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ABSTRACT 
 
 

ALEXANDER JOHN GILES. Engineering quantum dot solids through self assembly in 
langmuir blodgett films. (Under the direction of DR. EDWARD STOKES) 

 
 

 The assembly of semiconductor nanocrystals into close packed films suitable for 

device engineering is critical to the development of next generation electronic and 

optoelectronic devices. These nanocrystals have nanometer dimensions and can be 

prepared by wet-chemical methods with tremendous control over their size and 

morphology. Thus far, limited techniques exist for the effective formation and deposition 

of single monolayer, large area films desired for advanced devices. 

 Such nanocrystal monolayers have been studied in this work with a Langmuir 

film trough. The Langmuir trough is a large (6 L) PTFE vessel filled with ultrapure water 

which nanoparticles can be spread onto. This technique exploits the nanocrystal stability 

at the air-water interface and controls the average interparticle spacing by varying the 

surface area available to the nanocrystal solution spread on the surface. The trough has 

been modified to perform both Langmuir Blodgett (vertical substrate) and Langmuir 

Schaffer (horizontal substrate) depositions. In addition to varying substrate orientation, 

film morphologies at varying surface pressures, subphase iconicity, and compression 

cycles were investigated. Both vertically and horizontally conductive devices were 

fabricated with sputter deposition and electron beam evaporation processes, with 

photolithographic techniques employed to write patterns for such devices. Furthermore, 

an atomic layer deposition system was constructed and developed to deposit current 

blocking layers in such devices.  



 iv 

 Initial Langmuir isotherms exhibited collapse pressures at low pressures (30 

mN/m) and extremely low coverage (0.001-0.005 monolayers), which was discovered to 

be a result of large quantities of unbound ligand in the nanocrystal spreading solution. 

Methods were developed to reduce the excess ligand concentration and nanocrystal films 

were realized at pressures as high as 55 mN/m and coverages above 0.1 monolayers. 

Devices showed both Schottky behavior with high resistivities (105-109 !cm) as well as 

Ohmic behavior at lower resistivities (10-1 !cm), suggesting shorting due to insufficient 

film coverage.  

 While morphology remains a concern, methods were developed to produce 

robust, rigid nanocrystal films on air-water interfaces and transfer them onto conductive 

substrates. Understanding of the particle-particle and particle-substrate interactions 

allowed for efficient preparation of substrates and spreading solutions, improving both 

film quality and throughput. 
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CHAPTER 1: INTRODUCTION 
 
 

Semiconductor nanocrystals, commonly known as quantum dots (QDs) have been 

an active area of research for the past three decades.  Semiconductors are macroscopic 

“molecules” in a sense, as their electronic properties arise from the coupling of individual 

atomic orbitals of closely spaced, ordered atoms in a lattice.  This electronic coupling of 

atoms results in the formation of coherent energy bands, as are present in all covalent 

solids.  Semiconductors possess a relatively low energy gap in their band structure, 

located between a full valence band and empty conduction band. This region has a 

density of states of zero (neglecting defects and other trap sites) where no allowed 

electronic states exist. Electronic activity across the band gap may involve a photon, this 

photon-electron interaction is the basis of optoelectronics. Because bulk semiconductors 

have so many atoms however, a change in the total number of atoms has no effect on the 

electronic bands provided the material remains larger than a minimum size.  This is 

largely a good thing, as engineers can rely on constant electronic properties of a material 

regardless of shape or size. The downside to this is that with bulk semiconductors, 

engineers and scientists are somewhat limited in what materials they can use for a 

specific application. In contrast, nanostructured semiconductors have very few atoms 

(generally < 104) and adding or removing even a single atom will appreciably change the 

electronic structure. Nanocrystals with fewer atoms have more strongly confined charge 

carriers, which results in a more widely spaced the band gap, approaching the limit of a 
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single atom’s highest occupied molecular orbital (HOMO) to lowest unoccupied 

molecular orbital (LUMO) transition. As these nanocrystals are nucleated and grown in 

solution, their size is simply a function of their growth time. With tightly controlled 

variables and an experienced chemist the entire visible spectrum and much of the NIR 

can be synthesized with only a few materials (ZnSe, CdSe, PbSe for example) in a matter 

of days or even hours. In optoelectronics this notion of nanoscale band gap engineering 

has been a paradigm shift in the last decade. 

As size decreases, the ratio of surface atoms to interior atoms increases 

drastically.  Surface atoms have, by definition, unfilled valence shells that may form 

covalent bonds with foreign atoms. These bonds often introduce carrier trap states within 

the nanocrystal, which can inhibit performance. This has largely been addressed by 

functionalizing the surfaces of QDs with organic ligands.  These ligands typically have 

energy levels far outside of the NC band gap, electrically passivating the NC. 

Furthermore, the aliphatic and sterically large nature of many (not all) of these ligands 

renders the nanocrystal soluble in a variety of non-polar solvents.  Once nanocrystals are 

cast into a film however, the nature of the ligand poses a huge problem for the same 

reasons it was previously effective: The scarcity of available states near the NC band 

edge creates a large potential barrier for electrons moving from one NC to another; and 

the size of many of these ligands results in huge interparticle distances (typically of the 

order of the size of the NC itself). Large distances and high potential barriers result in 

very low tunneling (hopping) rates and the electron transport properties of NC films are 

very poor. 
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There are numerous methods to fabricate devices from these nanomaterials, most 

of which rely on self assembly.1 Researchers have demonstrated ordered, three 

dimensional superlattices2, glassy spin cast films3, layer-by-layer (LbL) monolayer 

deposition4 and other techniques to achieve similar goals. A major consideration of any 

technique is the interparticle spacing, which is important not only in the self assembly but 

also a critical aspect of the final properties of any nanocrystal solid.5 Reduced inter-

particle distances are currently achieved via chemical methods, by exchanging the 

passivating ligands on the nanoparticle surface. Two dimensional nanoparticle films can 

also be formed using a Langmuir film trough. This has been shown to be feasible by 

several groups,6-9 although using this technique to fabricate working devices has thus far 

been elusive. 

 This work seeks to address the difficultly in fabricating closely packed 

nanocrystal films by exploiting the Langmuir technique, highlight recent advances in the 

field and build on those to create a nanocrystal solid to be used in a device. Deposition 

techniques and electronic properties of these materials will be discussed, with a focus on 

which parameters are important to consider when fabricating devices, the goal of this 

research. 

 

 

 

 

 

 



 
 
 
 
 
 

CHAPTER 2: SEMICONDUCTOR NANOCRYSTALS 
 
 
2.1 Background and Theory 

To understand the electronics of nanostructed systems, it is critical to recognize 

the distinction between traditional (bulk) semiconductor physics, where carriers behave 

as if they were essentially free (in most inorganic materials), and confined or molecular 

systems where carriers are electrostatically bound to one another (in most organic 

materials)  Given the opposing charges on each carrier, the electron is attracted to the 

hole by the Coulomb potential energy !!
!

!" ![2.1]12, where e the the charge on the electron, 

r is distance and ! is the permitivitty.  In these excitonic systems (unlike the free carrier 

model) we see no net flow of charge (current) as carriers move about in the crystal, an 

important and fundamental difference from traditional (bulk) solar cell photophysics. 

Frenkel and Peierls were the first two introduce this concept in 1931 and 1932, 

respectively, when studying how light energy is absorbed by solids (such as Xe(s) and 

NaCl(s)).   It is important to note that Frankel studied excitons in insulating solids where 

the dielectric constant is quite small compared to a semiconductor (or organic molecule), 

resulting in a significantly higher Coulombic energy (eq. 2.1) than their semiconductor 

counterparts.  Furthermore, in the insulating solids studied by Frankel and Peierls, the 

radius of the lowest energy exciton is often comparable (or less) to the interatomic 

distance resulting in a somewhat localized exciton.  These charge pairs form a class 

known as ‘Frankel’ excitons, tightly bound and localized within the crystal. 
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Realizing the limitations of Frenkel’s approach, Mott and Wannier investigated the case 

of an exciton in a solid with delocalized valence electrons (i.e. Si, Ge, GaAs).  As most 

semiconductors have a much higher density of states than ionic solids, we can see that the 

ionic solids merely represent a limiting case, one where the valence band is narrow and 

the bandgap is large.  Mott showed that excitons in a covalent solid experience a much 

larger dielectric constant and therefore a much weaker Coulombic attraction (see eq. 2.1).  

The radii of these excitons are large, often covering hundreds of atomic sites.  This 

concept of an exciton ‘radius’ is central to nanostructures, where an exciton is created in 

a particle smaller (in at least one dimension) than the excitonic radius, predictably and 

controllably increasing the exciton’s energy gap.  Using Bohr’s quantum theory we arrive 

at a formula for the energy of the excitonic series: !! ! !! ! !
!!  [2.2] where ! !

!!!!!!; and ! ! !!!!
!!!!! [2.3]12, 13, where m* is the reduced exciton mass and h is planck’s 

constant.  The excitonic series (eq. 2.2) can be seen in absorption measurements of 

semiconductors at low temperatures (figure 2.1).  It should be noted that figure 2.1 is 

merely a cartoon of an ideal measurement at very low temperatures.  As we increase T, 

the values of En are modified by the increasing vibration motion of the atoms within the 

crystal, spreading the excitonic absorption peaks considerably.  Plugging the values for 

Silicon (!Si = 11.68, mx*= 0.38 mo)10, 14 we can see that the predicted exciton binding 

energy in Silicon is on the order of the room temperature value of kT (" 25 meV) and 

therefore is too broad to be observed.  In fact, this phenomenon is seen in nearly all 

inorganic bulk semiconductors at room temperature:  The exciton binding energy is of the  

same order as kT and excitons are easily ionized to produce free carriers.  This explains 

the photoconductivity seen in semiconductors:  As light is absorbed, an exciton is formed 
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and then thermally ionized to produce free carriers, which lower the resistivity of the 

material.  

 

Figure 2.1: Expected absorption profile of an ideal semiconductor at low 
T.  Strong absorption peaks at low energy are due to Mott excitons, while 
continuum behavior is seen at higher energies due to free carriers. 

 

 In materials with dimensions smaller than the excitonic radius, several interesting 

phenomena occur.  The previously delocalized exciton (Mott-like) is now confined in one 

or more dimensions and thus behaves as a localized exciton (Frenkel-like)15, 16.  

Furthermore the Coulomb attraction increases as the inverse of the radius (eq. 2.2), blue 

shifting the 1st excitonic absorption energy as the dimensions are decreased.  In addition 

to the Coulombic contribution, quantum effects and solvation energy loss must be 

accounted for in confined systems.  In a seminal work , Brus et al. proposed the following 

relationship for excitonic energies:11 
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!! ! !!
!!!!!

!
!!!
! !

!!
! ! !!!!!

!!"!!!!
! !!!!"# !!!!!!!

!!"!!! !!! !
!!!

!! !
!!!!

!
 [2.4] 

 

Where !o and !r are the absolute and relative permitivitties, respectively; R is the 

nanoparticle radius; mo, is the electron rest mass; and m*e, and m*h are the reduced 

exciton, electron and hole masses, respectively. 
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Figure 2.2: Plot of the Brus et al. relationship1b (equation 2.4, !Eg)  and 
individual terms: Quantum localization (first term), screened Coulomb 
interaction (second term), and solvation energy loss (third term. 
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In this model we can relatively easily assign a physical meaning to each term. The first 

term on the right hand side represents the quantum energy of localization (the kinetic 

term), which shifts Ex(R) to higher energies as R-2.  The second term represents the 

Coulomb attraction, accounting for the screened electromagnetic attraction between the 

electron and hole, shifting Ex(R) to lower energies as R-1.  The third (size independent) 

term is the solvation energy loss, which is quite small in semiconductors.  More than a 

decade after Brus proposed his model researchers began synthesizing quantum dots in the 

liquid phase, allowing for widespread characterization and study.17, 18  The model has 

been successful in predicting behavior experimentally for several decades, even in 

complex heterostructures.19  While it does not exactly predict the band gap shifts (tends 

to overestimate) for nanocrystals, it provides a useful model and identifies important 

parameters (dielectric constant, effective) when considering different types of QDs.  A 

more accurate model for predicting bandgaps in CdSe particles was proposed by Yu et al. 

which expresses the diameter of a dot as a quartic function of the first exciton absorption 

peak.  The empirical formula is: 20  

 

! ! !!!"## ! !"!! !! ! !!!"#" ! !"!! !! ! !!!"#" ! !"!! !! ! !!!"## ! !

!"!!"  [2.5] 

 

Where D is the particle diameter and ! is the peak wavelength of the first exciton 

absorption. 
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Because of these higher energies in confined systems, absorption of a sufficiently 

energetic photon results in a transiently localized excited state that cannot thermally 

 
Figure 2.3: Plot of first exciton absorption peak vs. particle diameter in CdSe nanocrystals.  
Solid lines are models proposed by Brus et al. (theoretical, 1983)11 and Yu et al. (empirical, 
2003)20 .  Data points show improved accuracy of Yu’s theory21. 

 
 

Figure 2.4: Anthracene structure (C14H10) 
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dissociate (Ex >> kT).16  This yields a fundamentally different method of photovoltaic 

phenomena which cannot be described by p-n junction theory.  The first report of a 

excitonic photovoltaic device was in 1959 by Kallman and Pope,22 using an anthracene 

(C14H10,) crystal separating two solutions of NaCl.   

Kallman found that by illuminating one side of the anthracene crystal (5 !m 

thick), a photovoltage of 200 mV was generated between the two solutions. When the 

other side was illuminated, the same 200 mV was observed with opposite polarity (the 

illuminated side always charged negative).  While they were not able to propose a 

mechanism at the time, further experiments led them to conclude that the majority of the 

photocurrent was due to (1) the creation of excitons at the illuminated interface and (2) 

favorable electron injection (vs. hole injection) into the electrolyte.16, 22-24 Unfortunately, 

these studies went nearly unnoticed.  A modified version of this experiment was 

conducted in 1989 by Gregg et al.25 with zinc octakis(octyloxyethyl) polyphyrin 

(ZnOOEP) as the absorber and ITO as the electrodes.  The cell was symmetrical, the 

liquid crystal was isotropic and was contacted by identical electrodes, hence there could 

be no electric field present nor a built in voltage (Vbi = 0).  Traditional p-n junction 

theory suggests that the open circuit voltage is less than the built in voltage (VOC < Vbi), 

and that we would not expect this cell to have any photovoltaic response.  The cell 

produced a strong photovoltaic response however, with VOC = -0.3V and ISC = 0.3 

mA/cm-2.25  This work, building on Kallman and Pope’s models, was explained with a 

purely kinetic model:  Light was incident on only one side of this device (2-5 !m thick), 

hence excitons are produced on only one side of the electrode.  Furthermore, exciton 

dissociation at the interface must be kinetically asymmetric, and one type of carrier must 
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be more favorably injected than the other.  In this case (and also in the Kallman 

experiments) electrons are the more favorably injected carriers.  With only those two 

assumptions, the operation of the cell can be explained.  As electrons are injected into the 

electrode however, an electric field would build up that opposed further charge 

separation, inhibiting current.  This is in fact what happens under open circuit conditions: 

electron injection into the electrode creates an electric field that inhibits further current 

flow.  We can express the local electric field in this excitonic PV cell as E = qVOC 

[2.6],16, 25 where q is the electron charge. If this kinetic model is correct, one would 

expect further “encourage” or “discourage” carrier injection by using carrier selective 

contacts,  N,N’-diphenyl-N,N’-di(o-tolyl)benzidine (TPD) is a well known hole conductor 

with its HOMO level in between perylene bis(phenylethylimide)’s (PPEI) HOMO and 

the work function of ITO.  Its LUMO level however, is well above the LUMO of PPEI 

and the work function of ITO.  This facilitates rapid hole transport from the PPEI into the 

ITO, while forcing electrons to tunnel through the TPD to get to the ITO contact. These 

hole selective contacts have been shown to enhance photovoltaic response in films where 

they are applied to the majority hole-diffusing side of the excitonic material by 

discouraging electron diffusion into the (electro-positive) ITO contact.  When a hole 

diffusing contact is applied to a majority electron diffusing side it has been shown to 

reverse the polarity of the device, forcing electrons to diffuse on the opposite side (the In 

contact in this case). These contacts are typically only a few nm thick and do not pose a 

significant absorption threat.  Furthermore these selective contacts are organic molecules 

and can be depositied without damaging the underlying QD film, a problem  we have 
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previously had trying to grow (epitaxially) inorganic semiconductors onto deposited QD 

films. 

 The enormous tunability of a quantum dot provides a very attractive “building 

block” for designing optoelectronic devices in both the emitting and detecting arenas.  By 

controlling the size and spacing of these “artificial atoms,” we can control luminescence, 

absorption, coupling, carrier transport properties and more.  These benefits however, 

come at a cost.  A bulk semiconductor consists of anywhere between 1010 to 1030 atoms, 

of which interior atoms far outnumber those on the surface.  In a quantum dot however, 

many of the atoms are on the surface, giving rise to large density of surface traps.  It is 

critical to passivate these surface atoms to prevent mid gap states and non-radiative 

recombination pathways.  This is accomplished with either an organic ligand shell or a 

wide band gap inorganic shell.  The inorganic shell (CdSe(ZnS) for example) provides 

for excellent electronic passivation, confining carriers to the core with a type-I 

(“straddling gap”) heterojunction.  This results in significant overlap between the electron 

and hole wavefunctions, resulting in high rates of radiative recombination and quantum 

yields near unity.15, 27-30 While this is a desirable condition for emitters (LEDs, lasers, 

etc), detectors (solar cells, photosensors) require that carriers be separated and used in an 

external circuit before they have an opportunity to recombine within the QD.  

Furthermore, a passivating shell creates a potential barrier for a carrier at the band edge.  

Significant effort has been spent on minimizing this potential barrier as a method of 

demonstrating stronger electron coupling and efficient charge transport between 

neighboring quantum dots.15, 16, 28, 29, 31-33 Many groups have explored functionalizing 

CdSe QDs with either oxidizing34 or reducing35 ligands, demonstrating ultrafast exciton 
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dissociation lifetimes on the order of 1ps, several orders of magnitude faster than the 

competing radiative recombination lifetimes.  Another technique explored by researchers 

is coupling QDs to wide bandgap semiconductors (i.e. ZnO, TiO2) in an effort to capture 

lower energy photons for which  the wide bandgap material would otherwise be 

transparent.10, 28, 36, 37 This is primarily accomplished by engineering the QD-TiO2 

interface with bifunctional ligands.  Applying Pearson’s hard-soft acid-base theory38 

(HSAB), we can identify function groups that will more readily react with different 

materials.  The theory states that “soft” acids will react faster and form stronger bonds 

with “soft bases,” while “hard” acids will preferentially interact with “hard” bases.  Cd2+ 

and Se2- are considered “soft” ions, and will form bonds more favorably with other “soft” 

ions (thiols, amines, phosphine oxides) than with “hard” ions (carboxylics)10.  Exploiting 

this phenomenon, researchers have used a HS-R-COOH ligand (mercaptopropionic acid 

in one instance) to couple CdSe QDs to a TiO2 surface without aggregation of the QDs 

pre-adsorption.37 While these bifunctional ligands are very effective at physically 

coupling QD to other materials, the electronic coupling remains weak.  While the sp3 

hybridization is an understandably poor conductor, efforts to use organic ligands with sp2 

hybridization (mainly heterocyclic compounds: pyridine, thiophene, thiophene thiol, etc.) 

have yet to demonstrate themselves as efficient charge transport pathways.  Furthermore, 

these sensitization techniques require a electrolytic solution in contact with a counter 

electrode to maintain charge neutrality within the QDs.  Unlike bulk semiconductors, 

QDs are very sensitive to single electron addition / subtraction and will exhibit drastically 

different electronic properties in the +1 or -1 charge state.  This results from a 

combination of electron-electron repulsion in a small volume (FCoulomb! " as r! 0) and 
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a discretization of energy levels at the band edge.  These electrolytic solutions (I/I3, 

Na2S/S, etc ) have their own exciton dissociation lifetimes and can be the limiting rate in 

the charge transfer reaction. It is becoming more apparent that the most critical factor in 

maximizing charge transport from a QD to another material (another QD, substrate, etc) 

is the interdot distance.  While the electronic nature of the ligand and dielectric constant 

of the surrounding medium certainly play a role, minimizing the dot-dot distance is 

critical.   

