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Abstract: It is now well-appreciated that a bandlimited 
wave can possess oscillations much more rapidly than 
those predicted by the bandlimit itself, in a phenomenon 
known as superoscillation. Such superoscillations are 
required to be of dramatically smaller amplitude than 
the signal they are embedded in, and this has initially led 
researchers to consider them of limited use in applica-
tions. However, this view has changed in recent years and 
superoscillations have been employed in a number of sys-
tems to beat the limits of conventional diffraction theory. 
In this review, we discuss the current state of research on 
superoscillations in terms of superresolved imaging and 
subwavelength focusing, including the use of special non-
diffracting and Airy beams to carry transverse superoscil-
lating patterns. In addition, we discuss recent analogous 
works on using superoscillations to break the temporal 
resolution limit, and also consider the recently introduced 
inverse of superoscillations, known as suboscillations.

Keywords: superoscillations; singular optics; superreso-
lution; imaging.

1   Introduction
Traditionally, it has long been assumed that a bandlimited 
signal has a maximum oscillation frequency, in space or 
in time, naturally dictated by the largest frequency in the 
band. For example, if a temporal signal f (t) is bandlim-
ited, such that its Fourier spectrum,
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is identically zero outside the range −Δ ≤ ω ≤ Δ, then con-
ventional wisdom suggests that the signal itself will have no 

oscillations with a period shorter than 2π/Δ. However, it is 
now well recognized that this is not a strict limit, and it is 
possible for a signal to possess superoscillations, i.e. regions 
in which the local frequency is larger, in principle arbitrarily 
larger, than the highest nonzero frequency in the band.

An understanding of such superoscillations comes from 
the recognition that the zeros of a function may be packed 
arbitrarily close together, regardless of the bandwidth of the 
function itself. The space between a pair of closely-spaced 
zeros represents a half-oscillation of a signal, and therefore 
the half-period of a function may be made arbitrarily small. 
Furthermore, as many zeros as desired may be placed near 
each other, in principle resulting in as many superoscilla-
tions as desired in a given region.

These superoscilations come with a cost, however. 
The amplitude between a pair of closely-spaced zeros is 
small compared to that of the surrounding function; in 
fact, it gets even smaller the closer the zeros are packed. In 
an early introduction to the concept of superoscillations, 
Berry [1] estimated that reproducing Beethoven’s Ninth 
Symphony using superoscillations in a 1 Hz bandlimited 
signal would require a background signal amplified by a 
factor of 1019, which is clearly impractical as a signal-com-
pression technique.

The extremely low amplitude of superoscillations 
seemed, at first, to relegate them to the status of mathe-
matical curiosity, with no practical application. Neverthe-
less, in recent years numerous researchers have explored 
using the phenomenon to improve the focusing character-
istics of imaging systems, and even the resolution of such 
systems. Historically, superresolution has been achieved 
through the use of evanescent waves that carry high spa-
tial-frequency oscillations of an illuminating wavefield; as 
such evanescent waves only appear close to a source or an 
imaged sample, the use of near-field probes is necessary 
[2]. Superoscillations offer the possibility of producing a 
subwavelength focal spot far from the source, but require 
additional considerations to deal with the high intensity 
sidelobes associated with them.

A short history of the subject is worth summarizing, 
as many insights come from some of the earliest works. 
The first results originated in the theory of linear antenna 
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arrays in the 1940s, as studied by Schelkunoff [3]. A linear 
array is one in which a finite number of identical, equally-
spaced antennas are arranged along a straight line; the 
only difference between elements of the array are their 
relative amplitudes and phases. In laying out an elegant 
mathematical theory, Schelkunoff noted that it is possi-
ble to make arrays that have, apparently, arbitrarily high 
directionality. This is done by packing zeros of the radia-
tion pattern (known as the “cones of silence”), densely 
around the directional peak. In essence, the zeros are 
used to push the sidelobes of the radiation pattern out of 
the regime of the propagating waves. This work received 
much attention and led to the search for the highest direc-
tionality that can be achieved for such a strategy; in 1946, 
Bouwkamp and de Bruijn demonstrated [4] that there is 
no “optimal” solution to the problem, implying that there 
is no upper limit to directionality, at least within the con-
straints of the problem as stated. 

New constraints were soon found. In 1948, Woodward 
and Lawson [5] pointed out that the amount of current 
required in the individual elements becomes impracti-
cal for all but the most modest improvements in directiv-
ity; this was later confirmed by Yaru [6]. In essence, the 
sidelobes that are pushed out of the propagating region 
of the antenna pattern become massive and represent a 
massive reactive current contribution. Nevertheless, in 
1952, Toraldo di Francia drew an analogy between these 
so-called super-gain antennas and the resolving power of 
optical systems [7], hinting at the possibility of superreso-
lution in optics.

The existence of rapid oscillations of a bandlimited 
signal was next noted in the context of signal processing. 
For example, in 1977, Khurgin and Yakovlev argued [8] that

We thus arrive at the conclusion that one can transmit a signal 
of arbitrarily high frequencies by means of a low-frequency 
signal. To do this, however, the total energy of the transmitted 
low frequency signal must grow.

This description points out the advantages and disad-
vantages of superoscillations already discussed. In 1986, 
Landau [9] looked at the possibility of extrapolating a 
band-limited function from a collection of oversamples. 
He noted that, due to the possibility of close-packed zeros, 
it is necessary to add additional constraints to make the 
problem a well-posed one. In essence, any set of overasm-
pling points may coincide with the zeros of a superoscilla-
tory function; obviously, that function would not provide 
any contribution to the extrapolation. To overcome this 
issue, Landau required that the energy of the total signal 
be bounded – a strategy that would restrict the size of any 
superoscillating components of a solution.

As a wave phenomenon of purely physical interest, 
superoscillations were first considered by Aharonov et al. 
in the introduction of weak values of a quantum variable 
[10]. In a follow-up study, they theoretically demon-
strated [11] a method to obtain a superposition of differ-
ent Hamiltonian time evolution operators, and showed 
that this method can act effectively like a single evolu-
tion operator whose behavior was completely out of the 
range of the original set of operators. This is a quantum 
operator analogy of adding together a collection of time-
harmonic signals to get a signal that oscillates faster 
than any of its components. Aharonov pointed out this 
work to Michael Berry, who wrote a paper dedicated to 
Aharonov [1], in which he popularized the term “supero-
scillations,” and this paper led to broader recognition of 
the phenomenon.

For the next decade, there was relatively little discus-
sion of superoscillations in the literature. Among several 
papers of note is the 2000 work by Kempf [12], in which 
he considers further the possibility of data compression 
with superoscillations – Beethoven at 1  Hz – and also 
demonstrates an uncertainty relation for bandlimited 
functions that accounts for superoscillations. Further 
investigations of the basic mathematics of superoscilla-
tions were presented by Calder and Kempf [13] and Fer-
reira [14].

In 2006, Berry and Popescu [15] presented the first 
discussion of superresolution via superoscillations, in 
which they demonstrate that superoscillations are sur-
prisingly robust on propagation and therefore can carry 
sub-wavelength structure beyond the range of evanes-
cent waves. Spurred by this insight, multiple researchers 
began in earnest to investigate the possibility of using 
superoscillations in applications, and this is the subject 
of the current review.

In this article, we will discuss the progress made 
in the application of superoscillations to nano-optics 
imaging applications. In Section 2, we introduce the basic 
mathematics of superoscillations, providing a variety of 
different examples and methods of constructing such 
oscillations. In Section 3, we review the use of superos-
cillations in the production of subwavelength focal spots. 
In Section 4, we look at the progress made in using sup-
eroscillations in superresolved imaging. In Section 5, we 
review the structured beams that have been designed 
to carry superoscillations without diffraction over long 
distances. In Section 6, we look at notable advances in 
superoscillations, including the development of comple-
mentary “suboscillations” that oscillate slower than the 
lowest frequency in the band. Finally, in Section 7, we 
present some concluding remarks.
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2   Mathematics of superoscillations
There are many mathematical techniques for illustrat-
ing and designing superoscillations in waves. In this 
section, we look at a number of these techiniques, as 
different models have proven to be useful in different 
circumstances.

