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Abstract

Background: In cnidarians, antagonistic interactions with predators and prey are mediated by their venom, whose
synthesis may be metabolically expensive. The potentially high cost of venom production has been hypothesized
to drive population-specific variation in venom expression due to differences in abiotic conditions. However, the
effects of environmental factors on venom production have been rarely demonstrated in animals. Here, we explore
the impact of specific abiotic stresses on venom production of distinct populations of the sea anemone
Nematostella vectensis (Actiniaria, Cnidaria) inhabiting estuaries over a broad geographic range where environmental
conditions such as temperatures and salinity vary widely.

Results: We challenged Nematostella polyps with heat, salinity, UV light stressors, and a combination of all three
factors to determine how abiotic stressors impact toxin expression for individuals collected across this species’
range. Transcriptomics and proteomics revealed that the highly abundant toxin Nv1 was the most downregulated
gene under heat stress conditions in multiple populations. Physiological measurements demonstrated that venom
is metabolically costly to produce. Strikingly, under a range of abiotic stressors, individuals from different
geographic locations along this latitudinal cline modulate differently their venom production levels.

Conclusions: We demonstrate that abiotic stress results in venom regulation in Nematostella. Together with
anecdotal observations from other cnidarian species, our results suggest this might be a universal phenomenon in
Cnidaria. The decrease in venom production under stress conditions across species coupled with the evidence for
its high metabolic cost in Nematostella suggests downregulation of venom production under certain conditions
may be highly advantageous and adaptive. Furthermore, our results point towards local adaptation of this
mechanism in Nematostella populations along a latitudinal cline, possibly resulting from distinct genetics and
significant environmental differences between their habitats.
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Background

Nematostella vectensis is a burrowing sea anemone which
specializes in estuarine environments with a unique role
as an infaunal predator [1]. These brackish habitats are
characterized by variable daily and seasonal abiotic condi-
tions, particularly temperature, salinity, and ultraviolet
(UV) light [2-6]. Nematostella has a broad geographic
range along the Atlantic and Pacific coasts of the USA
and southern Canada where the extent of variation in en-
vironmental conditions changes by latitude or location
within the estuary [1]. Nematostella tolerates salinities
from ~ 8.96 to 51.54%o and reported temperatures from —
1.5 to 285°C [1, 7] in the field, and laboratory experi-
ments have shown it can acclimate to even broader
ranges. Like many coastal invertebrates, Nematostella ex-
hibits extensive genetic diversity with significant popula-
tion genetic structure throughout its range [8, 9]. Current
evidence of genetic structure and a life history that likely
reduces dispersal between locations (collective egg masses,
demersal larvae) is consistent with limited gene flow be-
tween estuaries. The combination of geographically struc-
tured genetic variation and differences in environmental
conditions is the context where we may expect that popu-
lations might be adapted to different ranges of environ-
mental parameters [8, 10, 11].

Previous research with Nematostella adults from dif-
ferent geographic locations has shown evidence consist-
ent with local adaptation for particular phenotypes or
genetic loci [12]. Nematostella from locations along the
Atlantic coast have temperature-dependent growth rates
and thermotolerance consistent with a thermal gradient
from low to high latitudes [8]. Similarly, different geno-
types vary in their tolerance to oxidative stress, which
may be related to genetic variation in the transcription
factor NF-kB [13] or superoxide dismutase [14]. Al-
though whole genome comparisons have not yet been
completed to identify additional loci where genetic vari-
ation is structured between populations, a survey of al-
lelic variation for a subset of gene coding loci suggests it
may be pervasive [15]. The diversity of genes potentially
involved in adaptation to abiotic variation (such as heat,
salinity, and oxidative stresses) could be large. For ex-
ample, Nematostella has large numbers of heat shock
proteins (HSPs) and antioxidant genes [16, 17] likely to
be instrumental in mounting a cellular stress response.

Species also may adapt to their biotic environment
based on the distribution of their prey and predators.
Consistent with most cnidarians, Nematostella relies on
its venom system to mediate antagonistic interactions
with predators and prey. In particular, sea anemones
have a complex decentralized venom system to produce
multiple toxins localized to different tissue and cell types
[18-22]. Strong evidence supports that in Nematostella,
venom production is regulated throughout the life cycle
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and correlates with the type of interactions it is exposed
to. Specifically, at the larval non-feeding stage, it pro-
duces toxins to deter fish predators while as an adult it
combines both defensive and offensive toxins [18, 23].
The Nvl toxin is the major component of the adult
venom and is produced by ectodermal gland cells at very
high levels as it is encoded by multiple gene copies [24,
25]. Nvl is lethal even at low doses for crustaceans,
which could be either predators or prey [18]. Under con-
trolled diel light conditions, the expression of Nv1 is sig-
nificantly higher during the day when compared with
night [26]. In fact, Nv1 is among the most differentially
expressed genes in Nematostella. The higher expression
during the day correlates with an antipredator response
to visual predators like shrimp and fish.

