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We report comprehensive analysis of output characteristics of homogeneously broad-
ened index-antiguided slab lasers with transverse mode competition. Robust single
fundamental mode operation is achieved when the distributive modal loss due to
index antiguiding dominates the output coupling loss. Maximal laser efficiency
under single fundamental mode operation is investigated numerically for various
combinations of single-pass gains and losses. We show analytically that an asymp-
totic limit of such efficiency exists that is solely determined by the loss ratio
between the fundamental and 1st higher-order modes, which equals 66.7% for planar
index antiguided lasers. © 2016 Author(s). All article content, except where oth-
erwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4971307]

It is well known that the output of a laser depends on many parameters in the resonator, such as
pumping level and distribution, internal loss, mirror curvatures, output coupling, and cavity length,
etc.1,2 A comprehensive study of laser resonators is therefore essential for understanding these lim-
itations and optimizing their performance. This is especially important for high-power lasers where
large mode area (LMA) with robust single fundamental mode is highly desired for high-brightness
operation.3,4 These LMA lasers are mostly multimoded (MM) and require some level of mode discrim-
ination to achieve single fundamental mode operation. Among various means to achieve this goal,4–9

index antiguiding (IAG) is a relatively simple approach, where the negative index step between the
core and the cladding imposes higher loss for higher order modes.10,11 Robust single fundamental
mode oscillation has been reported both in IAG fibers with diameter up to 400 µm12,13 and IAG planar
waveguides with 200-µm core width.14 Previously we have conducted the first theoretical analysis
of output characteristics of fundamentally single-moded (i.e., HOMs can never oscillate) planar IAG
lasers with arbitrary laser gain, internal loss, output coupling, and cavity length.15 However, recent
observation of HOM oscillation in a 400-µm-core planar IAG laser16 indicates the necessity to include
transverse mode competition (TMC) due to transverse spatial hole burning17 in such MM waveguide
lasers. Although TMC in MM waveguide lasers has been investigated,16,18–21 these studies were
conducted for specific values or narrow range of gain, loss, and output coupling. A comprehensive
study of output characteristics in MM waveguide lasers, not only for IAG but also for LMA waveg-
uide lasers in general, is still lacking. In this work, we conduct comprehensive analysis of output
characteristics of single fundamental mode in planar multimoded IAG lasers with arbitrary gain and
loss. We report a simple and efficient quasi-analytical method to calculate the threshold gain of the
HOM, which is very beneficial to this comprehensive study. We study numerically the extraction effi-
ciency and optimal extraction conditions of the single fundamental mode for various combinations
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of single-pass gains and losses. We present an analytic theory that predicts the absolute maximal
extraction efficiency to be 66.7% which is in excellent agreement with numerical modeling.

We consider a generic planar IAG waveguide with a core width d and a length L, sandwiched
between two flat mirrors with reflectances Rl and Rr at the left-hand (z = 0) and the right-hand
(z = L) ends of the resonator, respectively. The modal loss coefficient αn of the nth mode is determined
by the core width and the refractive indexes of the core and the cladding, and scales as square of the
mode order n.16 For simplicity, we assume the FM and HOM oscillate at the same frequency with a
uniform small-signal gain coefficient g0 in the core region. Previously we have developed a model
to calculate the propagating intensities in a homogeneously broadened planar IAG waveguide laser
based on a zero-field approximation.15,22 The forward-propagating average normalized intensities
(I
′+
n ) of the fundamental (n=1) and the first higher-order mode (n=2) are governed by the following

set of two coupled first-order nonlinear ordinary differential equations16

dI
′+
n

dz
= g0I

′+
n

d/2∫
−d/2

fn(x)

[1 + d
2∑

i=1
fi(x)(I

′+
i + ci/I

′+
i )]

dx − αnI
′+
n , (1)

where cn = [I
′+
n (0)]2/Rl =Rr[I

′+
n (L)]2 are mode-specific constants, and f 1(x) = 2cos2(πx/d)/d and

f 2(x) = 2sin2(2πx/d)/d are the normalized intensity profiles across the waveguide core width satisfying
∫

d/2
−d/2 fn(x)dx = 1. For arbitrary level of saturation, Eq. (1) needs to be solved self consistently to yield

I
′+
n (z), from which a multitude of laser output parameters, such as threshold gain, slope efficiency,

extraction efficiency, output power, etc., can be derived for individual modes, as was demonstrated
in Figs. 1 and 3 of Ref. 16 This process, however, is computationally intensive and is not the easiest
way to achieve our goal.

