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a b s t r a c t 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first discovered in late 2019 in 

Wuhan City, China. The virus may cause novel coronavirus disease 2019 (COVID-19) in symptomatic in- 

dividuals. Since December of 2019, there have been over 7,0 0 0,0 0 0 confirmed cases and over 40 0,0 0 0 

confirmed deaths worldwide. In the United States (U.S.), there have been over 2,0 0 0,0 0 0 confirmed cases 

and over 110,0 0 0 confirmed deaths. COVID-19 case data in the United States has been updated daily at 

the county level since the first case was reported in January of 2020. There currently lacks a study that 

showcases the novelty of daily COVID-19 surveillance using space-time cluster detection techniques. In 

this paper, we utilize a prospective Poisson space-time scan statistic to detect daily clusters of COVID-19 

at the county level in the contiguous 48 U.S. and Washington D.C. As the pandemic progresses, we gen- 

erally find an increase of smaller clusters of remarkably steady relative risk. Daily tracking of significant 

space-time clusters can facilitate decision-making and public health resource allocation by evaluating and 

visualizing the size, relative risk, and locations that are identified as COVID-19 hotspots. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

First discovered in late 2019 in Wuhan City, China ( Huang

t al., 2020; Li et al., 2020 ), the severe acute respiratory syn-

rome coronavirus 2 (SARS-CoV-2), may cause novel coronavirus

isease 2019 (COVID-19) in symptomatic individuals. There have

een over 7,0 0 0,0 0 0 confirmed cases and over 40 0,0 0 0 confirmed

eaths globally since December of 2019; and in the United States

U.S.), over 2,0 0 0,0 0 0 cases were confirmed and over 110,0 0 0 con-

rmed deaths counted ( Dong et al., 2020 ). Due to the challenges

f developing a vaccine for SARS-CoV-2, it will likely take another

ear or more until the public is sufficiently protected from COVID-

9 ( Lurie et al., 2020 ). Therefore, it is important to monitor the

pread of the disease systematically, anticipate or detect new out-

reaks early, analyze past and existing clusters to gain insights

bout spatiotemporal trends, and facilitate response efforts. 

An efficient and effective public health response to disease out-

reaks, including stay-at-home orders, testing, and the allocation
∗ Corresponding author. 

E-mail address: alexander.hohl@geog.utah.edu (A. Hohl). 
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f hospital resources, relies on the collection and timely analysis

f case data, which is commonly referred to as disease surveillance

 Yang, 2017 ). It is an integral part of health emergency work and

as contributed to saving lives during the COVID-19 pandemic by

lowing and preventing transmission, optimizing care, and mini-

izing the impact on health care delivery systems ( WHO, 2020 ).

pace-time scan statistics ( Kulldorff, 1997; Kulldorff et al., 1998;

006 ) are a family of popular and extensively utilized techniques

or disease surveillance and early detection, as they identify geo-

raphic and temporal clusters of elevated disease risk while quan-

ifying cluster strength and statistical significance. Space-time scan

tatistics have been applied for analyzing chikungunya and dengue

ever in Colombia and Panama ( Desjardins et al., 2018; Whiteman

t al., 2018 ), detecting West Nile Virus infection hot spots in Italy

 Mulatti et al., 2015 ), identifying areas of increased crime activity

 Han et al., 2019 ), and for rapid surveillance of COVID-19 cases in

he United States ( Desjardins et al., 2020 ), among others. 

During a pandemic, surveillance may require analyzing data

treams of daily updated case counts for dynamic disease risk

apping ( Hay et al., 2013 ). In such a scenario, periodic (e.g. daily)

pplication of the prospective space-time scan statistic is beneficial

 Kulldorff, 2001 ), as it detects active or emerging clusters of the
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Cumulative number of cases between January 22nd and June 5th, 2020. 
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current day, while disregarding past clusters that may have ceased

to pose a public health threat ( Greene et al., 2016 ). It therefore al-

lows for tracking of existing clusters while detecting new ones as

the phenomenon of interest unfolds. Time-periodic surveillance us-

ing the prospective space-time scan statistic has been carried out

for early detection of terrorism outbreaks ( Gao et al., 2013 ), thy-

roid cancer among men, ( Kulldorff, 2001 ), and syndromic surveil-

lance in Massachusetts ( Takahashi et al., 2008 ), among others.