We begin with the precursor to superoscillations, 
namely, super-gain in antennas; more information can 
be found in Berry [16]. The geometry of a linear antenna 
array is illustrated in Figure 1. There are N identical 
antennas arranged along a straight line; the first antenna 
is labeled 0 and the last antenna is therefore labeled 
N–1. The radiation pattern of the antenna includes the 
response of an individual antenna as well as the interfer-
ence effects between them. In the far zone, the individual 
response factors out of the expression for the field and we 
may focus on the interference pattern, called the “space 
factor” in the original work. Each antenna is assumed to 
have a progressive phase delay of −Δφ relative to its left 
neighbor, which allows one to tune the direction of the 
central lobe of the radiation pattern. When the radiation 
pattern is observed in the far zone at an angle θ, each 
antenna has a propagation phase kl cosθ relative to its 
left neighbor. The shape of the radiation pattern can be 
tuned by adjusting the relative amplitude and phase of its 
constituent elements, represented by a complex number 
an. The total space factor U(θ) for the entire array may be 
written as

 

θ ∆φθ
− −

−∑ ∑
1 1

( cos )

=0 =0
( ) = = ,

N N
in kl n

n n
n n

U a e a z  (2)

where we used z ≡ exp[i(kl cosθ − Δφ)].
As 0 ≤ θ ≤ π, the argument of z ranges from 

−kl − Δφ ≤ arg{z} ≤ kl − Δφ. Given that |z | = 1, the values of 
z represent an arc on the unit circle. If the elements are 
spaced by a half-wavelength, i.e. l = λ/2, then z covers 
the entire unit circle; for smaller spacings, the range is 
smaller.

This formulation, by Schelkunoff [3], is a remarkably 
elegant way to characterize any linear array in terms of 
analytic polynomials whose properties are well-under-
stood. By the fundamental theorem of algebra, an array 

of N elements may always have its space factor written, 
within a multiplicative constant, in the form

 −= − −1 1( ) ( ) ( ),NU z z z z z  (3)

where z1, … zN−1 are the zeros of the polynomial. If those 
zeros lie on the unit circle, they potentially represent zeros 
of the radiation pattern, but only if they lie in the range of 
the argument of z.

By choosing the position of these zeros appropriately, 
one can significantly improve the directionality of an 
array. Let us restrict ourselves now to the case l = λ/4; the 
range of z-values, therefore, covers half of the unit circle. 
We further take Δφ = kl, which places θ = 0 at z = 1, and 
makes the range of z the lower half of the unit circle; this 
is the case of an end-fire antenna.

We now consider the radiation patterns of two anten-
nas. The simplest example is a uniform array, for which 
an = 1. The space factor is just a finite geometric series, and 
may be written as
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For this array, the zeros are the nth roots of z, and are 
equispaced around the unit circle. In terms of intensity, 
the space factor may be written as
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where ψ =(cosθ − 1)π/2 is the argument of complex z. 
The peak value will be at θ = 0, and the first zero of the 
radiation pattern will appear when z = exp[ − 2πi/N], or 
cosθ = 1 − 4/N.

However, as Schelkunoff noted, we can improve the 
directionality of the array by compressing all of the zeros 
of the function into the lower half of the unit circle, with 
a space factor

 
π π π− − − −= − − −/ 2 / ( 1) /( ) ( )( ) ( ).i N i N N i NU z z e z e z e  (6)

An illustration of the radiation patterns of a uniform 
array and the compressed array are shown in Figure 2. One 
can see that the array with compressed zeros has a nar-
rower primary peak as well as smaller sidelobes, indicat-
ing a significant overall improvement in directionality.

An illustration of the cost of this improvement is 
shown in Figure 3. Plotting the space factor for the entire 
argument of z, which includes both the propagating com-
ponents and the evanescent components of the field, one 
sees that there is a huge peak for the compressed array in 
the evanescent region. In order for the compressed array to 
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Figure 1: The notation related to a linear antenna array.
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have the same peak radiated power as the uniform array, 
one must put more total power into the compressed array 
overall. Essentially, this same issue appears for superos-
cillations in optical waves at finite propagation distances.

The first illustrative model of superoscillations in 
optics was presented by Berry [1], based on an argument 
by Aharonov. We consider the function

 δδ π

∞

−∞

 
= − − 

 
∫ ( ) 2

2
1 1( ) exp ( ) ,

22
ik u x

cg x e u iu du  (7)

where

 + 2
1( ) = ,

1
k u

u  (8)

and δ and uc are real-valued parameters. Here, the expo-
nential exp[ik(u)x] looks roughly like a Fourier kernel with 

a maximum spatial frequency of unity; by an  appropriate 
coordinate transformation, the entire integral can be 
rewritten as a function bandlimited with |k | < 1. The 
second exponential is of Gaussian form, with the center 
of the Gaussian in the complex plane at position iuc. As 
δ → 0, this function will act like a Dirac delta function, 
centered on the imaginary axis. The argument proposed 
by Aharonov is that this delta will nevertheless effectively 
“sift” out this complex part of the integral, resulting in 
a function locally oscillating with a spatial frequency 
expressed as

 
≈

− 2
1( ) .

1c
c

k iu
u  (9)

Clearly, with 0 < uc < 1, this results in oscillations that 
are faster than those allowed by the bandlimit (i.e. supero-
scillations). In fact, we may see superoscillations for any 
|uc | < 2, with |uc | ≠ 1. Berry demonstrated through asymp-
totic analysis that these superoscillations do, in fact, arise 
for g(x) for sufficiently small δ.

A much simpler model of a superoscillatory func-
tion was presented by Qiao [17]. It follows from the Paley-
Wiener theorem that a function bandlimited in k-space 
is entirely analytic in x-space; from this, one can readily 
prove that changing the x position of a zero by a finite 
amount does not affect either the analytic properties of 
the function or its bandwidth. Then, any bandlimited 
function with known zeros may be made into a supero-
scillatory function by moving those zero positions. For 
example, the sinc function
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is a bandlimited function with constant spectrum in the 
range −π ≤ k ≤ π. Given that the zeros are well-defined by 
the rightmost part of this expression, a finite number N of 
them may easily be shifted closer together by a factor of 
α > 1 to make a superoscillatory function g(x) of the form
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The superoscillations will appear in the regime, where 
–N/α ≤ x ≤ N/α, as can be directly seen from the placement 
of zeros.

A simple example of this behavior, with N = 2 and 
α = 4, is shown in Figure 4. The natural period of the sinc 
function is Δx = 2; however, that period has quadrupled 
within the region of superoscillations. However, as can 
be seen from the right side of the figure, which shows the 

0 –1 –2 –3 –4 –5 –6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
B

ψ

Visible
power

Reactive
power

|S
 (

ψ
)|

Figure 3: The space factors for (A) a uniform array of 6 elements and 
(B) an array of 6 elements with compressed zeros, as a function of 
argument of z.
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Figure 2: The space factors for (A) a uniform array of 6 elements and 
(B) an array of 6 elements with compressed zeros.
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complete vertical scale, the function g(x) has extremely 
large sidelobes flanking the region of superoscillation.

One can argue that this arises from the mismatch of 
the zero-shifted polynomials with the original polynomi-
als. To see this, we note that g(x) may also be written as
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Asymptotically in x, the ratio of polynomials will tend 
to α2N, and the function will appear as the original sinc 
function scaled by this amount. However, for the interme-
diate values of x, the numerator will blow up to extremely 
large values.

An extremely simple superoscillatory function was 
discussed in detail in 2006 by Berry and Popescu [15], 
though it was first introduced by Aharonov et  al. [10]. 
Sometimes referred to as the canonical superoscillatory 
function, today, it is of the form

 = +( ) (cos sin ) ,Ng x x ia x  (13)

with N  1 and a > 1. It is trivial to see that this function 
may be written in a Fourier series representation, where 
the fastest oscillations have a spatial frequency N, due to 
the appearance of (cos x)N and (sin x)N. If we consider its 
behavior near x = 0, however, we may approximate cos x 
and sin x by the lowest order terms of their Taylor series, 
and write

 ≈ + = + ≈( ) (1 ) exp[ log(1 )] exp[ ],Ng x iax N iax iaNx  (14)

where we further use the Taylor series approximation of 
the logarithm function. This function, therefore, exhibits 
superoscillations, and it is a simple enough function to 
evaluate many of its properties analytically. To do so, it is 
convenient to rewrite the function in a different analytic 

form, as Berry and Popescu did. We first express this in 
terms of an amplitude and phase term

 ψ
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Then the argument of the phase term is expressed as
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We write this argument as an integral
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If we define k(x) to be a local wavenumber of the 
form,
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+2 2 2( ) ,
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ak x
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then it can be seen in a straightforward manner that we 
may write
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From the definition of k(x), the fastest oscilla-
tions (at x = 0) have a local wavenumber kmax = aN, or a 
zero spacing Δxmin = π/(aN). The slowest oscillations (at 
x = π/2) have a local wavenumber kmin = N/a, and a zero 
spacing Δxmax = πa/N. The amplitude in the region of the 
fastest oscillations can be found to be approximately 
unity, and the amplitude in the region of the slowest 
oscillations is aN.

