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ABSTRACT: Conformational fluctuations within scFv antibod-
ies are characterized by a novel perturbation-response decomposi-
tion of molecular dynamics trajectories. Both perturbation and 
response profiles are stratified into stabilizing and destabilizing 
conditions. The linker between the VH and VL domains exhibits 
the dominant dynamical response by being coupled to nearly the 
entire protein, responding to both stabilizing and destabilizing 
perturbations. Perturbations within complementarity-determining 
regions (CDR) induce rich behavior in dynamic response. Among 
many effects, stabilizing any CDR loop in the VH domain triggers 
a destabilizing response in all CDR loops in the VL domain and 
vice versa. Destabilizing residues within the VL domain are likely 
to stabilize all CDR loops in the VH domain, and, when these 
residues are not buried the CDR loops in the VL domain are also 
likely to be stabilized. These effects, described by shifts in normal 
mode characteristics, initiate a propensity for dynamic allostery 
with possible functional implications in bispecific antibodies. 

Introduction 
A single chain fragment variable (scFv) is the smallest antibody 
molecule that binds to an antigen. These scFv antibodies are im-
portant to medicinal applications such as development of immu-
notoxins, therapeutic gene delivery, and development of bifunc-
tional proteins for therapeutic purposes.1-4 The structure of the 
scFv antibody is comprised of two variable regions of heavy (VH) 
and light (VL) chains connected by a flexible linker. The antigen 
binding site in a scFv antibody is formed by six loops (three from 
VH and three from VL domains) that define the complementarity-
determining regions (CDRs). Much attention and effort has been 
placed on conducting trial and error structure/function studies to 
engineer antibodies to have specific binding targets and stability 
characteristics.5-8 Unfortunately, scFv antibodies often are associ-
ated with stability problems that limit their utility.  
    Stability can be improved through site-directed mutagenesis, 
but often at the expense of modifying the specificity and selectivi-
ty of antibody antigen interactions. A naïve rational design strate-
gy is to mutate one or more residues that are remote from binding 
sites. With improved stability, the structural alignment of the mu-
tated and native proteins is likely to be close, suggesting function 
will be preserved using the structure/function paradigm. However, 
specificity and selectivity depend on protein dynamics. Stabilizing 
mutations can alter correlated motions between residues without 
conformational change.9  More generally, the possible mecha-
nisms responsible for the sensitivity in structure function relation-
ships arguably parallel those governing allosteric effects.10-11. 
 Allostery12 refers to the process where binding of an effector at 
an allosteric site changes the binding affinity of a ligand at a distal 
binding site.11,13,14-16 The ensemble nature of allosteric response 
encompasses a continuum of cooperative processes that involve 
protein dynamics with, and without, persistent conformational 
change.17 Dynamic allostery18-23 occurs when dynamic fluctua-

tions are altered without conformational change. A plausible 
mechanism is through a change in the characteristics of normal 
modes of vibration about an average structure.18 Although normal 
modes typically adapt to a perturbation on protein structure, the 
presence of allostery requires a functional change. Therefore, the 
dynamic fluctuations at a binding site (its mobility) must change 
in sufficient magnitude to modify specificity or selectivity. This 
means the intrinsic dynamical property of a protein24-25 informs on 
the potentiality for measuring an allosteric response, but which 
outcome is observed depends on the location of the perturbation 
and binding details of the protein-effector and protein-ligand.  
    There is also evidence that allosteric response is sensitive to 
mutations in terms of dynamical properties based on computa-
tional results26 and in terms of allosteric regulation based on 
large-scale experimental structure/function studies.27 Here dynam-
ical coupling between all residue pairs is decomposed to establish 
a baseline for the propensity of dynamic allostery, and to obtain a 
higher order signature of protein dynamics to help elucidate sta-
bility and functional characteristics across protein mutants. 
    How dynamical fluctuations change upon external perturbation 
to protein structure has been extensively investigated using a vari-
ety of computational methods.28-31 A common rationale for these 
methods is to apply a local rigidifying perturbation to mimic lig-
and binding at a site, and subsequently identifying a response at 
any other site having a significant change in dynamics (or flexibil-
ity). The perturbations are applied as a scan along the backbone of 
a protein. Perturbation-response methods fall mainly into three 
schemes that employ an elastic network model (ENM),32-35 a dis-
tance constraint model (DCM)26 or molecular dynamics (MD) 
simulation.36-37 Other methods investigate dynamic correlations 
from a covariance matrix involving atomic positions based on a 
MD trajectory for an unperturbed protein,29-30 and, subsequently, 
apply principal component analysis (PCA).38-39 Most commonly 
ENMs are employed because long-range effects are captured well 
by low-frequency vibrational modes.25, 40 
    A recent trend is to include more atomic details about dynamic 
fluctuations and interactions.40 Examples include an ensemble 
based atomistic ENM where a consensus network is derived from 
multiple input structures38. Another approach makes use of the 
equivalence of eigenvectors from the Hessian matrix41-42 repre-
senting normal modes of vibration to PCA-modes from the covar-
iance matrix. Importantly, the covariance matrix is proportional to 
the inverse Hessian matrix.38, 41-43. Covariance matrices from MD 
simulations are also employed to transform (as a matrix multipli-
cation) a local external force perturbation on the protein into dy-
namic correlations as a linear response.30-31 Another recent pertur-
bation-response method runs 𝑛 + 1 independent MD simulations 
on a protein when it is unperturbed and when it is subjected to 𝑛 
different applied local perturbations in a scan over 𝑛 residues.36-37 
Unfortunately, this method is computationally expensive, requir-
ing an independent MD simulation for each perturbation variant.  



