over a period of 8

min, a hole big enough to hold 25 atoms was filled by what was thought to be

surface migration. After 30 min, a hole missing 125 atoms became filled and

after 120 min a 900 atom hole filled.       

Marchon et al. [1988] Gently touching the surface of Re(0001) with a

W tip produced clusters of 2-5 nm hills. Barrier height measurements suggest

the clusters contained material electronically different from the bare Re

surface.

McCord et al. [1987]. An insulating 20 nm film of calcium fluoride was

machined by a tungsten STM tip. The tip was forced to penetrate the film in

order to achieve tunneling. As the tip was laterally moved, 360 nm wide lines

were machined out. The authors show evidence implying that particulates

were left on the tip after machining.

 Stroscio et al. [1991] The authors demonstrate a process for sliding

CO and Pt along a Pt(111) surface and sliding Xe and Ni along a Ni(110)

surface in UHV (at 4oK). By adjusting the position of an STM tip with respect

to an adsorbate, the electrostatic and van der Waals forces on an atom can

be controlled to produce motion of the adsorbate. The authors demonstrate

the ability to position atoms side by side to form lines or any desired planar

structure.  

van Loenen et al. [1990] By moving a tungsten STM tip 2 nm towards a

silicon surface, circular holes were formed with "walls of atoms pushed away

from their respective centers". The holes were 10 nm in diameter and were

positioned side by side to form regular 
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arrays. By making hole spacing less than the hole diameter, continuous lines

were formed. Experiments were done under UHV.

Virtanen et al. [1991] A Pt-Ir STM tip was used to mill a rough laser

ablated YBa2Cu3O7-x thin film to nanometer scale flatness. By keeping the

applied voltage low, the tip collided with the sample causing the surface to

flatten. A sample with up to 600 nm surface structure was smoothed to one

having 15 nm after milling.  Square areas greater than 100 )m2 were

smoothed. Grooves were also milled having depths greater than 100 nm.

Observing a fabricated line for 18 hr. revealed a continuous transformation of

the region near the line which reached a steady state condition after about 1

hr.

Yokohata et al. [1990] Gold surfaces were indented with a Pt STM tip.

Tip indentations from 30-300 nm were compared. For greater indentations,

buckling of the tip was observed causing tip lateral displacements of up to

250 nm. Profile curves after indentation showed decreased resolution.  

In a similar fashion, an atomic force microscopy1 (AFM) probe has

been used to mechanically contact and alter surfaces. Kim et al. [1991]

produced wear regions on NbSe2 and MoS2 with widths ranging from 2-200

nm. Leung et al. [1992] show normal AFM scanning causing a time evolved

roughening of a polystyrene surface. Weisenhorn et al. [1990] were able to

nanometrically modify ammonium ions deposited onto a zeolite substrate.

The molecular dynamics work of Landman et al. [1990] for a Ni tip 
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coming into contact with a Au substrate show atoms leaving the tip to deposit

on the sample and vice versa.  

In STM work it is not

uncommon for a tip to

inadvertantly contact the sample.

This type of mechanical contact

often occurs during initial tip-

sample engagement as the tip is

positioned to within the tunneling

region. If the sample surface

cannot conduct the desired current

or the electronic servo feedback

responds too slow, the tip pushes

into the surface. Image 3:1 shows

and extreme example of collision

damage in a silicon nitride thin film on silicon. The hole is 1.5 )m in diameter

and at least 20 nm deep with damage extending over 5 )m.  

3.2 Field-induced material transport

Literature concerned mainly with the induced transfer of material from

one place to another using an increased electric field between the tip and

sample is reported. The increased field in all examples is produced by an

increase in potential between the tip and sample. This potential increase

induces a corresponding increase in current and electrostatic force between

the tip and sample, thus complicating determination of the
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actual distortion mechanism. Most experiments were carried out in either an

ultra-high vacuum (UHV) or in air without any other intentionally supplied gas

or liquid between the tip and sample. Ambient air is present unless UHV is

specifically mentioned.

  Akari  et al. [1991] The surface of WSe2 was modified by

superimposing a voltage pulse on the bias between the surface and a gold

tunneling probe. Rectangular pulse shapes between 4 and 6 V, produced

currents � 200 nA and altered the surface. To produce structure, the pulse

duration had to be altered between 10 and 400 ns depending on the

sharpness of the tip. A cluster type feature was produced that was 5 nm in

diameter and 1-2 nm deep. After 2 minutes the cluster had taken the shape of

a triangle and grown slightly. The triangular structure continued to transform

over time, increasing in size to 75 nm with the inner depth increasing to 12

nm after 20 min. Observing two triangles (produced by two pulses) over time,

they eventually grew large enough to touch and fuse together. Imaging was

performed with 0.6-0.9 V biases and a 0.5 nA current.

Albrecht et al. [1989]. Nanometer scale holes, 2-10 nm in diameter,

were produced on the surface of HOPG. The holes were created with 3-8 V,

1-100 )s, pulses applied between the W tip and sample (sample positive). A

typical hole, 0.7 nm deep and 4 nm across, revealed the perimeter of the hole

to be higher than the surrounding surface. The threshold amplitude for hole

formation was also tip dependent along with the size and shape of individual

features. The holes 
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written toward the end of a series in a pattern were found to be as much as

three times bigger than the initial holes. When a layer of graphite was

unexpectedly removed by the tip, some holes in the pattern were still visible

demonstrating that the features were in fact holes. 10 % of the tips that were

experimented with did not produce any holes whatsoever. One tip produced

holes on 496 out of 498 tries. Under ultrahigh vacuum, no holes were formed

even with amplitudes as high as 10 V, nor were holes manufactured when the

tip and sample were exposed to benzene, oxygen or 100 Langmires of water.

The hole fabrication resumed upon venting to atmosphere. Voltage pulses

under the water, however, resulted in the deposition of contaminants upon

the surface. Examining the feedback response, indicated that the tip pulls

away from the sample during pulsing. Intentionally extending the tip 100 nm

towards the sample caused no surface features, possibly due to the elastic

nature of the graphite. In view of their findings under controlled ambient

environments, they suggest that a chemical reaction may be possible for the

formation of holes. 

Becker  et al. [1987] A c-2×8 reconstructed (111) Ge surface was

altered under UHV environment. The initial bias was -1.0 V and the W tip was

servoed to 20 pA tunneling current. A bump that was 8 Å Full- width half-

maximum (FWHM) was produced by raising the tip bias to -4 V and noticing a

1 Å rapid shift in the servoing response. Surface transformation was not

always induced.
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Casillas et al. [1991]  In this work, a 50 nm Pt film was deposited onto

mica. A 10 nm Ti film was then deposited onto to the Pt surface. The Ti film

was thought to completely oxidize after coming into contact with air. The

resulting TiO2 was removed by linearly cycling a potential between ±2 V at a

rate of 80 V s-1 between the film and a Pt-Ir STM tip. The initial tip to sample

distance was set with a 0.3 V bias and a current of 0.5 nA, then held constant

for alteration. After cycling the tip ±2 V for 0.25 s, a 5 nm radius disc shape

was revealed. Voltage cycling as low as ±0.3 V produced what was thought to

be TiO2 removal. This small threshold value, they consider to be indicative of

a physical process (e.g. dielectric breakdown) rather than a chemical

reaction. They showed that the current-voltage characteristics were ohmic

over the disc region and rectifying over the TiO2 film. By changing peak

voltages and/or initial tip-sample displacements, disc shaped regions with

radii from 5-36 nm were produced.

Emch et al. [1989]  Like Casillas, Emch used mica substrate but with a

100 nm Au film for studies. Tunneling currents near 1 nA and a tip bias of 100

mV were used for imaging. An irregular hole 10 nm wide was formed on the

fly by applying a voltage pulse while the tip was scanning. Both hills and holes

were formed. No polarity dependence was observed, but there appears to be

a threshold voltage and minimum pulse width for formation. The flattest

newest samples and fresh tips produced the minimum thresholds. Small, 5

nm wide, features were written with 3 V, 10 ns voltage pulses. Blunt or dirty

tips required pulses of 5 V for surface
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alteration, and were accompanied by massive tip change. In one experiment,

three of four attempts to produce holes were successful. Diffusion was

observed on the surface for naturally occurring and fabricated features. An

irregular 10 nm hole was observed to disappear over time due to possible

self-diffusion migration. Movement of gold steps was observed to be as much

as 10 nm in 20 s. They report a private communication from G. Hadziioannou

that hydrophilic Au surfaces become hydrophobic after a few moments

exposure to air. 

Heinzelmann et al. [1988] After raising the bias on a HoBa2Cu3O7-x

sample to 4 V and the tunneling current to 10 nA for 5 s, a 75 nm edge

triangular hole with a depth of 40 nm was produced. Ten minutes after the

formation of the hole, the apparent depth had decreased to near 4 nm, even

though the outer shape did not change. Repeating the process 80 times

produced holes ranging in diameter from 10-80 nm. A threshold of 2.0 V was

observed for modification to take place. Imaging with negative sample biases

was not possible and imaging with positive sample biases below 1 V was only

occasionally possible.

Hoffmann-Millack et al. [1990] A vacuum-annealed gold foil was

altered with a 2 V stepped (1 V/step, 1 step/0.5 s) voltage pulse applied to the

W tip. The rise time of the pulse was 60 ms. The feedback was operated with

a time constant of 10 ms. The result was a 4.8-8.4 nm deep, 30×60 nm hole,

corresponding to the movement of about 107 atoms. The hole began filling in

without delay with the back wall slipping into the depression with diffusion

velocities as high as 4.2 Å s-1. 
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50 min later the hole had completely filled. The ability of a tip to endure the

application of a pulse depended on its shape. The authors ruled out

mechanical indentation because the feedback had plenty of time to respond,

keeping the current constant. Since electrons tunnel to the tip, electron

heating of the sample causing evaporation was dismissed as a mechanism.

They conclude that there was ion arcing from the ambient which forced the

removal of the atoms.  

Li et al. [1989]. The surface of a 2 mm Au ball was altered. While the

constant current feedback loop was operational (650 mV sample bias, 1 nA

current), a voltage pulse was applied to the W tip producing craters ranging in

diameter from 2-8 nm. The craters had protruding rim-like features. There

was a 2.7 V threshold associated with formation. A large increase in tunneling

current at the beginning of the pulse was attributed to the switching of the tip

from normal STM emission to field emission like tunneling. They found no

evidence for physical contact between the tip and sample. Imaging individual

holes for over two hours showed no apparent diffusion degradation. For

distinct sectors of the Au surface, they were not able to produce any

discernable features using a 2.7 V pulse. Large mounds were sometimes

formed and associated with much higher and longer duration currents. With a

tip that was stable for days, they generated a 40×65 nm pattern resembling

Plank's constant, , with minimum linewidths of 2 nm. Intense local heating6

due to a large input power density was associated with explosive evaporation

of the



53

surface. Marella and Pease [1989] made some calculations on the suggested

local heating mechanism. They found that heat conduction away from the

source was dominant and a temperature rise less than 1o K should be

expected.

Lyo et al. [1991] Nanometer scale alterations were produced on a

silicon (111) 7×7 reconstructed surface. A W tip was scanned (2 V, 200 pA)

at an estimated 6 Å above the surface. The tip was moved toward the silicon

(2-6 Å) and a 10 ms, 3 V pulse was applied to the sample. When the tip was

moved 3 Å toward the sample a small mound about half the size of a 7×7 unit

cell was deposited. For a 4 Å displacement a region with a 4 nm diameter

was removed. A small mound inside a 5 nm hole (mound-moat) was

observed when the tip was first moved 5 Å toward the surface with a 3 V

pulse. The mound was thought to form when desorbing Si atoms pile up

under the tip forming a bridge between the tip and sample. The removal of

the mound in a mound-moat structure with a 3 V pulse and subsequent

deposition of these atoms with a -3 V pulse at an adjacent position was

demonstrated. Single atom desorption was obtained with a 5 Å displacement

and a 1 V pulse, but was not as reproducible as the larger scale structures.

Although not mentioned, it is assumed that the work was carried out in UHV

chamber to prevent surface oxidation.

Mamin et al. [1991]. A gold STM tip was used as an emission source

to deposit material on to surfaces in UHV and air. 15-20 nm wide and 2-3 nm

high mounds were deposited when voltage pulses above 
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3.5-4.0 V were applied to the tip. Negative and positive biases produced

mounds, but when positive tip biases were used, the mounds were larger.

They found that the threshold voltage was dependent on tip-sample

separation. The process was almost pulse duration independent with mounds

produced for durations as small as 10 ns. When the bias was near threshold,

the mounds increased in size to a 20-30 nm limit. Mounds were written in a

methodical manner which produced letters and a facsimile of a world map.

Depending on where the tip was positioned, material could be either

deposited, removed to leave a hole, redeposited in the hole and then

emptied. The authors suggest the deposition or removal process was

dependent on the flat, convex, or concave shape of the surface near the tip.

Au tips were also used to deposit on Pt and Si, and W on Au. The W typically

produce holes in the Au. They also found that static discharges remote from

the STM produced depositions over 100 nm areas. UHV work showed the

process to be 50 % less reliable than in air. Larger (20-40 nm) mounds were

created with -4.7 V × 20 ns pulses. The lithography was 90-100% reliable with

most tips. Similar to Mamin et al. [1990]. Thousands of pulses were not found

to degrade the tip's ability to write. However, the tip was occasionally

observed to alter. They proposed that migration of atoms due to the high

electric field was responsible for the tip's rugged self-healing endurance. 

Marchon et al. [1988]  The surface modification of Re(0001) covered

with a half a monolayer of sulfur and completely immersed under silicone oil

was reported. The sample bias was raised from the 500 mV 
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imaging potential to 3 V for 2 s. A hole 30×50 nm wide and 0.6 nm deep was

produced. Currents exceeded 100 nA during pulsing. Similar attempts to form

a hole in air were unfruitful. When the polarity was reversed (under oil),

clusters were produced instead of holes. The clusters, varying in size from 1-

10 nm, were scattered over an area greater than 100×100 nm. They have

suggested local oxidation2 as the mechanism producing the features.

Whether the W tip or Re crystal oxidizes was dependent on the polarity of the

applied voltage pulse. The role of the oil was not known. Even after the

numerous processes, no significant change in tip position was detected.  

McBride and Wetsel [1991]. Surface modification experiments were

performed involving W and Au tips, and Au and Pt samples. The samples

were prepared by advancing wires into a propane-oxygen torch flame. Using

a rectangular voltage pulse between a W tip and Au sample produced craters

in the Au about 15 nm in diameter and 4.5 nm deep. Local heating

temperature estimations yielded values that were not considered adequate

for thermal hole formation. Formation of mounds were observed when the

high values of current due to the pulse continued after the voltage had been

terminated. They conclude from this that the tip and sample were close

enough for good electrical conduction. Mounds only were found to be formed

when the tip to sample voltage was raised to -3.8 V for 150 )s. Both craters

and mounds were reported for a -4 V × 250 )s pulse. Mounds were

successfully formed on the Au using a Pt tip and a 150 )s pulse of ±3.8 V. 
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Using a Au tip and a Pt sample, no feature formation was found for a

150 )s pulse between 0 and -3.5 V. At -3.6 V a mound was produced about

2.5 nm high and 24 nm in diameter. For pulse values between -3.6 and -6 V

surface modification was achieved. Varying the voltage duration between 150

)s and 2.5 ms produced no effect on mound formation. They found that a

mound was created in every case in which the duration of the pulse current

exceeded 200 )s. Observing the threshold of mound formation as a function

of the log of the tunneling resistance revealed a linear relationship. Since,

theoretically, the log of the tunneling resistance is proportional to the tip-

sample spacing, this was direct evidence that the formation of the mound was

related to a critical electric field. The electric field was determined to be 2.3

V nm-1. Using a 3.8 V × 150 )s pulse and freshly prepared W tips and in

different sample locations, a mound was formed four out of five times.    

Miller and Hocken [1990] Holes and hills were produced on the surface

of HOPG. While holding a Pt-Ir tunneling tip at ground, a voltage pulse to the

sample produced features on the surface. Hole diameters varied from 0 nm

for <2 V pulse to 20 nm for a 2.75 V pulse to 200 nm for a 8 V pulse.

Increasing the setpoint tunneling current from 0.5 to 8 nA increased the

damaged region from 20-30 nm to 60-80 nm respectively, for a 4 V square

pulse. Pulse duration was found to have a role for times less than 10 )s and

for square pulses. Structures as small as 1 nm were shown. A square pulse

often produced two features and a triangular pulse sometimes generated

triple features for 0.1 )s pulses. 
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Repeated sinusoidal fields were used to produce a 40 nm L-shaped structure.

It was essential to continuously increase the voltage to maintain modification.

Possible mechanisms discussed were impact ionization, and induced ac

currents moving the tip and producing tip-sample contact. A more involved

discussion of this work will be reported in Chapter 4, which reflects the work

done by this author.

Mizutani et al. [1990] Modification of HOPG using a voltage pulse

applied to a Pt tip was demonstrated. The HOPG had been in a box with a

cup of water for 12 hours prior to use. Many +3.5 V, 350 )sec square pulses

were applied to the tip during a scan at points around the circumference of a

10nm circle. The result was a monolayer 10 nm hole. They suggested the

possible chemical reactions represented by equations (3,1) and (3,2). They

were unable to estimate the amount of energy dissipated due to a saturation

of the current to voltage converter. About 80% of the trials produced pits and

5% produced circles.

 

 Ohmori et al. [1991] Changes in surface features were reported for Pd

and Pt sheets. A tip bias of 150 mV and a tunneling current of 2 nA were

used for imaging. The changes occurred during imaging of the
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samples. The Pd surface was imaged for 250 minutes. During this time,

grooves and hills appeared to flatten out and the formation of a mound was

noted. Changes to the surface of a Pt sample were not as noticeable, but the

apparent growth of four pits was observed. A Pd sample annealed in a

vacuum and imaged over time showed the surface morphology changing

continuously. An analysis of the current was thought to show nothing that

suggested contact between the tip and sample. It was argued that the

formation of some mounds was evidence that the morphological changes

were not due to tip changes. They proposed that the electrostatic image force

was responsible for the changes. Using a 5 Å radius tip, 10 Å away from the

surface, they calculated a pressure of 104-105 N m-2. Although the theoretical

pressure was reduced to 102-103 N m-2 by lowering the tip voltage to 10 mV

(0.2 nA), smoothing of the Pd surface still occurred. X-ray photoemission

spectroscopy (XPS) confirmed the existence of impurities on the sample.   

Parkinson [1990] The etching of two-dimensional materials was

observed as a result of imaging in an STM. The process began with hole

nucleation on an flat surface and continued with the growth of the holes and

culminated with the merging of the holes to form a flat surface. The process

was allowed to repeat for deeper etching. Sharp edges and islands were

found to etch more quickly than smooth edges. Square 500 nm regions 20

layers (12.3 nm) deep were formed over an 8 hr period. In some cases the

nucleation rate exceeded the expansion rate and irregular surfaces were

formed. The rates of hole expansion for 
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various materials were as follows: InSe > ZrS2 > TiSe2 > SnSe2 > SnS2 >

NbSe2 > TaS2 > MoSe2 > WSe2 > MoS2, WS2 > PtS2 > ReSe2, WTe2, MoTe2.

The W and Mo samples only etched slowly and only at biases > 1.0 V.

Variation in etching rates was observed for different tips and identical results

had been observed for Pt or W tips. Attempts to find a bias dependence

showed no clear trend but showed that etching can occur for positive or

negative voltages. They discussed four possible mechanisms for etching. The

first was a field or current induced production of reactive species from organic

impurities. These species diffuse and attack the most reactive sites. This was

not thought to happen due to etching occurring at biases below 100 mV. The

second involved thermal effects generated by the injected electrons with the

heat produced evaporating surface atoms. Since there was no observed

dependence on bias or current this was not confirmed. The third proposed

process was field assisted evaporation due to induced polarization and image

charge repulsion of ions. Dual bias polarity etching was hard to reconcile with

this scheme. The fourth mechanism considered was abrasion (mechanical

contact). They argued that this was not the case since current-displacement

spectroscopy revealed exponential behavior. The images did not reveal any

material built up at the edge of the etched regions. Momentary tip-sample

contact was also suggested. The authors proposed the combination of any of

the mentioned mechanisms. One may cause nucleation, while another may

produce growth. 
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Rabe et al. [1991]. Silver thin films (200 nm) thermally evaporated on a

green mica film produced 100 nm Ag(111) terraces that were flat within �1

nm. These terraces furnished an area for surface alteration studies. The

imaging tunneling current was between 2 pA and 2 nA. While scanning along

a line the sample bias was raised from 0.5 to 5 V four times using a 100 ns

pulse. The result was a horizontal row of four holes about 10 nm in diameter.

Using similar pulses, occasional hills were also produced. STM imaging after

eleven attempted alterations revealed the formation of nine holes and two

hills with one and possibly both of the hills being over a hole. They found that

a steady state current and a 50 ns pulse were sufficient to produce holes. The

current also did not significantly change over a time period greater than 20

)s, demonstrating that the mechanism was not a current effect. For negative

sample biases, hillocks were produced with the observation that the current

sometimes shoots up indicating a point contact. Limiting the current to 4 nA

during hillock formation, prohibited current related thermal effects. They

conclude that hole formation was caused by field evaporation of metal ions

and the hillock formation due to tip instability after repeated silver transfer

during hole formation.  

Saulys et al. [1991] A conducting oxide, purple bronze (Na0.9Mo6017),

was cleaved along the layers of sodium atoms. The height of a Pt-Ir STM tip

was set with an 80 mV bias and a 2 nA tunneling current over an area with a

topographical surface roughness less than 3 nm. A several second voltage

pulse (< 1 )s rise time) was used for
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surface alteration. They report voltage increases of 600-700 mV produced

pits 5-10 nm in diameter and 2-8 nm in depth. More substantial alteration was

found at higher biases (0.9-2.5 V). During subsequent scanning, the surface

transformed in time to a crystal oriented faceted shape and then grew and

coalesced with other holes to produce surface etching.   

Schimmel et al. [1991] Alteration of the surface of WSe2, having atomic

smoothness and long range order, was demonstrated. The tunneling gap was

produced with a 0.8 V bias and a 3-6 nA current while scanning in a constant

height mode. Structures with 6 nm diameters were observed after the

application of 5.8 V (20 ms) pulses to the tip. These structures were ring

shaped and produced higher currents on the ring (constant height, current

imaging). The diameters decreased monotonically with pulse amplitude. By

decreasing the voltage pulse to between 2.5 and 3.5 V, structures 2-4 nm in

diameter were produced. The smallest were circular but resembled mounds

instead of rings. Using pulses between 2.3 and 2.7 V, structures with

diameters less than 1 nm were observed. The images retained atomic order

after structures were formed. Forming 100 similar features with the same tip

produced no visible degradation in the imaging ability of that tip. They also

found that alteration was possible under high vacuum (2×10-7 mbar). They

conclude that these details demonstrate that the structures were not

generated by chemical deposition or etching. They observed no difference in

structures for tungsten or mechanically cut Pt-Ir tips. Observing a feature for

two 
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days revealed no changes. No changes were detected when features were

imaged with a 0.8V bias for several hours. 

Schneir et al. [1988a]. A hole, 9 nm wide × 5 nm deep was formed in

HOPG by raising the 0.4 tunneling bias to 4 V for 0.5 sec. By raising the bias

to 3.2 V for 0.5 sec, a 1 nm hole was produced with apparent reconstruction

of the surface extending out about 5 nm.  

Schneir et al. [1988b]. An atomically flat surface region of a gold ball

was modified.  Under a fluorocarbon grease ambient, a 10 nm hole was

formed by raising the sample bias from 0.1 V (for imaging) to 3 V, until the

feedback electronics caused the tip to suddenly pull away from the sample.

Mounds 5-10 nm were also formed for biases near 0.7 V. Holes and mounds

were created for either polarity of sample voltage. Tips that were the most

successful at producing mounds had previously been pushed into the gold

surface. Determination beforehand of hole or mound formation was not

possible. Some attempts at modification were not at all productive. Attempts

in air were also unsuccessful. The features formed were all distorted by

diffusion within about an hour.

Shedd et al. [1990] Series of holes were produced in a gold surface by

raising the sample bias from 50 mV to 3-5 V and then reducing the bias back

to 50mV. The holes made with 4 V bias appeared to be more consistent. The

3 V bias series of holes seemed to affect the integrity of the tip. Holes (20nm

diameter) made in graphite with a 4 V bias seemed to be torn around the

edges. Bias changes (50 mV to 3.5 V) to a graphite substrate produced holes

about 20 nm in diameter and
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depths ranging from 3-7 nm. Raising the bias to 3 V, bumps as small as 2 nm

were deposited on the graphite surface.

Shen et al. [1991] Applying a voltage pulse (-30 to -180 V × 0.1-0.5 )s)

to an HOPG sample after withdrawing the W STM tip 2.5-20 nm away from

the surface produced localized 10 nm indentions surrounded by rings. The

rings were produced by terracing of graphite layers. Small holes several

atoms in diameter were sometimes observed. An increased amplitude pulse

was needed to produce a second damaged area, possibly due to tip

alteration. The experiments were done in a vacuum of about 0.04 Torr.

Sommerfeld et al. [1990] Au and Pt balls (3 mm) formed in the flame of

an acetylene torch were used for STM surface modification experiments. Hills

were produced with the feedback active and inactive. While the feedback was

active, a 5 V × 20 ns pulse was applied to the sample. With the feedback

inactive, a 5 V × 20 )s pulse was also applied. Both methods produced hill

formation. In the situations where modification was achieved, a hill was

always formed, never a hole. The polarity of the pulse was found to be

inconsequential in feature formation, but the probability of hill formation

depended on the magnitude of the bias. The tunneling tips were made of Pt-

Rh. For the gold surface 22 of 23 attempts were successful, while 16 of 23

attempts produced hills on platinum. More hills were well-formed for the Au

than the Pt surface. Pt exhibited a 4.3V threshold for hill formation, while the

Au exhibited a threshold of 2.8 V. The effect of extended duration pulses
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was also investigated. A 2 V bias with a current of 5 nA  was maintained for

10 min without scanning. A surface alteration was invariably observed,

sometimes the surface was altered past recognition (the tip may have

altered), while other times a well formed mound was produced directly under

the tip. The results were the same for Pt and Au surfaces. The mechanism

they favored involves electrostatic attractive forces between the tip and

sample. They estimated a capacitive force of 10-8N. They theorize that forces

in attraction could produce greater surface alteration than those in

compression. They were not able to determine if the hill material came from

the sample or the tip. Diffusion was observed with a 5.2 nm hill deteriorating

to 1.5 nm with the surrounding region also changing. Spontaneous diffusion

of steps in a terraced area was also observed.

Staufer et al. [1987]. The surface of an ion etched Rh25Zr75 glassy

metal alloy with an rms surface roughness of 0.1 nm was modified in UHV.

While tunneling (100 mV, 1 nA), the sample bias was raised to 2 V inducing a

tunneling current increase to 315 nA. They proposed that the current

produced a temperature rise and subsequent thermal and electric field

induced modification. When the tunneling current reached 300 nA, an

oscillation was observed, possibly the result of local melting with a Taylor3

cone forming in the presence of the high electric field. By reducing the

tunneling current to 1 nA and the bias to 100mV, the resulting feature was

found to be a 35 nm wide 10 nm high mound. Four such structures were

produced all similar in shape. A 0.2 eV difference 
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was found between the tunneling barrier heights and the surrounding surface.

This was speculated to be due to surface composition changing during ion

etching or segregation and electromigration during the mound production.

Lines were also produced by raising the bias and the current and then moving

the tip across the surface at 3 nm s-1. A line was shown with a width of 20 nm,

a height of 2 nm, and a length of 100 nm. Similar structures were produced

on other ion etched metallic glasses such as Fe86B14. They estimated that

there was a temperature increase due to the small mean free path of the

electrons in the metallic glasses. Using an Ir sample they were not able to

produce any features using the mentioned process. They supported their

melting hypothesis by comparing the melting points (Ir 2683 K; RhZr (1340

K).

Staufer et al. [1991]. By increasing the tunneling potential and then the

current, structures with 10 nm radius were fabricated on the surface of glassy

metals. The authors suggest local melting as the fabrication mechanism.  The

reported tip-sample potentials were between 0.7 and 1.0 V. Currents as high

as 1 mA were observed during formation. The 1 mA current remained

constant while the tip withdrew 10 nm away from the sample, which suggests

that the tip was in mechanical contact with the sample. They found that

hillocks were sometimes inadvertently erased if another feature was

fabricated nearby. Thermal conductivities and melting points were used to

estimate the power necessary to melt a 10 nm radius region. These results

were used to corroborate their local melting theory.
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Terashima et al. [1990].  Voltage pulses between an HOPG substrate

and tip produced nanometer structures between 0.8 and 50 nm. The holes

were a few nanometers deep and partially surrounded by regions higher than

the original surface plane. When the tunneling bias was raised from 20 mV

(1nA) to 4 V for 10 s, a structure about 3 nm in diameter was formed. Four

similar pulses of 1 s each produced four holes from 10-20 nm in diameter.

Migrating Au clusters previously deposited on the surface employed the 

holes as nucleation sites. Attempts to alter the surfaces of Si(111) and

YBa2Cu3O7 (under air) were unsuccessful.  

Terashima et al. [1991]. A superconducting 1 )m thin film of

Bi2Sr2Ca1Cu2Ox on MgO was altered with an STM. Nanometer structures

between 2 and 50 nm could be fabricated using voltage pulses on a portion of

the film having a flat terrace.  A 10 nm structure was fabricated by raising the

bias from 0.5 V to 4.5 V for 1 s. They also fabricated a 3 nm deep (c-axis

lattice spacing) hole with a flat bottom. They suggest this to be the result of

electron induced chemical etching of atomic scaled layers. The tips were

made of mechanically sharpened Pt-Ir. Virtanen et al. [1991]  Applying

voltage pulses (-10 V 500 )s) at the center of STM scan lines, a 100 nm wide

ditch was fabricated in a YBa2Cu3O7-x surface. Milling work mentioned in the

previous section was accomplished by lowering the bias from 1.5 V to 0.4 V.

This suggests an insulating barrier between the tip and sample which must be

overcome before detectable current can be obtained.
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Yau et al. [1991c]. Silicon (111)  samples were chemically prepared

with a final 49% HF rinse and placed into an UHV (8×10-9 Torr) chamber for

STM modification. X-ray photoemission spectroscopy revealed the presence

of oxygen and hydrocarbons adsorbed on the surface as impurities. STM

imaging revealed adsorbates with an average size of 10 nm covering the

surface. While operating in the constant current mode, 0.2 s voltage pulses

were applied to a W tip. Increases of 0.4 nA were observed during pulsing.

Mounds were generally found to be formed at voltage thresholds of ±5 V.

However, if the tip was sharp enough, holes were formed. As the tip became

duller both mound(s) and hole(s) were sometimes made with one pulse. As

the tip degraded further only mounds were formed. An additional pulse over a

mound sometimes completely or incompletely removed it, thus the process

was reversible. They believe that the mounds were produced when

polymerization of hydrocarbons occurred by electron exposure. The hole

formation by sharp tips was explained by field evaporation. Field enhanced

oxidation was thought not to happen because of the UHV environment. By

keeping the bias constant at -7 V and tracing a line, a linear structure

composed of discrete asperities was created. The resulting STM image

actually revealed two lines which they believe were formed by two separate

tips (There could possibly have been a double tip and resulting ghost

imaging). They used current voltage spectroscopy to try compare the mounds

to the surrounding surface. After pulsing, the amount of adsorbates was

sometimes found to be low near the tip region, but after 
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a time the adsorbates flowed back into the region. During a period of low

adsorbate count, fabrication was interrupted. The structures were found to

adhere to the surface until the tip became blunt, then the structures would

diffuse away. Structures made with sharp tips last for weeks. Dull tips often

produced multiple structures. Pulse application within 10 nm of a previously

modified region hardly affected that nearby region.

 3.3 Field induced diffusion of adsorbates

Eigler et al. [1990]. In  UHV at 4o K, Xenon atoms, adsorbed onto a

clean single-crystal nickel surface, were moved using the van der Waals and

electrostatic forces associated with the tunneling W tip. Normal STM imaging

at 0.010 V and 1 nA did not move the adsorbed atoms. But, by lowering the

tip over a xenon atom by increasing the tunneling current setpoint, the atom

followed the position of the tip. The xenon atoms were moved at speeds of

0.4 nm s-1. Then, the tip was withdrawn by reducing the tunneling current to

imaging conditions leaving the xenon atom behind on the surface. Using 35

atoms they formed the acronym IBM on the nickel surface in 14×12.5 Å

letters. The atoms forming the letters were 0.5 nm apart (2 lattice spaces).

They found that for any given tip and tunneling bias, there was a threshold

height for parallel motion of xenon atoms to occur. They found that the

polarity of the bias had no effect on the threshold tip height required for

movement.

Whitman et al. [1991] In UHV, Cs adatoms on a GaAs surface were

made to diffuse across the surface by voltage pulses. The samples
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were imaged with negative sample biases of 2-3 V. The W tip was held 0.5-

1.0 nm above the sample and the bias was changed to 1.0 V for 0.35 s. The

result was an increase in the local Cs coverage by 70%. Similarly, using a

bias of 3 V for 0.1 s produced a 50 x 100 nm region almost continuous

overlayer of Cs. Chains of Cs were also transformed into a pile with a chain

covered by clusters of Cs atoms. Stroscio [1991] theorized that a positive bias

produces a potential gradient toward the tip causing Cs atoms to diffuse

toward the tip. The absence of the same effect for a negative voltage was

shown to be the result of the static and induced dipole terms canceling each

other. 

3.4 Field induced surface alteration within a gaseous ambient

Dagata et al. [1991a]. Hydrogen passivated Si substrates were

modified by an STM operating in air (the gaseous oxygen in the air may be

reacting with the surface). Features were patterned on the passivated Si by

raising the 1.7 V imaging bias to 3.0 V (tip positive) and moving the tip along

the borders of concentric squares. The resulting slightly irregular 2 nm deep

lines had a FWHM (full width half maximum) of 35 nm. Time of Flight

Secondary-Ion Mass Spectrometry (TOF SIMS) revealed the regions to

contain more oxygen than the surrounding region suggesting oxidation of the

surface had occurred. They estimated the thickness of the patterned regions

to be 1-2 monolayers deep. They also found that features patterned at 2.8 V

have more oxygen than features patterned at 2.2 V. This selective oxidation

process has been used as a mask for the
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deposition of 80 nm GaAs films4. The surface was then placed for 15 s in

5:3:3 HNO3:HF:Acetic acid, and the surface was etched only in the region of

pattern generation. A sulfur passivated GaAs surface was also patterned.

Features as small as 8 nm were formed. The features were written at 1.2 V (4

nA) and imaged at 2.8V (0.4 nA).  Ehrichs et al.

[1988]. An organometallic gas and surface contamination were found to

decompose under the application of a voltage pulse between an STM sample

and W tip.  Si(111) was cleaned and placed in a vacuum chamber. For

imaging the tip was grounded and a -1.7 V bias was applied to the sample.

Dimethylcadmium (DMCd) was introduced into the vacuum chamber to a

pressure of 10-3 Torr from 10-6 Torr. Using 8 V × 10ns voltage pulses, two 1

)m wide lines were formed. Auger electron spectroscopy (AES) was

performed on the lines revealing 3.57% cadmium which was not observed in

a featureless area. A higher carbon content was also found. They then found

that deposits were formed without the DMCd (di-methyl cadmium) vapor.

They believed the deposits were due to a carbon and oxygen contamination

being polymerized by the pulse. A 50 nm high dot was formed with a 4 V

pulse. By cleaning the sample with an argon plasma, the contamination was

reduced to the point that they were able to form 10 nm features. Using 4.5V ×

400 ns pulses, they produced a 200×200 nm grid pattern out of 10-20 nm

wide lines (5 vertical and 5 horizontal). Imaging the grid for 30 minutes

produced no apparent feature degradation. They found that for voltage pulses

less than 3 V, no surface features were formed. 
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At pulses above 5 V, the size of the deposit increased rapidly. Pyrolization

due to surface heating and direct bond breaking were given as possible

mechanisms for feature formation. Also proposed was the possibility of

decomposition by photons produced from the electron current. 

