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ABSTRACT

JAFAR HAADI JAFARIAN. Cyber Agility for Attack Deterrence and Deception.
(Under the direction of DR. EHAB AL-SHAER)

In recent years, we have witnessed a rise in quantity and sophistication of cyber

attacks. Meanwhile, traditional defense techniques have not been adequate in ad-

dressing this status quo. This is because the focus has remained mostly on either

identifying and patching exploits, or detecting and filtering them. These techniques

are only effective when intrusions are known or detectable. However, unknown (zero-

day) vulnerabilities are constantly being discovered, and known vulnerabilities are

not often patched promptly. Even worse, while defenders need to patch all vulner-

abilities and intrusions paths against unknown malicious entities, the attackers only

need to discover only one successful intrusion path in a system that is known and

static. These asymmetric advantages have constantly kept attackers one step ahead

of defenders.

To reverse this asymmetry in cyber warfare, we aim to propose new proactive de-

fense paradigms that can deter or deceive cyber attackers without relying on intrusion

detection and prevention and by offering cyber agility as a system property. Cyber

agility allows for system configuration to be changed dynamically without jeopardiz-

ing operational and mission requirements of the system.

In this thesis, we introduce two novel cyber agility techniques based on two paradigms

of cyber deterrence and cyber deception. Cyber deterrence techniques aim to deter cy-

ber threats by changing system configurations randomly and frequently. In contrast,
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cyber deception techniques aim to deflect attacks to fake targets by misrepresenting

system configurations strategically and adaptively.

In the first part of this dissertation, we propose a multi-strategy, multi-parameter

and multi-dimensional host identity mutation technique for deterring reconnaissance

attacks. This deterrence is achieved by mutating IP addresses and anonymizing fin-

gerprints of network hosts both proactively and adaptively. Through simulation and

analytical investigation, we show that our approach significantly increases the attack

cost for coordinated scanning worms, advanced network reconnaissance techniques,

and multi-stage APT attacks.

In the second part, we propose a formal framework to construct active cyber decep-

tion plans that are goal-oriented and dynamic. Our framework introduces a deception

logic that models consistencies and conflicts among various deception strategies (e.g.,

lies) and quantifies the benefit and cost of potential deception plans.

In the third part, we demonstrate and evaluate our deception planning framework

by constructing an effective deception plan against multi-stage attacks. Through

our experimentation, we show that the generated deception plans are effective and

economical, and outperform existing or random deception plans.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

With ever-increasing prevalence and presence of the Internet in our lives, cyber

security has turned into to a matter of national and international concern. Meanwhile,

over the past few decades, the quantity and severity of sophisticated cyber attacks

have increased significantly [53, 63]. In recent years, we have witnessed a variety

of advanced and persistent cyber attacks by well-resourced and highly sophisticated

attackers [63,68] that targeted highly sensitive economic, political, or national security

information [53,99].

Meanwhile, traditional approaches to cyber defense are hardly adequate to defend

against these emerging advanced cyber attacks [53, 63]. This is because the cyber is

asymmetric as attackers have more advantage over defenders regarding information

gathering and damage. For example, while attackers need just a single undetected

exploit to successfully compromise the system, defenders need to exhaustively block

attacks to all potential vulnerabilities. Even worse, static configuration of cyber sys-

tems enables attackers to learn the cyber system properties, while defenders have

fundamental challenges to detect attackers’ reconnaissance activities or to discover

their motive. These asymmetries enable attackers to be many steps ahead of defend-

ers.
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To change this asymmetric status quo in cyber warfare, new proactive paradigms

are needed to deter unknown attackers without relying on detection and prevention

techniques. Recognition of this dire need has resulted in techniques that incorpo-

rate cyber agility as a property into the system. Cyber agility is a system property

that allows for dynamic change of the underlying system configuration. The goal is

to enable the cyber to proactively defend against unknown threats by dynamically

changing the system parameters and defense strategies in a timely and economical

fashion.

As a result of this proactive defense, effective cyber deterrence is enabled to reverse

this asymmetry in cyber warfare. Cyber deception is another cyber agility technique

that enables deflecting attackers to invalid target by misguiding them through fake

assets.

In this thesis, we introduce two novel cyber agility techniques that enable proactive

defense, called cyber deterrence and cyber deception. Both techniques focus on de-

feating advanced cyber threats in their reconnaissance or information gathering stage.

Defeating reconnaissance would have a huge impact on advanced cyber attacks be-

cause reconnaissance is the precursory step of such attacks (see cyber kill-chain [53])

and its objective is to collect information to identify potential intrusion points into

the targeted system.

Cyber deterrence techniques such as moving target defense (MTD) approaches aims

to deter cyber threats by changing the system parameters randomly and frequently.

Examples of MTD techniques for cyber deterrence include instruction set randomiza-

tion [69, 92], memory address randomization [111], and compiler-generated software
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diversity [55] to avoid attacks such as buffer overflows and worms [111]. Our focus

in this thesis is on cyber deterrence techniques that target network reconnaissance,

such as IP address mutation techniques.

Several MTD-based cyber deterrence techniques against reconnaissance have been

proposed in the literature [1,2,6,9,33,51,67,70,130,131]. However, existing approaches

provide mutations that are slow and predictable. Moreover, the provided mutations

are usually only proactive, temporal, and often non-transparent to end-hosts or net-

work protocols [6,9,70]. A collection of these weaknesses limits the agility of existing

techniques, thus limiting their effectiveness to automated naive reconnaissance models

such as hitlist scanners [6] or automated network worms [1, 56].

In this thesis, we propose a cyber deterrence approach that provides high agility

(high unpredictability and high mutation rate), is transparent to cyber systems (do

not require changes in end-hosts and legacy protocols) and incurs very low overhead

(can be deployed with reasonable cost and without breaking network sessions). The

agility is enabled across various dimensions and composes various mutation strategies,

to maximize effectiveness, disallow evasion, and minimize overhead.

The second approach focuses on cyber deception as another technique to offer

cyber agility. Cyber deception is a misrepresentation of system configurations for the

sake of misguiding attackers. The primary goal of this misguiding usually goes beyond

attack deterrence to a characterization of attackers’ techniques and motive. Although

deception technologies such as honeypots [96] have been present in cyber defense for

almost three decades [26], the focus has been primarily on devising passive and static

deception traps (tools). This architecture lacks the dynamic agility that is necessary
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to adapt to attackers’ behavior and allow for wide deployment. In this thesis, we

propose a framework for the cyber deception that provides adaptive, automated, and

goal-oriented deception plans against various cyber attackers. Using this framework,

we model and propose an adaptive, and cost-effective cyber deception plan to defeat

multi-stage cyber attacks.

1.2 Background

In this section, we overview some concepts and technologies that are essential to

understanding the contribution of this work.

1.2.1 Cyber Intrusion Kill-Chain

A kill chain is a discrete description of a systematic process to identify, target and

engage an adversary to create desired effects. Intrusion kill chain is a new chain

model that describes cyber intrusions. The cyber kill chain focuses on advanced and

persistent threats where the attacker must do reconnaissance to identify the targets,

and develop suitable payloads to compromise and bypass a trusted perimeter. Once

inside, the attacker would take actions toward the objective, by laterally moving

inside the environment. At every new location, the attacker may repeat this process

to identify new potential targets, compromise them, and expand her intrusion inside

the environment [53].

According to this APT model, the intrusion kill-chain is broken down into the

following steps: reconnaissance, weaponization, delivery, exploitation, installation,

command and control (C2), and actions on objectives.

� Reconnaissance: a process of discovering and selection of targets, using a va-
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riety of techniques, ranging from active scanning and passive probing to social

engineering techniques.

� Weaponization: developing an exploit and incorporating it in a deliverable pay-

load, such a PDF document or a service (HTTP) request.

� Delivery: sending the weaponized payload to the targeted environment, using

network, USB removable media, email attachments, or drive-by downloads.

� Exploitation: After the weaponized payload is delivered to the target, its exe-

cution launches the attack code that would try to exploit a vulnerability in the

operation system, or services. The execution may be automated via a vulnera-

bility or may simply occur by luring the user to do so.

� Installation: installation of a backdoor on the exploited target in order to main-

tain persistence inside the environment.

� Command and Control: in many cases, compromised targets establish outbound

connections for command and control to the adversary, that allows the adversary

to have remote presence inside the target environment, thus turning the attacker

into an insider.

� Actions on Objectives: after achieving a privileged and insider access, the at-

tacker can take actions toward their primary objectives. This objective could

be data exfiltration, or even sabotaging integrity and availability of the target.

Alternatively, the attacker may use the new compromised target as a point for

compromising additional systems and moving laterally deeper inside the en-

vironment. According to the ATT&CK Matrix by MITRE [85], the actions

include persistence, privilege escalation, defense evasion, credential access, dis-
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covery, lateral movement, execution, collection, and further command and con-

trol. Among these actions, the most important and also relevant to this thesis

is lateral movement. Lateral movement consists of techniques that enable an

adversary to access and control remote systems on a network, either using an in-

stalled backdoor or using conventional communication tools using the escalated

privilege on that target.

A special and important class of reconnaissance includes network reconnaissance,

which refers to an active or passive process through which potential attackers col-

lect information about the target network, including its active ranges, active and

reachable systems, OS and services of these systems, and potential vulnerabilities or

misconfiguration on those services or other components of the network. Based on

technique, network reconnaissance is categorized into two classes: active and passive.

Active network reconnaissance is done via probing scans generated by a custom tool

or using off-the-shelf tools such as Nmap [78] or Nessus [75], or it could be passive

sniffing or eavesdropping on target networks’ traffic, or inspecting system caches or

open connections [35]. The reconnaissance of a target network could also be done

externally or internally. This is because the network perimeters are isolated from the

Internet, using firewalls and other security devices, and therefore the majority of tar-

get resources are not accessible from outside. However, once an attacker is inside the

target network (after successful exploitation of a public system and laterally moving

to it), then they will have much fewer security restrictions in probing and identifying

internal systems [77]. External network reconnaissance occurs when an attacker is

probing the public or demilitarized zone (DMZ) of the target network, while internal
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Figure 1: SDN Architecture

reconnaissance refers to reconnaissance launched by an insider.

1.2.2 Software-Defined Networks (SDN)

SDN is a novel networking model in which the networking is controlled and im-

plemented by a software [82]. The main goal of SDN is to centralize control of the

traffic by migrating the control logic to centralized computer resources. A network

controller monitors and controls the entire network from a central vantage point via

an interface, such as OpenFlow [82], which allows researchers and administrators

to develop their customized networking model. Communication with SDN usually

occurs via southbound and northbound APIs, as illustrated in Figure 1 [42].

The control plan consists of three main components: controller(s) that can ac-

cess and manage all resources from a central location using OpenFlow (OF) proto-

col; OpenFlow agents on switches that are able to communicate with the controller

through OF messages, and finally forwarding plane which is responsible for exchange
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OF messages between the controller and switches [42].

While hardware SDN switches cost thousands of dollars, SDN emulation tools such

as Mininet [74] provide a cheap and scalable emulation framework for testing. Mininet

is a network emulator [74] that allows emulation and orchestration of a network

consisting of a collection of end-hosts, switches, routers, and links on a single Linux

kernel. It uses lightweight software virtualization to make a single process emulate a

high-fidelity network host with a real Linux core that can accept ssh or run the Linux

applications.

1.2.3 Satisfiability Modulo Theories and Microsoft Z3 SMT Solver

The Satisfiability modulo theories (SMT) problem is a decision problem for log-

ical formulas concerning combinations of background theories expressed in classical

first-order logic with equality. Formally speaking, an SMT instance is a formula in

first-order logic, where some function and predicate symbols have additional interpre-

tations, and SMT is the problem of determining whether such a formula is satisfiable.

SMT formulas provide a much richer modeling language than is possible with

Boolean SAT formulas. Although satisfiability problems are NP-complete in general,

recent advances in SMT solvers have made them scalable to problems with millions

of variables [87].

SMT solvers have found applications across a wide variety of domains, including

verification, proving the correctness of programs, and software testing based on sym-

bolic execution. Although satisfiability problems are NP-complete in general, recent

advances in SMT solvers have made them scalable to problems with millions of vari-
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ables [87].

Z3 is a state-of-the-art theorem prover from Microsoft Research [84, 98], which

is freely available for academic research. It has built-in support for integer and real

constants, which are mathematical integers and reals, not machine integers. It also in-

cludes support for bit vectors, uninterpreted functions, extensional arrays, and quan-

tifiers.