Time-periodic surveillance is especially suitable to monitor the de-

velopment of COVID-19 daily case counts in the United States, as

lockdown measures are currently being relaxed, businesses reopen,

and people start engaging in social activities again. 

Effectively disseminating the results of the abovementioned dis-

ease surveillance effort s is critical and should inform both re-

searchers and the general public to improve the understanding of

the spread and risk of COVID-19. As such, the COVID-19 pandemic

has resulted in a wide variety of online dashboards that display

the power of geographic information coupled with information re-

garding the pandemic at various levels of aggregation. For example,

the Johns Hopkins coronavirus dashboard is the most followed and

utilized online resource for daily updates about cases, deaths, and

hospitalizations, and other key information about COVID-19 in the

United States and across the globe ( Dong et al., 2020 ). COVID Con-

trol 1 is another Johns Hopkins dashboard that uses volunteered ge-

ographic information ( Goodchild, 2007 ) for syndromic surveillance

of COVID-19 related symptoms at the county level in the U.S. Addi-

tional examples of COVID-19 dashboards include the World Health

Organization, HealthMap, China’s close contact detector geosocial

app, WorldPop ( Boulos and Geraghty, 2020 ), among a plethora of

other local, regional, national, and global platforms. Since the ob-

jective of this paper is to conduct daily surveillance of COVID-19

cases, we developed our own interactive dashboard to examine the

evolution of significant space-time clusters that can be viewed and

utilized by both researchers and public audiences. 

This study continues and improves upon previous and ongo-

ing COVID-19 surveillance effort s that use the prospective space-

time scan statistic on confirmed cases at the county level in the

United States ( Amin et al., 2020; Desjardins et al., 2020 ). To our

knowledge, this study is the first to detect clusters of COVID-19 on

a daily basis using the time-periodic prospective space-time scan

statistic, tracks their characteristics through time, and offers a web

application for live results. In addition, this article includes innova-

tive figures and graphs that aid identifying spatiotemporal patterns

of COVID-19. This approach is especially useful because it allows

for daily identification and characterization of active and emerging

clusters of COVID-19 to inform public health authorities, decision-

makers and the general public about optimal locations and times

to put in place measures to slow disease transmission (”flatten-

the-curve”). We rerun our prospective analysis each day as case

counts are updated for early detection of emerging clusters, moni-

toring of existing ones, and to locate counties where disease trans-

mission is slowing down, and COVID-19 may no longer pose a

threat to public health. 

2. Data and methods 

2.1. COVID-19 case counts 

We obtained daily case counts from the COVID-19 Data Repos-

itory by the Center for Systems Science and Engineering (CSSE) at

Johns Hopkins University. The repository contains case counts at

the county level for the U.S., which are updated daily in tabular

format. We collected daily case counts for counties within the con-
1 https://covidcontrol.jhu.edu/ 

w  

f  
iguous U.S. from the day of the first confirmed case to the day

f carrying out the analysis (January 22nd–June 5th, 2020). From

he U.S. census website, we gathered 2018 ACS 5-year estimates of

he total population at the county level and assigned them to geo-

raphic information systems (GIS) compatible county geometries.

o maintain integrity of our analysis, we disregarded confirmed

ases from the ”Diamond Princess” and ”Grand Princess” cruise

hips, as well as cases which were designated to administrative

nits other than counties (states, cities, hospital districts). Because

he COVID-19 case counts are cumulative for each day ( Fig. 1 ), we

btained the number of new cases each day (a requirement for the

pace-time scan statistic) by subtracting the previous day’s count. 

