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ABSTRACT 
 
 

NITESH OMPRAKASH ATTAL. Interfacial instabilities in reacting flows. (Under the 
direction of DR. PRAVEEN RAMAPRABHU) 

 
 

Fluid instabilities, particularly interfacial instabilities, have proven to be a powerful 

mechanism in driving and sustaining combustion processes in several devices of practical 

interest. Modern combustors are in fact designed to exploit the mixing and combustion 

characteristics associated with a broad class of canonical, interfacial instabilities. In spite 

of their relevance to combustor design, a detailed understanding of such flows has been 

elusive. While much progress has been made in gaining insights in to the dynamics of shear 

driven flows, an understanding of the interaction between combustion processes and other 

interfacial instabilities remains preliminary. In this work, we characterize Rayleigh-Taylor 

(RT) instability and the shock-driven Richtmyer-Meshkov (RM) instability in the context 

of combustion. The vast catalogue of research on non-reacting RT and RM flows has 

demonstrated these instabilities can be manipulated to achieve more efficient and 

aggressive mixing in comparison with the canonical Kelvin-Helmholtz (KH) problem. This 

has motivated our efforts to understand RT/RM instability development in the presence of 

chemical reactions leading to combustion and heat release – we present results from 

carefully designed numerical simulations of such flows and identify opportunities and 

challenges in this research space. 
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CHAPTER 1:  INTRODUCTION 
 
 

The most common source of energy generation remains the combustion of hydro-

carbon based fuel. The energy released in the process of combustion is used to power a 

diverse array of engineering applications, such as gas turbines, power plants, internal 

combustion engines, etc. As a large number of these engineering applications consume fuel 

in a liquid or gaseous state of matter, the study of combustion is inevitably coupled with 

flow phenomena. Fluid instabilities, particularly interfacial instabilities, have proven to be 

a powerful mechanism in driving and sustaining combustion processes through the 

manipulation of such flow phenomena in several devices of practical interest. These 

instabilities provide a pathway towards chaotic and turbulent flow field, developing from 

regular, organized structures. When coupled with exothermic reactions, they can provided 

substantial insights into the turbulent flow physics governing the energy generation in 

combustors. Modern combustors are in fact designed to exploit the mixing and combustion 

characteristics associated with a broad class of canonical, interfacial instabilities. 

Turbulent mixing triggered by interfacial instabilities[1-4] is a fundamental process 

that dominates several engineering applications and natural phenomena. In many instances, 

the turbulence is profoundly modified by heat release at low or high energy densities, and 

product formation from chemical or nuclear reactions. Furthermore, when the mixing 

occurs across an interface that initially separates a fuel from an oxidizer medium in a non-

premixed configuration, the turbulent mixing is a rate-limiting step that dictates the 
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progress of the reactions at the flame site. Thus, the flow affects the flame and vice-versa. 

In a recent, comprehensive review of turbulent mixing, Dimotakis[5] proposed a hierarchy 

of mixing phenomena extending from passive scalar mixing (Level-1) to so-called Level-

3 mixing where the active coupling described above is dominant. While such complex 

interactions are important in describing flow conditions as they exist in engineering 

applications, the vast majority of turbulence models that seek to obtain reduced order 

descriptions of the flow assume[6] self-similar, statistically steady, universal behavior. 

Thus, reliable data from experiments and simulations is in great demand to verify the 

validity of these hypotheses, but has not been forthcoming due to challenges in accurately 

diagnosing these complex flows. While several innovative experimental strategies are 

available and provide high-quality data, obtaining higher-order moments from experiments 

of turbulent combustion is all but impossible. The research described herein attempts to 

break this impasse by performing systematic, high resolution simulations of a new class of 

idealized flow problems to understand the role of interfacial instabilities in reacting flows.  

Interfacial instabilities may be characterized by the driving mechanism, such as 

shear, buoyancy or impulse from a shock. The Kelvin-Helmholtz (KH) instability occurs 

at a sharp or diffuse interface separating two streams at different velocities, so that the shear 

(Δܷ) serves to drive the growth of imposed perturbations at the interface. Much of the 

research on KH instabilities has been motivated by its central role in mixing fuel and 

oxidizer in several commonly used combustor designs. KH instabilities, whether they occur 

in a mixing layer, a planar or cylindrical jet have provided a useful canonical framework 

for understanding non-premixed combustion. In fact, the design of many modern day 

combustor devices is acutely informed by the desire to exploit the dynamics of KH-driven 
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mixing between fuel and oxidizer streams. However, there exist alternate combustor 

designs that exploit the mixing characteristics of other interfacial instabilities such as the 

buoyancy driven Rayleigh-Taylor (RT) [7,8] or the shock-driven Richtmyer-Meshkov 

(RM) [9,10] flows. In spite of the importance of these flows in recent combustor designs 

[11-14], a detailed and comprehensive understanding has not emerged. This is especially 

true when these flows occur in non-premixed configurations. In this work, we have 

investigated the dynamics and properties of RT and RM instabilities in the context of non-

premixed flames.  

The Rayleigh-Taylor instability [7,8]  occurs at a perturbed interface between fluids 

of different densities when the light fluid is accelerated in to the heavier fluid. Infinitesimal 

perturbations on the interface will grow first exponentially (linear stage), and then secularly 

with a constant velocity (nonlinear stage). When multiple modes are present, nonlinear 

interactions are possible yielding an eventual turbulent, mixed state that is self-similar. 

RTI-driven mixing afflicts a wide range of physical phenomena including energy yield in 

Inertial Confinement Fusion [15], mantle dynamics [16], type Ia supernovae 

detonation[17-19], geophysical flows [20-22], and mixing in centrifugal combustors 

[12,13,23] and liquid rocket engines [24]. Owing to its significance in a wide range of 

applications, the non-reacting RT instability has been extensively investigated over the last 

five decades[1,7,8,25-27]. From this body of work, a consensus has emerged on the 

dynamics of the turbulent RT mixing layer. A single scale perturbation of wave number, 

݇ ൌ and amplitude ݄଴ (݄଴ (ߣ for a wavelength) ߣ/ߨ2 ≪  at the interface grow (ߣ

exponentially under the influence of imposed acceleration ‘g’ with a growth rate[28], 

݊ ൌ ඥ(1.1)          ݇݃ܣ 
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where the Atwood number h l

h l

A
 
 

 
  

 parameterizes the density difference between 

the heavy(ߩ௛) and light(ߩ௟	) fluid. The interface growth at this stage is characterized by 

symmetric interpenetration of heavy and light fluid. Eventually(݄݇~1) the heavy fluid 

penetrates further into the light to form ‘spikes’ while light fluid rises into the heavy as 

‘bubbles’. The growth at this stage is marked by terminal bubble( ௕ܸ) and spike( ௦ܸ) 

velocities[29], 

௕ܸ,௦ ൌ ට
ଶ஺௚

஼ሺଵേ஺ሻ௞
          (1.2) 

where (3)1 = ܥ for 3D(2D) geometry. When the interface is initialized with a broad 

spectrum of modes, the resulting flow has been observed to be self-similar, with the width 

of the mixing layer evolving quadratically in time according to [2,3,27,30,31] 

2
/b sh Agt ,           (1.3) 

where the subscripts b(s) refers to the advancing bubble(spike) front and  is the growth 

rate of the mixing layer. 

Recently, RT dynamics has been recognized to play a central role in the 

performance of combustors that rely primarily on centrifugal loading. Recent innovations 

in gas turbine design include a shift toward the use of ultra-compact combustors 

(UCC)[12,13] that operate at high g-loading. UCCs greatly reduce the weight of the gas 

turbine engine, thus increasing the thrust to weight ratio. In addition, the compact size 

allows for the inclusion of a reheat cycle between turbines, thus increasing the efficiency 

of the system. Most common UCC designs involve the admission of fuel and oxidizer 

streams tangentially in to the combustor chamber, while the g-loading is provided 

centrifugally through high-speed rotation. Such a configuration in which a non-premixed 



5 
 

 

fuel and oxidizer interface is subjected to high g-loading (~10ସ݃଴) is susceptible to the 

development of the Rayleigh-Taylor (RT) instability[7,8] at the flame site. In spite of this 

central role, the nature of the interaction between the RT instability and the flame surface 

has been poorly understood. RT-dominated flames provide unique opportunities in the 

design and operation of modern combustors, which cannot be realized through device 

designs that rely primarily on shear-driven mixing to enhance combustion. For instance, in 

the unstable regime, RT growth will eventually outpace corresponding Kelvin-Helmholtz 

(KH) growth leading to greater mixing and more efficient burning. Thus, while RT grows 

self-similarly as ~	ݐଶ, the shear-driven KH flows evolve as ~ t (but with a decaying 

centerline velocity). Correspondingly, the outer scale Reynolds number associated with RT 

mix (defined as ܴ݁ ≡ ௛௛ሶ

ఔ
, where h(t) is the mixing layer width, ሶ݄  is its growth rate and ߥ is 

the mixture viscosity) will evolve as ݐଷ, while remaining constant for KH flows[31]. This 

can allow for more compact designs of combustors, but also render unnecessary several 

commonly used active and passive mixing augmenters. Furthermore, the faster growth of 

ܴ݁ in RT ensures the flame does not undergo relaminarization upon ignition due to the 

increased viscosities, a common affliction that impacts several reacting flows. In addition, 

we have also discovered from preliminary numerical simulations that when the fuel stream 

is suitably diluted, the flame region can act as a stabilizing layer that can partially suppress 

the growth of the instability. This effect can be exploited in practical combustors to anchor 

the flame when necessary or to increase the time for the fuel to burn allowing for cleaner 

combustion with lesser unburnt fuel. Recently, RTI development in premixed flames 

[32,33] has been investigated theoretically and numerically, although the corresponding 

non-premixed configuration has not been studied.  
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We also discuss non-premixed combustion occurring at the site of a Richtmyer-

Meshkov (RM) unstable interface between fuel and oxidizer. The classical RM instability 

[9,10,34-36] occurs when a perturbed material interface between fluids of different 

densities is impulsively accelerated, where the acceleration may be provided by a passing 

shock. The interaction of a shock with a diffusion flame is a familiar situation that arises 

in many combustion systems. For example, shocks generated within the combustion 

chamber of an internal combustion engine interact with flame or fuel/air interfaces of 

various thicknesses. In non-premixed combustion, the shock can enhance mixing at a fuel-

air interface through flow instabilties, boosting the rate at which fuel is burnt, thus 

improving the combustion properties for the system. Shock-flame interactions are also 

critical in fire safety, where supersonic mixing is undesirable. Furthermore, turbulent 

mixing and detonation initiated by shock can inform the design parameters and improve 

the performance of supersonic combustors. While several studies have been devoted to the 

interaction of shocks with premixed [37,38] and non-premixed [39-41] flames, relatively 

little attention has been paid to the study of the Richtmyer-Meshkov (RM) instability in the 

context of shock-flame interaction. We report for the first time, growth rates of the RM 

instability, when the shock-driven instability occurs at the site of a diffusion flame. 

The growth of RM instability depends on the strength of the baroclinic torque 

deposited at the interface by the shock due to locally misaligned density and pressure 

gradients. The initial growth of perturbations at the interface is described exactly by a 

normal-mode analysis of the linearized Euler equations, however no closed-form solution 

to the growth rate equation exists. Physical insight may be garnered from the so-called 

impulsive model [9], that treats the instability growth as analogous to an impulsively 
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accelerated Rayleigh-Taylor instability. Thus, a sinusoidal perturbation will grow 

according to 

0 0

dh
V kUAh

dt
  ,         (1.4) 

where the ܣ is the Atwood number defined above, while U  represents the jump velocity 

imparted to the interface by shock impingement. Naturally, Eq. 1.4 is only valid when the 

effect of compressibility is minimal, when the incident shock is weak or the fluids have 

large adiabatic indices. To improve agreement with experiments, Richtmyer [9] suggested 

using post-shock values (indicated by superscript ``  '') for the initial amplitude 0h  and the 

Atwood number A  (in Eq. 1.4). Similarly, when the shock travels from a heavy to light 

medium, Meyer-Blewett [42] prescribe averaging the pre- and post-shock amplitudes to 

account for a phase reversal of the interface. When the interface has a finite thickness   as 

a result of mass or viscous diffusion, the RM growth rate is lower than the ideal, and given 

by [43]  

0kU hdh

d

A

t 

 

 ,         (1.5a) 

1 ( / )C    .         (1.5b) 

Eq. 1.5 can be obtained from a modified eigenvalue analysis [43], and has been verified 

with experimental data (only for 0A  ) using diffuse gas interfaces by [43] who found the 

constant C  ~ 2.8 for A  = 0.5 (we are not aware of a corresponding analysis for RM with 

0A  , but we provide one in chapter 6). Note that classical RM growth at a diffuse 

interface (Eq. 1.5) is relevant to shock-flame interactions studied in this paper, since in a 

diffusion flame, the interface thickness determines product formation and the resulting 

flame properties. When the modal amplitude violates 1kh  , higher harmonics saturate 
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the growth rate which must now be described by nonlinear models. This stage of 

development is marked by ‘bubbles’ of light fluid penetrating the heavy, while jets of the 

heavy fluid are referred to as ‘spikes’.  

We describe the modification of the linear RM growth due to burning and heat 

addition at the material interface of a sinusoidally perturbed 2H  - 2O  diffusion flame. The 

diffusion thickness is critical to the development of the flame as well as the instability, and 

has been systematically varied in our study. Early studies of shock interaction with a 

spherical flame bubble were undertaken experimentally by Markstein [44] who found the 

baroclinic vorticity deposition led eventually to a chaotic flame. One of the earliest 

theoretical studies of this problem was by Picone et al. [45], who studied the interaction of 

a planar shock with a cylindrical region at conditions corresponding to a flame. Several 

numerical studies followed including the investigation of a shock-flamelet interaction 

[46,47], shock interaction with a cylindrical jet flame [48], and DDT phenomena in shock-

bubble flame interaction [49]. An important variation on this configuration includes the 

recent experimental study of [50] who achieved combustion due to localized high 

temperatures from shock-focusing effects within a spherical bubble of premixed 

combination of 2H , 2O , and Xe . Similarly, a significant example of such efforts are the 

linear analysis of [51] and careful simulation study by Khokhlov et al. [52] who 

investigated the growth of a sinusoidally perturbed premixed flame upon shock 

impingement, and found the energy release from combustion scaled with the RMI-driven 

interfacial surface growth[52]. While these efforts have led to significant insight in to the 

interaction of a planar shock with a cylindrical flame/bubble and a premixed, sinusoidal 

flame, we are not aware of studies of RMI at an interface in the context of non-premixed 
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flames. Understanding RMI in such a setting can be valuable in developing insights in to 

shock-flame interactions in several engineering applications, where the flame is often non-

premixed and the combustion is dictated by instability growth. 

The rest of this document is organized as follows: In chapter 2, a brief description 

of the original FLASH code is followed by detailed description of the modifications we 

have made to FLASH that enable reactive flow computations, including ܪଶ-Air chemistry 

described by three distinct mechanisms, ܪܥସ-Air chemistry, a comprehensive expansion 

of the materials database to include temperature-dependent transport properties, an 

expansion of the EOS suite to include temperature-dependent adiabatic indices for 

multicomponent mixtures, and extension of the implicit diffusion solver to handle viscous 

and mass diffusion. In chapter 3-5, we investigate non-premixed RT flames with single 

wavelength, sinusoidal perturbations and a broadband spectrum of multimode 

perturbations subject to a constant acceleration using high-resolution, Navier-Stokes 

simulations. Chapter 6 describes in detail the results from high-resolution, numerical 

simulations of a single-mode, chemically reacting, Richtmyer-Meshkov (RM) instability, 

at different interface thicknesses.  Finally, some conclusions and opportunities for future 

work are presented in chapter 7. 

 



 

 

 

 

 

CHAPTER 2:  NUMERICAL METHODS AND CAPABILITIES 
 
 

High-fidelity numerical simulations offer a reliable, non-invasive approach for 

studying complex flow patterns and multi-physics phenomena. While the advent of 

massively parallel computing has helped realize large-scale simulations of high Reynolds 

number flows in idealized geometries, several challenges persist in calculating reacting 

flows in realistic settings. For instance, Large Eddy Simulations (LES) [53] require careful 

tuning of inherent model constants and parameters based on the type of flow studied, and 

thus need to be calibrated using experimental results or computationally expensive Direct 

Numerical Simulations (DNS). An alternative that has garnered attention recently is the so-

called Implicit Large Eddy Simulations (ILES) [54] approach, where scalar and energy 

dissipation is modeled through the cell-averaged numerical mixing resulting from a finite 

grid. Such methods are thus ‘model-free’, but their suitability to reacting flows where 

temperature-dependent transport properties often determine details of the flame properties, 

is yet to be explored in detail. In this chapter, we have described the development and 

integration of a chemical reaction suite with the massively parallel FLASH[55] code, 

originally developed by the FLASH center for Computational Sciences at the University 

of Chicago. FLASH is a hydrodynamic solver based on the Piecewise Parabolic 

Method[56] (PPM), and is capable of performing both as a Direct Numerical Simulation 

(DNS) and an Implicit Large Eddy Simulation (ILES) solver. Thus, the modified code 
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allows a direct comparison of the accuracy and performance of the ILES paradigm with 

the DNS approach when applied to reacting flows with heat addition.  

In the DNS limit, diffusive transport is computed exactly in FLASH, and is used to 

update momentum and energy fluxes at every timestep. In contrast, the ILES mode takes 

advantage of numerical dissipation in so-called ‘under-resolved’ simulations to perform 

low pass filtering of subgrid modes. Thus, the elimination of an explicit subgrid model 

makes such schemes attractive for simulation of turbulent flows, as they occur in realistic 

engineering applications. ILES schemes have been successfully applied to a wide range of 

challenging problems, including turbulent free shear flow [57], homogeneous compressible 

turbulence [58] and decaying supersonic turbulence [59]. Where applicable, we compare 

the performance of ILES and DNS numerical approaches to chemically reacting flow. 

The extension to FLASH will render it capable of accurately describing (a) ܪଶ-Air 

and ܪܥସ-Air chemistry, (b) temperature-dependent transport properties relevant to the heat 

addition process in a reactive flow, (c) multi-species equation of state (EOS) with 

temperature-dependent adiabatic indices, and (d) diffusion solvers that allow for a range of 

Lewis/Prandtl/Schmidt numbers. These capabilities are summarized in table 2.1. 

When combined with the existing capabilities present in FLASH, the modified 

solver is expected to find use in investigating a wide range of combustion-related 

phenomena. The ability to describe reactive flows enables the investigation of the role of 

chemical timescales, effect of heat addition and flame-induced density variations on a wide 

variety of laminar and turbulent flows. The existing shock capturing ability in FLASH 

when combined with the chemical reaction solver will enable simulations of phenomena 

such as detonation, deflagration, and transition between the two states, which are important 
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to industrial safety as well as the design of scramjet and pulse detonation engines. FLASH 

is also equipped with Adaptive Mesh Refinement (AMR), a feature that enables selective 

refinement of the computational grid, conditioned on local gradients of the primary 

variables. The data from such simulations can be used for refining and validating turbulent 

combustion models. Finally, the availability of multiple advection schemes, such as PPM, 

MUSCL-Hancock and WENO5 within FLASH can be exploited to study their applicability 

and performance in chemically reacting flow problems. 

TABLE 2.1: Summary of capabilities added to FLASH for simulating chemically 
reacting flows with heat addition. 

Relevant Physics Existing Added 

Reaction  Kinetics 
Nuclear reaction 

networks 
H

2
-Air and CH

4
-Air 

Multi-species Equation 
of State 

Temperature 

independent 
Temperature dependent 

Thermal Diffusion Flux-based 
Implicit solver 

- 

Viscous Diffusion Flux-based Extended Implicit solver 

Mass Diffusion Flux-based Extended Implicit solver 

Temperature dependent 
Material properties 

- 
Species involved in combustion 
of H

2
 & CH

4
 (Thermodynamic 

& Transport) 
 

The rest of this chapter is organized as follows: In § 2.1, a brief description of the 

original FLASH code and its capabilities is presented. In § 2.2, we describe in detail the 

modifications we have made to FLASH that enable reactive flow computations, including 

 ସ-Air chemistry, aܪܥ ,ଶ-Air chemistry described by three distinct mechanismsܪ

comprehensive expansion of the materials database to include temperature-dependent 

transport properties, an expansion of the EOS suite to include temperature-dependent 



13 
 

 

adiabatic indices for multicomponent mixtures, and extension of the implicit diffusion 

solver to handle viscous and mass diffusion. 

2.1 FLASH Code Description 

FLASH was developed by the FLASH center for computational sciences at the 

University of Chicago to study astrophysical flow problems, and is an open-source, multi-

physics simulation software. FLASH is highly parallel, designed for high-performance 

CFD applications and uses the Message Passing Interface (MPI) protocol for efficient inter-

processor communication.  

FLASH has a directory structure organization with component groups called 

‘units’, which are organized according to their functionality. Adaptive Mesh Refinement 

(AMR) is implemented through PARAMESH [60], and is dynamically achieved by 

conditioning the mesh refinement on second order derivatives of the condition variables. 

In the following sections, we introduce some of the existing units in FLASH, relevant to 

compressible flow simulations. These units are Hydro, EOS, Burn and Diffuse. For a 

detailed description of the architecture of FLASH and the numerical methods therein, we 

refer the reader to [61]. 

2.1.1 Hydro Unit 

The Hydro unit in FLASH solves the compressible Euler equations (2.1) – (2.3), 

written in conservative form [61]: 

ௗఘ

ௗ௧
൅	׏. ሺܸߩሻ ൌ 0,         (2.1) 

ௗఘ௏

ௗ௧
൅	׏. ሺܸܸߩሻ ൅ ܲ׏ ൌ  (2.2)        ,݃ߩ

ௗఘா

ௗ௧
൅	׏. ሾሺܧߩ ൅ ܲሻܸሿ ൌ .ܸߩ ݃       (2.3) 
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where g, ߩ, V, P and E are the gravitational acceleration, density, velocity, pressure and the 

total energy per unit mass, respectively. The internal energy (݁) is obtained separately from 

equation (2.4),  

ௗఘ௘

ௗ௧
൅	׏. ሾሺ݁ߩ ൅ ܲሻܸሿ െ ܸ. ܲ׏ ൌ 0.       (2.4) 

 Finally, pressure is updated using an ideal gas equation of state (EOS) described in § 2.1.2. 

In the case of a multi-species simulation, an advection equation for each species ‘i’ in the 

system is solved, 

డఘ௒೔
డ௧

൅	׏. ሺߩ ௜ܻܸሻ ൌ 0         (2.5) 

where ௜ܻ is the mass fraction of the ith species. 

 To solve the Euler equations, FLASH is equipped with both a directionally split 

and unsplit algorithm for two types of meshes, a uniform gird and an adaptively refined 

grid in Cartesian, cylindrical, spherical and polar coordinates. The default numerical 

method used in FLASH is the directionally split Piecewise Parabolic Method (PPM[56]), 

an extension to second order of the first order Godunov [62] method. 

2.1.2 EOS Unit 

 The equation of state (EOS) unit calculates the thermodynamic properties of an 

ideal, gamma-law fluid. The gamma-law EOS is applicable to a single fluid with a constant 

adiabatic index (ߛ), using equations (2.6) – (2.8) to calculate the thermodynamic properties: 

ܲ ൌ ሺߛ െ 1ሻ(2.6)          ,݁ߩ 

ܲ ൌ 	ேೌ	௞	ఘ	்
஺

	,          (2.7) 

݁ ൌ 	 ேೌ௞	்
஺ሺఊିଵሻ

,          (2.8) 
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where ௔ܰ, ݇, A and ܶ are the Avogadro number, Boltzmann constant, atomic mass of the 

fluid and temperature. In the case of a multi-component system containing N species, the 

average atomic mass (ܣ௔௩௚) and adiabatic index (ߛ௔௩௚) of the fluid mixture are calculated 

using equations (2.9) and (2.10), respectively: 

ଵ

஺ೌೡ೒
ൌ 	∑ 	௒೔

஺೔
௜ ,          (2.9) 

௔௩௚ߛ ൌ 1 ൅ ቀܣ௔௩௚ ∑ ௜ܣ
௒೔

ఊ೔ିଵ
ே
௜ 	ቁ

ିଵ
.       (2.10) 

In § 2.2.1, we describe the extension of this module to handle temperature-dependent 

specific heats, necessary for modeling combustion flows.  