 

    Six bispecific scFv antibodies are studied as a continuation to 
previous investigations9, 26 where 5 mutants differ by 1 to 4 point 
mutations from the native scFv. Notably, each mutant increases 
stability and retains similar antigen binding affinity. Recently it 
has been observed bispecific scFv antibodies exhibit cooperative 
communication between binding loops across domains,44-45 and 
the functional role of linkers46-47 is known to be important, mak-
ing this system particularly interesting to study.   
    Herein, a novel perturbation-response method is implemented 
based on an effective Hessian matrix obtained from the inverse of 
the covariance matrix that is obtained from all-atom MD simula-
tion of an unperturbed protein. This effective Hessian matrix rep-
resents an ensemble based elastic network with long-range cou-
plings that capture collective quasi-harmonic motions. Local per-
turbations are applied to the elastic network as a scan, yielding a 
new Hessian matrix per perturbation. Both stabilizing and destabi-
lizing perturbations are considered. Normal modes of vibration 
are calculated by exact diagonalization for each new Hessian ma-
trix. Dynamical coupling quantifies changes in the mean squared 
fluctuation (MSF) of 𝐶%	atoms that are distal from the perturbed 
site. Dynamic couplings for stabilizing and destabilizing perturba-
tions are decomposed into stabilizing and destabilizing response.  

Methods  
The set of 100 ns all-atom MD trajectories from prior studies were 
reused to sample 2000 conformation for a scFv antibody and each 
of five stabilizing mutations at room temperature; 6 MD trajecto-
ries in total.9, 26 Additionally, one representative conformation was 
selected from each MD trajectory within the most and least popu-
lated clusters based on RMSD clustering analysis. Starting from 
these two structures the same protocols were followed to run 100 
ns MD simulations using the GROMACS 5.1.2 package48 result-
ing in three independent MD trajectories for native scFv and for 
each of the 5 mutants.    
    A	3𝑁	×3𝑁 covariance matrix, 𝑄, is constructed for each MD 
trajectory by tracking the aligned 𝑥, 𝑦, 𝑧 coordinates of the	𝐶% 
atoms in the protein.49 Each of the six scFv fragments have 𝑁 =
238	residues. A Hessian matrix can be formally obtained from 
𝑄23. However, the smallest eigenvalues of 𝑄 dominate its in-
verse, which results in random noise in the Hessian matrix. This 
noise is removed by filtering the spectral decomposition of 𝑄. 
Eigenvectors and eigenvalues of 𝑄 are first calculated where |𝑛  
is the 𝑛-th eigenvector with eigenvalue 𝜆6 for an ordered indexing 
such that 𝜆673 > 	 𝜆6. The eigenvectors are PCA modes and the 
eigenvalues define variances in collective atomic positions along 
a PCA mode direction. The PCA modes are normalized and form 
a complete set such that 𝑚|𝑛 = 𝛿<6 and 1 = |𝑛 𝑛|6 . If an 
inverse is not possible due to a zero eigenvalue, a minimum value 
of 𝜆<=6 can be defined such that 𝜆6 → max 𝜆6, 𝜆<=6 . However, 
this flooring operation was not needed because the smallest ei-
genvalue of 𝑄 posed no difficulty, such that the inverse of 𝑄 ex-
ists in all cases, albeit noise is present due to small 𝜆6values.  
Noise decorrelation: From spectral decomposition it follows that 
𝑄 = |𝑛 	𝜆6	 𝑛|6  and 𝑄23 = |𝑛 	𝜆623	 𝑛|6 . However, numeri-
cal error is present in the estimate for 𝜆6 and the direction of its 
corresponding mode |𝑛 . Assuming this error is Δ𝜆 for all modes, 
there will be a critical index such that 𝜆C	~	Δ𝜆 for which the PCA 
modes with 𝑛 ≥ 𝑐 will cause 𝑄23 to be physically meaningless. In 
contrast, these modes represent small amplitude motions in 𝑄 that 
beget negligible contribution. To restore physical significance of 
𝑄23 the random correlations are removed by making the substitu-
tion 𝜆6 → 	 𝜆 6GC = 3

HI2C
𝜆6HI

6JC  over the 𝑛 ≥ 𝑐 subspace. This 
transformation maps fine scale motion into a degenerate subspace, 
while keeping the trace of the covariance matrix invariant. The 
cutoff index, 𝑐, is determined by the percent of variance to be 

decorrelated. Coverage of 10% works well, meaning the total 
variance of all modes with 𝑛 ≥ 𝑐 is 10% of the trace of the covar-
iance matrix. Coverage between 5 to 20% yields similar results. 
All data shown here is based on decorrelating noise at 10% cover-
age, meaning 90% of the protein dynamics is retained.   
Effective Hessian matrix: The decorrelated 𝑄23 is used to define 
a Hessian matrix, 𝐻L = 𝑅𝑇	𝑄23, representing an effective ENM 
involving 𝐶%	atoms, similar to an anisotropic network model.43 
Note that 𝑅𝑇 is thermal energy. Importantly, 𝐻L is derived from 
quasi-harmonic PCA modes that reflect all-atom dynamics of the 
protein simulated by MD. As such, 𝐻L has long-range non-zero 
matrix elements not found in ENMs that focus on nearest neigh-
bor interactions within 15 Angstroms. Examples of the covariance 
matrix and effective Hessian matrices at different noise decorrela-
tion levels are shown in supporting information Figure S1. It is 
worth noting that different 𝐻L having cutoffs between 0% to 20% 
coverage maps back to virtually the exact same covariance matrix.  
Subsequently, 𝐻L is perturbed by 𝐻O to obtain 𝐻 = 	𝐻L	 + 	𝐻O.  