As the focus of the present work is on output characteristics of the fundamental mode, we do not
have to calculate I

′+
2 if we know its threshold gain gth

2 . Below we present a simple method to obtain gth
2

quasi-analytically. When the unsaturated gain coefficient g0 equals threshold gain of the fundamental
mode gth

1 , the FM just starts to oscillate (I
′+
1 ≈ 0) while I

′+
2 is zero. At steady state where the round-trip

gain equals the round-trip loss for the FM, Eq. (1) can be integrated to yield the well-known condition
for gth

1 :

gth
1 L = α1L − 1/2 ln RlRr . (2)

At intermediate gain gth
1 < g0 < gth

2 , the FM oscillates and I
′+
1 is governed by a single first-order

nonlinear ordinary differential equation:

dI
′+
1

dz
= g0I

′+
1

d/2∫
−d/2

f1(x)

[1 + df1(x)(I
′+
1 + c1/I

′+
1 )]

dx − α1I
′+
1 . (3)

This equation is identical to Eq. (9) in Ref. 15 which can be solved much more efficiently than
Eq. (1) using the first integral. At the same time, the 1st HOM is below the threshold and integrating
Eq. (1) yields

g0

L∫
0

*..
,

d/2∫
−d/2

f2(x)

[1 + df1(x)(I
′+
1 + I

′−
1 )]

dx
+//
-

dz < α2L −
1
2

ln RlRr . (4)

Finally, at g0 = gth
2 , the HOM starts to oscillate (I

′+
2 ≈ 0) and Eq. (4) becomes

gth
2

L∫
0

*..
,

d/2∫
−d/2

f2(x)

[1 + df1(x)(I
′+
1 + I

′−
1 )]

dx
+//
-

dz= α2L −
1
2

ln RlRr . (5)

Equation (5) defines gth
2 , which can be determined fairly quickly by gradually increasing g0 in

Eq. (3) to obtain I
′+
1 until a transition from Eq. (4) to Eq. (5) is obtained. We have applied this

simplified method to Figs. 1 and 3 of Ref. 16 and obtained excellent agreement.
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Equations (2)–(5) are applied to study threshold characteristics of planar IAG waveguide lasers.
Consider a common laser configuration where Rl = 1 and Rr =ROC (the reflectance of the output
coupler). With this notation, output coupling loss is defined as T = 1 − ROC , which approximates
− ln ROC when ROC is close to unity. Figure 1(a) shows the contour plot of theoretical threshold gain gth

1
of the FM as a function of single-pass loss α1L (logarithmic scale) and output coupler reflectance ROC

(linear scale). As is apparent from Eq. (2), gth
1 decreases monotonically with decreasing distributive

loss α1L and output coupling loss T (or increasing ROC). Figure 1(b) shows a similar plot for the
threshold gain gth

2 of the 1st HOM. In the lower-left region where the output coupling loss T dominates
the distributive loss α1L, there is little modal discrimination between the FM and HOM such that
HOM oscillates immediately after FM lases. The gain saturation term in Eq. (5) is negligible and
gth

2 follows the trend of gth
1 . This situation is completely different in upper-right region of the figure

where α1L >> T and gain saturation by the FM suppresses effectively HOM oscillation. We define
a robustness parameter ξ ≡ gth

2 /g
th
1 to reflect the robustness of single fundamental mode operation.

As shown in Fig. 1(c), to have large ξ and therefore robust single FM operation, one needs to work
in the upper-right region where the discriminating IAG loss α1L dominates the non-discriminating
output coupling loss T ≈− ln ROC such that gain saturation by the FM effectively suppresses HOM
oscillation. It is worth to point out that not all the points along the ξ contour work equally effective in
laser optimization. As for the case of plane-wave oscillators, large internal loss significantly reduces
lasers’ extraction efficiency.23 This topic is the subject of the following sections.