Z3 is a low-level tool and is best used as a component in the context of other tools

that require solving logical formulas. Z3 includes a number of APIs for C++ and

.NET to simplify its embedding into other applications; in fact, there are no stand-

alone editors or user-centric services for interacting with Z3. The language syntax

used in the front ends favor simplicity in contrast to linguistic convenience.

1.3 Characteristics of Advanced Cyber Attacks

While cyber threats have always been a phenomenon, in recent years we have wit-

nessed an increase in sophistication of cyber threats [99]. These threats are usually

launched by well-resourced and trained adversaries [63] that conduct multi-year intru-

sion campaigns targeting highly sensitive economic, proprietary, or national security

information [53]. These adversaries accomplish their goals using advanced tools and

techniques designed to defeat existing defense mechanisms. In recent years, we have

observed multiple examples of such advanced intrusions that have spanned over a

significant period, evaded firewall and anti-virus capabilities, and enabled adversaries

to harvest sensitive information [53].

Traditional approaches to cyber defense are not able to counter these emerging
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advanced and persistent cyber threats. These techniques are only able to detect

known attacks, because they rely on detecting a signature or behavior of the attack

that is known to be malicious; however, advanced and persistent attacks are usually

launched by elite attackers who use low-and-slow stealthy reconnaissance as well as

unknown or zero-day exploits in order to evade these signature-based or behavioral

intrusion detection systems.

The APT attacks usually have the following properties:

� Persistent and stealthy presence of attackers: the potential attackers are silently

present in the network for a long while probing and attacking network hosts and

services to find a path toward their intended target.

� Advanced (stealthy and unknown) tactics and techniques: while certain attack

behavior (e.g., Nmap [78] probes) could be detected by intrusion detection sys-

tems, skilled attackers use some stealthy and unknown techniques to bypass

these countermeasures. These techniques could be learned during an attacker’s

presence in the network.

� Multi-staged: due to zoning and deployment of defense-in-depth strategies in

networks, such threats are usually initiated by compromising a publicly acces-

sible host. They gradually continue to compromise hosts and move from one

zone to another until they finally discover a path to the target [39]. At each

zone, an attacker needs to probe the address space and discover reachable hosts

until the target hosts are identified.

Defeating such advanced, persistent, and stealthy threat models requires new de-

fense paradigms beyond intrusion detection and prevention. In the next section, we
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explain the limitations of state-of-the-art defense paradigms against such advanced

cyber attacks.

1.4 Limitations of the State-of-the-art against Advanced Cyber Attacks

Traditional reactive approaches to cyber defense, such as intrusion detection, are

not sufficient to address emerging advanced and persistent threats because they only

provide countermeasures against an attack only after it happens; and also they only

detect an attack if its behavior or signature is known [53].

A major defense against cyber threats has been focused on discovering, categorizing

and patching vulnerabilities. However, vendors are usually slow in patching discov-

ered vulnerabilities, and in many cases, very severe vulnerabilities have remained

unpatched for long periods of time [63]. In fact, many patches are often published af-

ter the vulnerabilities are known and have been exploited, in some cases after months

and years [62, 63].

Even when patches are published, enterprises are very slow in applying those

patches in their systems, usually due to lack of resources and a deficiency in realizing

the potential threat of successful compromises. A 2015 report by Verizon showed that

99.9% of vulnerabilities are exploited over a year after their CVE is published [115].

But the real problem is that even if all the patches are published and deployed

promptly, not all vulnerabilities are known or immediately patchable by vendors (e.g.,

zero-day vulnerabilities). For example, Stuxnet, a worm targeting industrial control

systems in 2010 [37], used four zero-day vulnerabilities for exploitation. These exploits

were not known to the cyber security community, thus giving Stuxnet significant
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advantage in stealthy propagation.

Even worse, an attacker needs to find only a single exploitable vulnerability to infil-

trate; meanwhile, the defender must exhaustively ensure none exists [62]. But finally,

one uncovered intrusion path is sufficient for a persistent attacker to compromise and

infiltrate the system.

Another major defense paradigm is detection and prevention of attacks. However,

traditional defense tools such as intrusion detection systems, firewalls, and malware

detectors can counter known attack techniques. Therefore, if the attack goes unde-

tected, they provide zero resistance against it. Even worse, thwarting one or a few

intrusion attempts does not necessarily terminate the attack. On the contrary, it al-

lows persistent adversaries to learn properties of the cyber system until they discover

an uncovered path for an intrusion.

Another factor that significantly contributes to this situation is the static nature

of cyber systems. This means that attackers have a static target to study and find

vulnerabilities and then a window of exposure to exploit the vulnerability to gain

privileged access on other machines and networks until the exploit is noticed, the

vulnerability found, patch released, and then applied widely.

As a result of these problems, in the cyber warfare between attackers and defenders,

attackers have a significant advantage over defenders both in collecting information

about the other party and also in inflicting damage on them. The attacker has

plenty of time to investigate these static targets, and during this process, the system

provides little or no resistance against such adversarial reconnaissance. Even worse,

most reactive defense paradigms rely on distinguishing attack signatures or behavior,
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which has zero effectiveness against zero-day or even stealthy attack techniques. These

asymmetries would always keep attackers one step ahead of defenders.

1.5 Cyber Agility against Advanced Cyber Attacks

Changing these asymmetries requires approaches that can provide some resistance

against such advanced attacks, even when all or part of attack techniques, tactics or

procedures are zero-day, unknown or undetectable. These techniques must not rely

on reactive detection of attackers’ behaviors. These new paradigms must provide two

capabilities. First, they should be able to provide resistance against the attack, even

when the attack is unknown or zero-day; i.e., it is not necessarily recognizable by

the defender. This resistance must deter the attack by increasing the time or effort

required to complete the attack. Second, to change the asymmetry, they must enable

characterization of the attack regarding its goals, objectives, and techniques.

Cyber agility is a novel class of active cyber defense that has a high-level goal of

providing resistance against the most complicated and stealthy cyber threats. Cyber

agility is a system property that enables the cyber to proactively defend against un-

known threats by dynamically changing the system parameters and defense strategies

in a timely and economical fashion. Agility provides robustness and resilience for the

system to defend against completely or partially unknown attacks. By strategically

establishing dynamics into the system, cyber agility provides a proactive defense to

deter many attacks including worms, botnets, DoS and reconnaissance attacks with

the presence of uncertainties of the timing and types of attacks.

In this thesis, we explore and develop paradigms for two novel approaches in cyber
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agility, called cyber deterrence and cyber deception. Cyber deterrence focuses on

proactive randomization or mutation of system configuration parameters to incur

uncertainty on the attackers, thus deterring the attack. This deterrence occurs either

by slowing down attack completion or by increasing the cost of attack, thus raising

the bar for cyber attackers. For example, mutation of IP addresses frequently over

time makes the information gathered about a host on a certain IP address obsolete,

thus forcing the attacker to recollect information about that IP or host again and

again. Cyber deception, on the other hand, focuses on lying about the real value of

system configuration parameters. These lies are crafted and implanted in the system

proactively, and their goal is to persuade attackers to take a course of action that is in

defenders’ favor. For example, by luring attackers toward decoy machines (honeypots)

in a network, defenders can deflect attackers from critical hosts. Also, engagement

with decoy machines makes attackers’ techniques and goals visible to defenders.

Cyber agility aims to provide proactive resistance against attacks by adding agility

to the cyber infrastructure. However, cyber deterrence provides this agility differently

from cyber deception. Specifically, for cyber deterrence, configuration parameters

values are mutated frequently, the goal of which is to introduce new unaccounted-

for challenges for attackers. However, cyber deception provides this agility, not by

agile changing of system parameter values, but by showing fake values for these

parameters. The goal of this deception is to persuade attackers to take wrong actions

in the defender’s favor.

In this sense, there is a fundamental difference between cyber deterrence and cyber

deception. Cyber deterrence is not necessarily required to be invisible to attackers;
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rather, it achieves its objectives by frequent mutation of system configurations. For

example, mutation of hosts’ addresses is observable by attackers. Cyber deception, in

contrast, is only achievable through stealthiness; in other words, deception by nature

must not be visible (detectable) to attackers. For example, if attackers know about

the decoy nature of a host, they will avoid probing or attacking that host.

While different regarding methodology, both deterrence and deception pursue the

same objectives:

� Goal A - Attack Deterrence: deterring the attack occurrence by increasing cost

and uncertainty in its planning and execution.

� Goal B - Attack Deception and Characterization: increase the chance of detect-

ing and characterizing the attack.

However, while cyber deterrence techniques primarily focus on achieving goal A, cy-

ber deception techniques primarily aim to achieve goal B. For example, IP mutation

primarily aims to deter network reconnaissance through frequent changing of IP ad-

dresses; however, as a secondary goal, this mutation increases the probability that

an attacker issues a dark scan (to a non-existing IP or port), thus increasing attack

detectability. In contrast, deploying a group of honeypots in the address space pri-

marily aims to engage attackers and increase the chance of their detectability and

characterization; however, as a secondary goal, this engagement with decoys would

deter attack progression by deflecting attackers from critical network hosts.

A variety of cyber agility techniques for deterrence and deception of different threat

models have been proposed in cyber security. Cyber deterrence has been primarily

used to defeat advanced threat models through randomization: instruction set ran-
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domization [69, 92] to defeat code injection attacks, address space layout random-

ization (ASLR) [111] to prevent exploitation of memory corruption vulnerabilities,

compiler-generated software diversity [55] to defeat buffer overflows and code ma-

nipulation attacks [111], and route mutation [34, 57] to defeat eavesdropping and

denial-of-service attacks. Several cyber deterrence approaches have been proposed

for defeating network reconnaissance [6, 15, 51, 70, 130]. These approaches have done

some preliminary efforts in mutating IP addresses of network hosts; IP mutation

refers to randomization of IP addresses of network hosts, usually over time, to ex-

pire the validity of information collected about network hosts. However, none of

the previous techniques provide a deployable transparent mechanism for address ran-

domization that exploits the full potentials of cyber deterrence, especially regarding

achieving high unpredictability and fast mutation rate. This low unpredictability and

constrained mutation speed make these models only effective against trivial threat

models, such as hitlist worms [6]. These techniques are not sufficiently agile to provide

deterrence against more advanced threat models, such as automated random scan-

ners (e.g., network worms) or reconnaissance for intrusion attacks. Moreover, they

require changes in existing network protocols and devices and break active network

sessions. This makes their agility severely intrusive to the operation and integrity of

the system.

Cyber deception techniques and paradigms for defending cyber systems have been

proposed in the literature; however, the focus has been mostly on devising honey

things; from honeypots [72, 96] and honeyfarms [126] to honey router [41] and hon-

eyclient [3]. The primary objective of these defensive deception techniques has been
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to disrupt attacks in their reconnaissance stage, by providing misleading informa-

tion to attackers. However, the popularity and evolution of honey techniques have

rather diminished in recent years, mostly because the focus has remained on devis-

ing isolated honey-thing systems and techniques. In fact, existing cyber deception

techniques are static and isolated, often configured and deployed individually, and

usually very susceptible to exposure [7]. However, random use of one or a few iso-

lated and static deception techniques have limited effectiveness, especially against

sophisticated reconnaissance attackers. Instead, effective deception of such attackers

requires a strategic and dynamic composition of these deception systems in a manner

that their enterprise-wide deception plan provides a good incentive to attackers for

engagement and minimum likelihood of exposure. While several formal deception

planning frameworks have been proposed in the literature [25,26,36,50,107,108], the

majority of existing models are not designed (and therefore not suitable) for cyber

deception planning; moreover, they all consider a very limited number of deceptive

actions in their planning. Therefore, they do not provide very the scalability and

real-time agility that is required for cyber deception.

In the next sections, we overview the state-of-the-art for both cyber deterrence and

cyber deception paradigms and techniques against network reconnaissance attacks,

followed by a detailed discussion of their shortcomings and limitations.

1.6 Overview and Limitation of IP Mutation for Cyber Deterrence

Mutation techniques [56, 61, 93] for deterrence of network reconnaissance focus on

changing the static nature of cyber systems and establish dynamics in them by ran-
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domly and frequently mutating certain parameters of the system.