Ehrichs et al. [1990]. The STM etching of Si was reported using WF6

gas as a catalyst. In order to reduce the amount of carbon in metallic deposits

from gases, a halogen metallic gas was used. Three types of features were

formed, holes, hills in holes, and hills beside holes. When -20V × 100 ns

pulses were applied at a frequency of 200 Hz for 1 s between the tip and Si in

a 1 mTorr ambient of WF6, a 100 nm hill was produced beside a 100 nm hole.

Using the same scheme in a 30 mTorr ambient produced a 25 nm wide 9 nm

high hill inside a 50 nm wide 10 nm deep hole. This may have actually been a

ring structure. Using the same parameters produced a 40 nm wide 15 nm

deep hole with no hill. Changing the pulse voltage to -15 V produced a 20 nm

wide 15 nm deep hole. They theorize the features were produced when the

electrons had sufficient energy to dissociate WF6 molecules adsorbed onto

the surface. The hills were thought to be formed by tungsten left over from the

reaction. The holes were thought to be produced by the resulting fluorine

etching of the silicon surface having formed SiF4 which is volatile.

Experiments done without WF6 result in no surface depression showing that

the holes were probably not due to mechanical contact. They reference

previous work done with an electron beam in which a sample
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temperature greater than 50o C was necessary for etching to occur.  

Eigler et al. [1991]. A Xenon atom was transferred back and forth

between a Ni(110) substrate and a W tip in a UHV environment and at 4o K.

They first used the tip to slide5 the xenon atom to the edge of an atomic step.

The feedback was disabled and then adjusted the tip to provide a junction

resistance of 1.5 Mohm for -0.02 V tip bias. They state that the tip was 0.38

nm above the upper nickel terrace. To transfer the atom to the tip, a +0.8 V

pulse was applied for 64 ms. To transfer the atom back to the surface, a -0.8

V pulse was applied for 64 ms. They have also had success with 20 ns

pulses. The atom switching was confirmed with STM imaging. The switching

of the xenon atom position was also detected by the tunneling current. When

the atom was on the tip the tunneling current was 7 times greater than when

the xenon atom was on the nickel. By switching the xenon atom between the

tip and nickel terrace, bare nickel surface, and a nickel adatom, the current

ratio varied from near unity to 7. Examination revealed an exponential

distribution for the time delay between the start of the voltage pulse and

change in conductance. This suggested that there was a probability of

transfer per unit time. At smaller tip-sample separations the xenon

spontaneously transferred to the tip. At larger separations the  atom was

found to bounce to nearby sites before transferring to the tip. Since the

motion of the xenon atom was found to always be toward the positively

charged electrode, ionization followed by evaporation was not thought to be

the mechanism. Negative ion formation was also ruled out 
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because no threshold field was observed, and because xenon 6s occupation

was not likely, due to its 4-5 V resonance. They rather have suggested that

heating assisted electromigration of the xenon atom was the mechanism.

They believe the xenon was heated above the surrounding lattice

temperature by inelastic electron scattering.

Roberts et al. [1991] An annealed gold surface was modified in argon

at a pressure of 1.3 Pa. A small window of a larger image was scanned with a

higher than normal bias. A threshold bias of 2.6±0.1 V was found to be

necessary for surface modification regardless of the bias polarity.  A 4.5 nm

hole 1 nm deep was formed with a scanning bias of 2.8 V and was found to

transform over time. A -3 V scanning bias produced a 15×30 nm rectangular

hole which also changed with time. They suggested an explosive field

evaporation due to local heating and estimate the temperature directly below

the tip to be 1600 K (Others estimate temperature increase estimations as

low as 1 K)6. Predicting the size of feature formation was not possible,

although there was some success at predicting the formation of a hole or hill.

Diffusion of hole features was also observed with the perimeter opening up as

the bottom filled in with atoms from the regressing walls.

Silver et al. [1987] An organometallic gas was deposited on to a thin

layer of HMDS (hexamethyl disilazane) coating a copper substrate. DMCd (di-

methyl cadmium) was chosen for the organometallic gas because of its low

dissociation energy (3.14 eV). A vacuum chamber enclosing the STM was

evacuated to 10-3 Torr. A valve to a DMCd
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reservoir was opened and the pressure increased to the 10 Torr vapor

pressure of DMCd. An imaging bias below 0.01 V gave reproducible images

with no visible deposits. As the biased was increased above 1 V, successive

images started revealing a changing topography. The topography did not

change in the absence of the gas. The W tip was brought toward the sample

at 1-5 V biases. At a critical distance, a stable current started flowing. This

current smoothly increased from 1-300 )A making the tip voltage drop to 0.2-

1.0 V due to a 11.5 kohm current measuring resistor in the power supply. This

effect only happened in the presence of DMCd implying the possible

generation of a microscopic plasma between the tip and sample. An observed

plasma discharge between parallel plate electrodes used for gas

characterization at 4×105 V m-1 provided credibility to the proposed plasma

mechanism since STM fields are on the order of 106-108 V m-1. Various

currents and biases produced varied deposition rates. For 270 )A current and

0.3 V bias, material more than 120 nm thick was deposited in 100 s. A

220 )A current coupled with a 0.9 V bias produce about 60 nm of deposited

material. Very little, if any, deposition occurred for a 2 mV bias and a 87 nA

current. A circular 40 )m deposit was obtained with a 2.6 V 72 )A plasma.

AES (Auger electron spectroscopy) analysis revealed large surface

contamination of oxygen and carbon in the deposit site and almost exclusively

oxygen away from the site. After ion beam etching 30 nm of the deposition

site, an increase in cadmium content was observed. They proposed that the

carbon and oxygen could have been
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due to a few days exposure to room air before analysis. Using silicon

substrates and DMCd at 1 Torr, a 25 nm wide line and a 40 nm diam dot

were deposited.  

Yau et al. [1991a]. Features were produced on an HOPG surface in a

gaseous trimethylaluminum (TMA) ambient. 4 V × 0.2 s pulses were applied

to a tunneling tip (Au or W) to fabricate nanometer structures. The pressure

of the UHV chamber containing the STM was lowered to a 2×10-8 Torr.

Imaging of the graphite was established with a -20 to -50 mV bias and a 1 nA

current. With the feedback loop active, the bias was switched to 4 V for 0.2 s.

The result was contaminant deposition (50×60 nm) in almost every attempt.

TMA gas (99.9995%) was introduced into the chamber to a pressure of 10-4

Torr. The pulse produced an observed 0.4 nA increase in tunneling current

along with smaller sized features. A 40×40×10 nm deposit was formed with a

4 V × 3 s duration. They found that shorter pulses produced smaller features.

After another 4 V × 0.2 s pulse, a small deposit having several components

was observed. The sizes of the components were 4.5, 1.8 and 2.4 Å. They

attributed these to the structure of a TMA molecule.  Using a 5 V × 0.2 s

pulse, a hole was formed. Similarly, three attempts made three holes. One

hole, 5.5 nm in diameter and 2.7 nm in depth, was formed using the 4 V × 0.2

s pulse. No feature formation was observed for biases < 3.5 V and only

depositions were formed for pulses having amplitude < 4 V. The statistical

frequency of hole creation increased with increasing pulse amplitude. They

found that the probability
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of making a structure was 0.3 for a 0.3 nA current and 0.7 for a 1 nA current.

Due to identical I-V characteristics on the HOPG before and after introduction

of the TMA, no adlayers were thought to be formed on the surface. They

believed that the fabrication was due to ionization of the gas molecules in the

presence of the free electrons and high fields of the tunneling gap. They

argued that the ionic fragments of a TMA molecule strike the HOPG surface.

If the fragments had enough energy, carbon bonds were broken and a hole

was developed, otherwise the fragments deposited on the surface. Although

depositions were half as probable with negative pulses, hole formation was

not found to occur. I(V) characteristics taken above a deposit were linear, but

I(V) characteristics over the graphite showed a nonlinear region as the

voltage rises.       

3.5 Field induced deposition/etching within a liquid or transporting film

Bernhardt et al. [1990] Using Pt-Ir and W tunneling tips the surface of

HOPG was modified in the presence of air and the organic fluids dimethyl

phthalate and decane (C10H22). The application of a voltage pulse between

the tip and sample produced hillocks and occasionally depressions. A

threshold of 3-4 V was necessary for any surface alteration to occur. With an

increase in amplitude there was an increase in the probability of producing a

hillock. There did not appear to be any change in the voltage threshold as the

initial tunneling current was varied between 0.5-2.0 nA and also for initial

biases in the range 20-500 mV. Nor was there any threshold dependence on

pulse durations in the range
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0.2-2 )s. In fluid, the probability of producing a hillock was the same as in air.

Attempts to produce a tip that did not produce hillocks in air was fruitless. A

1.7×2.5 nm hillock was produced employing a Pt-Ir tip and a 4 V × 200 ns

pulse superimposed on a 80 mV bias while tunneling at 0.5 nA. An ion milled

W tip was utilized for the production of a 0.9×2.1 nm hillock using a 4 V × 400

ns pulse superimposed on an 80 mV bias while tunneling at 0.3 nA. The

hillocks were found to vary in size from 1-100 nm2.  All of the hillocks

appeared to be featureless (which may indicate a dull featureless probe). In

the presence of decane and with a cold worked W tip, a 1.7×10.2 nm hillock

was formed using a 4 V × 1 )s pulse superimposed on a 160 mV bias while

tunneling at 0.5 nA. The occasional production of depressions was observed.

A hole, 26 nm wide × 8 nm deep, was formed with a 4.5 V × 200 ns pulse

superimposed on a 160 mV bias while tunneling at 0.5 nA. Once a tip formed

a depression, it was likely to form more depressions implying a significant

modification of the tip. By recording the current and tip displacements after

the introduction of a pulse, three types of responses were observed. All the

current traces showed an initial increase then a drop to no current followed by

a continuation of the initial current. The first way the tip responded was pulling

away from the sample in response to the initial current rise then gradually

coming closer while low tunneling currents were present and leveling to the

initial position as the initial current was restored. Hillocks were sometimes

observed after this response. The second response showed little initial

retraction of the tip
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Figure 3-1 . Illustration of deposition near the air interface of an ionically
conducting film.

followed by the tip moving toward the surface winding up closer as the current

was restored. This also occasionally resulted in the production of a hillock.

The change in tip position was thought to be due to the loss of material from

the tip. The third response of the tip was an initial retraction followed by the

tip moving closer to the surface with the current being restored at a position

farther away from the surface. This type of response was often accompanied

by the formation of a depression. The apparent increase in tip-sample

distance was thought to be caused by material from the surface being

deposited on the tip. The position of the tip with respect to the sample was

determined by the voltage applied to the piezoelectric moving the tip. The

absence of any data showing the feedback moving the tip closer to the

surface during the formation of a depression was thought to indicate that the

depressions were not caused by mechanical contact. 

Craston et al. [1988] Using an electrochemical method, 1-2 )m lines

were fabricated at the air interface of a Nafion thin film on a Ag
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surface. The principle of the electrochemical method is illustrated in Figure

3-1. A thin polymer (faradaic conducting) film was deposited upon a

conducting substrate. A bias was placed between a tunneling probe and the

substrate, then the probe was lowered until a nanoamp faradaic current was

detected. This current was held constant by a servo feedback loop, keeping

the probe tip near the air/polymer interface. The presence of reducible ions in

the polymer and a negative potential on the tip precipitated a metal deposition

in the film at the tip electrode. Moving the tip parallel along the interface

resulted in the fabrication of a line along the route of the tip. If the substrate

was oxidizable, an etch pit formed under the tip. 

The film/sample was soaked in water for 1 hr and in 50 mM AgNO3 for

15 minutes before use. Experiments were performed with biases between

200 mV and 8 V. At low biases (<200 mV, 2 )m film) the tip penetrates the

film scratching a line. Although the feedback was set to keep the current at 15

pA, the actual value varied from 0-1 nA during the experiment (This may

indicate that the tip moved in and out of the fluid). Lines of 0.5 )m width were

produced under optimal conditions. Dotted lines were produced for scan rates

above 50 nm s-1. 

 Foster et al. [1988] Surface alteration of HOPG in a drop of

di-(ethylhexyl) phthalate was accomplished. Using an electrochemically

etched W tunneling probe, the bias was raised several volts from the 30 mV

tunneling bias. After applying a 3.7 V × 100 ns bias pulse during scanning, a

1-2 nm surface structural alteration was observed. The
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alteration was thought to be due to an organic species from the solution being

pinned to the surface. A threshold of 3.5 V with no polarity dependence was

observed for surface deposition. Varying the tunneling current between 0.1

and 1 nA had no effect on the threshold. STM imaging produced no observed

deterioration in the features. Applying the same bias pulse over a modified

region could totally erase, partially erase or expand the feature. Partial

erasure produced features as small as a benzene ring (4 Å). Proposed

mechanisms were electron activation of the surface and adsorbed molecule,

or electron induced dipole-dipole interaction. Many other organic species

were found to react similarly.

   Hüsser et al. [1989] Ionically conducting polymer films were used for

the deposition and etching of metals. The method was described in Craston

[1988]. Ag, Au, Cu, and Pd were deposited and Cu, Ag, and Au were etched.

Lines submicrometer in diameter were fabricated. 

The films were deposited by spincoating a drop of polymer solution on

the surface of the substrate. Previous results7 with a silver doped Nafion film 

and platinum tip produced lines with 1-2 )m resolution. Using a tungsten tip

biased to -5 V, a 5 nA current was servoed resulting in 300 nm lines of Ag.

Using an additional layer of polyimide the Ag line was removed and found to

be continuously conductive. Using EDS (x-ray energy dispersion

spectroscopy), the lines were found to be composed of Ag. Deposition with

Cu and Cr was also produced using Nafion films soaked in an appropriate

solution. For biases < 3 V, dendritic growth was sometimes observed.
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Using a colloidal graphite substrate (on a glass slide) coated with a

poly(4-vinylpyridine) (PVP) film containing AuCl4
-, a Pt tip was biased to -5 V

(1 nA) producing lines with sub-)m width. PVP films with PdCl4
2- also

produced narrow lines. Water was necessary as a solvent for the ions in PVP.

Ag doped poly(bis-(methoxyethoxyethoxide)-phos-phazine (MEEP)

films (no other solvent) were deposited on an Ag substrate. A Pt tip (5 V, 5

nA) produced lines that were not very continuous or uniform showing dendritic

Ag growth. Lines were only observed if the bias was >1 V. The poor quality of

the lines was thought to occur because of considerable problems with the

feedback. The sticky MEEP was thought to cling to the tip as it tried to servo

producing unstable tunneling conditions. By using inert Pt as a

substrate, metal ions oxidized at the substrate interface were decreased, if

not eliminated altogether. Nafion films containing Ag or Cu produced lines

only if thin (<1 )m) films were employed. Discontinuous and non-uniform lines

were made if the Nafion film was 1-2 )m thick. The culprit was thought to be

gas bubbles forming at the Pt interface. They also found that they could

change ion metals to produce continuous dual metal lines.

The etching of the substrates was also examined. The etching of

copper surfaces was masked because of homogeneous oxidation of the

surface. Ag and Au surfaces could also be etched. The resolution of the

etched lines was a factor of two less than the deposited lines. 

Deposition of material on the tip was not observed except for



82

biases around 8 V (1 )m film).

Li et al. [1992]. Depositions of silver were reported for an HOPG

substrate in an aqueous 0.5 mM AgF plating solution. Pulses, 6 V × 50 )s

(+tip), were applied between a poly(�-methylstyrene) polymer coated Pt tip

and the HOPG during stationary tunneling. Protruding cylindrical features, 20-

30 nm in diameter and 7 nm in height, resulted. The silver pillars did not

nucleate on preexisting defects. The size and shape of an initial pillar was not

altered by the fabrication of three more structures nearby. The shape of these

features was unchanged even hours after formation. It was noted that several

bias pulses were necessary to initialize the tip so that it produced features.

After this initialization the features were produced with 90% reliability. Holes

were produced during the initialization of the tip and often observed with the

cylindrical features.  

Further experimentation, involving variable duration pulses, showed

that a shallow, 10  nm wide, pit was induced during the first 5 )s of the pulse.

Increasing the duration of the pulse resulted in deposition of silver around the

hole followed by an increase in height. The increase in height grew linearly

over the next 25-30 )s without any associated increase in diameter. These

results suggested a two-step mechanism for feature fabrication. In the first

step a hole was formed which facilitates the nucleation and growth during the

second step. Further work in pure water or an aqueous solution of NaF

produced only pits. Reversed polarity pulses in the Ag solution did not

produce mounds or holes reliably, but
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micrometer sized deposition on the tip was observed during subsequent

examination.

Nagahara et al. [1990] Using a Pt/Ir tip and Si(100) sample immersed

in 0.5% HF, nanometer features were etched in the silicon. To reduce

faradaic leakage current, the tip was coated with Apiezon wax, except near

the tunneling tip region. The Si was degreased and etched to remove surface

oxide. A tunneling bias of 1.4 V was chosen to minimize the leakage current.

To eliminate photochemical effects, no light was allowed. Using a 10 hz scan

rate, square features 400×400 nm and 200×200 nm were etched for 25 s

each. The 400×400 nm region was 1 nm deep, while the 200×200 nm region

was 2 nm deep. Above a critical scan area per unit time of 28,000 nm2 s-1 the

surface was imaged with no apparent etching. Scanning below 4000 nm2 s-1

the depth and width remained constant. They suggested that the limiting

factor was the size of the exposed tip. Increasing the tunneling current and

the time the tip spends over an area was found to increase etching. Also, the

etching process did not occur when distilled water or 10-1-10-4 M H2SO4 was

used as the liquid medium, which they believed discredits mechanical contact

as the mechanism for etching. They did notice, however, that scanning areas

< 400×400 nm occasionally produced degraded and streaky STM images.

They attribute this to an oxide forming under the tip, which then chemically

reacts with the HF producing the observed etching. By etching 20×70 nm

areas a zigzag line was etched. The line etch time was 39 s.  They also were

able to etch 80 nm lines in
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GaAs(100) to compose the letters ASU (Arizona State University). 

Penner et al. [1991] Using electrochemically etched, poly(�-

methylstyrene) polymer coated, tungsten tips, the surface of HOPG was

modified while in 18 Mohm water. Application of a -4 V × 20 )s pulse between

tip and sample produced a dome feature that was 0.7 nm in diameter and 0.2

nm in apparent height. Formation of similar domes with  ±3.8-4.2 V pulses

were possible using more than 90% of the tips tried. The domes were stable

for periods >1 hr and for imaging biases up to 500 mV. A -4.2 V pulse

typically formed 4 nm wide pits with monolayer heights. Continued increases

in pulse amplitude resulted in  monotonic increases in pit dimensions. The

threshold voltage for feature formation was found to be 4.0 ±0.2 V using a

variety of tips and independent experiments. Other experiments in air

demonstrated daily variations as much as 5 V in the voltage threshold for

feature production. In an attempt to prove that H2O was necessary for pit

formation, dry environments were also investigated. Even with pulses

amplitudes as high as ±10 V, features were not produced in dry toluene or dry

N2. Introducing moisture into these environments reestablished the feature

production. n-octane and mineral oil environments produced results similar to

that in air. In H2O, it was possible to transform the domes into 3-4 nm pits with

the application of a 0.2 V pulse. They concluded that the domes were

metastable intermediate structures. They suggested that the metastable

structure was a 6 carbon ring transformed from the graphitic structure to

diamond structure. They stated that the changed
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structure was more reactive than the graphite structure. Qualitatively similar

production of domes was observed for reversed bias polarities.   

Rabe et al. [1990]. Monolayer films of octylcyanobiphenyl were

deposited on the surface of HOPG. The Pt-Ir tip bias was raised to -1.7±0.1V.

This threshold resulted in the formation of 1-2 nm adsorbate features on the

HOPG surface. These features were only stable for <1 s. Decreasing the bias

amplitude below 1.6 V caused the features to last for minutes. For 0.1-1 )s

duration pulses to cause an effect, the bias amplitude had to be increased.

They believed there was a metastable reaction of the film and HOPG.

Decreasing the tip bias to -2 V for 2 min resulted in the formation of holes in

the graphite. Holes etched at -2.5 V and -3.0 V were about 10 nm in diameter.

The holes were surrounded by walls with heights less than 1 nm. The -3 V

hole was several monolayers deep, while the -2.5V hole was only one

monolayer deep. Larger holes were formed for a -4V bias. At a +3 V tip bias,

the imaging became unstable after about a minute. Similar etch effects were

found in air, water vapor and silicone oil. In 1 atm helium gas or 10 mbar dry

toluene, no etching occurred up to ±4V. They concluded that for tip biases of

-2 V, the results in the air, water, octylcyanobiphenyl, and silicone oil, showed

that a highly reactive species was always produced. They proposed that the

rest water in these fluids and an increase in bias amplitude lead to reaction

products which in turn etched the graphite. They also found that these etched

sites acted as nucleation centers for the crystallization of the

octylcyanobiphenyl. 
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Schneir et al. [1988a]. Electrochemical deposition was produced using

tunneling tips that were glass and SiO coated except for the last couple of

nanometers. The tip and gold sample were covered with an electroplating

solution, Orosene 999. Tunneling was achieved, then the tip was withdrawn 1

)m. With a -3 V bias applied, the tip was maneuvered back and forth along a

line. The result was an electroplated line, 300-500 nm in width, 1.2)m long

and >100 nm high. The experiment produced results only 2 times in 20

attempts. 

Wuu et al. [1989] Nafion films on a Pt surface were used as an ionic

conductor for the purpose of depositing polyaniline on the Pt. The 0.1 )m

Nafion film was soaked in 0.1 M anilnium sulfate for 40 min. A tunneling tip

was brought into contact with the film so that a 1 nA current was maintained.

At tip-sample voltages above a threshold value of 5 V (sample positive),

deposition of polyaniline was observed at the air/poly interface. Lower values

caused the tip to scratch the Nafion film. The resolution was about 2 )m due

to the thickness of the film and the electric field distribution. Attempted

reversed polarity deposition produced scratch lines in the film, probably due

to low conductivity polyaniline depositing on the tip.

3.6 Field and/or electron induced chemical modification

This section will report on attempts which have resulted in the chemical

modification of near surface material. Stoichiometric and electronic changes

of or in thin films and other surfaces will be
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emphasized. Lithography has been previously achieved using focused high

energy electron beams8. Features as small as 10 nm have been fabricated in

Si using an electron beam exposed PMMA film (on SiO2 over Si) and

subsequent etching steps9. Using an amorphous carbon intermediate layer

between a Si substrate and PMMA resist, fabrication of 15 nm AuGe lines

has been achieved utilizing a 50 keV electron beam to expose the resist10. An

STEM was used to produce lines having widths <10 nm using the acid

catalyzed resist poly(p-t-butyloxycarbonyl-oxystyrene)11. The following reports

show that the STM is also being used as a source of electrons for chemical

reactions with energies below 10 eV.

Albrecht et al. [1988]. Poly(octadecylacrylate) (PODA) fibrils deposited

by Langmuir-Blodgett techniques on graphite were modified. Using a 100 ns

rectangular voltage pulse applied to the tip, breaking fibril bonds and

disrupting the surface in a 40 nm region. The voltage threshold was found to

be 4.1 ±0.2 V for this breaking effect.  

Dagata et al. [1990a,b]. Si(111) samples, H-passivated in dilute HF

with 10-50 nm of residual texture, were transformed. With a 3 nA tunneling

current, the normal Pt-Ir tip bias of 1.7 V was raised to 3.5 V producing an

alteration of the surface. Lines, 2.5 )m long, 200 nm wide, were produced

side by side with a spacing of 300 nm. A 100×100 nm square was the

smallest resolvable feature produced. The features appeared 1-20 nm deep

when imaged with the STM. SEM revealed these structures to be sources of

enhanced secondary-electron yield. STM
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spectroscopy disclosed a lower work function for the modified regions. They

concluded from these characteristics that a local electronic or chemical

change had occurred.

They also found that biases >500 mV were required for imaging and

for biases <1.7 V the tip was very close to or in mechanical contact with the

sample.  The feature depth appeared to increase by as much as 7 nm as the

imaging bias was lowered below 1.7 V. Increasing the writing voltage above

1.7 V produced a linear increase in feature depth for air or oxygen ambient

gas with no observed modification in a nitrogen ambient. The authors

conclude that the features were the result of locally enhanced surface

oxidation. They also found that the features were selectively etched by a 15 s

dip in HNO3:HOAc:HF (5:3:3).    

Dagata et al. [1991b].  Various films of MBE (molecular beam epitaxy)

grown AlxGa1-x and InyGa1-y III-V semiconductors were modified using an

STM. Images of the surface were obtained at 3.8 V (tip) and 0.4 nA current. A

series of 2 )m long 85 nm wide lines were written at 3 lines per sec with a

bias of 4.2 V in air. The lines showed residual surface roughness and were

somewhat irregular. The apparent height of the lines changed with writing

bias.  Investigating the mechanisms of modification, it was found that As2O3

and In2O3 were depleted by desorption under low electric field conditions,

which were typical for imaging. A high electric field was thought to induce a

reaction at an underlying GaAs or InGaAs layer resulting in a strongly bonded

oxide layer.
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Dujardin  et al. [1992] The STM dissociation of individual adsorbed

decaborane (B10H14) molecules using the low energy field-emission electrons.

Decaborane was admitted to a UHV chamber and allowed to condense on

7×7 Si (111). With low exposures, 0.01 L (torr s), the decaborane preferably

adsorbed near defects. At higher exposures, 0.1 L, adsorption was observed

at a variety of sites with a tendency to adsorb over center Si atoms.

Conductance spectroscopy revealed the adsorbed molecule to be an

insulator with a band gap of 2 eV. A bias of 2 V and a current of 200 pA was

used for imaging. They imaged a region with an adsorbed molecule (7 Å

wide), then scanned the region again with a bias of 4 V, and again imaged

the region for comparison. They found "displacement of adsorbed molecules,

dissociation and fragmentation, and cluster formation". At higher surface

coverage (0.1 L) clustering occurred for groups of molecules adsorbed on

large flat terraces (instead of molecules adsorbed near defects). After

scanning a region including a molecule with an 8 V bias, two distinct features

appeared, suggesting a dissociation of a molecule. Another region containing

two protruding features was scanned with an 8 V bias. The result was

elimination of the features and nearby Si atoms. Since scanning at high

biases was not found to alter any bare silicon, the molecules were thought to

dissociate and tie up dangling Si bonds. The probability of dissociation was

found to be 0.1 at 4 V increasing to 0.8 at 8 V. Since the fields were a factor

of 5 smaller than necessary for field dissociation, the mechanisms thought to

be low energy field-emission electrons.
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Jahanmir et al. [1989].  Three protruding lines were written on a 20 nm

a-Si:H thin film on Si with a series of nine voltage pulses (10 V, 35 )s) for

each line. The lines were 1.1 )m long and 140 nm wide with an apparent

height of 15 nm. The W STM tip was held in a constant position during

voltage pulsing by disabling the servo feedback electronics. Maximum current

detected during modification was 100 )A. Differences in I-V characteristics

indicated that the lines were more conductive than the initial surface. The

linewidths were found to correspond to the average tip radius for two different

radius tips. They theorize that the apparent height of the lines was due to a

change in conductance produced by a phase transformation of the thin film

from amorphous to crystalline (This is probably unlikely considering the 15 nm

feature height).   

Jahanmir et al. [1990]. The local conductance of a 2.3 nm film of oxide

on a silicon substrate was changed by a 6 V, 1 mA, 35 )s voltage pulse. The

surface became rectifying after the voltage pulse. 

   Ringger et al. [1985, 1986]. Using an STM with a W tip, the surface of

glassy Pd81Si19 has been modified in a 10-8 Torr vacuum. The tip was scanned

at 100 nm s-1 with a bias of 100 mV and a current of 10 nA. Subsequent

viewing of an STM scanned region by an SEM revealed lines with a spacing

of 16 nm. XPS studies revealed the surface to contain about two monolayers

(liquid) of hydrocarbons and carbon oxygen species on top of 3 nm of SiO2.

SEM revealed no deposits at the end of lines suggesting the lines were not

mechanically formed. The lines
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solid ) � H
2
( gas ) < xAg( solid ) � H

2
Se (3,3)

were thought to be due to a contrast of material conduction. Going further,

they propose that the lines  were made conducting due to polymerization of

the hydrocarbon film.   

Utsugi [1990]  Alteration of 15 nm of Ag1.9Se formed on a Ge0.1Se0.9

film on an unidentified substrate is reported. Biasing a Pt STM tip to +3.5 V

and scanning in a computer controlled grating pattern (60 nm line, 100 nm

spacing) produced grooves 15 nm deep (Ag1.9Se thickness). Lines as small

as 13 nm in width were used to form the letters NTT. Although continuous

lines were produced with constant biases, voltage pulses produced no

alterations. Effects were observed for +2 to +5 V biases. When negative

biases were used no surface alteration was observed. In a 5×10-3 torr

vacuum, even biases up to +5 V produced no concave formations. In

hydrogen gas, they found a logarithmic dependence of the growth rate of the

depth of a concave formation with the applied voltage. They suggest that

H2(gas) in the air was responsible for the work done. The following chemical

reaction was proposed for the degeneration of the surface:

They suggested that it was the bias which segregated the Ag from the Se

allowing the Se to react with the hydrogen in the air ambient.

3.6.1 Energetic electron induced changes within a film

Marrian et al. [1990, 1991]. The negative acting e-beam resist

P4BCMU (polydiacetylene with urethane substituents) was exposed with

electrons from an STM tip. The STM was operated in the field emission
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mode (V greater than barrier height) and in a 10-8 Torr vacuum. An LB film

(<75 nm) was deposited on silicon. Negative biases were applied to the tip.

Low biases caused the tip to drag in the resist and higher biases caused

exposure of the resist. For 25 nm and 75 nm films, adequate imaging

potentials were -3 V and -7 V respectively. The resist was exposed by

ramping the bias at 40 V s-1 so that the current would remain constant and

electron dosage could be determined. The bias was held constant at the

exposing voltage for 10 ms and then ramped back down. Dots of about 8 nm

height were produced with voltages from -20 to -30 V. A threshold for

exposure was found to be about -8 V with dot diameter increasing with a

more negative bias. The minimum diameter was about 20 nm. Currents from

50 pA to 0.5 nA fell within experimental error so that no current dependence

could be detected. The lack of current dependence caused suspicion of a

thermally based mechanism for formation. Attempts to write lines resulted in

variably sized raised features. Depressed features were also formed with

sharp tips. 

McCord et al. [1986]. Using an STM operating in the field emission

mode, where electrons tunnel from the tip into the vacuum, a contamination

resist was deposited on Si, Au on Si, Al on Si, Cr on Si, and Pt on Si thin

films. In order to prevent the metal films from pulling away from the substrate,

the beam energies were kept below 20 eV. A Vacuum of 3×10-5 Torr

prevented unstable currents due to ionization of gases and adsorbed

molecules. Square regions were exposed to a
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100 nA, 10-1000 eV, SEM beam revealing buildup of contamination at all

energies. Attempts at lithography with the STM initially required electron

doses of 0.1 C cm-1 to produce visible line patterns. These doses required an

hour to write a few 10 )m lines. At a current of 60 nA and energy of 10 eV

lines were produced on Au films at a rate of 250 nm s-1. Subsequent etching

produced 100 nm wide gold lines. A LB film of docosenoic acid on an Al film

was exposed with a 25 nA beam of 25 eV electrons. Using a writing speed of

500 nm s-1, and subsequent development and etch, 100 nm wide lines of poor

quality were produced.  McCord et al. [1988]. PMMA films were exposed in

UHV using an STM operating in the field emission mode. The film thickness

was limited to a few tens of nanometers to assure complete penetration of

electrons and prevent penetration of the tip into the film. They found that the

film should be no thicker than 1 nanometer for each volt between the tip and

sample voltage. For an electron dose >10-2 C cm-2 having a 25 eV energy, the

PMMA was crosslinked producing a negative resist. Writing at 1 )m s-1, a 30

V, 10 pA beam produced 20 nm wide lines. Lower doses and lower voltages

produced positive resist action in a Cellosolve-methanol solvent. This action

was thought to be due to chain scission. Lines, 22 nm wide and 10 nm high,

were fabricated using a liftoff technique. It was also possible to expose resists

with a reverse polarity voltage (exposing electrons emitted from the surface).

The field in the resist was about 1 V nm-1. This reversed exposure eliminates

problems associated with secondary and backscattered electrons broadening

the
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exposure width. For electron energies from 40-100 eV, reversed exposure

provides much better resolution. Instabilities in the beam current due to ion

desorption from the resist were reduced with reversed exposure. This

enabled the writing speed to be increased to 10 )m s-1. 

Zhang et al. [1989] LB deposited resist films of PMMA and poly(vinyl

cinnamate) on Cr were altered with an electron beam produced by an STM.

Tip biases varied from 5-100 V and currents from 5-1000 pA. Lines were

patterned with electron doses of 102-104 nC cm-1 which exceed conventional

doses for resist patterning. After developing and baking, the PMMA was

coated with 8 nm of Au and examined in a SEM. The poly(vinyl cinnamate)

samples were wet etched with chromium etchant then the film removed.

Using a 30V × 30 pA exposure, lines having a width of 30 nm were formed.

The resist was removed in the exposed areas after development (positive

resist action), although the resist was supposed to be negative. This may

have been due to accidental exposure to light with subsequent breaking of

cross-linking by the energetic electrons. Lines having widths of 80 nm were

etched into the chromium. The larger widths were due to isotropic etching.

Double lines were also formed. These were probably due to tips with a double

tunneling asperity. Linewidths were consistently smaller when a negative

sample bias was used. This was thought to be caused by the transverse

spreading of electrons entering the film.
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3.7 Illumination-assisted field-induced surface lithography.

The use of light for generating patterns on surfaces has long been

established. The limitation of such features is limited by the wavelength of the

light. As a result, features below 100 nm are difficult to achieve using such

techniques. Building optics to direct such light is also a difficulty. Directing a

KrF excimer laser (248 nm) into a Talbot interferometer, sub-100nm line

patterns have been directly ablated into polyimide12. 

 A theoretical consideration of light induced damage near a nanometer

scale inhomogeneity such as a metal STM tip has been given by Shtokman

[1989]. The theory is based upon an enhanced field effect near the tip. 

Lin et al. [1987] A glass sheathed Pt tunneling probe was held about 1

)m away from the surface of GaAs in an electrolyte solution (5 mM NaOH, 1

mM EDTA13). With the application of a -4 V bias to the tip relative to the

sample and the simultaneous irradiation of light from a tungsten-halogen

lamp, the surface of the GaAs was selectively etched. Using this process 0.3-

2 )m wide lines were produced. The 2 )m line was somewhat discontinuous,

possibly because of bubble formation. The different linewidths were produced

by different tip sizes. The whole surface of the GaAs showed some etching.

Similar etching results were achieved in organic solvents. One of these was

acetonitrile with nitrobenzene or an alkaline halide as an added species.
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Thundat et al. [1990] GaAs(100) surfaces were used as a substrate for

plating Au from a buffered acidic (3.5 pH) solution of gold cyanide. Acidic

solutions down to a pH of 3.0 reportedly do not produce cyanide gas. An

Apiezon coated Pt-Ir tip was brought to within tunneling range of the GaAs

with a tunneling bias of 0.1 V. The tip was then withdrawn a few hundred

Angstroms from the surface. The surface was illuminated with white light and

the bias was increased to 4 V for 1 min. The surface was then imaged with

0.1 V bias. They found that gold dots were formed beneath the tip if the GaAs

was p-type. For n-type GaAs, no deposits were formed directly under the tip.