2.1.3 Burn Module 

The Burn module in FLASH was designed to solve nuclear reaction networks, 

where the evolution of an individual species is governed by [61], 

ௗ௑೔
ௗ௧

ൌ ܴ௜.          (2.11) 

Here, ௜ܺ and ܴ௜ are the molar fraction and the net rate of change of molar fraction of ith 

species due to all the reactions in the reaction network. For multiple species, equation 

(2.11) represents a set of stiff, coupled ordinary differential equations, which are solved 

using Kaps-Rentrop (Rosenbrok)[63] or  Bader-Deuflhard[64] time integration methods, 

supplemented by an MA28[65] linear algebra package. We have modified this module to 

solve a system of stiff equations arising from typical chemical reaction mechanisms (§ 

2.2.4). 

2.1.4 Diffusion Unit 

 Diffusion effects in FLASH are incorporated through the inclusion of either an 

explicit flux-based solver or a general implicit diffusion equation solver. The flux-based 
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diffusion solver is an indirect method to account for diffusion effects, that does not operate 

on the primary variables, instead updating the fluxes due to diffusion of heat, mass and 

momentum [61]. In contrast, the implicit solver computes the solution to the general 

diffusion equation from which the primary variables are directly obtained, so that the 

solution does not require inputs from other units. The diffusion of variable f governed by 

equation (2.12) can be solved with an implicit time-stepping in directionally split or unsplit 

mode, 

	ܣ డ௙
డ௧
൅ ܥ ൌ .ߘ	 ݂ߘܤ ൅  (2.12)        ,ܦ

where ܥ ,ܤ ,ܣ and ܦ can be parameters with spatial variations. The current 

implementation of the implicit solver in FLASH solves for thermal diffusion, which we 

have extended in § 2.2.2 to handle mass and momentum diffusive transport. 

2.2 Development of Chemical Reaction Solvers and Auxiliary Modules 

In this section, we describe the additional capabilities we have developed to enable 

combustion flow simulations using FLASH. These capabilities include a temperature-

dependent, multi-species equation of state (EOS) (§ 2.2.1), extension of the implicit solver 

to handle mass and viscous diffusion (§ 2.2.2), modifications to the Burn module to handle 

 ସ-Air reaction mechanisms (§ 2.2.4), and an expansion of the materialsܪܥ ଶ-Air andܪ

database (§ 2.2.3) (temperature-dependent transport and thermodynamic properties) to 

include species commonly involved in the reaction mechanisms. 

2.2.1 Temperature-dependent Equation of State 

The equation of state (EOS) module described in § 2.1.2 was expanded to include 

multiple species with temperature-dependent properties to enable FLASH to solve 

chemically reacting flows with heat addition. The extended EOS can be applied to 
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temperatures ranging from 298K - 5000K, and requires 10 coefficients for each species in 

the mixture to calculate thermodynamic properties. The existing EOS unit in FLASH [61] 

can be invoked in three modes according to the input variable pairs supplied in each case 

viz., Density-Temperature (ρ, T), Density–Pressure (ρ, P), and Density–Internal Energy 

(ρ, e). 

Density–Temperature (ρ, T) mode: 

In this mode, the EOS routine first calculates the specific heat at constant pressure 

 ,for each species i in the mixture according to [66] (௜݌ܥ)

஼௣೔
ோ
	ൌ 	ܽଵ 	൅	ܽଶ	ܶ	 ൅	ܽଷ	ܶଶ 	൅	ܽସ	ܶଷ 	൅	ܽହ	ܶସ,  T  ൒ 1000K,   (2.13) 

஼௣೔
ோ
	ൌ 	଼ܽ 	൅	ܽଽ	ܶ	 ൅	ܽଵ଴	ܶଶ 	൅	ܽଵଵ	ܶଷ 	൅	ܽଵଶ	ܶସ, T < 1000K,   (2.14) 

where ܴ is the universal gas constant and ܽଵ –  ܽହ and ଼ܽ –  ܽଵଶ are thermodynamic 

polynomial coefficients of the ith species in the mixture for T  ≥ 1000 K and T  < 1000 K 

respectively. Note that coefficients ܽ଺, ܽ଻, ܽଵଷ and ܽଵସ are used to evaluate additional 

thermodynamic properties by other modules (e.g. Burn) and will be discussed in § 2.2.4. 

The adiabatic index ߛ௜ at temperature T corresponding to each species is then computed 

using 

௜ߛ ൌ 	
஼௣೔

஼௣೔ିோ
 ,          (2.15) 

while the mixture adiabatic index ߛ௔௩௚ is obtained from 

௔௩௚ߛ ൌ 1 ൅ ቀܣ௔௩௚ ∑ ௜ܣ
௒೔

ఊ೔ିଵ
ே
௜ 	ቁ

ିଵ
	.        (2.16) 

Finally, the pressure (ܲ) and internal energy (e) are then computed using: 

ܲ ൌ 	ோ	ఘ	்
஺ೌೡ೒

	,          (2.17) 
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݁ ൌ 	 ோ	்

஺ೌೡ೒ሺఊೌೡ೒ିଵሻ
.         (2.18) 

Density–Pressure (ρ, P) mode: 

When (ρ, P) are supplied as input variables, the temperature of the mixture is first 

computed using equation (2.17), followed by the mixture adiabatic index obtained from 

equations (2.13) – (2.16), and internal energy is finally computed from equation (2.18). 

Density–Internal Energy (ρ, e) mode: 

Here, (ρ, e) are provided as inputs, while equation (2.18) is solved iteratively to 

calculate temperature using the Newton–Raphson root finding algorithm. The solver 

requires an initial temperature guess, maximum number of iterations, and a tolerance for 

the absolute allowable error, which are specified in an input file with default values of 

1001.0 K, 50 and 1.0e-8 K, respectively. Pressure is then calculated using equation (2.17). 

We found that the temperature-dependent multi-species EOS suffered no significant 

degradation in performance compared to the single-species unit, an important 

consideration in a reactive flow simulation where the EOS unit could be called multiple 

times over a single Hydro timestep. 

The verification of multi-species, EOS unit by comparison with data compiled by 

NIST [67] is reported in the Appendix.  

2.2.2 Implicit Mass and Viscous Diffusion Equation Solvers 

Diffusion is critical to reactive flows (laminar or turbulent), since it determines 

abundances of reactants across a flame front, and thus the ultimate reaction rate. However, 

with temperature variations from heat addition, the transport properties governing the 

diffusive process may also change significantly, and must be modeled accurately. In this 

section, we discuss specific modifications to FLASH and the diffusion solvers therein that 
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enable accurate description of temperature-dependent diffusive transport associated with 

heat, mass and momentum. Note that FLASH is equipped with a separate ‘flux-based’ 

diffusion solver (§ 2.1.4) that updates the diffusive fluxes in each direction. In addition, an 

implicit solver for a general diffusion equation is available in FLASH, and described in § 

2.1.4. Currently, the implicit solver is used to solve the thermal diffusion equation (§ 2.1.4). 

We have extended the use of this solver to compute solutions to the mass and viscous 

diffusion equations, using an operator splitting approach. Equation (2.12) is the general 

form of the diffusion equation solved by the implicit solver in FLASH. For example, mass 

diffusion of species i may then be written as 

	ߩ డ௒೔
డ௧
ൌ .ߘ	 ሺߩ	ܦ௜ߘ ௜ܻ),         (2.19) 

so that ௜ܻ represents the mass fraction of species i, ρ is the mixture density and ܦ௜ is the 

species diffusivity, computed from equations described in § 2.2.3. Thus, for the mass 

diffusion equation an implicit solver is used, during which FLASH freezes the density field 

in equation (2.19). Similarly, viscous diffusion effects are solved by rewriting equation 

(2.12)  

ρ	 డ௏
డ௧
ൌ .ߘ	 ሺܸߘߤሻ,         (2.20) 

where µ is the temperature-dependent dynamic viscosity of the mixture. Typically, the 

temperature-dependent viscosity and mass-diffusion coefficients of species i are specified, 

while the thermal conductivity is constrained through a constant Lewis number (Lei) 

assumption. The implementation of these solution methods  was verified (reported in the 

Appendix) by comparing the axial velocity decay of a non-reacting, axisymmetric laminar 

jet with the analytical solution from [68] and the DNS results of [69] as well as the temporal 

decay of a potential vortex with analytical solutions from [70].  
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2.2.3 Temperature-dependent Material Properties Database 

The material properties database in FLASH was expanded to accommodate 

temperature-dependent thermodynamic or transport properties of a single- or multi-species 

system. In reacting flows with significant temperature changes, the material and 

thermodynamic properties of species can be strong functions of temperature. Since FLASH 

is organized in to distinct modules, these properties are calculated by individual units in 

the course of a reactive flow computation. Thus, a central database of coefficients 

accessible to all units is required to calculate these properties at any given temperature, and 

has been implemented. 

At initialization, a multi-species unit [61] stores several attributes of constituent 

species required in the course of a simulation. These include the names of the species, the 

molecular weights, the enthalpies of formation, the temperature-dependent adiabatic 

indices, the curve-fit polynomial coefficients for thermodynamic [66] and transport [71] 

properties.  

The EOS unit described in § 2.2.1 calculates the thermodynamic properties, while 

the transport properties (conductivity, viscosity and mass diffusion coefficients) are 

calculated in separate material properties units described below. 

Viscosity: 

The pure species dynamic viscosity (ߤ௜) in Poise is calculated using a curve fit 

polynomial [71] with 8 coefficients (ܾଵ െ ଼ܾ) for each species. The coefficients are applied 

based on the temperature, and according to  

ln ௜ߤ ൌ 	ܾଵ ln ܶ ൅	
௕మ
்
	൅	 ௕య

்మ
	൅	ܾସ	, T  < 1000K,     (2.21) 

ln ௜ߤ ൌ 	ܾହ ln ܶ ൅	
௕ల
்
	൅	 ௕ళ

்మ
	൅	଼ܾ	, T  ൒ 1000K.     (2.22) 
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The coefficients required in these calculations are accessed from the central 

database described above. The multi-species mixture viscosity (ߤ௠௜௫) can then be 

calculated by a combination averaging formula [72] such as equation (2.23)  

௠௜௫ߤ ൌ 	
ଵ

ଶ
൤	 ∑ ௜ߤ ௜ܺ

ே
௜ୀଵ ൅ 	 ቀ∑ ௑೔

ఓ೔

ே
௜ୀଵ ቁ

ିଵ
൨ ,      (2.23) 

or by using a semi-empirical formula [73] 

௠௜௫ߤ ൌ ∑ ఓ೔௑೔
∑ ௑೔
ಿ
ೕసభ ః೔ೕ

ே
௜ୀଵ  and	ߔ௜௝ 	ൌ 	

ଵ

√଼
	 ൬1 ൅ 	 ஺೔

஺ೕ
൰
ିభ
మ
൭1 ൅ ൬	

ఓ೔
ఓೕ
൰
భ
మ
൬	

஺೔
஺ೕ
൰
భ
ర
൱ 	

ଶ

.  (2.24)  

Thermal Conductivity: 

The pure species conductivity (ߣ௜) in W/cm-K is computed from a curve fit 

polynomial [71] with coefficients (ܿଵ െ ଼ܿ) for each species given by,  

ln ௜ߣ ൌ 	 ܿଵ ln ܶ ൅	
௖మ
்
	൅	 ௖య

்మ
	൅	ܿସ	, T < 1000K,     (2.25) 

ln ௜ߣ ൌ 	 ܿହ ln ܶ ൅	
௖ల
்
	൅	 ௖ళ

்మ
	൅	଼ܿ	, T ൒ 1000K.     (2.26) 

The multi-species mixture conductivity (ߣ௠௜௫) is then obtained from the combination 

averaging formula [72]  

௠௜௫ߣ ൌ
ଵ

ଶ
൤	 ∑ ௜ߣ ௜ܺ

ே
௜ୀଵ ൅ ቀ∑ ௑೔

ఒ೔

ே
௜ୀଵ ቁ

ିଵ
൨.       (2.27) 

Alternately, the mixture conductivity could be obtained from a constant Lewis number 

assumption: 

௠௜௫ߣ ൌ  ௜௠ܿ௣.         (2.28)ܦ௜݁ܮߩ

Here, ݁ܮ௜ and ܦ௜௠ are the Lewis number and mass diffusion coefficient of the ith species in 

a mixture containing N species. Note that when ߣ௠௜௫ is obtained using equation (2.28), the 

mass diffusion coefficients Dim  have been calculated independently from equation (2.30) 

below.  
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Mass diffusion: 

For a given Lewis number, the mass diffusion coefficient of the ith species in the 

mixture (ܦ௜௠) can be calculated using, 

௜௠ܦ ൌ 	 ఒ೘೔ೣ

ఘ௅௘೔௖೛
 ,          (2.29) 

where ߣ௠௜௫ is independently available from equations (2.25 – 2.27). We have also 

implemented the option to calculate the mass diffusion coefficient independently without 

making assumptions on the Lewis number. This is achieved by assuming the mass diffusion 

coefficient ܦ௜௠ of each species i in the mixture (m) to be equal to that of a binary gas 

system A-B (ܦ஺஻), where A and B can be any major species pair. Then, the binary diffusion 

coefficient ܦ஺஻ of the system is calculated using the Chapman and Enskog solution [74] to 

the Boltzmann equation,  

஺஻ܦ ൌ 	
଴.଴଴ଶ଺଺	்భ.ఱ	

௉	ெಲಳ
బ.ఱఙಲಳమ	ఆವ

 ,        (2.30a) 

஺஻ܯ ൌ 2 ቂ ଵ
஺ಲ
൅ ଵ

஺ಳ
ቃ
ିଵ

 ,         (2.30b) 

஺஻ߪ ൌ 	 ሺߪ஺ 	൅	ߪ஻ሻ ,          (2.30c) 

where ߪ஺஻ is the characteristic length of the intermolecular forces, ߗ஽ is the diffusion 

collision integral, ߪ஺ and ߪ஻ are the Lennard-Jones lengths of species A and B, and ܣ஺ and  

 ஻ are molecular weights of species A and B. Our current implementation in FLASHܣ

includes the following binary gas systems: ܪଶ െ ܱଶ, ଶܰ െ ܱଶ or ܪܥସ െ ܱଶ. 

2.2.4 Burn Module 

 We describe the implementation of ܪଶ-Air and ܪܥସ-Air reaction kinetics to the 

existing Burn module in FLASH. A general reaction mechanism involving N species and 

m reactions can be represented as: 
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෍ ௞ܯ	’௞௝ݒ

ே

௞ୀଵ
	⟺෍ ௞ܯ	’’௞௝ݒ

ே

௞ୀଵ
		,       (2.31) 

where ݒ௞௝’	 and ݒ௞௝’’ are the stoichiometric molar coefficients of species labeled ܯ௞ in the 

jth reversible reaction. Thus, the net rate (ݍ௞) of formation or consumption of the kth species 

is the sum of contributions from all reactions in the reaction involving that species, and 

written as 

௞ݍ ൌ ∑ ௞௝ݍ
௠
௝ୀଵ ,          (2.32a) 

where  

௞௝ݍ ൌ ൫ݒ௞௝’’ െ ௞௝’൯ݒ ቀ݇௙௝ ∏ ெೖܥ

௩ೖೕ’ 	െே
௞ୀଵ ݇௕௝ ∏ ெೖܥ

௩ೖೕ’’ே
௞ୀଵ ቁ .    (2.32b) 

In equation (2.32b),  ݍ௞௝ is the rate of formation (or consumption) of the kth species in 

reaction j, ݇௙௝ and ݇௕௝ are the corresponding forward and backward reaction rates, while 

ெೖܥ
 is the concentration of the kth species. For most reaction mechanisms, the forward 

reaction rates are given in the form of an Arrhenius equation, 

݇௙௝ ൌ ݁ቀି	஑ܶܣ
ಶೌ
೅ೃ
ቁ,         (2.33) 

where α, A and ܧ௔ are the temperature index, pre-exponential factor and activation energy 

respectively. To compute the backward reaction rates, the concentration-based reaction 

equilibrium constant (ܭ௖) is first evaluated from 

௖ܭ ൌ ቀோ்
௉
ቁ
ି∆௩

݁ቀ
∆ಸ೅
ೃ೅

ቁ .         (2.34) 

Here, ∆ݒ is the change in mole number (between products and reactants), while ∆்ܩ 

represents the corresponding change in the Gibbs free energy. The Gibbs free energy for 

each species is calculated according to [75]  

ீ೅
ோ்
ൌ 	ܽଵሺ1 െ ln ܶሻ 	െ	௔మ்

ଶ
	െ	௔య்

మ

଺
	െ	௔ర்

య

ଵଶ
	െ	௔ఱ்

ర

ଶ଴
	൅	௔ల

்
	െ	ܽ଻, T  ൒ 1000K (2.35a) 



24 
 

 

ீ೅
ோ்
ൌ 	଼ܽሺ1 െ ln ܶሻ 	െ	௔వ்

ଶ
	െ	௔భబ்

మ

଺
	െ	௔భభ்

య

ଵଶ
	െ	௔భమ்

ర

ଶ଴
	൅	௔భయ

்
	െ	ܽଵସ, T  < 1000K (2.35b) 

where ܽଵ െ ܽଵସ are the polynomial coefficients [66] from a curve fit of the thermodynamic 

data for a given species. From the equilibrium constant ܭ௖, the backward reaction rates can 

be inferred:  

݇௕௝ ൌ
௞೑ೕ
௄೎

 .          (2.36) 

From equations (2.32), it is clear that a reaction mechanism involving N species could be 

formulated as a system of N coupled ordinary differential equations. The resulting ODE 

system is stiff, owing to large variations (several orders of magnitude) in the reaction rates 

and the corresponding eigenvalues. We use two implicit ODE integrators already available 

in FLASH viz., the Bader-Deuflhard [64] and Kaps-Rentrop [63] schemes (along with 

linear algebra package MA28[65]) to solve the stiff system of equations represented by the 

general equation (2.32a). For both methods, the energy generated ( ௚݁) during a time 

advancement Δt is calculated using  

௚݁ ൌ 	∑
௛೑೔
஺೔

ே
௜ ሺ ௜ܻ೟ െ 	 ௜ܻ೟శ೩೟ሻ,        (2.37) 

where ݄௙೔ is the heat of formation, ௜ܻ೟ and ௜ܻ೟శ೩೟ are the mass fractions of the ith species 

before and after the time advancement respectively. 

 We have implemented three reaction mechanisms for ܪଶ-Air combustion and one 

for ܪܥସ-Air combustion in FLASH. The 9-species, 19 reaction ܪଶ-Air mechanism of Billet 

[76] is reduced from the detailed acetylene combustion mechanism of [77], and was used 

[76] to study the interaction of acoustic waves with circular and spherical hydrogen 

diffusion flames and reactive shock-bubble interactions. We have also implemented the 9-

species, 19-step reversible reaction mechanism of Mueller et al. [78] as adapted by [79] to 
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simulate premixed ܪଶ-Air vortex rings. The third-body efficiencies (M) for all the reactions 

in this mechanism were taken from [78]. Both mechanisms exclude ܰ ௫ܱ chemistry 

important for industrial high-temperature burners. Finally, we have also included the 11-

species, 20-step reversible reaction mechanism of Katta and Roquemore [80], which was 

originally used to study the tip opening phenomena in premixed ܪଶ-Air Bunsen burner 

flames. The calculated burning velocities [80] from this mechanism were in excellent 

agreement with [81] for equivalence ratios less than 2.5, while higher equivalence ratios 

resulted in underpredicted values of the burning velocities. Note that in our implementation 

of this mechanism, the third body efficiency (M) for all the species was assumed to be 

unity. 

We have reported the results from validation of the above capabilities through 

comparison with analytical solutions, and published numerical and experimental data in 

[82]. The validation cases included comparison of temporal evolution of species and 

temperature in a well stirred reactor, comparison of adiabatic flame temperature data, 

advection of reacting and non-reacting 1D fronts, 2D laminar premixed methane–air flame 

in a Bunsen burner configuration, shock-driven combustion of an initially circular 

hydrogen bubble, and a reacting Richtmyer–Meshkov instability not studied previously. 

Additional verifications for the modified code not presented in [82] are presented in the 

Appendix.  

 



 

 

 

 

 

CHAPTER 3: PROBLEM FORMULATION AND UNPERTURBED RAYLEIGH-
TAYLOR FLAMES 

 
 

In this chapter we investigate the dynamics of non-premixed Rayleigh-Taylor 

flames. We first discuss the dynamics of a 1D reacting front (§3.2) to explore the effect of 

flame formation in the absence of hydrodynamic instability (unperturbed). This is followed 

by an examination of interaction between RT instability and flame through 2D single-mode 

and 3D multimode (turbulent) simulations for high (in chapter 4) and low (chapter 5) A 

flames. 

3.1 Problem Formulation and Numerical Methods  

We consider the Rayleigh-Taylor instability of a perturbed interface schematically 

depicted in Figure 3.1(a), where the lighter fuel (ܪଶ ൅ ଶܰ) in region I supports the heavier 

Air in region II against an imposed background acceleration (g). The fluids are initially in 

thermal equilibrium, with a uniform temperature ଴ܶ ൌ ௙ܶ ൌ ௔ܶ ൌ  subscripts a/f) ,ܭ1000

denote air/fuel) that is chosen to ensure the mixture at the fuel-air interface will auto-ignite 

to form the flame surface. The density ratio is parametrized by the Atwood number 

൬ܣ௙ି௔ ൌ
ఘೌିఘ೑
ఘೌାఘ೑

൰, and can be directly and systematically varied in the simulations discussed 

here by changing the level of ଶܰ dilution in the fuel stream. Pressure at the interface (ݔ ൌ

௜) is initialized to ଴ܲݔ ൌ  and varies away from the interface (figure 3.1b) in a ,݉ݐܽ	1

manner that satisfies the hydrostatic thermal equilibrium condition: 

ܲሺݔሻ 	ൌ 	 ଴ܲ݁
൜
೒൫ೣషೣ೔൯
ೃೞ೅బ

ൠ
.         (3.1) 
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In eq. (3.1), ܴ௦ denotes the specific gas constant. We initialize density (and other 

thermodynamic variables) from (P,T) through an ideal gas equation of state. Finally, we 

impose hydrostatic outflow conditions on y-z boundaries, and periodic conditions on x-z 

and x-y boundaries. FLASH uses pseudo-cells (guard cells) outside the computational 

domain to enforce these boundary conditions. For instance, the hydrostatic equilibrium 

condition is enforced at the outlet boundaries according to [83] by first assuming constant 

T and species concentrations in the guard cells and then integrating, 

ௗ௉

ௗ௫
ൌ  (3.2)          ,݃ߩ

for an assumed second order ߩሺݔሻ profile [83] constructed from cell averaged values of ߩ. 

The resulting equation is then iteratively solved by adjusting the density in the guard cells 

through the equation of state to calculate ܲሺߩ, ܶሻ. For additional details, we direct the 

readers to [83].  