Venoms evolved in many animal lineages. Neverthe-
less, what they have in common despite their independ-
ent origins is chemical complexity and very high
production levels. These characteristics led to a hypoth-
esis of high metabolic cost of venom biosynthesis [27].
However, this has only been studied in scorpions and
snakes [28—-30], with no studies in cnidarians. Moreover,
even in snakes, there are contrasting views regarding the
cost of venom to individuals [31]. The metabolic cost of
venom production affects the selection pressure imposed
on the venom system and evolutionary mechanisms act-
ing on the venom. Addressing the venom cost in Nema-
tostella is important because it has become a powerful
model for studying general principles of venom evolu-
tion and ecology.

Regulation of the venom production across Nematos-
tella’s life cycle supports a hypothesis that tuning venom
composition based on ecological requirements may be
advantageous [18]. Otherwise, anemones would be ex-
pected to maintain high venom expression regardless of
stage or environment. Stress response mechanisms re-
quire additional metabolic cost as they involve produc-
tion of high levels of specialized proteins, such as
chaperones, depending on the severity of the physio-
logical stress imposed by the environment.

In this study, we hypothesized that there might be an
advantage to downregulate venom biosynthesis depend-
ing on the physiological status of the animal and its ex-
posure to environmental stressors in order to prioritize
metabolic resources for supporting the stress response.
To test this hypothesis, we combined analyses of physi-
ology, gene expression, and proteomics of Nematostella
adults challenged with combinations of environmental
stressors to determine the response in the production of
venom. Further, we also compared responses between
individuals collected from different locations along this
species’ native range (i.e., Atlantic coast of North Amer-
ica) to determine to what extent tradeoffs in stress re-
sponse and venom production differ between these
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geographically and genetically isolated populations. Our
approach allowed us to test these hypotheses related to
venom production cost in Nematostella and how local en-
vironmental conditions correlate with venom adaptations.

Results

Venom production is metabolically expensive

To study whether venom production is metabolically
costly, we depleted Nematostella venom reserves by
mechanical stimulation and measured time-dependent
changes in respiration rate, which correlates with meta-
bolic rate. A similar method has been used to assess meta-
bolic cost of venom production in snakes and scorpions
[28, 29]. Oxygen intake was measured every hour for 5 h
following the stimulation (Fig. la; Additional file 1: Data
S1). After 2 h, oxygen consumption increased by more
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than 34% and it persisted for the next 2 h with a slight de-
crease by the fifth hour. Oxygen consumption rates did
not increase within 3 h for anemones that did not receive
a physical stimulus (Additional file 2: Fig. S1).

To confirm that the elevated metabolic rate involved
the biosynthesis of venom, we repeated the venom de-
pletion treatment and measured expression levels of
genes encoding toxins produced by both adult males
and females, nematocyst structural proteins, genes in-
volved in general stress responses (e.g., cytoplasmic heat
shock proteins and superoxide dismutases), and several
housekeeping proteins by nCounter technology (Add-
itional file 1: Data S2). In addition to previously charac-
terized venom components, we also included the
putative toxins NEPS8-like and NveSkT1 that have not
been reported earlier (Table 1, Additional file 2: Fig. S2).
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Fig. 1 Venom production is metabolically expensive. a Changes in oxygen consumption following fishing line treatment measured by closed-
chamber respirometry (Additional file 1: Data S1). The error bars represent standard errors. b Percentage differences of expression for genes
encoding toxins (solid lines) and nematocyst structural proteins (dashed lines) following fishing line treatment. ¢ Absolute differences of
expression for toxin-coding genes (Nv1, Nematolysin_1b, NveSKT1), nematocyst structural protein NCol3 (dashed line), stress response (Catalase),
and housekeeping (HKG4 and HKG5) genes following fishing line treatment. Noticeably, Nv1, NveSkT1b, and Nematolysin 1b are the genes with
the largest increase in expression in absolute units. d Gene expression at the 3-h time point represented as a percentage chart. The toxins Nv1,
NveSkT1b, and Nematolysin 1b are contributing to a total of 77% of the transcripts among all the genes measured in this experiment. In b, ¢, and
d, gene expression is represented as normalized fluorescence units measured by nCounter technology (Additional file 1: Data S2); the error bars
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Table 1 Venom components studied in the present work. Gene models are taken from https://figshare.com/articles/Nematostella_

vectensis_transcriptome_and_gene_models_v2_0/807696

Toxins Gene ID Expression pattern Reference
Nv1 Nve1808; Nve1809; Nve1810; Nve1811; Nve1812; Ectodermal gland cells [24, 25]
Nve1813; Nve1814; Nve14523; Nve14522
NEP14 Nve17430 Nematocytes [19]
NEP16 Nve12822 Nematocytes
NEP3 Nve22462 Nematocytes
NEP3-like Nve22463 Nematocytes
NEP4 Nve6863 Nematocytes
NEP6 Nve4964; Nve23777 Nematocytes
NEP8 Nve15921 Nematocytes
Nematolysin_1b Nve1244 Ectodermal gland cells (pharynx) [32]
Nep8-like Nve6865 Nematocytes Additional file 2: Fig. S2A
NveSKT1 Nvel1814 Ectodermal gland cells (pharynx) Additional file 2: Fig. S2B