The main trend in this regard focuses on mutating configuration of network hosts,

especially their IP addresses, to thwart adversarial reconnaissance, network scanners

and worms [59]. The APOD (Applications that Participate in their Own Defense)

scheme uses hopping tunnels based on address and port randomization to disguise

the identity of end parties from sniffers [9]. DyNAT provides a transparent approach

for IP hopping by translating the IP addresses before packets enter the core or public

network to hide the IP address from man-in-the-middle sniffing attacks [70]. NASR

proposes an IP hopping LAN-level network address randomization scheme based on

DHCP to defend against hitlist worms [6].

Several approaches have used IP mutation as a technique against honeypot mapping

attacks [15,131]. Another approach proposes an address mutation technique for pro-

tecting MANET nodes against attackers’ reconnaissance efforts [2]. SDNA proposes

an agility approach at the hypervisor level, to make host appearance dynamic to ob-

servers while retaining transparency to OS, applications, and end-users [130]. Several

approaches have suggested techniques for mutation of IPv6 addresses [130]. While IP

scanning attacks are not possible in IPv6 due to the abundance of addresses, sniff-

ing attacks are still viable. To protect a specific flow between two endpoints against

sniffing attacks, MTD6 rotates addresses of the sender and the receiver mid-session

without dropping or renegotiating sessions [67]. DHCP6D uses DHCP for address mu-

tation to avoid the cost of address generation and verification [33]. Another approach

referred to as MOB6D protects mobile devices against sniffing and reconnaissance

attacks by randomizing the prefixes of IPv6 addresses [51].
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Existing approaches each suffer from one or several of the following shortcomings,

thus confining their effectiveness especially against network reconnaissance attacks:

� Limited and slow mutation: existing models are only able to defeat random

scanners due to limited agility; that is, slow mutation rate. This limited mu-

tation rate is not sufficient to deter network scanners; in fact, we show that to

achieve a maximum effectiveness against scanners, the mutation rate must be

equal to the scanning rate. Existing approaches are not able to achieve such

high mutation rates, thus making them only effective against mapping attack

models, such as hitlist worms [6] or naive honeypot mapping techniques [15,131].

Moreover, existing approaches only mutate addresses at fixed intervals, and do

not consider adversarial behavior or scanning rates in determining their muta-

tion strategy or rate. This significantly constrains their effectiveness against

intelligent scanning strategies, such as cooperative or local-preference [59].

� No effectiveness against fingerprint-based identification: existing tech-

niques only mutate one parameter, which is IP addresses of network hosts. Mu-

tation of IP addresses over time breaks association that the attacker has estab-

lished between information collected about a host and its IP address. However,

if a host has a unique fingerprint, an elite attacker would be able to identify a

host using this fingerprint [60], thus bypassing this IP mutation.

� Intrusive and non-transparent mutation: existing techniques are not trans-

parent to network protocols or devices; i.e., their deployment requires costly

changes in existing infrastructure. Even worse, they break active network ses-

sions, thus making their agility highly disruptive to the integrity of network
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operation.

� Non-adaptive and inefficient mutation: the proposed techniques in the lit-

erature only mutate addresses of network hosts uniformly and with a fixed rate.

This has two repercussions. First, when there is no reconnaissance (scanning)

activity, this results in useless mutations of addresses, which incurs unnecessary

costs on the system. Second, as mentioned above, when an attacker is scanning

the network with a high rate, this fixed rate would result in lower deterrence [1],

as compared to a higher mutation rate.

� Limited effectiveness against APT and collaborative scanners: existing

approaches mutate host-to-address bindings globally [6, 9, 70, 131]. This means

that information collected on a host could be used on another host, at least for a

short interval. This allows clients to share their reconnaissance information with

each other or reuse information collected on a previous host after a successful

lateral movement.

1.7 Overview and Limitation of Cyber Deception Planning Frameworks

Most works on cyber deception focus on devising new decoy systems that can

deceive a specific threat model [54, 88, 96, 114]. In addition to these decoy systems

which provide isolated and static deception, a few works have focused on providing a

framework for defining, modeling, and reasoning on deception.

A number of these approaches provide a formal definition of deception, using modal

logic [16,20,31,102,107,108]. Existing theoretical works on modeling deception focus

on formal modeling of deceptive communication without providing means to combine
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and synthesize various deceptive actions. They do not provide metrics or method-

ologies for measuring deception benefit and cost in a cyber context, which is re-

quired for identifying an optimal cyber deception plan. Several other works offer a

game-theoretic modeling of specific cyber deception scenarios [17,36,40,133] that can

identify the optimal cyber deception plan for a specific threat model. However, these

models can only consider simple deception problems that only consist of a few number

of deceptive actions.

Another class of works has used simple probabilistic models to make choices be-

tween alternative deception plans [101, 102]. While these models are more flexible

than previous ones, none provide a generic framework for formal modeling of arbi-

trary cyber deception problems.

The existing works on cyber deception suffer from several major shortcomings:

� Ineffectiveness of cyber static and isolated deception against elite at-

tackers: most works on cyber deception focus on offering isolated and static

decoy systems [11, 96, 114]; these static and uncoordinated deployments have

enabled advanced attackers to easily identify and evade these systems [60].

Defeating advanced attackers requires a coordinated, goal-oriented, and cost-

effective combination of these decoy systems to provide a consistent and believ-

able system-wide deception plan.

� Limited effectiveness of existing deception planning models due to

limited agility. Existing frameworks address specific deception problems that

include one or a few deceptive actions [17, 17, 36, 40, 90, 90]. Even worse, their

planning is not automated and real-time. So, they fail to provide sufficient
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agility and therefore high effectiveness.

� Lack of a scalable and expressive framework for modeling generic

cyber deception problems. While existing frameworks have done some pre-

liminary effort in cyber deception planning [16, 20, 31, 102, 107, 108], they fail

to provide a logical foundation for defining cyber deception, modeling different

types of deception, and providing metrics for measuring cost-benefit trade-off

of different deception plans in an automated and adaptive manner. In fact,

scientific and quantitative reasoning on deception requires a framework that

can incorporate and model any potential deceptive action in the cyber context,

as well as modeling the benefit-cost trade-off for various compositions of these

actions. Most importantly, it must be able to formally model an attacker’s

thinking process and how these different compositions would affect attacker’s

beliefs and potential actions.

� Lack of a comprehensive deception model against advanced recon-

naissance. The general objective of decoy technologies is to mislead attacks in

their reconnaissance stage. This false reconnaissance could mislead attackers in

next stages of kill-chain [53] by engaging them with exploiting decoys and de-

flecting them from exploiting real hosts. However, while each decoy technology

could be even individually effective, a strategic and goal-oriented combination

of these systems could generate a synergistic effect by satisfying expectations

of even an elite reconnaissance attacker and providing tempting incentives for

the attacker to probe and engage with a decoy. This goal-oriented composition

requires a planning model that must consider configuration and vulnerability
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of network hosts, different network zones and their access control rules, poten-

tial intrusion paths into the network, and also risk assessment information for

network hosts.

1.8 Work Objectives

In this dissertation, we have developed cyber agility techniques and frameworks to

defend against advanced reconnaissance attacks. Our techniques are built based on

two primary paradigms: cyber deterrence and cyber deception. Our work objectives

in this dissertation are as follows:

� Developing techniques and metrics for proactive and adaptive cyber

deterrence and deception against advanced network reconnaissance.

The static and truthful nature of cyber systems, in addition to the inability of

existing reactive defense paradigms, enables cyber attackers to perform success-

ful network reconnaissance with little or no resistance. We plan to offer novel

techniques for incorporating cyber agility into the cyber systems to complicate

and disrupt naive and advanced classes of network reconnaissance. These tech-

niques must be able to provide deterrence and deception techniques against

network reconnaissance in a proactive manner. Additionally, they must provide

mechanisms and paradigms for characterizing attackers’ behavior and adapting

the agility to this behavior. Also, we develop metrics for quantifying benefit

and cost of cyber deterrence and deception techniques for optimal planning and

comparison.

� Developing an adaptive, robust, and transparent cyber deterrence
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approach against network reconnaissance. Existing cyber deterrence tech-

niques do not provide sufficient agility to defeat advanced scanning and network

reconnaissance attacks. In this thesis, we present a cyber deterrence technique

that provides high agility by enabling fast and unpredictable mutation of IP

addresses. Our approach mutates host IP addresses in different dimensions

(temporal and spatial) and based on a variety of strategies (proactive, adap-

tive, reactive), to prevent elite attackers from bypassing this mutation. Our

mutation also anonymizes host fingerprints. This multi-dimensional and multi-

strategy agility can deter a range of network reconnaissance attacks, from naive

hitlist, honeypot mapping, and random scanners, to advanced network recon-

naissance in multi-stage APT attacks.

� Presenting a real-time adaptive deception planning framework for

cyber defense. We develop a formal framework, based on satisfiability mod-

ulo theories (SMT) [30] and a many-valued fuzzy logic system called Gödel

logic [10], for defining and modeling deception. The framework provides logical

foundations for modeling how deceptive actions and their different combina-

tion would affect the thinking process of potential adversaries. The model can

capture conflicts and synergies among these deceptive actions. It also provides

mechanisms for adaptation of the generated deception plans to new information

about attackers or cyber systems.

� Developing an effective, high-agility, and mission-oriented deception

plan against advanced intrusion attacks. In this dissertation, we present a

high-agility deception plan that consists of existing decoy technologies to defeat
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advanced intrusion attacks launched by elite attackers. This must consider

potential intrusion paths into a given network, different zones of the network

and their reachability policies, vulnerability levels of network hosts, in addition

to the mission statement which determines defense priorities (i.e., critical hosts

that must be protected). The generated plan must determine what combination

of these decoy technologies must be deployed, with what configuration, and

at which locations of the network, to maximally deceive and deter advanced

intrusion attacks in the network. This optimal deception plan is modeled and

determined using the aforementioned cyber deception framework.

1.9 Research Challenges

Toward fulfilling our work objectives, there are many research challenges that we

need to address. The key challenges are as follow:

� Constraint satisfaction problems for agility planning. Achieving high

agility is a complex problem that requires satisfaction of conflicting constraints

because agility requirements often contradict with integrity, operational and

budgetary constraints. For example, in cyber deception planning introduced

in chapter 3, there is a trade-off between the effectiveness of deception and its

cost, which makes this planning problem NP-hard. In general, agility plan-

ning requires solving hard and multi-constraint problems to achieve targeted

protection level with affordable cost and overhead, which is a challenging task.

� Selection and orchestration of agility parameters. Defeating network re-

connaissance as a threat model requires selection of a correct and complete set
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of agility parameters to make this agility resistant to evasion techniques. This

selection requires a systematic investigation of potential and available agility

parameters and their disruptive effect on the given threat model, which is a

challenging task. Also, these parameters must be orchestrated to avoid anoma-

lies and conflicts in their operation, and also enable the synergistic composition

to achieve a higher benefit. This orchestration requires discovering these con-

flicts and synergies, and using a framework to model such conflicts and synergies.

Both of these tasks are challenging. The former task requires an in-depth un-

derstanding of the practical and technical repercussions of manipulating these

parameters on the system, while the latter requires a formal understanding and

modeling of the problem.

� Quantifying benefit and cost of agility and their trade-off. Quantify-

ing the benefit and cost of an individual agility parameter or a combination

of several agility parameters requires devising new metrics and quantification

methodologies. In many cases, a combination of theoretical, simulation, and

emulation methodologies must be used to quantify benefit and cost. Designing

such metrics and methodologies are one of the focal challenges of this disserta-

tion. This quantification is also important because the cyber agility measures

must be fast enough to mitigate attack promptly and slow enough to limit the

agility cost. This is because changing agility parameters incurs costs on the

system, and therefore unnecessary mutations increases cost without increasing

benefit. Discovering a balanced trade-off between this benefit and cost is one

of the challenges of this dissertation.
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� Modeling adversarial behavior. Cyber attackers are often advanced and

adaptive. Effective agility requires developing techniques and methods for fast

and accurate characterization of attacks as well as methodologies for belief gen-

eration and prediction. Given the complexities and unpredictability of human

decision-making process and their ability to learn and adapt dynamically, such

modeling and characterization are one of the most important challenges of this

dissertation.