2.2  The Ligand Shell 

CdSe QDs synthesized via the hot-injection method pioneered by Murray, Norris 

and Bawendi18 are functionalized with tri-octyl phosphine oxide (TOPO) ligands.  The 

phosphine oxide group binds strongly (via the oxygen) to the Cd sites, while the bulky, 

saturated octyl tails have a large steric hindrance,  repelling foreign molecules.10  While 

these TOPO ligands do an excellent job controlling growth and physically protecting the 

QD surface from attack, they reasonably poor electronic passivators, as their large 

footprint prevents them from passivating every surface site, leaving large numbers of 

surface traps.  Recently, researchers have explored a variety of ligands in an effort to 

better understand the effect they have on the QD’s electronic nature,10, 13, 16, 19, 27, 29-31, 37, 

39-48 yielding experimental evidence suggesting that a sterically small ligand is 

advantageous for two reasons:  As mentioned before, reducing the inter-dot spacing is the 

single most important factor in promoting efficient inter-dot charge transport.  The inter-

dot spacing is a direct function of the length of the ligand, therefore smaller ligands will 

allow for more closely spaced QDs.  Secondly, smaller ligands will load on the QD 

surface more densely than larger ligands.  This allows for better electronic passivation, as 
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there are fewer un-bonded surface atoms and thus fewer surface traps.  Additionally, this 

higher loading density creates more highly absorbing films as the density of CdSe per 

unit area is increased.  Chen, et al. showed a 1.7x increase in optical density after 

replacing TOPO ligands with oleic acid (OA) ligands on 3 nm CdSe QDs10 (figure 2.4).   

OA and TOPO have similar molar extinction coefficients and OA and TOPO capped 

QDs have similar inter-dot spacing, so the increase in optical absorption is purely a 

function of increased loading on the QD surface. Exploiting this idea, Talapin et al. have 

demonstrated hydrazine (N2H4) as an effective ligand to both electronically passivate 

QDs and decrease inter-dot spacing in QD films.47  The hydrazine ligands, which adopt a 

Gauche conformation, (figure 2.5) are the simplest diamines, with two amino groups 

directly bonded to each other (no carbon atoms).  Hydrazine is Brönsted base that binds 

weakly 

  

 

(~100 kJ/mol)46 to CdSe nanocrystals, while also a strong Lewis base with lone pairs of 

electrons that saturate dangling bonds at the nanocrystals surface.  Because of its 

reductive nature, hydrazine has been shown to repair oxidized Se sites (demonstrated in a 

 

Figure 2.5: Hydrazine molecule showing Gauche conformation and lone electron pairs 



 17 

PbSe system)49, reducing/ eliminating any mid gap levels, in addition to functioning as a 

charge transfer n-type “dopant,” observed in PbSe nanowires47 and carbon nanotubes50. 

Schapotschinov et al. has done recent work on the binding characteristics of 

amines, thiols, thiolates, phosphines and phosphine oxides using molecular dynamics and 

Monte Carlo simulations46.  Binding energies for TOPO-CdSe (313.6 kJ/mol) are 

significantly stronger than binding energies for RNH2-CdSe (86.8 kJ/mol), consistent 

with HSAB theory38 as the soft “-PO” functional group binds strongly to soft CdSe while 

the hard “-NH2” group is weakly interacting.  Furthermore, TOPO has a large steric 

hindrance, repelling foreign molecules such as hydrazine.  To realize a hydrazine 

exchange on TOPO capped CdSe QDs, we must expect a low rate of ligand exchange.  

As there are no reports of direct exchanges from TOPO capped CdSe QDs to hydrazine 

capped QDs, we intend to pursue a two-pronged strategy:  Initially we will perform a 

ligand swap from TOPO to oleic acid (OA) in solution, a straightforward and common 

procedure outlined as follows: 
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Table 2.1: Ligand replacement procedure for TOPO capped 
CdSe nanocrystals. 
 
1. Starting from a solution of TOPO-capped CdSe 

QDs in toluene, add methanol to precipitate QDs 
from solution.   

 
2. Centrifuge the sample and discard the supernatant. 

 
3. Vacuum dry the CdSe QDs. 

 
4. Dissolve the sample in a solution of oleic acid in 

toluene. 
 

5. Sonicate overnight @ 75o C. 
 

6. Add methanol to precipitate the QDs from 
solution. 
 

7. Centrifuge and discard the supernatant 
 

8. Rinse QDs with methanol, removing excess 
ligand. 
 

9. Vacuum dry the CdSe QDs. 
 

10. Dissolve the sample in toluene. 
 

 

 

The above procedure renders the CdSe QDs more susceptible to attack from the 

hydrazine ligand as the oleic acid ligands are far less bulky than their TOPO counterparts 

(figure 2.6), while the oleic acid ligands maintain the QDs hydrophobicity and stability in 

a Langmuir film.  Post Langmuir deposition, we will evaluate the effectiveness of the 

hydrazine treatment on both the OA capped QDs and the original TOPO capes samples.  

If the samples behave similarly there may be no need for the TOPO-OA ligand swap 

procedure, but we expect a faster reaction rate with OA capped QDs. 
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2.3 Nanocrystal Solids 

 The discretization of energy levels in nanocrystals leads to controllable and 

predictable properties not only for individual particles, but for coupled systems as well. 

As nanocrystals have similar discrete energy levels (leading to the pseudonym “artificial 

atoms”), one would expect interesting properties to arise from solids consisting of a 

closely coupled ensemble of nanocrystals. Furthermore, the LUMO of a II-VI 

nanoparticle has no nodal plane (filling the entire nanocrystal), analogous to an “s” 

orbital in atomic physics, allowing us to apply the same principles to QD solids.  Electron 

occupation is also of importance in these systems as different crystal structures possess 

different degeneracies (table 2.1). While pseudo-potential, tight-binding and other 

theoretical approximations tend to overestimate the band gap shift due to quantum 

 

 

Figure 2.6: (a) A cartoon of a TOPO capped QD, showing the steric hindrance 
provided by the tertiary alkyl groups. (b) A cartoon of a OA capped QD, showing the 
more accessible QD surface. In ligand exchange reactions, (b) will have a faster rate 
constant as the OA capped surface is more susceptible to attack from foreign 
molecules. 
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confinement, all methods agree on the symmetry and degeneracy of the first conduction 

energy levels.33 

How nanoparticles are arranged in a solid is obviously of great concern. While the 

artificial atom concept paints a simple and favorable picture, individual nanocrystals are 

all unique with varying sizes and morphologies, resulting in a far more complex system 

than a single crystal semiconductor.  The size dispersion of the ensemble of QDs, 

measured by the width of the PL (in solution), is thus a very important parameter in 

engineering a QD solid.  While a size distribution with ! < 5% is generally considered 

the “gold standard” among synthetic chemists16, 18, 39, we need to characterize the 

distribution in terms of the site energy dispersion (QD-QD band offsets). Ideally, an 

ensemble of QDs used to prepare a solid should have a site energy dispersion less than 

the available thermal energy in order to allow coherent inter-dot transport (figure 15).   

 

Table 2.2: Degeneracy as function of orbital (s,p,d) 
and crystal symmetry (wurtzite, rock-salt). 

 

 Wurtzite (CdSe) Rock Salt (PbSe) 

s 2 fold 8 fold 

p 6 fold 24 told 

d 8 fold 40-fold 

 

 

Furthermore, if "# is larger than the exchange coupling energy ($, to be discussed 

in the next section), Anderson localization will dominate47, inhibiting carrier transport.  

Figure 16 shows the absorption and photoluminescence spectra of commercially available 
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QDs (left, Evident Technologies) and QDs synthesized using the Murray method18.  Even 

with monodispersities below 5% RMS, significant amounts of QDs will have site energy 

offsets greater than 26 meV.  While this can certainly be improved, this magnitude of site 

dispersion energy is widely considered acceptable in the literature and improving 

synthetic methods (in hopes of reducing this energy) will not be a focus of this work.  
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Figure 2.7: a) Band diagram of a QD solid with a large !", seen as misaligned energy 
levels. b) Band diagram of a QD solid with a small !", seen as aligned and nearly 
continuous energy levels. 

 

Figure 2.8: Left: Absorption and PL data of commercially purchased CdSe/ZnS QDs 
(Evident Technologies). Right: Absorption and PL data of in-house synthesized 
CdSe/ZnS QDs.  Highlighted yellow areas represent the range defined by Eg ± kBT, 
showing the narrow size distribution required in an effective QD solid. 
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Arguably the most fundamental property of a high quality nanocrystal solid is the 

degree to which the particles are electronically coupled to each other. Quantum dots are 

accurately understood as a physical example of the “particle in a 3-D finite well” problem 

in quantum mechanics.  Brus11 was one of the first to solve this problem, making an 

important distinction that differentiates this from the textbook exercise.  Solving the 

Schrodinger equation for a particle in a spherical square well is a straightforward problem 

with the familiar conditions imposed by quantum mechanics.  Traditionally, another 

condition states that the first derivative of the wave function be continuous at all points, 

but that assumes a constant carrier effective mass throughout all space, which clearly is 

not the case for a nanocrystal.  Brus, with the suggestions of others, modified the 

condition to scale for the difference in effective masses of carriers inside and outside the 

crystal: 

!
!!

!!!
!" !

!
!!

!!!!
!"  .  [2.8] 

 

 

 

Figure 2.9: Eigenvalues of !n for n=1,2; l=0.  R=2.5 nm, Vo=5 eV. Y1 are Y2 are 
described in equation 12. 
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Where ! is the electron wavefunction. This correction allowed for accurate modeling of 

the electron’s “leakage” outside of the nanocrystal and yields a set of eigenvalues (figure 

17). While many colloidal nanocrystals are engineered to minimize such leakage (namely 

QDs for use in emitters) to improve quantum efficiency and minimize surface trapping, it 

is essential for QDs in nanocrystal solids to exhibit this behavior.  The bound states in a 

semiconductor nanocrystal can be determined by finding the values of ! that satisfy the 

equation: 

 

!"# !!! ! !! !! ! ! . [2.9] 

 

Where l represents angular momentum and xo is the unitless “size” of the well: 

 

!!! ! !!!!!!
!!  . [2.10] 

 

The problem becomes more tedious but no more complex as we consider in the 

discontinuity due to the effective mass offset (eq. 11), yielding us the S (l=0) 

eigenfunction: 

 

!! !! ! ! ! !!!
!!! !!!! !!!! !

 ; [2.11] 

 

where " = m*/mo. The 1S and 2S bound states are thus described by a spherical Bessel 

function inside the nanocrystal and a spherical Hankel function outside: 
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!! ! ! !!!"#!!!!!!
!   r < R;  [2.12] 

 

!! ! ! !!!!!!
!  r > R;  [2.13] 

 

where kn and !!are defined as: 

 

!! ! !!!!
! !! ; [2.14] 

 

!! !
!!!!
! !! !! . [2.15] 

 

Note that as !n is increased, !!is actually decreased, resulting in more of the electron’s 

wavefunction existing outside of the nanocrystal.  The practical consequence of this is 

that higher energy states (n > 1) (despite their short lifetimes) will couple far more 

strongly to both neighboring nanocrystals or underlying substrates or contacts.11, 51 

 A further consideration that is not widely discussed in the literature is the effect of 

the dielectric constant of the surrounding medium on nanoparticle coupling. This is 

understood theoretically as the energy loss due to solvation (recall equation 9). Classical 

electrostatics predicts a dielectric sphere in an infinite dielectric medium will have a loss 

of solvation energy dependant on both dielectric constants and the size of the sphere. 
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!!!! !!"#!!!!"!
 [2.16] 

 

A more rigorous expression of P reveals an expansion that it is dependent on the radial 

electric field, but we neglect that as it is a weak effect in semiconductor nanocrystals and 

the above relationship has been understood to be sufficient11. We understand the potential 

barrier at the nanocrystal surface to be: 

 

!! ! !"#$!"#$%& ! !"#$!" ! !!  [2.17]  

 

Where As the dielectric value of the surrounding medium (!out) is increased, P is 

increased proportionately.  This reduces the effective potential (V0) seen by a confined 

electron, relaxing the confinement and promoting stronger coupling with neighboring 

nanoparticles or substrates. 

As neighboring QDs are brought into close contact with each other their 

wavefunctions begin to overlap, allowing for charge transfer to occur.  As Hankel 

functions (eq 16) describe the amount of wavefunction leakage, this dependence is highly 

exponential and considers both QD size and interparticle spacing. Talapin et al.30 and 

others suggest an energy scaling of the solid as the exchange coupling energy: 

 

!!! !!!!!!!        [2.18] 
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Where !-1 describes the length scale of the wave function leakage, d is the diameter of the 

dot and ! is the interparticle spacing.  This relationship is consistent with the overlap 

integral of adjacent Hankel functions and is somewhat intuitive: the further the 

wavefunctions extend outside the nanocrystal and the closer together the nanocrystals are, 

the stronger the electronic coupling will be.  Note the exponential term is dimensionless 

and any consistent unit (i.e. nm, Å) may be used. A further consequence of the increased 

electronic coupling is the band shift observed in the QD solid.  Just as atomic 

wavefunctions in solids couple to form lower energy bands, similar behavior is observed 

in QD solids, albeit to a far lesser extent.  The tight-binding model, traditionally used to 

 

Figure 2.10: Probability distribution of 1S(red) and 2S(blue) electrons in adjacent 
d=5 nm CdSe QDs with an "=2 dielectric gap with varying interparticle distances. 
Numerical values indicate interparticle spacing distance (!). D=5 nm, Vo=5 eV. 
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calculate the electronic band structure in solids, can be extended to QD solids as the 

underlying principles are the same. The TB model is a one-electron that assumes 

electrons are tightly bound to the atom (or QD in our case) and thus have a limited 

interaction with surrounding atoms (QDs).  The Huckel approximation uses a linear 

combination of atomic orbitals, superimposing wavefunctions for isolated atoms (QDs) at 

each site.  An important aspect of the TB model is the band broadening that occurs as 

individual  atoms (QDs) are coupled together. Following Gerstein and Smith52 we 

determine the Schrödinger equation to be: 

 

!! ! ! !! ! ! !!
!

!!!
! !! !!!!!!!!!!!!!!!!!!!!!!!!! !!!"  

 

where A0 is the amplitude on a given site and An are the amplitudes on Z neighboring 

sites, with ! defined as the exchange coupling energy  (specifically, the off-diagonal 

(tunneling) matrix elements):      

 

! ! ! ! !!!!!!!!!!!!!!!!!!!!!!!! !!!"  

 

Returning to equation 21 we consider the maxima and minima of the Schrodinger 

equation across the Brillouin zone.  As An is related to Ao by phase factors, there will be 

points on the BZ where the sum of these factors is 1 (a maximum) and other points where 

the sum is -1 (a minimum).  Solving for these values yields: 
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!!"# ! !! ! !"!!!!!!!!!!!!!!!!!!!!!!!! !!!"  

 

!!"# ! !! ! !"!!!!!!!!!!!!!!!!!!!!!!!! !!!!  

 

Elucidating a width of the energy band given by: 

 

! ! !!"!                   [2.23] 

 

This important result tells us that we should expect a reduction in the 1st excitonic 

absorption peak in strongly coupled films proportional to the number of nearest neighbors 

(Z) and the exchange coupling energy (!).  In a three dimensional close packed QD solid, 

each nanoparticle has 12 NNs, resulting in a expected redshift of: 

 

!!!! ! !"! ;             [2.24] 

 

While in a two dimensional solid the number of NNs is 6, yielding: 

 

!!!! ! !"!!!! !!!!!!!!!!!!!!!!!!!!!"! 
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It is important to realize however, that the coupling between electrons and holes is 

different and depends largely on the effective mass of the carrier.  The effective mass of 

an electron in CdSe is !!! ! !!!"!!,53 although values in the literature range from as 

high as 0.15mo to as low as !!!!!!.51 The values for heavy and light holes are generally 

agreed upon as !!!
! ! !!!!!  and !!!

! ! !!!"!! , respectively53. Plugging these 

effective values into equation 13 yields eigenvalues which show the difference in 

probability distribution for a 1S electron vs. a 1S hole in a D = 5 nm CdSe nanoparticle 

(figure 2.18).  Of primary important is the stronger confinement of the hole due to its 

large effective mass.  This results in significantly less of the hole’s wavefunction existing 

outside the nanocrystal and therefore much weaker coupling with neighboring particles or 

substrates. For a 5 nm diameter CdSe QD surrounded by a V0 = 5 eV potential well, the 

 

Figure 2.11: Probability distribution for a 1S electron (red) and a 1S hole (blue) in a 
D = 5 nm CdSe QD. The dotted line shows the boundary between the QD and 
surrounding medium. Calculated using Brus’ methods.11 
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probability of the electron existing outside the nanocrystal is 15.33 times greater than the 

probability of the hole existing outside the nanocrystal: 

 

!!!!!!! !!"!
!
!!!!!!!!!"

!
!

! !"!!!"#$!!!!!!!!!!!"! 

 

seen clearly in figure 2.10.  Furthermore, the electron’s wavefunction extends much 

further beyond the boundary than the hole’s, promoting stronger coupling at greater 

distances. This motivates us to understand ! as a property of the charge carriers, with 

different values of !e and !h, much like the effective mass property.  Assuming ! scales 

with the probability density of the carrier outside the nanocrystal, we can understand that  

 

!! ! !"!!! !!!!!!!!!!!!"! 

 

for the specific case of a R = 2.5 nm CdSe QD surrounded by a 5 eV square well 

potential. Note that for a material with me " mh (i.e. PbSe), it can be assumed that !e " 

!h.54 Expanding on the ideas of equations 2.20-2.25, we can understand the red-shift of 

the first exciton absorption peak as films become more strongly coupled. As tight-binding 

theory predicts a band-broadening proportional to the exchange coupling energy (eq 

2.24), we expect to see a difference in the broadening of the valence band with respect to 

the conduction band in CdSe, illustrated in figure 2.19. Expanding equation 2.24 to 

account for varying coupling energies between electrons and holes yields the following 

relationship52, 54: 
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!!"#$%&' ! !!"#$!%&'( ! !" !! ! !" !! !!!!!!!!"! 

 

Substituting equation 2.27 results in our special case of the 5 nm CdSe QD in a 5 eV deep 

well: 

 

!!"#$%&' ! !!"#$!%&'( ! !"!!" !! !!!!!!!!!"!!! 

 

allowing us to experimentally determine the exchange coupling energy of a nanocrystal 

film. When dealing with electron transfer in nanostructured systems, Marcus electron 

transfer theory is often used: 

 

 

 

Figure 2.12: Illustration of band broadening due to coupling in CdSe nanocrystals. 
Due to the smaller effective mass of the electron in CdSe, the conduction bands are 
more strongly coupled than the valence bands as the interparticle distance (!) is 
decreased. As Ecoupled < Euncoupled , a red shift is observed in the 1st exciton absorption 
peak.  
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!!" !
!!
! !!" ! !

!!"!!!
!
! !!!! !
!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"! 

 

Where HAB is the electronic coupling of the initial and final states (equation 2.18), !G is 

the change in free energy (energy level offsets) and " is the system’s reorganizational 

energy. Quantum dots have extremely high surface area to volume ratios and when a QD 

becomes charged (either donating or accepting an electron) some nuclear rearrangements 

will occur to minimize the system’s energy.  The energy cost of these rearrangements is 

the reorganizational energy, thought to be roughly 100 meV in semiconductor quantum 

dots. While smaller " values will increase the rate of electron transfer, the strength of this 

relationship ultimately will vary from QD to QD and largely be out of our control from 

an engineering perspective. The two important factors in equation 2.30 are the coupling 

energy HAB and the change in free energy !G. Equation 2.30 however, only deals with 

electrons transferring from one specific state to another specific state. In a quantum dot 

optoelectronic device, the nanostructures will inevitable have to be coupled some bulk 

substrate which has a continuum of states.  Figure 2.13 illustrates this idea, showing 

discrete energy levels in a CdSe QD coupled to continuous bands in an ITO substrate.  

We can modify equation 2.30 by including the density of available states (the conduction 

band of ITO) for the electron to transfer to: 
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Where ρ(E) is the available density of states in the conduction band of ITO: 

 

 

Figure 2.13: An illustration of the discrete levels of a 4.2 nm CdSe QD (left) with the 
continuous bands of ITO (right) 
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! ! ! !! !
!! !!! ! ! ! !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"!  