We track the progress of the single mode RT in time as the locus of extrema of the 

mixture fraction (Z)[84,85], 

ܼ ≡
൬
ೋಹ
మೈಹ

ା
ೋೀೌషೋೀ

ೈೀ
൰

ቆ
ೋಹ೑
మೈಹ

ା
ೋೀೌ
ೈೀ

ቇ
,                   (3.3) 

ܼு ൌ ுܹ ൬
ଶ௒ಹమ
ௐಹమ

൅ ௒ಹ
ௐಹ

൅
ଶ௒ಹమೀ
ௐಹమೀ

൅ ௒ೀಹ
ௐೀಹ

൅
௒ಹೀమ
ௐಹೀమ

൅
ଶ௒ಹమೀమ
ௐಹమೀమ

൰,    (3.4) 

ܼு ൌ ைܹ ൬
ଶ௒ೀమ
ௐೀమ

൅ ௒ೀ
ௐೀ

൅
௒ಹమೀ
ௐಹమೀ

൅ ௒ೀಹ
ௐೀಹ

൅
ଶ௒ಹೀమ
ௐಹೀమ

൅
ଶ௒ಹమೀమ
ௐಹమೀమ

൰.    (3.5) 

In the above equation, ܼ௜, ௜ܹ and ௜ܻ are the mixture fraction, molecular weight and mass 

fraction of the ݅௧௛ species, while ܼைೌand ܼு೑ are the atomic mixture fraction of O and H 

evaluated in the air and fuel streams respectively. Note that ܼ varies smoothly (and 

monotonically) across the burning interface (unlike density or individual species mass 
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fractions) making it a reliable and convenient metric for comparing the reacting interface 

with its non-reacting counterpart.  

 

FIGURE 3.1: (a) Schematic of the proposed problem setup to investigate reactive 
Rayleigh-Taylor Instability and (b) scaled density  * ) / (( )f a f        (solid lines) 

and pressure  0/P P  (dashed lines) across an unperturbed interface 0 0h   at A=0.2 (gray) 

and A=0.6 (black). 1D simulations employed a background acceleration of 4
00.6 10g g 

, where 2
0 981 /g cm s  . 

The reacting and inert simulations performed as part of this work may be classified 

in to three broad categories: (i) 1D simulations with an unperturbed interface, (ii) 2D 

simulations with imposed single-mode perturbations and (iii) 3D simulations with imposed 

multimode perturbations that eventually degrade to a turbulent state. Simulations in each 

category were repeated for different values of A, and are catalogued in table 3.1. The 1D 

simulations were initialized with x-profiles of (Z and P) at a constant temperature specified 

according to eqs. (3.1) – (3.5) while the rest of the thermodynamic quantities (, E, etc) 

were calculated consistently using a temperature-dependent, multispecies equation of state. 
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The single-mode simulations were initialized with a similar specification of the state 

variables, but the material interface between the fuel mixture and air supported a 

perturbation waveform, cosሺ݇ݕሻ with a wavenumber (݇ ൌ ଶగ

ఒ
). The interface thickness is 

finite and specified according to [86], 

ݏ ൌ
ሺ௫೔ା௛బ ୡ୭ୱሺ௞௬ሻାఋି௫ሻ

ఋ
        (3.6) 

Then, the mixture fraction profile across the interface is given by  

ܼሺݔሻ ൌ 	 ൝
ݏ																												0 ൑ 0
ݏ																												1 ൒ 1

1 െ ݁|ୱ|
ఴ	୪୬ሺఈሻ														0 ൏ ݏ ൏ 1

                  (3.7) 

where ݔ ,ߜ ,ߝ௜, and ݄଴ represent the machine zero (approximated to 10ିଷ଴), the initial 

interface thickness(ߜ ൎ 3Δݔ), location of the interface and the perturbation amplitude 

respectively. The single-mode simulations were performed with wavelengths ߣ ൌ 0.3, 0.5 

and 1.0 cm, while the acceleration driving the flow was varied from 6,000݃଴ െ 48,000	݃଴, 

relevant to realistic UCC operating conditions [12,13]. The multimode simulations (case 

26-30) were initialized by imposing a narrowband spectrum of waves at the material 

interface, so that the perturbation amplitudes satisfy [3] 

݄ሺݕ, ,ݖ ݐ ൌ 0ሻ ൌා

ۏ
ێ
ێ
ێ
ۍ
ܽ௞ܿݏ݋ሺ݇௬ݕሻ ܿݏ݋ሺ݇௭ݖሻ ൅
ܾ௞݊݅ݏሺ݇௬ݕሻ ܿݏ݋ሺ݇௭ݖሻ ൅
ܿ௞ܿݏ݋ሺ݇௬ݕሻ ݊݅ݏሺ݇௭ݖሻ ൅

݀௞݊݅ݏሺ݇௬ݕሻ ݊݅ݏሺ݇௭ݖ൯ ے
ۑ
ۑ
ۑ
ې

௞೤,௞೥

.    (3.8) 

When viscous effects are accompanied by diffusive broadening of the interface, a 

perturbed interface grows exponentially in the linear stage with a growth rate exponent[87],  

݊ ൌ ටቀ
஺௚௞

ట
ቁ ൅ ଶ݇ସߥ െ ሺߥ ൅         (3.9)		ሻ݇ଶܦ
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where ߥ and ܦ are the kinematic viscosity and mass diffusivity respectively. The growth 

reduction factor (߰) in the above equation varies with time for a wide range of Atwood 

numbers such that, ߰ሺݐሻ ൎ ଶ௞√஽௧

ଵ.ଶ
൅ 1 [87]. The fastest growing wavelength (௠௔௫) to 

emerge from linear growth of the initial perturbation wavepacket is determined by 

numerically solving eq. (3.9) with the condition 
ௗ௡

ௗ௞
ൌ 0 at any given instance in time. Using 

ܮ ൌ 8	ܿ݉ and ݃ ൌ 6 ൈ 10ଷ݃଴ for cases (26) – (30), we estimate ௠௔௫ to be ~ 0.3 cm and 

0.5 cm at t = 0 and at ignition respectively.  

We briefly demonstrate our methodology to ensure our turbulent reacting and non-

reacting RT simulations were adequately resolved. For the reacting RT, mesh resolution is 

dictated by the three distinct criteria: the resolution of the Kolmogorov scale, resolution of 

the flame thickness and satisfaction of a cell-based Grashof number criteria to ensure 

suppression of spurious grid-based modes driven by the buoyancy of the flow. We address 

each of these requirements in detail. During the turbulent self-similar growth, RT interfaces 

subjected to a constant acceleration evolve as [1-3,30,31,88]  ݄	~	ݐ݃ܣߙଶ. Accordingly, the 

Kolmogorov scales (ߟ) may be estimated from the flow Reynolds number ቀܴ݁ ≡ ௛௛ሶ

ఔ
ቁ as 

follows,  

ߟ ൌ ݄ܴ݁ି
య
ర ൌ ݄ ቀ௛௛

ሶ

ఔ
ቁ
ିయ
ర
ൌ

ቀഌ
మ
ቁ
బ.ళఱ

௧షబ.మఱ

ඥఈ஺௚
,      (3.10) 

and is thus a weak function of time. Thus, scale separation in self-similar RT implies a 

Kolmogorov scale nearly independent of time, a result that is fortuitous to the design of 

numerical simulations since the smallest flow scales dictate the grid resolution. The 

multimode simulations employed a uniform grid with 256 zones/L, so that the mesh 

resolution satisfied Δߟ~ݔ	where ߟ is the Kolmogorov length scale, sufficient to resolve 
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[89,90] the late time turbulent flow field. A second concern, particular to simulations of 

RT flows, is the growth of grid-generated, spurious modes that can nevertheless be driven 

by the buoyant forces in the flow. The criterion for the growth of such numerical modes 

may be given in terms of a grid Grashof number[1], 

௫∆ݎܩ ൌ
௚∆ఘ௏

ఘఔమ
ൌ ଶ஺௚∆௫య

ఔమ
.        (3.11) 

where ߥ is the mixture viscosity, while ∆ݔ is the grid size. For numerical modes to be 

stabilized by viscous diffusion, ∆ݔ must be small enough so that ݎܩ∆௫ ൏ 1. Note that the 

above equation does not account for suppression of perturbation growth by mass diffusion. 

In the presence of mass diffusion, eq. 3.9 may be used to estimate a cut-off wavelength 

(௠௜௡), such that perturbations smaller than ௠௜௡ show no growth (݊ ൑ 0 due to diffusion). 

The cut-off wavelength for cases 26-30 was found to be ~0.11 cm. The grid resolution 

employed for cases 26-30 Δݔ ൎ ௠௜௡/4 ensures suppression of spurious grid-based modes 

by viscous and mass diffusion. Thus the condition, ݎܩ∆௫ ൏ 1 for resolution requirement 

may be relaxed under the influence of mass diffusion such that ݎܩ∆௫ ൌ
ଶ஺௚∆௫య

ሺఔା஽ሻమ
~	1, satisfied 

by our simulations (cases 26-30). 

In addition to the flow scales, the flame/reaction zone thickness also dictates the 

mesh resolution used in the simulations. The flame thickness (ܮ௙) is given by [84], 

~௙ܮ
௓ೃ
∆௓ಹ

,          (3.12) 

where ܼோ is the peak combustible range of atomic H mixture fraction(ܼு) and Δܼு is the 

corresponding gradient across the mixing width. For atmospheric ܪଶ-Air flames, ܼோ ൎ

0.015 [84]. For an interface initially at rest, the flame thickness is diffusion controlled, and 

may be estimated as ܮ௙~
௓ೃ
௓ಹ೑

~ௗܮ
௓ೃ
௓ಹ೑

൫8ඥܦ௙௟ݐ൯ where ܮௗ is the interface thickness, ܦ௙௟ is 
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the mass diffusion coefficient at the flame site (ܼ ൌ ܼ௦௧) and ܼு೑ is the atomic H mixture 

fraction in fuel stream. The resolution employed in this work for cases 26-30 (multimode 

perturbations) is estimated to be Δݔ ൎ  ௙/5 at ignition sufficient to resolve autoignition ofܮ

fuel-air mixture and subsequent flame dynamics (following ignition ܮ௙ increases with 

time). 
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TABLE 3.1: Summary of simulation performed to characterize RT flames. 

Case Perturbation 
 ߣ

(cm) 
݄଴ 

(cm) 
React ܣ௙ି௔ ݃ Dimension Resolution 

1-5 
None - - 

Yes 

0.2, 
0.4, 
0.6, 
0.7, 
0.87 

6݁3݃଴ 
1D (2cm) 256 

6 Yes 0.2 െ6݁3݃଴

7 

Single Mode 

1.0 
0.015
݇

Yes 0.2 6݁3݃଴ 

2D  
ߣ6) ൈ  (ߣ

 ߣ/256

8 Yes 0.2 1݁4݃଴ 

9 Yes 0.2 2݁4݃଴ 

10-11 Yes 
0.2, 
0.6 

4݁4݃଴ 

12 

0.5 
0.05
݇

 

No 0.6 6݁3݃଴ 

13 Yes 0.6 6݁3݃଴ 

14 No 0.2 6݁3݃଴ 

15 Yes 0.2 6݁3݃଴ 

16 Yes 0.2 െ6݁3݃଴

17-19 Yes 
0.4, 
0.7, 
0.87 

6݁3݃଴ 

20 Yes 0.2 12݁3݃଴ 

21 Yes 0.2 18݁3݃଴ 

22 Yes 0.2 24݁3݃଴ 

23 

0.3 
0.1
݇

 

Yes 0.2 18݁3݃଴ 

24 Yes 0.2 24݁3݃଴ 

25 Yes 0.2 30݁3݃଴ 

26 

Multimode 
(L=8cm) 

௅

ଷଶ
  

to 
௅

ଵ଺
  

h୰୫ୱ
L

ൌ
12
1e4

No 0.6 6݁3݃଴ 

3D  
ܮ4) ൈ ܮ ൈ  (ܮ

256/L 

27 Yes 0.6 6݁3݃଴ 

28 No 0.2 6݁3݃଴ 

29 Yes 0.2 6݁3݃଴ 

30 Yes 0.2 െ6݁3݃଴
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The simulations were performed using the modified version of FLASH[55,82], 

described in chapter 2. The ‘Hydro’ unit is used to solve the Euler equations on a finite 

volume mesh, using the Piecewise Parabolic Method [56]. Diffusive transport of mass, 

momentum and heat are implemented separately in an operator-split timestep, through a 

dedicated Diffuse unit that solves diffusion equations for species, velocities and 

temperature using a Crank-Nicholson scheme. Hydrogen combustion is described through 

a ܪଶ-air, 19-step, 9-species detailed reaction mechanism [76]. The reaction rates are 

modelled through Arrhenius equations, so that the nine coupled species evolution equations 

were numerically integrated in time, using a variable order Bader-Deuflhard [64] method 

capable of handling the inherent stiffness of the ODE system. Note that each species in the 

reaction kinetics is represented in the simulation database with temperature-dependent 

thermodynamic [66] and transport properties [71]. The specific heat (݌ܥ௜) for each species 

in the reaction mechanism is modelled as a 4th order temperature polynomial requiring a 

total of 10 coefficients [66] (5 each for 300-1000K and 1000-5000K range). The mixture 

adiabatic index (equation 2.16) is then computed to evaluate the mixture thermodynamic 

properties using the ideal gas equation of state. Mixture transport properties are obtained 

either through combination averaging or constraints on the Lewis number or the Schmidt 

number. Thus, the dynamic mixture viscosity (ߤ௠௜௫) is obtained by combination-averaging 

of individual species viscosities (ߤ௜) according to equation (2.23) [72,76]. Note that the 

species viscosity is modelled as a temperature-dependent polynomial according to [71]. 

Similarly, the mass diffusivity of the mixture is derived from the mixture viscosity by 

assuming a constant Schmidt number (~0.75) for all the species involved, an approach that 

has shown to be accurate [91] for the transport of major species in ܪଶ-Air combustion. To 
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avoid the development of local density gradients due to the imbalance between thermal and 

mass fluxes that could complicate our problem definition, we define the mixture thermal 

conductivity by imposing a unity Lewis number condition. Finally, the computations were 

performed with a CFL constraint on the timestep to ensure stability.  

3.2 Unperturbed Flames  

In this section, we describe results from 1D simulations of chemically reacting, 

unperturbed interfaces driven by a constant acceleration field of േ6000݃଴. The absence of 

perturbations at the interface allows us to isolate the flame dynamics as a function of the 

Atwood number, without regard to instability development. In our simulations, an initially 

sharp interface separating the fuel and air streams is centrally located in a 2 cm long 

computational domain. Diffusion across the interface produces a combustible mixture that 

autoignites at ݐ௜௚௡ ൎ and ൎ ݏ݉	0.34  ௜௚௡ݐ for A = 0.2 and 0.6 respectively (where ݏ݉	0.28

is defined as the time to attain a 20% increase in temperature). The ignition of such a diffuse 

layer generates localized combustion waves [92] that impart a weak, time-dependent 

acceleration (݃௖ሺݐሻ ൎ 0.5 ൈ  on the interface which we identify from the (ݏ/ଵ.ଶܿ݉ଶିݐ

location of the 50% mixture fraction level. Since the applied acceleration is large, we find 

the effects of the combustion wave to be insignificant in comparison (max൫݃௖ሺݐሻ൯ ൎ 0.2% 

of applied g). In figure 3.2, we plot the scaled density ൬ߩ∗ ൌ
ఘିఘ೑
ఘೌିఘ೑

൰, the scaled temperature 

ቀ்
బ்
ቁ and the mixture fraction for (a) A=0.2 and (b) A=0.6 at late times (t = 2ms) when the 

flames have asymptotically approached their maximum temperature. Note that the peak 

temperatures at this time are within 15% of the equilibrium adiabatic flame temperature 

calculated from [93]. Across the burning interface (figs. 3.2a), the mixture fraction varies 
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monotonically and exhibits a symmetric profile for the flame with A = 0.2 (ܼ௦௧|஺ୀ଴.ଶ ൎ

	0.45). On the contrary for A=0.6 flames, the Z-profile spreads asymmetrically about its 

initial position (x=1cm). This is attributed to (a) enhanced diffusion in the proximity of the 

flame region (ܼ௦௧|஺ୀ଴.଺ ൎ 0.11) and (b) larger (smaller) flame induced velocities in the 

lighter (heavier) fuel (air) stream. In figs. 3.2b, the scaled density exhibits regions with ߩ∗< 

0 for flame conditions with A=0.2, indicating the presence of a flame region lighter than 

the fuel and oxidizer streams. The inflection point in the density profile occurs at the 

location of the flame sheet, resulting in distinct RT stable fuel-flame (ܣ௙ି௙௟ ൎ െ0.2) and 

unstable flame-air (ܣ௙௟ି௔ ൎ 0.38) interfaces. Under these conditions, the baseline flow is 

then transformed to a three-layer RT problem with an important distinction: Here, the third 

layer is active and sustains itself with fresh influx of combustion products. When such 

conditions exist, the underlying RT flow and flame properties are profoundly modified.  

 

FIGURE 3.2: Mixture fraction, scaled density  * ) / (( )f a f        and temperature 

at t=2ms for flames at (a) A=0.2 and (b) A=0.6. 
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FIGURE 3.3: Time evolution of Atwood numbers corresponding to fuel-flame 

 ) ( )( /f fl fl f fl fA         and flame-air  / (( ) )fl a a fl a flA         interfaces 

from an unperturbed low Atwood  0.2f aA    simulation. 

The time evolution of local Atwood numbers corresponding to fuel-flame 

൬ܣ௙ି௙௟ ൌ
ఘ೑೗ିఘ೑
ఘ೑೗ାఘ೑

൰ and flame-air ൬ܣ௙௟ି௔ ൌ
ఘೌିఘ೑೗
ఘೌାఘ೑೗

൰ interfaces is depicted in figure 3.3 for 

case 1 (ܣ௙ି௔ ൌ 0.2ሻ. Upon ignition (t = 0.34ms), the density in the flame region rapidly 

decreases thereby increasing (decreasing) the local flame-air (fuel-flame) Atwood number. 

Asymptotically, ܣ௙௟ି௔ attains a value roughly twice that of the original fuel-air interface. 

The value of ܣ௙ି௙௟ on the other hand undergoes a sign reversal and asymptotically retains 

the magnitude of the original fuel-air interface. Thus, from figs. (3.2a) and (3.3), the flame 

acts as an active third layer (constantly replenished with fresh products of combustion), 

and transforms an initially unstable RT interface into distinct RT stable (fuel-flame) and 

unstable (flame-air) interfaces. The conditions for the existence of such a flame-generated 
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third layer may be derived by the following simple analysis based on a 1-step reaction 

model: 

2ሺܪଶ ൅  ଶܰሻ ൅ ሺܱଶ ൅ 3.76 ଶܰሻ → ଶܱܪ2	 ൅ ሺ2൅ 3.76ሻ ଶܰ.    (3.13) 

In the above equation, the fuel stream (ܪଶ) is assumed to be diluted with  moles of ଶܰ, 

which can be controlled to vary the initial Atwood number across the fuel-air interface 

 Furthermore, the adiabatic flame temperature ௔ܶௗ may be expressed as a .(	௙ି௔ܣ)

polynomial function of the Atwood number, so that: 

௔ܶௗ ൌ ∑ ܽ௜ܣ௙ି௔
௜଺

௜ୀ଴ .         (3.14) 

In eq. (3.14), the polynomial coefficients were obtained from fitting to adiabatic flame 

temperature data from [93] for ܪଶ-air combustion. The flame density may then be obtained 

as an explicit function of the Atwood number through the equation of state, 

௙௟ߩ ൌ
௉బ

்ೌ೏ோ/ௐ೑೗	
         (3.15) 

where the flame molecular weight ( ௙ܹ௟) is obtained ቀ ௙ܹ௟ ൌ
ଶௐಹమೀାሺଶఊାଷ.଻଺ሻௐಿమ

ଶାଶఊାଷ.଻଺
ቁfor 

products that appear on the RHS of equation (3.13). In figure 3.4, we plot ߩ௙௟
∗ ൌ

ఘ೑೗ିఘ೑
ఘೌିఘ೑

 as 

a function of ܣ௙ି௔ from eq. (3.15), and find that for ܣ௙ି௔ 	൏ ௙௟ߩ ,0.5	
∗ ൏ 0 so that a stable 

3rd layer can be expected (similar criteria can easily be developed for other commonly used 

fuels). We have performed several 1D unperturbed simulations at different values of ܣ௙ି௔, 

and find the simulations verify the criteria for third layer formation suggested by eq. (3.15) 

and fig. 3.4. We also plot ߩ௙௟
∗  obtained from the simulations in fig. 3.4, which are in good 

agreement with eq. (3.15).  
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FIGURE 3.4: Normalized flame density  * ) / ( )(fl fl f a f        from eq. (3.15) and 

1D simulations (symbols) plotted against the initial Atwood number associated with the 
fuel-air interface. Flames with * 0fl  develop a three-layer configuration. 

In summary, based on 1D simulations and analysis presented in this section, we 

expect the flame-generated third layer to profoundly affect the density stratification and 

thereby, the evolution of the corresponding low A RT flames. 

  



 

 

 

 

 

CHAPTER 4: TWO LAYER RAYLEIGH-TAYLOR FLAMES 
 
 

In this chapter, we examine the evolution of high ܣ௙ି௔ (> 0.5) RT flames that retain 

their initial two-layer configuration through the combustion and heat addition processes. 

We discuss flames arising from both (§4.1) single-scale and (§4.2) multimode initial 

perturbations. Simulations initialized with a single-wavelength perturbation can provide 

valuable insights in to the linear and nonlinear stages of RT development, and can thus 

inform our understanding of the corresponding multimode problem [3,30,94,95]. 

4.1 Single Mode Perturbation 

We describe results from detailed 2D, single-mode simulations of the inert (case 

12) and reacting (case 13) RT problem at A = 0.6. At this Atwood number, the original 

two-layer configuration is preserved through the ignition and combustion processes. We 

also analyse the evolution of the fuel (Z=99%), flame sheet (ܼ ൌ ܼ௦௧ ൌ11.57%) and air 

(Z= 1%) surfaces in each case. When burning is present at the interface, it affects the flow 

and flame dynamics by (a) increasing diffusive transport, (b) enhancing the characteristic 

velocity scales by a factor proportional to a flame expansion ratio and (c) modifying the 

underlying density stratification for ܣ௙ି௔ 	൏ 0.5 (discussed later in chapter 5). The increase 

in diffusive transport is due to higher flame temperatures, and results in a subsequent 

reduction in RT growth [87]. The flame expansion (discussed in chapter 3) serves as a 

countervailing effect and enhances RT growth. Figure 4.1 illustrates these issues 

qualitatively, and depicts contours of scaled density ൬ߩ∗ ൌ
ఘିఘ೑
ఘೌିఘ೑

൰ from (b-e) inert and (f-
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i) reacting RT unstable interfaces at A = 0.6 (ߣ ൌ 0.5	ܿ݉ and ݃ ൌ 6 ൈ 10ଷ݃଴), realized at 

different scaled times. In these figures, the fuel (ܼ ൌ 0.99), flame sheet (ܼ ൌ ܼ௦௧) and air 

(ܼ ൌ 0.01) surfaces are indicated by black, grey and white lines respectively. The early 

stages of non-reacting RT evolution (figures 4.1 b-c) is marked by a thickening of the 

interface due to diffusion effects, while perturbations appear to grow symmetrically. The 

diffusive broadening develops as √ݐ		and eventually saturates (figures 4.1 d-e) at late times, 

as the perturbation growth enters a stage of nonlinear saturation. During this phase, the 

interface is differentiated in to distinct bubble and spike structures (fig. 4.1 d-e), which are 

accompanied by secondary Kelvin-Helmholtz vortices that form on the sides of the RT 

plumes. The high Atwood simulations shown in fig. 4.1 exhibit asymmetry at late times 

(	 ൎ 6) between evolving bubbles and spikes, consistent with the extensive [94-98] non-

reacting RT literature. 

For the reacting simulation (case 13 in figs. 4.1 f-i), ignition occurs at 	 ൎ 1.9 

following an interval of diffusive broadening at the interface which leads to a combustible 

mixture. As discussed in chapter 3, localized combustion waves [92] impart a weak and 

rapidly decaying variable acceleration on the interface, so that the flame rapidly recovers 

to evolve under the influence of the imposed background acceleration. For RT flames with 

௙ି௔ܣ ൐ 0.5 discussed here, the cross-stream density varies monotonically without the 

formation of the stable third layer. Accordingly, the evolution (figures 4.1 f-i) of such a 

high Atwood flame is qualitatively similar to its non-reacting counterpart.  
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FIGURE 4.1: High A interface evolution represented by scaled density in (b-e) inert (case 
12) and (f-i) reacting (without 3rd layer) RT unstable interfaces (case 13) realized at scaled 
times    2, 4, 6 and 10 respectively. The initial interface is shown in figure (a) while iso-
contours of fuel(black), flame-sheet(gray) and air(white) surfaces are overlaid on scaled 
density. 