.2. Prospective space-time scan statistic 

To achieve our objective of daily COVID-19 surveillance, we uti-

ize a Poisson prospective space-time scan statistic, which was im-

lemented in SaTScan 

TM ( Kulldorff, 2001; 2018; Kulldorff et al.,

998 ). This method finds the most likely clusters from a number

f cylindrical candidate clusters. The cylinders are determined by a

ircular base (the spatial scanning window) which is centered on a

andidate location (county centroids) and that has a radius r . The

eight of the cylinder is determined by the temporal scanning win-

ow t . Therefore, each county centroid is the center of a number of

andidate clusters of differing radii and heights. We restricted the

patial and temporal scanning windows to include 10% or less of

he population at-risk and 50% or less of the study period, respec-

ively. In addition, each candidate must contain at least 5 cases and

ave a minimum duration of 2 days. This parameterization is con-

istent with previous analyses of COVID-19 within the contiguous

nited States ( Desjardins et al., 2020; Hohl et al., 2020 ). 

We compute the expected and observed numbers of cases for

ach cylinder and perform a maximum likelihood test with null

ypothesis H 0 : “There is no difference in risk of COVID-19 between

he inside and outside of the cylinder”, and alternative hypothesis

 A : “There is a higher risk of COVID-19 inside the cylinder.” We

ompute the number of expected cases μ using Eq. (1) : 

= p ∗ C 

P 
(1)

ith the population inside the cylinder p , the total number of

ases C , and the total population P . Clusters of elevated disease risk

re identified using the likelihood ratio ( LR ) test in Eq. (2) : 

L ( Z ) 

L 0 
= 

(
n Z 

μ( Z ) 

)n Z 
(

N−n Z 
N−μ( Z ) 

)N−n Z 

(
N 

μ( T ) 

)N 
(2)

ith likelihood function L ( Z ) for candidate cylinder Z , likelihood

unction L for H ; the number of cases inside the cylinder n z ; the
0 0 

https://covidcontrol.jhu.edu/
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Table 1 

Cluster characteristics. 

Abbrev. Characteristic 

nClus The number of clusters resulting from prospective Poisson space-time scan statistic. 

nCty Number of counties that are part of a cluster. 

avgDur Average duration of clusters. 

avgRad Average cluster radius. 

cluPop Total population within the clusters of a given day. 

cluObs Number of observed cases within clusters. 

cluExp Number of expected cases within clusters. 

LLR Log likelihood ratio. 

RR c lu Cluster Relative risk. 
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2 Due to space restrictions, we provide maps of clusters in weekly increments 

rather than daily in this study. Daily results are available under: http://covid19scan. 

net 
3 http://covid19scan.net 
4 https://www.openstreetmap.org/ 
5 https://www.shinyapps.io/ 
xpected number of cases μ( Z ) in cylinder Z ; the number of ob-

erved cases for the entire study area during the entire study pe-

iod N ; and the total number of expected cases in the study area

cross all time periods μ( T ). Elevated risk is indicated by a likeli-

ood ratio greater than 1, which is the case if 
n Z 

μ( Z ) 
> 

N−n Z 
N−μ( Z ) 

. The

ylinder with the highest likelihood ratio is the most likely cluster.

he LR is a measure of how risk within a cylinder differs from risk

utside, and typically its logarithmic transformation is reported as

he log likelihood ratio ( LLR ). 

We run 999 Monte Carlo simulations for significance testing,

here we randomize the locations and times of the cases to ob-

ain a likelihood ratio for each run and candidate cluster that form

 distribution under H 0 . Furthermore, we include statistically sig-

ificant ( p < . 05 ) secondary clusters in our reporting. Lastly, to il-

ustrate the distribution of risk inside clusters, we report choro-

leth maps that contain relative risk ( RR ), which is the risk within

 county divided by the risk outside. 