 

 

 

It is evident from equation 2.31 that maximizing the -!G is critical to having high rates of 

electron transfer. What is less obvious however is that the electron transfer rate has two 

general regimes, one in which it is dominated by the density of available states (-!G > ") 

and another in which it is dominated by the reorganizational energy (-!G < ").  This 

 

Figure 2.14: Four plots of kET as a function of –!G with varying values of " (10 meV, 
50 meV, 100 meV, 250 meV).  When –!G < " the dominant influence on kET is the 
reorganizational energy ("). When –!G > " the dominant influence on electron 
transfer rate is the available density of states, subsequent increases in !G have little 
effect on kET far beyond this point. 
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becomes clear when we graph equation 2.32 using different values for ! (10 meV, 50 

meV, 100 meV, 250 meV) in figure 2.14. "G arises from three main energetic changes in 

an electron transfer event in a quantum dot. "GCHARGING represents the change in energy 

between a neutral initial state and a charged (+/-1) final state, "GCOULOMB represents the 

energy required to spatially separate the electron and hole (the coloumb attraction, 

equation 6) and "GELECTRONIC represents the energy level offset between the initial 

(LUMO of QD) and final (CB of substrate) states. "G is the sum of these three terms and 

is critical to consider when choosing materials to interface with QD films. The CdSe-ITO 

system has been proposed for this work to an extent as a result of its large "G 

("GELECTRONIC ~ 1 eV, "G ~ 0.5 eV). 
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2.4 Density of States Derivation 

Assuming a square potential with depth V0 and macroscopic length L (figure 1), we 

understand the solutions to the wave equation when V(x) = 0 to be: 

 

! ! ! ! !"# !!! ! ! !"#!!!!!.  [2.33] 

 

With the following boundary conditions: 

 

! ! ! !! !!!!!!! ! !! !.   [2.34] 

 

Which yields the following solutions: 

 

! ! ! ! !"# !!"! ;  such that !!" ! !!
! . [2.35] 

 

To calculate the density of states (DOS) we must count the number of states in the 

reciprocal lattice.  The reciprocal lattice is formed by taking the Fourier transform of the 

physical lattice and can be thought of as a group of points that represent allowed values 

 

 

Figure 2.15: A potential well of depth V0 and length L (L = 1 !m). 
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of wavevectors.  Within the reciprocal lattice, each state occupies a volume 

corresponding to a cube with side length kn, where n=1. We can therefore express the 

volume of an individual state as: 

 

!!"#"$ ! !!
!

!
! !

!
!
.   [2.36] 

 

And the volume of the allowed states as one-eighth of a sphere with radius k: 

!!""#$%& ! !
!
!
!!!

! ! !
!!!

!.   [2.37] 

 

To find the number of allowed states, we can simply divide the allowed volume by the 

individual state volume and multiply by two to account for spin degeneracy (see figure 

2.16): 
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! ! ! !!""#$%&!!"#"$
! !

!!!
! !

!
!
.   [2.38] 

 

The DOS has units of [Energy-1Volume-1] and therefore is a density both volumetrically 

and energetically. Finding the volumetric density is straightforward as we simply divide 

the number of states by volume: 

! ! !
! !

!
!!!

! !
!

! !
!! !

!!
!!!.    [2.39] 

 

Finding the energetic density is more complex, as we need to use the chain rule to find 

dD/dE: 

 

!!!! ! !"
!"

!"
!" !

!!
!!

!"
!".    [2.40] 

 

 

Figure 2.16: A graphical representation of individual states (shaded cubes at the origin) 
and the reciprocal space in which they are allowed (the green spherical volume) in three 
dimensions. 
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Which requires us to express k in terms of E: 

 

! ! !!!!!!!!!
! .     [2.41] 

 

Where Ec is the conduction band edge. Now we derive, re-writing E in terms of k: 

 

!"
!" !

!!!

!
!

! !!!!!!
! !!

!!
!

!!!!!!!!!
! !!

!!!.  [2.42] 

 

Substituting back into equation 8 yields the density of states. The effective mass accounts 

for the periodic lattice potential seen by the charge carriers, allowing this expression to 

describe a variety of systems: 

 

! ! ! !!
!!

!!

!!! !
!!!

!!!! !
!!!

!!!!.    [2.43] 

 

Expressing k in terms of E and replacing the reduced Planck’s constant with Planck’s 

constant yields the familiar form: 
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! ! ! !!!

!!!!
!
!

!!! !!!!
! ! ! !!!!

!!!! !!! ! ! !!
!! !! ! ! !!!!

!!!! !!! ! !

!! !
!! !!! ! !! ! !!!.      [2.44] 

  

For an electron in the conduction band of a semiconductor we know that the DOS below 

Ec is zero: 

 

! ! ! !! !
!! !!! ! ! ! !! ; E ! Ec 

! ! ! ! ; E < Ec. 

      [2.45] 

 

Figure 2.17: A plot of equation 2.44. 
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Plotting equation 2.44 gives us the familiar picture of the parabolic bulk density of states 

above the conduction band edge in a semiconductor. 

In a system with dimensions smaller than the electron’s mean free path, electronic 

motion is confined to those larger dimensions.  In the case of a (1 nm, 1 !m, 1 !m) box, 

the electron is confined to two dimensions. Returning to equation 4 and noting that 

instead of a 3-d reciprocal volume we now have a 2-d area (figure 4), we derive the 2-d 

density of states. Instead of a state’s volume, they now have an area: 

 

!!"#"$ ! !!
!

!
! !

!
!
.   [2.46] 

 

We write the area of the reciprocal space as one-fourth of a circle with radius k: 

 

!!""#$%& ! !
!!!

!.    [2.47] 

 

Figure 2.18: A graphical representation of individual states (shaded circle at the origin) 
and the reciprocal space in which they are allowed (the green circular area) in two 
dimensions. 



 43 

To find the number of allowed states: 

 

! ! ! !!""#$%&!!"#"$
! !

!!!
! !

!
!
.   [2.48] 

 

Finding the spatial density: 

 

! ! !
! !

!
!!!

! !
!

! !
!! !

!!
!!.   [2.49] 

 

Finding the energetic density: 

 

!!!!!! ! !"
!"

!"
!" !

!
!!

!"
!".   [2.50] 

 

Substituting equation 10 into 18, we find a remarkable result, a 2-d DOS independent of 

energy: 

 

! ! !! ! !
!!

!!

!!! !
!!

!!!! !
!!!

!! !   [2.51] 

 

Mathematically this is described by a Heaviside function, yielding a staircase like band 

structure for a two dimensional structure like a quantum well. In figure 5, the three 

dimensional DOS function (blue curve) is included with the two dimensional DOS 

function (red staircase) for illustrative purposes. Taking the analysis one step further, we 

see in figure 5 that every “step” in energy is quadratic: the second step is four times the 
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energy of the first, the third is nine times the first, so on and so forth. This arises as the 

energy levels are scaled according to the quantized wave vector (in this case kx): 

 

!
!!
! !!!! !! ! !!!!!!    [2.52] 

 

While this is relatively straightforward for a two-dimensional semiconductor (no 

degenerate states), the above relationship has important consequences for energy level 

spacing and higher degeneracy in lower dimensional structures. 

Now we consider the case of a (1 nm, 1 nm, 1 !m) box, where the electron is 

confined to one dimension. We now have a 1-d length in reciprocal space and can derive 

the 1-d density of states: 

 

!!"#"$ ! !!
! ! !

!.    [2.53] 

 

 

Figure 2.19: A plot of E vs. DOS for 2-d and 3-d structures 
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We write the length of the reciprocal space as a line of length k: 

 

!!""#$%& ! !.     [2.54] 

 

 

 

Figure 2.20: A graphical representation of individual states (black line at the 
origin) and the reciprocal space in which they are allowed (the green line) in one 
dimension. 

 

Figure 2.21: A plot of E vs. DOS for 1-d and 3-d structures. Note the energy level 
spacings shown on the vertical axis. 
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To find the number of allowed states: 

 

! ! ! !!""#$%&!!"#"$
! ! !

!.    [2.55] 

 

Finding the spatial density: 

 

! ! !
! ! ! !

!
!
!.     [2.56] 

 

Finding the energetic density: 

 

!!!!!! ! !"
!"

!"
!" !

!
!
!"
!".     [2.57] 

 

Substituting equation 10 into 24, we find the 1-d DOS: 

 

! ! !! ! !
!
!!

!!! !
!!

!!!! !
!
!!

!!

!! !
!
!

!!!

!    [2.58] 

 

This band structure is inversely dependent on energy, with the maximum densities of 

states occurring at the band edge (not unlike the 2-d system). As this system is confined 

in two dimensions (kx and ky), the energy level scaling is more complex than before: 

 

!
!!
! !!! ! !!!! !! ! !! ! !!!!!!  [2.59] 
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Energy level spacing is thus 2 (12+12), 5 (12+22), 8 (22+22) and 10 (12 +32) for the first 

four levels. Note also that the second and fourth energy levels have a two-fold 

degeneracy of while the first and third do not. 

 

 

Now we consider the case of a (1 nm, 1 nm, 1 nm) box, where the electron is confined to 

zero dimensions (no free motion possible).  As no motion is allowed, no reciprocal space 

exists to be filled with electrons. Therefore, all available states only exist at specific, 

discrete energy levels, conveniently described by a delta function (figure 2.22). 

 

!!!!!! ! !!!!!!.     [2.60] 

 

Figure 2.22: A plot of E vs. DOS for 0-d and 3-d structures. Note the energy level 
spacings shown on the vertical axis. 
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Where EA is an allowed energy. In this case the electron is confined in three dimensions 

and the energy scaling is: 

 

!
!!
! !!! ! !!!! !! ! !! ! !!!!!!   [2.59] 

 

The first four energy level spacings are thus 3 (12+12+12), 6 (12+12+22), 9 (12+22+22) and 

11 (12+12+32). Note the first level has no degeneracy (analogous to an “s” atomic orbital) 

while the subsequent orbitals have 3-fold degeneracy (analogous to “p” atomic orbitals). 

A dimensional analysis of equations 2.43, 2.50, 2.57 and 2.60 (DOSs for 3-d, 2-d, 

1-d, and 0-d, respectively) show the following units: 

 

!!!!!! ! !!
!"!!!  = Energy-1Volume-1 

!!!!!! ! !!
!"!!!  = Energy-1Area-1 

!!!!!! ! !!
!"!!!  = Energy-1Length-1 

!!!!!! ! !!
!"!!!  = Energy-1 

        [2.61-2.64] 

 

To obtain a meaningful density of states (eV-1cm-3) we therefore need to multiply the 2-d, 

1-d and 0-d equations by length-1, area-1 and volume-1, respectively. Physically, this is 

simply the quantum well depth, the nanowire cross-sectional area and the quantum dot 

volume, respectively. Plugging these values in gives us expressions for calculable DOSs 

over all 4 cases: 
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! ! !! !
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!!!

!
!

!!!!!
 

!!!!!! ! !!!!!!
!

!!!!!!
 

        [2.65-2.68] 

 

Figure 2.23: A plot of E vs. DOS for 0-d, 1-d, 2-d and 3-d structures 
((a,a,a);(a,a,L);(a,L,L);(L,L,L), L = 1 µm, a = 1 nm). Effective mass (m*) is assumed 
to be rest mass (m0). 
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In our system, ax = ay = az = 1 nm = 10-7 cm.  Plugging in these values and assuming 

m*=m0 we see the relationship shown in figure 2.23. 

2.5 Characterization 

 The strongly size dependent optical properties of CdSe quantum dots has been 

extensively studied over the past two decades20, 55-57, allowing for rapid characterization 

of samples of devices by relatively straightforward spectroscopic methods. While 

photoluminescence studies have been performed, this process is highly dependent on 

surface chemistry (passivating epitaxial shell, capping ligand) sometimes yielding results 

that are difficult to interpret as many recombination pathways exist for excited charge 

carriers. Absorption measurements are preferred as these experiments more directly 

probe the photon-QD interaction and are largely insensitive to ligand character or the 

presence of a passivating shell.20, 55 Absorption spectra are taken of solutions of CdSe 

dots in a solvent and can be used to determine both dot size and sample concentration, the 

latter being a critical parameter for quantitative processes such as Langmuir Films. 

2.5.1 Size Determination  

 The assignment of the first exciton (1Se-1Sh) transition is straightforward in 

CdSe absorption spectra as it is the lowest energy peak observed. Furthermore, the 

position of this peak can be used to quickly determine the size of quantum dots present in 

the sample. As discussed earlier, Brus et al. developed an early theoretical model for this 

relationship2 and Yu et al. followed up with an empirical relationship20 using a fourth 

order polynomial to determine the size as a function of wavelength. Recently, Jasieniak et 

al. revisited these relations and found Yu’s equations to be in good agreement with both 

their theoretical and experimental findings55 (figure 2.23). 
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While this size determination is consistent and well understood, understanding the 

concentration of the sample is more difficult, with significant variation in the published 

literature as to agreed upon methods and values. 

 

 

 

 

Figure 2.24: Comparison of predicted QD diameters using the 1st exciton peak from 
the absorption spectra. Note the excellent agreement between the Yu amd Jasieniak 
relationships, both determined empirically and independently.  
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2.5.2 Molar Absorptivity of CdSe Quantum Dots 

 The molar absorptivity (synonymous with molar absorption coefficient and molar 

extinction coefficient) is the measure of how strongly a species absorbs light. This value 

is intrinsic to chemical species and obviously is a function of energy, giving rise to 

characteristic absorption peaks and valley unique to individual compounds. The impact of 

quantum confinement however, is not well understood with respect to the extinction 

coefficient of CdSe nanomaterials. Understanding this effect and determining accurate 

values for ! at the 1st exciton absorption peak is critical to determining the concentration 

and ultimately forming monolayer films of these materials.   

 By using Beer’s law we see a simple relationship for interpreting spectroscopy 

data: 

 

! ! !"#  [2.69] 

 

Where A is the absorbance of the sample, C is the concentration (in units of molarity), L 

is the path length (in units of cm) and ! is the molar absorptivity (in units of M-1cm-1). 

While the extinction coefficient is a function of energy, it is typically characterized and 

used in computations at a certain value, typically at the first exciton absorption peak. A 

notable exception to this convention is the work done by Leatherdale et al., where the 

molar absorptivity relation is calculated at 350 nm for all sizes of CdSe particles.56  

 Leatherdale et al. were some of the earliest reports for values of ! as a function of 

nanocrystal size56. The work actually reported the absorption cross section (", in units of 
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cm2) of the nanocrystals, which can be easily converted to molar absorptivity by the 

following relation: 

 

! ! ! !!!!
!"""!!" !" ! !! !!!"#! ! !"!" !!   [2.70] 

 

While the units may appear confusing initially, recalling the relationship between liters 

and cubic centimeters (1 L = 1000 cm3) elucidates the relationship: 

 

!! !
!!!" ! !!! !"! !!!! !

!"# !
!

!"""!!"! !
!

!" !"   [2.71] 

 

And further allows us to take the Leatherdale expression: 

 

!!"#!!"!!!!!"#$!!"#$%! ! ! !!!"# ! !"! !!!"!    [2.72] 

 

Where a is the quantum dot radius in cm, and express it as a molar absorptivity: 

 

  !!"#!!"!!!!!"#$!!"#$%! ! ! !!!"#! ! !"!" !!!"!    [2.73] 

 

For convenience and sense of scale, let us use nm as the unit for QD radius: 

 

!!"#!!"!!!!!"#$!!"#$%! ! ! !!!"#! ! !"! !!!"!   [2.74] 
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As noted earlier, it is important to recognize this relationship determines a value for 

molar absorptivity at 350 nm, while subsequent studies define ! at the first exciton 

absorption peak. 

Approximately two years after the Leatherdale report, Yu et al. published a study 

which became a well accepted reference for CdSe size calculations based on the 

absorption spectra. As such, we initially used their empirically determined formula(s) to 

also determine the molar absorptivity and thus the concentration of our samples. Yu 

noted that these values were size dependent, proposing two relations for molar 

absorptivity, one dependent on the particle’s size and first exciton absorption peak 

(equation 2.75); the other only on the particle’s size (equation 2.76): 

 

!!!!!"!! ! !"##!!!! !!   [2.75] 

!!!!!"!! ! !"!#! !!!!"   [2.76] 

 

The reason for these two relations was a desire to fit the absorption to a 3rd power 

dependence on size (similar to Leatherdale), a relation previously postulated in a 

theoretical effort.58 It should be noted that both relationships are extremely close to each 

other (within 10% deviation for particles < 10 nm in diameter) and the second relation 

(equation 2.71) is merely provided for convenience. 

 Initial studies done with Yu’s calculations proved troublesome as we measured 

far lower concentrations on a Langmuir film surface. Further investigation determined 

that the problem may lie within the Yu expression itself. The Yu relationship yielded 

significantly different molar absorptivities than those arrived at via Leatherdale’s method, 
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causing concern as to the viability of a such a concentration dependent procedure without 

proper characterization methods. Our own analysis via Langmuir film methods suggested 

we had lower concentrations than Yu (closer to Leatherdale’s relation) but at the time 

unrealized problems with our films (discussed further in Chapter 4) resulted in difficulties 

in verifying either method.  

 Jasieniak and others undertook a rigorous review of the current understanding of 

size dependent absorption coefficients in CdSe quantum dots in late 2009, combining 

transmission electron microscopy (TEM) with inductively coupled plasma atomic 

emission spectroscopy (ICP-AES) as well as traditional spectroscopic methods to 

determine the true absorptive properties of these particles.55 As mentioned, the prediction 

for particle size based on absorption was largely consistent with earlier findings (figure 

2.23), arriving at an empirically determined 4th order polynomial relationship for the size 

based on the first exciton absorption peak (in units of nm): 

 

! ! !"!!"#$!! !!!"#$%!! ! ! !!!!"#! ! !!"!! !!! ! !!!"#$%! ! !!"!! !!! !

!!!"#$%! ! !!"!! !!!   [2.77]  

 

However the determination of the extinction coefficient produced markedly different 

results (figure 2.24). Jasieniak et al. suggested a size dependant exponential relation 

between the 1st exciton absorption energy and exctinction coefficient, deviating from the 

cubic (or near cubic in eq 2.76) relations posed earlier by Leatherdale and Yu: 

 

!!!!!"#$%&$!" ! !"""#$! !!!"#$%! ! !!"!" !! ! !!!
!!!"##!    [2.78] 
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While not directly comparable to the Leatherdale relation (as the latter determines the 

extinction coefficient at 350 nm, while the former determines it at the band edge), 

Analysis of our own absorption data (figure 2.26) showed good agreement between 

Leatherdale and Jasieniak, both of which were closer to what we were measuring in the 

Langmuir trough. Furthermore, flaws in the Yu methodology were revealed (such as the 

implication of >100% reaction yields), so we proceeded using the Jasieniak model for 

determining concentrations.  

 

 

 

Figure 2.25: Predicted molar absorptivity found empirically by Yu (2002) and later by 
Jasieniak (2009) this deviation observed for particles with E1s > 2.1 is significant 
when characterizing spreading solutions for use in Langmuir films. 
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2.5.3 Non linear least squares fitting method 

Figure 2.26 illustrates a sample absorption spectra for CdSe-TOPO quantum dots 

dispersed in toluene. A nonlinear least squares method (Gauss-Newton) was used to fit 

the data to multiple Gaussian peaks for the E < 2.90 eV region using MATLAB® 

software.59 We chose to model the absorption data with three Gaussian peaks and found 

excellent agreement with our data (R2 = 0.9999, figure 2.27) Fitting further Gaussian 

peaks (up to eight) introduced some finer structure into the existing peaks but did not 

appreciably improve the quality of the fit. This was expected, as three main peaks (1S3/2-

1Se, 2S3/2-1Se, 1P3/2-1Pe,) were shown to dominate the absorption spectra of such 

nanocrystals in Norris and Bawendi’s initial study of these materials.57 The fitting 

method used does not have a closed solution (as it’s linear counterpart does) so initial 

conditions are chosen and the final fits are obtained iteratively. It should be noted that the 

Jasieniak, Yu and Leatherdale methods are all empirical: When the authors reference a 

particular peak they are referencing the physical data, not the individual Gaussian 

component of the fit. In many instances these values are substantially different, such as 

larger nanocrystals with greater overlap between the 1S-1S and 1S-2S peaks, and can 

introduce error if not followed properly. 
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Figure 2.26: Analysis of nine samples of CdSe-TOPO QD spreading 
solutions and their calculated concentrations using various empirical 
methods. 
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Figure 2.27: Sample absorption spectra with non-linear least squares 
Gaussian fitting for the three dominant transistions. R2 = 0.9999. 

2S3/21Se 1P3/21Pe 1S3/21Se 



 
 
 
 
 
 

CHAPTER 3: LANGMUIR FILMS OF AMPHIPHILIC MOLECULES 
 
 

The Langmuir film process involves spreading a thin film of nanoparticles in an organic 

solvent on a subphase (usually water) surface and allowing the solvent to evaporate.  As 

the solvent evaporates, a monolayer array of nanoparticles nucleates at the raised center 

of the subphase surface and propagates smoothly outward.  Barriers are compressed to 

reduce the surface area of the array, packing the nanoparticles more closely together. 

The goal is that the resulting monolayer is a well ordered, densely packed, two 

dimensional hexagonal close packed array.60   

3.1  Introduction and Background 

 Observations of the behavior of oil on water date back to Pliny the Elder in 79 AD, 

while the first scientific studies of such films came from Benjamin Franklin in 1773:  

 
“I went to the windward side, where [waves] began to 
form; and there the oil, though not more than a teaspoon 
full, produced an instant calm over a space several yards 
square, which spread amazingly, and extended itself 
gradually till it reached the lee side, making all that quarter 
of the pond, perhaps half an acre, as smooth as a looking 
glass. … In these experiments, one circumstance struck me 
with particular surprise. This was the sudden, wide, and 
forcible spreading of a drop of oil on the face of the water, 
which I do not know that any body has hitherto 
considered.” 
 