Nematocyst structural proteins
NR2 Nve3844
NCol3 Nve9976

Nematocytes [33]

Nematocytes (34, 35]

After 2 h, we observed an increase in the expression of
all the genes measured (Fig. 1b). At the 3-5-h time
points, expression levels had diverse dynamics: several
genes encoding toxins and nematocyst structural pro-
teins (NveSkT1, NEP6, NEP3-like, NEP8, NR2, NCol3)
kept increasing while others (Nvl, NEP14) showed
wave-like fluctuations. Because the basal expression
levels of the Nv1, Nematolysinlb, and NveSkT1 toxins
were comparatively high, this twofold increase in tran-
scription contributed to the overall transcriptional activ-
ity much more than any other gene measured (they
account for 77% of the transcripts among the genes
measured at the 3-h time point; Fig. 1c, d). Thus, in-
creased expression of venom components and nemato-
cyst structural genes positively correlates with the
increase in the respiration rate.

Study of toxin production under stress conditions

Nematostella polyps were sampled from five locations
distributed from the north to the south along the North
American Atlantic coast (Nova Scotia (NS), Maine (ME),
New Hampshire (NH), Massachusetts (MA), and North
Carolina (NC); Fig. 2a, b) and then cultured in the la-
boratory under common garden conditions. To deter-
mine the regulation of toxin production in response to
abiotic stresses, we subjected adults from each location
to the heat stress of 28 °C and 36 °C, UV light, and low
salinity (5%o) and high salinity (45%0; MA and NC only)
water. Expression levels of toxin and stress response
genes were measured by the nCounter platform (Add-
itional file 1: Data S3, 4S). To assess the biological sig-
nificance of the expression changes in this experiment,
we set a threshold of 2.4-fold change (corresponding to

the maximum change in the expression of the normaliz-
ing housekeeping genes (HKG) [18]). In Table S1 (Add-
itional file 3), changes in gene expression that are both
biologically and statistically (p <0.05, Student’s t test)
significant are highlighted in bold red.

The lower temperature of 28 °C, high salinity, and UV
light exposure did not result in a substantial change in
toxin expression (Additional file 3: Table S1; Additional
file 2: Fig. S3). However, under the high heat stress of
36 °C, we observed changes in the expression of toxins
and HSPs (Fig. 2c). In the ME, NH, and MA popula-
tions, Nv1 production decreased beyond the threshold
and up to 25-fold in the NH population compared to
the control conditions (20 °C); however, in the ME popu-
lation, the difference in Nv1 expression was not statisti-
cally significant (p > 0.05, Student’s ¢ test). Additionally,
NEP14, NEP16, NEP4, NEP8-like, and Nv1 toxin genes
exhibited reduced expression under heat stress in the MA
population (Fig. 2e, f). In the NS and NC populations, the
expression level of Nvl and NEP toxins did not change
more than the threshold of 2.4-fold. HSP expression
showed interesting dynamics (Fig. 2c): the expression
change was less pronounced in the most northern NS
population (most of the changes were not statistically sig-
nificant; only HSP90A expression significantly increased
compared to the control), then increased in ME, NH, and
MA and decreased in NC. Thus, HSP expression showed
an opposite trend to Nv1 expression: the highest increase
in HSP expression in the NH and MA populations corre-
sponds to the largest decrease in Nv1 expression.