FIG. 1. Contour plots of (a) single-pass threshold gain gth
1 L of the fundamental mode, (b) single-pass threshold gain gth

2 L of the

1st HOM, and (c) threshold gain contrast gth
2 /g

th
1 , as a function of single-pass loss α1L of the fundamental mode (logarithmic

scale) and output coupler reflectance ROC (linear scale).
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One of the most important performance metrics of lasers is their extraction efficiency. For
homogeneously broadened multimoded lasers, the extraction efficiency for the nth mode is defined
by1,2,15

ηn =
I
′+
n (L)(1 − Roc)

g0L
. (6)

For given gain and loss coefficients, ηn is typically a strong function of the output coupling, and
maximal extraction efficiency ηmax

n exists at some optimal output coupler Ropt . For high brightness
operation, one is particularly interested in the maximal extraction efficiency ηmax

SM of the single-
fundamental mode, which is defined by ηmax

SM = maximal η1 while η2 = 0. In principle ηmax
SM can be

calculated by solving Eq. (1) to take into account of TMC explicitly, as was done in Ref. 16 With
the knowledge of gth

2 , however, we propose a simpler method and illustrate its principle below by
considering an IAG waveguide with α1L = 0.1. Firstly we assume a fundamentally single-mode laser
by setting I

′+
2 = 0 and solve Eq. (3) to obtain η1 as a function of ROC for selective g0L, as shown in

Fig. 2(a). For each g0L, ηmax
1 occurs at the critical point where the derivative η ′1(Ropt) equals zero and

this defines the optimal output coupler Ropt . The red dash-dot-dot in Fig. 2(a) denotes the locus of
ηmax

1 and its corresponding Ropt for different gains. Next, we allow HOM to oscillate (i.e., I
′+
2 can be

non-zero) and identify single FM region in Fig. 2(a). To do so, we calculate gth
1 and gth

2 as a function
of ROC for α1L = 0.1, which is displayed in Fig. 2(b). The regions below the gth

1 curve, between gth
1

and gth
2 curves, and above the gth

2 curve, represent no oscillation, FM only, and multimode oscillation,
respectively. While the gth

1 curve is monotonic, the gth
2 curve has a local minimum at g0L = 2.654,

below which the oscillation is single FM for all ROC . For each g0L > 2.654, the gth
2 curve defines

two ROC values separating the single FM from MM operation. The gth
2 curve in Fig. 2(b) can then

be mapped into Fig. 2(a) as the blue dash-dot curve, which also represents η1 at the threshold of the
1st HOM. Finally, we can define ηmax

SM as follows, which is represented by black circles in Fig. 2(a):
Below the gth

2 curve the laser is single fundamental mode so ηmax
SM = η

max
1 ; above it the laser is MM and

ηmax
SM follows the gth

2 curve, as HOM kicks in before the laser reaches to ηmax
1 . These two segments

intersect at g0L = 4.235 which defines a sharp kink. Figure 2(a) clearly shows that, as a result of
TMC, ηmax

SM is suppressed in regions of high gain and the corresponding optimal output coupler Ropt

increases.
Figure 2(a) can be repeated to obtain ηmax

SM and Ropt for different values of α1L. The result is
summarized in Fig. 3(a). For comparison, the same calculation for a fundamentally single-mode IAG
laser is displayed in Fig. 3(b).15 As shown, without the HOM competing with the FM, all curves of
constant g0L (solid line) or α1L (dash line) are smooth and ηmax

1 approaches unity in the limit of
low loss. With the HOM competing with the FM, the trend remains the same in high-loss regions
while it is squeezed downwards in low-loss regions. The squeezing results in kinks in all curves of

FIG. 2. For α1L = 0.1, (a) extraction efficiency of the fundamentally single mode vs. output coupling for selected fixed gains,
and (b) threshold gain vs. output coupling for the FM and 1st HOM in a MM IAG laser. In (a), red dash-dot-dot is the locus
of maximal extraction efficiency of the FM, blue dash-dot is η1 at the threshold of 1st HOM, and black circle is the maximal
single-fundamental-mode extraction efficiency in a MM IAG laser.
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FIG. 3. (a) Maximal extraction efficiency of the single fundamental mode in a multimoded laser (ηmax
SM ) and optimal output

coupler reflectance Ropt , for various single-pass gains (solid lines) and distributive losses (dash lines). (b) Same as (a) except
maximal extraction efficiency of a fundamentally single-moded laser (ηmax