Instead,an annular region of small 15 nm Au hills were formed away from the

tip. The 0.1-10 )m dimensions of the gold dots were dependent on the

amplitude and duration of the pulse. Without the presence of light, no gold

features were deposited. The localized deposition was explained to be due to

the presence of a localized depletion region under the tip. Photogenerated

electron-hole pairs in the depletion region provided an electron source for Au

reduction at the surface resulting in the deposition of Au. 

Using different solutions of NaOH as the electrolyte medium, studies of

the photocorrosion of p-GaAs(100) were performed. STM images of surfaces

etched using a Pt counterelectrode and using the tunneling tip were

examined. The surfaces were potentiostatically etched while illuminated with

white light. Surfaces etched by the tip (-0.1 V tip, 1 mM NaOH) were found to

be much smoother than surfaces etched by a counterelectrode (0.1 V

sample, 1 M NaOH). Continued STM scanning
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(-0.1 V) of the surface etched with the counter electrode caused a flattening

of the surface. For surfaces etched with the counterelectrode and positive

sample potentials, the absence of light did not seem to affect the process.

Features etched by the STM were less pronounced if etched in the dark.

They suggested that the presence of holes at the interface weakens the

bonding producing a corroded surface. Repeated STM scanning of the same

area caused the surface to become less conductive. By circulating the NaOH

or moving the tip, proper tunneling was restored.

Yau et al. [1991b]. Laser radiation and an STM operating in a

Trimethylaluminum (TMA) ambient were combined to produce deposition on

an HOPG surface. A XeCl pumped dye laser was pulsed (18 ns) with a

wavelength of 440 nm. The laser was focused on to the tunneling region of

the STM. The chamber housing the STM was evacuated (10-8 Torr) and then

filled with TMA to a pressure of 10-2 Torr. The HOPG was imaged with tip

biases between -20 and -50 mV. Biasing the tip positive (0.8-3.0 V, 1 nA), a

laser pulse was delivered to the tunneling region resulting in deposition. A

15.8×15.8 nm feature was produced for a 3 V bias. A 1 V bias spawned a 1

nm region with two 5×4 Å structures. These were thought to be four or five

aluminum atoms. A 14×13 Å deposit was formed with a 1.1 V bias. Current-

voltage measurements showed a linear relationship above the deposits while

a non-linear relationship was observed above the HOPG. They were also

able to remove deposits with an additional laser pulse while the tip was over

the
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deposit. They also demonstrated the ability to fill a 30 nm hole with continued

pulsing of the laser. No depositions were accomplished without the presence

of the TMA. By detuning the laser away from aluminum resonance (430 nm),

deposition was rarely observed. The proposed mechanism involves the ability

of the laser to induce multiphoton fragmentation and ionization of the TMA.

The field of the STM was thought to have guided the molecular fragments to

the surface.  

3.8 Localized electrostatic charge implantation in films

No papers were found which report the direct use of an STM for

deposition of charge. However, there are papers which address nanometric

charge storage with a scanning force microscope (SFM)1. The SFM is based

on the bending of a cantilever which has a typical spring constant of

0.1-100 N m-1. The cantilever has a sharp probe on the end. The electrostatic,

magnetic, or atomic forces on this probe produce a bending of the cantilever.

This nanometric bending of the cantilever can be detected by an STM probe

above the cantilever, capacitance between the cantilever and a fixed

electrode, a reflected laser lever action, or by laser interferometry. The SFM

is servoed to a preset force or force gradient. The motion of the SFM probe is

used to determine constant force or force gradient topography of a material

by scanning in the same manner as an STM.   

Barrett and Quate [1991] Thin films of silicon nitride on silicon dioxide

on silicon were charged using an SFM probe. The presence of the
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charge in the nitride changed the charge in the Si depletion layer. The

presence of charge was detected using capacitance techniques.  Pulses, -40

V × 100 )s, were applied to the probe causing charging of the nitride. The

pulses produced 170 nm FWHM regions of charge. The regions were also

erased with the application of a reversed polarity voltage pulse. The threshold

for writing was found to be -25 V. And a minimum write time was determined

to be 20 )s and thought to be limited by electronics. The erasing time was

determined by the intermediate oxide layer. A chemically produced 1-2 nm

oxide needed a 10 V × 20 )s pulse for erasure, while a dry thermal 5 nm

oxide required a 40 V × 1 ms pulse for erasure. Charging occurred every time

for 202 attempts. Dull tips produced larger charged regions than sharper tips.

The smallest bits that were written were 75 nm across. They separated

charge effects from topography effects by using simultaneous force and

capacitance measurements. The half life of charge for the chemical oxide

barrier was about 1 hr, while charge separated by the thermal oxide showed

no decay over seven days. Minimum size for a charge affected region was

calculated to be several hundred Å.  

Stern et al. [1988] and Terris et al. [1990]  By the application of a

voltage pulse (100 V × 25 ms) to the probe of an SFM, a charged region was

generated in a 1 mm PMMA film. The scanning height was approximately 100

nm before charging. The charge was localized to a 2 )m region. Bias affected

force contours confirmed that the region was charged. The charge was

observed to decay over a 1 hr time period.
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Sapphire produced similar results. Any induced charging of mica or quartz

decayed before contours were obtained.

  

3.9 Magnetic alteration

Moreland and Rice [1990] Using a triangular shaped Fe iron film for a

tunneling detector, the CoCrTa film of a computer memory hard disk was

magnetically altered. The aluminum substrate disk had a base film of NiP,

and a 1 )m intermediate layer of CoCrTa, and a 1 nm carbon lubricating layer

on the surface. The Fe iron film was 5 )m thick and was mounted at an angle

with respect to the surface and with a point toward the surface. The Fe bent

in the presence of the magnetized film necessitating a change in the servo

mechanics to maintain a constant tunneling current. By using a magnet

mounted near the top of the Fe film, the magnetization of the disk was

altered. The extent of magnetization was affected by the strength of the

magnetization in the iron film, the duration of the magnetic recording process,

and the tunneling current. With a tunneling current of 0.4 nA and a scan time

of 1 line s-1, an 8×8 )m2 area was magnetized. The tunneling probe had to

move 50 nm toward the sample to compensate for the bending of the Fe

triangle. By operating a Pt-Ir tip at various biases over the surface, and

subsequent magnetic imaging revealed the magnetization of the surface was

not produced by the tunneling current. Using a 100 nm Au layer on the tip,

sample, or both did not affect the magnetic recording process. The smallest

region magnetized was 500×500 nm with 20 nm resolution.
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3.10 Summary and discussion

State of the art reports on lithography with a tunneling tip have been

presented. The scope and results of the literature are briefly summarized in

Tables 3.1 - 3.11 for each specific lithograpy type. The reports covered a

diversity of methods and results. The methods had varied results depending

on such things as material of tip and sample, and cleanliness and sharpness

of the tip. 

Mechanical contact methods often resulted in tip changes and

unpredictability of hole or hill formation. Unpredictable formation would

prevent those schema from being used as a memory since bit making must

be a predictable process. Tip changes upon contact suggest that, for any

method, care should be given to prevent the tip from contacting the surface

while moving the tip toward the substrate for writing or reading memory bits.

When they are comparable in size, a convolution of the tip and bit affects the

apparent dimensions of the manufactured bits. Tip changes could also affect

the addressability of a memory scheme. 

Using bias pulses to induce surface changes was also reported. In

many cases surface alteration was achieved only with a bias pulse above a

certain threshold. This threshold was often reported as being dependent on

the history of the tip. Surface alteration was also found to be statistical near

the threshold. This is unfortunate since it is near the threshold where the

smallest surface features are produced and we desire minimum sized bits for

maximum storage density. We also desire to be able to be sure a given set of

alteration parameters will produce a definite
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result. None of the STM experiments reported a 100% success rate although

some individual tips produced surface alterations above 99% of the time.

Reports disclosed that the predictable formation of a hole or hill was not

always possible. Most of the works involving Au and Pt surfaces revealed

surface diffusion of atoms during normal scanning. This would make these

surfaces unusable as a memory dependent on field induced topography since

corruption of the stored information could result from diffusion. Some reports

suggested a current dependence on formation of surface features. Some

ambient effects, which may affect memory reliability, were also reported on

the formation of features. Other experiments involving ambient effects on

tunneling currents are reported in Chapter 7.

Experiments showing the diffusion of adsorbates due to increased

electric fields showed a statistical transfer of material. This suggests that

adsorbate features would not be advisable as memory bits since they may

move around. A more detailed report of surface features diffusing over time

during normal scanning is included in Chapter 4.

Experiments performed under liquids, involving voltage pulsing, often

revealed a difficulty in predicting a hole or hill type surface feature. Variable

current responses to similar pulses were mentioned demonstrating

unreliability. These may be limited by coating of tips to prevent leakage

currents. Also tunneling at high fields in a gas was demonstrated to produce a

plasma between the tip and substrate.

Field induced chemical modifications such as bond dissociation and
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cross-linking in polymeric films, and amorphous to crystalline phase changes

along with absorption and desorption of material were demonstrated. 

Light was also shown to be capable of inducing surface modifications.

Since a combination of both bias and illumination were necessary, the size of

the manufactured features was not diffraction limited. In one case, the

changing of the wavelength by 10 nm determined whether or not a feature

would be produced. The light was thought to induce hole-electron pairs which

weakened bonds and induced reactions.

Charged regions were produced in silicon nitride using a force probe

and in photoresist using a tunneling probe. The decay of charge in the

photoresists was on the order of minutes which would impede its use in a

memory while the charged regions in the nitride were considerably more

durable.

A magnetized tunneling probe was also found capable of magnetizing

500 nm regions of a surface even when covered with 100 nm of gold.

This summary shows feasibility along with some problems associated

with certain methods. The results are general with certain materials behaving

differently for a given surface alteration method. For a more detailed

summary of how individual materials fare for use in a nanomemory see

Chapter 5, Scanning Tunneling Lithography: Material Précis.



104

Table 3-1 . Mechanical contact surface alteration literature summary.

Authors Sample Tip Feature
Type

Feature
Lateral Size

Other

Abraham.. Gold W Hole/hill 50  nm UHV, tip distortion

Garfunkel.. Rb0.3MoO3 Hole/Line/
Square

6 nm Stable features

Gimzewski.. Ag on Si Ir Hill, Hole 10 nm Tip Degradation

Harmer.. YBa2Cu3O7-x Hole 25 nm Poor conductivity

Jaklevic.. Gold W Hole 20 nm UHV, Surface
Migration

Marchon.. Rhenium W Hill 2-5 nm hills not Re

McCord.. CaF W Lines 360 nm Surface not
conducting

Stroscio.. CO and Pt on Pt,
Xe and Ni on Ni

atoms atomic UHV, 4oK

van Loenen.. Silicon W hole/hill 10 nm UHV

Virtanen.. YBa2Cu3O7-x Pt/Ir Grooves 100 )m Transformation 
over 1 hr

Yokohata.. Gold Pt Indents 30-300 nm Tip displacement
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Table 3-2 . Field induced material transport literature summary, Part I.

Author Sample Tip Feature
Type

Feature
Width

Pulse Voltages, currents and
durations

Interesting notes

Akari.. WSe2 Au hole 5 nm 4-6 V, <200nA, 10-400 ns Holes grew over time

Albrecht.. HOPG in air
HOPG in UHV

W holes
none

2-10 nm 3-8 V, 1-100 )s Threshold dependent on tip; inconsistent
formation

Becker.. Ge in UHV W hill 8 Å -4 V inconsistent formation

Casillas.. Ti(O2) on Pt on
mica

Pt-Ir hole 5-36 nm ±2 cycling, 250 ms different I(V) curves

Emch.. Au on mica hills/holes 5-10 nm 3-5 V, 10 ns tip dependent threshold
unpredictable hill or hole
surface diffusion

Heinzelmann.. HoBa2Cu3O7-x hole 10-80 nm 4 V, 10 nA, 5 s 2 V threshold

Hoffman-
Millack..

Au W hole 60 nm 2 V stepped, 60 ms hole filled in after 50 min

Li.. Au W holes 2-8 nm > 2.7 V varying threshold

Lyo.. Si W hill or hole 1-5 nm ±3 V hill removal possible

Mamin.. Pt and Si
Au

Au
W

hills
holes

15-30 nm ±3.5-4.0 V, 10 ns hills bigger near threshold,
hills could be removed and redeposited,
observed tip alteration 

Marchon.. atomic S on
Re under oil

W hole
scattered hills

50 nm
1-10 nm

3 V, 100 nA, 2 s
-3 V

attempts in air were unfruitful

McBride.. Au

Au

W

Pt

hills
holes/hills
hills

15 nm (hills -3.8 V, 150 )s)
(both -4 V, 250 )s)
(hills ±3.8 V)

hills formed when pulse current duration
exceeded 200 )s,
field threshold of 2.3 V nm-1

Miller.. HOPG Pt-Ir hills/holes 1-200 nm 2.7-8.0 V changing threshold
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Table 3-3 . Field induced material transport literature summary, Part II.

Author Sample Tip Feature
Type

Feature
Width

Pulse Voltages, currents and
durations

Interesting notes

Mizutani.. damp HOPG Pt holes 1-10 nm 3.5 V, 350 )s 80 % success

Ohmori.. Pd and Pt surface
diffusion

150 mV, 2 nA impurities on samples

Parkinson.. InSe, ZrS2, TiSe2,
SnSe2, SnS2, NbSe2,
TaS2, MoSe2, WSe2,
MoS2, WS2, PtS2,
ReSe2, WTe2, MoTe2

W or
Pt

hole 500 nm < ±100 mV Normal tunneling produced holes

Rabe.. Ag on mica holes/hills 10 nm 5 V, 100 ns unpredictable hole/hill type

Saulys.. Na0.9Mo6O17 Pt-Ir holes 5-10 nm 0.6-2.5 V, seconds surface transformation during imaging

Schimmel.. WSe2 W or
Pt-Ir

hills/rings 1-6 nm 2.3-5.8 V, 20 ms structures were formed and imaged in the
constant height mode of operation

Schneir HOPG
Au under grease

hole
hills/holes

1-9 nm
5-10 nm

3.2-4.0 V, 0.5 s
3.0 V

some damage existed beyond the hole;
unpredictable hole/hill formation
surface diffusion reported

Shedd.. Au
HOPG

holes
holes/hills 20 nm

3-5 V
0.05-3.5 V

Shenn.. HOPG W holes 1-10 nm 30-180 V, 0.1-0.5 )s 0.04 Torr vacuum,
tip dependent threshold

Sommerfeld.. Au and Pt Pt-Rh hills 5 nm 5 V, 20 ns Au threshold, 2.8 V,
Pt threshold, 4.3 V,
surface diffusion observed
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Table 3-4.  Field induced material transport literature summary, Part III.

Author Sample Tip Feature
Type

Feature
Width

Pulse Voltages, currents
and
durations

Interesting notes

Staufer.. Rh25Zr75

Fe86B14

glassy metals

hill
lines
hills

35 nm
20x100 nm
20 nm

2 V, 315 nA

0.7-1.0 V, 1 mA

possible taylor cone formation
UHV
Erasure of nearby hills

Terashima..
[1990]

HOPG holes 1-50 nm 4 V, 1-10 s unsuccessful alteration of
 Si and YBa2Cu3O7

Terashima..
[1991]

Bi2Sr2CaCu2O
x
 on MgO

Pt-Ir hole 2-50 nm 4.5 V, 1 s

Virtanen.. YBa2Cu3O7-x ditch 100 nm 10 v, 0.5 s 1.5 V or greater must be used to
image

Yau.. Si(111) in
UHV

W hills/holes
lines/
asperities

14 nm ±5 V, 0.2 s hills would diffuse away,
holes which were made only
with sharp tips lasted for weeks,
adsorbates were necessary for
hill formation

Table  3-5. Field induced diffusion of adsorbates literature summary.

Author Substrate Adsorbate Tip Feature size Notes and information

Eigler.. Ni in UHV
at 4o K

Xenon atoms W Atomic When current was increased above 1 nA, the atoms
followed the tip

Whitman.. GaAs in UHV Cesium W 50 nm covered 3 V 0.1 s pulse caused the Cs to move towards the tip
with no effect for negative pulse;
Cs chains were also broken up;
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Table 3-6.  Field induced surface alteration within a gaseous ambient literature summary.

Author Sample Ambient Tip Feature
Type

Feature
Width

Pulse Voltages,
Currents, and
Durations

Notes and Comment

Dagata.. H passivated
Si

air (O2) lines 35 nm 2.2-3.0 V continuous TOF SIMS revealed more
oxygen in region. selective
etching possible

Ehrichs..
[1988]

Si (111) DMCd

vacuum

W lines

hill

1 )m

10-50 nm

8 V, 10 ns

4 V

They found that the DMCd
was not necessary;
C,O polymerization possible;
3 V threshold

Ehrichs..
[1990]

Si WF6 (1 mTorr)
WF6 (30
mTorr)

hole/hill
hill/hole
hole

100/100 nm
25/50 nm
20 nm

-20 V, 100 ns
-20 V, 100 ns
-15 V, 100 ns

Results without WF6 showed
no holes suggesting fluorine
etch

Eigler.. Ni (110) Xe in UHV 
 at 4o  K

W atom atomic 8 V, 20-64 ms The xenon was transferred
between sample and tip

Roberts.. Au Argon (1.3 Pa) hole 4.5 nm 2.8 V Filling of holes observed

Silver.. HMDS on Cu DMCd W hills 120 nm
60 nm
40 )m

0.3 V, 270 )A, 100 s
0.9 V, 220 )A
2.6 V, 72 )A

AES revealed large carbon
contamination in feature
area

Yau.. HOPG vacuum
TMA

Au or
W

hills
hills
hole

60 nm
1-5 nm
5 nm

4.0 V, 0.2 s
4.0 V, 0.2 s
5.0 V, 0.2 s

3.5 V threshold
statistical hole creation



109

Table 3-7.  Field induced deposition/etching within a liquid or transporting film literature summary.

Author Sample Liquid/film Tip Feature
Type

Feature Width Pulse Voltage,
Current, and Duration

Notes and Comments

Bernhardt.. HOPG dimethyl-
phthalate
decane

Pt-Ir

W

hills

hills
hole

1-100 nm

10 nm
26 nm

4 V, 200 ns

4 V, 1 )s
4 V, 200 ns

Tip dependent hill/hole formation,
tip changes observed 

Craston..
Hüsser..

Ag AgNO3-
NaFion

Pt lines 1-2 )m 0.2-8.0 V, 0-1 nA Deposition at air/polymer interface,
Unstable current,
broken lines for rates > 50 nm s-1

Foster.. HOPG diethylhexyl-
phthalate

W hill 1-2nm 3.7 V, 100 ns Deposition may be organic,
3.5 V threshold, erasure possible

Hüsser.. graphite
Ag

PVP (AuCl4
-)

MEEP
Pt
W

lines
lines

sub-)m
non uniform

-5 V, 1 nA
5 V

Ag, Cu. Pt and Au etched, 
Ag, Au, Cu deposited,
dendritic growth for < 3 V

Li.. HOPG aq AgF

H2O, NaF

Pt columns
pit
pit

20-30 nm
10 nm

6 V, 50 )s
6 V, 5 )s

Stable with nearby production,
Columns grow on holes,
Polarity dependent

Nagahara.. Si(100)
GaAs

aq HF Pt-Ir squares
lines

200-400 nm
80 nm

1.4 V, 25 s Etching not possible in H2O od H2SO4

Penner.. HOPG DI H2O W hill
hole

0.7 nm
4 nm

±4 V, 20 )s
-4.2 V

4 V threshold which varies with tip,
No pits formed with N2 or dry toluene

Rabe.. HOPG octylcyano-
biphenyl

Pt-Ir adsorbate
hole

1-2 nm
10 nm

1.7 V
-(2-3) V, 2 min

Air, H2O, silicone oil similar etch,
no etching in helium or dry toluene 

Schneir.. Au Orasene 999 line 300-500 nm -3 V constant 2 successes in 20 attempts

Wuu.. Pt anilnium
sulfate in
NaFion

Pt 
W

line 2 )m 5 V 
sample positive 

Deposition of polyaniline observered at
the air/poly interface
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Table 3-8.  Field and/or electron induced chemical modification literature summary.

Author Modified
Substance

Tip Modification
Extent

Modification
Sort

Modification
Parameters

Notes and Comments

Albrecht.. PODA on
graphite

40 nm Broken fibrils 4 V, 100 ns 4.1 ±0.2 V threshold

Dagata..
[1990a,b]

H-Si on
Si(111)

Pt-Ir 200 nm groove
100 nm
square

Chemical change
maybe oxidation

3.5 V constant Features etched in HNO3:HOAc:HF
modification in air or O2,
no modification in N2

Dagata..
[1991b]

AlxGa1-x InyGa1-y

MBE on GaAs
85 nm lines Oxidation 4.2 V low field oxide desorption

high field oxidation

Dujardin.. B10H14 on
Si(111)

1 nm Energetic electron
dissociation

4-8 V Probability of dissociation was
0.1 at 4 V and 0.8 at 8 V

Jahanamir..
[1989]

a-Si-H on Si W 10 nm lines Conductance
increased

10 V, 35 )s, 100 )A Linewidth equals tip radius,
(phase transformation theorized)

Jahanamir..
[1990]

SiO2 on Si Conductance
changed

6 V, 35 )s, 1 mA Surface became rectifying

Rinnger.. Pd81Si19 W 16 nm lines Oxidation 100 mV, 10 nA Hydrocarbons also observed

Utsugi.. Ag1.9Se on
Ge0.1Se0.9

Pt 13-60 nm
grooves

Selenide
hydrogenation

2-5 V No etching for neg bias,
H2Se(gas) theorized

Marrian.. P4BCMU 20 nm dots electron exposure -(20-30) V, 10 ms Bias ramped, -8 V threshold

McCord..
[1986]

Si; Au, Al,
Cr, Pt on Si

100 nm lines
after etch

contamination
buildup

10-1000 eV, 25-100 nA 0.1 C cm-1 threshold,
docosenoic acid also used

McCord..
[1988]

PMMA 20 nm lines
22 nm

resist crosslinked;
chain scission

30 V, 10 pA, 1 )m s-1

lower voltage and doses
Possible to expose resist with
reverse polarity decreases linewidth

Zhang.. PMMA, PV-
cinnamate

30 nm after
etch

electron exposure
of resist

5-100 V, 5-1000 pA,
102-104 C cm-1

Linewidths smaller with negative
bias (smaller transverse spread)



111

Table 3-9. Illumination-assisted field-induced surface lithography literature summary.

Author Surface Ambient Tip Light Source Feature Type Feature Size Parameters Notes and Comments

Lin.. GaAs NaOH,
EDTA

Pt Tungsten
halogen

Etched lines 0.2-2 )m -4 V Linewidth equals tip radius
Also used organic solvents

Thundat.. n-GaAs
p-GaAs
p-GaAs

AuCN

NaOH

Pt-Ir White light gold dots
hills away from tip
Etching 

0.1-10 )m
15 nm
smoothing

4 V, 1 min

0.1 V

Features less pronounced if done in
dark,
NaOH required circulation

Yau.. HOPG TMA XeCl laser
(440 nm) 

hill 1-16 nm 1-3 V, 
18 ns light 

Linear conductance above features;
No features without TMA; 430 nm
light deposits rare

Table 3-10 . Localized electrostatic charge implantation in films literature summary. Atomic Force Probes used.

Author Substrate Feature Extent Pulse Parameters Comment and Notes

Barrett.. SiN on Si 170 nm FWHM
charged regions

-40 V, 100 )s -25 V, 20 )s threshold, erasure possible, 75 nm smallest region
100% charging for 202 attempts,
Chemical oxide 1 hr charge half life,
Thermal oxide charge 7 day stabilityBarrett Chemical SiO2

Thermal SiO2

10 V, 20 )s erasure
40 V, 1 s erasure

Stern..
Terris..

PMMA 2 )m 100 V, 25 ms 1 hr charge decay, sapphire gave similar results,
No detectable charging of mica or quartz

Table 3.11  Magnetic Alteration.

Author Substrate Feature Extent Parameters Comment and Notes

Moreland.. CoCrTa film 200 nm - 8 )m
square

Magnet applied to tip The Fe tip was bent in a cantilever style so that it would bend in the
presence of a magnetic field necessitating a servo response,
100 nm Au layer did not hinder magnetization
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3.11 Additional papers

Due to the lapse of time between completion of the thesis and

presentation, recent papers were not included for the defense. Many of these

papers are presented in this section with a brief overview of the work.

Barniol et al. [1992] HF-treated Si was altered under air with -1.4 V

imaging conditions. The surface had not been rinsed in DI water. The

mechanism is reported to be a tip-induced oxidation effect.

Chen and Ahmed [1993] PMMA resist was exposed with a 80 V

electron beam. Subsequent etching produced silicon pillars less than 10 nm

wide.

Dagata et al. [1992] Nanolithography on III-V semiconductors. MBE

arsenic and chemical sulfur capping were shown to passivate GaAs. The S-

capped surfaces were thought to be too rough for nanolithography. The As

capped surface were oxidized using STM biases of 3.8-6.5 V. Resolution of

features was found to be dependent on tip shape and varied from 50 to 200

nm. Vacuum environments were thought to be necessary for atomic

manipulation.

Day et al. [1993a] Carbon deposits (44 nm) were produced above a

4 V threshold with a monolayer film. The writing speed was 1 )m s-1. 

Day et al. [1993b] Selective oxidation of silicon was obtained while

scanning an atomic force probe over the surface. The oxidation occurred

when the probe had a potential between 3 and 25 V. 100 nm lines were
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formed at a speed of 100 nm s-1. 

Garcia [1994] Hydrated purple biological membrane sheets were

mechanically altered producing nanometer scale marks.

Heyvaert et al. [1992] YBa2Cu3O7 was etched with an STM tip. For

biases below 1 V, the etching occurred at edges only. For biases above 1 V,

etching was nondiscriminating. 

Hosaki et al. [1992] Using a voltage pulse, surface sulfur atoms were

removed from MoS2 using a tungsten STM tip. The tip was reported to be 0.3

nm above the surface while a -0.5 V 70 ms pulse was applied. The pulse also

had a 0.1 ms spike which extended the bias to -5.5 V. Using successive

pulses, the letters PEACE 91 HCRL were produced by removal of atoms. The

experiment was performed at room temperature and at a vacuum of 10-6 Pa.

They suggest a field evaporation mechanism.

They also found that they could produce a 4 nm hill with mechanical contact.

Huang et al.  [1992] Using pulses <1 ms in duration, 1 nm holes were

manufactured on the surfaces of MoS2 and SnSe2. Hole formation thresholds

were found to be 3.5 V for MoS2 and 1.4 V for SnSe2. Erasure of holes by

removal of layers was found to occur using biases above 4.5 V for MoS2 and

1.7 V for SeSn2.

Mamin et al. [1994] Gold bumps on gold were formed on the fly with

4 V pulses between the tip and sample. Due to servo-pulse interaction, time

between pulses was limited to 1 ms. The writing was about 90% reliable.
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Ostrom et al. [1992] What was thought to be Si nanocolumns were

formed on Si with 3-7 V 1 sec pulses. The probe was also found to lengthen

by several tens of nanometers which prompted the view that the structures

were Si.

Ross  et al. [1993] Square regions of surface modification were

produced at the surface of a self-assembled monolayer of HS(CH2)17CH3 on

Au(111) using an STM tip. Defect structures, about 5 nm in diameter were

observed on the surface before modification. Surface alteration was observed

for a 300 mV bias while scanning. The regions showed a pile of material at

the edges of the scanned regions. Using a 3 V bias produced features as

small as 25 nm with no apparent pile up at the edges. They suggest that the

tip may be scanning within the monolayer. 

Silva et al. [1992] Au films on mica were mechanically machined to

produce insulating gaps between conducting lines and regions. Fabrication of

insulated wires and pads was demonstrated.

Stockman et al. [1993] STM was used to expose c-tricosenoic acid on

a Au film in a nitrogen ambient at -10 V. After developing in ethanol and

argon milling, 15 nm lines were formed.

Sugimura et al. [1993] Tip anodization of titanium was observed. The

process could be limited to a 30 nm region at best. It was found that the

process was dependent on humidity. Less resolution was produced at higher

humidities. The tip  was moved at a rate of 1 )m s-1

Thibaudan et al. [1994] A silicon surface was etched in a Ferrocene

(C5H5)2 environment. The 50,000 Langmuirs of ferrocene was
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deposited on a boron doped silicon surface. At a threshold of -1.7 V in a 10-7-

10-4 vacuum, the surface was etched by what was thought to be field

ionization with a FeSi volatile by-product. Lines of 3 nm width were produced.

Wang et al. [1992] Monatomic stripes several hundred nanometers in

length and 4 nm wide and 2-4 nm spacing were formed on reconstructed Au

(111) surface. Normal STM scanning along the [1,1,-2] direction produced the

features. The tip was tungsten.

Wang et al. [1993] A 150 nm × 150 nm top monolayer of Au was

moved to the edges of underlying layers in about an hour of continuous

scanning.
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Chapter 4.

Scanning Tunneling Lithography: Experiments

The purpose of this chapter is to present basic experimental results

regarding the alterability of a surface using a tunneling probe. This chapter

will begin with a theoretical overview of quantum mechanical electron

tunneling through a square potential energy barrier and its application to

STM. Knowledge of the related tunneling parameters are necessary for a

better understanding of surface alteration experiments. After this knowledge

is reviewed, various surface alteration experiments will be reported. 

4.1 Quantum mechanical electron tunneling

An electron has been demonstrated to act not only like a particle

(classically) but also like a wave (interference and diffraction). A probability

interpretation provides the means for interrelating the particle and wave

nature of electrons. Similar to the electric field strength of an electromagnetic

wave, an electron with a constant linear momentum, mv, and energy, E, is

attributed a simple harmonic wave function, , where 4

44(x,t ) 

 sin 2%% x
��
		��t �� ���� cos 2%% x

��
		��t



 e���� k x e
		

����

66
E t


 55(x) 55(t ) .

(4-1)

The position of the electron is given by x, the de Broglie wavelength and 
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Figure 4:1 . Electron incident on a potential
energy barrier Vo greater than electron
energy, E.

		

66
2

2m
d255(x)

dx2


 E 55(x), for x < 0 and x> a

		

66
2

2m
d255(x)

dx2


 (E		Vo) 55(x), for 0 <x > a .

(4-4)

frequency are respectively  and , t is the time, and where �
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and h is Plank's constant. By  using this equation to solve Schrödinger's

equation,
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the probability of an electron to be found at a position inside or beyond a

classically forbidden potential barrier, V(x,t), can be determined. This 

probability, P, is defined by the equation

P(x,t ) 

 44��(x,t ) 44(x,t ). (4-3)

Assuming that an electron is

incident on a time independent

square potential barrier as

shown in Fig. 4:1, then

Schrödinger's equation for the

electron reduces to Eqn. (4-4).

After calculating the probability amplitudes of the incident and

reflected waves for each of the regions, one can calculate the probability 
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flux transmitted through the barrier. This transmission coefficient1, T, is given

as

 

The barrier region between a STM tunneling tip and a conducting

sample is an example of a potential barrier. The potential barrier, Vo, of this

region is related to the work functions of the sample (1s) and tip (1t), and also

the bias, Vb, between the tip and sample. This work function, 1, is the amount

of energy necessary for an electron (at Fermi energy, EF) to escape from the

surface into a vacuum. Work functions for the elements with clean surfaces

range from 2-6 eV. Using Vo-EF=4 eV and no applied bias, we obtain a value

for ko=1.15/Å. This implies that for tip-sample separations greater than an

Angstrom, T is proportional to , where s is the tip-sample separatione
		2��

o
s

and is taken to be equivalent to the barrier thickness. The current, I, which

flows between the sample and tip will be proportional to T. The proportionality

constant will depend on the electron density at the surface of the electron

source.

Since tip and sample usually have different work functions, the 
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barrier is nonuniform. For eVb<1o=(1t+1s)/2, the barrier height can be

estimated using the WKB2 integral approximation to Vo=1o-eVb/2, where e is

the charge of an electron. For Vb <<1o, Simmons [1963] estimated the current

density, J, to be:

From Eqn. (4-6), there are three interrelated variables which pertain to

tunneling microscopy, s, Vb, and I (or J). The current can be calculated from

I=J×A, where A is the effective tunneling area under the tip. Using a tunneling

area of 1 Å2, and calculating 1o=5.3 eV from the work functions of a Pt tip and

a graphite sample, tunneling currents vs. tip-sample separation, I(s), plots

were obtained. Fig. 4:2 shows I(s) plots for 1, 10, and 100 mV tip-sample

biases. The natural log of the currents of Fig. 4:2 are plotted in Fig. 4:3,

showing a slight deviation from a straight line due to the 1/s term in the

current. 

The three interrelated variables of the tunneling equation yield three

possible tunneling configurations. The first is applying a constant current and

servoing s to keep Vb constant. This method was used by the topografiner but

is not used for STM imaging. The second is the normal topographic operation

of a scanning tunneling microscope, where Vb is fixed and a constant tip-

sample distance, s, is obtained by servoing the probe to maintain a constant

current value, I. STM images produced from topographic data will be called

Z-images for the purpose of discussion. The third configuration is the current

imaging operation of an STM where 
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Figure 4:2 . Plotted theoretical currents for various biases.
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Figure 4:3 . Natural log of currents in Fig. 4:2.

the gain of the feedback electronics is kept low so that the position of the

probe is not allowed to change rapidly. The current is recorded and a

theoretical height is calculated from the natural log of the current. Current

imaging is only used for obtaining the electronic structure on an atomic 
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scale or for viewing defects having atomic dimensions on flat surfaces.  STM

images produced from current data will be termed I-images for the purpose of

discussion. Image 4:1 shows the effect that the feedback has on the

appearance of a nonuniform surface for both Z-images and I-images.

4.2 Alteration of a graphite surface

This section describes the results of experiments designed to produce

a topographical alteration of the surface of highly oriented pyrolytic graphite

(HOPG). The STM used for these experiments was a commercially available

Nanoscope II. A breakout box was constructed so that there was access to

the sample bias wire and ground wire. This access allowed control of an

external bias with a superimposed voltage pulse to facilitate surface

modification. All biases mentioned were applied to the sample with the tip

grounded through a 1 M6 resistor. Except where specifically noted, the

voltage pulses were produced with a Leader LFG-1310 or a Wavetek Model

23 function generator.

The HOPG sample was chosen for several reasons. One is the

presence of flat crystalline regions on the surface with areas extending over 1

)m2. Since HOPG is a two-dimensional layered material, fresh surfaces are

easily prepared by cleaving with a piece of tape. The surface is also relatively

immune to oxidation at room temperatures. 

Image 4:2 shows how the surface of HOPG looks when scanned with

an STM. The greyscale I-images show the areas as lighter which 
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have higher conductivity and hence higher currents. The darker regions

indicate regions where the current was lower. For the Z-images, the

greyscale relates the displacement of the tip necessary to maintain a

constant current. Image 4:2(a) reveals a trigonal pattern with saddle points

and holes between the more conducting points. There is discussion3 on

whether the highest conductive regions (lightest) are above atoms that have

a vertical nearest neighbor on the closest plane or on the second closest

plane with the saddle points above the other atomic position. Notice that

Image 4:2(d) has corrugations. These are not due to true current corrugations

but to a combination of aliasing due to data acquisition and feedback effects.

Notice also that atomic resolution in not discernible in that image. Image

4:2(e) minimum to maximum (i. e. darkest to lightest) distance is about 2

Å.For atomic resolution images, I-images can provide more detail than Z-

images. Notice that for the 3 nm images, the I-image reveals the saddle

points better than the Z-image. Image 4:2 (b), (c), and (e) have been filtered

to remove noise. Image 4:2(e) has also had a tilt correction. Image 4:2(f)

shows a 100×100 nm Z- image with the sample tilt not subtracted from the

data.

