
ModuleLog: Module Based Approach to Anomaly
Detection In Parallel File System Logs

Chris Egersdoerfer

Computer Science
University of North Carolina at Charlotte

Charlotte, NC, United States
cegersdo@uncc.edu

Dong Dai

Computer Science
University of North Carolina at Charlotte

Charlotte, NC, United States
dong.dai@uncc.edu

Di Zhang

Computer Science
University of North Carolina at Charlotte

Charlotte, NC, United States
dzhang16@uncc.edu

Abstract—With the increasing prevalence of Parallel
File Systems (PFSes) in the context of vast and complex
server networks, the importance of accurate anomaly de-
tection on runtime logs of parallel file systems is increasing.
But as it currently stands, many state-of-the-art methods
for log-based anomaly detection, such as DeepLog, have
encountered numerous challenges when applied to parallel
file system logs due to their irregularity and a lack
of identifying characteristics. Although a previous work,
SentiLog has shown promising results, the sentiment based
model lacks analysis of temporal dependencies within
a log sequence, and hence misses important sequence-
based anomalies. To circumvent these problems, this study
proposes ModuleLog, a log anomaly detection solution
which analyzes the temporal sequence of logging modules
to detect irregularity. The key distinction from existing
sequence-based anomaly detection solutions is the attempt
to reduce the granularity of using individual log keys by
grouping these keys by the module they reside in, based
on the PFS source code. We apply an RNN architecture
with regular LSTM cells to the sequence of modules. This
method allows ModuleLog to be able to detect transition
points between normal and abnormal logs in a given
sequence, as well as detect sequences of abnormal logs.

I. INTRODUCTION

In light of growing datasets, increasing problem
complexity, and more compute intensive algorithms,

it is no question that High Performance Computing
is a growing area of interest. Additionally, with high
prevalence of decentralized computing, leveraging
many server nodes at once to provide globally
connected storage, file systems must also adapt to
meet these complex needs. This need for adaptation
has brought Parallel File Systems (PFS) into focus,
mainly due to their inherent scalability and high
bandwidth support. With increased use of these
systems, and on such large scale, anomaly detection
is obviously a prevalent issue, but current State of
the Art file system anomaly detection techniques do
not seem to generalize well to this problem area.
This is due to the fact that PFS logs are not only
very high volume, but they also often do not include
session or block identifiers making them highly
irregular. To further explain these key issues, PFSes
such as Lustre can generate logs across all servers
in milliseconds so algorithms meant to individually
identify logs as normal or abnormal must be light
enough to keep up with incoming logs. Addition-
ally, the aforementioned lack of session or block
identifiers which are commonly seen in Distributed
File Systems, presents a high degree of irregularity
among incoming logs and rules out a number of
algorithms designed to classify abnormality on a per



session basis.
To face these challenges, this study proposes

ModuleLog, a PFS log analysis technique for
anomaly detection based on time series log data.
ModuleLog is based on the simple idea of reducing
the granularity of log keys by encoding log keys by
the module they reside in. Reducing the granularity
of log keys this way eliminates much of the noise
present in PFS log key sequences allowing for
a predictive model based on time series data to
much more easily separate normal from abnormal
behavior.

II. RELATED WORKS

There is a large catalog of anomaly detection
approaches for file system logs in existence today.
These approaches generally can be broken into non-
machine learning approaches and machine learning
approaches, the latter of which can be further broken
into supervised and unsupervised learning. Of the
more successful non-machine learning approaches,
the general approach can be summarized as rule
based, where domain experts formulate a set of rules
which can be used to classify logs as anomalies
[1], [9], [5], [8], [2]. These approaches can be
quickly ruled out as a result of their need for expert
level knowledge and their understandable inability
to generalize across various systems. In contrast,
both unsupervised and supervised machine learning
approaches have shown to provide more robust
solutions.

Among unsupervised techniques, pattern seeking
[10], [11] and invariant mining [6] based algorithms
have proven effective on a variety of file system
logs, but their results do not hold up on PFS logs
due to the aforementioned irregularity of these logs.
Additionally, sentiment analysis [12] has proven to
be highly effective for PFS logs but this approach
is unable to pick up on sequence based anomalies
as logs are only analyzed one at a time. Among
supervised learning algorithms, additional method-
ologies have been presented, some of which are
similar to the work presented in this work. The
first, and least similar, approach, LogAnomaly[7],
borrows from NLP by proposing a log key em-
bedding technique which vectorizes log keys and
calculates similarity between vector embeddings to
predict anomalies. An additional approach in this

domain, LogBERT[4], utilizes the Bidirectional En-
coders Represented by Transformers model which
has provided State of the Art Results in multiple
domains. In this approach, it is not the next log
key that is predicted, but rather a given sequence
that is masked and then classified as being normal
or abnormal. While this approach does seems to
work well for some file system logs, specifically
those based on sessions, the lack of these grouping
characteristics in PFS logs and resultant irregularity
makes it difficult for this solution to be effectively
applied. A final approach, and the one most similar
to this work, DeepLog[3], considers a window of
ten sequential log keys which are fed into a two
layer LSTM model which predicts the probability
distribution over the log keys representing the most
likely key to come next. From this distribution, only
the top 9 log keys are selected and accuracy is
calculated on this basis. Though even this method
does not hold up against the irregularity in PFS
logs.