    To calculate MSF for all 𝐶% atoms, PCA modes and corre-
sponding variances for the perturbed system are obtained by diag-
onalizing 𝐻, noting that 𝑄O = 𝑅𝑇𝐻O23 formally. The eigenvalues 
of 𝐻O are given as 𝜔6, where 𝜔6 < 	𝜔673 and 𝜆6 = 𝑅𝑇/𝜔6, and 
𝜔6 are proportional to the frequency of vibration of normal 
modes. When working with a Hessian matrix, it is common prac-
tice to define a pseudo inverse by removing the lowest six eigen-
values that are formally zeros, representing 3 rigid body transla-
tions and 3 rigid body rotations. However, for effective Hessian 
matrices truncating the lowest six eigenvalues does not allow 𝑄 to 
be reproduced from 𝐻23. Physically, the lowest eigenvalues of 𝐻O 
correspond to the largest variance in collective motion.41 As such, 
the flooring process of 𝜔6 → max(𝜔6, 𝜔<=6) is applied with 
𝜔<=6 = 0.9/𝜆<WX and 𝜆<WX is the largest eigenvalue of the co-
variance matrix of the unperturbed system, enabling 𝑄O to be 
defined. This establishes a physically reasonable threshold that 
restricts the variance in any PCA mode of 𝑄O not to exceed 11.1% 
of the maximum PCA mode variance in the unperturbed system.  
Perturbation Characteristics: Six types of local perturbations 
are considered. Each perturbation adds a set of springs between 
certain pairs of 𝐶%		atoms relative to a reference 𝐶%	atom at resi-
due 𝑝. All added springs are assigned the same spring constant, 
𝑘O. The unperturbed protein’s average coordinates defined in the 
covariance matrix are used to set the natural length of each spring. 
Adding these springs do not change the equilibrium point of the 
structure, but conformational fluctuations about the equilibrium 
point are modified. Among six types of perturbations, three foot-
prints denoted as triad, star and ball are considered. A triad foot-
print adds three springs to the elastic network to connect pairs of 
𝐶%	atoms located at 𝑝, 𝑝 + 1 , 𝑝 − 1, 𝑝 , 𝑝 − 1, 𝑝 + 1 . At the 
N- and C-termini only one of the three springs is added. A star 
footprint adds springs to the elastic network to connect 𝐶%	atom at 
residue 𝑝 to all 𝐶%	atoms located within a radius of 𝑅O from the 
𝐶%	atom at 𝑝. A ball footprint adds springs to the elastic network 
to connect all pairs of 𝐶%	atoms that fall within 𝑅O relative to the 
𝐶%	atom at 𝑝. Schematic pictures of each footprint type are shown 
in Figure S2 of supporting information.  
     The size of the star and ball footprints can be adjusted by 𝑅O. 
In this study, a range between 8Å to 12Å is considered. Stabilizing 
and destabilizing perturbations can be generated by positive and 
negative 𝑘O respectively. To make comparisons of different size 
star and ball perturbations less dependent on size, 𝑘O is scaled as 
𝑘O = 	𝑘/𝑁O where 𝑁O is the number of independent vibrational 
modes when the subsystem perturbed is viewed as a separate unit. 



 

Perturbation Response Matrix: For each perturbation, a spectral 
decomposition of 𝐻O yields new eigenvectors and eigenvalues. 
The eigenvalues are transformed into PCA variances, 𝜆O6  where 
𝑝 is the residue number for the reference location of the perturba-
tion and 𝑛 is a PCA mode index where 𝜆O,673 > 𝜆O,6. The MSF at 
each residue is calculated as 𝑀𝑆𝐹 𝑝, 𝑟 = 𝜆O,66 𝑉6b(𝑟) where 𝑟 
is the residue where the mean square fluctuation is observed, and 
𝑉6(𝑟) is the 𝑟-th component of the 𝑛-th PCA mode. Compared to 
the unperturbed protein 𝑀𝑆𝐹 𝑝, 𝑟 − 𝑀𝑆𝐹(0, 𝑟) defines a pertur-
bation-response matrix (PRM), and 𝑝 = 0 defines the unperturbed 
case. Since distal changes are of interest, local effects are re-
moved by excluding matrix elements whenever the distance be-
tween 𝐶%	atoms at 𝑝 and 𝑟 are 15Å or less. For these pairs of resi-
dues the PRM elements are set to zero. For stabilizing perturba-
tions (𝑘 > 0) the PRM is denoted as 𝑀c 𝑝, 𝑟 . Likewise, 𝑀d 𝑝, 𝑟  
denotes the PRM for destabilizing perturbations (𝑘 < 0). Letting 
the variable 𝑌 denote perturbation type s or d, 𝑀f(𝑝, 𝑟) denotes a 
PRM for either stabilizing or destabilizing perturbations where the 
rows define a perturbation scan, and the columns define the loca-
tion of the response.  
    A decrease or increase in MSF at a given residue in response to 
a perturbation is respectively referred to as stabilizing or destabi-
lizing. The PRM is divided into stabilizing and destabilizing parts 
as 𝑀f = 𝑀fc +	𝑀fd such that all negative matrix elements in 𝑀f 
are the same as in 𝑀fc, while all other matrix elements in 𝑀fc	are 
zero. Positive responses are similarly tracked by 𝑀fd. A four-state 
classification scheme in the form of YX is defined as (ss, sd, dd, 
ds) where Y and X refer to the perturbation and response respec-
tively. In summary, the PRM for stabilizing perturbations is de-
composed into 𝑀cc 𝑝, 𝑟  and 𝑀cd 𝑝, 𝑟  and for destabilizing per-
turbations the PRM is decomposed into 𝑀dc 𝑝, 𝑟  and 𝑀dd 𝑝, 𝑟 .  
Response and Perturbation Profiles: A response profile for an 
entire scan of stabilizing perturbations across a protein is given by 
𝑅cg	 𝑟 = 𝑀cg 𝑝, 𝑟O /𝐶c, with a normalization constant de-
fined as 𝐶c = 	 	 𝑀cc 𝑝, 𝑟 + 𝑀cd 𝑝, 𝑟 	Oh . The 𝑅cc 𝑟  profile 
is for stabilizing response, and the sum 𝑝cc = 	 𝑅cc(𝑟)h  gives the 
percent of residues that undergo a stabilizing response for stabiliz-
ing perturbations. Similarly, 𝑅cd(𝑟) is the response profile for 
residues that are destabilized over a scan of stabilizing perturba-
tions, and 𝑝cd gives the percent of residues that have a destabiliz-
ing response. Similar equations are defined for destabilizing per-
turbations, yielding the 𝑅dc(𝑟) and 𝑅dd(𝑟) response profiles, and 
associated 𝑝dc and 𝑝dd that respectively give the percent of resi-
dues having a stabilizing (rigidify) or destabilizing (increase flex-
ibility) response due to a destabilizing perturbation. Perturbation 
profiles are also defined. For example, 𝑃cc	 𝑟 = 𝑀cc 𝑝, 𝑟h /𝐶c 
quantifies where stabilizing perturbations will likely cause a stabi-
lizing response. The profiles 𝑃cd 𝑟 , 𝑃dc 𝑟  and 𝑃dd 𝑟  are also 
similarly defined. Note that total percentages (𝑝cc, 𝑝cd, 𝑝dc 𝑝dd) 
obtained from perturbation and response profiles are equal be-
cause summing over 𝑟 first and then 𝑝 second, or 𝑝 first and then 
𝑟 second, gives the same results.  
    Cross-sections of information within the PRM are conveyed by 
𝑀gf 𝑝L, 𝑟 , which tracks the response at each residue, 𝑟, for a 
perturbation applied at 𝑝L. If the interest is to determine which 
residues should be perturbed that will lead to a response at 𝑟L, this 
information is conveyed as 𝑀gf 𝑝, 𝑟L . The profiles defined above 
show an average distribution across the entire protein. Other pro-
files can be constructed for a targeted region, such as for stabiliz-
ing response for stabilizing perturbations in the CDR2H loop that 
is given by 𝑅cc 𝑟|𝐶𝐷𝑅2𝐻 = 𝑀cc 𝑝, 𝑟O	∈lb /𝐶c. Summing this 
response profile over all residues in the protein gives the total 
response that comes from only perturbed residues in the H2 loop. 
Dividing this sum by 𝑝cc results in a relative percent for how 