4.2.1 Initial investigative experiments

 Due to its simplicity, we choose to investigate field induced

modification produced by application of a voltage pulse between the tip and

sample. This gave us four parameters that could be varied to effect surface

alteration. These are the initial current, initial bias, and pulse magnitude and

duration.
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  For our first set of experiments, the bias was set to 20 mV and the

feedback electronics were servo controlled to maintain a 2 nA tunneling

current (i. e. Iset = 2 nA). Using a Pt-Ir4 tip, tunneling on HOPG, the effect of a

2.75 V square pulse superimposed on the bias was examined. For pulse

durations of 2, 20, and 100 )s, there was no observable effect. When a 200

)s pulse was applied, a 40 nm hole with a raised rim was formed. An STM

image obtained with the same tip as that used for alteration is shown in

Image 4:3(a). 

A 3 V × 0.5 )s pulse superimposed on a 20 mV bias while tunneling at

2 nA produced scattered deposition on the surface over an 80×80 nm region.

This deposition is recorded in Image 4:3(b). After reducing the pulse

amplitude to 2 V, no surface alteration was visible. The tip-surface separation

was reduced by increasing the tunneling current (Iset) to see if the 2 V pulse

could produce surface alteration at smaller separations. For Iset = 8 nA, 12.87

nA, and 14.6 nA no change in surface appearance was observed. The

change in servo current from 2 nA 
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to 14.6 nA would produce a decrease the tip-sample separation,

. (see the calculated currents in Figs. 4:2 ands � 1

2�
R

� 0.5 ', for s > 1

�
R

4:3). This 0.5 Å displacement may denote a substantial percentage of s,

effecting a significant change in the surface fields in addition to more than an

order of magnitude in pulse current. 

Increasing the amplitude of the 0.5 )s pulse to values less than 3 V

produced no visible surface alterations. When the square pulse amplitude

was increased to 4 V, some scattered deposition was observed. These

results suggest that the pulse amplitude must be greater than 3 V for surface

alteration to occur with a 0.5 )s pulse.

4.2.2 Pulse duration effects

The effect for 100, 50, 10, 5, 0.5, and 0.05 )s pulse durations of a 4 V

pulse amplitude are shown in Image 4:4. The original surface was defect free.

At this pulse amplitude (4 V), holes were produced until the pulse duration

was decreased from 10 to 5 )s, then an apparent deposition on the surface is

obtained. It took two pulses for modification to occur for the 0.05 )s pulse

and then only scattered modifications were observed, Image 4:4(f). 

4.2.3 Initial current inconsistency

A 400 )s × 4 V pulse was applied onto the 20 mV sample bias with

different set currents. The results are shown in Table 4-1. These results

seem contradictory since a decrease in current should have drawn the tip

away from the sample causing a decreased surface field producing 
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Iset

2.0 nA

0.5 nA

8.0 nA

Effect of Pulse

10 nm hole with damage extending 20 nm

10-15 nm hole with damage extending 40 nm

60-80 nm altered region

Table 4-1 . Setpoint current effects on surface alteration for a 4 V × 400 )s
pulse applied on a 20 mV bias. 

less alteration, but we see that the alteration extent was not directly related to

the current magnitude. A change in the tip (geometric and/or electronic) and

resulting field transformation may have been the cause of this apparent

contradiction. The effect of tip motion due to instrument dynamics is

discussed in Chapter 6.

4.2.4 Pulse amplitude threshold for alteration 

The results for a series of alteration attempts using various pulse

amplitudes and currents are recorded in chronological order in Table 4-2. As

shown, an attempt using an 8 V × 200 )s

pulse to produce alteration with Iset = 2 nA

was unfruitful for Vb = 20 mV. Iset was then

decreased to 0.5 nA. When the 8 V pulse

was reapplied, the 150 nm hole shown in

Image 4:5 was produced. Again this

seems to be counterintuitive since the

decrease in the set current should have

withdrawn the tip from the sample and

decreased resulting fields.
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Attempt Iset Pulse Height Alteration Extent

1 2.0 nA 8 V none

2 0.5 nA 8 V 150-200 nm (Image 4:5)

3 5.0 nA < 3 V none

4 5.0 nA 3.5 V 100 nm

5 2.0 nA 3.5 V 40 nm

6 0.5 nA 3.5 V 20-40 nm

7 0.5 nA 3.25 V none for 3 attempts

8 0.5 nA 3.6 V 30 nm

9 0.5 nA 3.5 V 30 nm on third try

Table 4-2 . Surface alteration results for a 200 )s pulse on a 20 mV bias for
various pulse amplitudes and setpoint currents.

Reducing the amplitude to < 3 V and increasing Iset to 5 nA produced

no alteration. Increasing the pulse amplitude to 3.5 V produced a 100 nm

altered region. Reducing Iset to 2 nA produced a 40 nm damaged region.

Decreasing Iset farther to 0.5 nA produced a 20-40 nm region. After

decreasing the amplitude to 3.25 V, three attempts to alter the surface proved

fruitless. Increasing the amplitude to 3.6 V produced a 30 nm altered region.

Reducing the amplitude to 3.5 volts produced a 30 nm surface alteration only

on the third try. These results suggest two things, first, for this experiment

there was an alteration threshold near 3.5 volts for the pulse (holding pulse

width constant), and second, near the threshold the alteration process is

unreliable in nature. Thresholds near 3.5 V for alteration have been observed

by others also.5
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4.2.5 Initial bias effects

This next experimental series of pulses was devised to determine the

effect of initial sample bias, Vb, on producing an altered surface. With Iset = 2

nA, a 3.5 V × 5 )s pulse was added to Vb. The extent of the altered region of

the surface was investigated for -1 < Vb < 3.7 V. Table 4-3 contains a list of

the extent of surface alteration for associated initial biases. Resulting surface

alterations are shown in Images 4:6 and 4:7. The varied appearance of the

produced altered regions reveals the uncertainty in surface alteration. 

In order to get a better grasp of the alteration size as a function of

initial bias, the data in Table 4-3 has been graphically represented in Fig. 4:4.

Two different tips were used in the experiments and are shown on the graphs

in Fig. 4:4 using different symbols. Both tips produced <10 nm features for -

0.8 < Vb <0.25 V. But, one tip also produced 80-100 nm features at these

biases. The graphs illustrate that different tips have different alteration effects

and also that each tip can produce varied or unreliable results. The formation

of a hole or hill was not predictable.

 When the voltage pulse was applied upon Vb = -0.7 V with Iset = 2 nA,

the mound structure in Image 4:7(l) was produced. However, using the same

initial bias and pulse after changing Iset to 4 nA, the two holes shown in Image

4:8(a) were produced. Image 4:8(b) is a more detailed view of one of the

holes revealing the diameter of the hole to be less than 2 nm. The production

of two holes suggests the presence of a second 
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Figure 4:4 . Alteration extent for changing initial bias from Table 4-3. (a)
shows all the data and (b) shows alterations of less than 10 nm extent.
Different symbol styles signify different tips.
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Vb (mV) Alteration extent (nm) Image Image size 
nm × nm

0.020 40 4:6(a) 80 × 80
0.040 40 4:6(b) 80 × 80
0.100 30 4:6(c) 40 × 40
0.200 5 4:6(d) 20 × 20
0.200 35 4:6(e) 40 × 40
0.400 15 4:6(f) 40 × 40
0.600 40 4:6(g) 80 × 80
1.000 40 4:6(h) 40 × 40
1.500 80 4:6(i) 100 × 100
2.000 30 4:6(j) 40 × 40
3.000 60 4:6(k) 80 × 80
3.700 150 4:6(l) 200 × 200
0.010 80 × 40 4:7(a) 80 × 80
-0.020 400 4:7(b) 400 × 400

<<< The graphite sample was moved at this point >>>
-0.020 40 × 10 4:7(c) 40 × 40
-0.060 40 × 5 none
-0.060 70 4:7(d) 80 × 80
-0.100 50 × 150 4:7(e) 200 × 200
-0.200 120 4:7(f) 200 × 200
-0.500 none for 2 attempts
-0.500 3 4:7(g) 10 × 10
-1.000 none
-0.500 none
-0.400 several 3 nm 4:7(h) 10 × 10
-0.400 couple 3 nm 4:7(i) 10 × 10

<<< next day >>>
-0.400 90 4:7(j) 200 × 200
-0.600 80 4:7(k) 100 × 100

<<< changed to new tip >>>
-0.700 none
-0.650 10
-0.700 couple 4
-0.750 none for 3 attempts
-0.700 4 4:7(l) 10 × 10

Table 4-3 . Extent of damaged region as a function of initial bias for a pulse
with a 3.5 V amplitude and a 5 )s duration. 
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nearby protruding tip. Alternatively, if alterations were produced by a

changing field at the surface rather than the field itself, the production of two

holes can also be explained. In line with this reasoning, it was also found that

a triangular pulse could sometimes produce three mound shaped features. Of

course, this also could be attributed to multiple tips.

 Leaving Iset = 4 nA, changing Vb to -1 V, and applying the pulse

produced no surface alteration for 3 attempts. 

4.2.6 Other experimental observations

Noticing a minimum in alteration dimensions near Vb = -0.7 V, the

sample bias was set at this value and the pulse duration was varied

producing the surface features shown in Image 4:9. All of the pulses

produced surface features on the order of 4 nm or less.

Changing tips and using a 0.1 )s duration pulse, the effect of changing

initial bias and pulse amplitude on the alteration dimensions was

investigated. Pulses of this duration or less were found to deviate from a 
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square shape to a distorted half-sine shape. A pulse amplitude > 5 V was

necessary for this tip to produce any surface features. For a 5.7 V pulse

amplitude and Vb = -0.7 V, the alteration size varied from 0 to 40 nm. This

further demonstrates a reliability problem in feature production for certain

parameters. Changing the initial bias in the range -650 < Vb < -300 mV, the

produced feature size was consistently 40 nm, larger than we desire for a bit

size.   

Attempts to produce surface alteration using a ramped voltage pulse

were unsuccessful for 1 ms ramps as high as 5.2 V and for initial biases

ranging from -5 V to 100 mV.

4.2.7 Pattern generation

Noticing that the smallest features were produced near Vb = -0.7 V for

most of the previous experiments, this parameter was kept constant for other

experiments. A 3.5 V × 0.05 )s pulse produced the 1-2 nm feature in Image

4:10. In an effort to see if it was possible to produce a regular array of bits   

(i. e. altered areas) on the HOPG surface, the tip was repeatedly pulsed and

moved to manufacture the 40 nm 
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L-shaped structure seen in Image

4:11(a) and (b). The pulse had a sine

wave shape. Initially, the pulse

amplitude required to make the

individual bits of the 'L' was 3.3 V. As

the formation of the 'L' progressed, it

was necessary to increase the

amplitude to continue making the

bits. With the completion of the 'L',

the amplitude had been increased to

4.6 V. The necessity of increasing the

amplitude further demonstrates the unreliability of feature production. This

also implies that surface or tip properties changed during the progression.

 The bits were placed to within 5 nm of the desired position causing

the 'L' to have a line thickness of about 10 nm. Continuing the process

produced the U-shape shown in Image 4:11(c). After the completion of the

'U', Vb was changed to +20 mV then back to -0.7 V. This resulted in

degradation of the 'U' to the degree that only a few of the bits comprising the

'U' were still visible, Image 4:11(d). Whether the bits evaporated into the

ambient, diffused away, or were plowed by the tip is not known.

4.2.8 Durability of bits

The dissipation of the bits led to surface diffusion investigations.

Image 4:12 demonstrates the volatility of bits on HOPG. Image 4:12(a) 
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shows a pattern of bits manufactured with 3.7-3.8 V × 5 )s pulses

superimposed on Vb = -0.7 V. I-images for times 41, 83, 93, 124, and 165 s

after the initial image are shown in Image 4:12(b-f). One of the bits is shown

moving over time while two do not appear to move and one vanishes from the

image area. A similar time delay series of unstable bits, manufactured in a

experiment six weeks later, are shown in Image 4:13, the seven original bits

disappear one at a time until there are only two left. The total time between

the first and last images was 6 minutes. Images 4:12 and 4:13 both show the

diffusion of what appear to be mounds of material that were deposited from

the tip or ambient.
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The same effect is demonstrated for holes in Image 4:14(a-c). The

time from the first to last image of hole assimilation was about 33 min. Some

of the mounds of Image 4:12 diffused across the surface on the order of

seconds while the mounds of Image 4:13 and the holes of Image 4:14 were

stationary until their quick assimilation. The material that appears on the rim

of the hole in Image 4:14(d) could diffuse or be pulled by the tip into the hole

causing its disappearance. These results demonstrate that the features made

in this manner would not be feasible for use as bits since they are not

durable, even for a short while.
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4.2.9 Results with a data acquisition board

Manufacturing features was also possible with pulses generated by a

Data Translation DT2821 data acquisition board. The Asyst6 program used to

produce the sample bias and pulse amplitude and duration is given in

Appendix A. The program allowed the trailing edge of a pulse to be ramped

slower than the leading edge. The digital to analog (D/A) circuit of the board

was checked and found to have a slew rate of about 4 V/)s. The duration of

the pulse was limited to the 10 )s maximum clock rate of the board. The D/A

system of the board could output up to ±10 V with a 12 bit resolution.

Image 4:15(a) and (b) show 2-3 nm holes made with a 3-4 V × 10 )s

pulse. Keeping the pulse parameters and Vb constant, Iset was varied to

produce the features in Image 4:15 (c-f). Image 4:15 (c) and (d) both had Iset =

2 nA and the pulse produced features approximately the same 1-2 nm size.

The 30 nm hole in Image 4:15 (e) was made with Iset =0.5 nA and the small

feature of Image 4:15(f) with Iset = 8 nA. As previously mentioned, one would

expect the size of a feature to be larger when the tip was closer (i. e. Iset is

larger), the inverse was observed. The change in feature type from mound to

hole was also counterintuitive. The apparent mound (higher conductive

region) of Image 4:15(c) still retained the corrugations of the graphite lattice.

This suggests that the greater conductance may be due to an atom or atoms

between lattice planes. Bryant7 et al. [1986] show the effect a gold atom has

when it is below the first plane of graphite atoms and suggest using a linear

combination 
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of atomic orbitals (LCAO) approach to find the effect an intercalated atom has

on the tunneling properties. The lattice structure of the region could also be

retained if there was no real deposition, but only a slight deformation of the

first graphite layer due to high fields during the application of the pulse. 

The smallest feature yet

produced, shown in Image 4:15(f),

is also shown by a lineplot in Image

4:16 , which reveals it to be a

single atom on the surface either

from the tip or a nearby lattice site.

The extended effects are probably

due to conduction between this

atom and nearby tip atoms (i. e.

atom imaging tip). 

4.2.10 Sample-hold circuit for

feedback limitation

Although the gain of the feedback electronics was kept low to try to

prevent any tip displacement during the pulsing, the response of the tip to the

induced currents during pulsing was unknown. These currents often exceeded

100 nA.

In order to prevent these induced current effects on the tip position, the

sample hold (S/H) circuit of Fig. 4:5 was introduced at the output of the current

to voltage converter. The S/H circuit kept the current near the setpoint during

pulsing and, therefore, preventing tip servo 
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Figure 4:5 . Diagram illustrating a sample/hold setup used to limit feedback
response during voltage pulsing.

motion. Although there were 100 mV spikes in the output of the S/H converter

when switching between sampling and holding, no surface alteration was

observed when the S/H was switched without the concurrent application of a

voltage pulse. 

Using an electrochemically etched tungsten tip and a 4 V peak × 3.3 )s pulse

on a -0.75 V sample bias, alteration experiments were performed. There was

no alteration observed for a sinusoid pulse, but using a triangular pulse, the

ringed hole feature in Image 4:17(a) was produced. The S/H circuit was

holding during the pulse and for 0.5 ms afterward. After moving the tip to a

nonaltered area, the pulse was reapplied with the S/H sampling. The resulting

alteration of 20×80 nm deposition is shown in Image 4:17(b). After changing to

another W tip, the pulse produced the two 15 nm deposition features shown in

Image 4:17(c) with the S/H holding. Allowing the S/H to sample, the pulse

produced 30 nm ring of deposition shown in Image 4:17(d). Expanding the

imaged region, Image 4:17(e) shows more of the surrounding area of the

feature in Image 4:17(d). It shows a second ring feature about the same size

and 50 nm away. The second ring is either a ghost image or a 
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similar feature produced by another tip on the probe. Since the features are so

similar, it is more likely that the second ring is fictitious. 

Changing the duration of the S/H holding time to 1 ms, while keeping

the pulse parameters constant, the pulse produced the 15 nm mound in Image

4:17(f) while the S/H was holding. Allowing the S/H to sample, the pulse

produced the ringed hole in Image 4:17(g).

After changing W tips and increasing the S/H holding time to 2 ms, the

first pulse with the S/H holding produced no surface alteration, but the second

pulse produced the 25 nm feature shown in Image 4:17(h). With the S/H

sampling, the pulse produced scattered deposition over a 15 nm region [See

Image 4:17(i)]. The imaging resolution became poor after this pulse and

remained that way until the application of another pulse. After this, a pulse

applied with the S/H holding produced no surface alteration. Then, a pulse

applied with the S/H sampling produced a 50 nm mound.   

More experiments were carried out with a 150 6 × 0.1 )F RC (resistive-

capacitive) ac filter placed in the output of the S/H circuit, providing a cutoff

frequency (2%RC)-1 of 10 kHz. The reason was to assure that the previously

mentioned switching "glitches" would have no effect. Using a 3.3 )s triangular

pulse with peak amplitude of 3.5 V or less produced no lasting surface

alteration.

Using the S/H with the RC filter, a +5 V × 17 )s symmetric triangular

(positive half) pulse was applied on a 0.7 V sample bias. The tip was W and

had been dipped in HCl to remove any surface WO3. With 
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the S/H holding for 1 ms after the pulse, a 10 nm hole surrounded by a 50 nm

diameter ring was produced.

 A voltage pulse with an sharp leading edge and a triangular trailing

edge (sawtooth) was used in conjunction with the S/H circuit and a W tip. For

Iset = 1 nA and Vb = 0.6 V, a 4 V × 10 )s pulse produced the 15 nm hole in

Image 4:18(a) using a 1 ms hold time.  Using the same parameters at a

different spot produced the 15 nm hole in Image 4:18(b). Increasing Vb to 1 V,

and keeping the other parameters the same, the 15 nm hole in Image 4:18(c)

was induced. Repeating the pulse at another location produced the 15 nm

hole shown in Image 4:18(d). Varying the time of the pulse showed a 3.3 )s

pulse producing the <10 nm hole of Image 4:18(f) and a 1.7 )s pulse

producing a 100 nm hole. 

Using these parameters with a chemically etched Pt-Ir tip8 produced a

15 nm alteration on the first pulse, 30 nm on the second, none on the third and

fourth, and 50 nm  on the fifth attempt. Although there is a steady increase in

feature dimension, it is an undesirable inconsistency.

4.2.11 Unreliable bit-size with similar pulses

Returning to a W tip that had been dipped in HCl, rinsed in deionized

(DI) water, and blow dried with nitrogen from a tank, the 3.3 )s pulse was

applied with Iset = 0.5 nA. Fifteen attempts were made to alter the surface with

the pulse. The results were, in order, a 10 nm hole, a 10 nm hole, no effect, a

10 nm hole, no effect, a 15 nm hole, spotted deposition, a 15 nm hole, a 15

nm hole, ring of deposition, a 15 nm hole,
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no effect, a 15 nm hole with scattered deposition, a 20 nm hole, and a 20 nm

hole. With this series of holes, the 'I' shape shown in Image 4:18(f) was

constructed. The 'I' shape was produced from top-left to bottom-right. Notice

the enlargement of the holes as the construction progressed. An attempt to

produce surface alteration under a nitrogen ambient produced a 500 nm

altered region.

Using a 5 )s × 4 V sawtooth pulse with a 2 ms S/H hold time and a

mechanically sharpened9 Pd tip, the holes shown in Image 4:19 were

produced. 

The tip was changed to a Pt-Ir4 tip. With Iset = 0.5 nA, a 5.5 V × 3.3 )s

sawtooth pulse on a 74 mV sample bias produced the 10×25 nm feature

shown in Image 4:20(a). Vb was increased to 1.1 V and the pulse applied

producing the 10 nm hole seen in Image 4:20(b). The pulse was reapplied

seven more times producing, in order, no effect, scattered damage [Image

4:20(c)], no effect, a small disappearing mound, two 
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5-7 nm mounds [Image 4:20(d)], no effect, and the 3-4 nm deposition shown in

Image 4:20(e). This again demonstrates the irreproducibility of feature

formation for a Pt-Ir tip.

4.2.12 Alteration under deionized water

Alteration was also attempted under DI water without the S/H circuit.

The surface appearance of the HOPG under water before the application of a

pulse is seen in Image 4:21(a). Setting appropriate values for the tunneling

current was difficult due to a 9 nA leakage current which existed due to the

finite conductivity of the water. Results varied from no observed effects for ±18

V pulses to the scattered damage 
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shown in Image 4:21(b). For pulses applied with frequencies greater than 700

kHz, the current would more often than not start oscillating between ±2 nA

with a frequency of 2.8 Mhz. The oscillation continued regardless of Iset or

feedback gain values and even if the tip-sample separation was more than

several )m. The feedback was digitally controlled by a computer with an

update frequency of about 60 kHz, so the oscillation could not be caused by

the feedback. The probable cause was uncontrollable induced ac crosstalking

in the STM head. Some theoretical and experimental electrical analyses of the

STM head are given in Chapter 6.  

4.3 Surface alteration of a platinum thin film

A thin film sandwich structure consisting of platinum on chromium on

highly polished glass was manufactured to be tested for use as a 
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possible substrate for writing nanometer scale bits.

Pt was selected for the surface film because of its ability to resist

oxidation. The glass substrate was selected because of its ability to be

polished to a very smooth surface. An intermediate layer was needed because

Pt films adhere poorly to glass. Cr provided the necessary adhesion for both

the Pt and the glass. It was desired to have a Pt layer thin enough to be able

to field evaporate nanometer scale patches, leaving the Cr to oxidize,

manufacturing a less conducting nanometer scale memory bit.

Cr was sputter deposited to a thickness of about 100 Å onto a highly

polished glass substrate and then Pt was sputter deposited to a thickness of

about 10-20 Å. The deposition was made for us by Tony Lefkow at the Thin

Film Center of the University of Wisconsin. The Cr was simultaneously

deposited upon a glass microscope slide to characterize the intermediate Cr

plating process of the Pt-Cr-glass sandwich structure. While examining the

samples, it was noted that they were not as transparent as expected

suggesting that the thin films may have been thicker than desired. A second

deposition was made to assure the integrity of the samples.

The optimum tunneling bias was found to be -300 mV for both the Pt-

Cr-glass samples and the Cr on the glass slide. The Cr was probably covered

with thin layer of CrOx due to ambient oxidation. The optimum tunneling

currents were 0.1 nA for the chromium surface and 0.2 nA for the platinum

surface. 
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Surface alteration was induced by voltage pulses superimposed on the

tunneling bias. Pulse times from 0.1 to 10 µS with amplitudes from 1-10 V

were used. We found that mounds from 20-200 nm in size could be

manufactured. No reliable combination of pulse times and amplitudes was

found which would mark the surface. All of the results were intermittent. It was

necessary, however, to use amplitudes greater or equal to 4.0 V to achieve

the alteration of the surface. The surface alteration almost invariably included

a hill formation regardless of the pulse time. Image 4:22(a-c) shows greyscale

Z-images of mounds formed on the surface. Lineplots corresponding to these

mounds, shown in Image 4:22(d-f), reveal the mounds were 10-30 nm in

height. Multiple pulses produced the multiple mounds seen in Image 4:22(c)

At shorter pulse times (greater frequencies), and positive substrate bias and

pulse, the mounds would usually be accompanied with an underlying hole

structure. Examples of these mound in hole features are shown in Image

4:23(a-f). Image 4:23(d-f) are lineplots of the greyscale images shown in

Image 4:23 (a-c), respectively. 

4.3.1 Shrinking platinum bit

A mound in hole structure was STM imaged over time to see if the

structure was stable. The mound was found to decay progressively over time.

The changing shape can be seen in Image 4:24. Image 4:24(a-b) shows the

initial feature. Image 4:24(c-d) is after 43 seconds. Notice the mound shrinking

in height and length. Image 4:24(e-f) shows the structure after about 9

minutes. The mound no longer protrudes above 
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the rim of the hole and the hole itself is smaller.

In order to see if the tip became shorter after a mark was made on the

surface, a voltage pulse was applied while Image 4:25(a-b) was taken. Image

4:25(a-b) reveals that the tip apparently became about 5 nm longer as a result

of the modification. Image 4:25(c-d) shows the mound that was formed during

the voltage pulse.
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Figure 4:6 . Illustration of tip extension formation (a) during mound formation,
and (b) during mound in hole formation. Dotted lines show initial tip shape for
comparison. See also Landman [1990].

4.3.2 Model for platinum bit formation

Since there appears to be a mound of material deposited on the

surface, a question arises as to the source of the mound because the tip also

became longer. This may be explained by the model shown in Fig. 4:6 where

the deposition causes contact between the tip and sample. This contact need

not arise from any motion of the tip due to feedback effects. Instead the tip

gives up the material as is illustrated in Fig. 4:6(a). As the deposition material

from the tip moves toward the surface, the tip becomes elongated causing a

bridge between the tip and sample. The bridge increases the current which

causes the feedback to retract the tip and break the bridge with the sample

while sharpening and 



163

elongating the tip by  at the same time. This could also account for the lack�s

of reliability of the alteration process. At positive sample biases, material may

also be taken from the sample for the bridge resulting in the hill in hole

combination shown in Fig. 4:6(b). 

The results fell far short of our desired nanometer scale holes for

oxidation. The observed diffusion of the platinum mound cast doubts on this

particular thin film structure being used for a field-induced memory device. 

Vibration was minimized by placing the stiff STM head on a three inch

granite pad which rested on three pneumatic supports. In addition, the STM

was located on the bottom floor of the building which was built upon bedrock.

The low vibration levels were confirmed by the consistent noise free images

obtained.

4.4 Summary

This chapter reported various results of altering surfaces by increasing

the bias between a tunneling probe and sample. A review of quantum

mechanical tunneling theory was presented and theoretical currents were

plotted as a function of tip-sample spacing for various biases. The theory

revealed three variables for tunneling. The parameters are tip-sample

spacing, bias, and current. Setting any two of these parameters determines

the other. 

We had the goal of determining a process which would repeatably and

consistently alter a surface using a voltage pulse between the tip and 
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sample. Four parameters were varied to determine their effect on the field

induced alteration experiments. They are initial tunneling current and bias,

and the amplitude and duration of the pulse superimposed on the initial bias.   

An HOPG sample and Pt-Ir tip were used for various investigations. We

expected to find that decreasing the initial current for a given pulse would

result in a smaller alteration region, since, theoretically, the tip should

withdraw from the sample and result in a reduced electric field for a voltage

pulse. However, we found that decreasing the current often resulted in a

larger altered area. But, it was not consistent this way either with larger

currents sometimes inducing larger alteration regions.

We found that alteration regions were diverse in appearance. Some

appeared as holes, some as hills, some as hills in holes, and some as

scattered deposition. 

We also observed that for each different tip, there was a pulse

amplitude threshold which must be reached before any observable surface

transformation occurs. This threshold varied from near 3 V to above 5 V. We

also found that near the threshold, alteration was intermittent for similar

pulses. 

The results also show that there are certain initial biases which

produced nanometer scaled alteration regions. This bias was -0.7 V for the Pt-

Ir/HOPG combination. However, at this bias feature production was

intermittent. But, using this bias, we were able to produce an L-shaped pattern

with sequential biasing and lateral tip motion. In spite of this 
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apparent success, we found that the pulse amplitude had to be significantly

increased as the structure was formed in order to continue the process. We

also found, using a tungsten tip, that holes formed in an I-shaped pattern

using the same pulse, increased in size as the process was continued.  

We also noted that the features which were induced were not always

stable. Features that appeared as hills moved around and disappeared in a

mater of a couple of minutes. Apparent 2 nm holes were observed to dissipate

over a half hour time span. 

These results suggest that the production of a field induced

nanomemory using an HOPG substrate is not at all feasible due to unreliability

and inconsistency of feature formation, and poor durability of some surface

features.   

Attempts at producing features on platinum on chromium thin film on

glass showed similar problems. The features produced were at least 20 nm in

extent. The features were also observed to autotransform in time indicating

non-durability. These experiments also demonstrated that a Pt-Ir tip can also

be altered during pulsing. This could result in corrupted addressing if used in

a nanomemory. 

In conclusion, we found that the method and materials used showed no

real promise for incorporation into a nanomemory due to problems of

reliability, consistency, and durability.  
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Chapter 5.

Scanning Tunneling Lithography: Material P récis

This chapter describes the propensity of individual materials for use as

a nanomemory component. An individual summary of how each material fares

in the areas of alterability, reproducibility, durability, and readability of these

alterations are discussed. This authors work, along with work reported in the

literature summarized in Chapter 4, are gleaned for relevant information to

provide the necessary basis for evaluation. Full reference citations can be

found in the thesis bibliography.

Observation by an STM normally suggests that surface alteration is

readable as a bit, especially on flat crystalline surfaces. The technique of

applying a voltage pulse to produce this alteration is hereafter referred to as

pulsing. The alteration produced by any mechanism is also referred to as a

"bit".

This chapter will consider the materials cited in the investigation of

Chapters 3 and 4 individually and combine important memory related

properties in a series of tables.  

5.1 Ba2Sr2CaCu2Ox Terashima [1991].

A pulse with one second duration was required to produce a 10 nm

structure. This long writing time renders it useless for writing bits in a

reasonable amount of time. 

5.2 Calcium fluoride  McCord [1987].

The tip had to penetrate a 20 nm CaF film in order produce tunneling.

Particulates were observed on the tip which would corrupt 
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addressing schemes. The sample is not conducting enough to be read by

STM.

5.3 Cesium  Whitman [1991].

Under UHV, Cs atoms were caused to diffuse across the surface of

GaAs. Continuous overlayers were produced by voltage pulsing. The scheme

provides a way to alter the surface. The reproducibility would depend on the

amount of Cs located nearby. Also, since the Cs does diffuse so well, bits

would not be durable because nearby voltage pulses would corrupt them.

The only positive aspect is that the difference in substrate and bit material is

advantageous for reading by ac methods. The vacuum requirement prevents

a practical memory design.

5.4 Cobalt chromium tantalum film  Moreland and Rice [1990].

The film was altered magnetically and read by a force probe. The

smallest bit size was 500 nm with 20 nm resolution. The bit size of 500 nm is

too large for the proposed memory, but, if it can be reduced to the 20 nm

resolution, the size could be workable.

5.5 Decaborane  Dujardin [1992].

Displacement, clustering, and fragmentation of 7 Å bits of B10H14 on Si

were observed at biases > 4 V. The size is excellent for a memory, but the

fact that it can be displaced casts doubt on the durability of any bits made

with it.

5.6 Doped and undoped gallium arsenide III-V semic onductors  Dagata

[1991b, 1992], Lin [1987], Thundat [1990].

Films of In and Al doped GaAs films were modified by increased 
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tunneling bias. As2O3 and In2O3 were depleted under low biases. Higher

biases produced strongly bonded oxidation at underlying layers. Lines, 85 nm

in width, were irregular showing that the process is not consistent enough for

writing.

Lines were electrochemically etched in GaAs with the application of a

-4 V bias and in the presence of laser irradiation. Minimum line width was 300

nm, too large for proposed memory bits. Using this scheme, fabricated bits

would not be durable since the whole surface of the GaAs showed signs of

etching. 

Readability would be poor under NaOH since, in order to maintain a

stable tunneling current, circulation of the solution was required, which is not

pragmatic for the desired small size of a nanomemory. 

In an gold cyanide solution, gold dots and rings as small as 100 nm

were deposited on GaAs by a 4 V × 1 min pulse during illumination with white

light. The light was necessary to the formation of dots. The 100 nm dot size is

larger than desired. Application of light may not be too great a burden for a

memory since low cost semiconductor diodes are readily available. The time

of writing is too long and is probably related to the chemistry involved. Of

course, the use of a liquid in a memory leads to problems of evaporation and

replenishment. 

5.7 Germanium  Becker [1987].

An 8 Å bump was formed with a -4 V pulse, excellent for a memory bit.

However, surface transformation was not always reproducible. 
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5.8 Glassy metals  Staufer [1987, 1991].

Under UHV, mounds as small as 35 nm in diameter were produced on

Rh25Zr75 with a 2 V bias which also produced an instability in the current. A tip

speed of 3 nm/s was used to produce 20 nm wide lines. The speed would be

detrimental to memory writing time. The production of mounds was also tip

dependent with Ir tips not producing any alteration. Alteration was also

possible on Fe86B14. In experiments which produced 20 nm hills, the tip was

found to withdraw 10 nm suggesting intimate tip-sample contact. Inadvertent

erasure of a bit if another bit was manufactured nearby suggests that the bits

are not durable enough for a memory structure.

5.9 Gold  Abraham [1986], Emch [1989], Hoffmann-Millack [1990], Jaklevik

[1988], Li [1989], Mamin [1990, 1994], McBride and Wetsel [1991], Roberts

[1991], Schneir [1988b], Shedd [1990], Silva [1992], Sommerfeld [1990],

Wang [1992, 1993], Yokohata [1990].

Indention produced 10-300 nm holes. During indention, a reported

50 nm of damage surrounding 10 nm holes could affect nearby bits. Holes,

5 nm in width, produced by indentation filled within minutes to hours. The tip

sometimes changed relative positions after indention which prohibits

readability by corrupting any addressing scheme. Buckling of the tip was

reported to have produced lateral tip displacements up to 250 nm for the

largest indentation.

Hills and holes were fabricated with voltage pulses. The voltage

threshold for modification was dependent on the cleanliness of the tip. 
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Tip change was observed for contaminated tips. Some pulse voltages

produced only hills near the threshold voltage, while a 0.2 V change in

voltage produced both holes and hills. Since threshold voltages varied over 2

V for different tips and samples, a knowledge of the alteration type is not

predictable. Holding the bias at 2 V for an extended time was shown to alter

the surface suggesting that there could be long time operation effects on the

integrity of the surface which would in turn corrupt memory storage. 

Most reports show atoms diffusing over time to fill in produced holes. A

10 nm hole dissipated and crystal steps moved 10 nm in 20 s. A 30×60 nm

hole filled in completely within an hour. This shows that nanometer scale bits

in Au would not be durable even for a short time. Some holes produced with

rims were found to endure for over two hours, but hole formation for this

surface was also inconsistent.

Some tips were found to change with the application of a pulse. This

would corrupt the addressing, affecting the readability.

Under fluorocarbon grease, a 10 nm hole was made by raising the

bias until the feedback caused the tip to pull away. Predetermination of

mound or hole formation was not possible, indicating irreproducibility.

Gold tips were used as deposition sources to produce 15-24 nm 

mounds on Pt and Si by pulses with durations as small as 10 ns. At a 10 ns

writing rate, a megabit memory could be theoretically written in less that a

second. It was also reported that the duration of the induced current pulse

had to exceed 200 )s for alteration, increasing the megabit 



173

writing time to about 3 minutes. The bit sizes are marginal for our standards

but still allows a bit density a factor of 104 greater than is currently available.

The production of thousands of bits did not degrade one tip's ability to write,

revealing excellent alterability. However, the tips did not always produce

mounds but sometimes produced holes, an intolerable characteristic for the

desired reproducibility. Static discharges remote from the STM also produced

deposition adding an unknown factor in the alterability. The observed

occasional transformation of the tip would destroy the readability.

Under an electroplating solution, Orosene 999, > 300 nm lines were

formed, too large for memory structures. The plating was not reproducible,

forming structures in only 2 of 20 attempts.

5.10 Hexamethyl disilazane (HMDS) on copper  Silver [1987].

At biases above 1 V the surface was found to alter in the presence of

DMCd. An observed 300 )A current indicates a plasma which would not be

limited to the tunneling regions. This increased area results in depositions of

many micrometers in width. This is unacceptable for a memory where the

desired bit size is around 2 nm.    