III. DESIGN AND IMPLEMENTATION

ModuleLog design is largely based on the ap-
proach utilized by DeepLog which analyzes se-
quential log key input and attempts to predict the
next key. The key distinction in this work is the
introduction of module encoding which reduces the
granularity of log key encoding

A. Module Encoding

The first step to implement ModuleLog is the
module encoding process. The idea behind this
process is to group the log key encodings by the
modules they reside in. This process greatly reduces
the granularity of the log encodings, and in turn
reduces the noise present in the sequential data.
In the case of Lustre, a well known and widely
used PFS, the dataset contained a total of 73 unique
log key encodings. Following the module encoding
process, this number was reduced to just 13 module
encodings. This reduction also resulted in a visibly
obvious decrease in noise in the sequential data
as the module encoding sequence made far fewer
jumps during the enitre sequence. In general, this
intentional reduction of granularity is meant to
improve model performance on the highly irregular
PFS logs as a coarse granularity ideally filters out



irregularity resulting from noise that may otherwise
be confused with anomalous behaviour.

Fig. 1: Module encoding process

As shown in Figure 1, the module encoding pro-
cess simply consists of generalizing log key encod-
ings which originate from file system source code
files to higher level folders or modules. This idea
can be generalized by exploring further encoding
options such as encoding log keys by the files they
reside in or in the case of deeper repositories, by
even higher level modules. The choice to encode our
dataset by the lowest level of modules was due to
the fact that it provided a great balance of reducing
noise and retaining information

B. Sequential model
The second part of ModuleLog is the sequen-

tial model. This model is largely based on the
one proposed by Deeplog. The architecture of this
model (as outlined in Figure 2) is broken down
as 2 layers of LSTM blocks connected to a fully
connected layer. This results in a probability distri-
bution among all of the encoded modules, of which
the most likely candidates are selected. If the next
log in the sequence is not part of the predicted
candidates, the log is treated as an anomaly.

Fig. 2: Sequential model architecture

In the sequential model, there are a few pa-
rameters which may be tuned in correspondence

to the file system being used. As some file sys-
tems may have deeper source code than others, the
level of generalization may need to be tuned to
provide optimal results. Additionally, the window
size, which is used to specify how long the input
sequence to the sequential model is may need to
be tuned based on the frequency and irregularity of
the output logs. Finally, the number of candidates
used to represent a normal output based on the
prediction output distribution needs to be tuned
in order to scale appropriately to the amount of
available log keys. For reference, the model seems
to perform well when the number of candidates is
equal to approximately one third the amount of total
encodings.

IV. EVALUATION

ModuleLog was initially evaluated against Lustre,
a well known Parallel file system which is in use
by more than half of the top 100 supercomputers in
the world. The results shown in figure 3 are thereby
significant as the proposed approach beats State of
The Art methods on the given dataset.

Fig. 3: Lustre evaluation results

In part, the success of ModuleLog on the Lustre
dataset can be explained by the distribution of
anomalous logs in the source code. Essentially, in
the Lustre source code, it is the case that when
tasks are running normally, they tend to reside in
similar areas of the source code with high variability
among log keys, but low variability among modules.
In the case of an anomaly however, the execution
path changes drastically, even introducing variabil-
ity among modules which the sequential model is
easily able to pick up on. This more drastic change
between normal and abnormal logs compared with



log key based encodings is due to just the right
amount of generalization or reduction of granularity
as this process is effectively able to reduce the
inherent noise of log key encodings without losing
information regarding anomalies. This is further
supported by DeepLog’s low Precision as DeepLog
is grossly over-predicting anomalies due to the high
degree of noise and irregularity of log key sequences
in the Lustre dataset.

However, Lustre’s source code characteristic of
drastically changing the execution path when an
anomaly is present is not representative of all file
systems. As shown in Figure 4, the results of
ModuleLog are not as good when evaluated against
logs originating from HDFS. This is due to the
structure of the source code, as some anomalies do
not take vastly different execution paths. Instead,
they often originate from within the same module or
even file as they occur. This is obviously a challenge
for ModuleLog’s approach as reducing granularity
may in fact lose some of the information regarding
anomalies. It must be noted, however, that HDFS
is not a PFS, but rather a Distributed File System
(DFS), and the reason for evaluating on this dataset
was to test ModuleLog’s generalizability to different
types of file systems.

Fig. 4: HDFS evaluation results

V. CONCLUSION AND FUTURE WORK

This paper presents ModuleLog, an anomaly de-
tection tool for Parallel File System Logs based
on time series analysis. This work is unique from
previous solutions to File System anomaly detection
as it aims to coarsen the granularity of individual
log keys by generalizing their encodings to the
modules they reside in based on the source code.