Physiological stress induced by low salinity resulted in
decreased Nv1 expression in NS, NH, and MA popula-
tions with the highest change in NS sample (10-fold)
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Fig. 2 Nematostella populations from different climatic conditions respond differently to heat stress. a Distribution of Nematostella populations
along the East coast of North America. b Average high July (red) and average low January (blue) temperatures across the populations from the
North to the South. The data originate from publicly available sources (https.//www.usclimatedata.com/climate, https://en.climate-data.org/north-
america/) for the cities closest to the sampling points (Halifax, NS; Portland, ME; Manchester, NH; New Bedford, MA; Wilmington, NC). Solid
line—control temperature (20 °C), dashed line—heat stress temperature (36 °C) used in our experiments. ¢, d Gene expression dynamics under
heat stress (+ 36 °C) (c) and low salinity stress (5 %o) (d) among the populations from the North to the South (Additional file 3: Table S1). If the
change in expression of a gene is greater than 2.4 times and p < 0.05 (Student's ¢ test), the corresponding data point is outlined in bold and
labeled by a red asterisk. Only genes with expression change (increase or decrease) higher than 2.4-fold and with statistically significant (p < 0.05,
Student's t test) difference between control and treatment in at least two populations are shown. Error bars represent standard deviations
accounting for error propagation of the treatment/control ratios. e, f Expression of toxins in Massachusetts (e) and North Carolina (f) following
heat stress. Gene expression is represented as Log;o of normalized fluorescence units measured by nCounter technology (Additional file 3: Table
S1). p values calculated by Student’s t test are shown for each gene. If the change in expression of a gene is greater than 2.4 times and p < 0.05,
the corresponding p value is shown in red. Error bars represent standard deviations

J

(Fig. 2d); however, other toxin genes were not af- To dissect regulation of venom production further, we
fected (apart of small change in NEP16 in MA). The focused on the MA and NC populations, which showed
expression of HSP70A and HSP90A increased in NS, significantly different responses to temperature and had
NH, and MA. similar Nv1 expression levels under control conditions
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(Additional file 3: Table S1A). According to temperature
data from publicly available sources, MA and NC also
have quite different temperature profiles, including, for
example, the difference of 3.7 °C between high average
July temperatures (Fig. 2b). The different thermal re-
gimes between MA and NC habitats are supported by
our temperature monitoring data acquired by loggers
which had been placed into ponds in March 2016 and
measured temperature until December 2016 (Fig. 3a;
Additional file 1: Data S5). In the NC location,
temperature reached 36 °C or higher on 110 days while
in MA only on 38days during the monitored period
(Fig. 3b).

Transcriptome annotation and Gene Ontology analysis of
the stress response

Nematostella in its natural environment, like most or-
ganisms, experiences stressors in combinations. We
compared these former responses to temperature, salin-
ity, or UV light with a combination treatment of all the
three abiotic conditions. Adults from NC and MA were
subjected to high temperature (36 °C, 24 h), UV light (6
h), and high salinity (40%o, 24 h). Control conditions
were 20 °C, 15%o, and darkness. Animals were snap fro-
zen (4 per sample), RNA was extracted, and Illumina
RNA-seq was performed in parallel for stress and con-
trol conditions. A principal component analysis (PCA)
revealed that >70% of the variation observed across all
the samples could be attributed to location and stress
exposure (Additional file 2: Fig. S4).

Our differential expression analysis identified 3637
transcripts that were differently expressed between con-
trols and experimental groups for MA and NC popula-
tions (Fig. 4b). Under the combined stress conditions,
738 genes were differentially expressed in both popula-
tions, 542 genes in NC, and 592 genes in MA (Fig. 4a,
Additional file 3: Tables S2—S4). Within 1280 transcripts
that were differentially expressed in Nematostella from
NC, 457 contained Gene Ontology (GO) information
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comprised of 4667 different GO groups across these
transcripts. For the MA population, there were 1330
transcripts that were differentially expressed, 513 of
which contained some GO information comprised of
5405 different GO groups across these transcripts.

We used comparative GO analysis to identify function-
ally important GO groups in relation to environmental
stress response. However, our analysis did not identify
any characterized functionally important groups more
highly represented than other GO groups (Additional
file 3: Table S5). The GSEA analysis was able to more
accurately identify GO groups that were variable across
treatments. In both populations, the “response to heat”
GO term (GO:0009408) was enriched (Additional file 3:
Table S6). The most differentially expressed genes be-
tween the control and stressed conditions for both pop-
ulations can be traced back to stress response genes
such as HSP20 and HSP70 (Fig. 4c). Beyond these stress
response genes, our GSEA also revealed an enrichment
in the upregulation of transcription factors (TFs) in both
populations following stress response. Differences in up-
regulation of specific transcription factors were observed
among the populations, with 30 TFs upregulated in both
populations, 27 TFs upregulated only in MA, and six
TFs upregulated only in NC (Additional file 3: Table S7).
Clustering of differentially expressed genes generated
four distinct subclusters (SC1-SC4; Fig. 4c) sharing
similar expression dynamics. These four subclusters can
be defined as genes upregulated following stress (SC4),
genes downregulated following stress (SC2), genes up-
regulated in NC (SC1), and genes upregulated in MA
(SC3; Additional file 3: Table S8). GSEA performed on
subclusters confirmed “response to heat” GO term (GO:
0009408) to be enriched in the subcluster consisting of
genes upregulated following stress (SC4).