5.11 Highly oriented pyrolytic graphite  Albrecht [1989], Bernhardt [1990],

Foster [1988], Li [1992], Miller and Hocken [1990] (and this thesis), Mizutani

[1990], Penner [1991], Rabe [1990], Schneir [1988a], Shedd [1990],

Terashima [1990], Yau [1991a,b].

Holes as small as 2 nm and as large as 200 nm were produced by

pulsing. There was a tip-dependent amplitude threshold necessary for 
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formation. Reports of this threshold varied, but the magnitudes were always

greater than 2.5 V with some tip-sample configurations not producing any bits

for amplitudes as high as 10 V. Near the threshold, the formation of mounds

instead of holes was often observed. Mounds were typical with negative

pulses applied to the sample. This thesis found mounds to be irreproducible

by showing the necessity of increasing the pulse amplitude to continue

mound formation. This thesis also shows these mounds to diffuse within

minutes indicating that they would not be durable enough for a memory. The

mounds diffused almost immediately when the bias was switched from

negative to positive for a couple of seconds and then back to negative.

Although longer times were necessary, holes were also observed to

disappear. Other reports claim stability of features. One possible explanation

for mound stability could be in the material of the feature. If one feature is

produced from tip material, while another is the result of contamination in the

ambient, their surface diffusivities would also be different. This would be

particularly true if one was charged and the other was not charged.  

Using positive voltages, the predetermined reproducible formation of a

mound or hole was not possible. The hole sizes were not found to be

reproducible but were often observed to increase in size with the number of

bits produced. Given the same pulse parameters, this thesis shows holes

varying in size from 1-20 nm. This irreproducibility is more than sufficient to

make a memory inoperable. Although one tip successfully produced 496

holes out of 498 tries, not all tips produced bits. 
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Bits were made with pulse durations from 10 s to 10 ns. Bigger holes

were not always associated with longer pulses. For pulse durations greater

than 100 )s, the time to write 106 bits limits its capacity to be used as a high

density memory. 

UHV, and UHV vented to benzene or pure oxygen or 100 L water

inhibited hole formation. In UHV, contamination deposits of 50 nm mounds

were observed for 0.2 s pulses. A sample that had been stored in a container

with water prior to alteration produced 10 nm bits during only 80% of the trials

showing limited reproducibility. At a vacuum of 0.04 torr, increased pulse

amplitudes were also required for successive alterations, illustrating

irreproducibility at this pressure. The changing daily ambient also played a

role. Some experiments suggest that H2O in the ambient is necessary for hole

production1.

Under DI H2O, domes as small as 7 Å were produced having durability

>1 hr under normal imaging conditions. The use of water leaves something to

be desired since the medium would have to be replenished due to

evaporation. The re-ionization of the water over time would produce an

unacceptable changing of parameters necessary for alteration. Coating of the

tip except for the last few nm is also necessary due to higher leakage

currents.    

In a 10-4 torr TMA (trimethylaluminum) ambient, pulsing produced

features dependent on pulse duration. For 0.2 s pulses, Angstrom scale

features were produced. The feature size is sufficient to produce an

advanced memory, but the 0.2 s time required to write on the surface 
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makes it impractical. The reproducibility of features was also found to be

unreliable in nature so that there is no assurance of alteration.  In a 10-2 torr

TMA ambient, an 18 nS × 440 nm (Al resonance) light pulse was used in

conjunction with a 0.8-3 V bias. The result was deposits as small as 1 nm for

a 1.1 V bias, excellent for a nanomemory bit size. By changing the light

wavelength to 430 nm, deposition was rare. The effect of the light on

reproducibility was not mentioned. The deposition showed linear I-V

measurements while the HOPG I-V was nonlinear. This would be excellent

for an ac reading scheme.  

Alterations in organic fluids, dimethyl phthalate, and decane were

clouded by the fact that similar features were produced in air with similar

pulse parameters. One experiment showed, however, that once a tip

produced a hole it was likely to form more holes indicating a tip dependence

on alterability. 

Under a drop of di(-ethylhexyl) phthalate, voltage pulses wrote

features as small as 1-2 nm which could be erased or partially erased. The

structures were not found to deteriorate during imaging. This provides an

excellent write-read scheme. The 100 ns pulse required is also favorable for

a memory. The reproducibility question was not addressed fully. The effect of

subsequent voltage pulses was not consistent. Although this scheme seems

promising, the reproducibilty may inhibit it from producing a viable memory.

Experiments showing non-durability of bits on HOPG suggest using another

substrate. There will also be a problem of maintaining the ambient over a

long period of time.
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Pulsing produced 1-2 nm adsorbate features in a monolayer

octylcyanobiphenyl film on HOPG. The duration of the adsorbate features

varied from < 1 s to several minutes for others, not durable enough for

memory. Holes, 10 nm in width were formed with 2 s duration pulses. This

writing time would be to long for a memory. 

Also reported was the inability to alter the surface under 1 atm of

helium and 10 mbarr of dry toluene.

In a AgF solution, 50 )s pulses produced 30 nm mounds on 10 nm

holes. The holes were produced during the first 5 )s of the pulse. Several

pulses were necessary to initialize the tip, demonstrating that the tip had to

be conditioned just right for alteration. The feature size may be acceptable for

a first generation memory. The features demonstrated durability by not

changing shape on the order of hours and being unaffected by nearby

depositions. The 90 % success at reproducing the structures was good, but

for viability would have to be increased to enable memory segments to

accurately store information (possibly by read-rewrite scheme). It may be that

an initial hole is necessary for formation. The main problem is maintaining the

stability of the AgF solution over long time periods. The process needs to be

characterized for the same tip over days and weeks.

5.12 HoBa 2Cu3O7-x Heinzelmann [1988].

High biases applied for 5 seconds altered the surface. Repeating the

process produced alteration from 10-80 nm. The time of alteration and

inconsistency make it impractical for writing bits. 
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5.13 Ionically conducting films: nafion on silver, AgCl 4
- and PdCl 4

-

doped PVP on graphite, Ag doped M EEP on Ag  Craston [1988], Hüsser

[1989].

Silver lines were electrodeposited at the surface of the Nafion films.

Optimal conditions produced 0.5 )m line widths. These dimensions are two

orders of magnitude greater than desired. Also, The writing speed of 50 nm/s

is too slow to be used for writing. 

The doped PVP films produced sub-)m lines, not small enough for

memory bits. The MEEP films were sticky to the tip and not consistently

alterable, producing discontinuous lines. 

5.14 Nickel and platinum surface diffusion   Stroscio [1991].

Atoms of Xe, Ni, Pt, and CO adsorbates were moved along the

surfaces of Ni and Pt in UHV. The process allows atomic scaled bits to be

manufactured. A knowledge of the position of an atom is necessary before

you can move them, so that, a reservoir of atoms is necessary.

A necessary motion between reservoir and memory area would slow

the writing of the memory down extensively. These atomic particulates

require impractical low temperatures to be stable and thus durable.

5.15 Palladium  Ohmori [1991].

Over a 250 minute period, grooves and hills were observed to flatten

out during 2 nA STM imaging. This shows that Pd bits would not be durable.

5.16 Palladium silicide  Rinnger [1985, 1986].

In a 10-8 torr vacuum, the surface of Pd81Si19 was modified while 
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STM scanning at 100 mV. This shows that biases higher than 100 mV must

be used to read any bits fabricated in this material. The vacuum would have

to be eliminated to produce a practical memory, but this may result in

oxidation of the Si causing further reading problems.  

5.17 Platinum  Ohmori [1991], Sommerfeld [1990], and this thesis.

Four pits were observed to grow during STM imaging. A 40×150 nm

mound that extended 20 nm above a 100 nm wide pit was observed to decay

in height to the level of the pit edge in 9 min. The pit also filled in during this

time. This surface diffusion indicates that bits would not be durable on Pt.

Pulsing a thin film of Pt on Cr on glass produced hills and hole-hill

structures with a minimum size of about 40 nm. This is too large for practical

use in a nanomemory. The writing time of 10 )s is sufficient for a memory.

The tip, however, was found to change shape which would affect the

readability through corrupted addressing. Biases of 2 V were observed to

alter the surface if the tip was left at the same place for an extended time,

which casts more doubt on the durability of a surface under imaging

conditions.

Anilnium sulfate, (C6H5NH3)2SO4, doped Nafion films were used to

deposit polyaniline on Pt. The resolution of deposition was about 2 )m, much

larger than the desired bit size.  

5.18 Poly(octadecylacrylate)  Albrecht [1988].

Fibrils on HOPG were broken with 100 nS pulses. The pulse duration

is more than adequate for writing. The altered region extended 
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40 nm, more than desired for the proposed memory. Reading the bit would be

difficult due to the unpredictable structure of the bit.

5.19 Purple bronze, Na 0.9Mo6O17 Saulys [1991].

A several second pulse applied to the cleaved sodium surface of

purple bronze, produced 5-10 nm holes. The holes were not found to be

durable but grew and coalesced during subsequent scanning. The long pulse

duration used for formation of holes could not be used to produce a practical

memory.

5.20 Resists  Chen [1993], Marrian [1990], McCord [1986, 1988], Stern

[1988], Terris [1990], Zhang [1989].

Dots, 20 nm wide, were produced in a LB P4BCMU negative resist film

on Si at 10-8 torr. The writing time of 10 ms is too long for a viable memory,

requiring about 3 hr to write 106 bits. The vacuum also prohibits its use as a

viable memory.

Contamination resists were deposited on Au, Al, Si, and Pt thin films.

The necessary vacuum of 0.03 mTorr is not practical for a memory. Lines

were written at 250 nm/s, equal to about 10 ms for a 2.5 nm bit. This is an

excessively long writing time for memory. The lines were 100 nm wide which

is much larger than the desired 2.5 nm bit size.

Writing in PMMA at 1 )m/s, 20 nm wide lines were produced. The

process would produce a 20 nm bit size which is a tolerable memory bit size.

However, the necessary vacuum makes it impractical. The writing time for 106

bits would be about 8 hrs, too long for a workable memory. The alterations

were discerned after etching, which is not practical for a 
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user programmed memory.

Using a force probe, a 25 ms × 100 V pulse produced a 2 )m charged

region. The charging was not durable but decayed over 1 hr. The writing time

and bit size are too large for the desired memory.

5.21 Rhenium (0001)  Marchon [1988].

Touching the crystalline surface with a W tip produced 2-5 nm hills.

The hills were found to differ electronically from the bare surface suggesting

the ability to read by ac conductance methods. The necessary touching

would slow the memory down and alter the tip, corrupting readability.

5.22 Rb0.3MoO3 Garfunkel [1989].

Holes, 6 nm across, were formed by indentation. Features produced

by abrasion did not degrade over a 4 hr time period. Indentation may require

a long writing time and probable tip degradation.

5.23 Silicon  Barniol [1992], Dagata [1990a, 1991a], Day [1993b], Ehrichs

[1988, 1990], Jahanamir [1989], van Loenen [1990], Lyo [1991], Nagahara

[1990], Ostrom [1992], Silver [1987], Terashima [1990], Yau [1991c].

Holes, 10 nm in width were produced by repetitively indenting Si under

UHV. Mechanical contact would eventually change the tip and corrupt the

addressing so that it would not be readable.

Using 30 ms voltage pulses, single atom displacement was observed.

For 200 ms pulse durations and sharp tips, holes were formed. Additional

pulses dulled the tip, facilitating the production of both 
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mounds and holes and then only mounds as pulsing continued. The

alteration supports very high density memory, but the time for writing 106 bits

exceeds 8 hr.

The production of mounds was also linked to the amount of nearby

adsorbates which limited the reproducibility of alteration. The mounds were

found to contain Cd, C, and O when DMCd was used as an ambient. These

different materials could be used to enhance readability.   The fact that

bare silicon is only available in UHV prevents it from being seriously

considered as a memory substrate. Attempts to alter the surface of Si(111)

under air were unsuccessful (probably due to the native oxide).

High tunneling biases produced oxidation of hydrogen passivated Si.

Structures 35 nm wide were formed. Due to the oxidation, higher biases are

required for reading. This necessary high reading bias would corrupt any

memory structure by causing oxidation in other passivated areas.

Under an HF solution, the surface of silicon was etched a couple of

nanometers deep using tunneling bias of 1.4 V. For tip biases < 1.7 V, the tip

may have been contacting the sample. For biases > 1.7 V the bias produced

etching. There seems to be no region where some surface alteration is not

achieved so that it would not be possible to read the data without corrupting it

using STM. Times for etching were too large for memory feasibility. The use

of HF as a medium is not tolerable because it reacts with the Si even without

a bias. Using H2SO4 as a medium was 
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unsuccessful.   

Using WF6 (1 mtorr) as a catalyst, Si surfaces were altered by pulsing.

The result was 20-40 nm hills, holes and combinations. The 1 s pulse times

used for writing is too long to be feasible for memory. The low pressure

ambient restricts its use as a memory. The unpredictability of type of

alteration does not satisfy the reproducibility requirements of a memory.

Amorphous Si:H was altered with 10 V, 35 )s pulses. The time is

adequate for writing. The features were 140 nm wide, too large for the

proposed memory bit density. 

The local conductance of a 2.3 nm thin film of SiO2 was produced by a

pulse. The imaging of such a film is difficult at best, not lending itself to

readability.  

5.24 Silicon nitride  Barrett and Quate [1991].

Using a force probe, 100 )s × -40 V pulses were used to charge the

nitride. Capacitance detection was used for reading. A working memory has

been demonstrated for this scheme. A thermally grown silicon oxide layer

was used to prevent discharging. The smallest charged regions produced

were 75 nm, too large for the proposed nanomemory.

5.25 Silver  Gimzewski [1987], Rabe [1991].

Hills, 10 nm wide, and indentations were produced by tip contact to Ag

on Si film. The production of a hill or hole was dependent on the cleanliness

of the tip-sample system for Ag on Si films. Holes < 1 nm deep formed in Ag

on Si annealed out within seconds of production. 
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Using a Ag on Mica film that was flat to within 1 nm, 100 ns pulses produced

nine holes (10 nm) and two hills for eleven attempts exemplifying

irreproducibility. The current only changed for about 20 )s, demonstrating an

excellent writing speed. The flat surface would provide excellent readability

and the bit size could would allow 2500 bits/)m2.

5.26 Silver selenide Ag 1.9Se Utsugi [1990].

With a constant bias, 15 nm grooves were produced in a 15 nm 

Ag1.9Se film. The width of the grooves suggests a tolerable bit size for a

nanomemory. The alteration was not possible in a 5 mtorr vacuum. The H2 in

the air was suggested as being necessary for alteration. If so, the changing

air ambient could play a role in reproducibilty. Pulsing did not alter the

surface indicating that this design is not fast enough for writing a memory.

5.27 Sulphur on rhenium under silicone oil  Marchon [1988].

Alteration was made under silicone oil but was not possible in air. The

30×50 nm hole is too large for a nanomemory bit particularly since it was only

6 Å deep which would make reading difficult by tip displacement. If the

bottom of the hole was void of sulphur however, ac reading techniques could

be employed. The 2 s time required to produce a bit would require an

impractically high 23 days to write 106 bits.

5.28 Tianium and Titanium oxide on platinum on mica  Casillas [1991],

Sugimura [1993].

Cyclic pulsing at ±2 V produced 5 nm disc shapes. Different electronic

properties were found above the discs and unmodified surface 
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which provides a possible readability scheme. It was necessary, however, to

cycle the pulses for 0.25 s. To write one million bits at this rate would take a

week which is not practical.

The anodization of titanium was found to be limited to 30 nm,

borderline for a memory bit size. The process was also found to be humidity

dependent which indicates the ambient would have to be controlled to

produce a workable memory.  

5.29 Two dimensional materials : InSe, ZrS 2, TiSe2, SnSe2, NbSe2, TaS2,

MoSe2, WSe2, WS2, PtS2, ReSe2, WTe2, and MoTe 2 Huang [1992], Parkinson

[1990], Schimmel [1991].

The surface of these materials were observed to nucleate etch pits

that grew during STM imaging. Imaging for 8 hr produced 500 nm square

regions 20 layers deep. This eliminates these materials as memory

substrates because the reading would corrupt any manufactured bits. The W

and Mo samples only pitted for biases greater than 1 V, which may allow

these materials to work in a memory. Huang [1992] reports thresholds for

MoS2 and SeSn2.

5.30 Tungsten diselenide  Akari et al. [1991], Parkinson [1990], Schimmel 

[1991].

 A 2-5 nm hole was manufactured by pulsing. The hole changed in

shape to a triangle and began enlarging. Due to hole growth during

subsequent scanning, bits produced on this surface would not be durable.

The necessary pulse duration for alteration changed depending on the

sharpness of the tip suggesting the alteration process is unreliable.
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Ring shaped structures on WSe2, produced by pulsing, were 6 nm in

diameter. Producing 100 such rings produced no degradation in the imaging

ability (or readability) of the tip. The durability of bits was confirmed by

observing a feature for two days with no apparent changes. The 20 ms

duration for pulses require a minimum of 5 hr to write 106 bits.    

5.31 Xenon  Eigler [1990, 1991].

Xenon atoms were moved around at a rate of 0.4 nm/s at 4 K under

UHV. Although atomic sized bits could be produced, the ambient renders it

impractical for a memory. Also, the time to move the bits would require too

much writing time.

The ability of a Xenon atom to transfer between the tip and substrate

could cause problems with the durability and readability of a memory

structure.

5.32 YBa2Cu3O7-x Harmer [1991], Heyvaert [1992], Terashima [1990],

Virtanen [1991]. 

Normal STM imaging was found to alter the surface producing holes

which coalesce. Rough surfaces (600 nm) of the oxide were STM milled to a

flatness less that 15 nm. Grooves were found to change in appearance for up

to one hour after production illustrating the lack of durability for this surface.

Since normal STM imaging alters the bits, you would not be able to read the

information without corrupting it.

For 4 V pulses lasting about 10 s, alteration was not observed in air.

Using 10 V pulse amplitudes, a 100 nm ditch was produced. The 
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reports indicate that there is an insulating barrier at the surface which

facilitates alteration through contact. This contact would change the tip and

corrupt the readability.

5.33 Précis tables

This section contains Tables 5-1 to 5-6 which provide an overview of

relevant memory related aspects of substrate-ambient-tip stratagems for

surface alteration. 

The Sample /tip column gives the surface material of the substrate and

the tip material. The ambient column reveals any gas or liquid which covers

the tip and sample.

The alterability of the surface is related to the bit type, bit size, megabit

time, and mechanism. The bit type column tells whether the proposed bit

formation is a mound extending above the surrounding surface, a hole

extending below the surrounding surface, a line regardless of the concave or

convex shape, a charged region, a magnetized region, or any other similar

attribute.  The bit size column gives an estimated bit size that could be

produced with the alteration strategy. The megabit time is the estimated time

that would be required to make 106 alterations of the surface. These have

been calculated from reported fabrication rates and pulse durations. 

The mechanism column describes the alteration strategy. A

mechanical mechanism means that indentation or mechanical contact was

used for alteration. An electrical mechanism means that the bias was

increased or pulsed to produce the alterations. A chemical mechanism 
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means the chemical composition of the surface was somehow changed by

the ambient and/or bias. An illumination mechanism means that light was

used in conjunction with other methods to produce alteration.

The reproducibility column gives information on how well the alteration

could be repeated and the parameters which were observed to affect the

alteration. The durability column shows any observed dissipation or diffusion

in bit structure over time. The readability column describes the possible ways

in which the alteration could be read as a data bit. Z means the changing tip

height may provide the criterion for bit existence. I means the changing

tunneling current could be a criterion, and ac means that the ac conductance

of the tunneling junction could provide the criterion.

The summary tables were examined for materials which would fulfill

the following requirements:

1] Ambient: no vacuum, liquids, or nonatmospheric gases, which

would introduce packaging problems.

2] Bit size:  less than 100 nm, which may be possible with present

techniques.

3] Megabit writing time on the order of a few minutes.

4] No mechanical contact techniques, it wouldn't take much tip

movement to corrupt the addressing.

5] The bit features must be durable over time and with nearby bit

formation.

6] The process must be reproducible with predictable results.
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7] The process for reading the bits must not be able to erase or

change them.

None of the schema, with the exception of the charge techniques, fulfill

all of the above criteria. Problems associated with writing time, durability,

reproducibility, readability, ambient impracticality, etc. restrict their use. Even

the most inert materials are revealed to lack durability.

Since the most promising techniques, electrical charging of thin films

and maybe magnetization (if the bit size can be reduced), use force probes

instead of tunneling probes, these may be required in place of or in addition

to tunneling techniques. There are some types of experiments which have not

been tried, however. Perhaps the mechanisms would work more favorably in

a positive vapor pressure. It may be possible to hermetically seal a memory

device in an inert or other ambient with relatively inconsequential expense.

Experiments involving the effects a nitrogen ambient has on tunneling are

reported in Chapter 7. A conceptual design for a tunneling based magnetic

memory which doesn't require the deposition or removal of material is given

in Chapter 10. These proposals may lay the foundation for future research.  

The next few chapters focus on related areas which require

understanding in order to produce a nanomemory. Some of the

considerations will involve things which become important provided that a

writing technique can be perfected. Others involve more theoretical aspects

which allow us to better understand the processes which are 
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involved. These in turn may reveal new areas of investigation or explain

problems and inconsistencies encountered in previous experiments.

In section 3.11 additional papers were added to the thesis. These will

be discussed here as to their viability as a basis for a memory scheme. 

The HF covered Si  of Barniol [1992] was altered while imaging. This

would make it unfeasible since the reading of nonaltered surface could

change the state.

 The PMMA resist of Chen [1993] would not work as a direct write

memory since developing and etching is required. However, the 10 nm Si

pillars may be useful for laying down a memory pattern.

The III-V semiconductors  of Dagata [1992] showed that the resolution

of features depended on tip shape which would cause problems of

predetermined bit size. Also the 50 nm minimum size of features is much

larger than desired for bit size.

The carbon deposits  of Day [1993a] would be unworkable due to

writing speed.

The Si oxidation  of Day [1993b] has feature resolution too large (100

nm) for use as bits.

Mechanical alteration used by Garcia [1994] on biological

membranes  would not be practical since the mechanical contact would alter

the tip over time and corrupt addressing.

The etching of YBa2Cu3O7 by Heyvaert [1992] would not work for

making bits since all biases produced some sort of etching.
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The work by Hosaki [1992] on removal of surface S atoms from MoS2

showed promise in some areas, but the vacuum required limits its use. Also

the pulse shape irregularity would cause problems in an integrated system.

The time of bit formation on MoS2 and SnSe 2 would require about 10

minutes to write a megabit of information for the work of Huang [1992]. The

time is too long for a memory.

Mamin's [1994] work on Au  deposition also required excessive times

between feature formation. Also the reliability of 90% would need to be

increased for a useful scheme.

Columns formed on Si by Ostrom [1992] also required an excessive

time for feature formation (1 sec).

Probable intimate tip-surface contact using HS(CH2)17CH3 monolayers

by Ross [1993] limits this for use as a memory.

The mechanical machining of Au films  by Silva [1992] is not thought

to be feasible due to tip alteration and addressing corruption. 

The method of Stockman [1993] for making 15 nm features on Au

films  is not practical due to the necessity of additional processing steps.

The feature production speed of 1 )m s-1 by Sugimura [1993] for

anodization of Ti would be prohibitive in the production of a memory.

Ferrocene  thin films on Silicon were used as lithographic masks by

Thibaudan [1994]. Due to additional processing and high vacuum the method

would not be feasible.

Au  surface modification by Wang [1992, 1993], produced by 
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[1]  Albrecht [1989], Mizutani [1990], Rabe [1990], and Tendler [1992]. 

normal scanning, again demonstrates that gold surfaces could not be used

due to data corruption by reading methods. 
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Table 5-1 . Chart summarizing the relevant properties of sample/ambient/tip stratagems for use in a memory configuration.
See text for more explanation.

Sample /Tip
  

Ambient Bit Type Bit Size
(width)

Megabit
Time

Mechanism Reproducibility Durability Readability

Ba2Sr2CaCu2Ox

/Pt-Ir
Air Hole 10 nm 10 days Electrical Z

CaF Air Hole 360 nm Mechanical Insulating 

Cs/W UHV Mound 50 nm 4 days Electrical Diffuses ac, Z, I

CoCrTa Air Mag 500 nm Magnetic 20 nm res.

GaAs (doped) Air Hole 85 nm 4 hours Elec-Chem Z

GaAs /Pt NaOH
EDTA

Hole
(Lines)

300 nm-
2 )m

Electrical,
Chemical,
and
Illumination

Discontinuous
Lines

NaOH etches
surface

NaOH affects
tunneling

AuCN Mound 100 nm 2 years Z

Glassy Metals:
   Rh25Zr75 UHV Mound 35 nm

2 months
Electrical

No features for Ir
tips 

Z

   Fe86B14 UHV Mound 20 nm Electrical Erasure from
nearby pulse

Z

Gold Air Holes 5-300 nm Mechanical Rapid filling by
diffusion

Tip changes
observed

Air Hole &
Mound

�10 nm  Electrical Threshold and
type uncertainty

50 nm damage
for 10 nm hole 

Grease Hole 10 nm Electrical Type uncertainty
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Table 5-2 . Continuation of chart summarizing the relevant properties of sample/ambient/tip stratagems for use in a memory
configuration. See text for more explanation and detail.

Sample /Tip
  

Ambient Bit Type Bit Size
(width)

Megabit
Time

Mechanism Reproducibility Durability Readability

Pt and Si
� /Gold �

Air Mound 15-24 nm 3 minutes Electrical 90-100% for
particular tips
Sometimes hole
formation

Z, ac
Tip changes

Au Orosene 999
(Liquid)

Lines 300 nm Electroplate 2 out of 20
success rate

HMDS DMCd (gas) several
)m

Electrical
plasma

HOPG/Pt,W Air Mound &
Hole

2-200 nm � 10
seconds

Electrical Threshold, size,
type, & tip
variations

Dissipation &
diffusion of
features

Z, I

UHV vent to O2, H2O
or benzene

No holes

HOPG soaked
in H2O

Air Holes 2-10 nm 6 minutes 80% hole
formation

HOPG DI H2O Mound � 7 Å Over 1 hour

Drop of Di-
ethylhexyl
phthalate

Mound � 1 nm 0.1 
second

Variation in
subsequent
pulsing

No imaging
deterioration
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Table 5-3 . Continuation of chart summarizing the relevant properties of sample/ambient/tip stratagems for use in a memory
configuration. See text for more explanation and detail.

Sample /Tip
  

Ambient Bit Type Bit Size
(width)

Megabit Time Mechanism Repro-ducibility Durability Read-
ability

HOPG TMA gas
 10-4 Torr
             
 10-4 Torr

 10-2 Torr

Mound < 1 nm 2 days Electrical Statistical Z, I, ac

Hole 5 nm

Mound 1 nm < 1 second Electrical &
Illumination

Rare without
Illumination

AgF liquid Mound on
hole

30 on 10
nm

1 minute Electro-
chemical

90% formation Stable for hours
even with nearby
deposition

Z, ac

HOPG/Pt-Ir Octylcyano-
biphenyl
monolayer 

Mound 2 nm 10 sec Electrical < minutes Z

Hole 5 nm 2 weeks

1 atm He or 10 mbar
dry toluene

None

HoBa2Cu3O7-x Air Hole 10 nm 5 weeks Electrical Inconsistent

Ionically conducting films
   Nafion on Ag
   doped PVP on graphite
   Ag doped MEEP on Ag

Lines 500 nm 1 week Electro-
chemical

MEEP produced
irregular lines

ac

Ni, Pt, Xe, and CO
adsorbates on Ni & Pt

UHV Atoms Atomic Years Electrical Needs 4o K for
stability

Z. I, ac
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Table 5-4 . Continuation of chart summarizing the relevant properties of sample/ambient/tip stratagems for use in a memory
configuration. See text for more explanation and detail.

Sample /Tip
  

Ambient Bit Type Bit Size
(width)

Megabit
Time

Mechanism Reproducibility Durability Readability

Pd and Pt 
/Pt-Ir

Nitrogen Grooves and hills flatten
with 250 minutes STM

Tip changes

Pd81Si19 UHV 100 mV STM alters surface

Pt on Cr on
Glass  / Pt-Ir

Air Mound in
hole

40 nm 10 seconds Electrical Varied bit shapes and
sizes

Mound
degradation

Z, Tip
changes

Platinum Anilnium/
Nafion

Lines 2 )m Electro-
chemical

Poly(octa
decylacrylate)
 on HOPG

Air Broken
Fibrils

40 nm 1 second Electrical Erratic bit
formation

Purple bronze
Na0.9Mo6O17 /Pt-
Ir

Air Holes 5 nm 1 month Electrical Holes grow and
coalesce during
STM

Reading
corrupts
bits

Rb0.3MoO3 Air Holes 6 nm Mechanical Durable over 4
hours

    P4BCMU
Resists
 
    PMMA

UHV Lines
after
etching

20 nm 3 hours Electrical

UHV
20 nm 8 hours Electrical

Charge 2 )m Electrical Charge decay ac, Force
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Table 5-5 . Continuation of chart summarizing the relevant properties of sample/ambient/tip stratagems for use in a memory
configuration. See text for more explanation and detail.

Sample /Tip
  

Ambient Bit Type Bit Size
(width)

Megabit
Time

Mechanism Reproducibility Durability Readabili
ty

HOPG UHV Lines and Mounds
of Contaminates

50 nm 2 days Electrical See HOPG Z, I

Au, Al, Si, & Pt 10-5 Torr 100 nm 3 hours Electrical Z, I

Rhenium  /W Air Mound 2-5 nm Mechanical Z, I, ac

Silicon UHV Holes 10 nm Mechanical Z

UHV Atom Atomic to
nm

8 hours Electrical Mound/hole
uncertainty 

Z

DMCd 1 mTorr Mound 10 nm 1 second Electrical Z, I, ac

           /Pt-Ir

WF6 gas
1-30 mTorr

Mound in
holes

20-40 nm 2 months Electrical

dilute HF Holes 200 nm Elec-Chem HF etches Si Z

Air or O2 Mound Oxidation Tip touches in air 

Nitrogen None

Si:H Air Mound 35 nm Oxidation Oxides hinder tunneling Si:H
will eventually oxidize Si:H amorphous Air Lines 140 1 minute Elec-Chem

Silicon Nitride
Silicon Dioxide

Air Charge 75 nm 1 minute Electrical 100% 1 week+
(Thermal SiO2)

ac, Force

 



198

Table 5-6 . Continuation of chart summarizing the relevant properties of sample/ambient/tip stratagems for use in a memory
configuration. See text for more explanation and detail.

Sample /Tip Ambient Bit Type Bit Size
(width)

Megabit Time Mechanism Repro-
ducibility

Durability Read-
ability

Silver Sele nide
Ag 0.9Se
/Pt

Air & H2 Lines 15 nm Electrical; No effect w/ pulsing

5 mTorr None

Sulfur on Re Silicone oil Hole 40 nm 23 days Electrical Z, I, ac

Air None

Ti(O2) on Pt Air Holes 5-36 nm 1 week Electrical (ac) I, ac

Tungsten
Diselenide /Au

Air Holes 5 nm 1 second Electrical Time varies
with tip 

Holes grow
and fuse

Z, I, ac

Air Rings 6 nm 5 hours Electrical > 2 day stability

YBa2Cu3O7-x Air Flatten Mechanical STM may alter surface

Air Grooves 100 nm 1 month Electrical

2-D Materials:
InSe, ZrS2, TiSe2, SnSe2,
NbSe2, TaS2, MoSe2, WSe2,
WS2, PtS2, ReSe2, WTe2, and
MoTe2

Holes STM imaging
produced
surface wear
and pitting

 



Chapter 6.

Mechanical and Electrical Design Considerations

It has been shown that nanometer scale structures can be

manufactured on HOPG via scanning tunneling microscopy (STM)

techniques using a high frequency voltage pulse superimposed on the normal

STM tunneling bias. Considered here are the factors which will affect the

magnitude of the voltage pulse actually reaching the tip and the response of

the necessary current to voltage electronics. 

6.1 Potential degradation

In order to determine the effect of the STM head on surface

alterability, experiments and theoretical calculations are used to estimate the

percentage of the high frequency voltage pulse actually appearing across the

tunneling region, i. e. the region between the tip and the sample surface. In

order to achieve this goal, the ac equivalent parallel capacitances and

resistances of the Nanoscope II STM head "A" were measured as a function

of frequency. These measurements provided a basis for designing a

theoretical lumped parameter electrical model of the analyzed STM head.

From the theoretical circuit, voltage drop percentages were calculated as a

function of frequency.

6.1.1 Parallel capacitance and resistance measurements

The ac equivalent parallel capacitances and resistances were

measured using an HP4284A LCR meter. There were three nodal points of

measurement on the Nanoscope II STM head "A". These are
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Tip

Ground wire

Piezoelectric
Scanning
Tube

Body

Figure  6:1. Drawing of Nanoscope II head 'A' showing points (tip, body, and
ground wire) used for ac electrical measurements.

 designated in Figure 6:1 as tip, body, and ground wire. Measurements were

taken with an ac amplitude of 200 mV while the frequency was varied from 

100 Hz to 1.0 MHz. The measured capacitances and resistances are listed in

appendix B, Table b-1, for measurements between two of the three nodes

while leaving the third node floating. Table b-2 of appendix B gives the

measured capacitances and resistances between one of the nodes and with

the other two nodes electrically connected.

6.1.2 Theoretical circuit development and measurement comparison

From the measured values, the equivalent electrical circuit of

Figure 6:2 was developed. A basic knowledge of the mechanical and

electronic design of the head provided insight into the theoretical circuit

design. Resistor R2 is the input resistor of the current to voltage (I:V)

converter. The C5 capacitance is produced by the interaction between the

body and the wire which goes from the tunneling tip to the I:V converter. The

wire actually passes through an insulated cylindrical hole in the Invar 
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Figure 6:2 . Theoretical circuit diagram for the Nanoscope II head 'A'
disconnected from the microscope base and control electronics.

body effectively constructing a cylindrical capacitor. Capacitance C4 and C3

along with resistor R3 are probably due to the input impedance of an op-amp

in the I:V electronics. The theoretical circuit was derived by starting with the

known position and value of R2, then added the known position of C5. Several

designs for the rest of the circuit were examined for the other values, but not

entirely blindly. The measured data showed that at low frequencies the

resistance between the body and ground approached immeasurably high

values. This indicated a series capacitor model. This left two simple models

to examine. The known series capacitor could have been in series with a

parallel resistor-capacitor network or in parallel with a series parallel resistor

network. The circuit shown gave the best theoretical fit to the measured data.

 The node to node measured and theoretical parallel capacitances and

resistances as a function of frequency for the circuit in Figure 6:2 are plotted

in Figure 6:3. The theoretical and measured capacitances and resistances

from one node to the connected other two nodes are plotted 
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capacitances (b) vs frequency. Measurements are taken with one node
floating.
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Figure 6:5 . Theoretical circuit diagram for the Nanoscope II 'A' STM head
including tunneling and sample holder impedances. 

as a function of frequency in Figure 6:4. The Asyst computer program used to

calculate the theoretical values is contained in appendix A.

 The theoretical circuit of Figure 6:2 was expanded to include the tip to

sample capacitance and tunneling resistance along with the capacitance

between the sample holder and the body of the STM head. This expanded

circuit is diagrammed in Figure 6:5. The tunneling resistance (R2) was

estimated to an upper limit by assuming a tunneling bias of one volt and a

common tunneling current of one nanoamp. Dividing the bias by the current

yields a resistance of 109 6.

6.1.3 Calculation of tip-sample capacitance

The capacitance, C7, between the tip and sample was estimated by

first calculating the potential function, then deriving the electric field function.

A surface integration of the field gives the charge on the tip surface. The

charge is then differentiated with respect to the voltage to 
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Figure 6:6 . (a) Tip and sample geometrical structure, and (b) spherical
coordinate description, for STM tip to sample potential, electric field, charge,
and capacitance calculations.

determine the capacitance.