� Maintaining service continuity and operational integrity. Cyber agility

requires continuous changing and adaptation of network configuration. Ensur-

ing that these changes are not disruptive to integrity and continuity of services

is an important challenge. For example, for IP mutation we need to ensure

that these mutations do not violate end-to-end reachability of the network. As

another example, for cyber deception, we must ensure that normal operations

of the network are not affected by deceptive actions.

� Scalability. The agility solutions must be solved for networks with thousands

of devices. Unscalable solutions are not practical for real-world scenarios, and

provided solutions must be scalable; solving constraint satisfaction problems

and agility models of such large size is a challenging task.

1.10 Contributions

Our contribution in this dissertation is as follows:

� A multi-dimensional host identity hiding technique. Our approach achieves high

agility by fast, adaptive, and unpredictable mutation of IP address; it achieves
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low overhead by making mutations and fingerprint anonymizations transpar-

ent to network protocols, users, and devices in a manner that is non-intrusive

to active network sessions. Our cyber deterrence technique anonymizes host

identities in a multi-dimensional, multi-parameter, and multi-strategy manner.

The multi-dimensional mutation changes address temporally and spatially to

defeat information gathering aggregation both over time and location. The ap-

proach also uses multiple novel strategies for mutation of addresses: proactive

mutation when there is no characterization of attackers’ strategies, the adap-

tive mutation when certain patterns are observed in attackers’ strategies, and

reactive mutation against malicious scans. We also offer a novel framework for

characterization of attackers’ scanning strategies for adaptive mutation.

� We present a deception planning framework for cyber defense that provides

logic, interfaces, and mechanisms for modeling and constructing deception plans

for cyber threats, and for adapting the plan based on the system feedback.

The framework presents interfaces for defining a deception model for a given

cyber domain, using a deception logic. The deception modeling logic is an

abstraction over satisfiability modulo theories (SMT) [12] extended by many-

valued logic [10], and it can model perlocutionary aspects of deception (e.g.,

belief, cause-and-effect, and intention), as well as its quantitative traits (belief

certainties, budget, and risk). The framework includes necessary mechanisms

for validating and solving the model to generate a sound deception plan, which

then will be deployed in the given system.

� We develop an effective and orchestrated deception plan against advanced APT
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attacks. This deception plan composes a variety of decoy technologies, based

on networks’ configuration and potential intrusion paths, defense priorities, and

zoning and access control policies of the system. The deception plan is mod-

eled and crafted using our deception planning framework. The deception plan

achieves high agility by considering a large and diverse group of potential decoy

systems. We show that the deception plan outperforms other competing plans

by achieving a higher effectiveness with a lower budgetary overhead.

1.11 Technical Approach Overview

In this section, we provide a technical overview of our proposed cyber agility tech-

niques in this dissertation.

1.11.1 Multi-dimensional, Multi-parameter, and Multi-strategy Host Iden-

tity Anonymization

In this work, we propose a cyber deterrence technique for hiding host identities

that can deter advanced reconnaissance techniques. This approach, called M-RHM,

achieves this by full and multi-parameter anonymization of host identities, mutating

host IP addresses over temporal and spatial dimensions, and also a careful composition

of various mutation strategies.

M-RHM mutates both internal and public addresses of network hosts. The public

addresses are mutated to deter external reconnaissance on the DMZ, while internal

addresses are mutated to deter insider attacks and multi-stage intrusions.

In our preliminary work, we present a cyber deterrence technique called Random

Host Mutation (or RHM) that mutates addresses of network hosts over time. In M-
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RHM, in addition to mutating IP addresses only over time, referred to as temporal

mutation dimension, we also mutate them based on the IP address of the source;

i.e., two distinct sources would reach the same host with different IP addresses. This

is referred to as spatial mutation and means that each host has its unique view of

the network, which is different from other hosts. Therefore, information collected

on a host could not be used on another host. This is especially effective against

reconnaissance sharing and lateral movements in the network.

In M-RHM, we adopt a multi-strategy mutation approach, as a combination of

proactive, adaptive, and reactive strategies. The proactive mutation strategy is

adopted when no specific scanning pattern is observed in the network, to defeat

unknown external and internal scanners. In contrast, adaptive mutation strategy

is adopted when the characterization of attackers’ scans shows a pattern that sug-

gests which addresses are more probable to be scanned next. The adaptive mutation

enhances effectiveness and reduces cost by tuning mutation rate and distribution

by considering the attacker’s behavior. Finally, the reactive strategy is adopted for

scans that are identified to be malicious, which are scans that are not preceded by

appropriate DNS query. This strategy defeats internal scanners.

Moreover, M-RHM offers a multi-parameter mutation technique. Specifically, M-

RHM mutates hosts’ IP address, MAC address, and domain name (for reverse-DNS

queries), and more importantly, host fingerprints. To randomize host fingerprints, a

group of shadow decoys is dispersed in the address space, based on the paradigm of

k-anonymity, to anonymize host fingerprints both in spatial and temporal dimensions.

A shadow decoy of a host has the same network-level and application-level fingerprint
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as of that host.

Achieving fingerprint anonymization through k-anonymity necessarily means that

for each real host in the network, k − 1 shadow decoys are dispersed in the address

space. In M-RHM, a host only mutates its addresses with its k−1 shadow decoys, and

since all these k machines have the same fingerprint, the status of network address

space seems static from outside, and therefore mutations are invisible to attackers.

M-RHM mutates host IP addresses by a conflict-free and synergistic composition

of the following mutation strategies.

� Proactive temporal [1, 56]: if no identifiable scanning pattern is observed in the

network, then addresses are proactively mutated at regular intervals. The proac-

tive temporal is, in fact, the same strategy as that of RHM [1] and OF-RHM [56]

in address mutation. These temporal mutations occur both for internal and ex-

ternal address space. This strategy is especially important in defense against

external-active and internal-passive scans. However, contrary to our preliminary

work, a host only mutates its address with addresses of its shadows.

� Adaptive temporal [58]: if a scanning pattern is discovered in the sequence of

scans that are observed in the public address space, then M-RHM adapts mu-

tation intervals as a function of the observed scanning rate. This approach is

a novel research contribution of M-RHM. Furthermore, M-RHM uses statisti-

cal hypothesis testing to learn potential patterns in attackers’ scanning. The

adaptive temporal strategy is first presented in A-RHM [59], and it increases

deterrence and deception against strategic external scanners such as cooperative

or local-preference.



32

� Proactive Spatial [61]: the spatial mutation aims to defeat (deter and deceive)

information sharing among internal network hosts, by giving them a disjointed

set of addresses to reach other internal hosts. Therefore, proactive spatial mu-

tation aims to defeat internal active and passive scans by assigning addresses

in a manner that when attackers potentially move from a host i to a host j, the

information collected at i is only used at j to reach shadows. Spatial mutation

is especially effective against advanced multi-stage attacks.

Through rigorous theoretical analysis and simulation, we show that M-RHM can

prevent propagation of network worms, provide high resistance against external scan-

ners, deter advanced and collaborative reconnaissance, and provide high resistance

against APT attacks.

1.11.2 A Formal Framework for Active Cyber Deception Planning

In this work, we present a formal framework for cyber deception planning. Contrary

to passive deception, active cyber deception aims to proactively design and deploy

a deception plan, consisting of many small lies to fabricate a convincing big lie that

is consistent, believable and tempting, even to skilled attackers. We show that such

planning needs a framework that allows formal modeling and quantitative reasoning

on deception, and there exists no logic or framework that allows one to model how

various lies and their different combinations would prohibit an attacker from achieving

the desired goal in a certain domain. We show that development of such framework

is necessary because the number and quality of lies are large and different; lies have

different costs and are often contradictory and therefore selecting a set of lies that
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would provide a consistent image of the domain with affordable cost and a high

temptation is not possible without modeling their interactions, effects, costs, and

conflicts.

The presented deception planning framework provides logic and mechanisms for

constructing deception plans for a given domain, and for interacting with the do-

main to deploy the plan, as well as updating the plan based on domain feedback.

The framework will have interfaces for defining a deception model for a given do-

main, using a deception logic. The logic is an abstraction over satisfiability modulo

theories (SMT) [12] extended by many-valued fuzzy logic [10, 48], which can model

perlocutionary aspects of deception (e.g., belief, cause-and-effect, and intention), as

well as its quantitative traits (belief certainties, budget, and risk). The framework

includes necessary mechanisms for validating and solving the model to generate a

sound deception plan, which then will be deployed in the given domain.

The deception logic models a system, using the following components: facts, belief,

actions, causality relationship between facts, beliefs, and actions, and also intention

(or goal) of deception. This modeling shows how providing various deceptive infor-

mation pieces to attackers can mislead them into wrong beliefs on the facts. The

deception goal is misleading attackers to beliefs that are most beneficial for defense.

Therefore, in addition to these generic components of deception, the deception logic

includes the following cyber-specific components: benefit/cost quantification for alter-

native plans, belief certainties, deception cost. These components allow the framework

to quantify benefit and cost of alternative deception plans and select the deception

plan that has a higher certainty of satisfying the deception goal. The framework
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provides components for modeling adversary types and distribution. This allows us

to devise deception plans that are effective against various types of attackers with

different goals, knowledge and sophistication levels. Finally, the framework provides

mechanisms for revising the plan based on new observations about attackers.

1.11.3 Deception Planning against Multi-Stage APT Attacks

To defeat multi-stage intrusion attacks using decoy services, we model the problem

of decoy planning against intrusion attacks, where the problem is to determine what

decoy systems and each with what configuration must be placed in each network

subnet (zone), based on our defense priorities and budget, in order to maximally

deflect such attacks from important assets and enable its characterization. This

deception plan targets remote network reconnaissance and intrusion attacks.

We consider a variety of decoys in our planning and model how various alternative

configurations and placement of these decoys would manipulate attackers’ information

gathering process and mislead them about which network services must be targeted

in next stages of the kill-chain. This is achieved by misleading attackers in evaluating

the criticality of various real network services, thus reducing the certainty that the

attacker selects them as a target. The resulting plan ensures that such misleading

can happen with a high certainty. Through comparison with alternative honeypot

planning paradigms, we show that the generated deception plan is effective and scal-

able.
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1.12 Organization

The rest of the thesis is organized as follows: In Chapter 2, we propose M-RHM, a

multi-parameter, multi-strategy, and multi-dimension technique for hiding host iden-

tities from adversarial reconnaissance. The goal is to defeat advanced and persis-

tent attacks by deterring attackers’ progress in the network, and increasing their

detectability by making their behavior more tractable. We propose metrics for eval-

uating the model and provide rigorous theoretical and experimental evaluations to

manifest the benefit and cost of the technique.

In Chapter 3, we propose a cyber deception planning framework that provides

logic, interfaces, and mechanisms for constructing optimal deception plans for a given

system, and for interacting with the system to deploy the plan, as well as updating

the plan based on the system feedback.

In Chapter 4, we use this deception planning framework to craft a deception plan

consisting of a variety of decoy services against multi-stage intrusion attacks. In this

model, we show that the framework is expressive and effective and provides plans

that are intuitively reasonable.

In Chapter 5, we present a summary of the dissertation, in addition to our plan for

future works.



CHAPTER 2: MULTI-DIMENSIONAL RANDOM HOST IDENTITY HIDING
(M-RHM)

2.1 Problem Statement

Cyber deterrence aims to establish cyber agility into systems by mutation of sys-

tem parameters [56,61,92]. The basic idea is to change the static nature of a system

and establish dynamics in it by randomly and frequently mutating (altering) con-

figurations of the system and its components, such that (1) attackers’ premises and

assumptions about the system fails, and (2) their collected reconnaissance informa-

tion regarding the system is constantly deprecated. The main objective is taking

away attacker’s advantage of being able to study the target system off-line and find

vulnerabilities that can be exploited at the attack time.

Examples of mutation for attack deterrence include instruction set randomiza-

tion [69, 92], memory address randomization [111], and compiler-generated software

diversity [55] to avoid attacks such as buffer overflows and worms [111].

Our focus in this dissertation is on disrupting advanced and persistent intrusion

attacks, by deterring their reconnaissance phase through cyber agility. The role and

significance of cyber deterrence techniques against adversarial reconnaissance in net-

works have been partially investigated in the literature. For example, to disrupt the

reconnaissance activities that exploit the static nature of MAC addresses in wireless

networks, mutation of these addresses has been recently incorporated into iOS [91].
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Accordingly, to counter scanning and reconnaissance activities that rely on the static

assignment of host IP addresses, several IP address randomization techniques, for

example, based on DHCP [6] or NAT [70], have been proposed. However, these

techniques suffer from limited unpredictability and non-transparent protocols, which

confines their effectiveness to naive threat models such as hitlist worms [6] and makes

their deployment unjustifiably costly.