Benjamin Franklin, letter to William Brownrigg, London, 
November 7, 1773.61 
 



 

 

61 

While his efforts were aimed at reducing drag on shipping vessels, his observation that 

one teaspoon (5 ml) spread out to approximately half an acre (2000 m2) suggested a film 

only 2 nm thick, the first report of an organic monolayer on an aqueous subphase (this 

was not realized at the time by Franklin). Not until a century later was this observation 

expanded on, when Lord Rayleigh and Agnes Pockels performed a series of quantitative 

studies on such phenomenon.62 Pockels noted that very small amounts of oil on a water 

surface had little to no effect on surface tension, but that the surface tension began to 

decrease suddenly when the amount of oil per unit area was increased beyond a certain 

limit. Rayleigh theorized that the point where surface tension falls likely corresponded 

to a “one molecule deep” film. While most of this work was done in Pockels’ kitchen 

sink, her correspondences with Rayleigh led to the work being published in Nature in 

1891, laying the groundwork for the extensive studies done by Langmuir in the coming 

years. 

 Among other observations, Irving Langmuir determined the cross sectional areas of 

many surfactants, noting that these areas were “substantially independent” of the length 

of the hydrocarbon to which the “active” head groups were attached.63 Furthermore, 

Langmuir determined the vertical lengths of these molecules, confirming his beliefs as 

to the orientation and morphology of such films: polar head groups submerged in the 

subphase with hydrophobic tails protruding vertically into the air (figure 3.1). 
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Figure 3.1: Diagram of Langmuir’s proposed model of surfactant self-assembly at a 
water-air interface. Polar head groups (circles) are submerged in the water while 
hydrophobic tails protrude vertically into the air. 
 

 

Katherine Blodgett, working with Langmuir, later demonstrated that a solid substrate 

introduced to a compressed monolayer would be coated homogenously, allowing for 

large area depositions of monolayer molecular films.64 Blodgett explored this 

“Langmuir-Blodgett” technique extensively, producing multilayers of organic molecules 

and even developing early anti reflective coatings on glass. Beyond the understanding of 

the film’s morphology, cross sectional area, Langmuir was able to understand the 

relationship between the surface tension and molecular area. Before discussing this in 

detail, it is important to understand how the surface tension is measured using the 

Wilhelmy plate technique. 

3.2 The Wilhelmy Plate 

There are several ways to characterize this nanoparticle film, which vary greatly 

from one trough to another.  The first and most common metric is surface pressure, 

measured with a Wilhelmy plate. This is a well-known method with a high sensitivity 

(±0.01 mN/m) that uses a hydrophilic platinum plate partially immersed in the subphase.  

This is connected to a sensitive electrobalance, which measures the downward force 

 H2O Subphase 
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exerted by the liquid meniscus on the plate (see figure 3.2).  Surface tension can be 

calculated using the following equation: 

 

! ! !" ! ! !!! !! !"# !! !"#!!  [3.1] 

 

Where !L and "L are the surface tension and density (respectively) of the liquid 

subphase.  Equation 3.1 can be understood as the sum of three factors: The first term 

represents the gravitational force on the plate itself, the second term represents the 

additional downward force due to the water wicking up the plate, while the third term 

accounts for the (upward) buoyant force on the Wilhemly plate.  As the first and third 

terms are constants, we can simplify the relationship by expressing things in terms of 

#F: 

 

!! ! ! !!! !! !"# !  [3.2] 

 

As $ is assumed to be zero (perfect wetting), the surface tension of the subphase is 

merely a linear function of the force measured by the balance.  In Langmuir’s method, 

the reported variable is the surface pressure (i.e. the force exhibited directly on a 

movable barrier), which can be defined in terms of surface tension (the variable 

measured): 

 

! !!! ! !! ! !!! ! !!!
!!!!!! !"#! [3.3] 
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Note that the surface pressure is actually a function of the negative change in surface 

tension.  

To derive the net vertical force on a cylinder immersed in a liquid we will first 

describe the system (figures 3.3, 3.4). The three important spatial variables are the radius 

of the cylinder (r), the height of the cylinder (h) and the submerged depth of the cylinder 

(d) (figure 3.3). The cylinder has a density !C and the liquid has a density !L and surface 

tension !. The liquid makes contact with the cylinder at an angle ", which is a function 

of the Young equation: 

 

!!" ! !!" ! !!" !"# ! ! !  [3.6] 

 

 

 

Figure 3.2: Diagram of a Wilhelmy Plate immersed in a water subphase.  F is the 
downward force measured by the balance while " is the contact angle of the subphase 
on the plate (assumed to "=0 for water at Pt). w, h, l, and t are plate dimensions: width, 
immersion depth, length and thickness, respectively. 
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Figure 3.3: Diagram of a cylinder of radius r, height h and submerged depth d 
immersed in a liquid. 
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Where �SG, �LG, and �LV are the interfacial energies between the solid-gas, liquid-gas 

and liquid-vapor phases, respectively.  There are three main components to the vertical 

force on the cylinder: (1) The gravitational pull on its mass (negative), (2) the buoyant 

force of the liquid (positive) and (3) the gravitational effects of the liquid wicking up the 

side of the cylinder (figure 2).  The gravitational effect on the cylinder is 

straightforward: 

 

!! ! !!!" ! !!!!!!!!!!   [3.7] 

 

As is the buoyant force, equal to the gravitational effects of displacing a volume of 

liquid equal to the submerged part of the cylinder: 

 

!! ! !!! ! !!!!!!!   [3.8] 

 

 

Figure 3.4: Diagram of the liquid contact angle ! with an immersed cylinder. 
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To determine the contribution of the liquid wetting the cylinder we must recognize that 

this is a surface energy phenomenon.  The lower the energy of the cylinder, the higher 

the contact angle will be and conversely high energy surfaces will see very small contact 

angles. As surface energy has units of [Force.Length-1] we need to multiply it by a 

length to yield a usable force term.  This length we need to multiply by is simply the 

perimeter of whatever object is immersed in the liquid, in our case the circumference of 

the cylinder. To understand how the contact angle � factors in, we need to look at 

boundary conditions.  When the liquid forms a contact angle less than 90o, there is a net 

downforce on the cylinder; and when the liquid forms a contact angle more that 90o, 

there is a net upforce on the cylinder (when � = 90o there is no force). This behavior is 

well described by the cosine function, yielding the familiar Wilhelmy equation: 

 

!! ! !!!! !"# !.   [3.9] 

 

Where � is the surface tension of the liquid and l is the cross sectional length on which 

the liquid is contacting the solid.  Putting these equations (3.7, 3.8, 3.9) together gives us 

the total vertical force on a cylinder immersed in a liquid: 

 

!!"# ! !! ! !! ! !! ! !!!!!!!!! !!!!!!!! !!!!! !"# !!!    [3.10] 
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In an experimental setup, high energy surfaces are used for measurements as ! can be 

assumed to be zero (complete wetting).  Furthermore, the liquid is typically water (ρL = 

1) and the mass of the object is known, simplifying equation 10 considerably: 

 

!!"# ! !!!!"!!!! !!!!!    [3.11] 

 

It should be noted that Fnet will be negative so long as the cylinder has a density greater 

than that of the liquid.  In the event that this was not the case the cylinder would be 

buoyant and the net vertical force zero. 

3.3  Langmuir Isotherm Theory 

  Matter is well described by distinct phases in which physical properties are 

essentially uniform. Solids, liquids and gases are commonly cited as the three common 

phases of matter, but many others exist (liquid crystals, plamsas) that have unique 

definitions based on orientational and translation order.65 Furthermore, further 

subdivisions exist (amorphous vs. crystalline solids) that are useful in describing 

morphology and behavior. A brief discussion of these phases is useful before proceeding 

to the two dimensional Langmuir analogy. 

 The gaseous state is characterized by weak intermolecular forces insufficient to 

hold molecules together, resulting in a uniform spreading of the molecules to occupy a 

container, regardless of its size. As the molecules are far apart and act weakly on each 

other, it takes relatively little force to compress a gas. The liquid phase, similar to the 

gas phase, has sufficient molecular energy for free movement and diffusion, but 

occupies a fixed volume and is highly incompressible. Liquids exhibit isotropic behavior 
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and have no long-range order. Solids are characterized by intermolecular interactions 

strong enough that molecules can only vibrate, resulting in a stable, fixed shape that can 

only be changed by force. It is important to note that while some phase changes have 

sharp transitions (i.e the melting of solid ice into liquid water) many do not (i.e. organic 

materials used in LCD displays), passing through one or more intermediate phases. 

 Experimentally, only a certain number of properties of a pure substance can be 

given a pure value.  The relationship between these values is termed an equation of state 

and, for an ideal gas, is: 

 

!"! ! !!"#  [3.12] 

 

Where P is pressure, V is volume, T is temperature, n is the number of moles and R is 

the ideal gas constant. It follows that for a fixed amount of an ideal gas kept a fixed 

temperature, pressure and volume are inversely proportional. This relationship is known 

as Boyle’s law and is the basis for the study of isothermal processes. Equations of state 

exist for liquids and solids as well, such as the one derived by van der Waals for liquids 

and solids: 

 

!! !
!! !! ! !! !!"  [3.13] 

 

Where a and b are constants for gases and liquids, respectively. Solids generally have 

nearly linear isothermal relationships, a simple equation of state might be:  
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! ! !!!"! !"  [3.14]  

 

 A graphical representation of equations 3.12-3.14 is shown in figure 3.5 and 

accurately describes the pressure vs. molar volume relationship for bulk materials. 

 

 

Figure 3.5: Graphical representation of the equations of state for the 
gaseous phase (eq 3.12), liquid phase (eq 3.13) and solid phase (eq 3.14) 
for an isothermal process. Constant pressure regions represent phase 
transitions. 
 

 
 
 To this point we have discussed three dimensional systems with the familiar 

solid, liquid and gas phases. While Langmuir films exist in two dimensions, a nearly 

analogous situation is observed when comparing the available surface area and surface 

pressure of the monolayer. Traditional Langmuir monolayers are comprised of 

amphiphillic molecules, species that exhibit both a polar group and non-polar group. As 
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the water molecule is highly polar such amphiphiles will organize at the water-air 

interface with their polar “head” groups submerged and non-polar “tails” extending out 

of the water subphase (figure 3.1).  As the monolayer is compressed on a liquid surface, 

it will undergo phase transformations nearly analogous to those described in figure 3.5. 

The two dimensional equivalent of the pressure-volume isotherm is the surface pressure 

vs. surface area isotherm. For a typical long chain amphiphile, this relationship (figure 

3.6) is nearly identical to the phase transitions for a three dimensional bulk solid. 

 

 

Figure 3.6: Surface pressure vs. surface area isotherm for a hypothetical 
long chain amphiphilic molecule.  
 

 

Typically, the x axis (surface area) is divided by the total number of molecules deposited 

and expressed as a mean molecular area (MMA). The calculation is straightforward: 
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!!" ! ! !"#$
!"#$%&'( !"#$%& !!

  [3.15] 

In the “gas” phase, the molecules are far enough apart that they exhibit minimal force on 

each other (figure 3.7a). As the surface area of the monolayer is reduced, the 

hydrophobic tails of the amphiphiles begin to interact with one another as the film enters 

the “liquid” phase, characterized by strongly interacting but randomly oriented 

hydrocarbon tails (figure 3.7b). The character of this liquid phase is highly dependent on 

the nature of the monolayer material in question; often multiple liquid phases appear as 

the monolayer undergoes orientational/entropic changes characterized by constant 

surface pressure regions (similar to those observed between solid, liquid and gas 

phases). The final phase of monolayer formation is the solid phase (figure 3.7c), 

characterized by a steep and nearly linear rise in surface pressure. After the maximum 

pressure is exceeded the monolayer will collapse (figure 3.7d), with varying degress of 

order highly dependent on the nature of the amphiphile. Two main types of collapse are 

observed in Langmuir films: “Constant pressure” collapse, where the pressure remains 

constant as the film is compressed beyond its minimum molecular area. This is indicated 

by a horizontal region of the isotherm at small areas and indicates material is removed 

from the monolayer under further compression, either aggregating at the trough edges / 

barriers, forming a disordered second layer atop the original monolayer, or dissolving in 

the subphase  (dependent on the nature of the monolayer material). The second behavior 

observed post collapse is “constant area” collapse, where the pressure falls off 

drastically as the film is further compressed. This indicates a fracture into multilayered 

structures (figure 3.7d) and will, upon further compression, form ordered bi and trilayers 

depending on the mechanical properties of the molecule.  
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Figure 3.7: Stages of monolayer compression illustrating the gas, liquid 
and solid phases and eventual collapse. 
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3.4 Procedure for Isotherm Measurement 

 The Langmuir technique is one that requires exceptionally clean and pure 

surfaces and substances. Monolayers are extremely sensitive to surface contamination at 

concentrations as low as parts per million, so great care must be taken to minimize such 

contaminants. The UNC Charlotte  Langmuir measurement setup is housed in a 4’ free 

standing vertical laminar flow hood with a 90 fpm airflow through a 99.99% HEPA 

filter. Additionally, we have fabricated and installed a 48” x 36” acrylic sash on the front 

of the hood, fixed to ball bearing slides and a pulley system allowing both access to the 

trough area when the sash is raised and nearly complete isolation of the trough area 

when the sash is lowered. This setup affords us a Class 100 Cleanroom Classification 

ISO 5 environment to conduct our experiments. Housed within the hood is a KSV Nima 

Alternate Layer Deposition Trough placed on a granite surface on a (sub-hertz) vibration 

isolation table. This trough is actually comprised of two identical, isolated surfaces 

sharing a common subphase, each measuring 775 x 120 mm for a maximum spreading 

area of 930 cm2. The minimum spreading area (barriers compressed fully) is 150 cm2. 

The balance has a resolution of 4 !N/m and a range of 150 mN/m. The shared subphase 

has a volume of 6000 ml, allowing samples as large as 3 x 114 x 129 mm (i.e. a 4” 

wafer) to be passed through the dipping well. The trough is made from a single block of 

pure polytetrafluoroethylene (PTFE, “Teflon”), eliminating any possible contamination 

from glues or joint sealants. Further the hydrophobicity and non-reactivity of PTFE aids 

in maintaining a clean surface through the lifetime of the system. The barriers are made 

from polyoxymethylene (POM, “Delrin”), a thermoplastic with extremely high stiffness 

and dimensional stability. 
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 The first step in the experimental procedure is cleaning the system. 20 ml of 

acetone is used to remove any initial contaminants in a quick wipe down of all surfaces 

with a lint free cloth. Following the acetone wipe, 50 ml of methanol is used to more 

thoroughly clean the trough and barriers (using fresh cloths), visually inspecting for any 

trace of contamination.  Following the methanol clean the trough is quickly rinsed with 

DI water which is removed via aspiration and then a final wipe down with a dry lint free 

cloth. This procedure, while simple, is critical to the success of the experiment and must 

be done thoroughly and carefully. 

 After cleaning, the system is filled with 6000 ml of deionized (DI) water. Both 

ultrapure water (15 M!-cm) from a dedicated purification system as well as ASTM type 

II water (> 1.0 M!-cm) from a dedicated tap in Grigg Hall have been used. We have 

found nNo difference has been found between the two water sources in our experiments 

and have mainly used the ASTM II water as the source is in close proximity to our 

Langmuir system. This result is not surprising as 15 M!-cm water is an excellent 

solvent, easily contaminated by atmospheric gases. Ultrapure water exposed to 

atmosphere will dissolve CO2 and reach a resistivity below 5 M!-cm within an hour66, 

eventually reaching an equilibrium resistivity of 1.3 M!-cm due to the dissolved HCO3
- 

and CO3
2- ions.67 The high surface area of the Langmuir system makes this technique 

even more susceptible to CO2 dissolution, therefore ASTM II water will suffice. In order 

to reduce contamination further, 15’ of perflouroalfoxy (PFA) tubing was plumbed from 

the DI water tap to the hood housing the system (previously we had (re)used 4 L 

polyethylene bottles).  
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 Filling the trough with water should be done with the barriers in their closed 

position to minimize the initial area available for surface contamination. The trough 

should be filled to a slight meniscus above the trough edge (2-3 mm) as it will be 

cleaned by suction such that its final height will be even with the trough edge. Once the 

subphase is filled to a meniscus, the surface between the barriers is cleaned with an 

aspirator pump to remove any contaminants. Two to four minutes should be spent on 

this process, taking care to vacuum both the center of the trough and areas near the 

barriers as contaminants may have aggregated near the trough surfaces. Once cleaned 

sufficiently the barriers are opened and the Wilhelmy plate is installed to monitor 

surface tension. While the paper Wilhelmy plates are frequently replaced, no noticeable 

effect is seen as a function of age: a Wilhelmy plate previously used in several 

experiments produced the same results as a fresh one. 

 Once the barriers are fully open, the balance is zeroed, reading a surface pressure 

of 0.00 mN/m. Compressing the barriers on a clean surface should not change this value 

so long as no contaminants exist. In practice, a surface that exhibited a change of less 

than 0.30 mN/m was considered “clean” and produced repeatable and verifiable 

experimental results. If the change in surface pressure is measured to be higher than 0.30 

mN/m, the barriers are recompressed and the area between them is further cleaned with 

the aspirator. This is repeated until the surface pressure change upon compression fell 

below the minimum threshold. It should be noted that the flow hood is kept “on” at all 

times during cleaning and setup in order to minimize outside contamination and did 

introduce +/- 0.10 mN/m uncertainty into our measurement, presumably the results of air 

currents acting on the low mass paper Wilhelmy probe. When the hood’s fans are turned 
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off, any noise in the system remains below the software’s resolution of 0.01 mN/m. 

Another important aspect to note is the importance of the initial cleaning on the trough 

itself (prior to filling with water). During initial experiments it quickly became apparent 

that a thorough effort at this stage would significantly reduce the need for extensive 

surface cleanings and recompressions. An experienced user should be able reach the sub 

0.30 mN/m threshold with only one aspirator cleaning round provided the initial solvent 

clean is done thoroughly and properly.  

3.5 The Spreading Solution 

Monolayer materials are dispersed in a suitable solvent (chloroform, toluene) 

which is then introduced to the subphase via a syringe or micropipette. Care should be 

taken when introducing the spreading solution onto the subphase surface, gently 

bringing the syringe in contact with the surface. The spreading solution will form a 

planar film on the surface, the solvent quickly evaporating leaving a sub monolayer of 

the surfactant molecules. It is helpful to understand the physical dimensions of this 

spreading layer when considering solvent evaporation. As our initial (fully expanded) 

trough area is 930 cm2, we can determine film thickness as a function of volume 

deposited: 

 

!"#$!!"#$%&'((! !" ! !"!!" ! !"#$%&!!"#$%&'"!!!!!!  [3.16] 

 

Spreading solutions are typically 5-100 !l, resulting in submicron spreading solutions. It 

is important to consider this dimension as the solvent’s evaporation time is a function of 
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the layer thickness. Evaporation of solvents from a non-boiling liquid pool has been 

described with the following relationship:68 

 

! ! !!!!! ! !"!!!!!!!"!!!!
!!
!!

    [3.17] 

 

With variables defined as such: 

E Evaporation rate [lbs/min/ft2] 

u Wind speed [mph] 

PS Vapor pressure of solvent [mm Hg] 

PH Vapor pressure of hydrazine [mm Hg] 

Mw Molecular weight of solvent [g/mol] 

TF Solvent temperature correction factor: 

 

!! ! !
! !! ! !!!

!! !!! !"!! !! !! ! !!!    [3.18] 

 

Where  TP = solvent pool temperature [C].  The original authors used hydrazine as a 

reference, whose vapor pressure is well defined by: 

 

!" !! ! !!"!!!"#! !"#$!!
!!

! !!!! !" !! ! !!!""#!!"!!!!!  [3.19] 

 

Shown in figure 3.8. Note that TH is the temperature of hydrazine in degrees kelvin. 
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Figure 3.8: Empirically Determined Vapor Pressure of Hydrazine vs. 
Temperature, calculated from equation 3.19 

 

 

Our Langmuir Blodgett trough is housed in a 90 fpm (1.02 mph) laminar flow hood kept 

at 24 oC, yielding the following relationship: 

 

! ! !!!!" ! !"!!!!!!!    [3.20] 

 

We can therefore determine evaporation rates purely as a function of molecular weight 

and vapor pressure for spreading materials used in our experiments. For a 930 cm2 

spreading area we can determine volumetric evaporation rates for a variety of spreading 

materials (figure 3.9). 
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Figure 3.9: Evaporation rates of common solvents and ligands on a 930 
cm2 area. Temperature and airflow assumed to be 24oC and 90 fpm, 
respectively, simulating the conditions at the Langmuir trough surface. 
 