In the control groups, many of the differentially
expressed transcripts had relatively low levels; therefore,
even a small change in gene expression resulted in a dra-
matic fold change. When considering both LogCPM (log
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Fig. 3 Thermal regimes differ between Nematostella habitats in Massachusetts and North Carolina. a Water temperature in native Nematostella
habitats recorded in March-December 2016. Measurements were taken every 20 min by a temperature logger (Additional file 1: Data S6).
b Number of days when the water temperature reached 36 °C or higher in March-December 2016
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counts per million) and TPM (transcripts per million),
the change in Nv1 becomes more apparent. The highly
expressed Nvl toxin gene (TPM =1018.6 + 339.5; TMM
[weighted trimmed mean of M values] =847 +243 in
MA; TPM =4470.7 £1397.7;, TMM =3824+1112 in
NC) for the control is the most downregulated locus in
the MA population (TPM=133.1+65.5 TMM =
150.6 + 69.2) (Additional file 3: Table S3), but not in the
NC population (TPM =2126.4 + 303.5; TMM =2109.8 +
156.7) (Additional file 3: Table S4).

Northern (MA) but not southern (NC) Nv1 expression
reacts to combined stress conditions

Among toxin genes, only Nv1 in MA showed a substantial
change under stress conditions, where it decreased 5.5
times, p=0.01 (Fig. 4c). The expression of NveSkT1,
Nematolysinlb, nematocyst toxins (NEP3, NEP4, NEP3-
like, NEP8, NEP14, NEP16, NEP6), and structural proteins

(NCol3 and NR2) remained more stable in both popula-
tions as changes were in the range of 0.4—2.1-fold and in
most cases were not statistically significant. Among the
stress response genes that we analyzed under individual
stress conditions, heat shock protein genes (HSP70B,
HSP70A, HSP90A) exhibited an increased expression level
of 11- to 821-fold. In contrast, the expression of the
CuZnSod3 superoxide dismutase gene remained stable
while MnSod1 decreased approximately twofold (Fig. 4d).

To study the effects of the stress conditions on Nvl
production at the protein level, we used LC-MS/MS
(Fig. 5, Suppl Data 4). It was noticeable that control
label-free quantification (LFQ) values decreased between
our measurements apparently due to degradation or ag-
gregation of Nv1 peptides. Thus, to control for this tech-
nical variation, the samples were run in pairs of control
and stress for each population in triplicates. In each pair
from MA, the LFQ value for the stress sample was
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approximately twice lower than that in the control. On
the other hand, in NC, stress LFQ values were slightly
higher than those in the control. Thus, the observed
trend supports our findings on the transcriptomics level.

Discussion

In the current study, we provide a suite of molecular
and physiological evidence that toxins are metabolically
costly to produce for a venomous species and that indi-
viduals from different populations along a thermal gradi-
ent exhibit unique modulations in toxin expression
when experiencing a range of abiotic stressors.

One of the significant findings for this research is the
first substantial evidence for a cost of venom production
in a cnidarian. We have identified that an increase in ex-
pression of venom components and nematocyst struc-
tural genes correlates with an increase in respiration
rate, a measure used to assess the general metabolic rate.
This increased metabolism might be an evidence for ele-
vated biosynthesis rates, including the biosynthesis of
venom components. Similar approaches have been ap-
plied to study the metabolic cost of venom production
in other animals [28, 29]. Toxin proteins have been hy-
pothesized to be energetically expensive to produce, and
thus, venomous species should be under strong selection
to modulate the quantity and composition of venom
cocktails [27, 36]. Studies in reptiles and arachnids [27]
support this hypothesis where individuals modulate
feeding preference or behavior depending on their ener-
getic state or the relative venom quantities (where
starved individuals produce less venom). This hypothe-
sized tradeoff may be supported by stony corals, which
strongly downregulate their small cysteine-rich peptides
(SCRiPs)—later identified as neurotoxins [37]—under
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Anthopleura elegantissima, which downregulates the
Nv1 homologs Anthopleurin-C (called “Toxin PCR 7” in
that study) and APETx1 under similar stresses [39].
Thus, adjusting venom production to the metabolic sta-
tus may be an evolutionary adaptation in cnidarians in
general.

Our data from Nematostella indeed show that among
venom components, the highly abundant toxin Nvl is
the most downregulated under heat stress conditions in
multiple populations. These massive shifts in Nvl ex-
pression may be driven in part by its high copy number
resulting in the production of this essential toxin to be
highly dynamic. Similar patterns may be observed in
other venomous lineages that also exhibit highly ex-
panded gene families encoding toxins, such as metallo-
proteinases in rattlesnakes [40]. The investment of
energy into heat response (e.g., production of numerous
heat shock proteins, HSPs) appears to be traded-off with
other high-cost physiological processes that do not con-
tribute to survival under heat stress (e.g., venom produc-
tion). It is hypothesized in both sea anemones [27] and
snakes [40] that selection is acting on the expansion of
gene families encoding toxins to drive increased protein
production. Additionally, this mechanism may also allow
for drastic and rapid shifts in toxin expression to meet
biotic and abiotic factors.