Therefore, we compute Eq. (3) for each within-cluster county:

R cty = 

c/e 

( C − c ) / ( C − e ) 
(3) 

ith the total number of cases c for a given county, the number of

xpected cases in a county e , and C the number of observed cases

n the U.S. e is computed analogous to μ in Eq. (1) , but using the

opulation inside the county instead of population within a cylin-

er. Similarly, we compute the overall relative risk for the reported

lusters ( RR c lu ). 

As opposed to its retrospective variant, the prospective space-

ime scan statistic finds clusters that are “active” or “emerging”

t the end of the study period. While the procedure of selecting

he most likely clusters from a set of candidate cylinders is the

ame as discussed previously, the prospective analysis only eval-

ates cylinders that have a “current” ending time. Therefore, the

et of candidate cylinders is reduced to only include “active” cylin-

ers at the end of the study period ( Kulldorff, 2001 ). In other

ords, only those cylinders with an end date equal to the end of

he study period are considered by prospective analyses. Compu-

ation of likelihood ratio tests is the same as in retrospective scan

nalyses ( Eq. 2 ). 

We conduct time-periodic disease surveillance, therefore we ran

he prospective Poisson space-time scan statistic every day since

he start of the study period (January 22nd, 2020) until the day of

riting (June 5th, 2020). Each daily run of the prospective space-

ime scan statistic produced a most likely cluster, as well as a set of

econdary clusters. Rather than examining these clusters in isola-

ion, we are interested in how their characteristics change in space

nd time. Therefore we create various visuals to illustrate the dy-

amics of the process: (1) a series of small multiples, which tracks

he change of cluster locations, their size, and their spatial rela-
ionships through time 2 , (2) time series graphs that include vari-

us characteristics of the clusters for each day of the study period

 Table 1 ) and (3) a bivariate map that illustrates the relationship

etween average relative risk across the entire study period ( RR T )

nd the number of days each county was part of a cluster ( N C ),

s observed when the prospective Poisson space-time scan statis-

ic was computed. The latter is particularly useful to more effec-

ively reveal relationships between two variables than a side-by-

ide comparison of the corresponding variables. We also (4) build

 covid19scan web application where we report maps in daily in-

rements. 

.3. Web application: covid19scan 

We conduct automated daily surveillance of COVID-19 for the

ontiguous U.S. and create a web application to report live re-

ults from the prospective space-time scan statistic 3 . The applica-

ion is updated daily and contains significant clusters for every day

rom January 22nd, 2020 to the current day overlaid on a standard

penStreetMap 

4 basemap. covid19scan features standard map con-

rols, such as zoom and pan. In addition, the map has a time slider,

hich allows for selecting a specific day for which clusters are dis-

layed. The time slider also allows for animating the display of

aily clusters. Lastly, the cluster characteristics mentioned previ-

usly are displayed within popup boxes that appear upon hovering

ver the clusters. The application is written in R ( Team, 2019 ) and

everages the R Shiny library ( Chang et al., 2018 ) for web capabil-

ty and leaflet ( Cheng et al., 2018 ) for mobile-friendly interactive

aps. We host the application using shinyapps.io 5 , a service to de-

loy web applications through RStudio ( Team et al., 2015 ). 

. Results 

.1. Space-time clusters of COVID-19 

The prospective space-time Poisson scan statistic detected no

ignificant clusters for the first 38 days of analysis. Therefore, the

rst cluster for the contiguous U.S. was identified in the Pacific

orthwest region on March 1st, 2020 ( Fig. 2 ). A week later, we

bserved clusters in New York, the Gulf Coast area, and the South-

estern U.S. New York and surrounding areas are part of a cluster

or every day since Westchester County had an outbreak on March

th. The following period of approximately one month is charac-

erized by clusters of very large size, especially in the Midwest.