 

 

FIGURE 4.2: (a) Scaled bubble and spike amplitudes and corresponding (b) Froude 
numbers for reacting and non-reacting single mode interfaces (A = 0.6) against scaled time 

 t Agk  . 
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For single-mode RT, we quantify the interpenetration of fuel-air streams by 

evaluating the bubble (fuel into air) and spike (air into fuel) amplitudes according to,  

݄௕ ൌ maxሺݔ|௓ୀ଴.ହሻ െ	ݔ௨௡௣௘௥௧௨௥௕௘ௗ|௓ୀ଴.ହ and     (4.1) 

݄௦ ൌ minሺݔ|௓ୀ଴.ହሻ െ	ݔ௨௡௣௘௥௧௨௥௕௘ௗ|௓ୀ଴.ହ.                  (4.2) 

In the above equations, maxሺݔ|௓ୀ଴.ହሻ signifies the location of the bubble tip along the 

Z=0.5 iso-contour while the spikes are identified by the corresponding minimum locations. 

Both bubble and spike amplitudes are measured with respect to ݔ௨௡௣௘௥௧௨௥௕௘ௗ|௓ୀ଴.ହ, the 

corresponding x-location in an independent unperturbed interface simulation. Such a 

definition accounts for the drift in the location of 	ܼହ଴ due to diffusive or combustion wave 

effects. In figure 4.2(a), we plot the scaled bubble (݄݇௕) and spike (݄݇௦) amplitudes against 

the scaled time (߬ ൌ  for the inert and reacting interfaces (cases 12 and 13). For (݇݃ܣඥݐ

݄݇ ≪ 1, perturbation amplitudes at first grow exponentially and symmetrically followed 

by a prolonged phase of nonlinear saturation where the spikes outpace bubbles. During the 

linear stage, reacting RT perturbation growth is affected by increased diffusion following 

ignition (߬௜௚௡ ൎ 1.87), although the late time non-linear growth appears to be indifferent 

to this effect.  

In fig. 4.2(b), we plot the Froude numbers associated with the bubble (ݎܨ௕) and 

spike (ݎܨ௦) tips  

௕,௦ݎܨ ൌ
|௏್,ೞ|

ටಲ೒ഊ
భశಲ

,          (4.3) 

where ௕ܸ,௦ refers to the corresponding bubble/spike terminal velocities. The initial 

exponential growth of the interface during the linear stages gives way to the asymptotic 

saturation of the Froude number as the flow becomes nonlinear (figure 4.2 (b)). Eventually, 
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at late times (߬ ൐ 5), the diffusive broadening (~8√ݐܦ) of the interfaces asymptotes (see 

figs. 4.1 g-i) such that the RT growth (~ݐඥ݇݃ܣ) is no longer affected by the enhanced 

diffusion in high temperature flames. During the non-linear stage of growth, potential flow 

models suggest bubbles and spikes grow with a constant Froude number given by [29,99], 

௕ݎܨ ൌ
ଵ

ඥ஼೏/ଶ
          (4.4) 

௦ݎܨ ൌ
ଵ

ඥ஼೏/ଶ
ටଵା஺

ଵି஺
         (4.5) 

where ܥௗ is the drag coefficient (ܥௗ 	ൌ  for 2D flows). At late times, the inert bubbles ߨ6	

and spikes attain a constant Froude number within 7% of equations (4.4) and (4.5). In 

contrast, the observed Froude number associated with reacting bubbles in figure 4.2 (b) are 

under predicted by equation (4.4).  

The observed increase in bubble terminal velocities may be understood in terms of 

the effect of burning on the flow properties of RT interfaces. Consider a parcel containing 

a stoichiometric mixture of unburnt fuel and air moving through the flame region with a 

velocity	ܷ௓ೞ೟ೠ೙್ೠೝ೙೟  and density ߩ௓ೞ೟ೠ೙್ೠೝ೙೟ . Ignition and subsequent combustion of such a 

mixture would modify the local density to ߩ௓ೞ೟್ೠೝ೙೟ ൌ  ௙௟ (where ௙௟ can be evaluated fromߩ

equation 3.15), while the post-combustion velocity ܷ௓ೞ೟್ೠೝ೙೟  will be modified to satisfy 

mass conservation across the unburnt-burnt interface: 

ܷ௓ೞ೟್ೠೝ೙೟ ൌ
ఘೋೞ೟ೠ೙್ೠೝ೙೟
ఘೋೞ೟್ೠೝ೙೟

ൈ ܷ௓ೞ೟ೠ೙್ೠೝ೙೟ ൌ ௧→∞ܷ௓ೞ೟ೠ೙್ೠೝ೙೟|ߪ .    (4.6) 

Thus, from equations 4.3 and 4.6 we anticipate 

௕ೝ೐ೌ೎೟ݎܨ ൎ  ௕೔೙೐ೝ೟.                   (4.7)ݎܨ∞→௧|ߪ
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In the above equation, the flame expansion ratio ߪ|௧→∞ ൌ ቆ
ఘೋೞ೟ೠ೙್ೠೝ೙೟
ఘೋೞ೟್ೠೝ೙೟

ቇ may be 

determined from the appropriate equation of state and a simplified 1-step reaction model 

(such as equation 3.13) to obtain 

∞→௧|ߪ ൌ
ఘೋೞ೟ೠ೙್ೠೝ೙೟
ఘೋೞ೟್ೠೝ೙೟

ൌ
ቀ
ುబೈೞ೟
೅బೃ

ቁ

ఘ೑೗
ൌ ൬

ௐೞ೟

ௐ೑೗
ൈ ்ೌ೏

బ்
൰ ൌ ൬

ௐೞ೟

ௐ೑೗
ൈ

∑ ௔೔஺೑షೌ
೔ల

೔సబ

బ்
൰.  (4.8) 

Here, ௦ܹ௧ is the unburnt mixture molecular weight obtained for reactants that appear on 

LHS of equation 3.13, while ܹ ௙௟ is obtained similarly from the RHS of that equation. Thus, 

we find combustion enhances the RT terminal velocities/Froude numbers by a factor ߪ|௧→∞ 

that is in turn a function of the fuel-air Atwood number. RT bubbles trapped in the flame 

region will register a higher effective Froude number compared to similar structures in the 

non-reacting flow.  

We clarify these issues in figure 4.3, where we plot the time evolution of the flame 

expansion parameter ߪ for unperturbed flames at low and high ܣ௙ି௔. Clearly, ignition is 

followed by a rapid decrease in the flame density and a corresponding increase in ߪ. 

Surprisingly, for the low ܣ௙ି௔ (three layer) flame where ߩ௙௟ ൏ ௙ߩ ൏  ௔, the saturationߩ

value of the flame expansion ratio is lower than the corresponding high ܣ௙ି௔ (two layer) 

flame. This is a consequence of more ܪଶ content (ߛ → 0) in the fuel stream at high A which 

results in increased ௔ܶௗ. In figs. 4.3 (b) we plot asymptotic ߪ|௧→∞ values from the 

simulations at different ܣ௙ି௔, which are within 10% of eq. 4.8. Furthermore, ߪ|௧→∞ rapidly 

increase with ܣ௙ି௔ while ܣ௙ି௔ ൑ 0.5 (three layer flames), following which it saturates to 

~ 2.16  0.036 at high A (two-layer), a trend dictated by the saturation of the adiabatic 

flame temperature (in eq. 4.8). Finally, the asymptotic reacting bubble Froude numbers 



46 
 

 

from our two-layer RT simulations (fig. 4.2b) are over predicted by 20% using equation 

4.7. The comparison of equation 4.7 for a range of ܣ௙ି௔ with our simulations is discussed 

in chapter 5. 

 

 

FIGURE 4.3: (a) Evolution of the flame expansion parameter  /
st stburntunburnt

Z Z    for 

low and high A unperturbed interfaces and (b) comparison of the asymptotic expansion 
parameter ( |t   ) with predictions from equilibrium chemistry (equation 4.8). 

 
We also estimate the reacting bubble velocity and Froude number by accounting 

for the additional buoyancy associated with the flame in a modified drag-buoyancy force 

balance equation [100-105], 

൫ߩ௙ ൅ ௔൯ߩ௠ܥ
ௗ௏್
ௗ௧

ൌ ݃൫ߩ௔ െ ௙൯ߩ െ
஼೏ఘೌ௏್

మ

ఒ
൅ ݃Δߩ௖௢௠.    (4.9) 

In eq. (4.9), ܥ௠ =1(2) is the added mass coefficient for 3D (2D) and Δߩ௖௢௠ ൎ ௓ೞ೟ೠ೙್ೠೝ೙೟ߩ െ

 ௓ೞ೟್ೠೝ೙೟signifies changes in the flame density due to combustion. Asymptotically, weߩ

require 
ௗ௏್
ௗ௧

ൌ 0, to obtain a reacting bubble Froude number ݎܨ௕ೝ೐ೌ೎೟, 

௕ೝ೐ೌ೎೟ݎܨ  ൌ ට
ଶ

େౚ
ൈ ൬1 ൅

Δఘ೎೚೘
൫ఘೌିఘ೑൯

൰ ൌ ௕೔೙೐ೝ೟ݎܨ ൈ ට൬1 ൅
Δఘ೎೚೘
൫ఘೌିఘ೑൯

൰   (4.10) 
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while the analogous calculation for spikes would result in, 

௦ೝ೐ೌ೎೟ݎܨ ൌ ௦೔೙೐ೝ೟ݎܨ ൈ ට൬1 െ
Δఘ೎೚೘
൫ఘೌିఘ೑൯

൰.      (4.11) 

Equations 4.10-4.11 evaluated using ideal gas law and adiabatic flame temperature 

calculations as discussed in chapter 3, under predicts the bubble Froude number from our 

simulation by 30% but the agreement is improved at low A (discussed later in chapter 5) 

whereas for all A equation 4.11 fails to predict the spike Froude number. 

 

 

FIGURE 4.4: Evolution of the mixing zone represented through iso-surfaces of  4 1Z Z  

from A = 0.6 inert and reacting RT interfaces. Images shown correspond to scaled times 
   (a, f) 1, (b, g) 5, (c, h) 10, (d, i) 15 and (e, j) 20. The initial interface location  ix  is 

indicated by horizontal arrows in each realization. 
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4.2 Multimode Perturbation 

We now extend our analysis to include RT flames at A = 0.6, and evolving from a 

non-premixed interface that is perturbed with a multimode function of the form given by 

eq. (3.8). Once again, we characterize the interface evolution for multimode RT flames by 

comparison with the baseline non-reacting case. Figures 4.4 a-e (f-j) are plots of iso-

contours of 4Z(1-Z) which highlight the development of the mixing zone for the non-

reacting (reacting cases) at scaled times ߬ ൌ ܮ/ଶݐ݃ܣ ൌ 1, 5, 10, 15 and 20. Note that 0	 ൑

4ܼሺ1 െ ܼሻ ൑ 1 , where the lower and upper limits indicate completely unmixed and mixed 

zones respectively. Initially (߬ ൏ 1), prescribed modes grow symmetrically (figs. 4.4 a and 

f) in the linear stages of the instability without interaction with their neighbours. This is 

accompanied by diffusion of the mixing zone that results in a combustible mixture across 

the interface. For the reacting interface, such a mixture autoignites at ߬௜௚௡ ൎ 0.035, and 

the subsequent flame formed within the mixing zone (fig. 4.4f) continues to grow similar 

to the inert case (figs. 4.4 a). This is followed by self-similar growth for (߬ ൒	5), where 

long-wavelength modes (ߣ) are formed through mode coupling of higher harmonics (figs. 

4.4 b-e and g-j). During this phase, longer modes (ߣ) are visible for the reacting interface 

than the inert case, suggesting the mode coupling proceeds with a higher merger rate in the 

presence of a flame enhanced bubble Froude number. The horizontal arrow in fig. 4.4 

indicate the location of the unperturbed interface (ݔ௜), and serves to illustrate the 

asymmetry of the mixing layer for this high A flow. As expected for a high A RT unstable 

interface [88,106,107], spikes outpace bubble growth in our non-reacting simulation (figs. 

4.4 c-e). In contrast, the reacting RT appears to retain a higher degree of symmetry 
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(bubblesൎspikes) well in to the self-similar turbulent stage visible in fig. 4.4 j, a 

consequence of (a) higher reacting bubble Froude number and (b) preferential travel of 

positively buoyant flame against imposed acceleration to enhance the bubble growth . 

Furthermore, the width of the reacting mixing layer is larger than the corresponding non-

reacting case throughout the self-similar growth regime. We suspect this is a consequence 

of the additional buoyancy experienced by the flame region, an effect that is expected to 

dominate at late times, through the buoyancy-driven flame expansion mechanism 

discussed earlier for the single-mode interface (§4.1).  

The approach to self-similarity in reacting and non-reacting RT is illustrated in 

figs.4.5. We plot cross-stream profiles of the (y-z) planar-averaged mixture fraction (൏

ܼ ൐ሻ	and scaled density (൏ ∗ߩ ൐) at different times from cases 26 and 27. These profiles 

are plotted as functions of the similarity variable (ߦ),  

ߦ ൌ
௫ି௫ಬೋఱబಭ

௫ಬೋబభಭି௫ಬೋవవಭ
         (4.12) 

for the inert (a-b) and reacting (c-d) interfaces for ߬ ൐ 	5 with an interval of ߬߂ ൌ 1. In eq. 

 ழ௓ఱబவ corresponds to the location of the 50% planar-averaged mixture fractionݔ ,(4.12)

surface, while ݔழ௓బభவ and ݔழ௓వవவ refer to the mean bubble (air stream) and spike (fuel 

stream) locations. Note that in figs. 4.5 c-d, the 1D unperturbed flame profile is plotted as 

the thick grey line as a baseline for comparison. From fig. 4.5, the presence of a flame 

region does not affect the self-similar evolution of the underlying RT flow, so that we can 

expect eq. (1.3) to still govern the late-time dynamics of the turbulent mixing layer in both 

cases. Furthermore, the self-similar Z-profiles for the two-layer RT flame exhibits the same 

behaviour as the unperturbed 1D flames. Slight deviations from the 1D density profile are 

attributed to the presence of the unburnt mixture within the turbulent mixing zone. This is 
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a consequence of the entrainment rate of fuel and air into the mixing zone (~߬) exceeding 

the rate of flame formation (~߬௜௚௡ ൎ 0.035).  

 

 

FIGURE 4.5: Scaled profiles of planar-averaged mixture fraction and density from A = 
0.6, multimode (a-b) inert and (c-d) reacting interfaces obtained at intervals of    1 in 
the range     5−22. The 1d flame profile (case 3) is shown with a thick grey line for 

comparison. The profiles are plotted against the coordinate  
50 01 99

) / (( )Z Z Zx x x x    . 

 
Figures 4.4 – 4.5 provide preliminary evidence of the existence of self-similarity in 

turbulent RT fronts even when a flame is present. We examine this issue in greater detail 

by tracking the behaviour of bubble and spike fronts for both reacting and non-reacting 
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flows. Note that simulations [3,30] and experiments  [108] of non-reacting RT suggest self-

similarity in such flows requires dominant bubbles (and probably spikes) evolve such that  

௕,௦ߚ ൌ
ழλౘ,౩வ

ழ୦ౘ,౩வ
          (4.13) 

where ൏λୠ,ୱ ൐ indicates the dominant bubble(spike) wavelength within the 

bubble(spike) front and ߚ௕,௦ is the self-similarity parameter. In figures 4.6 (a) – (d), the 

bubble fronts (identified as the x-heights ݔ|ழ௓ஹ଴.଴ଵሺݕ,  ሻ) are shown at early (tau = 5) andݖ

late times (tau = 20) for the inert (a-b) and reacting (c-d) interfaces. The corresponding 

spike fronts (ݔ|ழ௓ஹ଴.ଽଽሺݕ,  ሻ) are plotted in figures 4.7. In both figures, only the leadingݖ

bubbles/spikes that satisfy (ݔ௓బభ,వవ ൒ 	0.75൫ݔழ௓வబభ,వవ െ ௜൯ݔ ൌ 0.75݄௕,௦) are visualized[3]. 

Even at early times (߬ ൌ 5), the reacting interface contains about half the number of 

bubbles as the inert front (~50 as opposed to ~100). These structures coalesce to ~12 (20) 

at late times (߬ ൌ 20), corresponding to logଶ ቀ
ହ଴

ଵଶ
ቁ ൎ2.06 (2.32) generations of reacting 

(inert) bubble evolution. In contrast, at early times the two interfaces have comparable 

(~120) leading spike structures that evolve through 2.00 (3.38) generations to reduce to 

~30 (~10) for the inert (reacting) interfaces. 

 We use an autocorrelation analysis of figs. 4.6 – 4.7 [3,30] to compute the evolution 

of the mean bubble and spike diameters (ܦ௕,௦) as a function of time. The self-similarity 

parameter (ߚ௕,௦) for bubbles and spikes is  evaluated here using Daly’s suggestion[109] 

ቀߣ௕,௦ ൌ ௕,௦ܦ
ଶ

஺ାଵ
ቁ to relate mean diameters to the corresponding dominant wavelengths. 

For both reacting and non-reacting RT, the mean bubble diameters in figure 4.8 (a) grow 

linearly with ߬ , a behavior that suggests self-similarity. For case 26, the average spike tends 

to be narrower (fig. 4.8 (b)), consistent with [108] for these high A simulations. We also 
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show the evolution of the spike front under flame conditions in fig. 4.8 (b), where the 

enhanced diffusive transport due to burning rapidly increases the mean reacting spike for 

߬ ൏ 12. Thereafter, spike diameter growth is steady and follows the trajectory of the non-

reacting case, eventually growing to ~1/3 the box size by the end of the simulation. The 

corresponding self-similarity parameters are shown in fig. 4.8 (c), and clearly indicate the 

presence of the flame does not significantly affect the self-similar nature of turbulent RT. 

However, burning appears to affect the saturation values of ߚ௦ through the increased 

diffusion mechanism discussed above, leading to a saturation value that is 20 % larger than 

the non-reacting spike front. 

 

FIGURE 4.6: Bubble fronts for high A (a-b) inert and (c-d) reacting interfaces at early 
( 5)   and late times ( 20)  .  
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FIGURE 4.7: Spike fronts for high A (a-b) inert and (c-d) reacting interfaces at early 
( 5)   and late times ( 20)  . 

 

 

FIGURE 4.8: Evolution of mean (a) bubble and (b) spike diameters obtained from the 

autocorrelation procedure of [3] and the corresponding (c) self-similarity parameter  ,b s  

plotted against scaled time for A = 0.6, inert and reacting RT flow.  
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We quantify the growth of the mixing zone towards the fuel (spike) and air (bubble) 

streams by tracking the location of planar averaged (൏∗൐) mixture fraction, so that ݔழ௓வబభ 

and ݔழ௓வవవ correspond to the mean bubble and spike locations respectively. The resulting 

bubble bubble (൏ ݄௕ ൐) and spike (൏ ݄௦ ൐) amplitudes are scaled with the box width L, 

and plotted as a function of ߬ in figure 4.9. Note that we define <hb> and <hs> according 

to 

൏ ݄௕,௦ ൐ൌ ழ௓வబభ,వవݔ െ  ௜.        (4.14)ݔ

The corresponding growth constant ቀߙ௕,௦ ൌ
ଵ

௅

ௗழ௛್,ೞவ

ௗఛ
ቁ is plotted in figure 4.9 (b) for both 

the reacting and non-reacting RT. When combustion is absent (case 26), the flow exhibits 

a shortened linear growth phase (߬ ൏ 5	), followed by a terminal self-similar phase 

characterized by a constant ߙ௕ ൎ 0.027 േ 0.01 similar to previously reported values in [3]. 

However at late times a gradual decline in ߙ௕ is observed as bubbles lose their effective 

buoyancy by entraining and trapping air (heavy fluid). During the early stage of the reacting 

interface evolution (߬ ൏ 5	), the bubble and spike amplitudes (fig. 4.9 a) appear largely 

unaffected by the presence of flame. However at late times (5 ൏ ߬) (see figures 4.4 b-e and 

g-j), the reacting interface evolves with higher growth rates for both spikes and bubbles. 

This is attributable to two effects discussed earlier in this work: the preference for modes 

with larger diameters (than the inert) and the observed increase in the terminal bubble 

velocity/Froude number due to the additional buoyancy resulting from the flame presence. 

In light of these effects, we expect the reacting mixing zone (ൎ |݄௕| ൅ |݄௦|) to grow faster 

than inert. Thus, in fig. 4.9 (b), reacting bubbles evolve with a larger growth rate during 

the self-similar stage ߙ௕ ൎ 0.051 േ 0.01, while spike growth rates (ߙ௦ ൎ 0.064 േ 0.02) 

are comparable to the non-reacting case. 
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FIGURE 4.9: Evolution of (a) molecular mixing parameter    and scaled bubble and 

spike amplitude for high A (A=0.6) inert and reacting interfaces against scaled time. The 

corresponding amplitude growth constants  ,b s  are shown in (b). 

 
The ratio of small-scale (atomic) mixing to large-scale mixing from entrainment 

may be characterized through the molecular mixing parameter [110,111], 

ߠ ൌ
׬ ழ௓ሺଵି௓ሻவௗ௫
∞
ష∞

׬ ழ௓வழଵି௓வௗ௫
∞
ష∞

.          (4.15) 

Thus, ߠ can vary between 0 and 1, where the lower limit signifies a perfectly unmixed 

state, while the upper limit indicates perfect mixing. Note that the initially large values of 

 are due to the discrete representation of the interface on the finite numerical grid, and not ߠ

the result of a physical mixing process. At early times, much of the mixing layer growth is 

driven by linear growth of individual modes, with insignificant transport in the lateral 

directions. Such a growth pattern does not engender small-scale mixing, thereby rapidly 

decreasing the mixing parameter from its initially large value. Eventually, as individual 

modes achieve nonlinear saturation, they engage in a bubble merger process thereby 

generating small-scale mixing and increasing ߠ. For non-reacting RT, the mixing 
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parameter asymptotically attains a value ൎ 0.79 േ 0.007 within the range of previously 

reported values in from experiments [31,106] and simulations[3,111]. The increased 

diffusive transport resulting from combustion suppresses small-scale mixing slightly in the 

reacting RT simulations, yielding a value of ߠ ൎ 0.71 േ 0.007 for 5 ൏ ߬ ൏ 16. However, 

at late times (߬ ൒ 18), small-scale mixing recovers in response to aggressive mode-

coupling as ߠ eventually approaches the asymptotic value reported form the inert 

simulations. 

 



 

 

 

 

 

CHAPTER 5: THREE LAYER RAYLEIGH-TAYLOR FLAMES 
 
 

In this chapter, we discuss the evolution of fuel-air interfaces, which upon ignition 

form a flame-induced (ߩ௙ ൏ ௙௟ߩ ൏  ௔) three-layer RT configuration. As previewed inߩ

chapter 3, the modification to the density stratification profile is an effect that depends on 

the Atwood number, and can result in the formation of an active intermediate layer 

comprised of combustion products when ܣ௙ି௔ ൏ 0.5. When perturbations are present at 

the interface, the emergence of the intervening layer can profoundly influence the resulting 

stability of the flow. For reacting interfaces, we classify the flows based on the global 

stability of the stratification of the outer fuel/air layers (i.e. ݃ܣ௙ି௔). For example, an 

initially (globally) unstable fuel-air (f-a) interface (݃ܣ௙ି௔ ൏ 0) will be transformed upon 

ignition into distinct stable (fuel-flame (f-fl), ݃ܣ௙ି௙௟ ൐ 0) and unstable (flame-air (fl-a), 

௙௟ି௔ܣ݃ ൏ 0) interfaces. Conversely, an initially (globally) stable interface (݃ܣ௙ି௔ ൐ 0), 

following ignition will deteriorate to unstable (݃ܣ௙ି௙௟ ൏ 0) and stable (݃ܣ௙௟ି௔ ൐ 0) 

interfaces. We discuss below the implications of this transformation in each case, when the 

interfaces are subject to single- and multi-mode perturbations. 