much the stabilizing perturbations in the H2 loop causes a re-
sponse throughout the protein. Considering different targets ena-
bles dynamical couplings to be efficiently analyzed.    

Results and Discussion 
Miller et al experimentally identified a set of mutant scFv frag-
ments with similar activity.6 The structure has a heavy VH and 
light VL domain connected by a flexible linker at residues 116-
132. Five mutants with increased stability are considered here, 
ordered with increasing melting temperature: V56G, P104D, 2M 
(S16E & S177L), 3M (S16E, V56G & S177L) and 4M (S16E, 
V56G, P104D, S177L). Locations of all mutant sites are shown on 
the structure in supporting information Figure S3, including the 
labeling of key structural features. Dynamic coupling is investi-
gated through changes in MSF caused by external perturbations 
with response/perturbation profiles compared.  
    The change in mobility at each residue is calculated over a scan 
of perturbations applied at each residue, in turn, one at a time. 
Both stabilizing and destabilizing perturbations are considered. 
For stabilizing perturbations, elastic forces with a characteristic 
spring constant, 𝑘, create a clamping effect to suppress conforma-
tional fluctuations at the perturbation site. Changing the sign of 
the characteristic spring constant from positive to negative yields 
a destabilizing perturbation. In this case, conformational fluctua-
tions that squeeze together 𝐶% atoms within a perturbation site are 
suppressed; otherwise the 𝐶%	atoms are wedged apart with greater 
force as their separation increases farther from their equilibrium 
separations. The intrinsic elasticity of a protein must overpower 
destabilizing forces to prevent a local (or global) unfolding event.  
    At distal residues from a perturbation site, a positive or nega-
tive change in MSF relative to the unperturbed protein respective-
ly yields a destabilizing or stabilizing response. This process re-
sults in a perturbation-response matrix (PRM) for stabilizing and 
destabilizing perturbations, shown in Figure 1 for the native pro-
tein. The PRM patterns from stabilizing and destabilizing pertur-
bations are not anti-symmetric. For all proteins, stabilizing pertur-
bations within the complementarity-determining regions (CDR-
loops) lead to overall increases in mobility within the protein, 
indicated by red horizontal strips. 

 
Figure 1: Native PRM for stabilizing (left) and destabilizing per-
turbations (right). Red and blue colors respectively indicate an 
increase and decrease in MSF, and white indicates no change.  
    The PRMs for stabilizing and destabilizing perturbation for all 
six proteins are compared in supporting information in Figures S4 
and S5 respectively. Interestingly, similar PRM patterns group 
into three separate pairings such that V56G is similar to native, 
P104D is similar to 4M with a stronger response to perturbation, 
and 2M is similar to 3M with a weaker response. These groupings 
are similar to groupings by binding affinities.6 However, the rank 
order of these PRM pairs by strength is not the same as the rank 
order by binding affinities or melting temperature.6  
Global Mobility Response: Summing MSF over all residues in a 
protein is equal to the trace of the covariance matrix that defines 
total mobility. Similarly, summing MSF changes due to a pertur-
bation over all residues yields the change in total mobility. The 
response profiles for total mobility are shown in Figure 2 for 



 

stabilizing and destabilizing perturbation on all six proteins. These 
profiles show where perturbations must be applied on a protein to 
increase or decrease total mobility. The profiles for perturbations 
that are stabilizing (Figure 2a) or destabilizing (Figure 2b) re-
spectively pair up in the same way the PRMs pair up. Namely, in 
order from weakest to strongest response, the pairs (2M, 3M), 
(V56G, Native) and (P104D, 4M) exhibit similar profile patterns.  
    Comparing the profile patterns of a protein from stabilizing and 
destabilizing perturbations reveals an approximate anti-symmetric 
character. Across the six proteins, linear correlation coefficients 
between profiles for stabilizing and destabilizing perturbations fall 
in the range -0.65 < R < -0.79. Consequently, whenever a stabiliz-
ing perturbation causes total mobility to increase, a destabilizing 
perturbation is likely to cause mobility to decrease and vice versa. 
In supporting information, Table S1 lists correlation coefficients 
between all protein pairs for respective quantities that decompose 
changes in total mobility into stabilizing or destabilizing response 
to either a stabilizing or destabilizing perturbations. Linear corre-
lation coefficients between respective quantities across all pairs of 
proteins fall in the range 0.70 < R < 0.94 for stabilizing perturba-
tion and 0.55 < R < 0.94 for destabilizing perturbation.    