This effectively is meant to reduce the noise of PFS
logs without losing any information regarding the
location of anomalies. When evaluated against a
dataset originating from Lustre, the most common
file system among modern supercomputers, Mod-
uleLog did just that, as the underlying LSTM model
was easily able to predict anomalies based on a
sequence of logs. This proved ModuleLog’s ability
to provide State of the Art on representative Par-
allel File Systems, showing massive improvement
over previous methods, such as DeepLog. However,
when applied to further file systems, specifically
distributed file systems, like HDFS, the results of
ModuleLog do not quite match up. This is primarily
due to the nature of the HDFS source code as
anomalous logs often reside in the same module or
even file, which is in contrast with Lustre, where
anomalies tend to lead to vastly different execution
paths and log origins.

A. Future Work

With the goal in mind to be able to general-
ize ModuleLog more effectively across more file
systems, there is some future work which must
be completed. First, it is important to gather more
labelled data. While there are plenty of unlabelled
sets of file system logs available and easily created,
it is challenging to accurately label logs or log
sessions as anomalies while they are being created.
One method to do this is to manually inject faults
in the system, but this runs the risk of the created
logs not being representative of real world logs, with
few ways to prove that they are across the board.
Another way is for experts to manually inspect log
keys and sessions to label them as anomalies. This
method also leaves room for error as some types of
anomalies have a chance to be overlooked given the
general volume of File system logs. Additionally,
this method is time intensive and arduous. The sec-
ond area of future work is further analysis of HDFS
logs and source code to hopefully find more ways
to reduce granularity but without losing important
information. This will require intensive analysis of
HDFS log session sequences, log producing files,
and individual log keys. In extension of this, it could
also be beneficial to evaluate ModuleLog against
additional file systems as some ideas may become
more clear when applied back to HDFS logs. Also,



more file systems would allow for more detailed
testing of ModuleLog’s robustness when applied
further file system source code architectures.

REFERENCES

[1] Marcello Cinque, Domenico Cotroneo, and Antonio Pecchia.
Event logs for the analysis of software failures: A rule-
based approach. IEEE Transactions on Software Engineering,
39(6):806–821, 2012.

[2] Biplob Debnath, Mohiuddin Solaimani, Muhammad Ali Gulzar
Gulzar, Nipun Arora, Cristian Lumezanu, Jianwu Xu, Bo Zong,
Hui Zhang, Guofei Jiang, and Latifur Khan. Loglens: A real-
time log analysis system. In 2018 IEEE 38th International
Conference on Distributed Computing Systems (ICDCS), pages
1052–1062. IEEE, 2018.

[3] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar.
Deeplog: Anomaly detection and diagnosis from system logs
through deep learning. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Secu-
rity, pages 1285–1298, 2017.

[4] Haixuan Guo, Shuhan Yuan, and Xintao Wu. Logbert: Log
anomaly detection via bert. 2021.

[5] Stephen E Hansen and E Todd Atkins. Automated system
monitoring and notification with swatch. In LISA, volume 93,
pages 145–152, 1993.

[6] Jian-Guang Lou, Qiang Fu, Shengqi Yang, Ye Xu, and Jiang
Li. Mining invariants from console logs for system problem
detection. In USENIX Annual Technical Conference, pages 1–
14, 2010.

[7] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei,
Yuqing Liu, Yihao Chen, Ruizhi Zhang, Shimin Tao, Pei Sun,
et al. Loganomaly: Unsupervised detection of sequential and
quantitative anomalies in unstructured logs. In IJCAI, volume 7,
pages 4739–4745, 2019.

[8] Alina Oprea, Zhou Li, Ting-Fang Yen, Sang H Chin, and
Sumayah Alrwais. Detection of early-stage enterprise infec-
tion by mining large-scale log data. In 2015 45th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks, pages 45–56. IEEE, 2015.

[9] Sudip Roy, Arnd Christian König, Igor Dvorkin, and Man-
ish Kumar. Perfaugur: Robust diagnostics for performance
anomalies in cloud services. In 2015 IEEE 31st International
Conference on Data Engineering, pages 1167–1178. IEEE,
2015.

[10] Wei Xu, Ling Huang, Armando Fox, David Patterson, and
Michael Jordan. Online system problem detection by mining
patterns of console logs. In 2009 Ninth IEEE International
Conference on Data Mining, pages 588–597. IEEE, 2009.

[11] Wei Xu, Ling Huang, Armando Fox, David Patterson, and
Michael I Jordan. Detecting large-scale system problems by
mining console logs. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pages 117–132,
2009.

[12] Di Zhang, Dong Dai, Runzhou Han, and Mai Zheng. Sentilog:
Anomaly detecting on parallel file systems via log-based senti-
ment analysis. In 13th ACM Workshop on Hot Topics in Storage
and File Systems, 2021.