In sea anemones, venom release involves secretion of
venom components from ectodermal gland cells [24]
and discharge of single-use nematocysts through mech-
anical and/or chemosensory cues [41]. In our experi-
ment, after the mechanical stimulation, venom
components need to be replenished and also new nema-
tocytes have to maturate and produce nematocysts.
Therefore, multiple processes involved in venom regen-

heat and UV stress [38], and the sea anemone eration may explain the response where venom-related
N
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Fig. 5 Nv1 production at the protein level under control and “combined” stress conditions in Massachusetts (a) and North Carolina (b)
populations. The measurements were done by LC-MS/MS (Additional file 1: Data S5); the numbers correspond to technical replicates
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genes as well as other genes were upregulated after 2 h
following the treatment.

Another significant finding in the current study is the
result that Nematostella polyps from different geographic
locations differ in their production of toxins when experi-
encing the same environmental stressors. While we mea-
sured significant changes in expression of multiple toxins
under different exposures to high temperature, low and
high salinity, and UV light, the largest population-specific
impact was at the higher temperature exposure. Responses
to the heat shock followed an inverted bell-shaped profile
along a latitudinal temperature gradient: a statistically sig-
nificant decrease in Nv1 expression was observed in the
NH and MA populations but not in the NS and NC popu-
lations (Fig. 2). One of the possible explanations would be
adaptation to the local temperature conditions for these
locations. In NC, where the average high July temperature
is 32.1°C and average low January temperature does not
go below 0°C, Nematostella would be exposed to heat
shock of 36 °C regularly. On the other hand, in NS, the
average high temperature is 22.6 °C meaning that Nema-
tostella is very unlikely to experience a heat shock of 36 °C
in this habitat and would be rather adapted to a lower
temperature range. The lack of a gene expression response
in NS animals may be due to a lack of adaptations to such
an extreme temperature compared with typical high tem-
peratures causing severe stress and might be explained by
a general metabolic shutdown. In ME, NH, and MA, the
average high temperatures are between 26.2 and 28.4°C
and low temperatures are below 0°C indicating that
Nematostella would be exposed to both high and low tem-
peratures and thus is adapted to more diverse
temperature regime. Our temperature monitoring data
in Nematostella habitats confirm that NC population
may be exposed to 36 °C for 6 months each year while
the MA population only during 4 months. We
hypothesize that heat response mechanisms in all popu-
lations are inducible based on the expression of HSP
genes, but there is only a statistically significant tradeoff
for physiological processes in NH and MA populations.
The NC anemones have potentially evolved other
physiological mechanisms to cope with higher tempera-
tures and to avoid the tradeoff with the production of
toxin proteins. However, it is possible that for this
population a tradeoff might be occurring at even higher
temperatures. A similar mechanism of plasticity in en-
vironmental stress response was described in the coral
Porites astreoides [42].

Interestingly, the combined stress conditions (heat, UV
light, and high salinity) provoked a similar response as
heat stress alone: Nvl was downregulated in MA but not
in NC. This result indicates that single stressors
(temperature) and combined stressors induce a similar
transcriptional response in the most abundant venom
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component, Nv1. Analysis of the changes in functional
Gene Ontology groups under stress between MA and NC
populations revealed that, in concordance with the previ-
ous lines of evidence, heat shock proteins underwent sig-
nificant upregulation in both populations. Differences in
the regulation of Nv1 biosynthesis may be explained by a
number of transcription factors differentially upregulated
between the populations under stress. Factors underlying
adaptation of the NC population to retain high venom
production levels under stressful conditions are yet to be
discovered. Overall population structure needs to be ex-
amined in order to determine if divergence in toxin gene
expression levels correspond to genetic divergence
throughout their distribution. Future work may identify
unique Nv1 coding regions which correspond to certain
geographic locations or isolated localities.

Despite the fact that multiple genes were differentially
expressed between the populations, our analysis of
enriched GO terms did not reveal any specific functional
pathways upregulated in the NC population and poten-
tially keeping venom production beneficial or neutral
under the stress. One of the reasons might be incom-
plete annotation of cnidarian genomes and GO terms
due to high divergence from bilaterian organisms with
well-annotated GO terms such as vertebrates, Drosoph-
ila melanogaster and Caenorhabditis elegans.