 
Figure 2: Change in total mobility is mapped onto structure due 
to a) stabilizing and b) destabilizing perturbations. Blue and red 
colors show reduced and increased total mobility respectively. 
White indicates virtually no change. These results are for a ball 
footprint with 𝑅O = 10Å and 𝑘L = 10	𝑘𝑐𝑎𝑙/(𝑚𝑜𝑙	Åb). 
    Notwithstanding variations in magnitude, profile patterns for 
total mobility are well conserved for a given type of perturbation, 
which is reflecting the protein fold as expected. Since the pertur-
bations considered in this work alter conformational fluctuations 
at a perturbation site without changing equilibrium positions, it 
may be possible that a perturbation that disrupts the fold could 
create a response pattern that deviates far from that observed here. 
Assuming the protein remains folded and functional as it interacts 
with other molecules the qualitative anti-symmetric character of 
global response should be quite general, although changes in total 
mobility do depend on properties of the perturbations. In particu-

lar the largest differences appear between ball and triad footprints. 
Triad results are shown in supplemental information in Figure S6.  
Mean Response Distribution: Dynamic response is decomposed 
into average response profiles for the cases ss, sd, dd and sd. Gen-
eral trends on how the response depends on the size and strength 
of a ball footprint is shown in supplemental information in Figure 
S7, S8 and S9. The ball radius is explored in the range from 8Å to 
12Å, as the characteristic spring constant governing strength of a 
perturbation is explored in a range from 1 to 20 𝑘𝑐𝑎𝑙/(𝑚𝑜𝑙	Åb). 
A robust pattern emerges from two independent trends. First, as 
the perturbation radius (𝑅O for ball or star) increases, the average 
response profile is enhanced for ss and dd cases, but diminished 
for sd and ds cases. This indicates that as 𝑅O increases the average 
response becomes more compliant with a perturbation. This effect 
is likely a general result, as it is intuitive that a larger footprint 
will more effectively drive a protein to respond in the direction of 
the perturbation. This trend is consistent with a previous finding 
that highly localized rigidifying perturbations induce flexibility at 
distal locations in similar spirit to the Le Chatelier's principle.9   
    For residues outside the flexible linker between the VH and VL 
domains, an increase in perturbation strength increases destabiliz-
ing response and decreases stabilizing response. Combining size 
and strength dependence shows that ss, sd, dd and ds response 
profiles are enhanced when (size, strength) is respectively (large, 
small), (small, large), (large, large) and (small, small). Results for 
the ball footprint with 𝑅O= 10Å and 𝑘L = 10	𝑘𝑐𝑎𝑙/(𝑚𝑜𝑙	Åb) 
provide a representative example from which all main conclusions 
can be inferred. The relative magnitudes in the response for dy-
namic coupling for the six proteins are summarized in Tables 1 
and 2 for stabilizing and destabilizing perturbations respectively.  
    The quantity 𝑇𝑅L listed in Tables 1, 2 is the trace of the covar-
iance matrix (total mobility) of the unperturbed protein. The listed 
quantity Δ𝑇𝑅  is the average change in trace upon perturbation 
based on a uniform scan over the entire protein, which character-
izes the overall magnitude of the dynamic response. It is apparent 
that the rank ordering of the observed pairings (2M, 3M), (V56G, 
Native) and (P104D, 4M) follows the rank ordering in Δ𝑇𝑅 . 
The magnitude of dynamic response linearly correlates with 𝑇𝑅L 
well (R= 0.96 for both stabilizing and destabilizing perturbations), 
indicating that the magnitude of dynamic response is essentially 
proportional to the global mobility of a protein. 

Table 1: Size and relative distribution characteristics of dynamic 
response to stabilizing perturbations for all six proteins ordered 
from top to bottom with the least to greatest stability. The units 
for trace quantities are in Åb. 
Protein 𝑻𝑹𝒐 𝚫𝑻𝑹   rel%S  %SP  %ss  %sd 
Native 506 73.6 100.0 39.8 67.9 32.1 
V56G 513 57.9 78.6 36.5 65.8 34.2 
P104D 685 134.4 182.7 36.8 61.3 38.7 
2M 251 18.0 24.4 37.8 62.8 37.2 
3M 295 27.2 37.0 41.1 69.4 30.6 
4M 528 95.2 129.4 39.5 64.1 35.9 

Table 2: Size and relative distribution characteristics of dynamic 
response to destabilizing perturbations for all six proteins ordered 
from top to bottom with the least to greatest stability. The units 
for trace quantities are in Åb. 
Protein 𝑻𝑹𝒐 𝚫𝑻𝑹  rel%D %DP %ds %dd 
Native 506 111.5 100.0 60.2 14.7 85.3 
V56G 513 100.7 90.3 63.5 7.3 92.7 
P104D 685 230.6 206.8 63.2 8.8 91.2 
2M 251 29.6 26.5 62.2 7.9 92.1 
3M 295 39.0 34.9 58.9 14.0 86.0 
4M 528 146.0 131.0 60.5 12.1 87.9 

    The Δ𝑇𝑅  data is normalized relative to the native protein so 
that each protein is assigned a relative percent rel%S or rel%D for 
stabilizing or destabilizing perturbations respectively. Likewise, 
%SP and %DP give percentages for the relative size of dynamic 



 

response due to stabilizing or destabilizing perturbations. The %ss 
and %sd give relative percentages for how much a stabilizing 
perturbation leads to a stabilizing or destabilizing response. Simi-
larly, %ds and %dd provide relative percentages for a destabiliz-
ing perturbation. The information in Tables 1, 2 taken together 
indicate that the overall characteristics of dynamic response in all 
six proteins are markedly similar, with the notable difference that 
the native, 3M and 4M proteins have nearly twice the stabilizing 
response to destabilizing perturbations than the V56G, P104D and 
2M proteins. No “rule of thumb” was found to correlate affinity or 
stability to a dynamical coupling signature of some type, such as 
total number of perturbation sites that trigger long-range dynamic 
coupling, or those at the interface, or within functional loops.  
Linker Communication: The linker has the greatest response to 
perturbation compared to anywhere else in the protein, indicating 
a dynamical communication pathway exists between the linker 
and the majority of the protein. Mobility in the linker can increase 
or decrease due to stabilizing or destabilizing perturbations (e.g. 
Figure S8). Interestingly, change in mobility within the linker as 
perturbation strength increases responds in the opposite way to all 
(or nearly all) other residues in the protein. For the ss and ds cas-
es, the effectiveness of a perturbation to stabilize the linker de-
creases as perturbation strength increases. Conversely, the effec-
tiveness to destabilize the linker decreases. Furthermore, as per-
turbation strength increases the magnitude of the response in the 
linker decreases regardless of perturbation or response type. Gly-
cine-serine rich linkers are known to be important in the scFv 
fragments which helps in maintaining their activity.50-51 Flexibil-
ity in this linker is also associated with top ranked PCA modes 
that allow its high mobility to be captured. These results elucidate 
the important role that the linker plays in scFv fragments.  
Variable Response Profiles: Linear correlation coefficients for 
mean response profiles between mutants to the native protein are 
given in Table 3. The tabulated data indicates there is overall 
similarity in response profiles between native and any mutant 
(especially for the case sd) but variation in profile shape (not rela-
tive magnitudes) is significant (15 out of 40 cases R < 2/3) with 
mutant 2M deviating from native the most. The response profiles 
for each protein are also linearly correlated to MSF, with R-values 
listed in Table 4. Only 2 out of 48 cases has R < 2/3, and for 43 
cases R > 3/4, indicating that dynamic response tracks MSF well. 
Correlation between all protein pairs is given in Table S2, where 
the response in 2M deviates the most from all other systems.  