 

We have experimentally verified these evaporation rates by monitoring surface pressure 

as a function of time after depositing large amounts of pure solvents. We begin by 

preparing a clean surface as previously described and depositing 2500 !l of pure solvent 

passed through a 0.2 !m filter. Recalling equation 3.16, a 2500 !l film on a 930 cm2 

surface is 27 !m thick. The solvent layer on top of the water subphase affects the surface 

pressure, allowing us to detect the presence of the liquid phase solvent layer by 

monitoring the surface pressure reading and ultimately determine evaporation rates. The 
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surface pressure returning to 0 mN/m (the value measured on a clean water subphase) is 

a result of the absence of any solvent layers, indicating complete evaporation. Figure 

3.10 depicts such an experiment using 2500 !l of toluene deposited at t = 38 s. 

 

 

Figure 3.10: 2500 !l of pure toluene was deposited on a clean water 
subphase at t = 38 s. Complete evaporation of the solvent is indicated by 
the steep drop in surface pressure at t = 159 s. 
 

 

In this experiment we measured an evaporation rate of 20.7 !l/sec, close to our predicted 

value of 21.5 !l/sec using equation 3.20. This is an important result as it illustrates the 

speed with which a solvent with relatively low volatility will evaporate. Note that 

chloroform, another common solvent in spreading solutions, will evaporate at nearly six 

times the rate of toluene. The end result is that with the low volumes of spreading 

solutions we are using (< 100 !l) the solvent spends very little time on the subphase 

surface before evaporating. 
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3.6 Results and Discussion 

 A common monolayer material used to characterize Langmuir systems is 

octadecanoic (stearic) acid. This saturated carboxylic acid forms highly ordered 

monolayers on pure water subphases before a sharp collapse (figure 3.11) at 

approximately 55 mN/m. Initially a 0.01 M stearic acid solution was prepared by 

dissolving 2.85 g stearic acid in 100 ml of chloroform (yielding a 0.1 M solution) and 

then further diluted 10:1 to yield a 0.01 M solution. 22 !l of this solution was deposited 

on a clean Langmuir trough and compressed at 30 mm/min while monitoring the surface 

pressure.  

 

 
Figure 3.11: Langmuir isotherm of stearic acid on pure water subphase. 
Monolayer exhibits constant area collapse behavior. 
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The stearic acid isotherm in figure 3.11 clearly shows the phases seen in a typical 

amphiphilic isotherm. Above mean molecular areas of 0.3 nm2/molecule, the stearic acid 

is in the gas phase with surface pressures well below 1 mN/m. Between 0.27 and 0.21 

nm2/molecule, the film is in the liquid (expanded) phase where the molecules begin to 

interact with each other (figure 3.7b).  The solid phase between 0.18 – 0.19 

nm2/molecule corresponds to the highest density of any phase, with the hydrocarbon 

chains aligned and sticking out of the water subphase. The behavior beyond this collapse 

shows constant area behavior, exhibiting a steep collapse beyond 0.18 nm2/molecule, 

indicating film fracture during multilayer formation (figure 3.7c).  

 An interesting property of stearic acid monolayers is their ionic nature and strong 

dependence on the subphase composition. While a stearic acid monolayer on a pure 

water subphase exhibits constant area collapse behavior, the same monolayer placed on 

a 0.5 mM MnCl2 subphase exhibits significantly different constant pressure collapse 

behavior (figure 3.12). The MnCl2 in the subphase will react with the surface groups of 

the stearic acid monolayer: 

 

!!!"! !!! !"!""#!!"!"! ! !" !"! !!! !"!""! ! ! !"#    [3.21] 

 

The interaction of the divalent cation with the stearate head groups stabilizes the 

monolayer, preventing the constant area collapse behavior seen in figure 3.11. The 

stearic acid film instead exhibits constant pressure collapse behavior, maintaining high 
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surface pressures that suggest a stable surface layer upon further compression (figure 

3.12). 

 

Figure 3.12: Langmuir isotherm of stearic acid on 0.5 mM MnCl2 
subphase. Monolayer exhibits constant pressure collapse behavior. 

 

 

The stearate salt formation is favored by a high pH, so we would expect an acidic 

subphase to display constant area collapse behavior regardless of salt concentration. We 

prepared a 0.001 M HCl subphase (pH = 3) and measured the monolayer behavior of 

stearic acid both with and without the addition of manganese chloride to the subphase, 

shown in figure 3.13: 
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Figure 3.13: Langmuir isotherm of stearic acid on an acidic subphase 
(0.001 M HCl). Monolayer exhibits constant area collapse behavior 
regardless of the presence of salts in the subphase. 

 

 

Furthermore, subphases with high pH values should encourage salt formation and thus 

more stable monolayers exhibiting constant pressure collapse behavior. We prepared a 

0.001 M KOH (pH = 11) subphase and measured the monolayer behavior of stearic acid 

both with and without the addition of manganese chloride to the subphase, shown in 

figure 3.14: 
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Figure 3.14: Langmuir isotherm of stearic acid on an basic subphase 
(0.001 M KOH). Monolayer exhibits constant pressure collapse behavior 
regardless of the presence of salts in the subphase. 

 

 

A notable feature of the salt-free basic subphase isotherm is the drastically lower 

collapse area (0.14 nm2) compared with the typical ~0.20 nm2 area characteristics of 

stearic acid. As this smaller area is not physically realistic this can be interpreted as a 

loss of materials from the subphase, likely due to the enhanced solubility in basic 

solutions. 
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 Another monolayer material relevant to our studies is trioctylphosphine oxide 

(TOPO), a common ligand used to passivate cadmium selenide (CdSe) nanocrystals. 

TOPO passivated CdSe nanocrystals in solution require an excess of free TOPO to 

enhance stability, so it is important to understand the behavior of this free TOPO as a 

monolayer material. Unlike the easily dissociated stearic acid, the polar phosphine oxide 

head group is extremely stable and insensitive to changes in pH or ionic strength of the 

subphase.  Figure 3.15 shows several TOPO isotherms with varying subphase pH and 

salt concentrations. Unlike stearic acid films, TOPO monolayers exhibit no clear 

distinctions between phases and show constant pressure collapse behavior regardless of 

the subphase: Variations in pH and ionic strength have little effect on the isotherm. In 

addition to the uncharged head group (responsible for the constant pressure collapse 

behavior) the large, sterically demanding nature of the aliphatic tails results in a lack of a 

clear phase transition between the liquid (expanded) and solid (compressed) states. 

The final amphiphilic monolayers we analyzed were mixed isotherms containing 

both TOPO and stearic acid monolayers in varying molar fractions. Understanding the 

behavior of mixed isotherms is critical to understanding the behavior of nanocrystal 

isotherms, as nanocrystal spreading solutions will typically have excess free ligands in 

solution. If the concentrations and mean molecular areas of the constituent monolayer 

materials are known, we can predict the mean molecular area of the resulting mixed 

monolayer: 
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Figure 3.15: Langmuir isotherms of TOPO on varying subphases. Both 
pure and salt containing subphases were examined at acidic, neutral and 
basic pH values.  
 
 

 

If the concentrations and mean molecular areas of the constituent monolayer 

materials are known, we can predict the mean molecular area of the resulting mixed 

monolayer: 

!!! ! !!!!! ! !!!!! ! !!!!! !! !!!!!   [3.22] 
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For an n component film where a is the molecular area and x is the molar 

fraction. For our purposes we will be using the two component form of equation 3.22: 

 

!!" ! !!!!! ! !!!!!  [3.23] 

 

A film comprised of TOPO (molecular area = 1.7 nm) and stearic acid (molecular area = 

0.2 nm) thus should have predictable molecular areas based on the relative 

concentrations of the materials. Figure 3.16 depicts eleven isotherms of such mixed 

films, varying in molar concentration from 100% TOPO to 0% TOPO (100% stearic 

acid) in 10% intervals. These films were studied by preparing 0.1 M concentrations of 

both stearic acid and TOPO in toluene. These solutions were combined in the 

appropriate ratios and further diluted with fresh toluene to produce solutions with a total 

molarity of 1.0 mM. 
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Figure 3.16: Langmuir isotherms of mixed TOPO / stearic acid 
monolayers of varying molar fractions. 
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The isotherms in figure 3.16 have limiting molecular areas (defined as the x intercept of 

the steepest portion of the isotherm) predicted by equation 3.23: 

 

 

Figure 3.17: Observed limiting molecular areas for monolayer films 
composed of TOPO and stearic acid in toluene. 

 

 A final aspect of the Langmuir isotherm to consider is the compressibility (C) of 

the film.  Again using the analogy of a three dimensional bulk material, we can evaluate 

C from the slope of the surface pressure – surface area isotherm:65 
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Where a is the surface area and ! is the surface pressure. Temperature, pressure and the 

number of molecules (T, P, and n respectively) are held constant. Compressibility gives 

us a quantitative measure of the different phases of a monolayer and can be useful when 

comparing different types of molecular monolayers. Revisiting the stearic acid 

monolayer behavior we can apply equation 3.24 and plot these relationships in figures 

3.18 and 3.19. 

 

 

Figure 3.18: Compressibility of stearic acid monolayers on a pure water 
subphase. 
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Compressibility is typically reported as the minimum compressibility (maximum slope) 

of a given isotherm or region of an isotherm. In our studies, stearic acid on pure water 

exhibits a compressibility of 6.5 x 10-3 m/mN in the expanded phase and 6.7 x 10-4 

m/mN in the condensed phase (figure 3.18). Minimum compressibility varied within ± 

1.0 x 10-4 m/mN across separate isotherms. These values are consistent with other 

similar carboxylic acids reported by other groups in the literature.69 Addition of salt to 

the subphase results in a less rigid monolayer, with a measured minimum 

compressibility of 2.1 x 10-3 m/mN (figure 3.19). This is consistent with our 

understanding of the divalent cation interaction with the dissociated carboxylate head 

group on the water surface: bridging action by Mn2+ ions in solution result in larger 

intermolecular distances (between neighboring stearic acid molecules) than seen in pure 

water subphases. These films therefore exhibit slightly more compressibility than their 

closer packed pure water counterparts. Note that discernable phases do appear in the 

compressibility data in figure 3.19, suggesting that while phase transitions are not as 

well defined as on pure water subphases, expanded and compressed regions of the 

monolayer still exist in these films. 
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Figure 3.19: Compressibility of stearic acid monolayers on an ionic 
subphase. 
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monolayer compression is limited by the large cone angle afforded by the hydrocarbon 

tails. This affords a higher compressibility (less rigid film) that decreases as the film is 

further compressed. Minimum compressibility in our films was measured at 10-2 m/mN 

(figure 3.20), much higher than that measured for the stearic acid monolayers. 

 

0.0001!

0.001!

0.01!

0.1!

1!

0!

10!

20!

30!

40!

50!

60!

70!

0.1! 0.15! 0.2! 0.25! 0.3! 0.35! 0.4!

C
om

pressibility (m
/m

N
)!Su

rf
ac

e 
Pr

es
su

re
 (m

N
 /m

)!

Mean Molecular Area (nm2)!

Compressibility of Langmuir Isotherm of Stearic Acid on !
0.5 mM MnCl2!

Surface Pressure!

Compressibility!



 

 

95 

 

Figure 3.20: Compressibility of trioctylphosphine oxide monolayer on a 
pure water subphase. 
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CHAPTER 4:  LANGMUIR FILMS OF CdSe NANOCRYSTALS 
 
 
4.1 Background and Prior Art 

Nanocrystal monolayers are substantially different than amphiphilic monolayers 

in that they exhibit an entirely non polar surface: the head groups of the passivating 

ligand (in this case, phosphine oxide on the TOPO ligand) are bound to the nanocrystal 

surface with their aliphatic tails facing outwards (figure 4.1). This results in an entirely 

hydrophobic surface that has no preferential orientation on a water-air interface. Such  

 

Figure 4.1: Cross section of a CdSe nanocrystal passivated with TOPO 
ligands. The polar phosphine oxide headgroups are bound to the 
nanocrystal surface, while the hydrophic tails are radially oriented 
outward, presenting a hydrophobic surface. 
 
 

 

!"
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Langmuir Blodgett films of CdSe nanocrystals were first investigated by Daboussi and 

Bawendi at MIT in 1993.70 They employed spreading solutions of 5-10 mg/ml of TOPO 

capped CdSe nanocrystals dispersed in chloroform and observed collapse pressures 

around 65 mN/m for nanocrystals of varying sizes (2.5, 3.0, 3.6, 4.3, 5.3 nm diameters).  

While film compressibility was not reported, extrapolation from the published isotherms 

suggests values of 10-2 m/mN for all nanocrystal sizes. All nanocrystal films exhibited 

constant pressure collapse behavior (as one would expected) due to the uncharged nature 

of the hydrocarbon surface. Furthermore a rinse process was described to reduce the 

amount of free TOPO in solution. A two solvent method is used to remove free TOPO: 

TOPO-capped nanocrystals are insoluble in methanol while free TOPO is readily 

dissolved. Nanocrystal / free TOPO solutions are thus separated by adding methanol until 

nanocrystal precipitation, then discarding the methanol/TOPO supernate before 

redissolving the precipitated nanocrystals in a suitable solvent (chloroform, toluene, 

hexane, etc). The next decade saw several reports of further Langmuir Blodgett 

manipulation of CdSe-TOPO monolayers with maximum surface pressures ranging from 

20 – 60 mN/m.71-76 This wide range of surface pressures speaks to the difficulty of 

preparing such monolayers: lower collapse pressures and higher compressibilities 

indicate significant amounts of excess TOPO in solution. As seen in figure 3.16, collapse 

pressures of multi component films are lower than they are for pure films. The failure to 

account for the excess ligand in solution is responsible for the largely inconsistent results, 

varying film morphologies and differing collapse pressures observed in the literature.  
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 4.2  Initial Studies 

 The first efforts at producing monolayers of CdSe nanocrystals employed 

commercially available materials: “Evidots” purchased from Evident Technologies in 

Troy, NY; and “TriLite Nanocrystals” purchased from Crystalplex in Pittsburgh, PA. 

While the Evidots were size tunable CdSe nanocrystals, the Trilite NCs were composition 

tuned, employing a CdSexS1-x core to achieve a range of emission wavelengths while 

maintaining a consistent 5.5 nm diameter across a range of colors. Furthermore, both 

manufacturers reported concentration as mass per volume (mg/ml). As the manufacturers 

also reported molecular weights for these materials (accounting for both the core and 

ligand shell), the amount of spreading solution that should produce a monolayer at 400 

cm2 was calculated, roughly half the area of the trough with the following equation: 

 

!"#$%&! !" ! ! !!!"!!!!!!"#!
!"
!   [4.2] 

 

Where C is the concentration in mg/ml, PMA is the predicted molecular area in nm2, NA 

is Avogadro’s number, and FW is the formula weight of the nanocrystal in g/mol. The 

given molecular weights (~105 g/mol) and concentrations (5-20 mg/ml) suggested 

spreading solution volumes of 30-120 !l would yield close packed monolayers at 400 

cm2. The majority of this early work was done on the TriLite NCs (alloy cores), which 

made it difficult to verify concentrations spectroscopically. The alloy composition and 

exact size of the nanocrystals were proprietary, and transmission electron microscopy 

(TEM) studies revealed that the TriLite materials were actually large (10 nm) pyramid 

like structures, not the pseudo-spherical 5.5 nm crystals described by the manufacturer 
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(figure 4.2). Without further knowledge of the alloy composition an extinction coefficient 

could not reliably identified to use in absorption measurements. 

 

 

 

Figure 4.2: TEM of Crystalplex TriLite nanocrystals, revealing pyramid 
like structures with ~10 nm edge lengths. 
 

 

Isotherms similar to those in the literature were observed at much higher molecular areas 

than expected (figure 4.3). This could be explained by a higher than actual value for 

formula weight or a lower than actual value for concentration or predicted molecular 

area. It was initially suspected the pyramidal morphology of the crystals was a major 

source of error, but geometric analysis shows that both the volume and cross sectional 
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area of a 10 nm edge length pyramid is quite close to the respective dimensions of a 5.5 

nm sphere. 

 

Figure 4.3: First Langmuir isotherm taken of Crystalplex TriLite 
Nanocrystals. 10 !l of a 20 mg/ml spreading solution was deposited on a 
pure water subphase and compressed at a rate of 30 mm/min. 

 

Furthermore, the formula weight given was consistent with the density and volume of the 

nanocrystals. At the time, the reported concentrations of the commercial materials were 

not questioned beyond verifying the value with the manufacturer. The deposited films of 

core-shell dots (CdSeS cores with a monolayer of ZnS on the surface) produced visible 

luminescence (figure 4.4). 
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Figure 4.4: Fluorescence image of TriLite Nanocrystal Langmuir Blodgett 
films on GaN wafer.  

 

 These films, while having the expected photoluminescent effects, possessed no 

electrical conductivity and produced shorted vertical devices. Scanning electron 

microscopy of the films revealed sparse, network like structures with expansive voids in 

between them (figure 4.5). Interestingly, it was evident that the nanocrystals were 

forming multilayers within these network-like structures, indicated by darker areas in the 

image A great deal of time was spent exploring different techniques and variables: using 

differing concentrations of spreading solutions, differing barrier compression speeds, 
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varying subphase pH and ionic strength, varying anneal times, etc. but had limited 

success in solving this problem: every film examined had large voids rendering device 

engineering impossible. One area that did produce repeatable and notable results was 

pretreating the substrate to lower the surface energy (promoting nanocrystal adhesion) 

prior to deposition. 

 

 

 

Figure 4.5: SEM image of a Langmuir Blodgett film of CdSeS 
nanocrystals on ITO. Dark grey areas are nanocrystal films with darker 
areas representing nanocrystal multilayers. 
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4.3 Substrate Surface Energy Modification 

 TOPO coated CdSe nanocrystals have very low energy surface and adhere well 

to low surface energy (hydrophobic) substrates. Hydrophilic substrates however, often 

show dewetting (figure 4.6), which can result in the formation of QD cellular networks 

due to favorable hydrogen bonding between the substrate and water from the Langmuir 

subphase.  Plotting the free energy as a function of concentration (figure 4.7) two minima 

are observed.  It was hypothesized that TOPO-capped CdSe QDs on hydrophilic 

substrates exist between these two minima, leading to a spinodal decomposition where 

QDs diffuse to high concentrations in localized areas, and are void in other areas. This 

spinodal decomposition is well described by the Cahn-Hilliard equation: 

 

!"
!" ! !!! !! ! !! !!!!         [4.3] 

 

Using a linearly stabilized integration scheme in MATLAB, a uniform film 

undergoing spinodal decomposition (figure 4.10) was modeled.  The results were in good 

agreement with the cellular networks have observed, and suggest that stable Langmuir 

films of hydrophobic particles (i.e. any nanocrystal that would form a stable Langmuir 

film) are in fact unstable on hydrophilic substrates. Furthermore, the more hydrophobic a 

substrate is, the more stable and uniform one would expect QD monolayers on it to be. 
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Figure 4.6: (top) ITO surface after solvent (acetone, methanol) clean. As 
a result the nanocrystals and water molecules phase segregate on the 
high energy surface forming cellular networks. (bottom) ITO surface 
after acid treatment, rendering the surface hydrophobic.  Nanocrystals on 
this surface will remain stable as smooth, ordered monolayers. 
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 ITO coated glass slides were prepared via RF magnetron sputtering. A 99.99% 

pure In2O3:Sn2O3 (90%:10%) was used to deposit 200 nm thick ITO films at 3 mT. In 

order to promote nanoparticle adhesion on the surface, the ITO films were subjected to 

various acids in order to lower the films’ surface energy. It was found that aqua regia 

(HCl:HNO3, 3:1) decreased the surface energy (increased hydrophobicity) without 

significantly increasing the surface roughness of the film. Efforts to investigate other 

acids either did not appreciably affect the surface energy (HCl, H2SO4) or aggressively 

damaged the ITO film rendering it useless for device applications (HNO3, HF).  

CdSe nanocrystals capped with trioctylphosphine oxide (TOPO) were washed in 

methanol.  The nanoparticles were dispersed in toluene at concentrations of 20 mg/ml. 

 

 

 

 

Figure 4.7: Qualitative plot of free energy as a function of composition.  
Regions between the red dotted lines are called the spinodes, where a 
homogenous composition is unstable.  Systems in the spinodal region will 
decompose into two phases at concentrations Ca’ and Ca”. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Qualitative plot of free energy as a function of composition.  Regions between 

the red dotted lines are called the spinodes, where a homogenous composition is unstable.  

Systems in the spinodal region will decompose into two phases at concentrations Ca’ and 

Ca”. 
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Etching studies determined that a 20:3:1 mixture of H2O:HCl:HNO3 for 30 minutes 

significantly increased the water contact angle of ITO films (figure 4.8).  It was found the 

cleanliness of the glass substrates and quality of the sputtered ITO films greatly 

influenced the etching rates and final film quality. Without carefully prepared sputtered 

films, high surface areas susceptible to pitting and rapid etching were observed.  