To address these limitations, in our preliminary investigation of this problem, we

introduced an IP randomization technique, called Random Host Address Mutation

(RHM) [1,56], that allows one to achieve unpredictable address mutation with trans-

parent deployment in networks. RHM aims to establish dynamics into static networks

by reconfiguring the network unpredictably and in an affordable manner.

RHM mutates host addresses proactively, and with a fixed rate. This has two

repercussions. First, when there is no reconnaissance (scanning) activity, this results

in unnecessary mutations of addresses, which incurs unjustified costs on the system.

Second, when an attacker is scanning the network with a high rate, this fixed rate

would result in lower deterrence [1], as compared to a higher mutation rate. To

address this limitation, we require a mutation technique that can learn an attacker’s

scanning rate and adapt mutation rates to that.

Also, RHM only mutates addresses uniformly. Uniform mutation is the optimal

strategy when no information is available about an attacker’s scanning strategy. How-

ever, if mutations are adapted to how an attacker is scanning the address space (e.g.,

sending most scans to certain address ranges and less to others), much more deter-

rence could be gained [58]. Achieving this requires a mutation technique that can
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identify certain patterns in a potential scanning and adapt address mutation to that.

To address these two limitations, in another preliminary work, we proposed an

adaptive IP randomization technique, called attacker-aware RHM or A-RHM [58].

A-RHM introduces two techniques for identifying patterns in attackers’ scanning. It

also introduces a technique for learning attackers’ scanning rate and adapting the

mutation rate based on that. By adapting mutation strategy and rate to attackers’

behavior, A-RHM can provide higher deterrence against scanners.

In spite of their effectiveness against scanners, both RHM and A-RHM suffer from

several shortcomings. Firstly, both techniques only mutate IP addresses temporally.

This is only effective against less advanced and usually automated threat models such

as scanners but fails to defeat more advanced threat models such as intrusion attacks,

where an elite human attacker compromises a chain of hosts and laterally moves in a

stepping-stone manner until it reaches a target. Defeating such threat model require a

mutation technique that can disrupt these lateral movements inside our network. Such

technique must mutate host IP addresses spatially, such that each host has its unique

view of the network (i.e., its own set of addresses to reach other hosts). Moreover,

these views must be created in coordination and concerning an attacker’s potential

or observed behavior such that maximum deterrence and deception is incurred on the

infiltrating attacker.

Secondly, mutations of IP addresses in both RHM and A-RHM are only effective

against less advanced and usually automated scanners, but fails to defeat reconnais-

sance launched by elite human attackers; this is because merely mutating IP addresses

of hosts is not enough to hide them from an elite attacker, because such an attacker
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would use other attributes of a host, such as its fingerprint [60], to identify it later.

Defeating such attackers require a mutation technique that can anonymize other iden-

tifying attributes of a host, especially its network fingerprint.

In this chapter, we propose a multi-dimensional, multi-parameter, and multi-strategy

host identity hiding or anonymization technique, called M-RHM, that addresses these

limitations by combining a group of proactive, adaptive, and reactive mutation strate-

gies to deter advanced reconnaissance. M-RHM integrates previous strategies of RHM

and A-RHM with some novel mutation strategies and dimensions in a synergistic and

consistent manner.

Before introducing M-RHM, we provide an overview of existing work on IP muta-

tion in the literature, followed by our preliminary works RHM [1,56] and A-RHM [58].

2.2 Related Work

Mutation, also known as randomization or hopping, is a common technique for

security. Examples of such techniques include using the one-time virtual number

instead of the real credit number for online transactions; instruction set random-

ization [69, 92], memory address randomization [111], compiler-generated software

diversity [55], and end-to-end software diversification of Internet services [23]. How-

ever, our focus in this dissertation is on cyber deterrence techniques against network

reconnaissance, which are mainly focused on IP mutation.

2.2.1 Literature Review of IP Mutation

Mutation of IP addresses (also called address shuffling or IP hopping) to disrupt

threat models such as sniffing and man-in-the-middle attacks, scanners and worms,
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as well as network reconnaissance has been investigated in the literature.

The APOD (Applications That Participate in Their Own Defense) scheme [9] uses

hopping tunnels based on address and port randomization to disguise the identity of

end parties from sniffers. However, this approach is not transparent as it requires the

cooperation of both client and server hosts during the IP mutation process.

DyNAT [70] provides a transparent approach for IP hopping by translating the

IP addresses before packets enter the core or public network to hide the IP address

from man-in-the-middle sniffing attacks. Although this technique will make network

discovery infeasible for sniffers, it does not work for scanners who rely on probe

responses for discovering the end-hosts.

NASR [6] offer an IP hopping approach that can defend against hitlist worms.

NASR is a LAN-level network address randomization scheme based on DHCP up-

date. It is not transparent to the end-hosts because DHCP changes are applied to

the end-host itself which results in disruption of active connections during address

mutation. Moreover, it requires changes to the end-host operating system which

makes its deployment very costly. Also, NASR provides very limited unpredictability

and mutation speed because its IP mutation is limited on the LAN address space and

will require DHCP and host to be reconfigured for this purpose.

Yegneswaran et al. [131] and Cai et al. [15] present techniques for defending hon-

eynets from systematic mappings that aim at differentiating live IPs from monitored

ones and blacklisting monitored IPs for efficient target selection. Their approach is

based on shuffling monitored IP addresses with live IPs after the number of probes

received in the honeynet has exceeded a threshold.
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Several approaches have suggested techniques for mutation of IPv6 addresses [130].

While IP scanning attacks are not possible in IPv6 due to the abundance of ad-

dresses, sniffing attacks are still viable. To protect a specific flow between two end-

points against sniffing attacks, MTD6 [67] rotates addresses of the sender and the

receiver mid-session without dropping or renegotiating sessions. The design takes an

advantage of IPv6 networks allowing nodes to seamlessly bind new IPv6 addresses.

MT6D creates dynamic Interface IDentifier (IID) obscuration to create dynamic IP

addresses. In contrast, DHCP6D [33] use DHCP for address mutation to avoid the

cost of address generation and verification. Another approach called MOB6D [51]

protects mobile devices against sniffing and reconnaissance attacks by randomizing

the prefixes of IPv6 addresses.

In a similar work, Albanese et al. [2] propose a mechanism for periodically changing

the virtual identity of nodes in a MANET to defeat the attacker’s reconnaissance

efforts. The approaches are transparent to end-hosts but do not consider spatial

mutation which restricts their applicability against coordinated attack models.

SDNA [130] inserts a hypervisor within each network node to make host appear-

ance dynamic to observers while at the same time retaining transparency to OS,

applications, and end-users. The main shortcoming of SDNA architecture emanates

from the costly reconfiguration of each network node to include hypervisor technology.

Furthermore, SDNA is only designed for IPv6 technology.

Several other works have focused on providing a general theory [134], framework [19,

130], and comparison/evaluation [86, 129] methodologies for moving target defense,

using IP randomization as a mutation vector.
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IP Mutation has also been used by botnets [52] to hide phishing and malware

delivery sites behind an ever-changing network of compromised hosts acting as proxies.

The basic idea behind Fast flux is to have numerous IP addresses associated with a

single fully qualified domain name, where the IP addresses are swapped in and out

with extremely high frequency, through changing DNS records. The simplest type of

fast flux named “single-flux”, is characterized by multiple individual nodes within the

network registering and de-registering their addresses as part of the DNS A (address)

record list for a single DNS name [14]. This combines round robin DNS with very

short - usually less than three minutes (180s) [14] - TTL (time to live) values to create

a constantly changing list of destination addresses for that single DNS name. A more

sophisticated type of fast flux referred to as “double-flux”, is characterized by multiple

nodes within the network registering and de-registering their addresses as part of the

DNS Name Server record list for the DNS zone [14]. This provides an additional

layer of redundancy and survivability within the malware network. Existence and

widespread success of such botnets demonstrate the feasibility and effectiveness of

mutating addresses of network hosts via DNS.

2.2.2 Proactive RHM

In [1,56], we propose a technique called Random Host Mutation or RHM that offers

a two-level IP mutation approach (low-frequency and high-frequency) to maximize

unpredictability. The approach is transparent to end-hosts, but the mutation is only

performed uniformly, and without considering the adversarial behavior. In [56], we

present a variation of RHM for software-defined networks and introduce a technique
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called OF-RHM (OpenFlow Random Host Mutation). In this section, we provide a

brief overview of this preliminary work.

2.2.2.1 Methodology Overview

In Section 2.2, we introduced several IP mutation works in the literature. However,

these works suffer from several shortcomings, including low agility (limited unpre-

dictability and slow mutation), and high cost (lack of transparency to network hosts

and network sessions). These limitations make them only effective against naive

threat models. Compared to previous approaches in the literature, RHM offers a

scheme that achieves substantially high unpredictability, minimizes reconfiguration

overheads, and is transparent to all network hosts and sessions.

To achieve these goals, RHM mutates IP addresses of network hosts randomly and

frequently, to make them untraceable. To minimize overhead on network hosts, RHM

keeps the actual IP addresses (referred to as rIP) of hosts unchanged. Instead, it

creates routable short-lived ephemeral IP addresses (eIP) that are chosen from the

unused ranges of the network. The eIP addresses will be used for routing and are

automatically translated into the rIPs and vice versa at the network edges (subnet)

close to the destination. The new eIP addresses are provided to clients via DNS,

similar to fast-flux techniques [14] that are used extensively by botnets for stealthiness.

Maximum unpredictability is achieved when each eIP address is chosen (I) uni-

formly and (II) from the largest possible unused address space. The largest possible

mutation space consists of all unused ranges of the network. However, it is practically

impossible to sample each eIP from all unused ranges at once, because each unused
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address range can only be routed to one physical subnet at any given time. Therefore,

maximizing unpredictability is not practically possible. However, to achieve substan-

tially high unpredictability while addressing this practical limitation, RHM uses a

two-level mutation scheme; namely low frequency mutation (LFM) that changes the

set of unused ranges assigned to each host, and high frequency mutation (HFM) that

changes the eIP address associated with each host by sampling a new address from

these unused ranges. To achieve uniform sampling, ranges must be assigned to hosts

(for each LFM interval) such that the distribution based on which eIPs are chosen

has low divergence from the uniform distribution in a long interval.

To address another objective, i.e., minimizing reconfiguration overheads, note that

when new ranges are assigned to each host (for each LFM interval), routing tables

must be updated accordingly. Assigning ranges to hosts in a completely random man-

ner enhances unpredictability, but may substantially increase the routing table sizes

and affect their performance. Thus, to bound the size of the routing tables, RHM

preferably assigns adjacent ranges to same physical subnets, so that the supernetting

allows us to decrease routing table sizes. Therefore, RHM determines the new range

to host assignment for each LFM interval by considering the trade-offs among un-

predictability, adaptability, and performance. This problem is formally modeled as a

constraint satisfaction problem using Satisfiability Modulo Theories (SMT) [12].

For deployment, we propose plug-and-play architectures and communication pro-

tocols for seamless and incremental deployment of RHM on the legacy as well as

software-defined networks, without requiring any changes in the end-host or legacy

network protocols. This seamless integration allows for separating network adminis-
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tration from mutation management, making mutation transparent to administrators

and end-host configurations. Moreover, it allows RHM to achieve very fast mutation

rates, since transparency to end-host means that old TCP/UDP sessions are not dis-

rupted by new mutations. Therefore, mutating a host eIP only affects forthcoming

sessions, while old sessions can continue communicating using their old addresses.

2.2.2.2 Architecture and Protocols

Deployment of RHM in legacy networks requires a set of components and proto-

cols to handle mutation planning and translation. We deployed RHM on two net-

work types: legacy TCP/IP networks [1], and software-defined networks (SDN) [56].

While deployment of RHM on legacy networks is straightforward, software-defined

networking (SDN) provides a more flexible infrastructure for developing and manag-

ing random host mutation efficiently and with minimal operational overhead.