 In order to calculate the potential function, electric field function,

charge, and capacitance between the tip and sample, the physical

geometrical shapes must be known. Although no two STM tips are exactly

alike, we will assume the tip has a basic conical structure. For the majority of

applications presented in this thesis, samples are generally flat over a large

area giving rise to a planar structure. The structure is illustrated in Figure 6:6

using spherical coordinates to describe the structure mathematically. The

surface of the tip is described mathematically by �=�o, where �o is a

constant (a cone), and the sample surface is mathematically described �=%/2

(a plane). We have allowed the tip and the sample to mathematically touch

where r=0 to greatly simplify the solution. The actual tip-sample separation is

theoretically on the order of Angstroms which produces negligible change in

the total capacitance. This geometry also produces an upper limit on the

value of capacitance for the situation where the tip fits entirely inside 
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the theoretical cone. 

6.1.3.1 THE POTENTIAL FUNCTION

Assuming an air gap, void of charge between the sample and tip, the

potential in this region is described by Laplace's equation ,/
2V(r,�,1)
0

where  V(r,�,1) is the function describing the potential between the tip and

sample. Laplace's equation in spherical coordinates is:

Since the potential is symmetrical in r and 1,  V(r,�,1) = V(�) and Equation

(6-1) reduces to: 

Solving equation (6-2) with the boundary conditions, V(�o) = Vo and V(%/2) =

0, yields the following potential equation:

This equation is graphed in Figure 6:6 for a one volt potential between the tip

and plane and for several values of �o . Notice that the inner potential starts

deviating from a linear shape as the cone angle becomes smaller.
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6.1.3.2 THE ELECTRIC FIELD VECTOR FUNCTION

Knowing the potential function we can calculate the electric field

function E(r,�,1) = - V(r,�,1) yielding:/

This is shown graphically in Figure 6:7 for a 1 V applied potential and at a

radius of 1 )m with a 15o cone angle. 
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6.1.3.3 THE CHARGE ON A LIMITED CONE

In order to calculate the capacitance, the charge, Q, on the tip as a

function of Vo must be known. Using Gauss's law and setting a limit on the

extent of the tip at ro, we have the equation:

 where the volume S' is chosen to include the surface of the tip and the

surface area of S', da', is divided into areas chosen to be normal to the

spherical coordinate vectors. The dielectric constant of the region 



209

C(ro,�o,Vo) 

dQ
dVo




	2%ro�o

ln(csc�o 	 cot�o)
. (6-6)

0.00

0.01

0.02

0.03

0.04

0.05

15 30 45 60 75
Tip Cone Angle From Normal (degrees)

Figure 6:9 . Calculated capacitance between a conical tip and a planar
sample as a function of cone angle. The capacitance is graphed for three
values of radii.

between the cone and plane is that of air, �o = 8.86 pF m-1. The areas

bounding the volume are the surfaces of constant � (one inside and one

outside the tip), r=0, r=ro, 1=0, and 1=2%. The extent of the cone has been

limited to ro because real tips are limited by their construction from wire or in

some cases thin rod stock.

6.1.3.4 THE CAPACITANCE OF THE CONE-PLANE STRUCTURE

Now that the charge, Q,  on our tip is known as a function of Vo, the

capacitance C(ro,�o,Vo) can be determined by differentiating the charge, C,

with respect to the potential, Vo, producing the equation:

Capacitance values between the tip and sample as a function of cone

angle, �o, are graphed in Figure 6:9 for Vo = 1 V, and for 
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ro = 0.25 mm, 0.10 mm, and 0.025 mm. By letting �o vary between 30o and

60o and letting ro vary between 0.01 )m and 0.25 mm, we obtain lower and

upper limits for the capacitance of the tip, 4×10-7 pF and 2.5×10-2 pF,

respectively. 

The body to sample holder capacitance, C6, was directly measured for

the insulated holder and found to be 90 pF. When an uninsulated holder is

used, the impedance associated with C6 approaches zero 6 (C6 becomes �

for practical purposes). The internal impedance of the sample along with the

bias contact are assumed to be zero 6 for our calculations. Such things as

ohmic contact problems, semiconductor type samples, and thin film type

samples may cause the sample impedance to be large enough at high

frequencies to degrade the potential drop across the tip-sample interface. 

6.1.4 Potential drop across the tunneling junction region

The response of a voltage pulse was estimated to be approximately

the same as a continuous ac signal with a period equal to the pulse duration

and having an amplitude equal to that of the pulse. From the circuit of Figure

6:5, the theoretical percentage of the amplitude of an ac voltage signal can

be calculated. The percent ac voltage drop across the tunneling gap for the

components of Figure 6:5 is plotted in Figure 6:10 as a function of frequency.

The three curves are for using an uninsulated sample holder, an insulated

sample holder, and an insulated sample holder with the body grounded.

Changing the tunneling capacitance, C7, from 4×10-7 pF to 2.5×10-2 pF

(calculated upper and lower limits) produced 
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frequency for (a) components of Fig. 6:5, and (b) with R2=107 6. Legend
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negligible changes in the percent ac voltage dropped across the tunneling

region. Changing the tunneling resistance, R4, had an effect only for lower

resistances. For R4 = 108 6, there was a negligible change in the percent ac

voltage dropped across the tunneling region. Figure 6:10 shows the plot of

the percent ac voltage drop across the tunneling region with the same

configurations as in Figure 6:5, but with R4 = 107 6. The decrease in the

percent voltage dropped for low frequencies appears across the I:V

conversion resistor, R2 (106 6). The greater the value of the capacitor C5, the

greater the potential degradation for higher frequencies. At low frequencies

and with the body not grounded, the potential degradation can be estimated

by Ohm's law with resistor R2 and the tunneling resistance R4 in series. At

higher frequencies, the capacitors C5 and C4 in series determine the potential

degradation across the tunneling region. Since capacitance C5 may change

with the ambient pressure, temperature, and humidity, the percent voltage

drop across the tunneling junction may also change. For minimal potential

degradation, the design criterion should be R4 >> R2 and C4 >> C5, with C5 as

small as possible. 

6.1.5 Cabling (transmission line) degradation 

The impedance between the input and ground of the cable connecting

the voltage pulse source to the STM head was measured to determine if

there would be any signal degradation in the cable. The measurements are

plotted in Figure 6:11. Figures 6:11(a) and 6:11(b) show the impedance and

equivalent parallel capacitance, respectively, of 
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the cable with the head disconnected, the cable with the head connected,

and the calculated impedance of the head. In addition, Figure 6:11(b) shows

the difference of the capacitances of the cable with and without the head

connected (labeled as Cable with head - Cable). Additionally, Figure 6:11(b)

shows the measured capacitance of the circuit. Since this lines up with the

difference of the cable capacitance, with and without the head connected, the

cabling impedance is determined to be primarily acting in parallel with the

head. This results in the same potential across the cable and circuit.

6.1.6 Voltage source output impedance degradation 

The output resistance of most function generators is 50 6, and the

output impedance of the DT2821 digital to analog board is given as 0.16. For

both impedances, the degradation of the potential at 1 MHz (Z cable + head

= 1400 6) is less that 0.1 %. If we used a frequency which reduced the

cable+head impedance to 100 ohms (probably near 100 MHz if the trend in

the data is followed), there would be an additional reduction of the potential

by 10 % for the function generator considering a 90o phase shift between

source and circuit impedance.  

6.2 Output theoretical gain of I:V Converter

Since we have determined that 90 % of the voltage appears across the

tunneling junction, we wish to determine the effect of the 10% stray voltage

on the response of the STM. The potential is dropped across the resistor R2

of Figure 6:5. This resistor is used in the op-amp circuit of 
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Figure 6:12 . Circuit diagram of the I:V converter used in the Nanoscope II
STM head 'A' with optional external RC filter.

Figure 6:12 to convert the current through the tunneling region to a voltage

which feeds a digital feedback loop. The R-C filter of Figure 6:12 is

sometimes included in the circuit to further reduce the gain.

The output of this circuit is equal to the potential dropped across R4

times the gain of the op-amp circuit. The gain of the circuit as a function of

frequency is plotted in Figure 6:13. Common voltage thresholds for

nanomodification pulses are around 3 volts. At frequencies greater than

50 kHz this should result in 0.3 volts across R2. For a 1 MHz pulse this

should result in an additional output of 0.7 volts (gain = 2.5) with no RC filter,

and 0.003 volts (gain = 0.013) if the RC filter is in the circuit. At 100 kHz (an

observed threshold for modification of non-square wave pulses) the gains are

16.7 and 0.88 with and without the RC filter, respectively, producing apparent

I:V voltages of 5 volts and 0.26 volts. It is called apparent because the output

voltage is not produced by the 
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Figure 6:13 . The gain of the op-amp circuit shown in Fig. 6:12 with and
without the RC filter attached to the output.

tunneling current. The smaller additional voltages would not result in

damaging tip displacements since the STM responds logarithmically to the

change in current. The 5 volt change would make the tip pull away from the

sample initially, then move toward the surface after the pulse due to a

deficiency in current.

Also important to consider is the effect a pulse, instead of a continuous

wave, has on the output. A test was performed to see the actual response of

the I:V circuit with the tip separated from the sample a sufficient amount to

inhibit tunneling. The results for the 20 )s pulse shown in Figure 6:14(a) are

shown in Figure 6:14(b-d) (hand sketched from an oscilloscope). With the

body floating and no RC filter, the 6.35 V observed value for the initial peak

of the I:V response shown in 
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Figure 6:14 . Input pulse (a) and it's effect on the output of the I:V converter
(b-e) as hand sketched from an oscilloscope trace. See individual captions
for more detail.

Fig. 6:14(b) compares favorably with the 5 V predicted value. Similarly, with

the body floating and the RC filter in the circuit, the initial peak value of 0.48

V shown in Fig. 6:14(c) was not far from the predicted value of 0.28 V. Figs.

6:14(d) and (e) show that the response was limited to millivolt values when

the body was grounded. More important is the fact that the response of the

I:V reverses polarity before it comes back to an equilibrium value. Such a

reversal could cause the perceived current to drop (or even reverse) affecting

the servo feedback. This could not have affected the alteration experiments

when the S/H circuit was being used, but could have affected other alteration

experiments. This is not thought to have been the case since the feedback

gains were set low enough to 
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prevent any rapid displacement of the tip. For STM's with logarithmic

amplifiers, a voltage reversal could cause a saturation of the log amp. If the

log amp can not quickly recover, the resulting feedback could force the tip

into the sample. This was not possible for the Nanoscope since there is an

absolute value circuit and the log of the current is performed digitally.   

Alteration was also possible when the body was grounded and the RC

circuit was present. In this situation, the I:V response would have been on the

order of 100 mV. This would result in a tip displacement of 0.3 nm if the

feedback was operating in the constant current mode, which it was not. Since

the feedback was operating at low gain (constant height), there would be no

significant tip displacement. Since nanomodification has been achieved for 1

& 10 MHz pulses, and with or without the RC circuit and body grounded, it is

evident that surface modification is not always caused by the tip touching the

sample due to feedback response motion.

6.3 Experimental response of I:V converter during modification

We have shown the response of the I:V converter with a large

separation between the tip and sample. Figure 6:15 shows the effect of a

voltage pulse on the output of the I:V converter during tunneling. The graphs

were hand sketched from an oscilloscope trace. The applied pulse shape is

shown in Fig. 6:15(a) and the response of the I:V converter is shown in

Figs. 6:15(b), (c), and (d). Low feedback gains were used to 
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Figure 6:15 . Effect of modification pulse on I:V converter output. (a) is the
input pulse, (b), (c), and (d) are the resulting voltage outputs for low, lower,
and lowest feedback gains.

assure a stable response. The converter reached its maximum of 13 V for all

gains. The lowest gain required more than 4 ms to recover while the minimum

response time was about 60 )s. The I:V converter without the added RC filter

has a response time of 2%RC = 63 )s. This minimum response will limit the

time to produce 106 bits to a 63 second minimum. This is quite slow

compared to the state of the art magnetic writing speeds of 10 ns/bit1 for

permanent archival. This means that multiple write heads or arrays would

have to be incorporated to match the speed. Also, to increase the writing

speed the design could utiliuze a smaller response time. This may not be

possible and still keep the feedback stable and the tunneling gap constant.
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1. The input resistance of the I:V converter should be much

less than the resistance of the selected tunneling gap.

2. The capacitance from the substrate to the tip and/or wires

leading to the I:V converter should be minimized.

3. The input capacitance of the I:V converter should be much

greater than that from the sample to the tip and I:V input

wire.

4. The electronic response time of the I:V converter should

be less than the desired memory writing and reading time.

Table 6-1 . Some electronic design criterion for a tunneling based
nanomemory.

6.4 Summary of electronic criterion for a tunneling nanomemory

The design of the STM and I:V converter have been shown to

electronically affect the percent of the voltage pulse appearing across the

tunneling junction. The stray pulse voltage has also been shown to affect the

observed tunneling current. The electronic design of the I:V converter also

effects the speed with which a memory bit can be written. The design of a

nanomemory should include the criterion specified in Table 6-1.
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Chapter 7.

I(S) Characteristics and Environmental Effects

Accurate measurement of surface structure heights with a scanning

tunneling microscope (STM) requires a knowledge of tip-sample interaction.

For measurements other than atomic resolution the STM operates by

endeavoring to keep the tip-sample tunneling current constant by analog or

digital feedback circuits. In order to obtain repeatable measurements, the

repeatability of I(s) characteristics must be determined. 

There are devices that have been conceived which would operate with

a tunneling sensor1 as the position sensitive transducer. Among these

devices are patents for a magnetometer2, a tunneling microphone2, and the

nanomemory3 design which we have been considering. A knowledge of the

relationship between the current, I,  and the displacement, s, of the tip is

integral to designing stable feedback circuits for these devices that can

repeatably place the tip at a given height above the sample with maximum

speed. 

Accurate assessment of the expected operation of a transducer is

necessary for design purposes. Consider the previously mentioned memory

concept. The production of bits may require a repeatable separation between

the tip and surface for the modification strategy to work. The reading of

atomic scale bits from a memory structure using tunneling technology

requires an apriori knowledge of the relationship 
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between the height of the tip above a sample and the corresponding

tunneling current. Since two ways to read a bit using tunneling technology

are with changes in height or changes in current, uncertain I(S)

characteristics could change the requirements for the detection of a bit.

    This chapter describes experiments relating to the I(s) relationship, that is,

the dependence of the tunneling current, I, on the displacement, s.

7.1 X-ray calibrated I(s) apparatus

A monolithic x-ray interferometer4 was utilized as the heart of a device

to accurately measure the tunneling current between a sample and probe as

a function of sample-tip displacement. The interferometer is constructed from

a single crystal silicon monolithic flexure and a translation motion of 20 nm is

provided by an electromagnetic force actuator. The probe was mounted in a

reduction lever mechanism and brought to within tunneling range using a

screw positioned wedge. Using this system open-loop, manual adjustment to

within 20 nm was readily achieved. Using the actuator, sample displacement

was controlled with subangstrom resolution and a precalibration accuracy of

better than 50 pm.

7.1.1 Apparatus design for displacement and tunneling

The apparatus was designed for measuring the tunneling current as a

function of displacement between a sharp probe and a conducting sample.

The principles of operation are demonstrated schematically by 
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Figure 7:1 . Schematic drawing
for illustrating the operation of
the  tunneling apparatus. 

Figure 7:1. Sample displacement of

20 nm is provided by a simple linear

flexure translation stage. The sample is

bonded upon the translation stage

collinear with the actuator by using a

silver paint which also served as a

conduction path to the sample. A SmCo

permanent magnet is rigidly attached

opposite the sample on the flexure stage.

Surrounding this, but not touching, is a uniformly wound circular cylindrical

solenoid coil. Current through the coil produces a magnetic field inducing a

force on the magnet which bends the flexure springs. It has been shown that

the force/current characteristic of this actuator system is relatively insensitive

to axial motion of the magnet relative to the coil5. The flexure stage was

designed, built, and calibrated x-ray interferometrically by researchers at the

University of Warwick.

The monolithic flexure stage was machined out of single crystal

silicon. Figure 7:2 shows a schematic diagram of the flexure stage (not to

scale). The x-ray interferometer consists of three blades. The x-rays are

incident at an angle of about 6o upon the first blade which, acting as a splitter,

divides the beam into transmitted and refracted components. These beams

are incident on the second blade which refracts the beams to act as a mirror.

The third blade, acting as analyzer, interferometrically recombines the beams

to form moiré fringes. If the crystal lattice of all 
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Figure 7:2 . Drawing showing the interferometric design of the flexure stage. 

three blades are aligned, the count of x-ray intensities of the emergent beam

can be used to monitor fractional crystal lattice displacement as the right

blade is laterally displaced relative to the other two. The flexure stage was

kinematically mounted on a block of aluminum to which the coil was attached. 

The tunneling probe assembly was designed to mount kinematically on

the top of the flexure stage. This structure incorporated the tunneling probe

along with coarse and fine positioning devices. Coarse adjustment was

required to bring the tip to within a couple of micrometers of the sample and

fine adjustment required to bring the tip to within the 20 nm range of the

flexure stage. To provide thermal stability, the basic 
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Figure 7:3 . Tunneling probe mount with coarse adjustment. The cross-
section with expanded area shows the tip inside the tube.

structure was made of the low thermal expansion glass ceramic Zerodur.

Figure 7:3 illustrates the mounting and coarse positioning of the tunneling

probe. Mechanically sharpened 0.254 mm wire tunneling tips are held in a

stainless steel tube by frictional forces. The tube is mounted by

cyanoacrylate (i.e. super-glue) into a center drilled steel screw. The probe is

moved up and down with respect to the Zerodur mount by turning the screw.

Only the bottom steel nut is fastened to the Zerodur. This sets a reference

point for thermal expansion at the bottom of the Zerodur mount, i.e. only the

part of the probe below the Zerodur is contained in the thermal loop of the

tunneling structure. The nylon washers act as a spring to preload the screw

and nut preventing hysteresis and increasing the stiffness of the structure.

The upper nut also slides across the nylon washers with nominal friction

assuring the two nuts do not lock up the screw thereby preventing

adjustment. The design of the coarse 
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Figure 7:4 . Schematic of body structure which kinematically rests via
bearings on the translation stage. The screw-wedge structure for fine tip-
sample adjustment is shown with the side view.

adjustment also facilitates the exchanging of wire probes during

experimentation.

The basic body structure into which the tunneling probe was mounted

is shown in Figure 7:4. The tunneling probe of Figure 7:3 is mounted through

the probe hole into the steel nut of Figure 7:4. The attached steel nut of

Figure 7:3 is the same as that indicated in Figure 7:4. The fine position screw

has a thread spacing of 0.5 mm. The wedge has an aspect ratio of about

100:1. As the screw is turned, the wedge increases the spacing between the

double ball bearings resting on the translation stage and the Zerodur body.

This in turn causes the body to tilt on the front ball bearings lowering the

tunneling probe. The relative spacings of the probe hole, and front and back

bearings produce a lever action when the probe is tilted with an attenuation

of about 5:1. The combined screw-wedge-lever action produces a fine

adjustment of 
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1000 nm for each screw revolution. The screw head was marked for 80 equal

rotational divisions, producing a scale of about 12.5 nm per division. The 4

cm length of the wedge provides a fine adjustment range of about 80

micrometers. Since the fine adjustment was  manual, any upward hand

motion affects the tip sample separation. For example if the operators hand

caused the Zerodur body to raise 1 )m, the tip would move closer to the

sample by at least 100 nm, 5 times the maximum displacement of the

translation stage. This motion would force the tip into the sample corrupting

both sample and tip. To reduce influence of the manual adjustment, an elastic

band was connected to the coil mount, wrapped over the Zerodur body and

interferometer, and connected on the other side to produce a preload force

which would have to be overcome by the operator before motion was

produced. 

To increase surface flatness, the region of the body forming a

counterface for the sliding wedge was high-speed diamond ground.

Additionally, the wedge was lapped to decrease surface roughness and 

waviness which would corrupt the fine adjustment motion and increase

friction. 

Steel ball bearings were chosen as kinematic rests in order to match

the thermal expansion of the probe structure and sample. Conical holes 2.5

mm deep (45o angle from normal) were ground into the body with a diamond

grinder. Similarly, the translation stage support had 45o V-grooves machined

into the top of it. The balls were placed between the conical holes and

grooves. Simple geometrical analysis shows that the 
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thermal expansion of the structural loop from the bottom of the groove to the

top of the hole will equal the thermal expansion of the steel ball times �2.

Since the sample and tip material, and their respective length and thickness

are variables in the thermal loop, exact determination of correct ball size was

not possible. Assuming thermally similar materials, the estimated distance

between the top of the attached nut of the probe and the bottom of the

sample (�7mm) divided by �2 provides the estimated 5 mm diameter of the

ball. The Zerodur body was not included in the calculation since it has a

negligible thermal expansion coefficient (10-7/oC). The 2.5 mm of silicon from

the bottom of the kinematic groove to the top of the silicon stage was also

neglected having a thermal expansion coefficient about 1/3 that of the steel in

the probe.

The complete coil-stage-probe structure was mounted on a sand filled

optical bench. The bench was connected to a 2 m × 1 m × 0.7 m concrete

block that was in turn supported by a pneumatic vibration isolation system.

Previous calibration of the x-ray interferometer showed an open loop

accuracy of better than 20 pm.4 

The flexure stage was computer controlled using a Metrabyte )Dash

16 digital to analog (D/A) conversion board & supporting electronics. The D/A

output was connected to a Darlington pair current amplifier feeding one

terminal of the actuating coil while the other terminal was grounded. The 12-

bit D/A board had an output of ±10 volts. An 8 V output displaced the stage

20 nm. This provided a least significant bit (lsb) resolution of about 0.025 nm.
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Figure 7:5 . Electronics of the current to voltage converter.

The tunneling circuit diagram is shown in Figure 7:5. The 9 volt supply

is a battery which provides the sample bias producing the tunneling current.

The bias can be reversed by switching the leads of the battery. The tunneling

current flows through the coarse positioning screw and a 1 megohm resistor.

The potential drop across the 1 megohm resistor is multiplied approximately

1000 times by the op-amp circuit. Data from the output of the op-amp is

recorded using an analog to digital (A/D) acquisition board controlled by the

computer. The current to voltage conversion of the circuit is 1 volt/nanoamp.

Due to the high gain of the circuit, and the antenna shape of the probe,

electrical shielding of the setup was necessary. The shield was made of

aluminum and covered all sides of the setup except where the fine

adjustment screw extended to enable acess to manual adjustment.

Experiments were done to test the integrity of the shield and these results are

discussed in the following 
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section.

Coarse adjustment of the probe was performed while viewing the tip-

sample spacing with a 30×, long focal length microscope. After coarse

adjustment was made, the shield was mounted and grounded.   

A computer program6 was used to displace the translation stage over

its 20 nanometer extension range while sampling the current/voltage value to

detect the onset of a sufficient tunneling current. If, after a complete 20 nm

translation of the specimen toward the probe, no tunneling current was

detected, a manual adjustment was made to the fine adjustment screw, and

the procedure repeated until a tunneling current was detected. The current

data for each position of the stage was measured and recorded. 

7.1.2 Design integrity evaluation

The design of the system must have sufficient integrity to provide

confidence in measurements. Effects of electrical shielding, electronics

stability, and thermal drift were evaluated to determine the integrity. 

The output of the current to voltage converter was analyzed using an

Advantest TR9403 digital spectrum analyzer. The tunneling probe was

withdrawn from the sample a sufficient distance to prevent tunneling. Power

spectrum plots were obtained for the setup with and without the electrical

cover shield in place. Figure 7:6(a, c, and e) are spectrum plots for the shield

removed and for frequency ranges of 100 Hz, 500 Hz, and 50 kHz

respectively. Figure 7:6(a) shows a very sharp peak at 50 Hz, which

corresponds to the power line frequency (England). The second 
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peak at 70 Hz is due to the refresh rate of the nearby computer monitor.

Amplitude peaks for the first, third, fifth, and seventh order harmonics of the

power line frequency are revealed in Figure 7:6(c). The peak around 31 kHz

in Figure 7:6(e) corresponds to the horizontal sweep frequency of the

computer monitor. Figures 7:6(b, d, and f) are power spectrum plots,

corresponding to Figures 7:6(a, c, and e) respectively, with the cover shield

in place. Figure 7:6(b) shows a barely detectable peak at -70dB for 50 Hz.

The absence of any other detectable peaks in these plots demonstrate the

effectiveness of the cover shield to remove noise induced into the probe by

ambient electrical fields.

Figure 7:7 (a) and (b) shows power spectrum plots while ramping the

coil voltage during translation stage motion. There is the small peak for 50 Hz

at -65 dB. The frequency domain for Figure 7:7(a) is from 0-100 Hz and

7:7(b) is from 0-1 kHz.

Figure 7:8(a) is a plot of the output of the current to voltage converter

over a 40 second period while there is no tunneling. It shows that there is

about a 20 mV drift of the output due to the electronics circuit corresponding

to an apparent current of 20 pA.

The tunneling probe was adjusted to bring a mechanically sharpened

Pt-Ir tip7 within tunneling range of an highly oriented pyrolytic graphite

(HOPG) sample. Figure 7:8(b) is a graph of the I:V converter as a function of

time while keeping the output voltage to the coil constant. The coil voltage

was held at a value which produced 2 nanoamps of tunneling current. Along

with some random drift corresponding to about 
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1.0 nanoamps, there appears to be abrupt changes in the current of around

0.4 nanoamps. The random drift may be due to thermal expansion of the

materials. The abrupt changes in tunneling current between 6 and 8 seconds

may be due to tip-sample electronic interaction effects. Power spectrum plots

during tunneling would sometimes contain sharp peaks. 

Figure 7:9 shows a tunneling curve and subsequent power spectrum plot for

a Palladium-HOPG tip-sample system. The flexure was displaced to provide

a tunneling current of 4 nanoamps. After the proper tunneling current was

achieved, the power spectrum measurements were taken. This plot shows

peaks at slightly less than 50 Hz and 100 Hz. A possible source for

mechanical vibration is a nearby machine shop and a nearby road outside

the building. Other I(s) curves and their power spectrums at maximum

currents are contained in Appendix C.

The thermal stability is demonstrated in Figure 7:10(a) which shows

six I(s) curves of data taken over a 15 min period. Notice the 1.5 nm

maximum shift in displacement necessary to achieve the maximum current.

Thermal stability is also established by the fact that the probe-sample

separation was observed to remain within the 20 nm range of the translation

stage over a five hour period.
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Figure 7:10 . Six I(s) data sets taken over a 15 min period with the same tip
are shown in (a) with there natural logs in (b).  Total variation is less than 1.5
nm Illustrating thermal stability.
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I(s) 

A

s
e 	�s, � � 23 nm 	1. (7-1)

7.1.3 I(s) characteristics from data

 Data sets were collected under ambient conditions at room

temperature. Theoretically, we have previously shown in chapter 4 that the

current should depend exponentially on the separation. This relationship is

given mathematically by 

For separations, s, larger than 4/k, the slope of the natural log of the current

should be equal to -k. This should be true regardless of your position over

the surface. Figure 7:10(b) contains plots of the natural logarithms of the I(s)

curves in Figure 7:10(a). Notice that the ln plots do not all appear the same.

Indeed, not only do the slopes vary, but many plots contain multiple slopes.

Least squares fits to the linear portions of these curves are plotted in Figure

7:11. The slopes of the lines are given with each plot and vary from 0.88 nm-1

to 5 nm-1. These slopes are considerably lower than the calculated theoretical

value of 23 nm-1 for an electron barrier of 5.3 eV (average value of work

functions of Pt and graphite). Low barrier heights have been reported

elsewhere.8 

Similar results were obtained with different tip materials. Figure 7:12(a)

shows plots of I(s) data taken with Pt-Ir, Ag, and Pd tips. The natural log of

these data is plotted in Figure 7:12(b). The slopes for each line are shown on

the graph in units of nm-1. Appendix C contains more than 50 additional plots

of of I(s) and ln I(s) data for Pt-Ir, Ag, and tips and the same HOPG sample.

These not only include "good" data sets but also those in which there is

apparent noise and other problems. Data with 
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Figure 7:11 . Plots of the natural log of the tunneling current versus flexure
displacement using the same Pt tip and HOPG sample. Slopes are given for
lines in nm-1.
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Figure 7:12 . (a) current data and (b) natural log of the current versus flexure
displacement for Pt-Ir, Ag, and Pd tips. The slopes have nm-1 units.
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the same Ag tip showed variations in slope from 0.6 to 7.2 nm-1. This may

have been due to oxidation effects in the air ambient.

 Since Pt and graphite are two materials that are inert in a room air

ambient, we expect the combination to produce the most consistent I(s) data.

The experimentation shows that I(s) are similar but not repeatable for a

specific tip and highly variable for different tips. This causes problems if it is

necessary to position the tip a repeatable distance away from the sample in

order to manufacture a bit. 

The nanometric shape of the tip may also play a role in non-ideal I(s)

plots. Viewing various mechanically cut tips varied in a scanning electron

microscope revealed that the tips were irregular on a micrometer scale. This,

of course, does not necessarily infer similar geometries on a nanometer

scale. 

7.2 Results from Nanoscope II

The commercially available Nanoscope II STM is also capable of

generating I(s) characteristics. This section describes experiments in air for

the Nanoscope. The STM has the advantage over the x-ray calibrated

instrument because surface images can also be obtained. These images can

be used to ascertain the integrity of the tip. The STM has the disadvantage of

having a z-axis that is more difficult to calibrate accurately.  
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7.2.1 STM z-axis calibration

The z-motion of the Nanoscope is produced by a tube made of a

piezoelectric ceramic. In order to obtain reliable I(s) data it was necessary to

affirm the z-axis calibration. We desired to evaluate the calibration reported

by the manufacturer using the height of a monolayer step on an HOPG

sample. Using the STM, we observed that the minimum observed height of

steps was about 6.5 Å. This is roughly equal to twice the interlayer separation

(3.35 Å) of graphite. Heights were only less than 6 Å when the STM image

revealed multiple tunneling points9. 

There were three possible reasons for the observed step height. First,

the graphite surface may prefer a double step to a single step. Second, a

contamination particle could be between the tip and sample as suggested by

Mamin et al. [1986]. This contamination contact would push the surface down

as the tip approached the surface. Third, the reported calibration of the STM

could be wrong.

 The contamination theory was eliminated due to observed steps near

6 Å for many tips. The contamination is not likely for all the tips and the 6 Å

spacing should have changed considerably with each tip depending on the

variability of the contamination. The manufacturer was contacted about their

calibration procedure. After discussion, they recalibrated a similar STM head

using a known step and found that the true calibration was probably 40% less

than their reported value. This calibration led to a measured step height near

4 Å. Since our STM head would have a slightly different calibration than

theirs, we adjusted the 
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calibration to yield the step height to be the expected 3.35 Å. This step height

would be accurate only if the electron states are similar on both sides of the

step. Vertical linearity problems of piezoelectric had been minimized by

Digital Instruments in the software. If contamination were causing a surface

deflection, calibration from an atomic step height would also eliminate

displacement errors if the contact was not localized at the tunneling point.

7.2.2 STM I(s) characteristics and atomic resolution 

For an HOPG sample and Pt-Ir tip like that used in the previous

section, the I(s) characteristics shown in Fig. 7:13 were obtained with a

-40 mV sample bias and averaged over 5 data sets to remove noise. The ln

I(s) characteristics show slopes higher than those in Fig. 7:11 obtained using

the x-ray calibrated tunneling apparatus. STM images taken after the I(s)

curves of Fig. 7:13(a-c) and before the curves in (d-f) are shown in Image

7:1. The images have not been filtered to remove any noise. Notice that the

atomic corrugations are more discernible when the current is higher.  The 0.2

nA, 1.0 nA, and 5.0 nA z-images have vertical atomic corrugations of 0.3 Å,

0.4 Å and 1 Å respectively. 

One may expect the best images when the slope of the ln I(s) curve is

nearest the theoretical 23 nm-1, but this is not the case. Figure 7:14 contains

an STM z-image and ln I(s) curves taken immediately preceding the image.

Although the slopes are high, 8.9-16.9 nm-1, the image shows very poor

resolution. We have found this to be consistently the case when images are

taken at currents that have 
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Figure 7:13 . I(s) and Ln i(s) curves versus tip displacement taken with STM.
Slopes to the Ln plots are given in nm-1. Images taken at the maximum
currents in (a-c) are shown in Image 7:1.
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corresponding high ln I(s) slopes at those currents. Notice also that the

slopes of the ln I(s) curves at 0 (1 nA) have values differing by a factor of two

even though the same tip is used and only a few minutes have elapsed

between the data sets. This effect is common although not always as

pronounced with most tips. This implies that the apparent barrier height which

is related to the slope of ln I(s) curve would not be useful for reading memory

bits.

7.2.3 Bias and pulsing dependence of I(s) characteristics

The effect of bias and pulsing on I(s) characteristics was determined

by looking at I(s) curves for -50 mV and -500 mV before and after a voltage

pulse was applied between the tip and sample. An electrochemically etched

Pt-Ir tip10 was used to give assurance of a small tunneling area. The tip gave

accurate values for an HOPG atomic step and atomic resolution was

achieved. The results are shown in 
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Figure 7:15 . I(s) characteristics at -50 and -500 mV for an etched Pt-Ir tip. (a)
is before and (b) is after an extended duration several volt tip bias.  



249

Figure 7:15. Two I(s) curves are shown for each bias. ln I(s) curves are also

plotted for easier comparison of slopes. Figure 7:15(a) shows the I(s)

characteristics which reveal that the -500 mV curves have higher slopes. The

higher bias does not necessarily mean that the field between the tip and

sample is higher due to work function effects. A several volt bias was applied

for several seconds which could simulate aging due to long term operation as

a memory. I(s) curves after the bias are seen in Fig. 7:15(b). The -500 mV

still produces steeper curves, but the -50 mV curves are steeper than those

of the -500 mV curves before the bias. Imaging atomic steps after the bias

revealed that there was a second tunneling point on the tip which probably

affected the I(s) curves. Since the ln I(s) curves are steeper farther away from

the sample, this second tip may have allowed the tip to be farther away from

the sample for a given current, resulting in steeper slopes. This may be the

reason that tips which produce steep I(s) curves have poorer resolution.

Appendix C contains other I(s) and ln I(s) curves and their slopes for lower

and higher initial currents. The major impact of this study shows that the

distance between the tip and sample for a given current is likely to vary with

tip and sample materials, tip geometry, and surface or tip contamination. The

next section reveals that the I(s) characteristics also vary with changing

ambient. 

7.2.4 Ambient effects on I(s) characteristics 

This study summarizes investigations into the ambient gas effects on

I(s) characteristics. I(s) curves were taken for mechanically sharpened 
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Figure 7:16 . The laboratory apparatus setup used for switching tunneling
ambient gases.

Pt-Ir tips HOPG sample. The Nanoscope II STM was mounted inside a

polycarbonate vacuum jar in order to be able to change ambient gases. The

setup designed to switch the ambient is illustrated in Figure 7:16. The valves

allow the ambient to be switched between filtered nitrogen or compressed air,

nitrogen or air bubbled through deionized water, or a vacuum down to -29"

Hg (�25 Torr). Room air can also be introduced by disconnecting an

appropriate tube and controlling the air flow through a valve. 

The STM was operated in the spectroscopic mode to obtain I(S)

characteristics for the various ambient gases. An average over twenty-five

I(S) curves was obtained in order to significantly reduce the noise level. A

fresh surface of the HOPG was obtained by placing a piece of tape on the

surface and peeling it off, thus cleaving a slice from the 
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surface. 

Measurements were taken with the sample at a potential of +50 mV.

Initial I(s) curves were taken after atomic resolution imaging was

demonstrated. Then, the ambient gases were sequentially introduced and

characteristic current data recorded. The most profound changes occurred

while switching between N2 bubbled through DI water and a vacuum near -

29" Hg. Graphs of the data are shown in Figure 7:17.  