 

 

Figure 4.8: Water contact angle measurements on ITO films subjected to 
various acid treatments.  
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The water contact angle measurements were performed with a home built system 

using a front lit, high contrast background to achieve maximum resolution, depicted in 

figures 4.9 and 4.10. The photographs were converted to 8 bit black and white images 

and processed using imageJ, an open source, java based image processing algorithm 

developed by the NIH77. Furthermore a plugin to determine the accurate shape of the 

drops (and thus an accurate contact angle) was used. This plugin, also open source, was 

developed  by Stadler and others at École Polytechnic.78, 79 

 

 

 

 
Figure 4.9: A diagram of the water contact angle measurement setup 
constructed for these experiments.  

 



 108 

 

 
Figure 4.10: A photograph of the water contact angle measurement setup 
constructed for these experiments.  

 

 

After optimizing the etching process, nanocrystal films were deposited using the 

Langmuir-Blodgett deposition method, nanocrystal films were deposited at surface 

pressures of 32 mN/m, just below their collapse pressures to achieve maximum film 

density (figure 4.11). Upon comparing the aqua regia treated substrates with the untreated 

substrates, it was found the untreated samples had phase segregated (as seen in prior 

studies) leaving a poorly covered ITO film. These patterns created by this phase 

segregation can be well described by the Cahn-Hilliard equation, modeled in figure 4.12. 
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Figure 4.11: LB compression isotherms for deposited nanocrystal films. 
The films show stability at 32 mN/m, the pressure used for these 
depositions. 

 

 

 

 

 

 

 

 

 
Figure 4.12: (left) Phase segregation observed in CdSe Langmuir films 
deposited on a hydrophilic substrate (! = 36o), scale bar is 2 µm.  (right) 
Spinodal decomposition modeled according to the Cahn-Hilliard equation 
in MATLAB. 
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Furthermore, the films deposited on the aqua regia treated samples exhibited higher 

transfer ratios during deposition and higher photoluminescence after. The transfer ratio is 

a measure of how much the surface area of the trough is decreased as the substrate is 

being dipped through the monolayer: 

 

!"#$%&'"!!"#$% ! ! !!!"#$!!"!!"#$%!!!"#$!!"#$%&!!"#$%&'&$(!"#$%!!"#$%&'!!"#$!!"!!"#$%&'%(      [4.4] 

 

As the LB trough is programmed to hold the film at a constant pressure during deposition, 

complete substrate coverage would yield a transfer ratio of 1. Given that these substrates 

are only covered with ITO on one side and that the glass side is relatively hydrophilic, 

transfer ratios higher than 0.8 for the aqua regia treated samples were observed. 

Photoluminescence measurements were in agreement with the transfer ratio data, 

suggesting that the aqua regia treatment improved nanoparticle coverage on ITO films 

(figure 4.13). 
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Figure 4.13: (left) Photoluminescence measurements taken of deposited 
nanocrystal films on treated ITO substrates. Higher PL signals indicate 
greater nanoparticle density on the ITO surface. (right) Measured water 
contact angle vs. PL intensities, illustrating the importance of low surface 
energy substrates when seeking high nanoparticle coverage. 

 

 

While the increased coverage seen on the treated ITO films was encouraging, the 

nanocrystal film quality still needed to be improved in order to realize robust, vertically 

oriented devices. Even after dozens of monolayers were deposited on the substrates (the 

bottom contact in a device), it was found that deposition of a top contact shorted the 

device and horizontal structures were non-conductive, suggesting there were still voids in 

the nanocrystal films. SEM images of treated substrates verified an improvement in 

coverage but a persistent lack of large area film formation. 
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Figure 4.14: SEM comparison of CdSe/ZnS-TOPO Nanocrystals 
deposited on treated (top) and untreated (bottom) ITO substrates. 

 

 

4.4 Nanocrystal Purification: Rinsing of Spreading Solutions 

Despite efforts at modifying experimental conditions and substrate surface 
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to the initial spreading solutions. 

4.4.1 Commercial Nanocrystals 

 While (purchased) stock solutions of TOPO-capped CdSe nanoparticles were 

purified from their initial reaction aliquot by the manufacturer, it was realized they 

contained a substantial excess of unbound TOPO ligand in solution (to enhance stability). 

CdSe on ITO (no treatment)!

CdSe on ITO (aqua regia treatment)!

!"#$"

!"#$"



 113 

Drying experiments indicated that the reported concentrations of the stock solutions (in 

mg/ml) were actually the concentrations of total dissolved solids, not the concentration of 

CdSe nanocrystals as advertised. A two solvent method was followed to reduce unbound 

ligand in solution and characterize the solutions: 

 

1. Add 10 ml methanol to 5 ml of stock CdSe-TOPO solution and 
mixed thoroughly. Solution becomes opaque, nanocrystals 
precipitate out after 30 min. 
 

2. Remove 10 ml of the supernate and vacuum dry the precipitate. 

4. Add 5 ml of toluene, dissolving the precipitate. 

5.  Filter resulting solution through a 0.22 !m syringe filter to remove 
aggregates or large impurities. 
 

6. Repeat. 

Table 4.1 

 

Throughout this procedure the absorbance of the dispersed solutions was measured, 

Langmuir isotherms of the supernates were formed and the dried precipitates were 

weighed to determine the amount of TOPO removed. Only 10 ml (of the 15 ml total 

volume) of the solution in step 2 was removed to avoid accidental loss of precipitated 

nanocrystals. Later rinsing efforts employed centrifugation and a total decantation of the 

supernate, but these studies gave us valuable insight into the amount of excess ligand 

being removed.   Figure 4.15 illustrates the mass of the sample after each of four 

consecutive rinse procedures. 
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Figure 4.15: Percentage of original mass remaining after consecutive 
methanol rinsing cycles. Mass loss is due to removal of excess unbound 
TOPO ligand. 
 
 
 

The extent of mass loss was surprising and the procedure was repeated several times. 

Plotting instead the relative mass loss per cycle it cab be seen that it is relatively constant 

for the first few rinsing cycles (figure 4.16). Furthermore, it was noted that this mass loss 

is consistent with the percent of solvent removed after precipitation. Efforts to remove 

more than 10 ml (of 15 ml total volume) resulted in significant loss of nanocrystal 

precipitate that was still partially suspended in the lower third of the solution. Dividing 

the percent mass loss by the percent volume decanted gives us the solvent utilization 

(figure 4.17) which represents the percentage of mass soluble in methanol. High values, 

such as those measured in figure 4.17 indicate that nearly the entire solution prior to rinse 

1 and 2 was soluble in methanol.  It was thus concluded that the commercially bought 

solutions were nearly completely (>99% by mass) TOPO. 
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Figure 4.16: Percentage of mass loss per rinse cycle for consecutive 
methanol rinse. Mass loss is due to removal of excess unbound TOPO 
ligand. 

 

 

 

Figure 4.17: Solvent utilization for four consecutive methanol rinse cycles. 
These high values indicate the initial solution was comprised almost 
entirely of unbound TOPO.  
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Figure 4.18: TOPO concentration of methanol supernate after consecutive 
rinsing steps (described in table 4.2). 

 

This process resulted in rinsing solutions with successively decreasing TOPO 
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nanoparticle aggregation was observed (0.22 !m filtered solutions were optically clear 

with no measurable absorption). 

4.4.2 Synthesized Nanocrystals 

The difficulty in spectroscopic analysis of the proprietary nanocrystals motivated 

us pursue synthesis of nanocrystals to better characterize them and understand the 

components of the spreading solution. CdSe nanoparticles were synthesized by 

colleagues via a well established wet chemical method with TOPO, trioctylphosphine 

(TOP) and hexadecylamine (HDA) as coordinating ligands in an excess of TOPO.80 The 

CdSe nanoparticles were kept in an extreme excess of unbound TOPO forming a greasy 

0.000001!

0.00001!

0.0001!

0! 1! 2! 3! 4! 5!

TO
PO

 C
on

ce
nt

ra
tio

n 
[M

]!

Rinse #!

TOPO Content of MeOH Solution After QD Washing!



 117 

solid stored in the dark at room temperature. TOPO has a low melting point (52° C) so 

gentle heating of this solid to 60° C melted it, producing a semi-transparent solution of 

TOPO capped CdSe nanocrytsals dispersed in liquid TOPO. The process used was 

slightly refined from the initial procedure (table 4.1) to include centrifugation, allowing 

us to completely precipitate the nanocrystals and decant all of the methanol solution 

during each rinse cycle. Furthermore, the vaccum-drying step for all but the final 

dispersion was eliminated. 

 

1. Add 10 ml methanol to 5 ml of stock CdSe-TOPO solution and 
mix thoroughly. Solution becomes opaque immediately. 
 

2. Centrifuge the suspension at 6500 rpm for 5 minutes and decant 
the colorless supernate. 
 

3. Add 5 ml of toluene, dissolving the precipitate. 

4. Repeat 1-3 for each desired rinse cycle. 

5.  Filter resulting solution through a 0.22 !m syringe filter to remove 
aggregates or large impurities. 
 

Table 4.2 

 

This rinsing procedure reduced TOPO concentrations in the nanocrystal solutions 

by a factor of nearly 200 (figure 4.20) but still proved insufficient to form stable 

monolayers of CdSe nanocrystals: too much free TOPO exists in solution to allow for NC 

monolayer formation. This is evident by the collapse pressures observed in rinsed films. 

Referring to the earlier discussion of mixed monolayers (figure 3.16, equation 3.23) it is 

evident that the isotherms that were observed were primarily TOPO for three reasons. 
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1. Absorption measurements allow us to determine the concentration and size of 

CdSe nanocrystals. As absorption is dependent on the size of the nanocrystal core, 

it is relatively insensitive to surface passivation of the nanocrystal surface by 

organic molecules.81, 82 It should be noted that inorganic passivation of the CdSe 

core with a wider bandgap shell (ZnS, ZnSe, CdS) will show a slightly redshifted 

(~ 50 meV) absorption profile due to the reduced quantum confinement due to 

carriers tunneling into the shell,83 but an organic passivation has no such effect. 

Therefore different rinsing solutions can be objectively compared with absorption 

spectroscopy to determine the concentrations of CdSe nanocrystals independent 

of the excess TOPO concentration. 
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Figure 4.19: Rinsing process for UNCC grown CdSe nanocrystals. CdSe-
TOPO stock solid is melted (a) and 10 ml methanol is added (c). The 
solution is centrifuged and the resulting (colorless supernate is discarded. 
For subsequent rinse cycles the precipitate is re-dispersed in toluene (b) 
and the methanol rinse (c,d) is repeated. After the final rinse cycle, the 
precipitate (d) is vacuum dried, dispersed in toluene and passed through a 
0.22 !m filter before characterization (e). 
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Figure 4.20: Isotherms of successively rinsed solutions of CdSe-TOPO in 
toluene. The x-axis represents the area occupied in the trough per !l 
deposited. Solutions with higher TOPO concentrations (i.e. the first and 
second rinses) obviously required  
 
 
 

 
2. The collapse pressures of the films occur near 35 mN/m, consistent with a 

pure TOPO isotherm. Reports in the literature feature collapse pressures as 

high as 65 mN/m for CdSe films,70 so it can be inferred that a film 

collapsing at 35 mN/m has little influence from the CdSe nanocrystals and 

thus comprised of nearly entirely TOPO. 
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3. The compressibility of the films (figure 4.21) is extremely similar to those 

of pure TOPO  (figure 3.20). 

 

 
 

Figure 4.21: Isotherm and compressibility of the fifth rinse of the CdSe-
TOPO solution. Dotted red line represents the predicted area per 
nanocrystal, 14.6 nm2 per nanocrystal. Substantially higher measured 
nanocrystal areas suggest a significant excess of TOPO in the film. 

 
While this data suggests that further rinsing is required to obtain a more pure nanocrystal 

spreading solution, it was found that further rinsing resulted in aggregation of the 

nanocrystals, evident from a lower optical density in the absorbance spectra (figure 4.22) 

and visible contamination of the 0.22 !m filter used to remove such aggregates (figure 

4.23). Unused filters appear white, while filters used in rinse cycles 1-4 have a very slight 
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discoloration to them. Upon the fifth rinse it was immediately evident that significant 

amounts of nanocrystal aggregates were caught by the filter. 

 

 

 
Figure 4.22: Absorption of rinsed TOPO-CdSe solutions showing a 
general trend of lower absorption with successive rinsing cycles, with a 
notable decrease after the fifth rinse. For this sample, subsequent rinses 
produced optically clear samples with no apparent nanocrystal absorption 
features. 
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Figure 4.23: Visible evidence of nanocrystal aggregates trapped in a 0.22 
!m filter after five rinse cycles.  

 

 

Rinse # TOPO molarity NC molarity NC molar % NC mass % 

1 266.7 mM 3.963 !M 0.001486 % 0.1725 % 

2 85.51 mM 3.957 !M 0.004626 % 0.5350 % 

3 28.65 mM 3.508 !M 0.01222 % 1.402 % 

4 10.74 mM 3.689 !M 0.03425 % 3.831 % 

5 1.455 mM 2.745 !M 0.1852 % 17.75 % 

 

Table 4.3 shows the TOPO and CdSe nanocrystal content of each of the 
rinse cycles. 

 

Further experiments all showed similar trends: after 5-6 rinse cycles significant amounts 

of nanocrystals were lost due to aggregation. It should be noted that in these experiments 

it was impossible to pursue more aggressive rinsing techniques without total loss of 

suspended nanocrystals. 

 

 

 

 

 

 



 
 
 
 
 
 

 CHAPTER 5: DEVICE FABRICATION 
 
 

The original intent was to fabricate devices from monolayer and multilayer films 

of CdSe nanocrystals. Methods were developed and characterized for depositing indium 

tin oxide (sputter deposition), gold (sputter and electron beam deposition) and aluminum 

oxide (atomic layer deposition) in an effort to fabricate devices and test structures that 

would help better understand the properties of nanoparticle Langmuir films. 

5.1  Sputter Deposition 

 Figures 5.1 illustrates a schematic of the AJA International ATC 1800F Sputter 

Deposition System (pictured in figure 5.2) used in these studies. Unlike many other 

deposition systems this is a sputter down setup: The substrate stage is oriented below the 

downward facing targets (the substrate stage facing up), allowing samples to be placed 

onto the stage without the need for clips or other retainment. The substrate stage is a 6” 

diameter rotating platform with a 300 oC programmable heater and water cooling. Three 

gas inlets are attached, two connected to (mass flow controlled) Ar and the other to a N2 

line for venting purposes. The roughing pump is connected behind the turbomolecular 

pump, which is connected to the deposition chamber via a gate valve. As the system does 

not have a load lock, the venting procedure is to shut down the turbo pump, close the gate 

valve and purge with N2. After loading samples onto the substrate holder the access port 

is closed, the gate valve is opened and the turbo pump restarted. The pump is typically 

run for 90 – 120 minutes, which reduces the pressure in the chamber to 1.0 x 10-6 T.  
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Once this sufficiently low “base pressure” is achieved, one of the Ar valves is opened and 

Ar flows into the chamber at 15 sccm, increasing the pressure to 4.0 x 10-5 T. To further 

increase the Ar pressure the gate valve between the deposition chamber and turbo pump 

(the red component in figure 5.1) is partially closed until a pressure of 3.0 mT is 

achieved.  

         Upon achieving a background pressure of 3.0 mT an additional 15 sccm of Ar is 

introduced before turning on the RF (13.56 MHz) power supply at an initial power of 20 

W, ramping up to 200 W over 60 s. The applied electric field produces an argon plasma 

with a characteristic light blue / lavender glow that brightly illuminates the inside of the 

chamber. As neutral Ar atoms are ionized, the Ar+ ions are accelerated towards the target 

(figure 5.3) where one of several things may occur: 

 

Table 5.1 

1 The ion collides elastically and reflects 
off the target. 
 

2 The ion collides inelastically and 
becomes buried in the target. 
 

3 The ion collides with the target, 
incurring structural rearrangement. 
 

4 The ion collides with the target leading 
to the ejection of target atom(s). 
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Figure 5.1: Diagram of the AJA International ATC 1800F Sputter Deposition 
System used to deposit thin films. 

 

 

Sputtering occurs when a target atom is ejected from the target surface (table 5.1, #4), 

and travels through the chamber, either ballistically or colliding with other atoms before 

adsorbing onto the substrate or chamber wall. For sensitive samples ballistic transport is 

not desirable, introducing higher Ar background pressures increase the likelihood and 

number of collisions with gas molecules, decreasing the kinetic energy of the target 

atoms before they impact the substrate surface. Typically, the RF power, background 

(Ar) pressure and substrate temperature are varied to produce the desired conditions. 
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Figure 5.2: Picture of the AJA International ATC 1800F Sputter Deposition 
System. 

 

 

5.1.1 Indium Tin Oxide Sputter Deposition 

 The first reported transparent, conductive material was cadmium oxide, published 

by Bedeker in the early twentieth century.84 Since then, many other transparent 

conductive oxides have been explored,85 namely tin doped indium oxide, more 

commonly referred to as indium tin oxide (ITO) due to the extremely high dopant 

concentrations. Indium tin oxide (ITO) is a degenerately doped n-type semiconductor 

commonly used in a wide range of applications, including displays, LEDs, sensors and 

shielding.  
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Figure 5.3: Illustration of an RF ITO sputtering process. Neutral argon 
atoms are ionized in a magnetically confined plasma, which then 
accelerate towards the target in the presence of the electric field. Collision 
with the target may eject target atoms, which then deposit on the substrate 
either ballistically or after several collisions within the low pressure Ar 
gas (one such collision is depicted in figure 5.3). 

 

 

Many methods of ITO deposition exist, but hot pressed oxide sputtering targets 

have been shown to produce high quality films that are quite resilient to minor variations 

in process conditions,86 and have such seen wide use in the optoelectronic industry. For 

these studies such targets were used, specifically In2O3/SnO2 (90/10 wt%) 2.00” x 0.250” 

disks purchased from the Kurt J. Lesker Company.87 Sputtered ITO films can have 

resistivity as low as 10-4 ! cm and optical transmittivity as high as 85% in the visible 

region,88 making them suitable for these studies. A notable feature of this sputtering 
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configuration is that the targets are composed of indium and tin oxides (as supposed to 

In/Sn alloys)  and do not require an additional oxygen source (typically O2 gas).  

  The deposition rate of the sputtering system was studied operating at a pressure 

of 3-4 mTorr and 200 W RF power. These values were chosed as the system was well 

characterized for operation in this regime, and ITO deposition had been shown 

successfully under similar conditions.88 An average deposition rate of 5.9 nm/min was 

found under those conditions, producing uniform films that were conductive and optically 

transparent. 

 Film thicknesses were measured with Tencor Alphastep 200 profilometer. The 

step was created by masking off a section of the sample before sputtering. The substrates 

were single side polished sapphire.  The Alphastep is a contact profilometer that 

measures step height by scanning a diamond tip across the sample with a uniform contact 

force. For hard films such as these (ITO on sapphire), this technique works extremely 

well. The tip has a radius of 12.5 !m, offering somewhat limited lateral resolution, but 

has a vertical resolution of in the nanometer range (when new, the manufacturer claimed 

a 5 Å vertical resolution, +/- 10 nm of noise was observed) that is sufficient for 

characterizing films 100-1000 nm in thickness.  Select films were also measured with an 

AFM and it was found the Alphastep measurements to be in good agreement.  

 Sheet resistances were measured with a Lucas Labs Pro-4 Resistivity System. The 

setup is equipped with a four point probe head, a Keithley 2400 power source and Pro4 

measurement software. The four point probe consists of four collinear tungsten wires 

spaced equally (figure 5.5).  Current is passed through the outer probes (#1 and #4 in 
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figure 5.5) and measured by the inner probes (#2 and #3 in figure 5.5). Ideally the inner 

probes do not draw any current.  

The resistivity of a semi-infinite volume is: 

 

!!" ! !!" !!    [eq 5.1]  

 

Where !o is the resistivity, L is the spacing in between the probes, and V and I are the 

current and voltage, respectively. Smits et al established that equation 5.1 was  

 

 

 

Figure 5.4: Sputtered film thickness vs. deposition time for ITO films 
deposited at 200 oC, 2.5 W/cm2 RF. The average deposition rate was 5.9 ± 
1.3 nm/min. 
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valid for samples where the nearest boundary was at 5L from the nearest probe.89 In this 

case L = 0.04”, meaning samples thinner than 0.2” (5 mm) required a correction. This 

correction was found to be linear with respect to thickness provided the thickness of the 

sample was less than half the probe spacing (2t < L, in this case t < 2.5 mm), which was 

the case for all films measured. Furthermore the slope of this line was determined to be 

2ln(2)-1, allowing us to express a corrected, thickness dependent form of equation 5.1: 

` 

!! ! !!!!" !!
!
! !

!
!!!"!!!!   

 !! ! !!!!!"!!! !!   [eq 5.2] 

 

Equation 5.2 is the corrected bulk resistance of the sample and has units of [! cm]. 

Dividing both sides of equation 5.2 by the sample thickness gives sheet resistance: 

 

!! ! ! !! ! !!!!" !!   [eq 5.3] 

 

While the units of equation 5.3 are !, there is a geometrical significance to the 

measurement. Recalling the resistance formula: 

 

! ! ! !!" ! [eq 5.4] 
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Figure 5.5: Diagram of a four point probe head used to measure sheet 
resistances. 