1 ).

constant gain or loss (notice that kinks in curves of very low gain or very high loss are not shown).
Specifically, the dash curve with α1L = 0.1 in Fig. 3(a) is identical to the ηmax

SM curve in Fig. 2(a).
Figure 3 clearly indicates that ηmax

SM is suppressed and approaches an asymptotic value of 67%, which
defines an absolute maximal extraction efficiency Hmax

SM of the laser under single fundamental mode
operation (H stands for capital Greek letter η). The squeezing also makes ηmax

SM insensitive to (internal)
distributed loss and (external) output coupling loss at high gain – a property that is also shared by
plane-wave resonators.2

The value of Hmax
SM can be derived analytically as follows. Referring to Fig. 3(a), Hmax

SM equals
ηmax

SM in the limit of low distributive loss, weak output coupling, and high gain. This point corresponds
to the largest ηmax

SM in Fig. 2(a), which occurs at the intersection of the gth
2 curve and the η1 curve of

the highest g0L. It therefore satisfies both Eq. (5) and

gth
2

L∫
0

*..
,

d/2∫
−d/2

f1(x)

[1 + df1(x)(I
′+
1 + I

′−
1 )]

dx
+//
-

dz= α1L −
1
2

ln ROC . (7)

Equation (7) states simply that round-trip gain equal to round-trip loss for the FM at gth
2 . Let α2 = kα1

where k = 4 for planar IAG waveguides. Multiplying Eq. (7) by k and subtracting Eq. (5) yields

gth
2

L∫
0

d/2∫
−d/2

kf1(x) − f2(x)

[1 + df1(x)(I
′+
1 + I

′−
1 )]

dxdz=−
(k − 1)

2
ln ROC . (8)

At the limit of low loss α1L→ 0 and weak coupling ROC→ 1 where I
′+
1 ≈ I

′−
1 and − ln ROC ≈ 1−ROC ,

Eq. (8) is reduced to

gth
2 L

d/2∫
−d/2

kf1(x) − f2(x)

[1 + df1(x)2I
′+
1 ]

dx ≈
(k − 1)

2
(1 − Rr). (9)

Since the right-hand side of Eq. (9) is close to 0, we have df1(x)2I
′+
1 >> 1 and Eq. (9) becomes

gth
2 L

2I
′+
1

(k − 2)=
(k − 1)

2
(1 − Rr). (10)

The maximum extraction efficiency Hmax
SM is therefore

Hmax
SM =

I
′+
1 (1 − Rr)

gth
2 L

=
k − 2
k − 1

. (11)

With k = 4 for planar IAG lasers, Hmax
SM = 2/3 ∼ 0.67, which agrees well with the numerical result

shown in Fig. 3(a). Experiments are currently underway to confirm this prediction.
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In conclusion, we have conducted comprehensive analysis of output characteristics of homoge-
neously broadened IAG planar waveguide lasers with arbitrary single-pass gain and loss. Specifically,
our modeling takes into account transverse mode competition due to transverse spatial hole burning.
We propose an efficient semi-analytical method to calculate threshold gains of higher-order modes.
We show that robust single fundamental mode operation can be obtained in IAG lasers when dis-
tributive modal loss dominates output coupling loss. We study laser extraction efficiency and optimal
output coupling for various combinations of single-pass gains and losses. Drastically different from
a fundamentally single-mode laser where the maximal extraction efficiency can approach unity, the
extraction efficiency of the single fundamental mode in a MM laser approaches an asymptotic value.
We present an analytic theory to show that this limiting value is solely determined by the modal loss
ratio between the FM and the HOM. Our theory predicts a value of 2/3 for planar IAG waveguides,
which agrees very well with numerical modeling. Our results have important implications to the
design and optimization of IAG waveguide lasers. Our methods can be readily extended to other
LMA lasers with different modal loss discrimination mechanisms, as well as to the study of general
aspects of mode competition in multimoded systems.
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