Table 3: Correlation coefficients for linear correlation in response 
profiles between mutant and native with and without the linker. 

 
ss sd dd Ds 

 
Linker 

No 
Linker 

 
Linker 

No 
Linker Linker 

No 
Linker Linker 

No 
Linker 

V56G 0.81 0.63 0.91 0.93 0.90 0.75 0.73 0.48 
P104D 0.98 0.45 0.90 0.93 0.93 0.88 0.97 0.63 
2M 0.53 0.36 0.68 0.87 0.84 0.39 0.32 0.48  
3M 0.93 0.21 0.67 0.88 0.82 0.52 0.95 0.16 
4M 0.84 0.53 0.79 0.82 0.84 0.63 0.75 0.52 

Table 4: Correlation coefficients for linear correlation in response 
profiles between protein and its MSF with and without the linker. 

 
ss sd dd ds 

 
Linker 

No 
Linker 

 
Linker 

No 
Linker Linker 

No 
Linker Linker 

No 
Linker 

Native -0.98 -0.89 0.93 0.68 0.86 0.90 -0.96 -0.80 
V56G -0.97 -0.88 0.75 0.65 0.84 0.90 -0.95 -0.82 
P104D -0.98 -0.94 0.84 0.73 0.81 0.85 -0.97 -0.81 
2M -0.98 -0.88 0.89 0.76 0.89 0.70 -0.90 -0.81 
3M -0.97 -0.82 0.77 0.71 0.84 0.93 -0.94 -0.68 
4M -0.99 -0.91 0.75 0.56 0.85 0.80 -0.97 -0.83 

    Previous studies show that regions with high mobility in pro-
teins play a vital role in allosteric regulation.24, 52 Note that desta-
bilizing response for stabilizing perturbation (sd) is strongly cor-
related with or without the linker. The sd case is often attributed 
to function by the rationale that flexibility is induced at a binding 

site in response to an allosteric effector. Taken together, this result 
suggests all mutations have similar sd response as that of the na-
tive protein to conserve function. Interestingly, the correlation in 
response profiles between native and all mutants is high for the ss 
and ds cases, but excluding the linker leads to a substantial drop in 
correlation. This result indicates that the linker plays a dominant 
role in stabilizing the protein.  
    Mean response profiles for each protein are shown in Figure 3, 
where different scales for color rendering are used for each case 
(i.e. ss, sd, dd, ds) to obtain maximum contrast, but the same scale 
is used across all proteins to allow variations between proteins to 
be discerned. The mean response profiles within a classification 
show similarity and variation across the proteins. Similar trends in 
Figure 3 show the ss and dd cases as having a strong response in 
the linker and in the CDR loops of the VH domain. In addition, 
strong destabilizing response to stabilizing perturbations (case sd) 
occurs in the linker and all CDR loops, suggesting that an increase 
in mobility within CDR loops help facilitate protein function. For 
the ds case, the linker always destabilizes in response to a destabi-
lizing perturbation.  
    Antisymmetric patterns are not present between ss and dd cases 
or sd and ds cases. While the sd case is the most conserved, the ds 
case exhibits most variation across proteins than any other catego-
ry. Mean ds response profiles for 2M and 4M mutants respective-
ly show least and greatest response, and exhibit the most deviation 
on opposite ends of the spectrum compared to all other proteins. 
Upon close inspection, numerous small variations are observed in 
each protein across corresponding categories, even between pairs 
of proteins sharing a similar PRM.  

 
Figure 3: Mean response profiles mapped onto structure for a) 
native, b) V56G, c) P104D, d) 2M, e) 3M and f) 4M systems. The 
color scheme of red, orange, yellow orders destabilizing response 
from largest to smallest. The color scheme of blue, cyan, green 
orders stabilizing response from largest to smallest. White repre-
sents virtually no response. 
CDR Loop Communications: Each CDR loop is in turn targeted 
with stabilizing and destabilizing perturbations. Their dynamic 
response profiles are shown in Figure 4 for the native protein. 
Response profiles for all six CDR loop perturbation targets for all 
proteins are given in supporting information Figures S10 – S15. 
These profiles are expected to be functionally relevant since anti-
gens interact with CDR loops.  
    As seen in Figure 4, dynamic response spans the VH and VL 
domains. For example, if CDR1H in VH is perturbed, a signal 
transfers to the VL domain via the linker and the interface be-
tween domains. The conditional response profiles for the catego-
ries ss, sd dd and ds differ depending on which CDR loop is per-
turbed and how. Interestingly, in all the systems a destabilizing 
perturbation in any CDR loop in the VL domain triggers a re-
sponse in all CDR loops of the VH domain. Perturbation in the 



 

CDR1 or CDR3 loops in the VH domain or any CDR loop in the 
VL domain induces stabilizing response in the CDR2H loop in all 
the systems. Furthermore, stabilizing perturbation to the CDR1H 
loop triggers a destabilizing response to all CDR loops in the VL 
domain. It is worth noting that a stabilizing perturbation to the 
CDR2H or CDR3H loops also trigger a destabilizing response to 
all CDR loops in the VL domain only in P104D and 4M systems. 
Stabilizing perturbations of most CDR loops trigger a dynamic 
response in the CDR2H loop, which is the longest loop present in 
the scFv fragments. These results suggest that increase in mobility 
facilitates recognition of antigen binding.  In previous studies it 
was shown that binding of antigen to CDR-3 loop is responsible 
for the rearrangement of VH and VL domains.53  