From Eq. (19), it is clear that we can define a local fre-
quency operator κ(x), which is of the form
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Figure 4: The sinc function f(x) and the superoscillatory version g(x) with N = 2, α = 4, plotted with two different vertical scales.
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κ

 
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 
( ) Im log( ) ,dx

dx  (20)

and takes the function g(x) as its argument and provides 
a local value of the spatial frequency at the point x. This 
operator can be used to find the local superoscillatory 
regions of a waveform, and it has become a standard tool 
in such investigations.

The function g(x) is illustrated in Figure 5 with a = 3, 
N = 20. It is plotted on a semilog scale in order to clearly 
see those positions at which the amplitude drops dramati-
cally, indicating a zero-crossing. The predicted maximum 
amplitude for this case is aN = 3.5 × 109, which is in agree-
ment with the figure. Notably, the function is periodic, and 
by looking at a larger region, as in Figure 5B, one can see 
that the superoscillations are mixed in with the natural 
period of the functions sin x and cos x.

In hindsight, superoscillations have been hiding in 
plain sight for decades, in the form of prolate spheroi-
dal wave functions (PSWFs), as pointed out by Ferreira 
[14]. The PSWFs were studied extensively in the 1960s by 
Landau, Pollack and Slepian [18, 19]; a modern discussion 
of their behavior was written by Moore and Cada [20]. Let 
us consider functions in x, k space. For a given bandlimit 
Δk, such that |k | ≤ Δk and an arbitrary interval Δx in space, 
it can be shown that one can find a countably infinite set 
of functions ψn(c, x), n = 0, 1, 2, …, where c = ΔkΔx, such 
that
1. The ψn(c, x) are bandlimited, orthonormal and a com-

plete set over the real line −∞ < x < ∞, with

 
ψ ψ δ

∞

−∞

=∫ ( , ) ( , ) .n m nmc x c x dx  (21)

2. Over the interval −Δx ≤ x ≤ Δx, the functions are 
orthogonal and form a complete set, with
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where λn(c) is an eigenvalue of the sinc operator
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3. The number of zeros in the interval −Δx ≤ x ≤ Δx is 
equal to n.

This last property indicates the existence of superoscilla-
tions. This is because the number of oscillations in a finite 
interval increases linearly with n, inevitably resulting in 
superoscillations beyond some critical value of n. The 
PSWFs are relatively obscure in optics, which is likely due 
to their complicated nature compared to other orthogonal 
expansions. They have been applied successfully in sup-
eroscillation-based imaging, as we will soon see.

Perhaps the most elegant method for demonstrating 
the feasibility of superoscillations, and prescribing them 
readily, was introduced by Chremmos and Fikioris [21] in 
2015. Let us imagine that we have a function f(x), which 
is bandlimited to |k | ≤ 2π, i.e. =( ) 0f k  outside the range 
−2π ≤ k ≤ 2π. We introduce a new function g(x) by multi-
plying f(x) by a finite polynomial expressed as
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where the coefficients are arbitrary. According to elemen-
tary Fourier theory, the spectrum ( )g k  of the function g(x) 
is given by
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Provided the first N − 1th derivatives of ( )f k  are con-
tinuous, the function ( )g k  will be well-behaved and have 
exactly the same range as ( ).f k  The polynomial is essen-
tially arbitrary, and it is clear that we can choose the 
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Figure 5: The Berry-Popescu superoscillating function with a = 3, N = 20, for a range (A) −0.5 ≤ x ≤ 0.5 and (B) −5.5 ≤ x ≤ 5.5.
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coefficients an to place the zeros of the function at any 
position in x, even arbitrarily close together. Therefore, 
this method by Chremmos and Fikioris allows one not only 
to prove the existence of superoscillations, but to design 
functions with any desired superoscillatory pattern.

A very simple example is shown in Figure 6, with the 
polynomial

 − −2 2 2 2( )( 4 ),x x a x a  (26)

with a = 1, and the spectrum

 

π ≤=  >


5[cos( / 2)] , | | 1,
( )

0, | | 1.
k k

f k
k  (27)

The maximum spatial frequency that appears in the 
function is k = 1, which corresponds to a period of 2π and 
a zero spacing of π; however, the zeros of the polynomial, 
which represent superoscillations, are spaced by unity.

It is important to acknowledge that we have, by no 
means, exhausted the possible methods of creating sup-
eroscillations. Chojnacki and Kempf [22] introduced 
even more techniques in a recent article by including 
methods for making superoscillatory functions multipli-
catively, which are either periodic or square integrable. 
The authors further introduced a strategy for designing 
quantum potentials possessing at least one superoscilla-
tory eigenstate. In 2013, Katzav and Schwartz [23] intro-
duced a method for optimizing the superoscillatory yield 
of a signal, given a fixed range and frequency for the 
superoscillations.

It should be noted that we have, so far, restricted 
our discussion to superoscillations in one-dimensional 
systems. However, superoscillations can also be demon-
strated in higher-dimensional bandlimited waves, such as 
free-propagating paraxial beams. The typical zeros of scalar 
wavefields, which manifest as lines of zero intensity in a 
three-dimensional (3D) space, have a circulating or helical 
phase structure that has led to them being called optical 

vortices [24]. Under perturbation, an Nth order vortex can 
break into N 1st order vortices on propagation, and it is 
clear that those zeros are arbitrarily close together during 
the breakup. Optical vortices are generic, or typical features 
of scalar waves, and when there are many zeros present in a 
wave, superoscillations are inevitable. For example, it was 
demonstrated by Dennis, Hamilton and Courtial [25] that 
1/5 of the cross-sectional area of a random speckle field 
may be considered superoscillatory, i.e. have a local wave-
number higher than the free-space wavenumber k. Similar 
results were shown by Berry and Dennis for isotropic 
random waves of an arbitrary number of dimensions [26].

As shown by Smith and Gbur [27], the method of 
Chremmos and Fikioris can be extended to design supero-
scillations in the transverse plane of a bandlimited optical 
field. Locally, a generic left-handed optical vortex line, of 
total order N which is parallel to the axis of propagation, is 
expressed as η = x + iy by introducing a polynomial of the 
form

 
η η= ∑

=0
( ) ,

N
n

n
n

h a  (28)

and one can place vortices in a transverse bandlimited 
field f(x, y) by the multiplication

 η=( , ) ( ) ( , ).g x y h f x y  (29)

In spatial frequency space, the spectrum ( , )x yg k k  is 
given by the expression,

 

 ∂ ∂+ 
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( , ) = ( , ).
n

N
n

x y n x y
n x y

g k k a i i f k k
k k  (30)

We may generalize the function h(η) of Eq. (28) to 
include the right-handed vortices of the form η* = x − iy by 
multiplying it by its own polynomial in η*. We may further 
include vortices of any orientation by using polynomial 
terms of the form η = +ˆ ,x iby  with b a real number.
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Figure 6: The superoscillatory function designed by the Chremmos and Fikioris method, showing (A) ( )g k  and (B), (C) different views of the 
function g(x).
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Such superoscillations in the transverse plane of an 
optical field are relevant in focusing and superresolution. 
By the close-packing of zeros, one can create localized 
spots of arbitrarily small width. However, the intensity 
of such spots will decrease along with the width, and 
be accompanied by the bright sidelobes characteristic of 
superoscillations.

3   Subwavelength focusing
In the application of superoscillations to imaging, we 
note that there are two distinct but related problems to 
consider. The first of these is the creation of a subwave-
length bright spot, or focus, in a non-evanescent regime 
through the use of superoscillations; the second is the 
development of techniques to use such spots to extract 
information about an image with resolution exceeding 
the classical diffraction limit. Here, we consider the first 
problem and defer the more subtle question of superreso-
lution to the next section.