tarting April 26th, clusters become smaller and seemingly more

http://covid19scan.net
http://covid19scan.net
https://www.openstreetmap.org/
https://www.shinyapps.io/
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Fig. 2. Weekly clusters resulting from the prospective Poisson space-time scan statistic. 
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numerous. In the following time period, we also observe clusters

that are localized to specific urban areas (Miami, FL; New Orleans,

LA; Dallas, TX). Clusters are observed in each of the 5 major re-

gions of the contiguous U.S. (West, Midwest, Northeast, Southeast,

Southwest). 
Execution time of the prospective Poisson space-time scan

tatistic using SaTScan 

TM software was 384 s for generating clus-

ers on June 5th, 2020. Note that execution time at the be-

inning of the study period was shorter because of the de-

reased search space for the scan statistic, i.e. the number of
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Fig. 3. Cluster characteristics over time. Solid black lines - summary statistic (sum or mean), dashed blue lines - standard deviation. 

c  

p  

c  

1

3

 

a  

t  

(  

w  

l  

m  

t  

t  

T  

a  

c  

c  
andidate clusters to evaluate was smaller because the study

eriod was shorter. We used a dedicated Windows 10 ma-

hine with Intel Core i3-8100 CPU at 3.6 GHz clock speed and

6 GB RAM. 

.2. Cluster characteristics 

After a steep incline followed by a period of considerable vari-

tion, the total population found within the clusters produced by

he prospective Poisson space-time scan statistic for a given day
 cluPop ) levels at around 150,0 0 0,0 0 0 ( Fig. 3 a). As expected, the

ithin-cluster number of observed cases ( cluObs ) exhibits a steady

inear increase starting around April 19 th ( Fig. 3 b), with a maxi-

um of 1,20 0,0 0 0 cases at the end of the study period. Similarly,

he number of expected cases ( cluExp ) shows a linear increase, but

his increase is interrupted by brief periods of decline ( Fig. 3 c).

he periods of decline can be explained by the total cluster area,

 function of the number of clusters and their radii. If the total

luster area shrinks, i.e. by a “contraction” of clusters, the within-

luster population decreases, and which causes cluExp to decrease
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Fig. 4. County-level average relative risk ( RR T , natural logarithm) and duration in a cluster throughout the study period ( N C ). Inset maps B,C,D, and E denote Washington 

state, the Chicago-Detroit area, the New Orleans region and surrounding of New York City, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

t  

n  

s  

c  

F  

i  

d  

u  

i  

r  

s  

C  

Y  

D

 

a  

r  

t  

b  

V  

s  

e  

O  

metrics. 
as well (see Eq. 1 ).The number of clusters ( nClus ) varies between

6–10 clusters during the first half of the study period (after an ini-

tial increase from 0), but then increases rapidly to around 23–24

clusters towards the end of the study period ( Fig. 3 d). The within-

cluster number of counties ( nCty ) exhibits a similar curve like the

population: After an initial increase to around 2100, the number of

counties levels in at around 1250 in the second half of the study

period ( Fig. 3 e). The clusters vary in size and duration: Average

cluster radii ( avgRad ) vary from 60–650 km, and we see a marked

decline in size, as well as in variation of size (standard deviation),

after April 26 th ( Fig. 3 f). Expectedly, the cluster duration ( avgDur )

increases during the course of the pandemic to an average dura-

tion of 39 days at the end of the study period. Interestingly, the

avgDur standard deviation increases considerably during the sec-

ond half of the study period to a maximum of 17 days at the end

of the study period ( Fig. 3 g). The average log-likelihood ratio ( LLR )

peaks halfway through the study period at around 93,0 0 0, mean-

ing clusters are strongest in the week of April 16th - April 23rd.