Our earlier and present work have demonstrated that
Nv1 toxin is regulated by diverse environmental and en-
dogenous factors: abiotic stress, light/dark cycles, and life
stages. Unlike other venom components, it is encoded by
multiple gene copies potentially underlying the high ex-
pression level and providing higher regulatory flexibility.
Because responses to the abiotic stress differ between pop-
ulations experiencing a gradient of environmental condi-
tions, our data suggest that regulation of venom
expression is adjusted and potentially “optimized” to con-
ditions reflective of their local environments. Thus, modu-
lation of venom production appears to be one of the
evolutionary adaptations in Nematostella. Adaptation of
this trait is plausible as we showed that production of
venom and venom-delivery cells is metabolically expensive
and the balance between the benefits and costs of venom
production might change dramatically between habitats
due to different abiotic conditions.

Conclusions

Venom production is metabolically costly in the cnidar-
ian Nematostella. The abiotic stress requiring additional
energy investments results in venom downregulation in
Nematostella. While we tested these phenomena under
several stress conditions, the largest population-specific
impact was observed at higher temperature exposure.
Under heat stress, the highly abundant toxin Nv1 is the
most downregulated gene in multiple populations. It
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appears that the investment of energy into heat response
is traded-off with other high-cost physiological processes
that do not contribute to survival under heat stress such
as venom production. Interestingly, Nematostella polyps
from different geographic locations differ in their pro-
duction of toxins when experiencing the same environ-
mental stressors possibly due to distinct genetics and
significant environmental differences between their habi-
tats. Taking together, our results with anecdotal observa-
tions from other cnidarians suggest that this might be a
universal phenomenon in Cnidaria with important im-
plications for adaptation.

Methods

Venom discharge and oxygen consumption

To provoke venom discharge, Nematostella polyps from
lab population were subjected to mechanical stimulation
with a gelatin-coated fishing line imitating interaction with
predators and prey following an approach described by
[43]. Briefly, 25% gelatin-coated probes were dried for 24
h, rehydrated in 15 ppt saltwater, and pulled through the
tentacles of adult Nematostella polyps in one single mo-
tion. Closed-chamber respirometry is an effective means
to measure oxygen consumption to determine shifts in
metabolic rate for animals in different conditions. We
used comparative respirometry to measure changes in
oxygen consumption in anemones following mechanical
stimulation with a fishing line. Anemones were placed in
3-ml water-jacketed respiration glass chamber (1 anem-
one/chamber), given approximately 30 min to open their
tentacle crown, and then the tentacles were probed with
the monofilament line. The respiration chambers were
then closed and measured continuously for 5 h. Oxygen
uptake by individual anemones was measured using
Clarke-type oxygen electrodes (YSI, USA). Two-point cali-
bration of electrodes was performed before each day, and
continuous data acquisition of oxygen concentrations was
made using a BIOPAC Data acquisition system (BIOPAC,
USA). Time effects on respiration were calculated relative
to the baseline respiration for each individual during the
time course and compared with anemones that received
no physical stimulus (control). The experiment was re-
peated with 4 biological replicates for the physical stimu-
lus and 2 replicates for the control.

To confirm that respiration changes correlated with
changes in expression of venom genes, venom discharge
treatment was repeated and animals were sampled and
frozen in liquid nitrogen every hour for 5h for RNA ex-
traction. Every time point was sampled in triplicates, 3
animals/replicate.

Stress conditions
Animals originating from wild populations (NS, ME,
NH, MA, and NC) were maintained under controlled
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laboratory conditions (room temperature, 15%o artificial
sea water (ASW)) for at least several months after collec-
tion from the field. Before treatments, the animals were
acclimatized at 20 °C for 24 h in the dark in 15%0 ASW.
For the individual stress conditions, animals were ex-
posed to 28°C, 36 °C, 5%0 ASW, UV light, 45%0 ASW
(only MA and NC), or control conditions (20 °C, 15%o,
dark) for 24 h. Animals were placed into tubes and fro-
zen to obtain 3 replicates for each condition, 2 animals/
replicate, total 87 samples. For the combined stress
treatment, half of the acclimatized animals from MA
and NC populations were transferred into 40%. ASW
and exposed to 36 °C for 24 h. For the first 6 h of treat-
ment, the UV lamp was on. Control animals were kept
at 20°C for 24 h in dark in 15%0 ASW. After the treat-
ment, animals were placed into plastic tubes and frozen
in liquid nitrogen to make three replicates for each con-
dition and 4 animals/replicate, total 12 samples.

Quantification of gene expression

Total RNA was extracted from the frozen samples using
RNeasy Mini Kit (Qiagen, Germany). RNA quality was
assayed with a Bioanalyzer NanoChip (Agilent Tech-
nologies, USA).