Analysis of the natural log data shows that the initial I(S) data set after

the cleave and in air has the highest slopes (-10.2 and -6.74 nm-1). Most of

the data taken during this relatively low vacuum show slopes near -3.9 nm-1

(-3.89, -3.93, -3.85, and -3.21). The slopes increased the longer the ambient

was at a vacuum near -29" Hg. The I(s) curves taken when nitrogen was

bubbled through deionized water ambient were significantly more elongated

than those taken with vacuum. The moisture may be responsible for the

expanded curves during bubbling. Since the vapor pressure of water is

between -28" Hg and -29" Hg at room temperature, the vacuum may be

evaporating most of that deposited from the ambient onto the surface or tip.   

Other experiments with a -40 mV (reversed polarity) bias showed the

curves elongating with the introduction of nitrogen or nitrogen bubbled

through DI water. However, the restoration of steeper I(s) characteristics was

not consistently produced with a vacuum. One possible explanation is that

the negative bias decreased the current forcing the tip into the sample

causing irreversible changes. Another is 
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Figure 7:17 . I(s) and Ln I(s) curves taken for various ambients. The ambients
are shown for each graph. The sequence of ambients reflects the sequence
of graphs (a-h). Slopes are reported in nm-1. 
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1] Individual tip variation (material, geometry etc.)

2] Tip variation over time.

3] Applied bias.

4] History of tip (voltage pulses and tip-sample contact)

5] Ambient conditions (gas, contamination, etc.)

Table 7-1 . Parameters which affect the I(s) characteristics.

that the direction of the current affects the evaporation of surface moisture on

the tip or sample.

The results of this investigation show that the ambient plays a definite

role in determining the I(s) characteristics. This in turn will affect the

separation between the tip and sample for a given tunneling current.

7.3 Summary and Significance of results

We have shown that tunneling I(s) characteristics vary depending on

several things. These are listed in Table Table 7-1. One is that the I(s)

characteristics vary between individual tips due to material and geometric

reasons. A second is that each individual tip shows similar, but slightly

varying I(s) curves over time. A third factor causing variation is the magnitude

of the applied bias. A fourth variation is the history of the tip and is revealed

with the application of a voltage pulse. And a fifth parameter is the ambient

condition. All of these things cause the I(s) characteristics to alter which

produces an unpredictable spacing between the tip and sample. 
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Figure 7:18 . Illustration showing the apparent change in width of a surface
feature for different probe scanning heights.

This unpredictable spacing will affect the write and readability of the

proposed memory. The uncertain separation will produce a corresponding

uncertain electric field strength thus effecting surface modification. Voltage

pulses also effect the I(s) curves and, thus, the spacing which in turn affects

the modification. This may account for the necessity of changing the

parameters to continue making modification which was reported in Chapter 4. 

The effect on readability is demonstrated by Figure 7:18. Using a

tunneling probe as a detector of memory bits one would have to take into

account the changes in the I(s) characteristic. For example, if the height of

the probe changed from 1 to 2 nanometers then there could be a 2 nm

change in apparent width of a nanometer scale memory bit as shown in Fig.

7:18. Also, changes in the probe geometry (dull or sharp) could amplify the

problem.
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Chapter 8.

I(s) Electronic Considerations

In previous chapters ln I(s) graphs were shown which were not linear.

This nonlinearity is not in agreement with simplified tunneling theory. One

speculation for the cause of this has already been mentioned, that of intimate

tip-sample contact. The purpose of this chapter is to show that a nonlinear

curve can be theoretically predicted using more detailed quantum theory.

Also, experiments will be reported which suggest that the tunneling current is

affected by the electronic states of surface electrons. These results are used

to explain ln I(s) slopes which are not continuous but tend toward discrete

values.   

8.1 Tunneling revisited

In tunneling theory, like other theories, assumptions are made to gain

simplified practical approximate solutions. As these solutions are pushed to

their limits, the approximations no longer hold and significant departures from

experimental results may be observed. A common basic assumption of

tunneling theory is that the barrier changes abruptly at the electrode surfaces

and is constant or linear in between. Another assumption is that a squared

hyperbolic sine term is sufficiently large to be approximated as exponential. If

the tunneling bias is held to a low constant value, these assumptions yield

the approximated1 tunneling equation



257

I(s) 

Io

s
e 	2ko 1o s, (8-1)

ln I(s) 
 Ao � ln( 1

s
) 	 23#s ,

and its derivative
d lnI(s)

ds



	1
s

	23 nm 	1 ,
(8-2)

1(x,s) 
 1im(x,s) � 1v(x,s) � 1w(x,s) 	 EF . (8-3)

where Io, ko, and 1o are intrinsic constants. The 1/s tunneling prefactor was

supplied by Simmons for the theoretical current flow between two parallel

planar electrodes separated by a distance s. For platinum and graphite

electrodes this produces a ln I(s) equation of the form

where s is in nm, and Ao is a constant. This equation has a slope magnitude

that is always greater than 23 nm-1 and increases at smaller separations. This

is the opposite of what has been observed experimentally. This discrepancy

can be reconciled if one considers the fact that the barrier potential is not

constant, but changes significantly as the electrode spacing decreases below

1 nm.

8.1.1 Barrier calculation using image charge potentials

The barrier potential energy, 1(x,s), at a position x between electrodes

of spacing s is

where 1im is the image charge potential of the electron between the tunneling

electrodes, 1v(x,s) is the potential function due to a bias between electrodes,

1w is the potential function due to the work function2 difference between the

electrodes, and EF is the Fermi energy. 
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The difference in work functions, 1w, between a platinum tip (1t = 5.65 eV)

and a graphite sample (1s = 5 eV) is 0.65 eV. 

The classical solution for the image potential of an electron between

two infinite equipotential conducting planes is given by the equation   

where 1im is in eV, s is the spacing between electrodes, and x is the position

of the electron between the electrodes. � is the dielectric constant of the

region between the electrodes (normally that of free space) and e+ is the

magnitude of the charge on an electron. This solution is cumbersome to work

with, although a summation of the first 10 terms yields 0.1% accuracy.

Simmons suggested the approximate equation 

This solution is adequate for s > 1 nm, but it is near or below this

region which tunneling occurs. Also as s��, this equation does not  reduce to

the classical equation of an electron near a single conducting grounded

plane
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As a much better fit to the numerical solution, the following approximate

equation3 is introduced.

This equation was deduced by the application of appropriate boundary

conditions and the observed exponential error between the numerical

solution and Simmons' approximation. Modifying Eqn. (8-5), the 1.15

prefactor that Simmons introduced to make his equation fit the data was

dropped. Then an exponential multiplicative term was included to account for

the observed error. The exponential power argument had to obey certain

conditions. Symmetry is one such condition, that is, the value of 1 at x must

be the same at s-x. Also, as s��, the exponential term must reduce to 

[Ln(2)]-1 � e0.55/1.5 so that Eqn. (8-7) reduces to Eqn. (8-6) for an electron near

an infinite conducting plane. Equation (8-7) does indeed have symmetry and

reduces to the classical equation for an electron near a plane.

The numerical summation [Eqn. (8-4) n=1 to 500], the Simmons

equation [Eqn. (8-5)], and Equation (8-7) are plotted in Fig. 8:1 (a) and (b) for

s=1 nm and s=0.5 nm respectively. The bold dash-dot line in Fig. 8:1 (a) and

bold line in Fig. 8:1(b) represent the Fermi energy, EF of a graphite electron.

The area above EF and below the potential is related to 
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Figure 8:1 . Electron image potentials calculations (a) and (b) and estimation
errors (c) and (d) between two planes using equations (8-4) (numerical), (8-5)
(Simmons), and (8-7) (this thesis).
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the barrier integrity, B(s) [1½s term of Eqn. (8-1)] and is defined more

rigorously in Equation (8-8) . Figure 8:1(b) shows that the Simmons equation

produces a significantly incorrect evaluation of the barrier at 0.5 nm. Figure

8:1(c) and (d) show the deviation from the numerical solution for each of the

approximate solutions in Fig. 8:1 (a) and (b).

Using Eqn. (8-7) for 1im and assuming no work function difference or

applied potential between the electrodes, the 1(x,s) graphs shown in Figure

8:2 were obtained. Notice the degradation of the barrier as the electrode

spacing decreases below 1 nm. The presence of a bias alters the

symmetrical shapes of these graphs and is included in the forthcoming

calculations of the barrier.   

8.1.2 Theoretical slope determinations for ln I(s) curves

By considering the effect of the image potential upon the electron

barrier, it will be shown that decreasing values for the slopes of ln I(s) curves

can be expected.

 Simmons' work emphasizes the exponential term but disregards the

transmission prefactor4 for an electron incident on a tunneling barrier.

Combining Simmons' Io/s surface charge related current prefactor5 with the

transmission probability flux prefactor for a single electron of kinetic energy

Ek, incident on a barrier of average energy V(s), yields the basic tunneling

equation
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Figure 8:2 . Electron barrier energy as a function of electron position between
two HOPG planes of various spacing. (a) shows separations up to 2 nm and
(b) shows separations below 1 nm.
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ko is equal to (2m*)½2%h-1, where m* is the effective mass of the electron and

h is Plancks constant. The function, B(s). is hereafter called the barrier

integrity. It is derived from the WKB6 approximation. The WKB approximation

includes ko in the term so that the transmission probability per unit time, D, of

an electron is

The term V(x)-Ek is equal to 1(x,s), where V(x) is the potential barrier the

electron sees and Ek is the kinetic energy of the electron. x1 and x2 are the

edges of the barrier. 

An approximation4 of Eqn. (8-8) which reveals the additional

transmission prefactor, T(s), is 

The barrier integrity, B(s), was calculated for ±0.65 V potentials

between the planes and is shown as square symbols in Figure 8:3(a). The

±0.65 V potentials correspond to a 0-1.3 V bias due to the 0.65 V work

function difference between sample and tip. For comparison, the barrier

integrity for a linear barrier (not  including the image force) is shown with a

dashed line. A empirically determined equation for B(s) using a linear-

exponential sum was found to be
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Figure 8:3 . (a) Barrier integrity for a linear barrier and image potential barrier
with applied voltages of ±0.65 V. (b) and (c) Resultant theoretical slopes of
Ln I(s) curves at ±0.65 V for increasingly detailed I(s) equations.
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B(s) 
 Ao � 2.29#s � 1.6e
	s

so , (8-11)

where s is in nanometers and B(s) is in (eV)½nm. For a potential of 0.65 V,

Ao=2.38 (eV)½nm and so=3.8 nm. For a potential of -0.65 V, Ao=2.23 (eV)½nm

and so=1.75 nm. The empirical curve fits of Eqn. (8-11) for ±6.5 V potentials

are shown graphed in Figure 8:3(a).  Using Eqn. (8-11) and the correct

constants for the barrier integrity, the expected slopes of ln I(s) curves were

calculated for increasingly detailed current equations. These are shown in

Figs. 8:3(b) and (c) for +0.65 V and -0.65 V respectively. As the I(s)

equations become more detailed, the slopes are found to decrease a

substantial amount as the electrode spacing decreases below 1 nm. This

agrees with our experimental observation of decreasing slope values. 

The prefactor Io is a constant in Simmons equation, but actually

depends on the barrier integrity which changes substantially for s < 1 nm.

Although this would decrease the slope further, it was not included since this

value may actually approach a limiting value7 in more detailed theory.

However, it has been shown that slopes of ln I(s) are predicted to decrease

as two planar electrodes approach each other for separations less than 1 nm.

Since real tips are conical and not planar, an accurate prediction of the rate

of change of slopes is theoretically much more complicated. However, a

similar trend is expected.
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8.2 Surface potential corrugations

Another important result of including the image potential is that the

barrier disappears when the planes are about 0.4 nm apart depending on the

electrode potential difference. It is near this distance where the electronic

corrugation of the surface becomes manifest when scanning atomically flat

surfaces in the STM. These corrugations are thought to be due to the

bonding of the solid, such that, the valence electrons do not have close

spherical orbits around the positively charged atomic nuclei. The bonding of

electrons forces them to be localized between the atomic cores. 

Using a hexagonal single layer8 of graphite, classical electrostatic

potential calculations were made as a function of position, x, normal to the

layer. The potentials were calculated by summing (superposition) a series of

potentials due to point charges according to the classical equation  

where qn is the charge at a given position in the graphite lattice and r is the

distance between the charges and the point where the potential is being

calculated. 

Illustrated in Fig. 8:4, the static model potential calculations consisted

of atomic cores (+4e+) at hexagonal graphite lattice positions, 3 bonding

electrons/atom spaced midway between the lattice positions
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Figure 8:4 . Illustration of the method used for calculation of potentials above
a graphite sheet. Three lines illustrate the symmetry of calculations.
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such that
q1 � q2 � q3 ... � qn 
 0

(atomic cores), and one free electron/atom also midway between atomic

cores. Since the free electron resonates between the three bonding positions,

a charge of 2e+/3 was placed at each of the positions of bonding electrons for

initial calculations. The equation was of the form

To keep the charge neutrality of the finite plane, the superposition

summation was required to have an equal number of positive and negative

charges9. This required summing the potentials due to hundreds of atoms

(over 1000 charges). In order to simplify the calculations by 



268

symmetry, the potential was only calculated over the atom site, electron site,

and void site. The summation was done from closest charges radially out

from the calculation position.

The resulting calculated potentials at positions above the three sites

are shown in Figure 8:5(a). Since the potentials are substantial to near

0.2 nm, they probably affect the tunneling barrier as it diminishes. Since an

electron must be present in order to tunnel, the potential above the electron

site is most relevant. By holding the free electron fixed at different positions,

the potentials of Figure 8:5(b) were obtained. Although the potential above an

electron site with a free electron absent appears to be substantial beyond 0.2

nm, the potential probably converges10 as more atoms are included. 

These calculations were carried out by constraining the electron in the

plane. If Fig. 8:5 (a) and (b) were inverted (i. e. in eV units) they could be

added directly to the barrier potentials for calculations. This was not done

because they serve only as an estimation of how far the electronic

corrugation extends for the graphite plane. In the real situation (dynamic not

static), the free electrons are not planar but move in and out of the plane

depending on the electrons' state11. The amount these electrons move in and

out of the plane will affect the surface potential corrugation and influence the

tunneling barrier (at 0.2 nm) as the plane separation approaches 0.4 nm.

Since the electron can only exist in discrete states, this may be responsible

for discrete values of ln I(s) slopes.
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Figure 8:5 . Static calculation of potentials above a graphite sheet. (a) Above
atom, void, and resonating electron sites. (b) Above electron site for
resonating and fixed position electrons. 
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8.3 Anomalous STM imaging of graphite

STM has produced a set of anomalous images of the surface of

graphite. Previous attempts to explain these images include tip and second

layer electronic effects. Representative images were produced with the same

tip by using mechanical and electrical stimuli. Using a Pt-Ir tip12, HOPG was

imaged13 in air over an extended period of time and the surfaces shown in

Image 8:1 were obtained. The various images were induced by mechanical

tapping of the STM or by electronically switching the bias between ±0.1 V.

The effect of the tapping or bias switching was not predictable with the most

attempts producing some apparent surface electronic alteration.

Image 8:1(a) is representative of a "normal" dual trigonal surface. 

Notice that the I-image contains current maxima (represented by the white

areas), current minima (represented by the dark areas) and saddle points of

intermediate current (represented by the grey areas). Image 8:1(b) shows an

image of a hexagonal ring pattern and Image 8:1(c) shows an image of a row

pattern. Image 8:1(d-f) reveals various step patterns observed.

Anomalous surface images have been explained using various models

of tip electronic/geometric structure14. Some of these models consider the

current flowing between the surface and multiple atoms on the tip with the

atoms either separated or side by side at the tip apex. The electronic state of

the outermost electron of the apex atom has been 
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shown to significantly affect the resolution15. Surface states and bulk

properties have both been theorized as the source of the normal dual trigonal

surface structure. The theoretical potential calculations in the literature were

carried out for semi-static conditions where there is no net current flow.

Considering these facts and supposing that the electronic structure of the

near surface atoms (and thus the STM image) could be altered with a

transverse potential or current, a corroborating experiment was conceived.  

8.4 Recoverable, transverse current induced HOPG appearance

alteration

Carbon is capable of forming single or multiple bonds with itself and

other elements enabling it to form over a million compounds. In graphite,

carbon forms resonant16 bond structures in which the true state of a the bond

is a weighted linear combination of three different valence bond structures.

The weights are equal under static conditions for graphite.

Measurement with an STM is a dynamic rather than static process. It

requires a current to be conducted through the sample at the same time a

measurement is being made. Calculations of the electronic structure of

graphite, which assume that the pz electrons are localized (pz orbitals), that

the structure is static, or that there is no net charge in the region, may

therefore not be valid.

 An experiment was designed to determine if a transverse surface

current would change the weights of the resonant structure enough to



273

1.5 V 100 6

1 M6

30  mV

I:V conversion

Tip

Graphite

resistor

Figure 8:6 . Experimental setup used to
induce surface currents and image the
resulting surface appearance.

alter the tunneling current and thus

change the STM image. Using the

experimental configuration of

Figure 8:6, the surface

appearances shown in Image 8:2

were obtained. By connecting and

disconnecting the 1.5 V battery, the

appearance of the surface was

altered. With the battery

disconnected, the normal dual trigonal appearance shown in Image 8:2(a)

was observed. After connecting the battery, the row pattern seen in Image

8:2(b) was observed. Disconnecting the battery again, resulted in the surface

appearance shown in Image 8:2(c) which eventually returned to the normal

dual trigonal after 10 sec. The battery was reconnected again and the image

began changing again. The change of the surface can be seen in Image

8:2(d) where the beginning (top) of the scan was dual trigonal and

transformed into a row pattern over time. After complete transformation to a

row pattern, Image 8:2(e) was obtained. After again disconnecting the

battery, the dual trigonal pattern shown in Image 8:2(f) was obtained. There

is a 20 s time differential between each of the images with a 10 s scan time.

All of the images are shown with the same greyscale parameters. 

With the battery connected, there was a 1.28 V drop across the 100 6

resistor. That means in the worst possible case, the bias between 
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the tip and sample could have changed to -0.3 V. But an increase in bias

would result in a considerable decrease in resolution17 which was not

observed. From this it is concluded that the row patterns are produced by a

change in the resonant structure of the graphite surface.

Notice that the dual trigonal pattern of Image 8:2(a) appears different

from that shown in Image 8:2(f) with the exchanging of the current maxima

and saddlepoints positions. Since this was the same area of graphite, it is

concluded that the higher current position is not due to the presence of a

underlying atom in the next graphite plane. However, a maximum or minimum

current on the surface may be determined by the electronic state of the

underlying atom instead of its presence.

Since it has been shown that the resonant structure may be altered by

a transverse current, it is possible to theorize18 that the weights of the

resonant bonding may cause the various surface appearances shown in

Image 8:1. The electronic configuration of the tip could also affect the

resonant weights and induce change in the surface appearance. In either

case these effects may result in unpredictable surface images.

8.5 Discussion  

Considering the image potential and tunneling transmission prefactor,

evidence has been given to rationalize the decrease in the slope of the ln I(s)

plots as the STM tip moves toward the surface. It has also been shown that

the image of HOPG can be altered by an induced transverse surface current.

Bryant [1986] has shown that an intercalated 
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Au atom electronically affects the surface appearance of HOPG depending

on the tip-sample separation. Since the tip also is capable of various

electronic states depending on the surface fields, one can hypothesize that

as the tip moves closer to the sample, the surface fields change the

electronic structure of the tip giving rise to discrete values for the slopes of

the ln I(s) plots. Further advances in modeling using molecular dynamics are

required to verify this hypothesis. Initial investigations by researchers show

that higher energy electron states for graphite appear as rows across the

surface.19   

In regard to the relevance for making a nanomemory, the tip-sample

current interaction must be repeatably predictable in order for voltage pulses

to consistently alter the surface. Presently there is incomplete knowledge of

all variables which must be controlled for this to be the case. Additionally, if

the electronic state of the tip or substrate changes, the ability to read a

manufactured bit without error may be corrupted.
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[1]  The approximate equation is from Simmons [1961]. The full equation
containing the hyperbolic sine term {ekx-e-kx} was first introduced in Equation
(4-5) and is also shown expanded to include a non-linear barrier in Equation
(8-8).  

[2]  As reported in Chapter 4. The work function is the amount of energy
necessary for an electron (at Fermi energy, EF) to escape from the surface
into a vacuum. 

[3]  It is not known whether or not this or any similar equation has been
reported in the literature.

[4]  Eisberg, Robert and Resnick, Robert, Quantum physics of atoms,
molecules, solids, nuclei, and particles, (Wiley & Sons, New York, 1974) page
218 (includes the prefactor and the approximation). The prefactor is a
constant for a square potential barrier.

[5]  See Equation 4-6 for a more detailed equation by Simmons containing the
components of Io.

[6]  Wolf, E. L., Principles of electron tunneling spectroscopy, (Oxford
University Press, New York, 1985) page 2.

[7]  Simmons approximated a (2k1½(s)+1) term to 2k1½.

[8]  The calculations for a single layer show the potentials converging below
0.2 nm. Since the interlayer separation of graphite is 0.35 nm, considering
more than one plane would add no additional information for our model. This
convergence appears even before including the superposition of the
potentials of all charges within a 2 nm radius. 

Electronic calculations by other researchers shows a slight variation in
the electronic structure and potential due to the second layer. See Batra et
al.[1987], Selloni et al.[1985], Tománek et al.[1987], and Tartar and Rabbi
[1982]. 

[9]  This was nontrivial since there are only certain radii which contain zero
net charge. Although the potential converges toward zero beyond about 0.2
nm at subsequent radii with zero net charge, the convergence is oscillatory.
This oscillatory convergence requires continuing the summation through
several zero charge radii to obtain a close approximation.

[10]  The calculation was made for 174.5 atoms (1396 charges). This was the
first radius that contained a zero charge density. It was necessary to include
291 atoms (11the possible radius) to observe the convergence of the resonant
electron case. The void site was calculated with 181 atoms and the atom site
with 452 atoms. The calculation for the free electron in site was done with
173.75 atoms.
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[11]  By state, we mean the associated wave function, This wave function is
affected by such things as the current flowing between the electrodes and the
electrons' drift velocity.
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[19]  Arthur Edwards and John Pickard, University of North Carolina at
Charlotte, Electrical Engineering Department, private communication,
manuscript in preparation).



Chapter 9.

A Potpourri of Considerations

This chapter examines various STM related phenomena that should be taken

into consideration for the design, manufacture, and operation of a nanomemory. 

Among these are surface considerations, tip geometry considerations, and thin film

topography. Comments about these arise from observations over a period of two years.

9.1 Silicon surface degeneration

In order to make a nanomemory that is inexpensive, it would be advantageous

to exploit existing technologies. The silicon-based microelectronics industry is already

polishing Si wafers to flatness levels that may be sufficient for the proposed

nanomemory. 

Image 9:1(a) shows the 7×7 reconstructed surface of (111) silicon 
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after it was annealed at 900o C in a UHV environment. Initially the surface showed large

flat reconstructed regions. The same sample was imaged over a period of several days.

The surface became increasingly degraded each day. It was not possible to image the

exact same area due to thermal drift and the withdrawal of the tip after each imaging

session. Due to degradation of the tungsten tip, it was also necessary to clean the tip

each day in situ by moving the tip to a remote area of the silicon and increasing the

bias to several volts for several seconds. The process sometimes had to be repeated

until atomic resolution was obtained. Then the tip was removed from the cleaning

region to another area for imaging. Image 9:1(b) shows how the surface appearance is

degraded after a period of six days. The degradation may be caused by the oxidation,

hydration, or other contamination of the silicon surface. This reveals the commonly

known reactive1 nature of the Si surface which is thought to produce a nonconducting

native oxide layer in an atmospheric environment. So the bare surface of silicon is

unlikely for use in a nanomemory operating in air or UHV at room temperature. 

This illustrates a problem which will be a factor in the operation of a

nanomemory, that of contamination. Contamination results when the ambient gas or

ambient impurity reacts with the surface producing a change in the electronic and

tunneling characteristics. This contamination will subsequently change the parameters

necessary for the alteration of a surface to produce a memory bit.

 Another source of contamination is the actual processes used in 
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the production of the memory. For example,

methanol along with H2SO4, H2O2, HF etc.

are often used as cleaning2 agents, not only

for bare silicon, but also after other

processing steps such as deposition and

etching of thin films. The question arises as

to whether a cleaning step could actually be

the source of some nanometer scale

contamination. A piece of Si wafer was

allowed to soak in methanol for an

extended3 period of time. Then the surface

was imaged by STM in air to see if there

was any surface contamination. The result

was a surface appearance like that shown in Image 9:2. The surface features may be

due to a coagulation of hydrocarbons on the surface. Since practical cleaning steps

take only a few minutes, only trace amounts of residue may be left which do not affect

the operation of devices. 

9.2 Thin Films 4 on Silicon

Since silicon technology is highly advanced, but the highly reactive surface of Si

forms a nonconducting oxide in air, thin films on Si could produce an inexpensive

means of manufacturing the memory surface. However, thin film surfaces are not as

flat as single crystal surfaces and must be carefully prepared to produce sub-

nanometer scale roughness. The effect the processing has on the surface roughness is

shown in 
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Image 9:3. The Ge films on Si shown in these STM images were deposited using

microwave plasma enhanced chemical vapor deposition (M-PECVD)5. The largest

surface roughness occurs with the highest microwave power. The films deposited with

a 175 W microwave plasma may be smooth enough for surface alteration, if the bits

produced are greater than 10 nm. However, the Ge films were difficult to image due to

a GeO2 monolayer on the surface which resulted in unstable tunneling currents, and so,

surface alteration was not attempted. 

Unstable tunneling currents resulting in intimate tip-surface contact can also

cause the tip to change often reducing resolution in the STM image.  STM images of

the same area of a diamond on Si thin film showing the time degradation of image

resolution are shown in Image 9:4. Since the diamond on Si thin films6 were insulating,

the circuit 
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Figure 9:1 . Circuit used to inject electrons into diamond thin film on Si. The
injected electrons are the source of tunneling electrons at the surface.

shown in Figure 9:1 was used to inject7 electrons into the diamond for STM tunneling at

the surface. The ac signal produces a depletion layer in the doped silicon. Electrons

are accelerated across the depletion region to gain enough energy to overcome the

barrier between the silicon and diamond and reach the conduction band of the

diamond.

9.3 More tip geometry effects

Decreasing tip resolution would cause manufactured bits in a nanomemory to

appear to change lateral and vertical size. Image 9:5 illustrates this effect on the

apparent surface topography of a Pd on Cu thin film on Si.8 Image 9:5(a) was acquired

with a sharp tip and Image 9:5(b) was acquired with a more blunt tip. Notice the

apparent increase in feature diameter from 10 to 20 nm and apparent decrease in

height from 10 to 5 nm. 
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The minimum apparent (imaged) width of a feature is always larger than the

shape of the tip due to convolution. If surface feature widths are smaller than the tip,

then the sample ends up imaging the tip and its shape will be seen repetitively in the

STM image. This effect is shown in Image 9:6 (a) and (b), with (a) revealing a sharper

tip.
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Another major problem would occur in the reading of memory bits when the

tunneling probe has more than one tunneling asperity. This is illustrated in Image 9:7. A

diffraction grating with a 1 )m spacing is shown imaged with a double tip in Image

9:7(a). Notice the doubling of the crest of the grating. Image 9:7(b) shows an altered

area on the surface of graphite imaged with a double tip. Notice that one of the 
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circles appears slightly smaller than the other. This is due to asperities not being the

same distance above the bulk surface.   

9.4 Discussion and summary

It has been shown that surfaces can react with the surrounding ambient thus

changing the surface appearance. So, a substrate used for a nanomemory should

either be inert or have been made to react with the ambient to produce a stable

surface. Some precious metals are inert in air. However, previous results for Au and Pt

show that they exhibit diffusion of surface features. The inert surface of graphite was

also eliminated as a nanomemory substrate due to surface diffusion. To prevent the

degeneration of other reactive surfaces, they should be annealed in a passivating

environment or air to accelerate the surface reaction so that further reactions are

inhibited. Care should be taken in choosing such a surface that does not react to

become insulating.

Thin film deposition was shown to have inherent topography depending on the

processing. Thus, if thin films are used, the deposition should introduce minimum

surface structure. The larger the deposited surface features, the larger the surface

alteration required in order to be readable. Also, subsequent processing steps after the

deposition should not be allowed to contaminate the thin film surface.

The shape of the tip was also shown to affect the apparent image of a surface.

The tip radius should be at least as small as the anticipated surface alteration size in

order to facilitate reading of the alteration as a 
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memory bit. The ability to mass produce tips of consistent radii will be critical in

producing memories that will operate similarly enough to be predictable and

exchangeable. The tip material should also be taken into consideration like the

substrate surface. The tip used to observe the silicon degradation in UHV was made of

tungsten. This tip had to be cleaned in situ every day to produce atomic resolution. This

eliminates bare tungsten for a tip material due to its instability which even occurred in

UHV. Tungsten and platinum compound (Pt-Ir, Pt-Re, etc.) tips are the most common

for STM use. For production of a tunneling based nanomemory, a study would have to

be undertaken into the development of a tip material which is durable enough to

withstand the bit-manufacturing mechanism and also be stable enough not to affect the

process.
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Chapter 10.

Summary and Conclusions

In Chapter 1, the possibility of transferring STM technology into

memory technology in order to produce a nanomemory  with an 105-106

increase in the areal bit density times was presented.

10.1 Historical developments  

Historical developments of memory devices were discussed including:

visual storage from the camera obscura  to photographic chemical storage;

audio storage including the mechanically based phonograph, graphophone,

and gramophone ; and electromagnetic storage developments of the 1800's

resulting in the invention of the telegraphone . Examples of early numerical

storage devices (abacus  and quipu)  have been given along with the

development of mechanical calculating machines. Development of three

generations of computers has also been discussed. Vacuum tube and

capacitor memory were used in first generation developments with

semiconductor transistors and core memory being typical of second

generation advancements, while current third generation techniques use

solid state technology and integrated circuits along with technically advanced

magnetic memory. Also discussed was how memory is achieved with

magnetic reversals within a material.

Development of the STM was recounted with mention of its 
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precursors: the optical and electron microscopes, stylus instruments, and the

topografiner .

 

10.2 Nanomemory synthesis

Operation of magnetic memory and tunneling microscopy were

compared to present the synthesis of the nanomemory concept. In Chapter 2,

various schemes of changing the surface of a material with a tunneling probe

were described. They include mechanical contact, field evaporation of

surface atoms, field deposition onto a substrate from the tip or ambient, field

induced surface chemical alteration, electrical charging, and magnetization. 

10.3 Alteration experiments and results

State of the art literature involving experiments related to these

surface alteration schemes have been reported in Chapter 3. Chapter 4

recounted personal experiments designed to investigate the areas which are

necessary to implement a nanomemory. The areas considered were the

ability to produce surface alterations along with their reproducibility,

durability, and readability. 

A review of basic tunneling theory, resulted in three initial parameters

which affect the alteration. They were initial bias, tunneling current, and the

spacing between the sample and tunneling probe. Setting any two of these

determined the third. Since there was no way of accurately determining the

spacing, initial bias and current were used as 
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the basis of experiments. HOPG and Pt thin films were used as surface

materials, and Pt-Ir and tungsten as tunneling tips. 

Because of the simplicity of application, voltage pulses were employed

to increase the field between the tip and sample. This increased field served

as the mechanism for surface alteration. 

Alteration was found to be inconsistent with current. Keeping other

parameters constant, a decrease in the initial current (which should increase

the spacing and lower the field) sometimes resulted in greater areas of

alteration. Other times the region of alteration decreased. This prevented a

predictable trend in feature production dependent on initial current. 

Varying the amplitude of the alteration pulse resulted in an apparent

threshold for modification. This threshold was found to be tip dependent.

Also, near the threshold, surface alteration was found to have poor

repeatability, a property hostile to the operation of a memory. 

A regular L-shaped 40 nm sized structure was produced using pulses.

However, the pulse amplitude had to be increased to complete the formation.

An I-shaped structure made of pulse produced holes has been also shown.

The holes were made while keeping all modification parameters constant.

However, the holes have been shown to vary substantially in size as the I-

shape was completed. This also would be inconsistent with a reliable

memory.

Although we found that it was possible to produce nanometer surface

alteration, their durability was limited. Nanometer structures were 
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observed to move, change, and disappear.  The tips were also found to alter

during the modification process which would affect the readability and

addressability of a memory.

10.4 Material considerations

In relation to alterability, reproducibility, durability, and readability, the

types and mechanism of alteration along with ambient environment, bit size

and writing time have been considered. Nanomemory propensity for the

materials used along with those reported from the literature have been

summarized and tabulated for quick reference in Chapter 5. No clear cut

material was identified that readily lends itself for use as a nanomemory

substrate. Problems such as bit diffusion, nonreproducible features and

unpredictable feature types, minimum bit sizes too large, ambient not

practical, unrealistic bit writing time, and inconsistent or deficient surface

conductance were observed. Although many materials had positive aspects,

each showed at least one basic problem which limits its use as a memory

substrate. 

10.5 STM design effects

In Chapter 6, investigations into the effect of mechanical and electrical

STM design on the application of voltage pulses between the tip and

substrate were reported. A theoretical electronic circuit model of the STM,

including stray capacitances, was developed from equivalent parallel

capacitance and resistance measurements. A theoretical 
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capacitance between a planar sample and conical tip was also calculated

using Laplace's equation and Gauss's law. 

From the theoretical circuit, potential degradation of high frequency

pulses has been predicted. The response of the I-V converter has also been

considered as a factor in the nanomemory writing time. The results led to four

proposed design criteria for the construction of a tunneling probe and

electronics for use in the proposed nanomemory. The criteria have been

tabulated in Chapter 6.

10.6 I(s) anomalies

Noting the inconsistency in field induced surface alteration for

graphite, investigations were made into the tunneling current characteristics

as a function of relative tip-sample separation. These investigations have

been detailed in Chapter 7. The construction of an x-ray calibrated tunneling

probe resulted in the observation of I(s) and ln I(s) characteristics that varied

slightly for each measurement from an individual tip and considerably from tip

to tip. Results have been corroborated with a commercial instrument along

with the applied bias having an affect on the characteristics. 

Analyzing ln I(s) curves revealed a departure from theoretical slopes

predicted by simple tunneling theory. STM images with subsequent I(s)

measurements revealed that ln I(s) slopes that were closer to the predicted

value (simple theory) were concurrent with images having diminished

resolution. 
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Another investigation revealed a significant variation in I(s) curves for

various ambient gases. These experiments exposed a lack of predictability

for tip-sample separation. This unpredictable separation produces

correspondingly unpredictable fields at the tip-surface interface, and is

suspect in the reported erratic field induced surface alteration.

10.7 Theoretical results

 In Chapter 8, increasingly detailed tunneling theory was examined to

see if there was theoretical rational for a deviation of Ln I(s) slope values

from simple tunneling theory. A more accurate equation for the image

potential of an electron between two planes has been presented. The

equation was deduced from observation and the application of boundary

conditions. Also included in the tunneling detail was a prefactor that was

dependent on the ratio of the potential barrier to the electron's kinetic energy.

The results of the analysis showed that the slope of Ln I(s) curves should

significantly decrease as two planes approach each other below a separation

of 1 nm.

 The analysis also implied that the barrier completely disappears when

the electrodes are separated by about 0.4 nm. A static calculation of the

potential corrugation due to core atoms and valence electrons has been

presented. The results showed that the corrugation extends about 0.2 nm. It

was concluded that the electronic corrugation should also affect the tunneling

characteristics at separations less than a nanometer. This effect is in

agreement with experiments involving lateral surface 
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currents on graphite. The currents were found to alter the appearance of

STM images. The normal image was restored with the cessation of surface

currents. Since all tips vary in electronic structure at the tip, the I(s) tunneling

characteristics will be slightly different for each tip. Again, since I(s)

characteristics cannot be predictable, neither can field induced surface

alteration.