 

 

 

 

 
Figure 5.6: Photograph of the four point probe measurement  
apparatus (Lucas Labs). 



 133 

Where l, t, and w are the length, thickness and width of a sample, it can be seen that for a 

square (w = l) equation 5.4 becomes equation 5.3. From this equation 5.3 can be 

interpreted as the resistance of a square sample, which is why units for sheet resistance 

are commonly expressed as !/!. This is dimensionally identical to ! but serves as 

helpful reminder of the geometric importance to sheet resistance measurements. 

 There is a further correction regarding the planar dimensions of thin films 

expressed as: 

 

! ! ! !
!! !

!!! !
  [eq 5.5] 

 

Where D is the diameter of the wafer. This probe station (and most others) are designed 

with closely spaced probes such that this correction approaches unity and can be 

disregarded in calculations. The samples measured were 50 mm in diameter, yielding a 

correction factor of 0.9964. Figure 5.6 is a photograph of the Pro4 apparatus used in these 

studies. Figures 5.7 and 5.8 show the measured sheet resistivity and calculated bulk 

resistivity, respectively, from the sputtered ITO films. 
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Figure 5.7: Measured sheet resistances for ITO films deposited at 200 oC, 
2.5 W/cm2 RF. Sheet resistances were measured with a four point probe, 
film thicknesses were measured with a profilometer. 
 
 

 

Figure 5.8: Calculated bulk resistivity for ITO films deposited at 200 oC, 
200 W RF. The average bulk resistivity was 26.1 ± 3.0 m! cm. 
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5.1.2  Gold Sputter Deposition 

The procedure for sputtering gold is similar to that for sputtering ITO with one 

important difference. Instead of an alternating RF power source, the sputtering is carried 

out with a DC bias (sometimes known as diode sputtering). The target is held at a 

negative voltage while the substrate is either biased positively or earthed (as in this case). 

The procedure for striking an Ar plasma is identical to that for the RF ITO process, with 

an excess of Ar being introduced (30 sccm) before the pressure is adjusted to 3 mTorr 

and deposition proceeds. A schematic of the gold deposition process is shown in figure 

5.9. 

 

 
Figure 5.9: Illustration of an DC sputtering process. Neutral argon atoms 
are ionized in a magnetically confined plasma, then accelerated towards 
the target, ejecting target atoms which impact the substrate. 
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The gold films were characterized with both the Alphastep profilometer and a Veeco 

Dimension 3100 scanning probe microscope with a Nanoscope IV controller. Films 

thinner than 100 nm were measured with the AFM in tapping mode while films with 

thicknesses greater than 100 nm were measured with the Alphastep. The substrates were 

not heated during deposition and a deposition rate of 5.3 nm/min was observed at a 20 W 

DC power. 

 

 

 

Figure 5.10: Sputtered film thickness vs. deposition time for Au films 
deposited at room temperature, 20 W DC. The average deposition rate was 
5.25 ± 0.9 nm/min. 
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The gold films demonstrated sheet and bulk resistivity consistent with prior reports in the 

literature90 and had a smaller deviation that their ITO counterparts (figures 5.11, 5.12). 

 

 

 

Figure 5.11: Measured sheet resistances for Au films deposited at 20 W DC. 
Sheet resistances were measured with a four-point probe, film thicknesses were 
measured with a profilometer and atomic force microscope. 
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Figure 5.12: Calculated bulk resistivity for Au films deposited at 20 W 
DC. The average bulk resistivity was 2.53 ± 0.2 !" cm. 

 

 

5.2 Electron Beam Deposition 

 A Kurt J Lesker PVD 75 Thin Film Deposition System was employed to deposit 

thin films of gold and chromium. It was found that patterning (and even handling) the 

gold films deposited via sputtering was difficult due to the poor adhesion between the 

gold film and underlying substrate. Using a thin layer of chromium (5 nm) followed by a 

thicker layer of gold (20-50 nm) fabrication and patterning gold films was possible with 

features as small as 1 !m.91 

 Electron beam deposition is a physical vapor deposition process that uses an 

energized tungsten filament to emit a beam of electrons to heat (and evaporate) a material 

(figure 5.13).  
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Figure 5.13: Diagram of an electron beam evaporation process. 
 

 

When the tungsten wire is resistively heated to the point where the thermal energy of the 

electrons exceeds the work function, thermionic emission of electrons of occurs. An 

orthogonal magnetic field directs the emitted electrons in a circular path towards a 

molybdenum crucible on a water cooled stage. The crucible can be filled with a variety of 

metals, Au was primarily used for these device studies. Furthermore, a controllable 

electric field is used to direct the beam location within the crucible (the beam itself is 

much smaller than the crucible) to prevent non-uniform heating.  
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Figure 5.14: The Kurt J. Lesker PVD 75 Thin Film Deposition System. 

 

 

5.3  Photolithography 

 Both ITO and gold structures were patterned for the purpose of measuring lateral 

conductance in these CdSe films. Two photolithographic techniques were employed to 

accomplish this, the first using the “lift off” method, where the photoresist is deposited 

and patterned prior to conductive film deposition and the second using the “etch back” 

method, where the photoresist is deposited and patterned after the conductive film has 

been deposited. The resist used is Shipley 1813, a novolac / diazonaphthoquinone (DNQ) 

based resist developed and sold by Microposit. The resist is positive, with DNQ in the 

exposed regions undergoing a photo-induced Wolff rearrangement, yielding a carboxyl 

group which renders such regions highly soluble in aqueous bases (figure 5.15).92 
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Figure 5.15: Wolff rearrangement of DNQ, producing a carboxylic acid 
that is soluble in an aqueous base. 

 

 

5.3.1 Lift-off Photolithography 

 Lift off photolithography involves a patterned photoresist layer, which a film is 

deposited (sputtered or evaporated) on. Stripping of the photoresist layer removes both 

the photoresist and the portion of the film on top of that resist, while leaving behind the 

portion of the film directly on the substrate (figure 5.16).  While this is commonly 

accomplished using a positive mask and a negative resist, this was approached this using 

a negative mask and positive photoresist, as a high quality Cr negative mask had already 

fabricated from previous work. 
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Figure 5.16: Photolithography process for lift off patterning of gold using 
Shipley 1813 positive photoresist and positive contact mask. 
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Furthermore, the fabrication of high quality patterns and structures using Shipley 1813, a 

positive Novolac based photoresist, had been successfully demonstrated before by this 

research group. Figure 5.16 illustrates this process.  Prior to coating with photoresist the 

substrate is cleaned in a sonicated bath of acetone for 5 minutes, followed by 5 minute 

baths in methanol and then isopropanol before being blown dry with N2. The sample is 

then baked at 110 oC to remove any water or other volatile components before being spin 

coated with hexamethyldisilazane (HMDS), an organosilicon compound used to promote 

adhesion between the oxide (or nitride) substrates and novolac based photoresists. HMDS 

is spun on at 4000 rpm for 40s, which functionalizes the surface with trimethylsilyl 

groups.93 The wafer is now ready to be spin-coated with photoresist, which is done at 

4000 rpm for 40 s. It is important to immediately soft-bake the spun on resist at 100 oC 

for 60 s to cure the film, and then to allow cured film to rehydrate for 60 s before UV 

exposure. This process yields a film approximately 1.3 !m thick, with minimal edge 

beading. Experiments with removing the edge bead (this is accomplished by exposing 

and developing the outer 5 mm of the circular wafer) in order to decrease the distance 

between the photomask surface and the wafer to be patterned, were not performed as it 

was found to be unnecessary.  The sample is then placed in a Quintel Ultraline Q 4000-6 

mask, aligner where a negative photomask is used to expose the sample in contact mode 

(figure 5.16).  The mask has circular transmission line measurement structures patterned 

(see figure 5.17, note the lift off technique uses the negative mask, the positive mask is 

depicted in 5.17) a well-established method that allows for sheet resistance measurements 

of thin films.94 Shipley 1813 is optimized for a 436 nm exposure, coinciding with the G-

line emission (435.8 nm) of a mercury vapor lamp. Such a lamp (300 W) is fixed on the 
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Quintel mask aligner and samples are exposed to 150 mJ/cm2 as recommended by the 

manufacturer.95 Exposure doses are verified by measuring the lamps output prior to 

loading the sample and adjusting the exposure time accordingly. After exposure the 

samples are removed and developed in Microposit MF-351, a sodium hydroxide based 

(aqueous, 2.2 % wt) solution, to remove the irradiated portions of the film. The 

photoresist is rinsed thoroughly with water and dried with N2 before chromium/gold 

deposition. This results in a metal film deposited directly on the substrate in areas where 

the sample was exposed and a metal film on top of a photoresist layer in unexposed areas 

(figure 5.16, step 4). By submerging the sample in an ultrasonicated bath of N-methyl-2-

pyrrolidone (NMP), the remaining resist (and metal deposited on those areas) was 

completely removed, leaving behind a patterned metal film that is an inverse image of the 

initial (negative) mask used. 

 This technique worked very well for gold and other metallic films but was 

ineffective with films of ITO. The ITO films tended to flake off in larger pieces (10-100 

!m in size) as the lacked the ductility to tear along adhesion lines as the gold films did. 

Furthermore, the ITO films also required longer times in the ultrasonicated NMP bath, 

suggesting that solvent penetration of the ITO films was poorer than it was with the gold.  

For this reason all further ITO patterning was done with etching. 

5.3.2 Etch back photolithography 

 Etch back photolithography involves the deposition of a film (in this case, ITO), 

then overcoating with a film of photoresist. This is then patterned before the etching step, 

which removes the areas of ITO unprotected by photoresist. This was accomplished this 

using a positive mask and positive photoresist (Shipley 1813). Figure 5.17 outlines this 
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process, with the coating, exposure, and development conditions remaining the same as 

they were for the lift off procedure. The wafer was then immersed in a 1:1 HCl:H2O 

solution at room temperature for approximately 5 minutes depending on the thickness of 

the film. The measured etch rates were between 75-100 nm/min, the conductivity of 

etched areas was measured intermittently to determine etch progress, etching was 

considered complete when the substrates (sapphire or glass) measured zero conductivity. 

It is important to note that this wet etching method is isotropic, undercutting the film, 

thus effectively widening the gap from the original mask dimensions (illustrated in figure 

5.18). The etching process carefully monitored so as not to over etch and furthermore the 

patterns were characterized after resist removal to verify the dimensions of these test 

structures. 
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Figure 5.17: Photolithography process for etch patterning of ITO using 
Shipley 1813 positive photoresist and positive contact mask. 
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Figure 5.18: Illustration of isotropic wet etching and undercutting of the 
resist. Blue areas represent photoresist, brown areas represent ITO film 
and gray area is the substrate. 

 
 

 

5.4 Circular Transmission Line Method Structures 

 The structures fabricated were circular transmission line method structures 

(CTLMs), whose dimensions are shown in figure 5.19. The respective gap spacings are 5, 

10 15, 25, 35, and 45 !m. A two point probe method was used, applying a current across 

the inner and outer sections of the structure, and calculated a voltage using equation 5.6:96 
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Figure 5.19: Positive contact mask pattern for circular transmission line 
method structures. The blue areas represent the opaque portion of the 
mask while the white areas will be exposed and eventually etched. 
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[eq 5.6] 

 

Where 

i  = Current across separation d 

Rs   = Semiconductor sheet resistance 

LT  = Transfer length 

I0, I1, K0, K1 = Modified Bessel functions, and 

ri, ro  = Inner and outer radii of circular contact 
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When using low resistance (i.e. metal) contacts the Bessel function ratios (I0/I1 and 

K0/K1) approach unity, yielding equation 5.7: 

 

!! ! !!!
!! !" !!

!!
! !!

!!
! !!

!!
   [eq 5.7] 

 

Provided the gap is sufficiently small (ro/ri > 0.5), the following can approximated: 

!" !!
!!

! ! !!!!!!!
  [eq 5.8] 

 

This allows us to reduce equation 5.7 further to: 

 

!! ! !!!
!!!!

!! ! !! ! !!!   [eq 5.9] 

 

The total resistance between the contacts is defined as RT =  !V / I, and defining the gap 

distance d = ro – ri, equation 5.9 can be expressed as a resistance: 

 

!! ! ! !!
!!!!

! ! !!!    [eq 5.10] 

 

Equation 5.10 illustrates a linear relationship between gap distance (d) and total 

resistance, whose plot should have a slope of Ra/2!ro and a y intercept of RaLT/!ro (figure 

5.20). 
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Figure 5.20: Graph of total resistance vs. CTLM gap distance. This 
relationship should be linear. 

 

The transfer length is expressed as: 

 

!! ! ! !!
!!

  [eq 5.11] 

 

This allows for a straightforward calculation of both contact and sheet resistance from the 

slope and y intercept: 

 

!! ! !!!!! !"#$%   [eq 5.12] 

!! ! !! !!!! ! !!! !!!"# !!!!  [eq 5.13] 
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5.5  Atomic Layer Deposition 

Recent success was shown by encapsulating quantum dot monolayers with Al2O3 

via an atomic layer deposition (ALD) process.97 An ALD reactor was assembled for such 

a purpose. The technique used in this work employed trimethylaluminum (TMA) and 

water precursors as the aluminum and oxygen sources, respectively, a method shown to 

produce high quality Al2O3 films across a range of operating conditions.98  

Atomic layer deposition is a conformal chemical vapor deposition method that 

relies on sequential, self terminating solid-gas reactions to form films with sub nanometer 

precision. A diagram of the apparatus is shown in figure 5.21. The reaction chamber has 

two lines leading to a shower head type inlet which provides both purge gasses and 

precursors to the chamber. This shower head is located directly (< 10 mm) above a heated 

substrate stage where the sample is placed. Nitrogen gas is continuously pumped at a rate 

of 20 sccm from two mass flow controllers (10 sccm each) at the rear of the two lines 

leading to the shower head. These two lines are also responsible for carrying precursor 

materials, one for inorganic sources (i.e oxygen) and another for metal-organic sources 

(i.e. TMA). The apparatus built for this study featured three inlet sources on the 

metalorganic line (right side of figure 5.21) for future use with other precursors. As TMA 

and many other metal-organics are pyrophoric it is advisable to “permanently” install 

these sources on the reactor, only replacing them when depleted. The three inlets on the 

metal-organic line allow users to experiment with several such sources without the need 

to remove any. The reactor has an outlet attached to a rotary vane pump with a globe 

valve in between.  
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The ALD reaction is straightforward: Al(CH3)3 reacts via ligand exchange with 

surface hydroxyl groups upon introduction to the substrate, a reaction which self 

terminates due to the steric hindrance of the methyl groups. After unreacted species are 

removed via nitrogen purge, H2O is then introduced to the reactor where it reacts, also via 

ligand exchange, with the surface methyl groups. The system is again purged with 

nitrogen. Note that after this treatment, the surface is now predominately hydroxyl 

groups, and will support further Al(CH3)3  / H2O cycles to build up an Al2O3 film. 

After testing the system for integrity and performing an overnight vacuum bake, 

the following procedure was used to deposit ALD films: 

 

Table 5.2 

1. Set the MFCs to 0 sccm, fully open the globe valve and pump the 
system down. This brings the system pressure down to below 1 mT. 
 

2. Set the MFCs to 10 sccm each and set the substrate heater PID to 150 
oC. The system pressure is now approximately 26 mT. 

 
3. Once the substrate heater has reached 150 oC, begin to close the globe 

valve to increase the pressure to 1.0 T. At this point there is now N2 
flowing through the system with a background pressure of 1.0 T and 
the substrate is at 150 oC.  

 
4. A (user) pre-configured program is run which opens the H2O ALD 

valve for 1.0 s, allows for 10.0 s of nitrogen purging, then opens the 
Al(CH3)3 valve, followed by a another 10.0 s of nitrogen purging. This 
process is repeated for each monolayer desired. 

 
5. After deposition, the substrate heater is switched off and three pump-

purge cycles are completed to remove any trace precursor material 
before exposing the system to atmosphere. 
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Figure 5.21: Diagram of assembled ALD reactor with H2O and Al(CH3)3 
sources. 

 

 



 
 
 
 
 
 

CHAPTER 6: RESULTS AND CONCLUSIONS 
 
 

 The original intent was to fabricate devices from monolayers and multilayers of 

CdSe nanocrystal Langmuir films. Several reports of vertical devices have been 

published in the literature using various deposition techniques, including layer by layer 

(LbL) deposition,99 traditional spin coating,100 phase segregation assisted spin coating,101 

contact printing102 and others. While reports of Langmuir films of CdSe exist, no devices 

have been reported using such a method. Devices were fabricated to probe the properties 

of such films in several configurations. Structures employing both vertical and horizontal 

charge transport were designed to elucidate the properties and structures of these films. It 

was found that reliable reproduction of these devices was difficult however, largely due 

to non-uniformities in the Langmuir monolayers. 

3.1 Vertical Device Fabrication 

 The first device fabricated was a vertically oriented ITO-CdSe-ITO structure 

designed to probe excitonic effects at the CdSe-ITO interface (figure 6.1). This device is 

a nanoparticle analog of the Kallman and Pope experiment discussed in Chapter 2.13 

Glass slides were cut into 25 x 25 mm squares, rinsed in acetone, methanol and DI water 

and then heated to 120 oC for 120 seconds to remove any volatile compounds before 

being loaded into the sputtering system. 300 nm thick ITO films were sputtered as 

described in Chapter 5. The ITO coated glass slides were then coated with 1-20 Langmuir 

monolayers using both Blodgett and Schaffer techniques. A further 200-500 nm thick 
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film of ITO was sputtered onto the QD layer after masking the edges to prevent the ITO 

contacts from contacting each other. The dimensions of the top contact were 20 x 20 mm.   

 

 

Figure 6.1: Deposition process for ITO-CdSe-ITO structure (top, exploded 
view) and electrical testing configuration (bottom, assembled view). 

 

The initial batches of these devices were all shorted, showing a linear relationship 

between current and voltage consistent with a short due to the two contacts touching each 

ITO (sputtered) 

CdSe QDs (LB/LS 
deposited) 

ITO (sputtered) 

Glass 

(Process Order) 
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other.  A device with zero CdSe monolayers (i.e. a deliberately shorted device) showed a 

resistance of 183 !. While this is somewhat higher than measured in Chapter 5 (10 ! for 

a 200 nm thick film), it is important to note that this device consists of two ITO films, 

deposited on top of one another at different times and exposed to moisture and the 

atmosphere in between those depositions, just like a device with a Langmuir film 

deposited on it would be.  Several devices that had Langmuir films deposited on them 

showed similar behavior (i.e. were shorted) and it was thought that the active area was 

(considerably) larger than it needed to be, thus by shrinking it the risk of a short could be 

reduced. We initially masked the 20 x 20 mm into four 7.5 x 7.5 mm squares (figure 6.2), 

but saw the same behavior observed with the larger 20 x 20 mm contact. In order to 

further reduce the top contact area, a physical mask was fabricated by drilling an array of 

1.59 mm (1/16”) holes into a 0.5 mm thick aluminum plate. By placing this mask on top 

of the glass-ITO-CdSe sample in the sputtering chamber, it was possible to fabricate 

dozens of devices on a single sample, both reducing the sample area (and the likelihood 

of “defects” in the QD film) and increasing the number of testable structures.  

 

Figure 6.2: Second and third generation contact geometries, employing 56 
mm2 square contacts (a) and 1.98 mm2 circular contacts (b). 

a b 
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Many devices tested demonstrated behavior indicating incomplete coverage of the bottom 

layer during the CdSe nanocrystal deposition process. It was considered that the ITO 

sputtering process could be damaging the underlying films and itself be responsible for 

the shorting of the devices, so experiments were conducted to vary the sputtering 

conditions in an attempt to improve device performance.  

 

 

Figure 6.3: Current-voltage behavior of a deliberately shorted vertical 
device, illustrating direct contact between the top and bottom ITO films. 
This structure had a measured resistance of 42.19 !.  
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Two main possibilities exist for substrate damage during the sputtering process: Damage 

due to the impact of the target atoms (In, Sn, O) and damage due to the high energy 

neutral gas atoms (argon). Raising the background pressure will minimize the former, 

thermalizing the target atoms as they experience collisions more frequently.103 Raising 

the pressure will increase the ratio of the high-energy neutral species however, increasing 

the rate of substrate bombardment.104 Conversely one can lower the background pressure 

and achieve the opposite effect: a lower neutral species bombardment rate at the expense 

of more energetic target species impacting the substrate. Both approaches were tried but 

again yielded shorted devices, suggesting that either a) neither the target species (In, Sn, 

O) or neutral species (Ar) are responsible for device-compromising damage to the 

substrate or b) the sputtering process is inherently damaging to CdSe nanocrystal thin 

films to an extent that cannot be mitigated by modifying operating conditions. To rule out 

sputtering damage as the cause of the device shorts, another batch of devices was made 

using e-beam evaporated gold contacts instead of sputtered ITO.  