For the samples collected following venom discharge
and individual stress samples, the nCounter platform
(NanoString Technologies, USA; performed by Agentek
Ltd., Israel, and MOgene, USA) was used. One hundred
base pair probes (Additional file 3: Table S9) were de-
signed to specifically bind to transcripts encoding toxins,
nematocyst structural proteins, and stress response
genes. For normalization of expression, a geometric
mean of expression levels of five genes with stable ex-
pression across development was used (similarly to [18,
23]). Fold change and absolute change relative to the 0-h
time point were calculated for the samples collected at
1-h, 2-h, 3-h, 4-h, and 5-h time points after venom dis-
charge. Additionally, at the 3-h time point, the expres-
sion level relative to the total expression of all the genes
measured in this experiment (100%) was calculated and
represented as a pie chart (Fig. 1d). For the 87 individual
stress samples, the measurement was performed in two
nCounter batches. For each population (for each nCoun-
ter batch separately), every stress condition was com-
pared to the control and p values (Student’s ¢ test) and
fold changes were calculated.

For the 12 “combined stress” samples, cDNA libraries
were constructed by the Sense kit (Lexogen, Austria),
pooled together, and sequenced by the NextSeq500 plat-
form (Illumina, USA) with 400 million read depth and
40-bp paired end reads (performed at the Center for
Genomic Technologies, The Hebrew University of
Jerusalem). Raw reads were submitted to the NCBI Se-
quence Read Archive database (BioProject ID:
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PRJNA601530). The raw reads were mapped to Nema-
tostella gene models [44] by Star aligner [45]. Across the
25,721 predicted gene models, the number of unique
mapped reads varied per samples (24,161,373-34,332,
469), resulting in an average of 1166 reads mapped per
predicted gene. Differential expression analysis was per-
formed by EdgeR Bioconductor package [46]. This
allowed us to identify transcripts with significant devia-
tions in expression level. In our EdgeR analysis, we iden-
tified transcripts that were differentially expressed across
all treatments in combination, as well as within each
focal locality. Metrics of fold change (TPM, TMM, and
LogCPM) were used as a threshold to screen potentially
informative transcripts for further evaluation. A PCA
analysis was conducted using the built-in Trinity toolkit
script PtR to ensure no outliers [47].

Proteomics

For measurements of toxin production at the proteomics
level, only females from MA and NC populations were
used. After the “combined stress” treatment, the animals
were frozen (3 animals/tube) and lysed in 8 M urea and
400 mM ammonium bicarbonate. Females were used to
control for sex-specific variation observed in Nvl ex-
pression [12]. The lysates were centrifuged (22,000xg,
20 min, 4 °C), protein concentration was measured with
BCA Protein Assay Kit (Thermo Fisher Scientific), and
10 pg aliquots of protein were sent for LC-MS/MS ana-
lysis by a Q Exactive Plus mass spectrometer (Thermo
Fisher Scientific) at the Proteomics Center of the
Alexander Silberman Life Sciences Institute, The Heb-
rew University of Jerusalem. All the procedures were
performed as described by [18]. The samples were ana-
lyzed in technical triplicates. The mass spectrometry
data have been deposited to the ProteomeXchange Con-
sortium [48] via the PRIDE [49] partner repository with
the dataset identifier PXD016943 and are also included
into Additional file 1 (Data S5).

Transcriptome annotation and GO analysis

Using information derived from the previously predicted
and annotated gene models [44], we evaluated whether
differentially expressed transcripts may have carried both
functional information based on TMM normalized fold
change values as well as LogCPM and TPM values.
TMM normalization aides when scaling for variation in
library size as well as transcript diversity being sampled
[50]. The use of TMM normalization fold change alone
aided in identifying transcripts expressed at very low
levels in the control groups with potentially high func-
tional importance. LogCPM is also a measure of log
counts per million contrasting control and treatment,
providing more weight to differences in gene expression
when they are more highly expressed across all
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treatments. In contrast, TPM is an expression value that
considers transcript length variation when measuring
the number of reads per one million being mapped back
to a transcript [51]. This measurement is more stable
across samples, permitting comparisons between sam-
ples and treatments.

Beyond individual transcripts, we evaluated changes in
functional Gene Ontology groups (GO) between the dif-
ferent populations across control and stressed environ-
ments. This was done by two different approaches: first,
we used custom Python scripts as previously described
in [22], which dividled TMM values across associated
GO terms. The GO groups were then grouped based on
semantic similarity and identified using REVIGO [52].
The second approach we performed was gene-set en-
richment analysis (GSEA) on the differentially expressed
genes using GOseq [53]. This required genes to first be
annotated against the Swiss-Prot database (accessed 27
October 2019) using BLASTp and gene ontologies
mapped. Differentially expressed genes were partitioned
into clusters by cutting the hierarchical tree at a height
of 60%. Clusters were then manually curated to generate
four distinct subclusters and GOseq performed on each
to identify enriched and depleted GO terms.
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