Through an analogy between quantum revivals and 
the Talbot effect, in 2006, Berry and Popescu [15] noted 
that superoscillations can appear when the light is dif-
fracted by a periodic grating, under appropriate condi-
tions. In short, a grating can have its structure and period 
d chosen to mimic the function g(x) given by Eq. (13), but 
without any evanescent waves contributing to the pattern; 
the field is, therefore, superoscillatory immediately after 
passing through the grating. However, an infinite periodic 
grating produces perfect images of itself at multiples of 
the Talbot distance zT = 2d2/λ, which means that the sup-
eroscillatory pattern at the grating can be reproduced 

at propagation distances that are multiple wavelengths 
away. This perfect imaging breaks down outside of the 
paraxial approximation, but Berry and Popescu showed 
numerically that superoscillations, nevertheless, persist 
over long propagation distances.

In order to produce a superoscillatory spot, which 
is localized in a two-dimensional (2D) transverse plane, 
one would analogously expect that one needs to choose 
a grating for which Talbot-like effects are strong. In 2007, 
Huang et al. [28] considered the diffraction of light by a 
quasicrystalline array of nanoholes in an aluminum film. 
The array was designed to have an approximate tenfold 
symmetry, and consisted of 14,000 holes in total.

The quasicrystalline array is used because it has long 
been known [29] that Talbot imaging is optimized when 
all spatial frequencies of the source field lie upon a circle 
in k-space centered on the origin. The reciprocal lattices 
of quasicrystals do not perfectly satisfy this condition, but 
have N-fold rotational symmetry about the origin, with 
sets of bright spots located on circles of varying radii, 
making them better candidates than rectangular arrays.

Using light with wavelength λ = 660 nm, the diffraction 
pattern was measured approximately 5 μm from the array, 
well outside of the regime where evanescent waves would 
play any role. A pattern of isolated, extremely narrow 
bright spots was observed. A scanning near-field optical 
microscope (SNOM) was used to map the field intensity, 
and elliptical spots of a size roughly 0.54 λ × 0.30 λ were 
observed.

The use of an SNOM tip limits the usefulness of this 
first approach, but soon after, Huang et al. demonstrated 
[30] that the superoscillatory can be directly imaged by 
a microscope and mapped into the far-field. Several pat-
terns are shown in Figure 7. At certain distances, extremely 

Figure 7: The photonic carpets at wavelength λ = 500 nm seen with a conventional microscope, over an area 20 × 20 μm2.
The distances are (A) z = 7 μm and (B) z = 8.5 μm. Insets show the superoscillatory hotspots. After [30].
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narrow low intensity spots surrounded by a high-intensity 
halo, characteristic of superoscillations, can be seen.

A quite different strategy for creating a subwavelength 
focal spot was introduced by Wong and Eleftheriades in 
2010 [31], using Schelkunoff’s superdirective antenna 
design as a basis. Instead of starting with a discrete set 
of sources in the spatial domain, they instead assumed a 
discrete set in the spatial frequency domain, of the form

 
δ ∆

−

=

= − +∑
1

src 0
0

( ) ( ),
N

x n x x
n

U k b k n k k  (31)

where kx is the transverse wavenumber, Δk = 2k0/N and 
k0x = k0(N − 1)/N. This results in N equally-spaced spec-
tral lines in the range of propagating plane waves, with 
–k0 ≤ kx ≤ k0.

In the image plane, the field is taken to be of the form,

 

−
−

=

= ∑
1

0
img

0
( ) ,

Nixk nx
n

n
U x e a w  (32)

with w = exp[ixΔk]. As in the case of superdirective anten-
nas, the coefficients of an may be placed in such a way as 
to create a subwavelength-size focal spot.

Next, we apply a backpropagation algorithm. First, 
we determine the image field in the spatial frequency 
domain,
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π

∞ −
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= = − +∑∫
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img img 0
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1( ) ( ) ( ),
2
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x n x x

n
U k U x e dx a k n k k  (33)

already analogous to Eq. (31). As  img( )xU k  represents the 
spectrum of plane waves with transverse wavenumber kx, 
we may backpropagate it through multiplication by an 
inverse propagator, so that
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−
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= − +∑
1

src 0
0

( ) ( ),
N ik zz

x n x x
n

U k a e k n k k  (34)

where = −2 2
0 .z xk k k  Therefore, a choice of source coeffi-

cients bn = an exp[ − ikzz] will produce the desired supero-
scillatory focal spot at distance z. The spatial distribution 
of the source should then be

 

∆
−

− −∑
1 ( )0

src
=0

( ) = ,
N i n k k x ik znz

n
n

U x a e e  (35)

where ∆= − −2 2
0 0( ) .nz xk k n k k

The disadvantage of this simple approach is that the 
field in the source domain is of infinite extent, due to the 
localization of the spatial frequencies. To demonstrate the 
effectiveness of their technique, Wong and Eleftheriades 
instead considered such an approach for modes in a 2D 
metal waveguide. If we take the width of the waveguide to 
be d, and treat the waveguide as having infinite conductiv-
ity, then we arrive at the following boundary condition for 
symmetric waveguide modes:

 

 
=  

cos 0,
2
xk d

 (36)

or a discrete spectrum of modes with

 

π+= (2 1) .x
nk

d  (37)

Let us consider the case where d = 2λ; then only the 
n = 0, n = 1 symmetric modes appear. The n = 0 mode only 
has zeros on the boundary of the waveguide; the n = 1 mode 
has an additional set of zeros. By choosing the weights of 
these two modes appropriately, we can place these zeros 
as close to the center axis of the beam as possible.

As a simple example, we take the modes to be simple 
cosine functions, and choose weights a0 = −0.85, a1 = 1. 
Figure 8 shows the intensity of the total field in the image 
plane and the source plane. The intensity of the field 
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Figure 8: The superoscillatory function designed by the Wong and Eleftheriades method, showing both the intensity in the image plane and 
the source plane.
The waveguide is taken to have d = 2λ, and z = 5λ. The dashed line indicates the oscillation of the highest propagating mode of the 
waveguide.
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in the image plane, compared with the intensity of the 
n = 1 mode, shows that we do, in fact, have a superoscilla-
tion in the center of the pattern.

With only a small number of propagating modes 
excited in the waveguide, it is a relatively straightfor-
ward exercise to design a source that provides the proper 
weights. In both simulations and later experiments [32], 
Wong and Eleftheriades used a waveguide with d = 3λ, and 
used 5 line sources to generate the appropriate excitation; 
excellent agreement between theory and experiment was 
found.

As the Wong-Eleftheriades method shows, it is possi-
ble to design source fields that produce superoscillations 
at multi-wavelength distances from the source plane. The 
most natural, and now common, method to produce sup-
eroscillatory spots follows from this observation, and is 
the construction of superoscillatory lenses (SOLs), which 
modulate the amplitude and phase of an incident field to 
produce a subwavelength focal spot.

The first design of a superoscillatory lens was a one-
dimensional lens introduced by Huang and Zheludev in 
2007 [33], using the prolate spheroidal wavefunctions as a 
basis; the design principle may be summarized as follows. 
Given that superoscillations are known to have strong side-
bands, one can create a hotspot of prescribed shape in the 
regime −Δx ≤ x ≤ Δx. The bandwidth of the field is naturally 
limited to only propagating fields, −Δk ≤ k ≤ Δk. We may 
choose to expand the target wavefield using PSWFs with 
those constraints, with c = ΔxΔk; the PSWFs are naturally 
orthogonal over the finite x domain. Therefore, we write
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= ∑img
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( ) ( , ),
N

n n
n

U x a c x  (38)

where the coefficients an can be found from the orthogo-
nality relations between the PSWFs ψn (c, x). Then, as 
in the aforementioned Wong-Eleftheriades method, we 
convert this to a spatial frequency spectrum by Fourier 
transform
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Therefore, we have
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Now, as before, we backpropagate each of these ele-
ments to obtain the source distribution
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Finally, the source field Usrc(x) can be found by taking 
the inverse Fourier transform of the above. If the illuminat-
ing field is a normally incident plane wave, then the trans-
mission function t(x) should be chosen as t(x) = Usrc(x).

The design of SOLs that operate in a 3D space is much 
more involved. In 2012, Rogers et al. introduced a radial 
binary mask that can create a superoscillatory hotspot 
surrounded by a high-intensity ring [34]; the details of its 
use in imaging are described in the next section. The lens 
was designed using an evolutionary algorithm known 
as the binary particle swarm optimization [35], which 
resulted in a lens of 25 transparent regions. Then, under 
illumination by a laser with λ = 640 nm, the mask gener-
ated a focal hotspot with a diameter of 185 nm at a dis-
tance of 10.3 μm.