5.1 Single Mode Perturbation 

We repeat the 2D single mode calculations from chapter 4 (ߣ ൌ 0.5ሻ, but with 

௙ି௔ܣ ൌ 0.2 and with a constant background acceleration of ݃ ൌ േ6 ൈ 10ଶ݃଴. The results 

from the reacting simulation are compared with a baseline, globally unstable (݃ܣ௙ି௔ ൏ 0), 

inert RT calculation. Figure 5.1 depicts contours of the scaled density (ߩ∗) realized at 
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different non-dimensional times (߬ ൌ  for: baseline inert (b-e), globally unstable (݇݃|∗ܣ|ඥݐ

(f-i), and globally stable (j-m) reacting interfaces. Note that ܣ∗ corresponds to the unstable 

Atwood number driving the flow so that for the inert interface ܣ∗ ൌ  ௙ି௔, while for theܣ

reacting cases ܣ∗ ൌ ൜
,௙ି௔ܣ ݐ ൏ ௜௚௡ݐ
,௙௟ି௔ܣ ݐ ൒ ௜௚௡ݐ

 when g < 0 and ܣ∗ ൌ ൜
,௙ି௔ܣ ݐ ൏ ௜௚௡ݐ
,௙ି௙௟ܣ ݐ ൒ ௜௚௡ݐ

 for g > 0. Once 

again in all the figures, the fuel (Z=0.99), flame sheet (ܼ ൌ ܼ௦௧) and air (Z=0.01) surfaces 

are indicated by black, gray and white lines respectively. The evolution of the unstable 

inert interface is analogous to that of the A = 0.6 case discussed earlier, except the bubble 

and spike structures remain fairly symmetric even at late times for the modest density ratios 

investigated here (fig. 5.1e). Prior to ignition, the globally-unstable reacting interface 

exhibits a linear growth phase consistent with classical RT. In contrast, the globally-stable 

reacting case shows no growth (except for a periodic oscillation [99,112] with a frequency 

ඥ݇݃ܣ) until ignition modifies the fundamental stratification as described earlier. For both 

the reacting simulations, ignition occurs at ߬ ൎ 1.3, and results in the formation of an 

intervening third layer which dramatically alters the (post-ignition) RT flame development. 

Globally stable (݃ܣ௙ି௔ ൐ 0) flame (figs. 5.1 j-m): At ignition, the interface 

amplitude undergoes a phase inversion (driven by periodic oscillations for a RT stable 

interface [99,112]) and is significantly smaller than the corresponding unstable inert 

interface. Shortly thereafter, the high temperature associated with the flame enhances mass 

diffusion (ܦ௥௘௔௖௧ ൎ  ௜௡௘௥௧), leading to significant broadening of the interface thicknessܦ2

(figs. 5.1 j-l), and an increased separation distance (~8ඥܦ௥௘௔௖௧ݐ) between the fuel and air 

streams. In addition to the diffusive broadening, the unstable fuel-flame interface grows 

asymmetrically towards the fuel stream (figs. 5.1m). Note that the stable air surface is 
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unaffected by the growth of the unstable fuel-flame interface until at late times when there 

is a distortion of the stable interface due to inertia (figs. 5.1 m). 

 

FIGURE 5.1: Low A interface evolution represented by scaled density in (b-e) inert (case 
14), globally (f-i) unstable (case 15) and (j-m) stable (case 16) reacting (with 3rd layer) RT 
unstable interfaces realized at scaled times   2, 4, 6 and 10 respectively. The initial 
interface is shown in figure (a) while iso-contours of fuel(black), flame-sheet(gray) and 
air(white) surfaces are overlaid on scaled density. 

 
Globally unstable (݃ܣ௙ି௔ ൏ 0) flame (figs. 5.1 f-i): Following ignition, the 

enhanced diffusive transport is responsible for flame thickening and reduced growth of the 

unstable flame sheet (ܼ௦௧). Once again, the flame sheet continues to grow asymmetrically 

but in this case towards the air stream (figures 5.1 g-i) dictated by the growth of the 

corresponding unstable flame-air (ܣ௙௟ି௔ ൌ 0.38) interface. The growth of the fuel surface 

(locally stable) is arrested until it is breached by the advancing (figure 5.1 g-h) flame sheet. 

Thereafter, the fuel surface continues to grow (figure 5.1 i) under the influence of the 

unstable flame-air interface, and the flow is globally unstable at late times. Thus, the 

formation of the bilayer renders the fuel surface stable over a timescale  

߬௦௧௔௕௟௘ ∝
௦೏
௛ሶ ೋೞ೟

ඥ(5.1)         ,݇݃∗ܣ 
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where ݏௗ is the characteristic separation distance between fuel and stoichiometric surfaces 

that the flame sheet must traverse before interacting with and affecting the fuel surface 

(discussed below). 

 

 

FIGURE 5.2: Schematic representation of the formation of the third layer in a low Atwood 
number, fuel-air mixture with a locally stable fuel-flame and locally unstable flame-air 
interfaces. 

 
Stability duration model: In a globally unstable (݃ܣ௙ି௔ ൏ 0) non-premixed flame, 

the fuel surface remains stable (ܼଽଽ) over a duration ߬௦௧௔௕௟௘ given by eq. (5.2). In such a 

scenario (fig. 5.2), the density varies smoothly across the burning interface with an 

inflection point at ܼ ൌ ܼ௦௧ (flame sheet) where it reaches a local minimum. Thus, the 

sorting of the density stratification in cases 15-16 are fundamentally different from both 

non-reacting RT and a classical three-layer problem in which the intermediate layer is 

occupied by a passive scalar. In figure 5.2, we schematically compare the density (ߩ) 
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stratification across a low A flame with classical (non-reacting) two-layer and three-layer 

RT configurations (studied previously by [113]). For the reacting RT, the flame sheet (ܼ௦௧) 

is located at a distance of ݈ௗሺ1 െ ܼ௦௧ሻ	 (fig. 5.2) from the locally stable (݃ܣ௙ି௙௟ ൐ 0) fuel 

surface (ܼଽଽ), where ݈ௗ is distance between the fuel and air streams. Subsequently, the fuel 

surface will exhibit a period of stability until downward spikes associated with the flame 

sheet (ܼ௦௧ೞ೛೔ೖ೐) breach the fuel bubble surface (ܼଽଽ್ೠ್್೗೐). The flame sheet spike front must 

travel a separation distance ݏௗ ൌ ௓ೞ೟ೞ೛೔ೖ೐ݔ െ ௓వవ್ೠ್್೗೐ݔ  before it can destabilize the fuel 

surface, following which the fuel surface will grow driven by the inertia of the unstable 

flame-air interface. Thus, the single-mode globally unstable reacting RT flame will exhibit 

partial stability of the fuel surface for a duration of  

߬௦௧௔௕௟௘ ൎ
௦೏
௛ሶ ೋೞ೟

ඥ݇݃ܣ െ ߬௜௚௡,        (5.2) 

where ሶ݄ ௓ೞ೟ ൌ ݄݀௓ೞ೟/݀ݐ is the growth rate of the flame sheet.  

In figure 5.3, we plot the scaled fuel and flame sheet amplitudes for the globally 

unstable interface (case 15) against scaled time. The amplitudes are inferred as the distance 

between the peaks of the ܼଽଽ and ܼ௦௧ iso-contours respectively. Also plotted is the 

separation distance (ݏௗ) that the unstable spike front associated with the flame sheet must 

travel before breaching the stable fuel surface. Initially, diffusive broadening (~√ݐ) 

dominates over RT growth (~݁௧) so that ݏௗ increases. The fuel-air interface ignites at 

௜௚௡ݐ ൌ ௜௚௡߬) ,ݏ݉	0.34 ൎ 1.8) in this diffusion dominated growth phase, and the resulting 

flame forms an active third layer that renders the fuel surface locally stable. Following this, 

the growth of the fuel surface (ܼ ൌ ܼଽଽ) stagnates, while the flame sheet continues to grow 

under the influence of RT unstable flame-air interface The spike tip of the flame sheet 
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advances towards the stable fuel surface thereby countering the diffusive broadening 

(which is enhanced by flame conditions). The flame formation increases the Atwood 

number (ܣ௙௟ି௔ ൎ  ௗ through the increasedݏ ௙ି௔) driving the flow and also contributes toܣ	2	

mass diffusion. Eventually, (߬ ൒ 6) RT growth (~݁௧) of flame surface (ܼ௦௧) dominates, 

thereby rapidly decreasing the separation distance. The spike tip of the advancing flame 

sheet breach the fuel surface at ߬	~	10 marked by ݏௗ ൎ 0. Following this (ݏௗ ൏ 0) the fuel 

surface grows, driven by the inertia of the advancing flame sheet spikes.  

 

 

FIGURE 5.3: Scaled separation distance  dks  and amplitude  kh  of the fuel 99( )Z and 

flame sheet ( )stZ  surfaces plotted against scaled time  *t A gk   obtained from 

simulations with 0.5 cm   and 4
00.6 10g g   for 0.2f aA    reacting interface. 
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FIGURE 5.4: (a) Effect of imposed acceleration on the scaled separation distance: Plot of  

 dks  against scaled time  *t A gk  . (b) Fuel surface stability durations as predicted 

by equation (5.2) and observed in numerical simulations (NS).  
 
The separation distance may be viewed as a measure of the competition between 

the diffusive thickening (increases ݏௗ) and RT growth (decreases ݏௗ) of the interface. Thus, 

by increasing g, the transition to RT-dominated growth phase can be accelerated. In figure 

5.4, we plot the scaled separation distance (݇ݏௗ) against scaled time from simulations with 

ߣ ൌ 0.5	ܿ݉ (cases 15, 20-22). For all the single-mode cases presented in figure 5.4(a), the 

initial perturbation amplitude was specified to be ݄଴ ൌ 0.05/݇. Note that the higher initial 

amplitude also results in a faster transition to RT-dominated growth phase. Ignition of the 

fuel-air mixture is purely a thermo-chemical phenomenon, so that the ignition delay time 

௜௚௡ is unaffected by the imposed gravity. However, the scaled time at ignition ߬௜௚௡ݐ ൎ

 varies quadratically with imposed acceleration (g) and is indicated in fig. 5.4 ݇݃∗ܣ௜௚௡ඥݐ

(a). As a consequence, with increasing g the flame and subsequent three-layer formation 

progressively shift towards the RT-dominated growth regime. The fuel surface (ܼଽଽ) is 

considered to be stable over a time during which no net increase ቀ
ௗమ௛೥వవ
ௗ௧మ

൑ 0ቁ in its growth 
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rate is observed in our simulation. We use the maximum post-ignition separation distance 

(sd) and the mean growth rate of the flame sheet for ߬௜௚௡ ൑ ߬ ൑ ߬|௦೏ୀ଴ in equation (5.2) to 

estimate the stability duration of the fuel surface. In figure 5.4(b), we compare the 

estimated duration of stability from eq. (5.2) with results from our numerical simulations 

for cases 7-10, 15, 20-25. Our simple scaling analysis shows excellent agreement with the 

simulation results over a wide range of ݃ and ߣ. Note that slight disagreement for high g 

and smaller wavelength (ߣ ൌ 0.3	ܿ݉) case is a consequence of ignition in RT dominated 

ௗݏ) → 0) interface growth phase. 

 

FIGURE 5.5: (a) Scaled bubble and spike amplitudes and corresponding (b) Froude 
numbers for reacting and non-reacting single mode interfaces (A = 0.2) against scaled time 

 *t A gk  . 

 
We quantify bubble (spike) amplitudes and corresponding Froude numbers by 

tracking the peaks and valleys of an isocontour of mixture fraction. The three layer RT 

flames discussed here are partially stable such that the change in stability (going from ܼ ௙ ൌ

ܼଽଽ to ܼ ௔ ൌ ܼ଴ଵ) occurs at ܼ ൌ ܼ௦௧ ൎ 0.45. The iso-contour of ܼ ହ଴ (tracked earlier for two-

layer RT) may lie in a locally stable density stratification, and hence may no longer be a 

suitable metric for instability growth in the corresponding three-layer problem. The 



65 
 

 

rationale behind the use of the ܼହ଴ level for the two-layer RT was based on tracking an iso-

contour that is centrally located over the range corresponding to unstable density 

stratification in Z-space. For the three layer reacting interface, the unstable density 

stratification spans either ܼ௦௧ ൒ ܼ௔ ൎ ܼ଴ଵ (flame-air for globally unstable, ݃ܣ௙ି௔ ൏ 0) or 

ܼ௦௧ ൑ ௙ܼ ൎ ܼଽଽ (fuel-flame for globally stable, ݃ܣ௙ି௔ ൐ 0). As a result, we track the iso-

contour of ܼ௨௡௦௧௔௕௟௘ ൌ
௓ೞ೟ା௓ೌሺ೑ሻ

ଶ
ൎ ܼଶଷሺܼ଻ଷሻ, centrally located in unstable Z-space for 

globally unstable (stable) RT flames. Note that for the inert interface we track ܼ௨௡௦௧௔௕௟௘ ൌ

ܼହ଴. In figure 5.5 (a) we plot the evolution of scaled bubble (݄݇௕) and spike amplitudes 

(݄݇௦) for inert and reacting interfaces from cases 15-16 and based on the ܼ௨௡௦௧௔௕௟௘ level. 

The corresponding Froude numbers are plotted in figure 5.5 (b). Following a short linear 

growth (symmetric and exponential in time), the inert interface undergoes nonlinear 

saturation (constant terminal bubble velocity). At late times (߬ ൒ 8), the low A bubbles and 

spikes attain a terminal velocity marked by a constant Froude number (see figure 5.5b) that 

is within 7% of eqs. 4.4-4.5. For the globally unstable flame, enhanced diffusion resulting 

in ignition and subsequent flame formation in responsible for a slight reduction of growth 

rates during the linear regime. The reacting bubbles attain larger terminal velocities much 

later (߬ ൒ 12) than the inert counterparts. The observed bubble Froude number is within 

6% of the modified drag-buoyancy model for a positively buoyant flame (eq. 4.10), while 

underpredicting the flame expansion model (eq. 4.7) by ~ 30%. For the globally stable RT 

flame (case 16), following ignition the Atwood number driving the flow is ܣ௙ି௙௟ ൌ

ఘ೑೗ିఘ೑
ఘ೑೗ାఘ೑

ൎ 0.2, while diffusion enhancement following ignition is unchanged from the 

globally unstable case. As a result, the growth of the globally stable RT flame in fig. 5.5 is 
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significantly suppressed initially resulting in a prolonged (߬௜௚௡ ൏ ߬ ൏10) linear regime 

(݄݇ ൎ 1). Eventually (߬ ൒ 13), through the nonlinear saturation of the growing RT flame, 

the globally stable bubbles once again attain a constant Froude number but ~10% smaller 

than corresponding globally unstable flame. 

The local stability of the globally stable/unstable RT flames complicates the 

evolution of unstable spikes in each case. At late times, the spikes for the two reacting 

interfaces advance towards a locally stable surface. For the globally unstable (stable) flame, 

the Atwood number corresponding to the stable surface is half (twice) of the advancing 

spike. Thus the resistance to advancing spikes in globally unstable (stable) flame by locally 

stable surface is weak (strong). As a consequence, the peak spike growth for globally stable 

flame is ~35% smaller than the globally unstable flame, following which ݎܨ௦ decays for 

the two flames. The late-time decay in spike growth is attributed to the loss of momentum 

associated with the interaction with the locally stable surface (fuel/air for globally 

unstable/stable interface). 

5.2 Multimode Perturbation 

We now discuss the implication of flame-generated three-layer density 

stratification on an interface initialized with multimode perturbations. The RT flame 

dynamics is schematically presented in fig. 5.6 for globally (a) unstable and (b) stable fuel-

air interfaces alongside the (c) scaled density (ߩ∗) stratification across an unperturbed 

burning interface from our 1D calculations. The behaviour of the RT flame depicted 

schematically in fig. 5.6 may be understood in terms of a corresponding three-layer, non-

reacting RT system [113]. For instance, [113] investigated through detailed experiments 

the dynamics of globally-stable (ܣ௕௢௧௧௢௠ି௧௢௣݃ ൐ 0) and –unstable (ܣ௕௢௧௧௢௠ି௧௢௣݃ ൏ 0), 
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non-reacting three-layer systems, with a constant, intermediate layer thickness of ݏௗ. Note 

that for all these experiments, ݃ ൏ 0 and ܣ௕௢௧௧௢௠ି௧௢௣ was varied such that ߩ௠௜ௗௗ௟௘ ൏

 ௕௢௧௧௢௠. For either configuration, the early-time amplitude of the unstable interface is smallߩ

compared to the layer thickness ݏௗ, so that the stable interface is unaffected by the 

evolution of the corresponding unstable interface above it. However, at late times, when 

the amplitude of perturbations at the unstable interface approaches ݏௗ, the evolution of the 

stable interface is affected by the development of the unstable interface and the global 

stability of the system, i.e. ݊݃ݏሺܣ௕௢௧௧௢௠ି௧௢௣݃ሻ ൏ 0. For a globally stable or neutral system 

௕௢௧௧௢௠ି௧௢௣݃ܣ) ൒ 0), the stable interface resists the growth of the unstable interface in its 

direction, thereby partially penetrating/eroding the bottom fluid. Furthermore, the degree 

of erosion/penetration decreases as the density contrast between the bottom and top layer 

was increased (|ܣ௕௢௧௧௢௠ି௧௢௣|) [113]. In contrast, for a globally unstable system 

௕௢௧௧௢௠ି௧௢௣݃ܣ) ൏ 0), the mixing from the unstable interface eventually increases the 

density of the intermediate layer above that of the lower fluid, which renders the initially 

stable interface, RT unstable. Subsequently, the flow problem may be represented by the 

classical two-layer, single-interface RT growth. In the case of the reacting RT, the flame 

region exhibits behaviour similar to the corresponding non-reacting three layer problems 

described above, but with two important distinctions: (a) The intermediate layer (reaction 

zone) density is not uniform but varies smoothly across the f-a interface (fig. 5.6 c) and (b) 

the thickness of the flame (ݏௗ) is not constant and grows over time. Since the flame region 

is continuously replenished, the three-layer configuration is sustained such that a reacting, 

globally unstable system exhibits characteristics of a non-reacting globally stable system 

(discussed below). 
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FIGURE 5.6: Schematic of a (a) globally unstable  0f agA    and (b) globally stable 

 0f agA    three layer RT configuration induced by the flame for 0.2f aA   . (c) The 

scaled density profile  *   obtained from an unperturbed 1D simulation. 

 
Globally Unstable Flame ( 0f aA g  ): For 0f aA g  , the initial f-a interface is RT 

unstable (we refer to this configuration as globally unstable). The prescribed modes on the 

interface grow linearly accompanied by diffusive broadening of the interface resulting in a 

combustible mixture that lines the perturbed interface. Such a perturbed f-a interface auto-

ignites at ݐ	 ൌ 	  ௜௚௡ and subsequently forms a 3-layer configuration (fig. 5.6 a). Thus, theݐ

f-fl interface is locally RT stable while the fl-a interface is RT unstable. The modes on the 

fl-a interface continue to grow such that positively buoyant bubbles associated with the 

flame rise against gravity, while spikes descend towards the stable fuel-flame interface. 

Eventually, downward spikes encounter the stable interface, which they will displace due 

to inertia. 
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Globally Stable Flame ( 0f aA g  ): When the imposed acceleration is reversed (

0f aA g  ), the original f-a interface is RT stable. Thus, initial perturbations at this stable 

interface are gradually consumed by diffusive broadening, followed by ignition at ݐ	 ൌ

 ௜௚௡. The resulting combustible mixture and flame region reconfigure the initial bilayerݐ	

problem in to a globally stable three-layer stratification (fig. 5.6 b). The fl-a interface is RT 

stable, while the presence of the intervening layer of lower density within the flame renders 

the f-fl interface RT unstable. Thus, imposed modes on the f-fl interface will grow so that 

flame bubbles descend against gravity and towards the fuel stream, while spikes of the fuel 

ascend towards the stable air stream through the flame region.  

In figure 5.7, we present qualitative features from three simulations involving a 

perturbed interface separating fuel-air streams: Case 28 refers to a non-reacting (RT 

unstable, 0f aA g  ) f-a interface and serves as a baseline, while cases 29 and 30 

correspond to configurations that are globally unstable and stable for ݐ	 ൐ 	  ௜௚௡ݐ

respectively. We describe the growth of the reacting and non-reacting interfaces at scaled 

times * 2 /A gt L  , where *A  is the effective unstable Atwood number driving the flow. 

For non-reacting RT, *
f aA A  , while for the reacting flow

,*

,
{ f a ign

fl a ign

A t t

A t t
A








 for 0f aA g   and 

,*

,
{ f a ign

f fl ign

A t t

A t t
A








 for 0f aA g  , and is thus modified to represent the post-ignition (t  ignt ) 

density contrast. 
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FIGURE 5.7: Isosurfaces of scaled density * ( ) / ( )f a f        from inert (left), and 

reacting interfaces with 0f aA g   (middle) and 0f aA g   (right column) at scaled times 

  = 1.6 (a, e, i), 5.0 (b, f, j), 10.0 (c, g, k) and 19.0 (d, h, l). The initial interface location  
( )ix  is indicated by horizontal arrows for each realization. 



71 
 

 

Non-reacting f-a interface (Case 28): At early times (fig. 5.7 a), prescribed modes 

grow linearly without interaction with their neighbors. During the subsequent self-similar 

growth regime ( >5), long-wavelength modes ( ) are visible and have been formed 

through mode coupling of higher harmonics (figs. 5.7 b-d). Consistent with low Atwood 

number RT unstable interfaces [3], the bubble and spike fronts from this A* = 0.2 simulation 

exhibit symmetry well in to the self-similar turbulent stage (figs. 5.7 d).  

Globally Unstable Flames (Case 29): Mass diffusion across the initial interface 

produces a fuel-air mixture that auto-ignites (at t = ignt = 0.34 ms), early in the linear stage 

(  ≈ 0.02) of instability growth. By   ≈ 1.6 (fig. 5.7 e), a hot (T ~ 2000K), low-density 

flame (ρ* < 0) is formed and lines the interface. At this stage, the separation distance ( sd ) 

is of the order of perturbation wavelengths ( ), so that the growth of the unstable interface 

is affected by the presence of the stable interface f-fl. Spikes from the unstable fl-a interface 

traverse the flame region and eventually breach the stable fuel surface (fig. 5.7(f)) at  5. 

The momentum transfer as a result of this collision with the stable surface results in a 

purely inertial growth/displacement of the low density fuel surface (ρ*=0). Through this 

mechanism, the descending spikes continue to transport air towards the fuel surface (ρ*=0), 

which mixes with the fuel stream to increase ds upon combustion. In the self-similar regime 

(fig. 5.7 f-h), long wavelength modes are formed while the separation distance between the 

layers continues to increase. As a result, asymmetric interpenetration of fuel and air streams 

is observed at late times (fig. 5.7 h). 

Globally Stable Flames (Case 30): When the direction of acceleration is reversed, 

an initially RT-stable f-a interface upon combustion (fig 5.7 i) will render the fuel surface 

unstable ( 0f flA g  ). Similar to case 29, the flame surface lines the pre-ignition f-a 
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interface, but then grows in the direction of the fuel stream. The subsequent growth of the 

f-fl interface transports fuel towards the stable fl-a interface, thereby increasing the 

thickness ds  of the inner layer (fig. 5.7 j-k) upon penetration into the air stream. The 

momentum transferred on collision by the ascending unstable spike growth in the linear 

stage (fig. 5.7 i-j) is insignificant to the displacement of the stable air surface (ρ* = 0) since

a f  . In the self-similar regime, long wavelength modes formed through mode 

coupling eventually gain enough momentum to breach the mixing zone (~2 sd ) and 

deform/displace (fig. 5.7 k-l) the air surface.  