This period is followed by a decline and a leveling at an LLR of

50,0 0 0 towards the end of the study period ( Fig. 3 h). The sec-

ond half of the study period is also characterized by a peak of the

LLR standard deviation, indicating clusters of substantially different

strength. Lastly, average cluster relative risk ( RR c lu ) peaks at the be-

ginning of the study period, then sharply declines with a smaller

spike in RR during the first two weeks of May. 
.3. County-level relative risk and duration in a cluster 

For each county, we computed the average relative risk

hroughout the study period ( RR T ). Additionally, we recorded the

umber of times each county was part of a cluster ( N C ), as ob-

erved when the prospective Poisson space-time scan statistic was

omputed. These two metrics are illustrated in a bivariate map in

ig. 4 , where variation along the green gradient corresponds to an

ncrease of cluster membership, while variation along the pink gra-

ient denotes a higher relative risk. The general trend is that pop-

lated counties (especially the ones encompassing and surround-

ng large metropolitan regions) were characterized by high average

elative risk, and several times reported in clusters throughout the

tudy period. A few illustrative examples include Seattle (inset B),

hicago and Detroit (inset C), New Orleans (inset D) and the New

ork City area (inset E), and also Atlanta, Miami, Salt Lake City and

enver among others. 

Noteworthy are several counties in Louisiana, Mississippi, Al-

bama and Southwest Georgia which had a somewhat average

elative risk yet were reported many times as clusters. Coun-

ies in Maine, western Pennsylvania (with the exception of Pitts-

urgh), eastern Tennessee, the western section of Virginia, West

irginia, southern Illinois, Minnesota, northern Wisconsin, Mis-

ouri, Iowa, North and South Dakota, Nebraska, Oklahoma, north-

rn and western Texas, eastern Montana, norther Idaho, eastern

regon, rural Nevada and Utah ranked relatively low on both
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Fig. 5. The covid19scan web application. 
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.4. covid19scan 

The covid19scan application is accessed through http://

ovid19scan.net and allows exploring up-to-date clusters, as well

s their characteristics from an internet browser ( Fig. 5 ). Temporal

ynamics of clusters can be analyzed using the animation, which

an be manually controlled through the time slider. Clusters of in-

erest can be further explored by hovering over, which prompts a

op-up box that contains detailed characteristics. 

. Discussion 

In this study, we perform time-periodic surveillance of COVID-

9 in the contiguous United States using a prospective space-time

can statistic. We detect emerging clusters of COVID-19 in the

nited States at the county level, and provide daily results during

he study period of January 22nd, 2020 - June 5th, 2020. To our

nowledge, this is the first effort of conducting daily surveillance

f COVID-19 utilizing the prospective space-time scan statistic to

etect and characterize emerging clusters within the United States.

ur work is an improvement on previous work ( Desjardins et al.,

020; Hohl et al., 2020 ), as we apply the same methodology, but

n a refined analysis using daily increments. In addition, we include

nformative figures that illustrate the changing cluster characteris-

ics as the COVID-19 pandemic unfolds. Lastly, we created a web

pplication that allows tracking the spatiotemporal distribution of

ignificant clusters within the United States, further enhancing our

xisting analysis as we allow discovery of COVID-19 clusters at an

ncreased temporal resolution (daily vs. 2–3 temporal snapshots)

uring a longer study period (136 days). 

The time-periodic application of the prospective space-time

can statistic is attractive because of its ability to consider up-

ated COVID-19 case counts every day while tracking existing clus-

ers of previous days. While it identifies emerging areas of con-

ern, it also allows for tracking the characteristics of the previously

etected clusters, e.g. to determine whether they are growing or

hrinking in magnitude, or whether relative risk is increasing or
ot. These capabilities allow for evaluating current strategies for

ontrolling the spread of COVID-19, and offer a basis for anticipat-

ng future development of hot spots. We illustrate the benefits of

he prospective approach and present a study of confirmed COVID-

9 cases, which showcases the evolution of hot spots in the U.S.

s a result, the number of clusters rose from 0 to 23 during our

tudy period. At the end of our study period (June 5 th , 2020), the

trongest clusters are found in the New York - Connecticut-Rhode

sland region, southern Michigan and the DMV area (Washington

.C., Maryland, Virginia). 