An SOL designed by the previous strategy will produce 
a hotspot at a very specific propagation distance, and it 
will be surrounded closely by intense sidebands that limit 
its usefulness for applications. Drawing inspiration from 
the Arago spot formed behind a uniformly-illuminated 
opaque disk, Rogers et al. designed [36] an SOL with an 
obstructed center; the result is a “super-oscillatory optical 
needle,” which has an extended superoscillatory bright-
spot that extends over some 5 μm along the propagation 
distance. Furthermore, the sidebands of this image are 
pushed much further away from the central peak; the 
tradeoff is that the peak width increased to 0.42 λ from 
0.35 λ for the traditional SOL. The point spread function of 
this optical needle lens was analyzed in detail by Roy et al. 
[37]. Simulations of an optical needle for various blocking 
regions are shown in Figure 9, which indicates that, as 
the size of the blocking region increases, the length of the 
needle increases but the intensity decreases.

Another method for developing subwavelength spots 
via an optimization process was introduced in 2011 by 
Mazilu et  al. [38], called the optical eigenmode method, 
and the narrow peaks found can be seen to be the result 
of superoscillation. We consider the superposition of N 
modes Un(r) taken from some preselected set of beams, 
such as Laguerre-Gauss beams or Bessel beams, of the 
form

 

−

= ∑
1

tot
=0

( ) ( ).
N

n
n

U Ur r  (42)

We are interested in finding the narrowest peak within 
a windowed region of interest S near the origin, and we use 
the variance in this region as the measure, defined as
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On substituting the expression for the total field, we 
have
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where, for simplicity, we assume we are using radially 
symmetric modes, have integrated out the azimuthal 
dependence, and will choose as our region of interest a 
region of radius λ. The expression for (Δr)2 may be written 
in a vector-matrix form as

 
∆

(2)
2

(0)( ) = ,
a a

r
a a
M
M

 (45)

where |a⟩ is a vector of the elements an and M(2) is a Hermi-
tian matrix with elements,

 

λ
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( ) ( ) ,ij n mM r U r U r rdr  (46)

and

 

λ
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( ) ( ) .ij n mM U r U r rdr  (47)

Ideally, we would like to reduce the minimization 
problem to finding the smallest eigenvalue of the matrix 

M(2); however, because our modes are not orthogonal in 
the region of interest, as indicated by the matrix M(0) being 
non-diagonal, the denominator will significantly effect 
the value. Therefore, we introduce a pair of matrices into 
our expression: the first matrix B will diagonalize M(0) via 
a similarity transformation, while the second matrix D is 
a diagonal matrix with elements equal to the square roots 
of the inverses of the eigenvalues of M(0). The matrix D−1 is 
a diagonal matrix with elements equal to the square roots 
of the eigenvalues of M(0). Then, we have

 
∆
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1 (2) 1
2
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 (48)

We now let |b⟩ = D−1B | a⟩, which simplifies the previ-
ous expression to

 
∆ =

(2)
2( ) .

Tb b
r

b b
DBM B D

 (49)

In this form, the eigenvector |b⟩ of the combined 
matrix with the smallest eigenvalue will also produce the 
smallest spot in the region of interest. To perform this min-
imization procedure, then, we take the following steps: 1. 
generate M(0) and M(2); 2. use M(0) to determine the matrices 
B and D; 3. generate the matrix N ≡ DBM(2)BTD; 4. find the 
smallest eigenvalue of N; 5. find the corresponding vector 
|bmin⟩ and 6. find |amin⟩ = BTD | bmin⟩.

An illustration of this process is shown for Laguerre-
Gauss beams LGn0 in the waist plane of width w0 = 2λ in 
Figure 10; the region of interest is taken to be a circle of 
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radius λ. One can clearly see the reduction in spot size 
as the number of Laguerre-Gauss modes is increased; 
however, this reduction comes with a huge increase in the 
intensity of a halo ring outside of the region of interest, 
which is characteristic of superoscillations.

This technique was demonstrated experimentally 
by Baumgartl et  al. [39] in 2011, using a set of 15 Bessel 
beams as the basis set. An SLM was used to generate the 
desired annular spatial frequencies of the Bessel beams, 
which was then imaged into the focal plane of a micro-
scope objective. The subwavelength patterns were imaged 
using an SNOM tip. Excellent agreement with the theoreti-
cal model was found.

The superoscillatory focusing described so far was 
done in the transverse plane. It is also possible to take an 
appropriate superposition of fields with different wave-
numbers in the z-direction to produce a subwavelength 
superoscillatory spot along the axial direction. This was 
demonstrated by Zacharias et al. [40] in 2017, using a set 
of Bessel beams of identical order m = 0 but with differ-
ent axial wavenumbers β, as defined later in Eq. (58) in 
Section 5.

Given that it is possible to reduce the spot size in the 
transverse plane or in the axial direction, it also possi-
ble to do both simultaneously and make, for example, a 
spherical subwavelength spot? To do so, one would need 
to superimpose multiple radially symmetric waves, in a 
combination of the form

 =

= ∑
1

( ) ( ).
N

n
n

U f rr  (50)

However, for monochromatic waves, this is not pos-
sible: all propagating waves have their wavevectors con-
strained to a spherical surface, such that + =2 2 2

0 ,x yk k k  and 
the only radially symmetric superposition of these modes 
has the form U(r) = sin(k0r)/k0r. However, if multiple fre-
quencies are used, i.e. a superoscillatory field is con-
structed in the time domain, then a superoscillatory field 
can be constructed of the form
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= ∑
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( , ) ,

N i t nn
n

n n

k r
u t A e

k r
r  (51)

where kn = ωn/c. For a given time t = t0, one can design the 
overall field pattern to be superoscillatory.

This approach was theoretically investigated by 
Wong and Eleftheriades [41] in 2017, in which they dem-
onstrated a 3D spot size roughly 66% of the diffraction 
limit. However, this spot remains subwavelength for only 
a fraction of the overall waveform period, indicating that 
more sophisticated techniques are required for image 

reconstruction. One possibility is to measure both the 
amplitude and phase of the light scattered in the imaging 
process, from which the scattered field can be in principle 
reconstructed during the superoscillation duration.

Superoscillatory lenses, like diffractive lenses in 
general, tend to be strongly wavelength-dependent and, 
therefore, suffer from chromatic aberrations. Recently, 
Yuan, Rogers and Zheludev [42] introduced two algorith-
mic strategies for making achromatic superoscillatory 
lenses. As the focus of a SOL lens can be stretched in the 
longitudinal direction, one possibility is to design the lens 
so that the extended foci at multiple wavelengths overlap, 
thus providing a smaller region where all wavelengths are 
focused simultaneously. Given that SOL lenses also tend 
to produce multiple hotspots along the longitudinal direc-
tion, another possibility is to make hotspots of different 
orders overlap for different wavelengths at a single focus.

Several other demonstrations of superoscillatory 
focusing and their applications are worth noting. In 2015, 
David et  al. [43] introduced planar waveguide platforms 
that can be used to focus visible light on the nanoscale; 
they designed one to produce a superoscillatory focal spot 
as an example of the technique’s flexibility. Superoscilla-
tory focusing has also been used in optical trapping and 
manipulation. For example, Singh et al. [44] used a sup-
eroscillatory beam to trap and manipulate polystyrene 
particles.

4   Superresolution imaging
The remarkable ability to generate subwavelength spots 
in a bandlimited signal comes with significant challenges, 
especially in the context of imaging. A superoscillatory 
spot is necessarily surrounded by a ring-shaped high 
intensity halo, which can overwhelm the subwavelength 
signal and restricts the usable imaging area, as we will 
see. An additional discussion of the limitations of supero-
scillation in microscopy can be found in Hyvärinen et al. 
[45]. Furthermore, because superoscillation is the result 
of a delicate interference effect between waves, this side-
band cannot be windowed away, as the superoscillations 
will be destroyed on further propagation. From a practi-
cal perspective, the fabrication of an SOL requires very 
precise manufacturing on the nanometer scale in order to 
create the focal spot.

Despite these obstacles, much progress has been 
made, both theoretically and experimentally, in the use 
of superoscillations to break the conventional diffraction 
limit in imaging. In the simplest realization, as described 
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theoretically by Huang and Zheludev [33], one can image 
closely-spaced incoherent objects, provided they lie 
within each other’s halos.