 

 

FIGURE 5.8: (a) Amplitudes of bubble and spike fronts scaled by box width (L) and (b) 
corresponding mix growth rate ( ,b s ) plotted against scaled time ( ) for cases 28-30.  

 
We quantify the extent of bubble and spike penetration by tracking in time the x-

location of the 1% (air) and 99% (fuel) planar-averaged (y-z) surfaces of mixture fraction 

(Z). Note that for case 29 (30) the global bubble and spike fronts correspond to air (fuel) 

and fuel (air) surfaces respectively. In fig. 5.8 (a), we plot the non-dimensional global 

bubble and spike amplitudes ( ( ) /b sh L  ) against the scaled time ( ) from the reacting 
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and non-reacting simulations. The corresponding self-similar growth rates for bubble/spike 

fronts are obtained from ,
,

1 b s
b s

d h

L d



 

 , and shown in fig. 5.8 (b). For the non-reacting 

interface, following a short linear growth phase ( 0 5  ), the flow achieves self-

similarity characterized by a constant b 0.028  0.009 consistent with previously 

reported values in [3]. For the globally unstable reacting interface ( 0f aA g  ), bubble 

growth is enhanced to yield b 0.04  0.004, since the bubble front is driven by the 

increased density contrast (and Afl-a) between the air stream and the newly formed flame 

region. Furthermore, the amplitude (fig. 5.8 (a)) and growth rates (fig. 5.8 (b)) of the spike 

front show relative stability in contrast to the corresponding inert case – thus s  displays a 

gradual decrease through the self-similar evolution. This is attributed to the stabilization 

mechanism discussed earlier where the descent of long-wavelength modes through the 

mixing layer experiences mechanical/turbulent stirring (turbulent diffusion) and 

subsequent breakdown before interacting with the stable fuel (spike) surface where their 

advance is arrested. Furthermore, modes with b ds  will successfully traverse the 

reaction zone, following which they eventually interact with the fuel (spike) surface. Thus, 

the duration of stability of the spike front will depend on ds  and the terminal velocity of 

the long wavelength structures (~ ~ ~b bh L ), which eventually breach the turbulent 

mixing zone and dominate over a time scale of 2~ 1/ 5b   . This is followed by 

additional spike growth for  > 25 (fig. 5.8 b) driven by inertia imparted by long 

wavelength structures (~L) upon interaction with the stable surface. For the globally stable 

flame, the growth of modes associated with the unstable f-fl interface contribute towards 
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the global bubble (fuel surface) amplitude growth, albeit with a lower growth rate than 

cases 28 and 29. However, spikes remain stable through late times, so that the air (spike) 

surface displacement/growth is weak and dominated by diffusive broadening.  

To quantify the effect of RT mixing on combustion, we describe the dynamics of 

the flame sheet, defined as the iso-surface of the stoichiometric mixture fraction (Z = Zst = 

0.45). Since the flame sheet represents the most reactive surface within a diffusion flame, 

its surface area correlates with key combustion quantities [89,114-116] including the 

energy deposition rate and combustion efficiency. For an inert interface, the area of this 

surface (fig. 5.9) rapidly increases to ~ 9 L2 by the end of the linear stage, followed by a 

self-similar growth phase during which it evolves according to 0.67

stZS  . Owing to spike-

side stability, surface area growth of a globally unstable flame lags its non-reacting 

counterpart during the linear and the self-similar stage during which we observe 0.41

stZS   

(fig. 5.9). For case 30 (globally stable), the post-ignition flame sheet attains a significantly 

lower peak surface area (~2L2), followed by negligible growth during the self-similar 

regime and is attributed to sustained late time stability of spikes for case 30. Thus, such a 

configuration may be exploited in high ‘g’ devices to attain a controlled and stable 

combustion process such that the flame surface area (hence heat release rate) is statistically 

independent of time. 
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FIGURE 5.9: Plot of surface area of the flame sheet ( )stZ  scaled by the area of box cross 

section against scaled time ( ) for cases 28-30. 
 



 

 

 

 

 

CHAPTER 6: RICHTMYER-MESHKOV FLAMES 
 
 
In this chapter we report on high-resolution, numerical simulations of a single-

mode, chemically reacting, Richtmyer-Meshkov (RM) instability, at different interface 

thicknesses. The interface thickness was systematically varied in the simulations to study 

the effect of the total mass of fuel burnt and heat added on the hydrodynamic instability 

growth rates. The rest of the chapter is organized as follows: The numerical method and 

problem setup are described in section 6.1. The results are summarized in subsequent 

sections, and include description of shocked and unshocked 1D reacting fronts (no 

perturbation) in section6.2, a 2D (perturbed) non-reacting RMI front with different 

interface thicknesses (section 6.3), a 2D (perturbed) unshocked reacting front (section6.4), 

a 2D (perturbed) reacting, RMI front in section 6.5 and a 2D (perturbed) reacting RMI 

under reshock condition in section 6.6.  

6.1 Problem Setup and Numerical Method 

We consider the interaction of a Mach 1.2 shock with a sinusoidally perturbed  2H  

- 2O  interface. The problem configuration is represented schematically in figure 6.1 (a) 

where the shock, initially located at sx x , travels to the right from 2H  to 2O . We track 

the evolution of the mixture fraction Z  defined as 

0

0 0
F O O

F O

sY Y Y
Z

sY Y

 



         (6.1) 
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where s  is the mass stoichiometric ratio of the mixture, FY  and OY  are the mass fractions 

of the fuel and oxidizer respectively, and 0
FY  and 0

OY  are the fuel and oxidizer mass 

fractions in the corresponding pure streams. Thus, a mixture fraction of Z  = 1 corresponds 

to the presence of pure fuel and vice versa (figure 6.1 (b)). Note that for the 2H  - 2O  

configuration considered here, s  = 8, 0
FY  = 1 and 0

OY  = 1, indicating that the mass fractions 

of  2H  and 2O  on the fuel and oxidizer streams are free from any dilution due to inert 

molecules ( 2N , Ar  etc). Furthermore, for a stoichiometric mixture, 2

2

8H

O

Y
s

Y
  , hence 

0.11stZ Z  . We also track the evolution of the surface 50Z , defined as the mixture 

fraction surface corresponding to 0.5.Z   Across the burning interface, the mixture 

fraction varies smoothly (and often monotonically), making it a reliable metric for 

comparing the non-reacting and reacting RM flows (for reacting flows, the consumption 

of fuel and oxidizer to produce products of combustion can cause localized discontinuities 

in the mass fraction profiles across the interface, making it difficult to track).  

The material interface is initially at ix  (figure 6.1 (a)), and specified by an 

amplitude ( 0h ) and thickness ( ) through the mixture fraction Z  according to: 

( ) 0.5(1 [( ) ])i

W
Z x erf x x  


.       (6.2) 

In Eq. 6.2, W  is a scaling factor that ensures Z  varies from a threshold value of   to 1-  

over a width  . Thus, 

12 | (1 2 ) |W erf   .         (6.3) 
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For all the simulations reported here, we choose 510  , corresponding to 2~ 6 10W m

. Note that [43] defined the thickness of the interface as the maximum slope thickness ( ) 

of the density profile, which corresponds in our framework to / W  . We prefer to use 

  as the characteristic length scale in the specification of Z  (rather than  ), since it 

represents the entire reaction zone including the extremities of the Z  profile where burning 

can still occur. 

 

FIGURE 6.1: (a) Schematic of the problem setup and (b) x-profiles of the scaled initial 
density 

2 2 2
) /( ( )H O H         and mixture fraction (Z) from 1D simulation with   

= 0.12 m. 
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Perturbations at the interface are imposed according to 

0

2
1 cos

2i s

y
x x h




       
 

 
 
 

,       (6.4) 

where   is the wavelength and sx  is the initial shock location. Thus, at 0t   the shock is 

positioned slightly ahead of the interface (figure 6.1 (a)), with which it interacts shortly 

thereafter. The initial gas densities were chosen to be 
2l H  = 0.08 ݇݃/݉ଷ and 

2h O 

= 0.24	݇݃/݉ଷ, so that tA    0.5, while a uniform pressure of 1 atm in regions II and III in 

figure 6.1 (a) was used. The initial temperatures in regions II and III were   300K and   

1625K respectively, while the temperature in the interfacial region at atmospheric pressure 

is determined from the mixture density distribution 2 2

2 2

1( )H O
mix

H O

Y Y


 


 
   

 
 through the 

equation of state. The computations were performed in 2D, in a numerical shock tube with 

an aspect ratio of 12, employing a uniform grid of resolution 
256

( )


 in x and y directions, 

with 26 10 m   . The time step is restricted by a CFL condition, with CFL = 0.5 for all 

the simulations reported herein. Outflow and periodic boundary conditions were enforced 

in x- and y-directions respectively, and no explicit diffusion was employed. 

The simulations described in sections 6.2-6.6 were performed using the 

directionally split Piecewise Parabolic Method[56] in FLASH to solve the compressible 

Euler equations, while the temperature dependence of the specific heat of each species is 

represented as a polynomial function [66]. The 2 2H O  chemical kinetics is modeled 

through the 9-species, 19-step reversible reaction mechanism of Billet[76] reduced from 

the detailed acetylene combustion mechanism of [77]. Billet[76] used this mechanism to 
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study the interaction of acoustic waves with circular and spherical hydrogen diffusion 

flames and for simulations of reactive shock-bubble interactions. The nine coupled species 

evolution equations were numerically integrated in time, using a variable order Bader-

Deuflhard [64] method to handle the inherent stiffness of the ODE system. 

While FLASH is capable of describing mass transport through a Flux-based method 

(where diffusive fluxes are updated at every timestep), or an Implicit solution of the 

diffusion equation, the simulations in this work were performed without any explicit 

treatment of mass diffusion. Note that even when the mass diffusion modules are turned 

off in FLASH, cell-averaged numerical mixing is present, leading to numerical diffusion 

of the above physical quantities. The resulting numerical diffusion is well-behaved, with 

properties that closely track the behavior of the physical counterpart [54,58,117,118]. Such 

simulations are categorized as Implicit Large Eddy Simulations (ILES), and are 

particularly suited to flows in which shocks and interfaces are present [2-4,25,35,119-122] 

(such as the flow studied here), since these methods preserve the monotonicity of the 

variables through flux limiting, preventing spurious overshoots and undershoots. We 

justify this omission by noting RM growth rates develop over the shock timescale, which 

is several orders of magnitude smaller than the diffusive timescales [82]. We performed 

numerical simulations with and without mass diffusion, and found large scale qualitative 

features as well as quantitative data (cross-profiles of species mass fractions, mixture 

fraction, and mix width) from both cases in close agreement. A detailed convergence study 

was performed, where the number of grid points spanning a single perturbation wavelength 

  was varied as (64, 128, 256, and 512). For simulations with zoning in excess of 128 / 

, we found the results are converged in terms of the gross features (perturbation amplitudes, 
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growth rates and mix widths), while the small-scale features retain some grid dependence 

as expected.  

The interaction of a shock with a material interface with burning is complicated by 

several factors including the (i) shape of the interface ( 0 , ,h   ), (ii) physical and 

thermodynamic properties of the gases on either side of the interface, (iii) incident shock 

properties and (iv) thermo-chemical properties of the mixture across the interface. We have 

attempted to study these coupled phenomena through a series of increasingly complex 

numerical simulations. The objective is to understand the properties of the reacting RM 

front in the linear regime. To this end, we have performed simulations of the 1D 

(unperturbed) non-reacting, and reacting fronts (section 6.2), 2D (perturbed) non-reacting, 

RM flow with different 0/ h  (section 6.3), 2D (perturbed) reacting, unshocked, front with 

different 0/ h  (section 6.4), and a 2D (perturbed), reacting RM (shocked) ( section 6.5) 

and reshocked (section 6.6) fronts. For clarity, we summarize in table 6.1 the simulations 

performed in this work. 

TABLE 6.1: Summary of simulations performed to characterize RM flames. 
Sections  Case  ௜ܽܯ ݄݇଴ Burn  Reshock  Δ 

6.2 

31‐32  ‐  0.0  Yes  No  3.8 ൈ 10ିଷ, 0.12 ݉
33  1.2  0.0  No  No  3.8 ൈ 10ିଷ	݉

34‐35  1.2  0.0  Yes  No  3.8 ൈ 10ିଷ, 0.12 ݉
6.3  36‐41  1.2  0.2  No  No  2 െ 64݄଴ 
6.4  42‐48  ‐  0.2  Yes  No  2 െ 80݄଴ 
6.5  49‐54  1.2  0.2  Yes  No  2 െ 64݄଴ 
6.6  55  1.2  0.2  Yes  Yes  2݄଴ 

 
6.2 Unperturbed Interfaces (cases 31-35) 

In this section, results are presented from two sets of simulations with an 

unperturbed interface. The first set describes the burning of a sharp and a diffuse interface 

in the absence of an incident shock (cases 31-32), while the second set involves an incident 
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shock traversing an interface where burning occurs (cases 34-35). The simple 

configurations involving flat interfaces described herein are useful in interpreting the 

perturbed interface simulations described in sections 6.3 – 6.6. The sharp and diffuse 

interfaces are initialized with thicknesses of 33.8 10 m and 0.12 m respectively, and are 

specified according to Eq. 6.4  with 0 0h  . The fuel/oxidizer mixture across the interface 

is consumed according to the reaction kinetics dictated by Billet[76], while products are 

formed across the interface. The chemical reactions are accompanied by heat addition at 

the interface, resulting in a spontaneous pressure rise, with the maximum pressure observed 

at the location where Z    0.04 in our simulations. Note that in our simulations, the 

temperature towards the (lean) oxygen side is higher and thus ignition first occurs in this 

region ( Z    0.01), followed by burning along the rest of the interface. In the unshocked 

simulation, this initial pressure rise subsequently divides into two combustion waves, one 

of which moves towards the fuel ( 2H ) side of the interface and the other towards the 

oxidizer ( 2O ).The leftward wave moving towards the fuel imparts a net negative velocity 

to the interface, defined as the coordinate position ( x ) where the mixture fraction crosses 

50%. The x - t diagrams of the sharp and diffuse unshocked interfaces are shown in figure 

6.2 (a), while the corresponding velocities ( /dx dt ) are plotted in figure 6.2 (b). For a sharp 

interface, the amount of fuel and thus the heat addition across the interface is small, 

resulting in a peak negative interface velocity   -40 m/s, following which the flame 

achieves steady state by t   0.1 ms. In contrast, with a significant amount of fuel across 

the diffuse interface, the substantial heat addition during burning results in significant 

pressure rise accelerating the interface to a peak negative velocity   -280 m/s while the 

flame achieves steady state by t   1.0 ms. 
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For the diffuse flame, we plot cross-stream profiles of the scaled pressure 
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in figures 6.3 (a) - (d) respectively at different times. Note that we use for sp   0.16 MPa, 

the maximum pressure across the interface observed in our simulation at t = 15  s. The 

Mach number corresponding to this pressure rise was estimated to be   1.23 from  

0

1
1 1
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p
Ma

p




  
    

  
.                              (6.5) 

 

FIGURE 6.2: (a) Interface position and (b) the corresponding velocity as a function of time 
from 1D simulations of a reacting front without an incident shock. Results are shown for 
both a sharp (  = 3.8 10 3  m) and diffuse (  = 0.12 m) front. 
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FIGURE 6.3: Axial profiles of the scaled (a) pressure, (b) density, (c) temperature, and (d) 
mixture fraction at times 0 s, 15  s, and 60  s from 1D simulations of a reacting front 
without an incident shock, and with   = 0.12 m. 

 
At t = 60  s (figure 6.3 (a)), the splintering of the combustion wave in to two 

waves traveling in opposite directions can be observed. The leftward (towards 2H ) and 

rightward waves (towards 2O ) were observed to have Mach numbers of   1.13 and    

1.09 respectively (based on the pressure jump across each front seen in figure 6.3 (a)). The 

maximum temperature achieved by the flame is   3050 K (at 0.11|
stZx  ) in good agreement 

with [93] for an initial stoichiometric mixture at   780 K. The two combustion waves 

moving in opposite directions result in localized stretching of the interface in the heat 

release zone (  0.19 - 0.23 m), where the profile of the mixture fraction no longer 
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resembles the initial error function. Furthermore, the density within this region decreases 

due to heat addition, eventually falling below the density of the light fluid ( 2H ) at late time 

( t    1.5 ms), while pressure in the domain relaxes to atmospheric ( 0p ). 

 

FIGURE 6.4: (a) Interface position based on 50Z  and (b) the corresponding velocity as a 

function of time from 1D simulations of a reacting front with a Mach 1.2 incident shock. 
Results are shown for both a sharp (  = 3.8 10 3  m) and diffuse (  = 0.12 m) front, as 
well as for the baseline non-reacting (cold) front. 

We now describe the development of such sharp and diffuse reacting interfaces 

when subjected to shock impingement. To establish a baseline for comparison, we show as 

the red line in figure 6.4, the trajectory of an unperturbed, non-reacting interface that is 

accelerated by an incident shock. Also shown in figure 6.4 are results from simulations 

with a shocked reacting front, with both sharp and diffuse initial interfaces. The x-t 

diagrams of the non-reacting and reacting shocked interfaces are shown in figure 6.4 (a), 

while the corresponding interface velocities ( /dx dt ) are plotted in figure 6.4 (b). For a 

sharp interface, the behavior of the reacting 1D shocked front is indistinguishable from its 

cold flow counterpart, and shows the interface is rapidly accelerated (over a shock-

interaction timescale) to a constant velocity of ~ 300 m/s (figure 6.4 (b)), in agreement 

with the solution of the Rankine-Hugoniot equations [34]. For the diffuse interface, there 
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is significant burning across the interface in this non-premixed flame, resulting in transients 

that delay the approach to the asymptotic interface velocity (figure 6.4 (b)). We attribute 

this time delay to the combustion waves that form in response to the rise in temperature in 

the reaction zone (and described above), producing a net negative particle velocity across 

the interface.  

 

FIGURE 6.5: Axial profiles of the scaled (a) pressure, (b) density, (c) temperature, and (d) 
mixture fraction at times 0 s, 76  s, 0.15 ms and 0.3 ms from 1D simulations of a reacting, 
diffuse (  = 0.12 m) front with a Mach 1.2 incident shock. 

 
The cross-stream profiles of the scaled pressure, density, temperature, and mixture 

fraction ( Z ) are shown in figures 6.5 (a) - (d) for the shocked, diffuse flame at t  = 0 s, 76 

 s, 0.15 ms, and 0.30 ms respectively. For the highly diffuse interface considered here, 
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there is significant pressure rise resulting from burning at the interface, and is marked in 

figure 6.5 (a) as the combustion wave ‘c’. In the same figure, the label ‘ s ’ indicates the 

location of the incident shock, along with arrows denoting the direction of travel of each 

wave. Initially, the combustion waves travel away from the interface moving towards the 

2H  and 2O  sides of the interface, resulting in local stretching of the interface. The 

corresponding pressure pulse moving towards the fuel pushes the location of Z  = 0.5 

surface further towards the pure fuel, and shortly thereafter interacts with the incident 

shock. At 76  s, the incident shock has moved past the combustion zone (located at x  ~ 

0.09 m), inferred from the maximum temperature location on the scaled temperature plot 

(figure 6.5 (c)). Finally, by 0.30 ms, the incident shock has overtaken the rightward 

combustion wave, while the maximum temperature across the interface is    3140 K in 

agreement with the predicted adiabatic flame temperature [93]. 

6.3 Non-Reacting RM (CASES 36-41) 

To establish a baseline for comparison, we performed simulations of an inert, 

perturbed front accelerated by a shock, resulting in the classical Richtmyer-Meshkov 

instability. The simulations were performed with varying values of the interface thickness 

( ), and thus bear relevance to the diffusion flame studies presented in sections  6.4-6.5. 

The non-reacting, single-mode RMI with a sharp interface has been studied extensively 

[9,35,36], and the growth rates for such interfaces are well predicted by the so-called 

impulsive model. For a diffuse interface, Brouillette and Sturtevant [43] extended the 

model of Duff et al. [87], to include impulsive accelerations, and obtained an eigenvalue 

solution for the linear growth rate that is a function of the initial interface thicknesses  . 
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Furthermore, the coefficient C  contained in the growth rate reduction factor   in Eq. 

1.5(b) can depend on Atwood number [43]. 

 

FIGURE 6.6: Contours of 2H  mass fraction (top) and scaled density   (bottom) from 2D 

simulations of a perturbed, non-reacting interface with 0/ h  = 4, and driven by a Mach 

1.2 incident shock. The images are shown at 0 0( )kV t t   = (a) -1.4 10 2 , (b) 0.38, (c) 0.77, 

(d) 1.96, and (e) 3.93. 

 

FIGURE 6.7: Contours of 2H  mass fraction (top) and scaled density   (bottom) from 2D 

simulations of a perturbed, non-reacting interface with 0/ h   = 64, and driven by a Mach 

1.2 incident shock. The images are shown at 0 0( )kV t t   = (a) -0.11, (b) 0.27, (c) 0.65, (d) 

1.79, and (e) 3.69. 
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For cases 36-41, the initial interface thickness ( ) was progressively varied with 

0/ h  = 2, 4, 8, 16, 32 and 64, where 0h  was chosen so that 0kh  = 0.2, as described in 

section 6.1. Figure 6.6 is a plot of contours of the mass fraction of 2H  (top row), and the 

scaled density *  (bottom row) from the simulation with 0/ h  = 4, with the location of 

50 %  mixture fraction indicated by the solid line. The images are shown at scaled times 

0 0( )kV t t   of (a) -1.4 10 2 , (b) 0.38, (c) 0.77, (d) 1.96, and (e) 3.93, where 0V   is obtained 

from Eq. 1.4(post-shock values). Note that 0t  corresponds to the time at which the interface 

is compressed to its post-shock amplitude 0h . Figure 6.7 shows the corresponding contours 

from the simulation with 0/ h  = 64, presented at 0 0( )kV t t   = (a) -0.11, (b) 0.27, (c) 0.65, 

(d) 1.79, and (e) 3.69. For the sharp interface, by 0 0( )kV t t   = 0.77 (figure 6.6 (c)), the 

fundamental mode has saturated, as higher harmonics now play a pronounced role in the 

non-linear evolution of the interface. This is followed by the growth and saturation of 

secondary features, particularly due to the Kelvin-Helmholtz instability leading to the 

appearance of the classical `mushroom` shapes at 0 0( )kV t t   = 1.96 in figure 6.6 (d). The 

nonlinear stage is also marked by asymmetry between bubbles and spikes at these moderate 

Atwood numbers. In contrast, for the diffuse interface, the instability growth appears muted 

consistent with Eq.1.5, as the flow approaches nonlinear saturation only by 0 0( )kV t t   = 

1.79. The finite thickness of the interface also mitigates Kelvin-Helmholtz instability 

growth, and as a result the interface shapes in figure 6.7 remain smooth even at late times 

without the appearance of secondary features. 
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FIGURE 6.8: Evolution of (a) scaled perturbation amplitudes based on distance from peak-
to-peak of 50Z  and (b) the corresponding growth rates as a function of scaled time from 2D 

simulations of a non-reacting front with a Mach 1.2 incident shock. Results shown are from 
simulations with varying 0/ h . 

 
In figure 6.8 (a), we plot the scaled amplitude 0( )k h h  against the scaled time 

0 0( )kV t t   from our RM simulations with varying interface thicknesses ( 0/ h  = 0 - 64). 

The corresponding growth rates are shown in figure 6.8 (b), and are scaled by the classical 

RM growth rate for a sharp discontinuity from Eq. 1.4 assuming post-shock values. The 

amplitudes in figure 6.8 are inferred from the separation between the peak and the trough 

of the 50Z  interface. From figures 6.8 (a) - (b), it is clear that there is a reduction in the 

linear (peak) growth rate as the interface thickness is increased, consistent with the model 

of [43], with the most diffuse interface achieving only 60%  of the classical RM growth 

rate. At late times, with decreasing / ( )h t , the nonlinear growth rates all collapse 

indicating the absence of secondary instabilities in the diffuse simulations does not 

significantly modify the growth of the fundamental RM mode. 
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FIGURE 6.9: Growth rate reduction factor ( 0 /V V  ) from the 2D non-reacting, RM 

simulations with (a) A  = 0.5 and (b) A  = -0.5, plotted against scaled thickness ( /  ). 
The squares indicate   calculated from pre-shock quantities, while circles indicate the use 
of post-shock quantities. The prediction of Eq. 1.5(b) with C  = 2.83 is shown as the solid 
line. 