 
Figure 4:  Mean response mapped onto structure for perturbation 
targets at the CDR loops (a) CDR1H, b) CDR2H, c) CDR3H, d) 
CDR1L, e) CDR2L, f) CDR3L. Magenta color highlights targeted 
CDR loops; otherwise the color scheme is the same as in Figure 3.  
Perturbation Profiles: Perturbing a single residue can stabilize 
some residues and destabilize others. A mean perturbation profile 
differentiates which residues trigger a large or small response for 
the ss, sd, dd and ds categories. Common features among the scFv 
fragments are shown in Figure 5 by averaging the mean perturba-
tion profiles over all six proteins. Interestingly, hydrophobic resi-
dues in the VH/VL domains are respectively more/less compliant. 
Increased compliance means stabilizing perturbations yield more 
distal stabilization and likewise destabilizing perturbations yield 
more distal destabilization (e.g. ss and dd cases). The exposed 
hydrophobic residues are more compliant than buried hydropho-
bic residues. In addition, stabilizing perturbations on buried hy-
drophobic residues in the VH domain trigger less destabilization.  

 
Figure 5: A representative mean perturbation profile is mapped 
onto native structure for ss, sd, dd, ds cases. Balls show locations 
of hydrophobic residues that are a) buried and b) exposed. Blue 
and red colors respectively show residues that trigger a stabilizing 
or destabilizing response. White color indicates no response.  
    Upon inspection, PRM patterns for all six scFv fragments (e.g. 
Figures S4 and S5) exhibit overwhelming likelihood for residues 
along a row to either have stabilizing or destabilizing response. As 

such, perturbation profiles for the ss and sd cases are nearly or-
thogonal, meaning whichever case has the largest non-zero value, 
the other case is zero or negligible. Similarly, dd and ds cases are 
nearly orthogonal. A notable exception in these scFv fragments is 
that the linker often has a contra-response compared to all other 
residues (as noted above), which prevents perfect orthogonality. 
Nevertheless, ss and sd (or dd and ds) perturbation profiles can be 
overlaid on protein structure to show in one rendering which resi-
dues have greater stabilizing or destabilizing allosteric response.  
    In the same format for total mobility presented in Figure 2, the 
long-range (not local) mean perturbation profiles are shown in 
Figure 6 for all systems. It can be seen that a cluster of residues in 
the beta sheet of the VH domain decreases mobility upon a stabi-
lizing perturbation. The size of these clusters and spatial distribu-
tion in strength varies across the proteins, whereas the location of 
residues that trigger a destabilizing response is well conserved. 
These results suggest that the conserved pattern in destabilizing 
response is important to support function in these proteins. 

 

Figure 6: Ribbon diagrams for different scFv fragments are col-
ored by a) stabilizing b) destabilizing perturbation profiles. Blue 
and red colors respectively show residues that trigger net stabiliz-
ing or destabilizing response. White color indicates no response. 
    As shown in Table 5 only moderate to weak correlations are 
observed between mutant proteins and native with or without the 
linker, indicating that perturbation profiles are modulated by mu-
tations. Moreover, for ss, sd and ds cases there is weak correlation 
to MSF (typically 𝑅 < 0.2). Furthermore, correlations between 
mean perturbation profile of each mutant to MSF (while weak) is 
markedly larger, ranging from (0.47 < 𝑅 < 0.66). It is clear that 
perturbation profiles do not track MSF, although response profiles 
do. These results indicate each mutant responds in a similar way 
to sites that are sensitive to perturbations, but the effectiveness of 
sites to affect a response differ across the mutants.  

Table 5: Correlation coefficients for linear correlation in mean 
perturbation profiles between mutant and native with and without 
the linker.  

 
ss sd dd ds 

 
Linker 

No 
Linker 

 
Linker 

No 
Linker Linker 

No 
Linker Linker 

No 
Linker 

V56G 0.72 0.7 0.79 0.83 0.78 0.76 0.69 0.70 
P104D 0.75 0.75 0.71 0.75 0.85 0.80 0.73 0.73 
2M 0.38 0.50 0.84 0.86 0.70 0.67 0.26 0.34 
3M 0.60 0.62 0.72 0.75 0.68 0.65 0.32 0.33 
4M 0.58 0.59 0.70 0.73 0.76 0.67 0.53 0.55 

Functionally Important Perturbation Sites: Residues that trig-
ger distal response in CDR loops are expected to play an im-
portant role in stabilizing scFv fragments without losing activity. 
Therefore, a targeted response for each CDR-loop is separately 
considered to arrive at six conditional perturbation profiles shown 
in Figure 7 for the native protein. These results highlight the most 
effective places to perturb the native protein to obtain a response 
in the CDR loop of interest. The same conditional stabilizing and 
destabilizing perturbation profiles for all mutant proteins are re-
spectively shown in supporting information Figures S16 and S17.  
    Results shown in Figures 7, S16 and S17 indicate stabilizing 
any CDR loop in the VH domain triggers a destabilizing response 
in any CDR loop in the VL domain and vice versa. In addition, 
stabilizing CDR2L or CDR1H triggers a destabilizing response in 



 

any other CDR loop. Destabilizing any CDR loop in the VH do-
main triggers a destabilizing response in any other CDR loop. In 
general, many residues within CDR loops can be perturbed to 
trigger a stabilizing or destabilizing response in other CDR loops. 