To illustrate this, we evaluate a simple simulation 
of an SOL in 2D space, and compare its performance to 
an ordinary lens under the same circumstances. We con-
sider a lens that lies within an aperture of total width a, 
which will take an object at a rear plane at distance z = −do 
and image it at a front plane at z = +di. The Fourier theory 
indicates that the image produced is given by the Fourier 
transform of the transmission function of the lens; for an 
ordinary lens, this transmission function is constant, and 
the image is given by

 

∆ 
=   

( ) sinc ,
2i

kaU x a  (52)

where Δ = xo/do + x/di, with xo as the position of the point 
object. The minimum separation resolvable between two 
points is given by the distance to the first zero of the sinc 
function, or kΔmin = 2π/a.

We assume that the SOL has the same lensing effect 
as the ordinary lens, but also has a superoscillatory trans-
mission function in the aperture. We take the field in the 
image plane as

 ∆ ∆ ∆= − − 2 2 2 2( ) [( ) ][( ) ] ( ),iU x k b k c f k  (53)

where f(x) is a function that is bandlimited in space to 
|x | ≤ a/2. Following the Chremmos and Fikioris method, 
we use

 π= 4( ) cos ( / ),f x x a  (54)

and we take the positions of the zeros to be b = 0.5(2π/a), 
c = 0.9(2π/a), which places one pair of zeros at half the 
lens resolution distance; the other pair of zeros is taken 
to push the halo further from the imaging region. The 

Fourier transform of Eq. (54) is readily determined, from 
which one can obtain the superoscillatory field pattern 
from Eq. (53).

Next, we compare the incoherent imaging of two point 
sources via a traditional lens and our SOL in Figure 11. The 
two point sources are clearly distinguishable for the SOL, 
but not for the traditional lens. The high-intensity halo 
around the image is clearly seen as well.

To image larger areas, a confocal scanning geometry 
must typically be implemented. This was first done by 
Kosmeier et al. [46], using their optical eigenmode method 
[38] to generate the superoscillatory beams. In their exper-
iment, the superoscillatory spot was scanned transversely 
across a sample consisting of two pinholes in an opaque 
screen. At the detector, a small 3 × 3 pixel spot moved with 
the beam to act as a virtual pinhole to filter out noise from 
the spot halo. Working with a He-Ne laser, the researchers 
were able to increase the resolution by a factor of 1.36 rela-
tive to the diffraction-limited case.

A scanning geometry was also implemented by Rogers 
et al. to achieve superresolution [34], with an SOL provid-
ing the subwavelength focal spot. Single and double slits 
were imaged as well as closely-spaced nanoholes in a 
metal film; using a diode laser with λ = 640 nm, they were 
able to reliably resolve holes separated by λ/6. A compar-
ison of the results with an ordinary lens and the SOL is 
shown in Figure 12.

It should be noted that a superoscillatory spot is 
typically elongated along the direction of propagation; as 
noted by Wong and Eleftheriades [41], it is not generally 
possible to make a 3D superoscillatory spot with mono-
chromatic light. This elongation means that such supero-
scillatory scans are expected to be effective only for thin 
samples.

When coherent imaging data are available, it is pos-
sible to use superoscillatory post-processing techniques to 
construct a superresolved image of the object, as Amineh 
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Figure 11: The comparison of the imaging of two subwavelength-separated sources via (A) an SOL lens and (B) a traditional lens.
Here do = di = 30 mm, a = 10 mm, λ = 500 nm, and the sources were separated by 2/3rds the resolution limit. The dashed line indicates the 
total image.
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and Eleftheriades demonstrated [47]. To understand this, 
let us suppose that the object field in plane z = 0 is Uo(x); 
this function has a Fourier transform  ( ).o xU k  The propaga-
tion of the field to the image plane at z can be done using 
the expression

 
= ( , ) ( ) ,ik zz

i x o xU k z U k e  (55)

where = −2 2
0 .z xk k k

If the image plane is more than a few wavelengths 
away from the object plane, then only the propagating 
waves will survive, with |kx | ≤ k0. If the image field is meas-
ured via holography, then, in principle one can deter-
mine the function  ( )i xU k  by using the inverse propagator 
exp[ − ikzz], and then take an inverse Fourier trasnform to 
get a bandlimited image of the object,

 

−

−

≈ ∫ 
0

0

( ) ( ) .
k

ik zz
o i x x

k

U x U k e dk  (56)

This image will be resolution-limited due to the 
absence of high spatial frequencies. However, we can 
improve the resolution without changing the bandlimit 
by multiplying the backpropagated Fourier spectrum by a 
superoscillatory spectrum ( ),xf k  i.e.

 
−′ =  ( ) ( ) ( ).ik zz

o x i x xU k U k e f k  (57)

As the Fourier spectrum of a point source at x0 is 
simply proportional to a complex exponential, exp[ikxxo], 
the inverse transform of the modified spectrum will be a 
superoscillatory peak at the point x0. Two closely-spaced 
points will have a reconstructed image of two closely-
spaced superoscillatory peaks.

Due to the halo effects, the technique of Amineh and 
Eleftheriades is still limited to resolving very closely-
spaced objects in a limited area. It was extended by Li, Li 
and Cui [48] with additional computational techniques in 
order to allow it to be used for larger and more general 
objects.

As has been emphasized repeatedly, a fundamental 
limitation of superoscillation in imaging is the presence of 
the bright halo, which increases in intensity relative to the 
center peak as the width of the center peak becomes more 
subwavelength. An alternative philosophy for superreso-
lution through superoscillation was recently introduced 
by Dong et  al. [49], focusing on a reduction of the ordi-
nary sidelobes of a point spread function. In this modi-
fied scheme, the zeros are densely packed to suppress the 
first sidelobe of the PSF, as this sidelobe also degrades the 
resolution. As these zeros are not being used to narrow 
the central peak, the halo surrounding it is of much lower 
relative intensity than in conventional superoscillation 
schemes.

Most of the work on superoscillation to this point has 
focused on scalar wavefields. Very recently, Kozawa, Mat-
sunaga and Sato investigated [50] the structure of radially 
polarized Laguerre-Gauss modes and demonstrated that 
such modes tend to naturally form superoscillatory spots 
as the size of the incident beam is varied. They were able 
to see spots on the order of 100 nm in size using incident 
light of 532 nm, and performed improved confocal imaging 
of HeLa cells with such beams.

Research on superoscillation imaging has now passed 
the “proof-of-concept” stage and is being optimized with 
an eye towards more practical implementation. Quite 
recently, Rogers et  al. [51] introduced an algorithm to 
simultaneously optimize the spot size and intensity rela-
tive to the size of the halo for different desired fields of 
view. Such a tool will allow researchers to readily tailor 
their superoscillations to their particular application.

5   Structured beam superoscillations
The examples we have seen so far demonstrate that sup-
eroscillations can persist or revive over multi-wavelength 
distances, but it has also been shown that they can be 
carried over arbitrarily long distances, in principle, using 
nondiffracting waves.

It has been long known that one can construct diffrac-
tion-free beamlike solutions to the scalar wave equation 
[52, 53], and that such beams have become an important 
tool in a number of optical applications. The most com-
monly considered class are Bessel beams, of the form

 
φ βφ α=( , ,  ) ( ) ,im i z

m mU r z J r e e  (58)

where α β+ =2 2 2
0 ,k  in which β represents the propagation 

constant of the beam. From the integral definition of the 

Figure 12: The comparison of the imaging of a cluster of 210 nm 
diameter holes using (A) a conventional lens with NA = 1.4 and (B) an 
SOL. After [34].
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Bessel functions, we can deduce that a Bessel beam may 
be viewed as a coherent superposition of plane waves with 
their wavevectors aligned on a cone, with transverse wave-
number α. Provided α2 2

0< ,k  these beams are propagating 
and spatially bandlimited in the transverse plane. As the 
Bessel function asymptotically decays as 1 / r  for large r, 
the total energy in an ideal Bessel beam is infinite, making 
them not realizable in practice. However, the approximate 
forms of such beams with Gaussian envelopes will have 
finite energy and can remain approximately diffraction-
free over long propagation distances [54].