10.8 Other considerations

Due to their availability and low cost, the use of thin films on Si has

been discussed. It is shown that surfaces may change due to reaction with

the ambient. Reading and writing problems due to the topographic surface

structure of thin films has also been deliberated along with surface

contamination.

Tip durability, sharpness, and shape are all considered in relation to

the ability to read a memory bit. The different problems resulting from tip

geometric structure such as tip-surface convolution is also illustrated.

   

10.9 Nanomemory conclusions

10.9.1 Unfeasible methods 

Mechanical indentation as a means of producing a surface alteration is

thought to be unfeasible for two reasons. First, the time necessary to stop the

tip and advance it toward the sample and then achieve tunneling again would

be prohibitive. Second, contact between 
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the tip and sample would cause the tip to change resulting in corrupted

addressing. 

Field induced modification is deemed to be impractical due to the

unpredictable I(s) characteristics. This type of modification has also been

shown to alter the tip which would corrupt addressing. 

Charging of materials would only be impractical if the charge diffuses

or if the minimum bit size was too large. Magnetizing a homogeneous surface

is thought to be impractical due to the known diffusion of magnetic domain

walls.

10.9.2 Ambient considerations

Since we desire a memory that is practical, an inexpensive and readily

achievable ambient should also be chosen. Any ambient that would cause

expensive packaging problems and continual maintenance expense should

be avoided. This need not be limited to air, since hermetically sealing the

structures with a positive vapor pressure of an inert or appropriate gas may

allow desired effects.   

10.9.3 Materials selections

Materials should be selected which are inert in the chosen ambient.

Any material which may react should be previously passivated and that

passivation should be electrically conductive if it is to be a tunneling surface.

This would eliminate most materials. The materials which have been

investigated which are inert (Pt, Au, HOPG) have shown diffusion properties

that are not conducive to a field induced nanomemory. 

The tip should also be inert in the chosen ambient. A Pt or Au 
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Figure 10:1 . Proposed memory stratagem which embraces specified
recommendations.

coating could provide this, but the underlying material should be stiff to

increase the structural integrity and resonance frequency of the memory.

 10.9.3 A proposed memory stratagem for future investigation 

Considering the previous recommendations, a proposed memory

stratagem is shown in Figure 10:1. A magnetic thin film is deposited onto a

flat silicon substrate. The magnetic thin film is then oxidized to produce a

nonmagnetic oxide. Afterwards, a layer of nanometer scale particulates is

deposited (perhaps e-beam). The particulates are then oxidized forming a

nonmagnetic barrier between the particulates. An inert thin film such as Pt or

Au is subsequently deposited on the surface to prevent any further surface

reaction. The particulates are used as the memory bits. The 
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magnetic source induces the magnetization of one or more of the

particulates. The magnetized particulates effect a conductance change

between the tip and inert film to produce a readable bit. The tip could be

servoed to the surface by either STM of AFM means. The oxide between the

particulates should prevent the magnetized particles from losing their

magnetization. 

10.10 General conclusions

Although the thrust of this thesis has been to determine the feasibility

of producing a nanomemory using a tunneling probe, other important

repercussions have been ascertained.

The tip-sample I(s) characteristics have been shown to be

unpredictable. Also, an important result has been that simple tunneling theory

cannot be used for accurate prediction of electrode spacings below 1 nm. In

addition, transverse currents within the substrate have been shown to affect

quantum mechanical electron tunneling. This demonstrates a highly intricate

electronic effect due to the chemical, physical, geometric, and electronic

interaction of the tip and sample.

These results suggest that using the tunneling probe for absolute

Angstrom metrology is not possible with present technology. Also, other

devices such as the patented magnetometer and tunneling microphone will

demonstrate unpredictable transfer functions due to factors which also affect

tunneling. 

    



Appendix A  
Computer Programs

A.1 Asyst program for electrical analysis of STM head
filename: STM.CIR 

_________________________________________________________________

echo.off
forget.all
\ This is a program to calculate the ac impedance and current on
\ the nanoscope head
\
\
\
\
12 5 sci.format
dp.real dim[ 24 ] array omega   \  2 * pi * frequency
dp.real dim[ 24 ] array absimp  \ absolute value of the impedance
dp.real dim[ 24 ] array freq    \ frequency array
real dim[ 2 ] array px          \ max and min x scale values for plot
real dim[ 2 ] array py          \ max and min values for y axis scale
dp.real dim[ 24 ] array %vtip      \ % voltage from tip to sample
\ load frequency values for calculations
1   freq [ 1 ]  := 2   freq [ 2 ]  := 4 freq   [ 3 ]  :=
10  freq [ 4 ]  := 20  freq [ 5 ]  := 40 freq  [ 6 ]  :=
100 freq [ 7 ]  := 200 freq [ 8 ]  := 400 freq [ 9 ]  :=
1e3 freq [ 10 ] := 2e3 freq [ 11 ] := 4e3 freq [ 12 ] :=
1e4 freq [ 13 ] := 2e4 freq [ 14 ] := 4e4 freq [ 15 ] :=
1e5 freq [ 16 ] := 2e5 freq [ 17 ] := 4e5 freq [ 18 ] :=
1e6 freq [ 19 ] := 2e6 freq [ 20 ] := 4e6 freq [ 21 ] :=
1e7 freq [ 22 ] := 2e7 freq [ 23 ] := 4e7 freq [ 24 ] :=
freq pi * 2 * omega :=
: plot.axes cr \ plot axes with readable scales
logarithmic
." Input x-scale minimum : "
#input px [ 1 ] := cr
." Input x-scale maximum : "
#input px [ 2 ] := cr
." Input y-scale minimum : "
#input py [ 1 ] := cr
." Input y-scale maximum : "
#input py [ 2 ] := cr
"  " symbol
px py xy.auto.plot
.01 .01 .01 .01 " * " dashed&symbol
;

\ circuit components
dp.real scalar  r1
dp.real scalar  r2
dp.real scalar  r3
dp.real scalar  r4
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dp.real scalar  c1
dp.real scalar  c2
dp.real scalar  c3
dp.real scalar  c4
dp.real scalar  c5
dp.real scalar  c6
dp.real scalar  c7
dp.real dim[ 24 ] array rp  \ equiv. parallel resistance array
dp.real dim[ 24 ] array cp  \ equiv. parallel capacitance array
complex dim[ 2 , 2 , 24 ] array coeffs
complex dim[ 24 ] array z1  \ impedance from body to ground not via tip
complex dim[ 24 ] array z2  \ impedance from tip to ground not via body
complex dim[ 24 ] array z3  \ impedance between tip and holder
complex dim[ 24 ] array z4  \ impedance across tip
complex dim[ 24 ] array z5  \ impedance of cap. from body to tip wire
dim[ 24 ] array rstore    \ storage array
dim[ 24 ] array vstore    \ storage array
real dim[ 24 ] array %v_unins \ % v tip drop, body connected to holder
real dim[ 24 ] array %v_gnd   \ % v tip drop, body grounded
real dim[ 24 ] array %v_ins   \ % v tip drop, body insulated from holder
complex dim[ 24 ] array zstore  \ storage array
dp.real dim[ 2 ] array ac 100 ac :=  \ ac ampl. to produce %v
complex dim[ 2 , 24 ] array %v
: circuit.diagram                                cr
."                                             "                       cr
."         --------------------------- SAMPLE  "                       cr
."         |      |                  |         "  ." R1= " r1 .        cr
."         R4     C7                 C6        "  ." R2= " r2 .        cr
."         |      |                  |         "  ." R3= " r3 .        cr
."   TIP   ----------- C5 ------------ BODY    "  ." R4= " r4 .        cr
."         |         |       |       |         "  ." C1= " c1 .        cr
."         C4        |       |       C1        "  ." C2= " c2 .        cr
."         ------    |       |       |         "  ." C3= " c3 .        cr
."         |    |    |       C2      |         "  ." C4= " c4 .        cr
."         R3   C3   R2      |       |         "  ." C5= " c5 .        cr
."         |    |    |       |       R1        "  ." C6= " c6 .        cr
."         |    |    |       |       |         "  ." C7= " c7 .        cr
."         --------------------------- GROUND  " ." R's in ohms "      cr
."                                             " ." C's in Farads "    cr
;
: TBG.IMP
      r1 omega c1 * inv neg z=x+iy
      inv 0 omega c2 * z=x+iy + inv z1 :=
\     r1 inv c1 omega * z=x+iy inv 0 c2 omega * inv neg z=x+iy + z1 :=
\     r3 c4 omega * inv neg z=x+iy inv
\     r2 inv c3 omega * z=x+iy + inv z2 :=
      r3 inv c3 omega * z=x+iy inv 0 c4 omega * neg inv z=x+iy + inv
      r2 inv + inv  z2 :=
      0 c5 omega * neg inv z=x+iy z5 :=
      0 c6 omega * neg inv z=x+iy z3 :=
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      r4 inv c7 omega * z=x+iy inv z4 :=
;
: get.values  cr circuit.diagram
." Enter R1 value in ohms : " #input  r1 := cr
." Enter R2 value in ohms : " #input  r2 := cr
." Enter R3 value in ohms : " #input  r3 := cr
." Enter R4 value in ohms : " #input  r4 := cr
." Enter C1 value in farads : " #input  c1 := cr
." Enter C2 value in farads : " #input  c2 := cr
." Enter C3 value in farads : " #input  c3 := cr
." Enter C4 value in farads : " #input  c4 := cr
." Enter C5 value in farads : " #input  c5 := cr
." Enter C6 value in farads : " #input  c6 := cr
." Enter C7 value in farads : " #input  c7 := cr
TBG.IMP
;
: fill.matrix
z2 inv z5 inv z4 inv + + z4 * coeffs xsect[ 1 , 1 , ! ] :=
z4 z5 / neg coeffs xsect[ 1 , 2 , ! ] :=
z3 z5 / neg coeffs xsect[ 2 , 1 , ! ] :=
z1 inv z5 inv z3 inv + + z3 * coeffs xsect[ 2 , 2 , ! ] :=
;
: solve.float
" load.overlay matfit.sov " "exec
25 1 do
  " coeffs xsect[ ! , ! , i ] ac solve.sim.eqs " "exec
  %v xsect[ ! , i ] :=
loop
100 %v xsect[ 1 , ! ] - z4 / 100 %v xsect[ 2 , ! ] - z3 / + inv 100 *
dup zmag absimp :=
inv zre&im omega / cp := inv rp :=
%v xsect[ 1 , ! ] zmag neg 100 + %vtip :=
;

: TB.CAL
    z1 z2 + inv z5 inv + zre&im omega / cp := inv rp :=
;
: TG.CAL
    z1 z5 + inv z2 inv + zre&im omega / cp := inv rp :=
;
: BG.CAL
     z2 z5 + inv z1 inv + zre&im omega / cp := inv rp :=
;
: T_BG.CAL z2 inv z5 inv + zre&im omega / cp := inv rp := ;

: G_TB.CAL z1 inv z2 inv + zre&im omega / cp := inv rp := ;

: B_TG.CAL z1 inv z5 inv + zre&im omega / cp := inv rp := ;

: TB.CMEAS.PLOT   \ plot the measured tip to body values in pF
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    100 18.5 position " TB " label
    1e3 17.6 position " TB " label
    1e4 11.1 position " TB " label
    1e5 9.7  position " TB " label
    1e6 9.6  position " TB " label
;
: TB.RMEAS.PLOT \ plot th log of measured tip to body res. vals. in ohms
    1e3 77e6  log position " TB " label
    1e4 5.3e6 log position " TB " label
    1e5 3.7e6 log position " TB " label
    1e6 988e3 log position " TB " label
;
: TG.CMEAS.PLOT \ plot measured tip to ground wire cap vals
    1e2 20.0  position " TG " label
    1e3 19.9  position " TG " label
    1e4 19.86 position " TG " label
    1e5 19.8  position " TG " label
    1e6 19.7  position " TG " label
;
: TG.RMEAS.PLOT  \ measured tip to ground parallel resitance
    1e2 996e3 log position " TG " label
    1e3 995e3 log position " TG " label
    1e4 994e3 log position " TG " label
    1e5 933e3 log position " TG " label
    6e5 510e3 log position " TG " label
    1e6 291e3 log position " TG " label
;
: BG.CMEAS.PLOT \ plots measured body to ground par. capacitances
    1e2 19.8 position " BG " label
    1e3 19.5 position " BG " label
    1e4 19.1 position " BG " label
    1e5 18.7 position " BG " label
    1e6 18.0 position " BG " label
;
: BG.RMEAS.PLOT  \ plotd meas'd body to ground par. res. meas's
    1e4 60e6  log position " BG " label
    1e5 4.7e6 log position " BG " label
    1e6 110e3 log position " BG " label
;
 : freq.lab
    11 color
    1 -1 position " O " label
    1e1 -1 position " 1 " label
    1e2 -1 position " 2 " label
    1e3 -1 position " 3 " label
    1e4 -1 position " 4 " label
    1e5 -1 position " 5 " label
    1e6 -1 position " 6 " label
    1e7 -1 position " 7 " label
    1e8 -1 position " 8 " label
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    0.5 -1.5 position " 1O " label
    5e0 -1.5 position " 1O " label
    5e1 -1.5 position " 1O " label
    5e2 -1.5 position " 1O " label
    5e3 -1.5 position " 1O " label
    5e4 -1.5 position " 1O " label
    5e5 -1.5 position " 1O " label
    5e6 -1.5 position " 1O " label
    5e7 -1.5 position " 1O " label
    5e3 -2.5 position " FREQUENCY " label
;
: cap.lab
    .4 0 position " O " label
    .4 2 position " 2 " label
    .4 4 position " 4 " label
    .4 6 position " 6 " label
    .4 8 position " 8 " label
    .4 10 position " 1O " label
    .4 12 position " 12 " label
    .4 14 position " 14 " label
    .4 16 position " 16 " label
    .4 18 position " 18 " label
    .4 20 position " 2O " label
    1 21 position " PARALLEL CAPACITANCE (pF) " label
;
: STANDARD.GRAPH
    16 label.color
    1 0 axis.point logarithmic
    0 py [ 1 ] := 20 py [ 2 ] := px  1 px [ 1 ] := 1e8 px [ 2 ] :=
    "  " symbol
    px py xy.auto.plot 11 label.color
    freq.lab cap.lab
;

: CAL.MEAS.PLOT
    standard.graph freq.lab cap.lab
    2 5 position " log PARALLEL RESISTANCE (ohms) " label
    10 4 position " TG - TIP TO GROUND " label
    10 3 position " TB - TIP TO BODY " label
    10 2 position " BG - GROUND TO BODY " label
    5e4 14 position " LINES - CALCULATED VALUES " label
    5e4 12 position " SYMBOL - MEASURED VALUES " label
    10 color solid
    tb.cal  freq cp 1e12 * xy.data.plot freq rp log xy.data.plot
    TB.CMEAS.PLOT
    TB.RMEAS.PLOT
    11 color .01 .01 .01 .01 dashed
    tg.cal freq cp 1e12 * xy.data.plot freq rp log xy.data.plot
    TG.CMEAS.PLOT
    TG.RMEAS.PLOT
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    12 color  .02 .02 .02 .02 dashed
    bg.cal freq cp 1e12 * xy.data.plot freq rp log xy.data.plot
    BG.CMEAS.PLOT
    BG.RMEAS.PLOT
    10 label.color
;
: default.cir
    1.74e5 r1 := 1e6 r2 := 1e2 r3 := 1e9 r4 :=
    1.7e-12 c1 := 15.0e-12 c2 := .1e-12 c3 := 18.3e-12 c4 :=
    1.8e-12 c5 := 90e-12 c6 := 1e-15 c7 :=
    TBG.IMP
;

: tip.cal
fill.matrix
solve.float
;
: default.plot
    default.cir cal.meas.plot
;
: %plot
    0 py [ 1 ] := 100 py [ 2 ] := px  1 px [ 1 ] := 1e8 px [ 2 ] :=
    "  " symbol
    px py 16 label.color xy.auto.plot solid
    14 color solid TIP.CAL freq %vtip xy.data.plot  %vtip %v_ins :=
    11 color
    .5 00 position " O " label
    .4 10 position " 1O " label
    .4 20 position " 2O " label
    .4 30 position " 3O " label
    .4 40 position " 4O " label
    .4 50 position " 5O  " label
    .4 60 position " 6O " label
    .4 70 position " 7O " label
    .4 80 position " 8O " label
    .4 90 position " 9O " label
    .3 100 position " 1OO " label
    1 -5 position " O " label
    1e1 -5  position " 1 " label
    1e2 -5  position " 2 " label
    1e3 -5  position " 3 " label
    1e4 -5  position " 4 " label
    1e5 -5  position " 5 " label
    1e6 -5  position " 6 " label
    1e7 -5  position " 7 " label
    1e8 -5  position " 8 " label
    0.5 -9  position " 1O " label
    5e0 -9  position " 1O " label
    5e1 -9  position " 1O " label
    5e2 -9  position " 1O " label
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    5e3 -9  position " 1O " label
    5e4 -9  position " 1O " label
    5e5 -9  position " 1O " label
    5e6 -9  position " 1O " label
    5e7 -9  position " 1O " label
    5e3 -15 position " FREQUENCY " label
    z3 zstore := 1 z3 := tip.cal freq %vtip
    .01 .01 .01 .01 dashed 12 color xy.data.plot %vtip %v_unins :=
    zstore z3 := z1 zstore :=  1 z1 := tip.cal freq %vtip %vtip %v_gnd :=
    .02 .02 .02 .02 dashed 10 color xy.data.plot zstore z1 := tip.cal
    11 color
    1 105 position " % VOLTAGE DROP FROM TIP TO SAMPLE " label
    5 85 position " SOLID - HEAD/HOLDER INSULATED " label
    5 70 position " SMALL DASHES - HEAD/HOLDER UNINSULATED " label
    5 55 position " LARGE DASHES - HEAD GROUNDED " label
;
: IMP.PLOT \ plots measured & calculated circuit impedance
    standard.graph
    freq.lab cap.lab 1 21 position 16 color " PARALLEL CAPACITANCE (pF) " label
    10 color
    100 9e6 log position " ^ " label
    1e3 1.06e6 log position " ^ " label
    1e4 1.17e5 log position " ^ " label
    1e5 1.3e4 log position " ^ " label
    1e6 1.5e3 log position " ^ " label
    11 color
    100 8.22e6 log position " v " label
    1e3 950e3 log position " v " label
    1e4 106e3 log position " v " label
    1e5 11.7e3 log position " v " label
    1e6 1.39e3 log position " v " label
    5 19 position " log IMPEDANCE VS FREQUENCY " label
    8 18 position " ^ - BIAS TO GROUND THROUGH CABLE (NO HEAD) "
    label
    8 16 position " v - BIAS TO GROUND THROUGH CABLE (HEAD CONNECTED) "
    label
    8 14 position " SOLID LINE - CALCULATED SAMPLE - GROUND IMPEDANCE " label
    14 color solid freq absimp log xy.data.plot
;
: circuit.menu cr
." plot.axes to create specific axes "  cr
." circuit.menu to get menu list " cr
." circuit.diagram to view circuit " cr
." get.values to input new r's & c's  " cr
." default.plot plot head A caps & res's from default values " cr
." cal.meas.plot to plot calculated and measured data " cr
." tip.cal to calculate circuit equivalence and % volt across tip " cr
." %plot to plot % voltage drop across tip " cr
; circuit.menu
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A.2 Asyst program for D/A pulse and sample hold
filename: WAVE. 

_________________________________________________________________

echo.off
normal.display
forget.all
\ This is a program to create a one shot pulse
\ The user will enter initial, pulse step, and final voltages
\   and also ramp and pulse durations

\ Create variables
real scalar initial.val    \ initial dc voltage in volts
real scalar initial.dur    \ time at initial value in msec.
real scalar ramptime.ini   \ present to initial ramp duration in msec.
real scalar pulse.stp      \ delta value oulse step in volts
real scalar pulse.dur      \ time the pulse stays constant in msec.
real scalar final.val      \ the final voltage of the waveform in volts.
real scalar ramptime.fin   \ the time desired from pulse to final dc voltages
integer scalar present.val \ the present digital value of the dc output
integer dim[ 100 ] array ramp.pi \ declare array for ramp to initial value
real scalar c.d1    \ conversion delay for wave1
real scalar c.d2    \ conversion delay for wave2
real scalar c.d3   .5 c.d3 := \ final delay for sample hold
integer dim[ 3 ] array bits \ array for digital pulses
0 0 10 40 window win.top \ create text window top half screen
11 0 24 79 window win.bot \ create text window bottom half screen
0 41 10 79 window win.ur \ create upper right window
0 bits [ 1 ] := 1 bits [ 2 ] := 256 bits [ 3 ] :=

: values.get               \ input values for waveform variables
cr
." Enter initial output value in volts :  "
    #input initial.val :=
cr
." Enter initial output duration in seconds :  "
    #input 1000 * initial.dur :=
cr
." Enter present to initial ramp duration ( 1 msec min ) : "
    #input ramptime.ini :=
cr
." Enter pulse step value in volts :  "
    #input pulse.stp :=
cr
." Enter pulse duration (0.01 < x < 10 msec) :  "
    #input pulse.dur :=
cr
." Enter final output value in volts :  "
    #input final.val :=
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cr
." Enter pulse to final ramp duration (milliseconds)  "   cr
." (If > 5 * " pulse.dur "." "type ." use multiples) : "
    #input ramptime.fin :=
cr
win.ur 12 foreground 0 background screen.clear  cr cr
."    initial.val  (volts) = " initial.val . cr
."    initial.dur  (msecs) = " initial.dur . cr
."    ramptime.ini (msecs) = " ramptime.ini . cr
."    pulse.stp    (volts) = " pulse.stp . cr
."    pulse.dur    (msecs) = " pulse.dur . cr
."    final.val    (volts) = " final.val . cr
."    ramptime.fin (msecs) = " ramptime.fin . cr
win.bot
7 foreground 1 background
;

: r/d  \ scale real values to digital for output
-10.000000 10.000000 d/a.scale ;

dt2820                     \ initialize the type of board to be used
0 0 a/d.template pres.val  \ create an analog to digital template
0 0 d/a.template wave1 \ create a digital to analog template
0 0 d/a.template wave2 \ create a digital to analog template
0 0 d/a.template fixdc \ create a d\a template for setting present voltage
3 digital.template dig \ create digital template, sample-hold control
dig digital.init 256 digital.out
\ Subroutine to set output voltage
: volt.out   cr
." Enter desired output voltage  : " #input cr
r/d fixdc d/a.init d/a.out
;

: present.get         \ read the analog signal on ch0 from analog out ch0
.05 conversion.delay
pres.val a/d.init a/d.in present.val :=
;

: wave.create   \ create arrays for the voltage pulse
values.get
present.get
present.val initial.val r/d ramp.pi []fill
ramptime.fin 5 pulse.dur * <
   if
     " integer dim[ 100 pulse.dur * ] array pulse.constant " "exec
     " pulse.stp initial.val + r/d " "exec
     " pulse.constant := " "exec
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     " integer dim[ 100 ramptime.fin * 2 + ] array ramp.pf " "exec
     " initial.val pulse.stp + r/d final.val r/d " "exec
     " ramp.pf []fill " "exec
     " pulse.constant ramp.pf sub[ 2 ] catenate " "exec
     " integer dim[ []size ] array wave wave := " "exec
  else
    " integer dim[ 1 ] array pulse.constant "  "exec
    " integer dim[ ramptime.fin pulse.dur / ] array wave " "exec
     " initial.val pulse.stp + r/d final.val r/d " "exec
     " wave []fill " "exec
  then
" wave.set " "exec
;
: ramp.set   \ Initialize d/a templates and associate buffers
wave1
reset.das.device clear.template.buffers
" ramp.pi []size template.repeat ramp.pi " "exec
" double.template.buffers cyclic " "exec
ramptime.ini 100 / dup c.d1 := conversion.delay
das.init wave1
;

: condel     \ Calculate conversion delay for pulse and ramp down
ramptime.fin pulse.dur 5 * <
     if  .01
     else pulse.dur
     then
    dup c.d2 := conversion.delay
;

: pulse.set  \ Join buffers to pulse template & set time delay
wave2
reset.das.device
"  clear.template.buffers wave []size template.repeat " "exec
" wave double.template.buffers cyclic " "exec
condel
das.init wave2
;

: wave.set  \ Initialize d/a.templates
ramp.set
pulse.set
;

: repeat.wav   \ form a continuous wave
 cr  ." Type any key to stop "
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begin
    c.d1 conversion.delay das.init wave1
    array>d/a.out
    initial.dur msec.delay c.d2 conversion.delay
    dig digital.init 0 digital.out
    das.init wave2
    array>d/a.out
    dig digital.init 256 digital.out
  ?key
  until
;

: recreate  \ create new waveform
wave1
clear.template.buffers
wave2
clear.template.buffers
 " forget pulse.constant " "exec
screen.clear
 " wave.create " "exec
 " wave.set " "exec
;
: oneshot   \ a one shot output
    c.d1 conversion.delay das.init wave1
    array>d/a.out
    initial.dur msec.delay
    dig digital.init 0 digital.out
    c.d2 conversion.delay das.init wave2
    array>d/a.out
    c.d3 msec.delay
    dig digital.init 256 digital.out
;
: dig.out
    dig digital.init
    0 digital.out c.d1 msec.delay
    1 digital.out c.d2 msec.delay 256 digital.out
;
\ repeat digital outputs
: repeat.dig
    ." Hit any key to stop " cr   dig digital.init
    begin 0 digital.out 1 digital.out c.d2 msec.delay 256 digital.out
    ?key until
;
: trigger
    dig digital.init
    257 digital.out 256 digital.out
;
: menu
win.top   2 foreground 0 background screen.clear
." Type 'wave.create' to create 1st wave "   cr
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." Type 'recreate' to create new wave "  cr

." Type 'repeat.wav' to repeat continuously " cr

." Type 'oneshot' to output only one pulse " cr

." Type 'volt.out' to reset voltage output " cr

." Type 'dig.out' to output digital pulse " cr

." Type 'repeat.dig' to repeat digital pulse" cr

." Type 'trigger' to toggle one digital line" cr
win.bot

;

echo.on cr screen.clear
menu



a. Measurements between tip and ground wire:

freq. (Hz) Cp (pF) Rp (ohms)

100 20.0 996k
1k 19.9 995k
10k 19.86 994k
100k 19.8 933k
200k 19.76 851k
400k 19.72 678k
500k 19.71 590k
600k 19.72 510k
800k 19.72 382k
1M 19.71 291k

_____________________________________________________________

b. Measurements between body and ground wire:

f (Hz) Cp (pF) Rp (ohms)

100 19.8 -----
1k 19.5 -----
10k 19.06 61M
100k 18.75 4.7M
1M 17.98 110k

____________________________________________________________

c. Measurements between tip and body:

f (Hz) Cp (pF) Rp (ohms)

100 18.5 -----
1k 17.6 77M
10k 11.1 5.3M
100k 9.7 3.7M
1M 9.6 988k

Table b-1 . Measured equivalent parallel capacitances (Cp) and resistances (Rp)
for various frequencies. Measurements are taken between two of three
designated points on Nanoscope II head 'A'.

Appendix B

Data Tables
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a. Measurements from tip to connected ground and body:

f (Hz) Cp (pF) Rp (ohms)

100 18.2 996k
1k 20.2 995k
10k 20.3 994k
100k 20.2 943k
1M 20.1 318k

_____________________________________________________________

b. Measurements from body to connected tip and ground:

f (Hz) Cp (pF) Rp (ohms)

100 18.6 -----
1k 18.4 -----
10k 18 >100M
100k 17.7 9.9M
1M 17.4 174k

_____________________________________________________________

c. Measurements from ground to connected tip and body:

f (Hz) Cp (pF) Rp (ohms)

100 35 996k
1k 35 994k
10k 34.6 977k
100k 34.2 830k
1M 33.97 139k

Table b-2 . The measured ac parallel capacitances (Cp) and resistances (Rp) as
a function of frequency between one point of Nanoscope II head 'A' to the
connected other two points. 
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 Additional Graphs of Data  

C.1 Power spectrum plots while tunneling

The figures in this section show additional I(s) and ln[I(s)] characteristics and

power density during tunneling for various tips. The sample was HOPG. The tip

materials are as follows:

Figure c:1 - Palladium

Figure c:2 - Palladium

Figure c:3 - Platinum

Figure c:4 - Platinum

Figure c:5 - Silver

Notice that some of the spectrums have peaks while others do not. Figure c:2

has peaks at multiples of 25 Hz, which could be due to a power line variation or a low

frequency vibration in the isolation system. Figure c:3 has a sharp peak at 300 Hz and

Figure c:4 shows several broad peaks near 200 Hz and 400 Hz The source of the

peaks is undetermined. Since tip sample separation changes on the order of 1

nanometer can change the current by more than 50%, small vibrations can alter the

data significantly. Figure c:5 shows a power spectrum has no visible peaks, which

suggests that there is no inherent vibration of the translation stage. 
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Figure c:1 . (a) Current and it's natural log versus flexure displacement for a
Pd-HOPG system. (b) The power spectrum from the I:V converter for the
maximum current in (a).
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Figure c:2 . (a) Current and it's natural log versus flexure displacement for a Pd-HOPG
system. (b) The power spectrum from the I:V converter for the maximum current in (a).



appendix c-4

Figure c:3 . (a) Current and it's natural log versus flexure displacement for a Pt-HOPG
system. (b) The power spectrum from the I:V converter for the maximum current in (a).
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Figure c:4 . (a) Current and it's natural log versus flexure displacement for a Pt-HOPG
system. (b) The power spectrum from the I:V converter for the maximum current in (a).
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Figure c:5 . (a) Current and it's natural log versus flexure displacement for a Ag-HOPG
system. (b) The power spectrum from the I:V converter for the maximum current in (a).
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C.2 Additional I(s) data from x-ray calibrated tunneling apparatus

This section contains over 50 data sets taken with the x-ray calibrated tunneling

apparatus described in the main body. All data used a piece of HOPG for the sample. Data

sets 1-33 are with several Pt-Ir tips. Data sets 36-42 are with a Pd tip. Data sets 46-56 are wit

an Ag tip. All of the data was taken under room ambient conditions. Noisy data as well as

'good' data are included to show that a given tip can produce varied I(s) curves. Attempts to

use a Cu tip did not produce good tunneling. Each graph contains it's I(s) data along with the

natural log of the current versus flexure displacement. The Ln data also has lines fitted to the

data. All of the line fits were done by the least squares regression in Quattro Pro unless they

have a nc suffix.  Where the slopes have a nc suffix, the best 'eye' fit has been made. The

tunneling biases are included on each graph.

A compilation of the slopes for all of the data sets is given in Figure c:13. The slopes

are marked directly above the data set numbers. The symbols have been chosen to reveal a

possible propensity for certain slope values.
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Figure c:6 . I(s) and the natural log of I(s) curves. Data sets 1-9. The slopes to least
squares fits to the Ln I(s) curves are in nm-1.
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Figure c:7 . I(s) and Ln I(s) of data sets 10-18. The slopes are in nm-1. All slopes were
calculated with a least squares regression unless followed by the suffix nc.
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Figure c:8 . I(s) and Ln I(s) of data sets 19-27. The slopes are in nm-1. All slopes were
calculated with a least squares regression unless followed by the suffix nc.
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Figure c:9 . I(s) and Ln I(s) of data sets 28-33. The slopes are in nm-1. All
slopes were calculated with a least squares regression unless followed by the
suffix nc.
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Figure c:10 . I(s) and Ln I(s) of data sets 36-42. The slopes are in nm-1. All
slopes were calculated with a least squares regression unless followed by the
suffix nc.
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Figure c:11 . I(s) and Ln I(s) of data sets 46-51. The slopes are in nm-1. All
slopes were calculated with a least squares regression unless followed by the
suffix nc.
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Figure c:12 . I(s) and Ln I(s) of data sets 52-56. The slopes are in nm-1. All slopes were
calculated with a least squares regression unless followed by the suffix nc.
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Figure c:13 . Slopes from the natural log of I(s) curves the previous data sets taken with
Pt-Ir, Pd, and Ag tips.
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C.3 Additional I(s) data from Nanoscope II

The next four figures demonstrate the effect of bias and voltage pulsing on I(s)

curves. Each of the figures contains at least two curves for 0.2 nA, 0.5 nA, and 2 nA

currents. Figure appendix c-17 shows curves taken for a -50 mV sample bias and

Figure c:15 shows curves taken for a -500 mV bias. After a extended voltage pulse, the

data of Figures c:16 and c:17 were taken for -50 mV and -500 mV, respectively.        

The data shows the -500 mV curves to be steeper than -50 mV curves at a given

time, but if the tip is altered by something such as the voltage pulse the I(s) curves can

change dramatically. In this case the curves became steeper after the application of an

extended several volt pulse.
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Figure c:14 . I(s) curves taken with a -50 mV bias starting at currents of 0.2 nA, 0.5 nA,
and 2.0 nA. Slopes of the Ln I(s) data are shown in nm-1.
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Figure c:15 . I(s) curves taken with a -500 mV sample bias for currents of 0.2 nA, 0.5
nA, and 2 nA. Slopes are shown on the Ln I(s) data in nm-1.
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Figure c:16 . I(s) curves taken after a several volt extended bias. Taken with a -50 mV
sample bias for currents of 0.2 nA, 0.5 nA, and 2 nA. Slopes are shown on the Ln I(s)
data in nm-1.
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Figure c:17 . I(s) curves taken after a several volt extended bias. Taken with a -500 mV
sample bias for currents of 0.2 nA, 0.5 nA, and 2 nA. Slopes are shown on the Ln I(s)
data in nm-1.



Appendix D 

Carbon Resonance Discussion

Carbon is capable of forming single or multiple bonds with itself and other elements

enabling it to form over a million compounds. Diamond is the hardest carbon structure with all

four valence electrons forming sp3 hybridized bonds. Carbon is also capable of forming

resonance1 hybrid structures in which the true state of a molecule is intermediate between two

or more different valence bond structures.

Quantum mechanically, resonance structure can be described as a weighted linear

combination of possible molecular wave functions with the weights chosen to minimize the

energy. Benzene (C6H6), pyridine, and pyrazine are examples of simple molecules in which

resonance occurs. Properties of benzene can not be accounted for by simply assigning a

valence bond structure with three carbon double bonds (C=C) and three carbon single bonds

(C-C). The benzene bond lengths can only be accounted for by a resonance structure in which

the six CC bonds have a 50 per cent double bond character. The four free pz electrons of

butadiene are capable of forming four different bond structures (H2C=CH-CH=CH2 for example),

two of which dominate the resonance characteristics. Graphite is a sp2 hybridized allotrope of

carbon in which three of the four carbon valence electrons form trigonal covalent bonds ()

bonds) with 120o angles separating them. The fourth valence electron, pz type, has been

described as forming hexagonal shaped resonance hybrid bonds, with each CC bond having a

1/3 double bond character2. Observed bond lengths of 1.415 Å confirm the resonance nature

for graphite since CC single and double bonds would have lengths2 of 1.54 Å and 1.34 Å,

respectively. The interlayer bonding of graphite is thought by many to be caused by London

forces (dipole interaction) although others consider it metallic or weakly covalent2. Graphite's

resonance nature allows the pz electrons to move easily within any layer causing it to appear

metallic in a direction parallel to the layers. The conductance of graphite within a layer can be

as much as 104-105 times as great as the conductance between layers for a natural, highly

perfect, single crystal.2 Defects between layers may explain any bulk conductance

perpendicular to the layers. The conductance within the layer is considered to be caused
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1 Pauling, L., The Nature of the Chemical Bond, 3rd ed., (Cornell, Ithica, 1960) pp.
10, 222, 224, and 228.

2Wheland, G. W., Resonance in Organic Chemistry (Wiley, New York, 1955).

entirely by the % bands (which lie in the level of the chemical potential) with the ) orbitals not

contributing to the conductivity.2
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