 
Figure 7: The ribbon diagrams of the native scFv fragment are 
colored by their average CDR3L that trigger response in different 
CDR loops a) CDR1H b) CDR2H c) CDR3H, d) CDR1L, e) 
CDR2L and f). Blue and red colors respectively show residues 
that trigger a stabilizing or destabilizing response for stabilizing 
perturbation (SP) or Destabilizing perturbation (DP). White color 
indicates no response and magenta color highlights the CDR loop. 
Distinctive Perturbation Sites: To determine if certain sites have 
any distinctive characteristic if they are perturbed, the protein is 
decomposed into structurally and functionally important regions. 
Regions are classified in different ways. One classification assigns 
a residue to either the VH or VL structural domain or the interface 
between the two domains or the linker. Outside of the linker, resi-
dues are also classified as exposed, buried or transitional. Specifi-
cally, mean solvent accessible surface area (mSASA) with stand-
ard deviation was calculated for each residue using GROMACS 
over all MD simulations per protein. The distribution for mSASA 
is bimodal. A residue is buried when its mSASA plus its standard 
deviation is less than the dividing line between modes. It is ex-
posed if its mSASA minus its standard deviation is greater than 
the dividing line, and transitional otherwise. Combining these two 
classifications defines 10 distinct regions in a protein for which 
every residue is in one and only one grouping, such as VH-buried, 
VH-exposed, VH-transitional, etc. In addition, the six CDR loops 
are of functional interest, yielding a total of 16 regions of interest.  
    A targeted perturbation is applied to each region of interest, and 
the ratio of mean response derived from a targeted perturbation to 
mean response from the entire protein (c.f. Figure 3) is calculated 
for regions of interest to arrive at a coarse-grained PRM. A ratio 
close to 1 indicates no distinctive characteristic. A ratio less than 
½ or more than 2 is recorded as a signal, as shown for each pro-
tein and for the ss, sd, dd and ds cases in supporting information 
Figures S18, S19 and S20. Consensus signals across all scFv 
fragments are shown in Figure 8 when the p-value of a block is 
less than 0.0062 (i.e. requirement of 2.5 standard deviations away 
from the null hypothesis that there is not a signal).  
    From Figure 8 salient trends can be inferred. Stabilizing per-
turbations in the linker have propensity to stabilize the entire pro-
tein. Perturbing the linker is unlikely to destabilize VH residues or 
residues in the interface. Destabilizing a buried residue in the VH 
domain likely yields a stabilizing dynamical response within VH, 
which extends to the entire protein if the residue is exposed. De-
stabilizing any interface residue is likely to stabilize residues in 
the VH domain, which extends to the entire protein if the residue 
is not buried. Destabilizing any residue in the VL domain is likely 
to stabilize all CDR loops in the VH domain, and if the residues 
are not buried it is likely that CDR loops in the VL domain will 
also be stabilized. Stabilizing CDR2L has propensity to destabi-
lize CDR1H and CDR2H, while destabilizing loop CDR2L has 
propensity to stabilize CDR1H and CDR2H. Stabilizing CDR1H 
has a propensity to destabilize all loops in the VH domain, espe-
cially loop CDR2L. It is worth noting that the presence of positive 

and negative cooperativity between CDR loops have been exper-
imentally observed in monoclonal antibodies.54   
    Perturbing at the mutation sites (16, 56, 104, 177) leads to dif-
fering results across all mutants, however stabilizing perturbations 
at residue-16 yields a consensus (data not shown) for the propen-
sity to stabilize the entire protein. This means that most mutation 
site locations that both stabilize the protein and maintain function 
do not standout with any special characteristics. Importantly, the 
perturbation profile is hyper sensitive to mutation for the ss, sd, 
dd, ds classifications, leading to a mix of positive and negative 
cooperativity effects on the CDR loops within the same domain 
and across domains. These perturbation sites are numerous, and 
thus likely to facilitate non-specific binding of solute molecules, 
which could have an effect on specificity and selectivity.55 

 
Figure 8: Coarse-grained perturbation response matrix. Each 
block represents a targeted perturbation (y-axis) and targeted re-
sponse (x-axis). Within a block the ratio of a targeted response to 
the mean response over the entire protein is shown on a log2 scale.  
White blocks have no signal or insufficient statistical confidence.  
Different Perturbation Types: The triad, star and ball perturba-
tion types (defined in Methods) are tested to mimic how different 
ligands may induce different dynamic responses depending on the 
nature/type of a perturbation. At the very least, a comparison of 
the different perturbation types allows sensitivity of the model to 
be explored. Response and perturbation profiles for each type of 
perturbation for ss, sd, dd, and ds cases are shown in Figure 9. 
The star and ball perturbation types induce similar response pat-
terns, but with different magnitudes, while the triad perturbation 
exhibits a distinctly different pattern. 

 
Figure 9: Mean response to different types of stabilizing (SP) and 
destabilizing (DP) perturbation for a) triad b) star and c) ball.  

    Linear correlation coefficients are greater than 0.8 when two 
mean response profiles from triad, star and ball perturbations are 



 

compared across all scFv fragments if the linker is excluded. The 
linear correlation coefficients between star and ball are about 0.7 
to 0.8, whereas between triad and star or ball are below 0.5 al-
ways. The linear correlation coefficients fall within these ranges 
for the ss, sd, dd and ds cases. These results suggest the response 
profile by scFv antibody fragments to different ligands is highly 
conserved. Conversely, the propensity of triggering a response 
depends on the nature of the perturbation and location of the per-
turbing site. As such, the coarse-grained PRM shown in Figure 8 
changes between triad and ball perturbation types. This means 
different computational models will lead to different predictions 
due to the degree of sensitivity in the type of perturbation. Going 
forward, models that aim to predict allosteric pathways should 
place more attention on the chemical nature of the perturbation, 
which can have stabilizing and destabilizing effects together.    

Conclusions 
Mean destabilizing response in mobility across the native and 
mutant scFv fragments were markedly conserved for the four 
combinations of stabilizing or destabilizing perturbations and 
stabilizing or destabilizing responses. Response profiles from 
each corresponding CDR-loop were similar across the scFv frag-
ments. These results are interpreted as being a consequence that 
all scFv antibody fragments studied are functional. However, 
perturbation locations that induce similar responses are variable. 
If exposed residues are likely to be destabilized due to solute pro-
tein interactions, then this is likely going to lead to destabilizing 
effects in the VH domain but stabilizing effects in the VL domain. 
Generally, the linker transfers allosteric signals from the VH do-
main to the VL domain and vice versa. Decomposition of pertur-
bation and response show that functionally important loops have 
high mobility in various mutants.  
    Identifying dynamical couplings help elucidate which residues 
to target with a certain type of perturbation to increase stability of 
a protein while maintaining or modifying function. The method 
employed here decomposes dynamical couplings into stabilizing 
and destabilizing effects, which provides a powerful approach for 
understanding sensitivity in structure/function relationships, and 
in studying dynamic allostery. The method has the plasticity and 
speed of ENM approaches during perturbation scans, and its accu-
racy is inherited from the detailed information about atomic fluc-
tuations derived from molecular dynamics simulations.  
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