 
In figure 6.9 (a), we plot the reduction factor ( ) (deduced from the peak growth 

rates in figure 6.8 (b) as a function of the scaled thickness ( /  ). Eq. 1.5(b) is shown in 

figure 6.9 as the solid line, and corresponds to a value of C  = 2.83 for an Atwood number 

of 0.5 as suggested by [43] from their experimental verification of Eq. (1.5). The 

calculations of the reduction factors for our simulations were performed using the pre- 

(squares) and post-shock (circles) interface thicknesses and post-shock perturbation 

amplitudes in Eq. (1.5). The post-shock density profile from the numerical simulations 

were compared to the initial profile used by [43], and reveal a compression to 68.5 %  of 

the initial interface thickness ( 0.68   ) by the shock. For small interface thicknesses (

0/ 8h   i.e. /    4.24 10 2 ), the growth rate reduction factor from our simulations is 

~ 1, as the interface growth approximates that of a sharp front. As the thickness is further 

increased, there is significant growth rate reduction observed in the simulations, and 

compares well with the model [43], but only when the post-shock quantities ( 0 ,h   ) are 
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used in calculating Eq. 1.5(b). The corresponding data for our non-reacting simulations 

with 0A   are displayed in figure 6.9 (b). We find that Eq. 1.5 is valid even for negative, 

Atwood numbers, with C  = 2.83. We use these findings in sections  6.4-6.6 to interpret 

results from our simulations of reacting RMI at a perturbed surface separating fuel and 

oxidizer.  

6.4 Unshocked Perturbed Flames (CASES 42-48) 

 

 

FIGURE 6.10: Schematic of the pressure waves from burning at a 2D front (a) and the 
resulting combustion waves (b) and (c).  

The dynamics of an unshocked, perturbed flame front is important to our 

understanding of the reacting RMI counterpart, and is explored in detail here. As discussed 

in section 6.2, combustion of fuel close to the stoichiometric surface will result in a 

spontaneous pressure rise all along a perturbed interface (figure 6.10 (a)). Subsequently, 

the pressure pulse splinters into two non-planar combustion waves traveling in opposite 

directions towards the fuel and oxidizer (figures 6.10 (b) and (c) respectively). Note that 
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the pure fuel ( Z  = 1) and pure oxidizer ( Z  = 0) isosurfaces experience combustion waves 

propagating from light-to-heavy and heavy-to-light media respectively. In the latter case, 

the RM instability of that material line leads to a negative growth rate, including a phase 

inversion of the initial perturbation. We find the interface acceleration associated with the 

passage of the combustion wave is given in our simulations by 0( ) ( / )ag t t t , with a  = -

1.8 reminiscent of a blast wave. In the following, we use the term blast wave to describe 

the combustion waves observed in our simulations, but caution the reader that the analogy 

may not be exact. Furthermore, this pressure variation is modulated in the y-direction by 

the imposed sinusoidal perturbation resulting in a distinct non-planarity of the pressure 

waves. The non-planarity (in y) of the waves stems from the corresponding distortion of 

the burning surface, and plays an important role in their propagation through the fuel/ 2O  

media and the interaction with material interfaces. 

In figure 6.10 (b), the single arrows represent the surface normal to each wave in 

the direction of its propagation. Region 1 (2) indicates the converging (diverging) portions 

of the non-planar waves (figures 6.10 (b) and (c)), where the local pressure is higher 

(lower). The increased pressure in region 1 of each wave imparts to that segment a greater 

velocity than region 2 where the pressure is lower, resulting in localized stretching 

(compression) of the waves. By this mechanism, the waves lose their curvature over time 

(i.e. distance traveled) and are eventually rendered planar. The deviation from planarity of 

the pressure wave at the instant of interaction with the material surface depends in turn on 

the thickness of the interface: For large 0/ h , since the pressure front travels a greater 

distance before impinging on the interface, any imposed perturbations are flattened through 

the process depicted in figure 6.10. Conversely, for modest values of 0/ h , the 50Z  surface 
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is located in close proximity to stZ  where the pressure front originates, so that non-planar 

distortions on the pressure front have not been allowed sufficient time to even out, before 

interacting with the interface. 

In the following, we describe the complex evolution of a material interface when it 

is impacted by a non-planar (perturbed) blast wave type profile, and draw distinctions from 

the corresponding planar interaction. For instance, the interface corresponding to 50Z  is 

accelerated by a time-dependent acceleration similar to a blast wave in a heavy light 

interaction, but the subsequent development is dictated by the strength of the pressure pulse 

( 0/sp p  in figure 6.11) and the extent of its non-planarity. 

 

FIGURE 6.11: Scaled peak pressure ( 0/maxp p  ) associated with the combustion waves 

plotted against the scaled interface thickness ( 0/ h ) for the simulations described in 

section  6.4. 
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FIGURE 6.12: A schematic of the interaction of a combustion wave (figure 6.10 (b))  with 
the interface ( 50Z ). Inset shows incident pressure pulses with a separation distance of 02h . 

Such a modulated combustion wave can lead to decompression-driven growth of the 
interface. 

 
The thickness of the interface influences the strength of the combustion wave, since 

the mass of fuel available for burning scales with 0/ h . Figure 6.11 shows the variation 

of the peak planar-averaged (indicated by the operator •  ) pressure associated with the 

combustion-driven blast wave, and scaled by the initial pressure ( 0p ) plotted against the 

scaled initial thicknesses ( 0/ h ). The peak values in pressure were obtained in each case 

at the end of the spontaneous ignition phase of combustion (and prior to the splintering of 

the combustion wave). Perhaps unsurprisingly, the peak pressure (and the Mach number of 

the combustion wave) is linearly dependent on the interface thickness, and hence on the 

mass of fuel available for burning. 
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When such a complex combustion wave crosses the interface ( 50%Z  ), the 

growth of the interface is highly transient featuring multiple stages of positive and negative 

growth. For instance, the passage of the initial shock front (figure 6.12) across a heavy   

light interface ( 50Z ), renders the interface unstable to RMI. This is due to the deposition of 

baroclinic vorticity at the interface ( p   ), while the fast   slow interaction ensures 

a negative growth rate with a phase reversal. However, the time-dependent pressure 

variation behind the shock front drives a (variable g ) Rayleigh-Taylor (RT) instability, 

since at the interface • 0p    . Thus, during the expansion phase, the RT growth is 

seeded by the perturbation amplitude at the end of the RM growth phase. Note that during 

this late stage, the interface grows due to the variable-drive RT and the RMI (since the 

interface retains the baroclinic vorticity and continues to grow from the velocity induced 

from it), although the growth rates do not reinforce linearly as pointed out by [123]. Thus, 

the nonlinear decay of the RMI (commonly observed for ( ) 1kh t  ) is moderated by growth 

due to RT instability during this stage. 

The expansion phase of interfacial evolution could also be complicated by multiple 

decompression-driven instabilities described here. For example at any instant, points 

corresponding to the crest and the trough of the interface (points `1' and `2' in figure 6.12) 

are driven by portions of the blast wave that correspond to different values of pressure 

gradients. Similarly, the non-planarity of the pressure wave results in pressure variation 

across y-direction and hence a variation in the corresponding interface velocities imparted 

to points `1' and `2'. These effects combine to produce a net decompression-driven growth 

of the interface that is positive (figure 6.15), thereby opposing the negative growth due to 

the combined RT/RM instabilities. Thus, the late-time evolution of the interface is 
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complicated involving growth due to multiple hydrodynamic instabilities (RT/RM) as well 

as instabilities due to decompression effects. Miles et al [124] observe similar phenomena 

in their experimental/numerical study of laser-energized targets on the OMEGA laser 

facility. The blast waves generated from strong laser pulses trigger an initial RM phase 

immediately followed by a variable acceleration RT phase. However, the nonlinear 

evolution of perturbations at the interface of a two-layer target in their study is affected by 

growth due to decompression according to the mechanism described above. Accordingly, 

[124,125] suggest a correction to the growth of the interface due to decompression to 

isolate the growth due to the hydrodynamic instabilities. We have evaluated this correction 

for the blast wave-type combustion wave profiles generated in our simulations and find 

that the contribution due to expansion is less than 5%  of 0V ,where 0V  is the RM growth 

rate from the passage of the shock front. In contrast we expect the contribution due to non-

planarity to be more significant, while also noting that obtaining an estimate of such effect 

is non-trivial. 

To describe this transient and complex behavior, we first delineate the velocities 

associated with the interface corresponding to different stages of shock/expansion wave 

passage. In the schematic represented in figure 6.12, 1 2( )V V  is the constant jump velocity 

associated with the planar shock interaction with region 1 (2), while 11 22( )V V  represents 

the time-dependent interface velocity resulting from the passage of the expansion region 

behind the shock front. For classical RM, 11 22 0V V   so that the interface growth may be 

represented according to, 

2 1

2

V Vdh

dt


 .          (6.6) 
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FIGURE 6.13: Contours of (top to bottom) the scaled density   , 2H O  mass fraction and 

the scaled temperature T   from 2D simulations of a perturbed, reacting interface with 

0/ h   = 2, with no incident shock. The images are shown at 0 0( )kV t t   = (a) -1.6 10 4 , 

(b) 3.4 10 2 , (c) 6.8 10 2 , (d) 0.17, and (e) 0.34. 
 
When accelerated by a (non-planar) combustion wave, the interface initially attains 

the velocities 1V  and 2V , but the subsequent development is governed by timedependent 

velocities 11( )V t  and 22 ( )V t . Note that when the blast wave suffers from significant non-

planarity, 11 22( ) ( )V t V t , and will result in a net (positive in this case) growth rate of the 

interface. Under such circumstances, the interface will grow according to, 

2 22 1 11( ( )) ( ( ))

2

V V t V V tdh

dt

  
 .       (6.7) 

For large thicknesses, there exists a significant interval of time between the generation of 

the combustion wave and its interaction with the interface that the pressure wave will 

flatten (along y) before crossing the 50Z  surface. The pressure profile behind the wave has 

relaxed sufficiently ( 11 22 1~V V V  or 2V  ), and such an interaction would be more RM-

like. 
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Figure 6.13 shows contours of the scaled density  , temperature T   and the mass 

fraction of 2H O  for a sharp interface ( 0/ 2h  ) at scaled times ( 0 0( )kV t t  ) (a) -1.6 10

4  (b) 3.4 10 2  (c) 6.8 10 2  (d) 0.17 and (e) 0.34 respectively. Note that the solid line in 

figure 6.13 represents 50Z , the 50%  mixture fraction level. To enable direct comparison 

with the reacting RMI, we scale pressure with 0.15sp   MPa, the pressure behind the 

combustion wave bound for the fuel stream. For the unshocked front shown in figure 6.13, 

the pressure across the interface rises to ~ 0.11 MPa ( 0.08)p   at early times, which is 

not sufficient to significantly distort the interface. By 0 0( )kV t t   3.4 10 2 , the pressure 

across the interface has returned to atmospheric and remains so through the end of the 

simulation. As the interface burns, and products of combustion are added, the associated 

temperature increase causes the density across the interface to drop to ~4.11 10 2 	݇݃/݉ଷ 

( 0.24)    at 0 0( )kV t t   3.4 10 2  (figure 6.13 (b)), and eventually reaching an 

asymptotic value of ~ 3.6 10 2  ݇݃/݉ଷ ( 0.27)    at 0 0( ) 0.34kV t t   . Throughout 

this process, the amplitude of the interface does not vary significantly, while the maximum 

product mass fraction (
2H OY ) approaches ~ 0.87  close to the value obtained for the 

unperturbed flame. Finally, the flame achieves a maximum temperature of T  = 3050 ( T   

~ 2.08 ) at 0 0( ) 0.34kV t t    (similar to the unperturbed case), consistent with the 

stoichiometric adiabatic flame temperature ( ~ 3130  K) prediction from[93]. Even at late 

times ( 0 0( ) 0.34kV t t   ), flame corrugation and curvature effects are minimal (figure 6.13 

(e)) when the initial interface is sharp. 
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FIGURE 6.14: Contours of (top to bottom) the scaled density  , 2H O  mass fraction and 

the scaled temperature T    from 2D simulations of a perturbed, reacting interface with 

0/ h = 64, with no incident shock. The images are shown at 0 0( )kV t t   = (a) -9.6 10 2 , 

(b) 0.19, (c) 0.48, (d) 1.34, and (e) 2.77. 
 
The flow and flame features described above are modified profoundly when 

burning occurs at a diffuse interface. Figure 6.14 is a plot of contours of the scaled density 
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 , temperature T   and the mass fraction of 2H O  from our simulation with 0/ 64h  , 

presented at scaled times ( 0 0( )kV t t  ) (a) -9.6 10 2 , (b) 0.19, (c) 0.48, (d) 1.34, and (e) 

2.77 respectively. The pressure across the interface rises to 0.16 MPa ( p   1.22) at time 

0 0( )kV t t   -7.7 10 2 , corresponding to a Mach number of 1.24 according to equation 

(6.5). Note that we independently computed the wave speed associated with the 

combustion wave directly from our simulations (by tracking the location of the peak planar-

averaged pressure gradient), and found this to be within 20% of the prediction of Eq. (6.5). 

Subsequently, the pressure pulse splinters into two combustion waves travelling in opposite 

directions as described earlier, with the dominant wave ( Ma   1.18) moving towards 2H , 

and imparting a net negative velocity to the interface. Since the combustion wave has a 

finite curvature described above, the acceleration imparted to the interface is not uniform 

along y-direction leading to further distortion of the interface. By 0 0( ) 0.19kV t t   , the 

combustion waves have receded from the interface, leaving in their wake complex, 

localized pressure gradients in the vicinity of the interface. Thus, the interface ( Z  = 0.5) 

is accelerated by the pressure waves which originate at ~Z  1.45 10 2  (lean Z ), and 

appears to grow through the complex sequence of instabilities in figures 6.14 (c) - (e). For 

the Z  = 0.5 material line (which we track in our perturbation amplitude calculation), the 

`shock' travels from the heavy to light gas (with A  = -0.5), and thus initiates a complete 

phase reversal by figure 6.14 (d) ( 0 0( ) 1.34kV t t   ). In contrast, a material line within the 

pure 2O  stream would experience a `shock' traveling from the light to heavy gases, and 

thus would experience no phase reversal. Thus, strong burning at a diffuse interface appears 

to initiate interface distortion through RMI growth, due to the spontaneous generation of 
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strong combustion waves. This is of course complicated by many factors including 

secondary instabilities (figures 6.14 (c) - (e)), and variations in fluid properties such as the 

adiabatic index, density and temperature across the interface. Note that the flame strands 

observed in figure 6.14 are likely seeded by the grid, and are observed to appear at a finer 

scale when the calculation is repeated at twice the resolution (512/ ). 

 

FIGURE 6.15: Evolution of (a) scaled perturbation amplitudes based on distance from 
peak-to-peak of 50Z  and (b) the corresponding growth rates as a function of scaled time 

from 2D simulations of a reacting front with no incident shock. Results are shown from 
simulations with varying 0/ h . 

 
Figure 6.15 is a plot of (a) the scaled amplitude based on 50Z  and the corresponding 

(b) growth rates against scaled time ( 0 0( )kV t t  ) from our simulations with 0/ 4 80h  

. Note that the thickness of the interface   increases significantly for these cases due to 

burning and subsequent expansion by the blast wave. Thus, the growth rate reduction factor 

  defined by Eq. 1.5 will itself be time-dependent, as evident in (figure 6.16). The initial 

reduction in the interface amplitude observed in figure 6.15 (a) for all cases can be 

attributed to the compression of the interface by the shock front. For all the simulations 

with moderate values of interface thicknesses ( 0/ 4 32h   ), following shock 
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compression, the 50Z  surface undergoes a net initial positive growth phase. The combustion 

waves for these cases have not flattened out ( 1 2~V V ), while the pressure gradient behind 

the wave, as experienced by the interface in region 1 and 2 (figure 6.12) varies so that (

11 22V V ). Thus, even though a net negative velocity is imparted by the shock wave (

1 2~ 0V V  ) to the interface, the y-variation of the pressure gradient in the expansion region 

of the wave results in a counterintuitive, net positive growth for these heavy-to-light cases. 

The interface then continues to grow according to this time--varying pressure gradient. 

Following these initial transients, the pressure gradient across the interface becomes 

negligible (as the blast wave leaves the 50Z  line). Accordingly, the interface now resumes 

its negative RM growth under the influence of the baroclinic vorticity deposited initially 

by the leading shock front. The interface continues to grow with this net negative velocity 

until late times (eventually undergoing phase inversion). 

In contrast, for large thicknesses, the 50Z  iso-contour is sufficiently removed from 

the initial pressure rise, that the combustion wave has flattened (thus, 1 2V V ) before 

reaching the interface ( 50Z ). Furthermore, the pressure profile behind the blast wave has 

relaxed, leading to lower gradients across the interface ( 11 22 1 11~ ,V V V V  and 2 22V V ). 

Thus, for our simulations with large thicknesses ( 0/ 64,80h  ), the perturbation growth 

is largely reminiscent of RM with no positive growth observed in figure 6.15. The 

evolution of perturbation growth rates scaled by 0 / ( )V t  is shown in figure 6.15 (b) as a 

function of the scaled time 0 0( )kV t t  . Again, the differences between the growth of 

narrow ( 0/ 32h  ) and wide ( 0/ 32h  ) interfaces is evident. In the former case, the 

RM growth appears to be significantly modified by non-planar effects, leading to an initial 
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stage of positive growth rate, followed by a late-time evolution during which the RM 

growth rate continues to be modified by the decompression effects detailed earlier (the 

peak growth rates for these cases are lower than the theoretical values expected for RM 

growth). For large interface thickness values in the absence of non-planar effects, the 

growth rate hews closely to RM instability growth expected for 0A  , leading to negative 

growth rates in good agreement with Eq. 1.5. 

 

 

FIGURE 6.16: Time varying reduction factor ( )t  from simulations of an unshocked, 

reacting flame with different initial values of  0/ h . 

 
6.5 A Perturbed Flame Accelerated by an Incident Shock (CASES 49-54) 

We now describe the evolution of the interfaces and the flame, when accelerated 
by an incident shock of Mach 1.2 specified at sx  = 0.01 m and traveling from the light to 

heavy gases. The passage of the incident shock initiates RMI at the material interfaces, but 
this is complicated by the combustion waves originating at the flame front, which interact 
both with the interface and the incident shock. Thus, any of the interfaces described in 
sections  6.3 – 6.4 now evolve under the influence of multiple shocks, with overlapping 
regions of transient growth. As in section  6.4, our study included 2D simulations with 
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thickness to amplitude ratios of 0/ h   = 2 - 64. We first describe the detailed 

phenomenology before discussing growth rates from the flames. 
 

 

FIGURE 6.17: Contours of (top to bottom) the scaled density  , 2H O  mass fraction and 

the scaled temperature T    from 2D simulations of a perturbed, reacting interface with 

0/ h = 2, and driven by a Mach 1.2 incident shock. The images are shown at 0 0( )kV t t   

= (a) -1.2 10 2 , (b) 0.39, (c) 0.79, (d)1.99, and (e) 3.99. 
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FIGURE 6.18: Contours of (top to bottom) the scaled density  , 2H O  mass fraction and 

the scaled temperature T    from 2D simulations of a perturbed, reacting interface with 

0/ h = 64, and driven by a Mach 1.2 incident shock. The images are shown at 0 0( )kV t t   

= (a) -9.5 10 2 , (b) 0.21, (c) 0.51, (d) 1.41, and (e) 2.92. 
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Figure 6.17 is a plot of mass fraction contours of 2H O , scaled density   and 

temperature T   from our simulation with 0/ h  =2, and shown at scaled times ( 0 0( )kV t t 

) of (a) -1.2 10 2 , (b) 0.39, (c) 0.79, (d)1.99, and (e) 3.99. Once again, the solid line in the 

figure represents the iso-contour of 50 %  of the mixture fraction ( 50Z ). Figure 6.18 shows 

these scaled quantities for the corresponding diffuse ( 0/ h  = 64) interface. The incident 

shock compresses the sharp and diffuse interfaces to post-shock amplitudes (based on 50Z

) ~ 0.80 0h  and ~ 0.60 0h  respectively. The maximum temperature across the interface is 

~ 3250 K ( ~ 2.23T ) and 3167 K ( ~ 2.17T ) for the sharp and diffuse interfaces at scaled 

times 0 0( ) 3.99kV t t    and 2.92  respectively, compared to the stoichiometric adiabatic 

flame temperature of ~ 3200 K ( ~ 2.19T ). The compression of the interface due to the 

incident shock reduces the flame thickness, but appears to increase the mass flow rate of 

fuel into the flame resulting in greater heat addition. We believe this explains the higher 

flame temperatures observed for the sharp interface compared to the diffuse counterpart. 

Within the diffuse interface, secondary instabilities form flame strands seen in figures 6.18 

(b) - (c). Note that these instabilities were also observed for the corresponding unshocked 

cases, where pronounced flame strands were observed at late times (for instance, figure 

6.14 (c)). At 0 0( ) 0.79kV t t    (figure 6.17 (c)), the bubble and spike fronts appear to be 

asymmetric, with the bubbles forming a flat surface, whiles spikes are long and pointed. 

For the diffuse front (figure 6.18 (c)), the flame strands continue to grow within the 

interface, while secondary modes develop towards the oxygen side of the interface (near 

the bubble). Subsequently, the diffuse interface exhibits a broadening of the already flat 

bubble surface (due to the saturation of higher harmonics in the flow), causing the interface 
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shape to deviate from the initial sinusoidal form. Furthermore, by 0 0( )kV t t   = 1.41, the 

appearance of secondary modes in the form of mushroom-shaped rollups is evident within 

the oxidizer. Finally, at late times ( 0 0( ) 3.99kV t t   ), for a sharp interface, the interface 

burning appears to elongate the mushroom shaped structures, not seen in the non-reacting 

counterpart. 

As described in section 6.4, burning of fuel near the stoichiometric surface 

generates blast waves that interact with the 50Z  surface, but in the direction of heavy   

light fluids. When an incident shock is also present, the combustion waves pass through 

the incident shock, thus temporarily modifying its structure (figure 6.5). In contrast to the 

simulations described in section  6.4, the subsequent interfacial dynamics is predominantly 

governed by the incident shock which rapidly recovers from its interaction with the 

combustion wave and returns to its initial configuration. However, the combustion process 

affects the RM growth rate indirectly through the decompression-driven broadening of the 

interface thickness observed for large values of 0/ h . This trend is evident in figure 6.19, 

where we have plotted the reduction factor   used in Eq.  1.5(b)against the scaled time 

0 0( )kV t t  . At moderate values of 0/ h  (  16), following an initial decrease due to shock 

compression, the factor   is nearly constant and in good agreement with the theoretical 

values predicted by Eq.(1.5). For these cases, the combustion wave crosses the interface 

first, followed by shock passage. However, for 0/ 16h   the burning occurs at a site far 

removed from the 50Z  surface. This causes the shock to cross the interface first, followed 

by a gradual expansion due to passage of the blast wave. As a result, we observe in figure 
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6.19, the reduction factor   for the diffuse cases increases gradually in response to 

decompression due to the slowly moving blast wave. 