Deployment of RHM in a network requires components to handle three distinctive

responsibilities: (1) LFM planning to determine the mutation space of each host, and

(2) HFM planning to determine eIP of hosts, and (3) eIP-rIP translation to translate

rIPs to/from eIPs during communication. Depending on the underlying network

infrastructure, these responsibilities will be carried out by different components of

the network.

In legacy TCP/IP networks, two types of components are added to the existing

architecture [56]: a central controller, called MC and a set of distributed gateways,

called MG, which are located at the boundaries of physical subnets.

Figure 2 shows the architecture of these components in the network. Within this
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architecture, the aforementioned responsibilities are handled in the following manner:

(1) LFM planning is performed by MC. The new ranges are announced to MGs which

are located at the boundary of subnets (between subnet switch and the core). MGs

are then responsible for broadcasting new ranges to the routers and updating the

routing tables of the network. To communicate with network routers, MGs must use

the interior gateway protocol (IGP) of the network; (2) HFM planning is performed by

MGs for all the hosts in their corresponding subnets, and (3) translation is performed

by MGs for all inbound and outbound connections. For translation, MG must perform

two distinctive tasks: updating source and destination IP addresses of packets, and

updating DNS replies issued by the authoritative DNS of the network to reflect the

new eIP associations. In addition to these responsibilities, MC is also responsible for

authorization of rIP-based flows.

For scalability, this architecture (as well as the SDN architecture) could be ex-

tended to include several controllers, each managing a segment of the network. Each

controller has full autonomy in the management of its designated network segment

because no information needs to be distributed among controllers. The only con-

straint is that the mutation space must be divided between these controllers. This

can hurt unpredictability but substantially improves scalability.

Moreover, although it is preferable to assign one MG to every physical subnet, it

might not be cost-effective. In this case, it is possible to assign an MG to handle

responsibilities for several subnets, with the drawback that network traffic would

be more exposed to passive reconnaissance attacks such as sniffing because eIPs are

translated to rIPs several hops before the packets reach the final subnet.
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Figure 2: RHM architecture on legacy networks

In SDN, the network controller (e.g., POX [81]) monitors and controls the entire

network from a central vantage point via an interface, such as OpenFlow [83], and

defines the forwarding and address translation behavior of switches distributed in the

network accurately and synchronously. Accordingly, the aforementioned responsibil-

ities are performed in the following manner: (1) LFM and HFM planning are both

performed by the SDN controller. After HFM planning, the controller installs appro-

priate flows in the switches along the way to handle necessary eIP-rIP translations;

(2) translation is performed by SDN switches of the network and according to the

flow actions determined by the controller.

Since the eIP addresses of network hosts are periodically mutated, a host in RHM

network must be reached via its name and through DNS. Figure 3 depicts the general

outline of RHM protocol for communication via name in an RHM-enabled legacy

network. For SDN, the protocol is the same, but translations are performed by OF-

switches of physical subnets.
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To communicate with a server using its name, a DNS query is sent to resolve the

name of the server. The DNS response is intercepted by the responsible entity (i.e.,

MG in conventional networks and controller in SDN), and the rIP of the server is

replaced with its corresponding eIP (steps 1-3). Moreover, the TTL of the DNS

response is updated based on to the HFM interval duration. As a result, clients

will receive the eIP of the destination host and initiate their connections accordingly

(steps 3-4). The packets are routed to this eIP as the destination address (step 5).

Finally, when the packet arrives at the destination subnet, destination eIP is replaced

with its corresponding rIP (step 6). This translation is performed for as long as

the flow continues. More importantly, future mutations do not affect a previously

established flow. The packets of the flow will be updated and forwarded until the

session is terminated (FIN for TCP) or expired (long inactive time for both TCP and

UDP). Therefore, new mutations do not affect previously established sessions.

A host can still be reached via its rIP, but only by authorized users. In fact,

unnamed network hosts can only be reached via rIP. In this case, the access request

must be authorized by the controller. If access is granted, the rIP of the destination is

translated to its corresponding eIP. The authorization is handled based on the access

control policy of the network.

For SDN, the controller is responsible for handling communications via name and

rIP. The general algorithm of POX controller for communication management is pre-

sented in [56]. OF-switches are configured to encapsulate unmatched packets (that

have no matching flows in flow tables) and send them to the controller. The controller

determines the type of connection (i.e., via rIP or eIP) and installs necessary flows in
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Figure 3: Communication protocol using host name

all OF-switches in the path. Each connection must be associated with a unique flow

because the rIP-eIP translation changes for each connection. This property guaran-

tees the end-to-end reachability of hosts because the rIP-eIP translation for a specific

connection remains unchanged regardless of subsequent mutations.

When the LFM interval expires, some eIPs might not be still released. RHM uses

the longest prefix match policy of routers to temporarily exclude these eIPs from

their corresponding ranges until they are released. Specifically, specific entries are

added to the routing tables of the network for these unreleased eIPs. As a result,

packets destined to an unreleased eIP will be routed to its current host, while packets

destined to the rest of addresses in the range are available to be assigned and routed

to another host. Without this scheme, an attacker will be able to deplete the pool of

available ranges by establishing many long-lived connections.

2.2.2.3 Evaluation of Proactive RHM

Scanners and worms (or any other automated malware) use various scanning tech-

niques to identify network hosts. From RHM perspective, scanning techniques can be

classified into two main categories: (1) uniform scanning, and (2) strategic scanning.
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In uniform scanning techniques, the scanner uniformly selects addresses from the ad-

dress space and probes them. However, uniform scanning generates tremendous noise

which makes it highly susceptible to detection [135]. Strategic scanning techniques,

such as cooperative or local-preference scanning take advantage of network dynamics

to improve their effectiveness while reducing the volume of generated traffic [135].

Therefore, contrary to uniform scanning, strategic scanning techniques have a higher

possibility of evading detection.

In this section, we investigate and quantify the effectiveness of our approach to

scanning techniques. In order to determine optimal scanning strategy, we can model

the interaction between a scanning attacker and an RHM-enabled network as a static

game, where optimality is defined as follows: a scanning strategy is designated as

optimal (by the attacker), if for a fixed number of probes it results in the discovery

of a higher number of hosts in the network. This game-theoretic analysis, the de-

tails of which are omitted from here for brevity, leads to the following conclusions.

Firstly, for an RHM network, the optimal scanning strategy for an attacker during a

mutation interval is uniform sampling without replacement, which is known as cooper-

ative scanning [22,135]. However, after each mutation interval, the attacker is forced

to restart his scan. Using any other scanning strategy does not increase attacker’s

payoff. Moreover, in the case where an attacker deviates from the uniform strategy

by using a biased scanning algorithm such as local-preference, the defender has the

opportunity to potentially increase her deterrence.

Secondly, for a static network, cooperative scanning is the most effective scanning

strategy, because a static network is analogous to an RHM network with an infinite
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mutation interval.

Also, the game-theoretic analysis shows that the optimal mutation distribution for

eIP selection is uniform. This necessarily means that deployment of RHM in a net-

work will force a rational attacker to commit to uniform scanning, which is highly

susceptible to detection [119]. In the next section, we theoretically and experimen-

tally evaluate the effectiveness of RHM against well-known non-uniform scanning

strategies: (1) cooperative scanning as the optimal scanning technique for static net-

works, and (2) local-preference scanning as non-uniform scanning techniques, which

are shown to be more effective than the uniform scanning in static networks.

Cooperative Scanning. In this section, we aim to quantify the deterrence that is

exerted by RHM on the most optimal scanning strategy for static networks, which is

the cooperative scanning. Sophisticated scanners usually aim to minimize connection

failures by avoiding repeated probing of the same IP address [135] because in a static

network the status of an address does not frequently change in a relatively long

interval.

Assume a group of k ≥ 1 scanners are scanning the address range of our network

with m addresses and n moving hosts cooperatively, and the mutation interval of all

hosts is λ.

For a designated target, the expected number of scans to hit the target is (m−1)/2,

while for a uniform scanner the expected number of scans to hit the target is the mean

of a Bernoulli trial, which is m.

Assume η denotes the scanning rate of each scanner. We define Γ = ηλ as the ratio

of attacker scanning rate on defender mutation rate, where mutation rate is 1/λ. If
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the scanning rate is the same as the mutation rate (i.e., Γ = 1), for every scan the

scanners will miss the target with probability (1− 1
m

). For m scans, the scanner will

miss each target with probability:

Pmiss =

(
1− 1

m

)m
≈ e−1 = 0.37

If scanners only make m′ (m′ ≤ m) scans, the miss probability is:

Pmiss =

(
1− 1

m

)m′

≈ e−m
′/m (1)

This value is greater than e−1 if m′ < m. For example, if scanners only scan half

of the address space, then e−
1
2 ratio of hosts will be missed.

Suppose the scanning rate (η) is higher than mutation rate 1/λ; i.e., scanning is

faster than mutation (Γ > 1). Assuming that scanners make a total of m′ probes, the

defender on average mutates after every Γ scans. Therefore, the scanning duration

could be divided into dm′/Γe intervals. The first probe will miss the target with

probability 1−1/m. However, the second probe will miss with probability 1−1/(m−

1), and so forth. In general, during each interval scanners will miss the target with

the following probability:

P0 =

(
1− 1

m

)(
1− 1

m− 1

)
. . .

(
1− 1

m− Γ + 1

)

Therefore, after m′ probes the scanner will miss the target with the following

probability:

Pmiss = P
dm

′
Γ
e

0 (2)
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When m′ >> Γ, i.e., the rate ratio is far smaller than the number of probes,

(m − k) ' m and therefore Pmiss ' e−m
′/m. On the contrary, when m′ ' Γ, the

mutation has no effect on scanning since the hosts are stationary during an interval,

and therefore Pmiss approaches 1−m′/m.

Figure 4 shows the theoretical and experimental mutation success probability of

RHM withm = 220, 221 and 222 and different Γ values. The x-axis shows the logarithm

of Γ (scanning rate over mutation rate) to base 2. The scanner makes a total of

m′ = 220 scans. We can see that the experimental result is roughly consistent with

the theoretical analysis. Moreover, note that the mutation can save 40% to 80% of

network hosts from infection. Also note that when Γ << m′, the mutation success

probability remains close to e−m
′/m. However, as Γ approaches m′, the mutation

success probability drops to 1 − m′/m. In fact, when m′ = m = Γ the mutation

success probability becomes 0.

Our analysis up to here only focuses on scanners; i.e., the number of scanners does

not change. However, in case of a cooperative worm, each newly-infected machine

starts acting as a scanner. To analyze the effect on cooperative worms, we use math-

ematical propagation modeling [45]. Assume S(t) and I(t) represent the susceptible

and infected populations at time t, respectively. Parameter η denotes the scanning

rate of each scanner. In a static network, it is straightforward to see that [1]:

dI(t)

dt
=

n

m
ηI(t). (3)

For RHM network, assume Q(t) represents the quarantined population at time

t; i.e., susceptible hosts that are not accessible to scanners as a result of mutation.
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Figure 4: ratio of uninfected hosts
against cooperative worms

Figure 5: propagation of cooperative
worm in various network types

With respect to the infected population, the probability that a probe targets a host

is ((n−Q(t)))2

m
and the probability of probe success is (n−Q(t)). Therefore:

dI(t)

dt
=

(n−Q(t))

m
ηI(t) (4)

On average every (n− I(t)) unsuccessful scans move one host to quarantined state

with probability ((n−I(t))2
m

. The probability emanates from the fact that some of the

hosts may already be infected, and so only the portion of hosts which are not infected

must be considered. Therefore, the propagation rate of quarantined hosts is:

dQ(t)

dt
=

(n− I(t))

m
ηI(t) (5)

Assuming that the scanning stops once the whole address space is probed, numerical

analysis of these equations (using Matlab Symbolic Math Toolbox) shows that as t

grows I(t) approaches (1−e−1)n, while Q(t) approaches ne−1 which is the same result

that is achieved for non-propagating scanners.

Figure 5 shows the simulated propagation of a cooperative worm in a static network,

an RHM network, and a network with adaptive mutation (A-RHM). First, note that
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Figure 6: propagation of local-
preference worms

Figure 7: deprecation ratio for various
mutation rates

the propagation of a cooperative worm in a static network is very fast, even when

the worm is scanning the network with a low rate of 1 scan per second. Secondly,

note that when λ = 1 and the scanning speed of the worm is η = 1 scan per second,

RHM can still rescue 40% of network hosts from infection. However, when the worm

is scanning the network with η = 5 scans/sec and the λ = 5 seconds (one mutation

every 5 seconds), only 12% of network hosts evade infection in an RHM network.