Despite the contributions of our study, there are a number

f limitations and assumptions. First, we applied the prospective

pace-time scan statistic in its basic form, which generates clus-

ers of circular shape. Circles may be a poor choice in a study area

hat exhibits substantial spatial heterogeneity. This is evident as

any of the clusters we detect extend far into the oceans, which

s unrealistic. Many research effort s have focused on addressing

he circular dictate to allow for clusters of arbitrary shape: Ellip-

ic scan statistics perform well if the true cluster has an elon-

ated shape ( Kulldorff et al., 2006 ). Flexibly shaped scan statis-

ics ( Tango and Takahashi, 2005 ) define the scanning window by

onnecting the k -nearest neighbors to the focus region (i.e. coun-

ies), and work particularly well for detecting clusters of irregular

hape. This approach was further refined using a genetic algorithm

ith a penalty for geometric non-compactness ( Duczmal et al.,

007 ). Lastly, the spatial scan statistic was adapted to network

pace ( De Oliveira et al., 2011 ), therefore further relaxing the cir-

ular assumption. Second, like many other statistics, the prospec-

ive spatial scan statistic suffers from the multiple testing problem

 Noble, 2009 ), which may lead false positive clusters ( Correa et al.,

015 ). It is possible to correct for multiple testing, e.g. by using

onferroni adjustment ( Shaffer, 1995 ), but SaTScan 

TM offers a re-

urrence interval measurement instead, which quantifies the likeli-

ood of observing a cluster by chance. We checked the recurrence

ntervals for our analyses and found that they closely follow the p -

alues we used for identifying clusters. The prospective space-time

can statistic has undeniable benefits for disease surveillance and

http://covid19scan.net
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is utilized by many public health authorities across the globe. Its

use is recommended under consideration of the recurrence inter-

vals available in SaTScan 

TM ( Kulldorff and Kleinman, 2015 ). Third,

the number of confirmed cases is largely a function of testing ef-

forts and therefore, might not represent the true magnitude and

spatial distribution of the virus. This concern is nourished by re-

ports of asymptotic carriers, which might not appear in our statis-

tics ( Bai et al., 2020 ). Implementing large-scale testing is the only

way to address this issue. Fourth, some of the clusters we iden-

tified are very large and of limited value for disease mitigation.

As a result, they may exhibit considerable variation of risk within.

Performing local analyses of such areas can help identifying com-

munities and regions in danger of COVID-19 outbreaks. Fifth, be-

cause we chose the small multiples approach for illustrating the

distribution of clusters ( Fig. 2 ), we were forced to show clusters in

weekly instead of daily increments due to space limitations. Illus-

trating the clusters within a space-time cube framework can ad-

dress this issue ( Nakaya and Yano, 2010 ). 

5. Conclusions 

Using public COVID-19 case data of the contiguous United

States, provided by Johns Hopkins University’s Center for Sys-

tems Science and Engineering, we performed daily surveillance of

emerging space-time clusters at the county level. We track clusters

and their characteristics through space and time, and create a web

application for continued COVID-19 surveillance. We find that the

number of clusters is stable at the end of our study period, and

that clusters decrease in size over time. In addition, within-cluster

relative risk is very stable after an initial period of fluctuation at

the beginning of our study period, with the exception of a spike at

the beginning of May. Counties that belong to an emerging cluster

can be prioritized for resource allocation and isolation measures

to “flatten the curve”. The automated time-periodic use of the

prospective space-time scan statistic is beneficial for monitoring

COVID-19, as outbreaks can be monitored as they unfold and case

counts are updated. Focusing on active clusters is important during

the course of an epidemic, as previous clusters are dismissed be-

cause they may no longer pose a public health threat. Overall, ge-

ographic studies are critical for pandemic response, providing a set

of methods and tools to promptly inform decision-makers about

the spatiotemporal development of disease outbreaks. 
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