 Furthermore we deposited up to 25 monolayers of Al2O3 via an atomic layer 

deposition process outlined in Chapter 5. As ALD divides the deposition process into two 

half reactions, control over which surfaces are deposited on is afforded. In our CdSe-

TOPO on ITO surface, for example, the covered areas are low energy, aliphatic 

hydrocarbons while the uncovered areas are higher energy oxides. By depositing the Al 

precursors (intended to react and form a monolayer on an oxygen terminated substrate) 

first, we could expect to coat the exposed oxide surface (the ITO substrate) without 

depositing on the CdSe QDs.  Similarly, the subsequent oxygen precursor would form a 

monolayer only on the newly form Al-terminated surface, not the QDs themselves. This 
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allows for the aluminium oxide to “fill in” the gaps in the CdSe films, illustrated in figure 

6.4. This technique has been used with moderate success by Lambert et al.105 

 

 

Figure 6.4:  Illustration of Al2O3 films designed to form on the ITO 
substrate, without coating the CdSe covered portions of the sample. 

 

 

6.2 Vertical Device Characterization 

Many vertical devices exhibited behavior consistent with shorted top and bottom 

contacts, strongly suggesting that CdSe nanocrystal films were incomplete. This problem 

persisted with as many as 50 monolayers of CdSe nanocrystals deposited on the bottom 

contact, suggesting significant coverage problems with both Langmuir Blodgett and 

Langmuir Schaffer deposition methods. Langmuir Blodgett film devices in particular all 

showed low resistance, ohmic type behavior consistent with shorted devices. Devices 

fabricated with 5 Langmuir Schaffer monolayers were moderately more successful 

however, with several exhibiting highly resistive Schottky type conduction behavior 

consistent with transport through a colloidal quantum dot layer. Despite this, the majority 

Al
2
O

3 
(via ALD)   CdSe-TOPO QDs   

ITO Substrate 



 160 

of the LS devices were still shorted. For the devices that exhibited such behavior, a linear 

fitting function passing through the origin was applied to the data: 

 As the x axis respresented potential and the y axis current, the fit equation takes 

the form: 

! ! !" ! !  [eq 6.1] 

Plugging in the physical values of x and y, and setting the y intercept to zero 

yields: 

! ! !" [eq 6.2] 

Which can be written in a more familiar form: 

! ! ! !
!   [eq 6.3]  

This allows us to define resistance in terms of slope using Ohm’s law: 

! ! !" [eq 6.4] 

! ! !
!   [eq 6.5] 

Devices were shorted across the range of conditions used in fabrication, including 

varying deposition pressures and varying numbers of ALD monolayers. For these ohmic 

devices, no apparent relation was found between these parameters and resistance. 

Furthermore, the resistances measured deviated significantly from the mean, indicating 

non-uniform characteristics from one device to another, despite the identical fabrication 

conditions for many of them. There did appear to be variations in device behavior 
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between 1.5 and 3.0 V, but these effects were not reproducible, even in scans occurring 

immediately following the previous measurement with no change in conditions or even 

probe position. It is conceivable that such effects are the result of degrading nanocrystal 

or ligand conduction pathways, but it is difficult to make any useful judgements from 

such varying measurements. The results from the shorted Langmuir Schaffer devices are 

shown in tables 6.1, 6.2 and 6.3. 
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Table 6.1: Current-voltage measurments for Langmuir Schaffer 
monolayers deposited at 26 mN/m with 0, 5, and 25 monolayers of ALD 
deposited before top contact ITO deposition. Ohmic results were fit to a 
linear function intersecting the origin, with the resistance found from the 
inverse of the slope. Coefficient of determination (R2) is also reported for 
each fit as are average values and standard deviation. 

 

26 mN/m Deposition Pressure 
0 ALD Monolayers 5 ALD Monolayers 25 ALD Monolayers 

Resistance (!) CoD Resistance (!) CoD Resistance (!) CoD 
127.286 0.98819 132.197 0.98030 147.059 0.99870 
157.794 0.97172 100.016 0.99453 151.515 0.99783 
135.500 0.99587 167.290 0.98727 208.333 0.98829 
75.737 0.97720 118.611 0.99353 188.679 0.99540 
89.474 0.99338 111.700 0.98430 185.185 0.99548 
57.582 0.99368 90.554 0.99679 125.000 0.99885 

118.448 0.99071 135.651 0.98216 136.986 0.99882 
147.740 0.97833 120.968 0.98125 181.818 0.99547 
117.213 0.97636 179.767 0.98622 151.515 0.99772 
161.561 0.97389 155.456 0.98880 126.582 0.99989 
85.927 0.97483 136.128 0.99862 75.758 0.99275 

154.400 0.98079 77.594 0.98028 94.340 0.99581 
    148.788 0.98942 96.154 0.99232 

!! !! !! !! 86.957 0.99900 
!! !! !! !! 76.923 0.99418 
        86.957 0.99663 
        77.519 0.97734 
        76.923 0.99418 
        75.758 0.99275 
        86.957 0.99663 
        86.957 0.99990 
        95.238 0.99433 
        84.034 0.99491 
        96.154 0.99486 
        98.039 0.98470 
!! !! !! !! 83.333 0.99589 
!! !! !! !! 77.519 0.97734 
!! !! !! !! 95.238 0.99251 

Avg Res (!) St Dev Avg Res (!) St Dev Avg Res (!) St Dev 
115.842 34.622 131.667 27.496 112.622 40.317 



 163 

 

Table 6.2: Current-voltage measurments for Langmuir Schaffer 
monolayers deposited at 29 mN/m with 0, 5, and 25 monolayers of ALD 
deposited before top contact ITO deposition. Ohmic results were fit to a 
linear function intersecting the origin, with the resistance found from the 
inverse of the slope. Coefficient of determination (R2) is also reported for 
each fit as are average values and standard deviation. 

 

29 mN/m Deposition Pressure 
0 ALD Monolayers 5 ALD Monolayers 25 ALD Monolayers 

Resistance (!) CoD Resistance (!) CoD Resistance (!) CoD 
121.951 0.92069 121.951 0.98749 87.719 0.99652 
160.804 0.96771 169.492 0.90842 113.636 0.98792 
138.695 0.99983 125.000 0.97777 113.636 0.99220 
128.200 0.97236 161.290 0.98393 131.579 0.99672 
174.626 0.98228 175.439 0.99049 111.111 0.99625 
129.193 0.97752 263.158 0.91167 169.492 0.96908 
108.995 0.95751 169.492 0.90842     
88.960 0.95625 156.250 0.96652     
94.106 0.98096 47.170 0.99464     

116.437 0.96858 43.290 0.99943     
78.467 0.97285 48.077 0.97379     
54.601 0.95652 53.763 0.98659     
40.156 0.99484 46.512 0.99879     
29.294 0.95818 67.568 0.98898     
25.061 0.99818 44.248 0.98922     
16.118 0.95949 46.512 0.99879     
14.457 0.97209 67.568 0.98898     

    37.879 0.99999     
    51.546 0.99632     
    54.054 0.99807     
    53.476 0.99494     

Avg Res (!) St Dev Avg Res (!) St Dev Avg Res (!) St Dev 
89.419 51.583 95.416 63.958 121.196 27.484 
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Table 6.3: Current-voltage measurments for Langmuir Schaffer 
monolayers deposited at 32 mN/m with 0, 5, and 25 monolayers of ALD 
deposited before top contact ITO deposition. Ohmic results were fit to a 
linear function intersecting the origin, with the resistance found from the 
inverse of the slope. Coefficient of determination (R2) is also reported for 
each fit as are average values and standard deviation. 

 

32 mN/m Deposition Pressure 
0 ALD Monolayers 5 ALD Monolayers 25 ALD Monolayers 

Resistance (!) CoD Resistance (!) CoD Resistance (!) CoD 
64.516 0.99888 80.645 0.99891 94.340 0.98465 
65.359 0.99825 80.645 0.99587 96.154 0.98111 
91.743 0.99495 86.957 0.99967 149.254 0.98019 

103.093 0.99094 86.207 0.99901 188.679 0.96739 
108.696 0.98059 102.041 0.98543 111.111 0.98505 
109.890 0.98631     147.059 0.96366 
112.360 0.99329     178.571 0.9626 
112.360 0.98719     200.000 0.97577 
123.457 0.98101     158.730 0.96355 
133.333 0.97867     86.207 0.99708 
144.928 0.94249     104.167 0.99371 

        117.647 0.99203 
        98.039 0.97751 

Avg Res (!) St Dev Avg Res (!) St Dev Avg Res (!) St Dev 
106.339 25.007 87.299 8.763 133.074 39.370 

 

 

Despite a large majority of shorted devices, some of the devices did exhibit highly 

resistive, Schottky-type behavior. The I-V characterization of these devices is shown in 

figures 6.4-6.16 on the following pages. It is important to note that there is tremendous 

variation in resistance from one device to another, ranging from 103 to 109 !. There was 

no clear relation between deposition pressure or ALD treatments. No devices that 

received the 25 ALD monolayer treatment showed any diode-like characteristics (i.e. all 
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were shorted), indicating that perhaps such an ALD treatment was damaging to the 

nanocrystal films. It is not immediately clear why this would be, as the thermal ( < 150 

oC) and atmospheric ( > 10 mTorr) conditions during the ALD process are less extreme 

than the sputtering process (used to deposit top ITO contacts on all devices). Never the 

less, the highly resistive diode-like behavior was only observed in devices with either no 

ALD treatment or a 5 monolayer treatment. Perhaps most discouragingly, none of the 

devices showed any photoconductivity or photoenhancement, which would be expected 

of a core-conductive quantum dot film. 

 

 

Figure 6.5: Current-voltage measurments for Langmuir Schaffer 
monolayers deposited at 32 mN/m with 0 cycles of ALD (0 monolayers of 
Al2O3) deposited before top contact ITO deposition. 
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Figure 6.6: Current-voltage measurments for Langmuir Schaffer 
monolayers deposited at 29 mN/m with 0 cycles of ALD (0 monolayers of 
Al2O3) deposited before top contact ITO deposition. 

 

Figure 6.7: Current-voltage measurments for Langmuir Schaffer 
monolayers deposited at 29 mN/m with 0 cycles of ALD (0 monolayers of 
Al2O3) deposited before top contact ITO deposition. 
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Figure 6.8: Current-voltage measurments for Langmuir Schaffer 
monolayers deposited at 29 mN/m with 0 cycles of ALD (0 monolayers of 
Al2O3) deposited before top contact ITO deposition. 

 

Figure 6.9: Current-voltage measurments for Langmuir Schaffer 
monolayers deposited at 29 mN/m with 0 cycles of ALD (0 monolayers of 
Al2O3) deposited before top contact ITO deposition. 
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Figure 6.10: Current-voltage measurments for Langmuir Schaffer 
monolayers deposited at 26 mN/m with 0 cycles of ALD (0 monolayers of 
Al2O3) deposited before top contact ITO deposition. 

 

Figure 6.11: Current-voltage measurments for Langmuir Schaffer 
monolayers deposited at 26 mN/m with 0 cycles of ALD (0 monolayers of 
Al2O3) deposited before top contact ITO deposition. 
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Figure 6.12: Current-voltage measurments for Langmuir Schaffer 
monolayers deposited at 26 mN/m with 0 cycles of ALD (0 monolayers of 
Al2O3) deposited before top contact ITO deposition. 

 

Figure 6.13: Current-voltage measurments for Langmuir Schaffer 
monolayers deposited at 32 mN/m with 10 cycles of ALD (0 monolayers 
of Al2O3) deposited before top contact ITO deposition. 
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Figure 6.14: Current-voltage measurments for Langmuir Schaffer 
monolayers deposited at 29 mN/m with 10 cycles of ALD (5 monolayers 
of Al2O3) deposited before top contact ITO deposition. 

 

Figure 6.15: Current-voltage measurments for Langmuir Schaffer 
monolayers deposited at 29 mN/m with 10 cycles of ALD (5 monolayers 
of Al2O3) deposited before top contact ITO deposition. 
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Figure 6.16: Current-voltage measurments for Langmuir Schaffer 
monolayers deposited at 29 mN/m with 10 cycles of ALD (5 monolayers 
of Al2O3) deposited before top contact ITO deposition. 

 

Figure 6.17: Current-voltage measurments for Langmuir Schaffer 
monolayers deposited at 29 mN/m with 10 cycles of ALD (5 monolayers 
of Al2O3) deposited before top contact ITO deposition. 
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6.3 Horizontal Device Characterization 

As the nanocrystal films were of insufficient coverage to support vertical 

architecture, devices employing lateral current were fabricated. The idea was that a holey, 

or even lacey nanocrystal film morphology may support lateral conduction by merely 

“closing the circuit” between two contacts, instead of the complete coverage necessary 

for vertical device architecture. Circular transmission line method (CTLM) structures 

were fabricated as described in section 5.4 in order to probe such lateral conduction. 

These structures, like their vertical counterparts, were problematic. The fabrication 

process allowed for dozens of CTLM arrays on a single sample, affording many arrays to 

be tested across a variety of deposition conditions. The overwhelming majority of these 

devices showed no conduction. Over 100 of these structures were tested investiagting 2 

main parameters: deposition type (LS and LB) and deposition pressure (26, 29 and 32 

mN/m). While it was an initial goal to vary the number of films deposited and observe 

thickness dependent transport characteristics, it became quickly apparent that efforts to 

deposit one “monolayer” resulted in a significantly sub-monolayer film. Early structures 

employing 1, 5 and 15 monolayers were abandoned (after none showed any conduction) 

in favor of a 50 monolayer deposition process. Of these 100+ “50 monolayer” devices, 

only three showed conduction. All three were deposited at high pressure (32 mN/m) 

using the Langmuir Schaffer deposition technique. The rest of the devices, including 

those deposited at any pressure via the LB method as well as the 29 mN/m and 26 mN/m 

LS films, showed no meaningful current transport at potentials as high as +/- 20 V. An I-

V plot of such an “open circuit” CTLM device is shown in figure 6.18.  
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Figure 6.18: Current-voltage behavior of an open circuit horizontal CTLM 
device, suggesting a lack of a conduction pathway between the two 
contacts. 

 

Of the devices that did exhibit conduction, the current magnitude varied 

considerably. Device 11 exhibited nanoamp currents (figure 6.19), device 29 exhibited 

currents between 100 pA and 1 nA (figure 6.20), and device 34 exhibited currents less 

than 50 pA (figure 6.21). The measured resistances can be plotted as a function of gap 

distance, which was done in figures 6.22, 6.23 and 6.24 for nine voltages (0.5, 1.0, 2.0, 

3.0, 4.0, 5.0, 10.0 15.0, 20.0 V). This relationship should be linear, as derived 

theoretically in section 5.4. For the more conductive structure (device 11), the linear fits 

for the gap distance vs. resistance (figure 6.22) showed a positive correlation between 

with a moderate coefficient of determination (R2
avg = .7721). Device 29, which exhibited 

less conductance also showed a correlation between gap distance vs. resistance (figure 

6.23), but with a lower coefficient of determination (R2
avg = .5219). Device 34 did not 
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show any positive correlation between gap distance and resistance as was not used in any 

further analysis. 

 

 

Figure 6.19: Current-voltage behavior of a CTLM device #11 with 50 
Langmuir Schaffer monolayers deposited at 32 mN/m. 
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Figure 6.20: Current-voltage behavior of CTLM device #29 with 50 
Langmuir Schaffer monolayers deposited at 32 mN/m. 

 

 

Figure 6.21: Current-voltage behavior of CTLM device #34 with 50 
Langmuir Schaffer monolayers deposited at 32 mN/m. 
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Figure 6.22: Resistance vs. Gap Distance Measurements for 50 ML LS 
CTLM structure # 11 at various biases. 

 

 

Figure 6.23: Resistance vs. Gap Distance Measurements for 50 ML LS 
CTLM structure #29 at various biases. 
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Figure 6.24: Resistance vs. Gap Distance Measurements for 50 ML LS 
CTLM structure #34 at various biases. 

 

From these linear fits, we can extrapolate sheet and contact resistances for our 

films (figures 6.25 and 6.26). These results point to the tremendous difficulty in 

fabricating devices using Langmuir films of nanocrystals. Both contact and sheet 

resistances are not expected to vary with applied bias, the variations seen are due to 

differences in film morphology from one structure to the other. 
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Figure 6.25: Measured contact resistance for 50 ML LS CTLM structure at 
various biases. 

 

 

Figure 6.26: Measured sheet resistance for 50 ML LS CTLM structure at 
various biases. 

 

 



 
 
 
 
 
 

CHAPTER 7: DISCUSSION AND FUTURE WORK 
 
 

 The monolayers produced by the Langmuir technique were largely insufficient to 

support device architectures, both vertical and horizontal. Despite using a range of 

deposition techniques and process variables, it was difficult to maintain consistency 

within given film conditions or even identify correlations between such conditions and 

general film properties. The lack of Langmuir films employed in electronic devices in the 

literature supports the idea that these films are inherently problematic. With the sterically 

large ligands used to maintain stability, the quantum dots remain far enough apart that no 

attractive force is felt to promote close packed films. These films exhibit hard-disk 

behavior upon compression, with no net attractive force driving their assembly. This is 

starkly different than the strong substrate-particle interactions that occur in Langmuir 

Blodgett and Langmuir Schaffer deposition techniques. This results in a nanoparticle film 

morphology that is dictated by the surface far more than by the Langmuir film itself. It is 

likely that well established techniques, namely the layer by layer technique is a better 

avenue for fabricating devices like those described in this work.  The nature of stability at 

the air-water interface seems to be at odds with the need for a smaller interparticle 

distance to allow for controlled self-assembly. In a sense, Langmuir films of TOPO 

functionalized CdSe nanoparticles are not truly self-assembled, as there is no driving 

force of attraction between particles. The particles are only loosely held in a metastable 
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state: any introduction of a substrate will destroy any order previous obtained at the air-

water interface.  

It is perhaps worth exploring ligands that are sterically small enough to allow for 

stronger particle-particle interactions while maintaining sufficient separation to prevent 

irreversible aggregation. Energetically, this is an extremely fine line. The layer-by-layer 

techniques have become extremely well developed since the start of this work and now 

present a compelling case for their use in fabricating such device architectures and 

achieving such research goals. Langmuir films present a powerful platform to study 

nanoparticle behavior, but their applications in the deposition of films onto solid 

substrates is extremely limited in this author’s opinion. Furthermore, they pose 

significant constraints of ligand selection, an important engineering consideration in the 

design of nanoparticle films. 

Further work exploring novel Langmuir techniques should focus on the 

interaction of the nanoparticles, ligands, substrate and Langmuir subphase (which does 

not necessarily have to be water), as carefully balancing such interactions in such a 

system is critical to success.  
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APPENDIX A: HIGH PRESSURE LANGMUIR ISOTHERMS 
 
 

 As discussed in Chapter 4, stable isotherms were observed up to 35 mN/m, after 

which further compression did not appreciably increase the measured surface pressure. 

Furthermore, no more than 5 methanol rinse cycles were possible before the 

nanoparticles crashed out of solution due to insufficient ligand coverage. On a few 

occasions, nanocrystal solutions remained suspended after a sixth rinse. While these 

solutions were somewhat unstable, on two occasions Langmuir isotherms were measured 

using them as a spreading solution. Figure A.1 shows these two isotherms. These 

isotherms appear to show a second collapse pressure at 64-65 mN/m and 22-25 nm2/QD, 

values much closer to the expected behavior of these films. These pressures were highly 

unstable however, collapsing to 35 mN/m (the monolayer pressure for pure TOPO) after 

20-30 seconds. This seems to suggest that the more highly rinsed films, while having 

higher QD concentrations, also have QD populations that are unstable on the water 

surface, perhaps due to a lack of surface coverage. 
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Figure A.1: Langmuir isotherms of TOPO-CdSe QD spreading solutions 
after six methanol rinse cycles. 
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APPENDIX B: IN SITU METHANOL RINSING 
 
 

It became apparent that aggressive rinsing prior to Langmuir film formation was 

problematic due to insufficient remaining TOPO coverage on the QD surface. That said, 

free TOPO concentrations remained prohibitively high for film deposition. An approach 

that allowed for Langmuir film formation with high excess ligand concentration and then 

removed excess ligands before deposition would be highly desirable. Such an approach, 

using methanol to rinse the Langmuir films themselves, was explored. In theory the 

introduction of methanol would solubilize the free TOPO occupying the surface and carry 

the excess ligand into the water subphase, which methanol is soluble in. The QDs would 

be unaffected, as they have limited solubility in either methanol or water. Several 

strategies were pursued, using syringe deposition (similar to how the QD solutions are 

spread), as well as a misting deposition in order to affect the entire film simultaneously. 

Furthermore a wide variety of methanol volumes were introduced to these films, from 

single microliter to 10 milliliter rinses. None of the rinsing procedures had any effect on 

film properties or isotherms however, which was unexpected.  