However, note that proactive temporal achieves far less deterrence than the adaptive

temporal strategy, as will be discussed in the next section.

Local-Preference Scanning. This scanning strategy aims to increase propagation

speed by considering the distribution of hosts in the network. When vulnerable

hosts are not uniformly distributed in a worm’s scanning space, local-preference scan

increases its propagation speed [135].

The local-preference scanning works as follows [119]: a probe issued by an infected

host is targeted toward a local subnet a.b.c.d/k with probability p; otherwise, with

probability 1 − p the probe is targeted toward a random address that is uniformly
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chosen from the whole address space.

In static networks, hosts’ addresses are not uniformly distributed in the address

space. Rather, hosts in the same subnet have the same network address. In a typical

scenario, assume our network consists of /22 subnets, and network hosts’ rIPs are

concentrated in a few subnets. The local-preference worm scans the local /22 subnet

with probability p.

Figure 6 shows the propagation of a local-preference worm in various network

settings with m = 220, and n = 216. Firstly, note that in static networks the local-

preference worm propagates very fast because hosts are concentrated in certain ranges

of the network and host address distribution is biased. Secondly, note that RHM can

decrease the worm’s propagation speed by uniformly distributing hosts in the address

space. However, the effectiveness of proactive temporal is less than that of adaptive

temporal strategy, as will be discussed in the next section.

Network Reconnaissance. RHM disrupts reconnaissance by fast deprecation of

network addresses. Changing the addresses of network hosts invalidates existing map-

pings of network hosts, thus forcing potential attackers to squander their resources

on re-discovery of these mappings.

The disruption of reconnaissance information has significant repercussions for many

attack vectors. For example, Hitlist scanners/worms scan a pre-generated list of

addresses to minimize connection failures [6]. By affording very fast mutations,

RHM maximizes disruption that is exerted on hitlist scanners. Honeynet mapping

techniques aim to systematically identify and blacklist the addresses that are moni-

tored [15, 131]. RHM completely thwarts honeynet mapping, because the addresses
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are transient and the mutation can be very fast.

Network reconnaissance, in essence, could be disrupted using a naive DHCP-based

randomization, such as NASR [6]. Two factors differentiate RHM from previous ap-

proaches. Firstly, RHM allows significantly faster mutations than other approaches.

For example, while a DHCP-based randomization can only mutate a host address

every 10 − 15 minutes [6], RHM can achieve a mutation rate of 10 seconds. This

will considerably raise the bar for attackers since they only have a very short interval

to update their reconnaissance information and launch the attack. Moreover, con-

trary to DHCP-based mutations, address mutation in RHM does not disrupt previous

(TCP/UDP) sessions.

Figure 7 shows the deprecation of reconnaissance information from an attacker’s

perspective over time. The deprecation ratio is defined as the proportion of addresses

that are no longer active, as compared to a ground truth (preliminary scanning). To

quantify deprecation ratio, we used our RHM-enabled SDN implementation. The

address space is a class B and includes n = 1, 000 hosts. We scanned the whole

address space every 2 minutes and over 20 minutes using Nmap [78] and calculated

the ratio of deprecated addresses by comparing the active addresses to those active

addresses observed during the first scan. In the figure, λ denotes the mutation interval

of network hosts. Note that the smaller the interval λ, the faster the deprecation rate

of the information.

Secondly, and more importantly, RHM achieves a substantially high unpredictabil-

ity. It is intuitive that the robustness of a defensive scheme against reconnaissance

depends on its unpredictability: the smaller the mutation space from which addresses
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of a host are chosen, the easier for the attacker to identify the host. The two-level

mutation of RHM allows us to change mutation ranges as well as host addresses.

Therefore, in a long interval, the addresses of all hosts are being chosen from the

whole address space, thus maximizing the unpredictability.

However, RHM only mutates IP addresses of network hosts. While this is the

first step toward anonymizing the identity of network hosts over time, to prevent

an attacker to recognize a host from previous reconnaissance, it does not stop the

attacker from using other potentially identifying attributes of a host to distinguish it

later. For example, if only one host in the address space is running Apache Tomcat

Web server, an attacker could use this unique feature to identify that host later, even

after its IP address has been mutated.

2.2.3 Adaptive RHM

RHM mutates address of network hosts proactively. This means that new addresses

are uniformly selected from the address space regardless of whether any scanning

activity is observed or not, and also addresses are mutated at fixed, regular intervals.

In the previous section, we showed that when we have no information about what

scanning strategy (distribution) an attacker may adopt, uniform mutation is the opti-

mal strategy for RHM. However, what if we can observe some patterns in the sequence

of scans that are observed in the address space? Then, a better strategy is to adapt

our eIP selection strategy for mutation to these patterns.

Also, having fixed mutation intervals is not very effective, because (1) when there is

no scanning activity on the address space, this results in unnecessary mutations thus
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increased cost; and (2) when there is a significant number of scans observed on the

address space, more deterrence could be achieved by increasing the mutation interval.

In the previous section, we evaluated the inter-relationship between an attacker’s

scanning rate and the mutation rate and showed that the optimal mutation rate is

when it is equal to the attacker’s scanning rate.

To address these limitations, in [59] we introduce an adaptive RHM technique

called A-RHM that can adapt both mutation eIP selection strategy and mutation

rate based on observed scanning activities on the dark address space of the network.

A-RHM uses the same architecture and communication protocol as RHM (Sec. 2.2.2)

and we do not mention the details again for brevity.

2.2.3.1 Methodology Overview

In A-RHM, observable adversarial behavior such as scans to unused addresses and

ports are used as a mutation parameter that determines the rate and strategy for

mutating hosts’ addresses. In this work, we introduce two different paradigms for

adaptive mutation planning, based on statistical hypothesis testing [58]. To achieve

a fast and accurate characterization of adversarial scanning strategies, we observe

the sequence of unsuccessful scans that are generated by network hosts and estimate

their distribution using hypothesis testing. We introduce two hypotheses. The first

hypothesis, non-uniformity test, analyzes these scans to determine whether they are

skewed toward certain ranges of the network. If the hypothesis is accepted, hosts

are evacuated from these ranges probabilistically, thus reducing the probability that

a host is discovered by the attacker. The second hypothesis, non-repetition test,
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analyzes the probes to determine whether a potential attacker is scanning the network

while avoiding or minimizing repeated probing of the same address. If this hypothesis

is accepted, network hosts are evacuated from addresses that have a high probability

of being scanned shortly.

Non-Uniformity Test. In various classes of scanning, for example, local-preference,

sequential, and divide-and-conquer, the majority of sampled IP addresses by each

scanner are chosen from certain regions of the network. In fact, it has been shown

that when hosts are not uniformly distributed in the address space, biased scanning

techniques such as local-preference scan increases a worms propagation speed [135].

Moreover, local scanning reduces the possibility of a probe being investigated by a

security device such as ID, and thus enhances evasion probability.

Quick identification of highly-scanned ranges allows us to probabilistically move

hosts out of these ranges thus decreasing the number of successful probes. This

will slow down scanning and worm propagation. To determine whether a potential

attacker is scanning uniformly or not, we define a non-uniformity test. The objective

of this non-uniformity test is to investigate the one-tailed null hypothesis that the

distribution of destination addresses of failed scans is not uniform.

With this aim, A-RHM records the addresses that are probed and failed, i.e., the

scanned address is not assigned to any host. The reason we only take failed con-

nections into consideration is that the number of failed connections generated by a

random scanner is significant enough to characterize its distribution. Moreover, le-

gitimate connection requests might be generated by legitimate services running on

the hosts or might be generated by the attacker for evasion [119]. So ignoring them
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allows us to characterize the scanning behavior of attackers more accurately. The rea-

son we only consider probes to internal addresses is that we only need to determine

the weights of our network ranges.

The mutation space is denoted as Ω = {r1, . . . , rM}, which are fixed-sized unused

ranges of the network, each with size L. After observing a sequence of failed connec-

tions, ck denotes the number of failed connections to range rk ∈ Ω. To test the null

hypothesis stating that the frequency distribution of failed connection events (over

ranges) is consistent with uniform distribution, we use Pearson’s χ-squared test. This

test defines a measure of goodness of fit as the sum of differences between observed

and expected outcome frequencies.

Assume χ2
` denotes the goodness of fit value after observing ` events. For uniform

distribution, each range receives `/M scans on average, where M is the number of

ranges.

χ2
` =

M∑
k=1

(ck − `/M)2

`/M
(6)

It is straightforward to see that the degrees of freedom χ2 is M − 1. The resulting

value is compared to the chi-squared distribution with M − 1 degree of freedom to

determine the goodness of fit, with a significance level β (β ≥ 0.05). Specifically, a

χ-squared probability (p-value) of less than or equal to β necessarily means that the

sample’s deviation from uniform distribution is very significant:

P (χ2
`) =


≤ 0.05 accept the hypothesis

> 0.05 reject the hypothesis

(7)
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Note that χ2
` can be calculated sequentially and upon arrival of each new event.

Assume (`+1)th event is a probe destined to rk, and ck denotes the number of probes

to rk among the last ` events. χ2
`+1 can be calculated in O(1) using the following

equation:

χ2
`+1 = χ2

` + 2(ck − `/M) + 1 (8)

ck = ck + 1 (9)

Rejection of the null hypothesis necessarily means that the probes of a potential

scanner are mostly concentrated in certain ranges of the network. Therefore, by

moving hosts to those ranges with lower probabilities, the defender can (1) increase

the probability of failed connections, thus enhancing an attacker’s detectability, and

(2) reduce probing success rate, thus slowing down the attack. Therefore, a variation

of Chauvenet’s criterion is used to update the weights that are associated with ranges:

wk =


0 ck ≤ `/M

1
ξ

min(πk−`/M
M2/12

, ξ) otherwise

(10)

where ξ denotes the minimum deviation for a range to be have maximum weight. In

our experiments, we assume that ξ = 2.0. Basically, if ck for a range has more than

ξ · σ distance from the average, it will have wj = 1. If a range has negative or zero

deviation from `/M , it will have wj = 0.

The probability distribution function π1 denotes the scan probability characteriza-

tion over address space based on this test. Given L as the size of each range, and

wj as the weight of range rj, and W as the summation of all weights, every address
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xk ∈ rj in that range has a probability of wj/(L ·W ) to be scanned.

π1(xk) =
wj

L.
∑M

i=1wi
;xk ∈ rj (11)

Such adaptability may allow an attacker to evacuate network hosts from certain

network ranges. When the number of these hazardous ranges becomes high, the

attacker has a higher probability of finding hosts in non-hazardous ranges. Without

loss of generality, assume the attacker intends to exclude at least half (M/2) of ranges

from mutation space. To this aim, suppose half of the ranges receive c1 failed probes,

and the attacker sends c2 failed scans to the other half. The total number of scans

is denoted as l = M
2
c1 + M

2
c2. For a range to be excluded from mutation space (with

ξ = 2.0), the following condition must hold:

π1 − l/M
M2/12

≥ 2→ c1 ≥ c2 +M2/3 (12)

Therefore, the attacker has to generate M
2
c2 + M3

6
scans in order to exclude half of

ranges from mutation space. This value is significantly high, even for small networks.

For example, for c2 = 64 and M = 210, the attacker has to generate almost 180

million failed scans. For excluding M − 1 ranges from mutation space, he has to

generate almost M4/6 failed scans, which for the aforementioned example adds up

to almost 183 billion scans! This shows that manipulation of A-RHM non-uniformity

test requires an impractically high number of failed scans.

Non-repetition Test. The objective of this test is to investigate the hypothesis that

a potential attacker is sampling (probing) the address space without replacement or

with limited replacement. This means that the attacker tends to avoid or minimize
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multiple probes to a single address. To test this hypothesis, we calculate the deviation

from the average number of probes to each scanned address. If this deviation is close

to 0, it necessarily means that addresses have been probed an almost equal number

of times, and the scanning is without replacement (or it is very limited).

Assume µk denotes the number of probes to the kth address, ` denotes the total

number of failed probes, and m denotes the number of unused addresses in the net-

work; i.e., m = ML. If the non-uniformity hypothesis is accepted, then we only

consider addresses that belong to hazardous regions. If it is accepted, we consider all

addresses in the address space.