Superoscillations can arise from an appropriate 
weighted sum of bandlimited waveforms, and this obser-
vation applies to both nondiffracting beams as well as 
plane waves. As there are an infinite set of Bessel beams 
with the same propagation constant β, it is possible to 
construct a tailored superposition of such beams that pos-
sesses superoscillations, and those superoscillations will 
propagate without change over a long distance.

This approach was introduced and tested by Makris 
and Psaltis [55] in 2011. To design their superoscillations, 
they required that a superposition of N Bessel beams pass 
through N predetermined values at points rm, with m = 0, 1, 
2, …, N − 1. Their field g(x, y, z), therefore, was of the form,

 
φ

−

= ∑
1

=0
( , ,  ) ( , ,  ).

N

m m
m

g x y z c U r z  (59)

A simple example is one in which three points are 
taken on the x-axis at x0 = −δ, x1 = 0 and x2 = +δ as well as 
g(x0) = 0, g(x2) = 0, and g(x1) = 1. Provided δ is sufficiently 
small, the Bessel functions can be approximated by the 
first term of their Taylor series, Jm(x) ≈ xm/(2mm!), making 
the solution for the coefficients easier. The result is c0 = 1, 
c1 = 0 and c2 = −8/(aδ)2.

The resultant intensity is shown in Figure 13. Though 
the maximum transverse spatial frequency in the beam 

is a = 2, with a corresponding wavelength of 2π/a = π, the 
zeros are spaced by approximately 0.5. It can be seen from 
Figure 13B that the zeros are optical vortices, with a char-
acteristic circulation of the phase around their cores.

A modified version of this scheme was introduced 
and tested experimentally by Greenfield et al. in 2013 [56]. 
They generalized the superposition to include not only all 
orders of Bessel beams, but lateral shifts of each beam, in 
the form

 
= −∑∑

=0 =0
( , ,  ) ( ),

lN m

lm m lm
m l

g x y z a U r r  (60)

where there are lm beams superimposed for every order m 
included in the superposition, and rim is the shifted origin 
of the beam with indices l and m.

The use of shifted beams allows the superoscillations 
to be generated experimentally using shifted copies of a 
single order of Bessel beam. In their experiments, Green-
field et al. used essentially a Mach-Zehnder interferometer 
to produce two copies of a second-order Bessel beam, with 
an attenuator in one arm of the interferometer producing 
the proper amplitude ratio and a 3D stage in the other arm 
producing the lateral shift. Each arm contained its own 
spiral phase plate to produce a second-order vortex; after 
being recombined, the two beams were passed together 
through an axicon to produce the Bessel profile. Their 
experimental results are the first demonstration of sup-
eroscillations in a nondiffracting beam.

The results for nondiffracting beams discussed so far 
are in the scalar approximation. In 2016, however, Makris 
et al. [57] theoretically constructed superoscillations from 
superpositions of vectorial electromagnetic Bessel beams.

Another class of nondiffracting beams are the Airy 
beams, which were first introduced in the context of 
quantum mechanics in 1979 [58] and were much more 
recently generated optically [59]. Such beams have an 
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Figure 13: The (A), (C) intensity and (B) phase of a nondiffracting beam with superoscillations.
Here λ = 1 μm, a = 2 μm−1, and δ = 0.2 μm.
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amplitude proportional to an Airy function along one axis 
in a source plane, i.e.

 
= 0( , 0) ( / ),U x Ai x x  (61)

with x0 as a length parameter. As illustrated in Figure 14, 
not only are such Airy beams nondiffracting but they also 
demonstrate self-acceleration on propagation. Like their 
Bessel counterparts, the idealized Airy beams have infi-
nite energy, but they can be realized by adding an expo-
nential envelope to their slowly-decaying section.

It is also possible, through a very clever construction 
introduced by Eliezer and Bahabad [60], to introduce sup-
eroscillations into Airy beams by an appropriate super-
position. Looking at the left side of the Airy beam in Eq. 
(14), it is to be noted that the oscillations are essentially 
sinusoidal. By comparing a superposition of Airy patterns 
with a superposition of sinusoids, one can match the Airy 
superposition to a known superoscillatory pattern. In par-
ticular, we return to the Berry Popescu model of superos-
cillations, Eq. (13), and note that it can be expanded as a 
sum of complex exponentials as

 

−

=

    + += −    −    
∑ ( 2 )

0

1 1( ) ( 1) .
2 1

N mN
m ix N m

m

Na ag x e
m a

 (62)

This can be proven by taking the original form of 
g(x), writing the sine and cosine in terms of complex 
exponentials and doing a binomial expansion with 
respect to the terms exp[ix] and exp[−ix]. The imaginary 
part of this function will be a simple sum of sines. In 
order to construct a superoscillating Airy function, one 
takes a superposition of Airy functions with different 
widths

 
α

α
= ∑( ) [ / ]exp( ),n

n
n n

A
f x Ai x yx  (63)

where y is a common exponential decay factor. Noting 
that, asymptotically, Airy functions may be written in the 
form

 
π

π

−  
≈ + 

 

1/4
3/22( ) sin / 4 ,

3
xAi x x  (64)

one can substitute from this expression into Eq. (63). 
Then, by choosing the weights of Eq. (63) to make it match 
the imaginary part of Eq. (62), one can construct an Airy 
function that exhibits superoscillatory behavior.

An example of such oscillations is shown in Figure 15. 
For this particular case, it can be seen that there is modest 
enhancement of the local frequency in the area where the 
intensity is low, as one would expect from superoscilla-
tions. The superoscillations derived from this method are 
limited to modest gains, though. In order for Eq. (63) to 
match Eq. (62), the common π/4 phase shift of the asymp-
totic Airy functions much be small compared to the period 
of the local frequency of superoscillation, or π/4 < 2π/aN. 
Nevertheless, the model was confirmed by experiments, 
using a spatial light modulator to produce the Airy pattern.

6   Other advances in 
superoscillations

In this section, we consider a number of recent advances 
in the study of superoscillations that have much practi-
cal potential. Though not directly related to imaging, 
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Figure 14: The propagation of an Airy beam with λ = 0.5 μm and 
x0 = 0.3 mm.
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Figure 15: The intensity of a superoscillatory Airy beam (solid line) 
with a = 1.5, N = 5, compared to the intensity of a single Airy beam 
(dashed line) with the highest oscillation frequency of the sum.
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they illustrate the possibilities inherent in the study of 
superoscillations.

In 2017, Eliezer and Bahabad demonstrated [61] that it 
is possible to create sub-oscillations, an effect complimen-
tary to that of superoscillations. A sub-oscillation may be 
defined as an oscillation that appears in a function, which 
has a minimum frequency in its bandwidth, i.e. if the func-
tion is bandlimited to Δ0 ≤ | k |, then a sub-oscillation is 
an oscillation that occurs with a frequency |k | < Δ0. The 
authors first demonstrated this effect by considering the 
superoscillation model of Eq. (7), namely,

 δδ π

∞

−∞

 
− − 

 
∫ ( ) 2

2
1 1( ) = exp ( ) ,

22
ik u x

cg x e u iu du  (65)

but chose k(u) = cosh(u), which has a lower frequency 
bound of u = 1. Again by an asymptotic calculation, one 
can demonstrate that the local oscillations for small δ will 
have the approximate wavenumber

 
( ) = cosh( ) = cos( ),c c ck iu iu u  (66)

which satisfies |k(iuc) | < 1; the function is sub-oscillatory. 
The familiar Berry Popescu model of Eq. (13) can also be 
modified to demonstrate sub-oscillations by taking its 
inverse, i.e.

 +
1( ) = .

cos( ) sin( )
h x

x ia x  (67)

The function h(x) can be shown to have sub-oscilla-
tions in its local frequency if 0 < a < 1.

The existence of sub-oscillations can be readily 
deduced from the aforementioned method of Chrem-
mos and Fikioris [21] as well. Just as the zeros of a func-
tion can be placed closer together without changing the 
bandwidth, producing superoscillations, the zeros can be 
spaced further apart to produce the opposite effect. Just as 
in the superoscillation case, the amplitude of the field will 
be dramatically lower in the regime of sub-oscillations.

Eliezer and Bahabad used the existence of sub-
oscillations to experimentally demonstrate super defo-
cusing. The scenario they envision is a desire to have a 
beam that spreads as rapidly as possible on propaga-
tion; in the simplest case, this can be achieved by first 
tightly focusing the beam. The angular spreading of the 
beam and the distribution in the focal plane are related 
by a Fourier transform, which means that, typically, a 
beam with a broad spreading will have a small focal spot. 
However, if a small obstruction is placed just before the 
focus, it puts an upper limit on the spot size at focus; if 
it is too small all the energy will be blocked. Through the 

use of sub-oscillations, however, it is possible to “stretch” 
out the focal spot transversely, allowing energy to pass 
around the obstruction, without reducing the spread in 
the far-field.