Figure 6.20 is a plot of (a) the perturbation amplitude (based on extrema of the 50Z  

line) and (b) the corresponding growth rates against scaled time ( 0 0( )kV t t  ) for interfaces 

with varying 0/ h . Note that 0V   is the growth rate corresponding to the post-shock 

amplitude, while 0t  is the time by which the incident shock compresses the interface to its 

post-shock amplitude. Consistent with the qualitative description outlined above, the 

evolution of the perturbation amplitudes and growth rates in figure 6.20 is suggestive of 

dynamics where the incident shock dominates the blast wave. We expect simulations with 

large values of 0/ h   to report lower values of the peak perturbation growth rate, and 

hence have introduced the time-dependent thickness reduction factor   to collapse our 

data (figure 6.20 (b)). When scaled with ( 0 / ( )V t ), the growth rates from our simulations 

with 0/ 32h   display peak values ~ 1, followed by a nonlinear decay during which the 

curves collapse. Unfortunately, when 0/ 64h   the peak growth rate achieved is only 

60% of the prediction from the modified impulsive model Eq.1.5, followed by a weak 

decay phase. 
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FIGURE 6.19: Time varying reduction factor ( )t  from simulations of a shocked, reacting 

flame with different intial values of  0/ h . 

 

 

FIGURE 6.20: Evolution of (a) scaled perturbation amplitudes based on distance from 
peak-to-peak of 50Z  (b) and the corresponding growth rates as a function of scaled time 

from 2D simulations of a reacting front with a Mach 1.2 incident shock. Results shown are 
from simulations with varying 0/ h . 

 

6.6 Reshocked Flames (CASE 55) 

A separate simulation in which the boundary surface at 6x     is treated as a 

reflecting wall was also performed to study the dynamics of the interface and the flame 
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surface when subjected to a second compression by the reflected `reshock' (this allows an 

investigation of the reacting RM instability in the limit of a finite-amplitude initialization). 

However, during reshock, the shock passage is from heavy to light media ( 0A  ), while 

the interface has already reached nonlinearity. Such a situation involving multiple shock-

interface interactions is of more than academic interest, and occurs in many applications 

including scramjets, Inertial Confinement Fusion and supernovae detonations. 

 

 

FIGURE 6.21: Contours of 2H O  mass fraction (top) and scaled temperature T   (bottom) 

from 2D simulations of a perturbed, reacting interface with 0/ h  = 2.0, and driven by a 

Mach 1.2 incident shock. The images are shown at (a) 0 0( )kV t t   = 1.59 just before 

reshock and (b) 0 0( )kV t t   = 7.99 at late time after reshock. 

 
The problem configuration was as described in section 6.1, but with an aspect ratio 

of 6 and an initial interface with thickness, 0/ h  = 2. In our simulations, the reshock 

occurred when the perturbed interface had already matured to nonlinearity, and at a scaled 

time, 0 0( )kV t t   = 1.59, where 0V   is obtained from Eq. 1.4. Following reshock, a 

complete phase reversal of the original sinusoidal perturbation is observed (figure 6.21), 

while significant mixing is evident at late times due to the aggressive growth of RMI at an 

already nonlinear interface. Figure 6.21 is a plot of the scaled temperature T   and product 

mass fraction at scaled non-dimensional times (a) 0 0( )kV t t   = 1.59, just before reshock 

and (b) at late times 0 0( )kV t t   = 7.99. The reshock event greatly enhances mixing at the 
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interface due to significant nonlinear growth of already saturated modes, and is followed 

by a significant increase in the energy release rate. 

Following [126], the combustion efficiency may be computed based on the mass 

fractions of species using: 

2 2 2 2 2 2 2 2 2 2 2 2
100 / ( )c H O H O H O H O H H HO HO H O H O OH OH H Hx Y x Y x Y x Y x Y x Y x Y         (6.8) 

where, ix  is the fractional atomic mass component of hydrogen in species i and iY  is the 

mass fraction of species i. The time evolution of such a combustion efficiency integrated 

across the mixing width, 

0

1
int c

mix

dx
W

 


   ,                    (6.9) 

is plotted in figure 6.22 and shows marked increases following each shock. Note that within 

the mixing zone are isolated pockets where 1c  , co-existing with regions where no 

reaction has taken place. Thus, an integral along x  reports much lower values seen in figure 

6.22. The enhancement in efficiency following reshock is dramatic due to the increased 

turbulent mixing across the flame surface driven by a re-energized RM instability. The time 

evolution of the integral mixing width ( mixW ), 

0
4 (1 )mixW Z Z dx


                        (6.10) 

is shown alongside the integrated combustion efficiency ( int ) in figure 6.22. 
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FIGURE 6.22: Growth of the mixing layer width ( mixW ) and the integral planar averaged 

combustion efficiency   /c mixdx W   plotted against scaled time ( 0 0( )kV t t  ), for 

reacting RM with reshock. 
 

 

  



 

 

 

 

 

CHAPTER 7: SUMMARY AND CONCLUSIONS 
 
 

We have described modifications (chapter 2) to the compressible flow code FLASH 

that allow for accurate description of chemically reacting flows with heat addition. Our 

development work includes the addition of a chemistry library with detailed reaction 

mechanisms to describe ܪଶ-Air and ܪܥସ-Air chemistry, extension of the materials database 

to handle temperature-dependent transport properties, extension of the equation of state 

module to handle temperature-dependent adiabatic indices of mixtures, extension of the 

diffusion module to include diffusion of mass and momentum, and modification of existing 

ODE integrators to solve for Arrhenius reaction rates in a chemical reaction network. The 

modified FLASH code was used to investigate non-premixed flames driven by Rayleigh-

Taylor (chapters 3-5) and Richtmyer-Meshkov (chapter 6) interfacial instabilities. We 

review some significant results below.  

Rayleigh Taylor Flames: From detailed numerical simulations, we report on new 

pathways to stabilization and destabilization of non-premixed RT flames. A simple model 

based on equilibrium combustion of a 1-step reaction is used to estimate the flame induced 

density stratification. Across a burning interface, for ܣ௙ି௔ ൒ 0.5 the initial two-layer 

density stratification is retained while at ܣ௙ି௔ ൏ 0.5 the flame forms an active three-layer 

stratification such that ߩ௙௟ ൏ ௙ߩ ൏  ௔. This simplified model is in excellent agreement withߩ

our unperturbed simulations. The two- and three-layer RT flames are then characterized by 

examining the evolution of single wavelength, sinusoidal perturbations in 2D and a 
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broadband spectrum of multimode perturbations in 3D. The underlying flow/flame 

configuration is novel, and proposed as a new canonical framework for understanding the 

broader class of non-premixed flames. 

Two-Layer Flames (ܣ௙ି௔ ൒ ௙ߩ ,0.5 ൏ ௙௟ߩ ൏  ௔): When a high-A, fuel-air interfaceߩ

is subject to single-scale perturbations, the two-layer RT flame evolves qualitatively 

similar to the inert counterpart. The reacting bubbles register a higher terminal velocity 

explained by (a) flame-induced expansion velocity and (b) modified drag buoyancy model 

that accounts for the positively buoyant flame. When the flame evolves from a multimode 

perturbation at the fuel-air interface, the mixing zone is self-similar. The reacting mixing 

zone outpaces the inert counterpart due to the higher Froude number of individual, 

positively buoyant flame bubbles. 

Three-Layer Flames (ܣ௙ି௔ ൏ ௙௟ߩ ,0.5 ൏ ௙ߩ ൏  ௔): For both initially unstableߩ

௙ି௔ܣ݃) ൏ 0) and stable (݃ܣ௙ି௔ ൐ 0) configurations, combustion generates an intervening 

layer of reaction zone products that fundamentally alters the ensuing dynamics – a stable 

RT-layer is rendered unstable at the fuel-flame interface, while an unstable problem is 

rendered stable. The globally unstable (݃ܣ௙ି௔ ൏ 0) flame with single-mode perturbation, 

exhibits fuel surface stability due to locally RT stable fuel-flame stratification. The fuel 

surface does not grow until breached by the advancing spikes of the unstable flame-air 

interface, and thereafter grows purely due to inertia. The duration of stability observed in 

our simulation is well predicted by a simple model (equation 5.2). Burning at the globally 

stable interface (݃ܣ௙ି௔ ൐ 0) renders the fuel-flame interface unstable while the stability 

of the air surface is retained till late times. Under the influence of multimode perturbations, 

the reacting mixing width grows asymmetrically towards air/fuel stream for a globally 
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unstable/stable configuration. The three-layer flames also evolve self-similarly with a 

lower spike growth rate, while the growth of the reacting bubbles is enhanced for the same 

reasons as two-layer turbulent flame. 

The novel configuration investigated here can, if exploited suitably, impact the 

design of widely used ultra-compact combustors in which RT-driven flames play a central 

role. During self-similar growth, RT-unstable interfaces aggressively spread as ~ݐଶ, and 

will dominate over mixing and combustion mechanisms predicated on the Kelvin-

Helmholtz instability where the flow evolves as ~ݐ. This is likely to yield combustor 

designs with greater thrust-to-weight ratios and higher combustion efficiencies. The 

enhanced mixing also obviates the need for additional geometric features that trapped 

vortices in conventional combustors to sustain a threshold level of mixing. At the same 

time, the partial stability regimes demonstrated here imply access to operating conditions 

in combustors that can result in greater control of flame properties, in particular the ability 

to anchor flames. Additionally, RT-driven combustion is sustained by Reynolds number 

growth given by 3~
hh

Re t





, ensuring the flow does not undergo relaminarization upon 

ignition due to the increased diffusivities, a common affliction that impacts several reacting 

flows. The statistical homogeneity of the flow in the (y-z) plane, suggests planar-averaged 

quantities may be represented conveniently through 1d, reduced-order turbulence models. 

Finally, non-premixed RT represents a Level III mixing problem in which the flow and 

flame dynamics are intertwined, thus allowing a simple, yet fundamental framework to 

investigate long-standing questions in turbulent combustion. 

Richtmyer-Meshkov Flames: We have also described the growth of a single-mode, 

chemically-reacting RM instability, using high-resolution numerical simulations, and find 
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the evolution is complex, involving multiple periods of transient growth. We find that RM 

can be spontaneously initiated within a diffuse interface separating a fuel and an oxidizer 

at high temperature, even when no incident shock is specified. The burning within the 

reaction zone generates pressure waves that are sufficiently strong to impulsively 

accelerate any material line on the interface to grow through RM instability. By estimating 

the strength of the combustion waves, we are able to predict the observed peak growth rates 

of the interface for cases with large 0/ h  using a modified impulsive model. Here, the 

impulsive model must account for the finite thickness of the interface (which can itself 

vary with time), and for 0A   (since the pressure wave travels from heavy to light media 

in our simulations). To ensure the applicability of Eq. 1.5 to both slow-fast and fast-slow 

interactions, we have performed simulations of non-reacting RMI at a diffuse interface, 

under both conditions to verify the modified impulsive model. The late time dynamics of 

the interface is complicated by the formation of secondary instabilities (flame strands and 

Kelvin-Helmholtz) and density variations across the interface/flame. 

The above analysis is complicated by three factors, viz. (i) the non-planar nature of 

the combustion waves observed for interfaces with small 0/ h  (and large 0kh ), (ii) 

decompression effects due to y-variations in the pressure gradient behind the shock front 

region of the blast wave, and (iii) a complex, time-varying pressure profile behind the 

shock front. We expect (i) - (ii) to detract from the RM growth due to a net expansion of 

the interface in the direction opposite to that of the RM instability growth. From our 

analysis, we find the growth due to decompression is not significant, and amounts to ~ 5%  

of the RMI growth rate 0V  . We expect the expansion due to non-planarity of the blast 

waves to be more important, however a quantitative estimate of these effects is complicated 
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and has not been attempted here. Nevertheless, these effects are short-lived and fleeting (

0 0( ) 0.5kV t t   ), and the late-time flow is governed by the baroclinic vorticity deposited 

by the initial shock front. This phase of growth is also influenced by the time-varying 

pressure profile behind the shock driving a variable-g RT, but as pointed out by [123] these 

effects (iii) cannot be linearly superposed. Given these complex features, it is encouraging 

that our simulations with large 0/ h  report growth rates in good agreement with the 

modified impulsive model with appropriate accounting for the expansion-driven, time-

dependent broadening of the interface. This is likely due to the simple fact that at such 

large thicknesses, the original combustion reaction zone is at a sufficient remove from the 

interface of interest. As a result, the generated blast waves are allowed the time to stabilize 

to a planar configuration by the time of their interaction with the interface, thus producing 

a perturbation growth similar to the classical RMI. We recognize the time-dependent 

evolution is vastly more complex and likely involves stages of linear and non-linear RMI, 

followed by driven growth due to a Rayleigh-Taylor flow with variable acceleration. We 

defer these interesting issues to future articles, and anticipate the development of more 

sophisticated linear and nonlinear models to describe such phenomena. 

The behavior of the unshocked, reacting flame bears similarity to laser-driven target 

experiments [127-131], where ablation at the target surface results in the passage of a blast 

wave through layers of fuel and shell material. Such experiments are used to elucidate 

turbulent mixing in applications such as Inertial Confinement Fusion and core collapse 

type Ia supernovae. The dynamics of the unshocked flames described here, point to a 

promising strategy for combined RT/RM experiments by initiating combustion at a 
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location removed from the interface, and allowing the ensuing blast waves to accelerate 

the perturbed interface through a series of instabilities discussed here. 

When an incident shock is specified, the interface is subjected to multiple shocks 

traveling in opposite directions. The timing of the shocks is critical and can determine the 

dominant stages of growth. For instance, for 0/ 16h  , the combustion wave crosses the 

interface first, immediately followed by the passage of the incident shock which dominates 

the subsequent dynamics resulting in RMI-like growth. For large 0/ h , the interaction 

with the incident shock occurs first, and is followed by the passage of a combustion wave 

that originates at ~ stZ  far away from the interface. For instance, for 0/ h  = 64 we find 

the interface acceleration to follow 0( ) ( / )ag t t t  where a  = -1.8. The 2D experiments on 

the OMEGA laser by Kuranz et al. [132]report blast wavedriven interface acceleration with 

a = −1.2. As a result, the growth at the interface appears to be modulated by the time-

dependent pressure profile of a blast wave type acceleration as well as the expansion effects 

described above. Once again, when the growth rates are scaled with 0 / ( )V t  rather than 

0V  , the peak values collapse for all cases with the exception of the simulation initialized 

with 0/ 64h  . 

Finally, we have investigated changes to the above phenomena, when the interface 

and the flame are re-shocked by a shock reflected from the endwall at x  = 6 . Since the 

interface was allowed to develop to nonlinearity prior to reshock, significant mixing ensues 

accompanied by aggressive burning of the interface. Our preliminary results (section 6.6) 

indicate a marked increase in the combustion efficiency immediately following each shock 
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impact, highlighting the possibility of high-performance combustion devices that can be 

manipulated by strategically structured shock trains. 

Future work: We identify some outstanding issues that we hope will be answered 

in future investigations of chemically reacting, non-premixed RMI phenomena. Models for 

blast wave driven interface growth that include the effects of decompression and non-

planarity of the waves are essential to improving the applicability of Eq. 1.5 to reacting 

RMI. Similarly, the effect of the initial interfacial amplitude 0h  (relative to perturbation 

wavenumber, k ) on the generation of the combustion waves, and their subsequent 

interaction with the material interface must be understood. Finally, the above investigation 

must be extended to study the growth of a multimode interface separating fuel and oxidizer. 

Such a problem is more representative of the configurations encountered in several 

applications such as Inertial Confinement Fusion, type Ia supernovae, scramjets etc. The 

rate limiting step in such an arrangement is the shock-driven turbulent mixing and 

diffusion, which would dictate the flame dynamics and combustion efficiency. 
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APPENDIX A: FLASH VALIDATION 
 
 
We present verification of the modifications described in chapter 2 to the FLASH code, 

not reported in [82]. 

    Verification of EOS: 

The EOS unit was verified by computing temperature and adiabatic indices for 

species at different temperatures, and comparing with data compiled by NIST[67]. The 

EOS unit is invoked in the Density–Pressure (ρ, P) and Density–Internal Energy (ρ, ε) 

modes for nitrogen, hydrogen, and oxygen with the computed gas properties compared 

with highly accurate experimental or quantum mechanics simulation data from various 

sources[67]. Our simulations were performed with a 1D computational domain with 

outflow boundaries at the extremities. The computational domain was initialized with one 

of the above mentioned species (N2, O2, or H2) at 1atm pressure and constant density, while 

the internal energy, temperature and adiabatic index were initialized with the values 

calculated by the EOS module in Density–Pressure (ρ, P)mode. Note that since the fluid is 

at rest, the solution to the Euler equations and the thermodynamic properties are in steady-

state. The Hydro unit calls the EOS in Density–Internal Energy mode (ρ, ε) after solving 

the Euler equations. 

The above procedure was repeated for different values of density for each species 

(N2, O2, and H2). Figures A.1 (a), (b) and (c) are plots of the temperature, and the adiabatic 

index (γ) each plotted against the input densities for hydrogen, oxygen, and nitrogen 

respectively. The results from FLASH are in good agreement with NIST data, for all values 

of the input density. Figures A.1(a) - (c) verify the implementation of the multi-species 
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EOS unit, as well as the implementation of the Newton-Raphson method for the solution 

of temperature in equation (2.18). 
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    Laminar jet calculation: 

We present the verification of the flux-based viscous diffusion implementation by 

comparing the axial velocity decay of a non-reacting, axisymmetric laminar jet with the 

analytical solution from [68] and the DNS results of [69]. 

Figure A.2 is a schematic of the 2D computational domain used in the FLASH 

simulation. Inlet flow with a constant velocity U0 = 0.5 cm/s is confined to the region 0 ≤ 

r ≤ 100 cm. The flow leaves the domain through the outlet boundary at x = 200 cm, through 

the imposed outflow boundary condition on that surface. Outflow conditions in FLASH, 

which in actuality allow outflow and inflow across the surfaces on which they are imposed, 

are also enforced on the far radial boundary (r = 100 cm), and in the recessed inlet region 

shown in figure. The recessed back step is necessary for supplying ambient fluid entrained 

by the main jet. Finally, r = 0 is treated as an axis of symmetry for this cylindrical jet 

calculation. The simulations were performed with a resolution Δx = 0.125 cm (Nx = 100) 

and Δy = 0.25 cm (Ny = 100). 
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FIGURE A.2: Schematic of computational domain for simulation of 2D axisymmetric 
laminar jet. 

 
Figure A.3 is a plot of the non-dimensional, axial velocity profile from FLASH 

alongside the DNS of [69] and the exact solution from[68]. The initial difference between 

the analytic solution and the numerical results (FLASH and [68]), is due to the theoretical 

jet originating from a point source with infinite velocity, while the computational jet is 

initialized with a finite inlet velocity across a nozzle, thus implying a virtual origin. The 

analytic solution from boundary layer theory[68] is given by   
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where ܷ଴ is the inlet velocity (0.5cm/s), ݎ is the jet radius (1cm),  ߥ is the kinematic 

viscosity (3.4 ൈ 10ିଷܿ݉ଶ/ݏ), and ݔ଴ is the virtual origin associated with the finite source 

of momentum. Extrapolating from the growth of the jet in the FLASH data, we infer a 

virtual origin location of ݔ଴	= 35 cm. Similarly, the plot of the radially integrated and 

normalized mass flux in figure A.4 shows a constant rate of entrainment for the main jet. 

Finally, the computational jet conserves axial momentum flux to within ~7 % in this 

steady-state simulation in figure A.4.    

 

FIGURE A.3: Steady-state, non-dimensional, axial velocity from FLASH compared with 
DNS[69] and analytic solution[68]. 



138 

 

 

FIGURE A.4: Steady-state, non-dimensional momentum   0/M x M   and mass   0/m x m   

fluxes from FLASH. 0M  and 0m  are inlet values.  

 
    Decay of a potential vortex: 

The temporal decay of an initially ideal vortex is dictated by viscous diffusion, and 

serves as a demanding test problem for the viscous solvers. Analytic solutions are available 

from solving the symmetric Navier-stokes equations, and are provided in [70]. Here, we 

describe results from FLASH simulations with the viscous-diffusion equation solved by 

the implicit solver, as well as the flux-based method.   

For a vortex of initial strength ݇଴ and radius ݎ଴, ݇଴ ൌ థܸݎ଴ and the tangential 

velocity థܸ everywhere is given by 

థܸ ൌ 	
௞బ
௥
൬1 െ ݁

షೝమ

రഌ೟൰.         (A.2) 
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The FLASH simulations were performed in a Cartesian coordinate system with a 

computational domain of 40 cm in the x and y directions. The ‘initial’ conditions for the 

simulation was the exact solution at t = 0.1s to avoid the singularity in equation (A.2) for t 

→ 0. The computational domain was initialized with a uniform density and pressure field, 

while all boundaries were specified as ‘outflow’ surfaces. Finally, the simulations had ߥ = 

10 cm2/s,  ݎ଴ = 5 cm, and  థܸబ = 2 cm/s. The simulations were performed with a resolution 

Δx = Δy = 0.15625 cm (Nx = Ny  = 256). 

Figure A.5 is a plot of the tangential velocity at t = 0.1s, t = 0.2s and t = 0.5s from 

our simulations using (a) implicit and (b) flux-based diffusion, showing excellent 

agreement with the analytic[70] solution. On the computational Cartesian grid, the solution 

remained symmetric for all times for both diffusion methods. 
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    2D advection of reacting ܪଶ rings: 

We have evaluated the directionally split solver with a 2D test problem involving a 

reacting H2 ring in a background flow. Of interest is the ability of FLASH to maintain the 

circular symmetry of the reacting ring as it is convected by a directional background flow. 

Diffusion effects are included through an implicit solver.  

A circular H2 ring immersed in O2 at 1 atm pressure was advected with a uniform 

velocity. The location and thickness of the ring in Cartesian co-ordinate system is specified 

through the mass fraction of ܪଶ, 

ுܻమ ൌ
ଵ

ଶ
ሾ1 ൅ tanhሺܥሺ௟

ଶ
െ ݎ| െ  ଴|ሻሻሿ,       (A.3)ݎ

where, ݎ଴	 ൌ 	ඥሺݔ଴ଶ ൅ 	ݎ ଴ଶሻ andݕ ൌ ඥሺݔଶ ൅  determines the ܥ ,. In equation A.3	ଶሻݕ

sharpness of the front and was specified to be 80 ܿ݉ିଵ, ݈ሺൌ 0.6	cmሻ specify the width of 

the hydrogen plateau while ݔ଴ and ݕ଴ specify the center of the ring. For all the simulations 

presented in this section, a mesh resolution of ∆x = 0.01 cm and ∆y = 0.01 cm was 

employed. The Lewis number was assumed to be unity, while the boundaries were treated 

as outflow surfaces. Table A.1 lists the simulations performed and categorized according 

to the direction of the background flow. The initial configuration is shown in figures A.6 

(a) and (b) through H2 mass fraction and temperature contours. 
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(a)       (b) 

FIGURE A.6: Plots at t = 0s of (a) mass fraction of Hydrogen, and (b) temperature.  
 
Figures A.7 (a) and (b) show contours of mass fraction of H2 and temperature at t 

= 100μs for case A.1, while figures (c) and (d) are plots of mass fraction of hydrogen and 

temperature for case A.2. We observe that the directionally split hydro solver in FLASH 

preserves radial symmetry (figure A.7), and the uniform burning of hydrogen results in a 

maximum temperature of ~3200K comparable to the analogous 1D simulation described 

in [82]. We also performed these simulations using the Godunov method in FLASH 

without diffusion effects and found that the numerical diffusion had a directional 

preference. When the x and y components of the velocities were non-zero and equal, 

circular symmetry was preserved. When the implicit diffusion solver was employed with 

PPM, there was no directional preference on diffusion and circular symmetry was 

preserved irrespective of the direction of advection. At the inner and outer periphery of the 

hydrogen ring, diffusion flames were formed and have the same thickness.  
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TABLE A.1: 2D Hydrogen ring (reacting) simulations performed using FLASH. 

CASE 
Mass 

Diffusion 

Thermal 

Diffusion 

Viscous 

Diffusion 

U 

cm/s 

V 

cm/s 

A.1  Implicit  Implicit  Implicit  2000  0 

A.2  Implicit  Implicit  Implicit  2000  2000 
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(a)       (b) 

 

(c)       (d) 

FIGURE A.7: Plots at t = 100μs for case A.1 (a) mass fraction of 2H , (b) temperature and 

case A.2 (c) mass fraction of 2H , (d) temperature. 

 