Suboscillations, at first glance, may seem less spec-
tacular than their superoscillating cousins, but they can 
also produce seemingly paradoxical effects. Chremmos, 
Chen and Fikioris [62] introduced their own method of 
designing suboscillations, and were able to demonstrate 
the possibility of using suboscillations to approximate 
arbitrarily well any function within a finite interval using 
them, including a constant function.

Returning to the topic of superoscillations, it is to 
be noted that most of the investigations in optics have 
considered the effects on the space/spatial frequency 
domain, not on the time/frequency domain. Of course, 
if it is possible to improve the resolution in the spatial 
domain through the use of superoscillations, it should 
be similarly possible to improve temporal resolution. 
This problem was studied in the context of pulse com-
pression by Wong and Eleftheriades [63] in 2011, who 
once again used the Schelkunoff approach to design 
their waveforms. In this case, they considered pulses 
formed from a finite number N of equally spaced spec-
tral lines; the total field can then be written as a polyno-
mial in the form

 

ω
−

∑
1

0

=0
( ) = ,

Ni t n
n

n
g t e a z  (68)

where z = exp[iΔωt]. This expression is then analogous 
to Schelkunoff’s expression for antenna arrays, and the 
same techniques can be applied to derive superoscillatory 
pulses. The results were confirmed by experiment.

Another approach to superoscillating pulses was 
taken some years later by Eliezer et al. in 2017 [64]. They 
return again to the function of Berry and Popescu, in the 
form,

 
Ω Ω + 0 0( ) = cos( ) sin( ) ,

N
g t t ia t  (69)

which has a fundamental frequency Ω0, and note that the 
real part may be written as

 
Ω

 

∑
/2

0
=0

Re{ ( )} = cos( ),
N

q nnn
g t A q t  (70)

where N/2 represents the floor of N/2 and qn = 2n + μN, 
with μN = mod(N, 2) representing the modulus of N/2. This 
representation of Re{g(t)} can be derived from g(x) in Eq. 
(62), though it takes some effort; here we simply note that 
they are clearly structurally similar.
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The limitation of Eq. (70) is that it does not look like 
the spectrum of a pulse, which typically has a finite band-
width Δω and a central frequency ωc; Eq. (70), in contrast, 
even contains the frequency ω = 0 if N is even. The solu-
tion is to derive the superoscillations as beats superim-
posed on a carrier signal with central frequency ωc.

As an example, Eliezer et al. constructed a superoscil-
lating signal with N = 3 and a = 2, producing a g(t) of the 
form

 
Ω Ω− +0 0

9 13( ) = cos( ) cos(3 ).
4 4

g t t t  (71)

They combined four beat signals with frequencies 
vm = {370.9, 373.2, 375.6, 377.9} THz, and appropriate ampli-
tude and phase relations taken to match Eq. (70). The 
signal is modulated with a Gaussian envelope of the form 
exp[−t2/2σ2], with σ = 280 fs. This envelope broadens the 
overall bandwidth of the signal but does not significantly 
change the nature of the superoscillations. An illustration 
of the superoscillation intensity and a Gaussian of the 
same width are shown in Figure 16; as can be seen, there 
is a small superoscillatory spot in the center of the pulse. 
This model of a superoscillatory pulse was confirmed 
experimentally using a femtosecond laser source with a 4f 
pulse shaper to produce the pulse and a FROG apparatus 
to measure the resulting signal.

A collaboration from some of the same researchers 
recently introduced a more elegant method for producing 
simple superoscillations in a pulse [65], using a technique 
first applied in the spatial domain [44]. In this method, 
one shifts the spectral envelope ω( )f  of a pulse by a phase 
of π over a finite range of frequencies, that is, introducing 
the function

 

ω ω ω
ω

 −= 


 01, | |< ,
( )

0, otherwise,
ss  (72)

we introduce a modified function ω( )g  as

 
ω ω ω = − 

 ( ) ( ) 1 2 ( ) .g f s  (73)

The creation of superoscillatory zeros can be under-
stood as arising from the relatively narrow function f(t) 
interfering with the broader pulse created by the nar-
rower band function ω ω−  2 ( ) ( ).f s  The result is a small 
superoscillatory spot, bounded by a pair of zeros, in the 
middle of the pulse. This spot first decreases in size as ωs 
increases, but eventually disappears as ωs becomes com-
parable to the original bandwidth of the function f(t). The 
theoretical predictions were again confirmed with FROG 
measurements.

Notably, in the time domain, superoscillations 
have the potential to overcome other limitations of 
light  propagation. In 2014, Eliezer and Bahabad consid-
ered [66] the propagation of superoscillations with an 
 effective frequency ωs through an absorptive medium 
with a resonance at that frequency. As the actual 
spectrum of the pulse does not overlap the resonance 
frequency, in principle, it is possible to propagate a 
superoscillatory signal at ωs through a medium that 
would be opaque to normal oscillations. Given that 
the superoscillations are a delicate interference effect, 
one natural concern is that ordinary dispersion effects 
would destroy them after a short propagation distance. 
However, it was found that the superoscillations under-
went semi-periodic revivals in the medium, suggesting 
that they can be transmitted over significant distances 
under the right circumstances.

One other remarkable property of superoscillations in 
the time domain is worth noting here. One of the earliest 
works addressing the implications of superoscillations 
was written, but unpublished, by Aharonov, Popescu 
and Rohrlich in 1990 [67], in which they suggested that 
a box filled entirely with red light could possibly release 
gamma radiation when a window was opened. If the 
window is opened only over a short period of time while 
superoscillations are incident upon it, those oscilla-
tions of arbitrarily high frequency will escape the box, 
and will evidently maintain their high-energy nature. In 
2018, Berry and Fishman [68] performed a detailed theo-
retical analysis of the problem, and confirmed that this 
prediction, as paradoxical as it might seem, is correct. 
The “missing” energy needed to convert red light into 
gamma radiation comes from the opening and closing of 
the shutter over a very short timescale. Therefore, like 
many paradoxes of physics, the strange nature of sup-
eroscillations turns out to fit beautifully into our existing 
knowledge.
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Figure 16: The intensity envelope of a superoscillatory pulse and a 
Gaussian (dashed line) with the same effective width.
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7   Concluding remarks
For over a century, optical scientists largely viewed the 
resolution of imaging systems to be limited to roughly a 
half-wavelength, based on the criteria of Rayleigh and 
Abbe. In Abbe’s case, for example [69], the minimum 
spacing rmin between two imaged points was defined as

 

λ=min 0.6098 ,r
NA  (74)

where λ is the wavelength of light and NA is the numeri-
cal aperture. In the 1920s, Synge pointed out that 
measurements in the near-field of an object can allow 
sub-wavelength resolution [70], but this strategy was 
largely ignored until the 1980s, when Pohl, Denk and 
Lanz produced the first optical near-field images [71]. 
Although this removed the classical resolution limit as 
a barrier to imaging, new limitations were found, such 
as the low amount of light collected and the difficulty 
of interpreting the detected plane wave/evanescent wave 
signals.

Analogously, though the negative refractive index 
“superlens” introduced by Pendry in 2000 [72] is theoreti-
cally perfect, practical considerations, such as the need 
to work in the near-field of the lens, the inherent material 
losses of the lens and the high intensities needed inside 
the lens [73], limit its effectiveness.

We have already seen in this review that superreso-
lution through superoscillations has its own inherent 
limitations, such as the instability of the interference 
effect, the low intensity of the superoscillations and the 
size of the sidelobes. We do not mention the limitations 
of near-field-optics and superlensing as a pessimistic 
view, however, but rather the opposite: both of these 
superresolved imaging techniques have proven useful 
and remain vibrant areas of research. Superoscillations 
offer additional advantages over many existing super-
resolution techniques, such as the fact that it needs no 
post-processing of data taken, or prior knowledge of the 
imaged sample.

Although the investigations of superoscillations in 
imaging are still quite new and there is much to be done, 
it is not unreasonable to expect that it will take its place 
among other superresolution techniques to “bend,” 
though not completely break, the classical limits on 
imaging.
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