Also, assume µ` denotes average number of scans to each address, after observing `

scans. Upon receiving the (`+ 1)th probe to the kth IP address, we have µk = µk + 1.

Assuming M2,` =
∑m

i=1(µi − µ`)2, the unbiased variance of the sample is recursively

calculated in the following manner:

M2,`+1 = M2,` + 2 · µk + 1− µ` − µ`+1 (13)

S2
`+1 =

M2,`+1

m− 1
(14)

For each ` events, we define the coefficient of variation (normalized deviation) as:

ô` =
Sn
µ`

(15)

The one-tailed null hypothesis is that the attacker is scanning the address space with
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no or limited repetition:

ô` =


≤ 0.001 accept the non-repetition hypothesis

> 0.001 reject the non-repetition hypothesis

(16)

Accepting the null hypothesis means that the addresses that have been probed

fewer times than the average (µ`) are more probable to be scanned shortly.

Therefore address xk is marked as hazardous if the following condition holds:

µ` − µk
Sn

> τ (17)

In other words, an address xk is hazardous, if µk < µ` − τ · σ (e.g., τ = 2). The

weight for xk is defined as follows:

wk =


1 µk < µ` − τ · σ

0 otherwise

(18)

Accordingly, the scan probability of xk is computed as follows:

π2(xk) =
wk∑m
i=1wi

(19)

In this work, we assume that at any time only one of these tests is verified. There-

fore, the final characterization, denoted as π, is either π1 (non-uniformity is verified)

or π2 (non-repetition is verified) or uniform distribution in case none of the hypotheses

are verified.

Adaptive Mutation Rate. Another fundamental question that needs to be ad-

dressed is the duration of mutation interval. Although this duration can always be
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set to the minimum practical value, as our analysis in [58] shows, unnecessarily small

intervals will result in a generation of unneeded DNS queries and increases the over-

head. Therefore, the duration must be decreased only when necessary. Setting the

duration to longer intervals, on the other hand, can result in lower effectiveness.

Hence, this duration must be adapted to the scanning rate of a potential attacker

in the network. It is intuitive that the highest effectiveness is achieved when host

addresses are mutated with the same rate with which the attacker is scanning the

network. Assume λmin denotes the minimum TTL value that is practically achievable

and λmax denotes the proactive mutation interval, which is the maximum interval that

the addresses remain unchanged.

The jth interval duration is denoted as λj. To calculate the length of the jth

interval, assume we have observed ` new failed scans during the last randomization

interval of length λj−1. Therefore, during the last interval, a potential attacker has

been scanning the network with an average rate of `/(λj−1). The length of the jth

interval is determined based on the estimated average scanning rate of the (j − 1)th

interval and also previous intervals, using a low-pass filter to cut fast variations:

λj = min(max(α · λj−1
`

+ (1− α) · λj−1, λmin), λmax) (20)

where 0 < α < 1. Our analysis shows that α = 0.75 provides a smoothed estimator

which avoids fast variations but it is still fast enough to react to sudden increases

in the number of failed probes which could hint to new scanning activities in the

network. However, note that λj could never be smaller than the practically minimum

interval length.
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2.2.3.2 Evaluation of Adaptive RHM

In this section, we evaluate the effectiveness of A-RHM as compared to proactive

RHM. We again analyze the effectiveness of the model against two threat models:

scanners and network reconnaissance. For scanners, we evaluate the effectiveness of

A-RHM against cooperative and local-preference scanners and compare our results

with those achieved for proactive RHM.

Cooperative Scanning. In A-RHM [58], adaptive mutation allows us to character-

ize the behavior of a potential attacker by analyzing the distribution of destination

addresses of failed probes. This increases the effectiveness of address mutation against

cooperative worms.

Figure 5 shows the simulated propagation of a cooperative worm in a static network,

an RHM network, and an A-RHM network with the adaptive mutation. First, note

that while for the first scenario, with RHM can only save 40% of network hosts from

infection, with adaptive mutation less than 1% of network hosts are infected. For the

second scenario, the higher scanning rate allows the worm to propagate initially before

the non-repetition hypothesis is accepted. This allows the worm to infect almost 5%

of network hosts. However, the worm propagation is contained afterward and 95% of

network hosts evade infection completely.

Local-preference Scanning. Similar results are achieved for local-preference scan-

ning as presented in Figures 6. The figure shows the propagation of a local-preference

worm in various network settings with m = 220, and n = 216. Note that the adaptive

mutation can severely slow down the propagation of the worm. In the first scenario
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where η = 1 and λ = 1s, our approach can contain the propagation of the worm

almost in its entirety. The second scenario, for a faster worm and a slower mutation

rate (η = 5, λ = 5s), the propagation is still significantly slower than that of RHM.

In general, the adaptive mutation is far more effective than the proactive one against

local-preference scanning.

Network Reconnaissance. While A-RHM achieves significant improvement over

RHM against scanners, its effectiveness against network reconnaissance is the same

as that of RHM, because a human attacker would immediately discover the mutating

nature of network addresses and avoid local or cooperative scanning strategies [60].

Moreover, A-RHM is also susceptible to advanced host identification attacks that

would use other identifying attributes of a host such as its fingerprint, instead of IP

address, to identify a host from previous reconnaissance [60].

2.3 Multi-dimensional Host Identity Hiding (M-RHM)

In this section, we introduce our cyber deterrence technique, called M-RHM. We

first describe the intended threat model and then focus on introducing various strate-

gies and dimensions of M-RHM.

2.3.1 Threat Model

In M-RHM, our goal is to defeat advanced and persistent multi-stage attacks on

enterprise networks that aim to infiltrate deep into the network to compromise and

take over critical internal servers. Due to defense-in-depth and zoning strategies, these

attacks usually begin by one or a group of elite attackers on the Internet. The initial

stage of the attack is reconnaissance of the public address space of the enterprise to
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determine the configuration of active hosts, including their IP addresses, fingerprints

(OS and services) and vulnerabilities.

Figure 8: An example of multi-Stage APT intrusion

After identifying these network hosts and their configuration, the attacker tries to

compromise a vulnerable service on an active host in the external DMZ. Once the

attacker compromises this public host, she laterally moves to this host. Then the

attacker would go on to take other actions, including escalating her privilege to the

desired level.

However, this compromised public host is not usually the final objective of the

attacker; but the attacker uses this public host as a stepping stone to reach internal

hosts that are not accessible from outside due to boundary defense.

Therefore, the attacker again performs reconnaissance but this time on the internal

address space to enumerate reachable internal hosts from the compromised host, along

with their configurations. After this internal reconnaissance, the attacker again tries

to compromises a vulnerable service on a discovered internal host.
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These recurring steps are continued until the attacker reaches the desired host, or

overtakes all possible hosts in the network. The goal of M-RHM is to defeat such

multi-stage intrusions, by anonymizing identity of both public and internal network

hosts through address mutation and fingerprint anonymization, and also by combining

several mutation strategies over time and space. The goal is to maximally deter such

attack progression and also maximize the potential for deception by maximizing the

probability that the intrusion ends up in the decoys.

Figure 8 shows an example of such an attack in a small network with three zones.

In the example network, the attacker first performs a reconnaissance of public address

space and discovers three servers in the external DMZ. Then she identifies a public

Web server that is vulnerable to SQL injection. By compromising the SQL injection

vulnerability, the attacker compromises the Web server. Next, the attacker laterally

moves to the Web server and uses internal reconnaissance to identify the two servers

in the internal DMZ. Then, she discovers and exploits a vulnerability on the Database

server and laterally moves to it. The attacker again does another internal reconnais-

sance from the DB server and identifies the domain an controller server. Finally, the

attacker compromises a vulnerability on the domain controller and laterally moves to

this server which is the goal of the attack.

In Chapter 1 we introduced the cyber intrusion kill chain which describes the steps

taken by an advanced and persistent attacker during an intrusion. The Att&CK ma-

trix introduced by MITRE [85] expands the last three stages of the kill chain (control,

execute, maintain) with a ten tactic (e.g., persistence, privilege escalation, defense

evasion, lateral movement, etc.). In this expanded cyber intrusion kill chain, two
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steps are critical to defeating multi-stage attacks. The first one is the reconnaissance

stage, which at network level could be described as the recurring process of identify-

ing, enumerating and fingerprinting network hosts [46, 59]. The second one is lateral

movement, which refers to the attacker’s movement from one host to another in the

network [85]. Figure 9 describes different cyber kill chain stages of the described

multi-stage attack on the example network of Figure 8.

Figure 9: An example of cyber kill chain steps for multi-stage intrusion attacks

In addition to the location from where the reconnaissance is performed (either in-

ternal or external), the network reconnaissance could be classified into two groups,

based on the reconnaissance technique: active or passive reconnaissance. Passive re-

connaissance is an attempt to gain information about targeted hosts without actively

engaging with them [46]. In the active reconnaissance, in contrast, the attacker en-

gages with the target system, typically conducting a port scan to determine active

hosts and their open ports [46].

Therefore, four types of reconnaissance are identifiable in a multi-stage intrusion

attack:
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� External and active: active scans to public address space by external attackers.

� External and passive: passive reconnaissance by external attackers.

� Internal and active: active scans to local or public address space by internal

attackers.

� Internal and passive: passive reconnaissance by internal attackers.

Defeating multi-stage attacks requires an approach that provides countermeasures

against all these four different classes of reconnaissance.

2.3.2 M-RHM Overview

Figures 10 and 11 show how various components of M-RHM are combined and what

classes of reconnaissance each one is targeting. To introduce these strategies and their

goal, we first provide an overview of the mutation dimensions and parameters that

are included in M-RHM. M-RHM mutates two properties of network hosts. First,

like RHM and A-RHM, M-RHM mutates host IP addresses. This mutation occurs

by assigning ephemeral IP addresses to network hosts as described in Section 2.2.2.

Second, M-RHM deploys fingerprint anonymization to disallow elite attackers from

identifying a host identity based on its fingerprints (instead of its IP address). This

is achieved by combining k-anonymity with address mutation for two fundamental

reasons: (1) to anonymize host identities against elite attackers who use fingerprints

for identification (de-anonymization) of hosts, and (2) to mutate addresses of a host

only with its shadow decoys to make address mutation invisible to attackers. To

achieve k-anonymity, for every network hosts, k − 1 shadow decoys (decoys with

identical fingerprints) are placed in the address space.
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Figure 10: Various vectors of M-RHM and their corresponding threat models

M-RHM mutates addresses in two dimensions: temporal, i.e., at regular intervals,

and spatial, i.e., based on source location.

Temporal Mutation: addresses are mutated over time, either at regular intervals

(proactive) or tailored to observed scan rate (adaptive). The former is called proactive

temporal mutation, while the latter is referred to as adaptive temporal mutation.

This mutation is done both for external (public) and internal (local) address spaces.

Temporal mutation aims to defeat both active and passive reconnaissance, and both

for external and internal attackers. However, the adaptive temporal is only used

against external reconnaissance.

Spatial Mutation: addresses are mutated based on source identity such that each

host has a unique vision of the network. In other words, to reach host k, host i and

j must use different IP addresses. Spatial mutation is only done for internal hosts,

because for internal communications, the same host that queries the authoritative

DNS must be the one using that queried address. While this is the case for internal
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hosts, assuming this for external hosts is problematic due to existence of public DNS

resolvers. The main goal of spatial mutation is to defeat information sharing among

internal hosts, and more importantly, deter lateral movements in multi-stage attacks

by not letting attackers use information collected on a host in any other internal host

in the network.

In general, M-RHM combines three different strategies of mutation; namely proac-

tive, and adaptive and reactive to provide resistance against a variety of threat models.

Proactive Strategy: when there is no information and characterization about

existence or potential strategies of an attacker, M-RHM adopts a proactive mutation

strategy, in both temporal and dimensions, as will be explained later. These two

strategies are called proactive temporal and proactive spatial mutations strategies,

respectively. The goal of proactive temporal mutation is to deter both external and

internal reconnaissance when attackers’ scanning patterns or rate is not identifiable.

In comparison, the goal of proactive spatial mutation is to deter multi-stage internal

attacks the by minimizing the potential of information reuse.

Adaptive Strategy: when some characterization of the strategies of potential

attackers is identifiable, M-RHM adopts the adaptive mutation strategy by adapting

address mutation based those thee characterizations. Note that this characterization

occurs based on analyses of suspicious activities (e.g., probes to dark addresses and

decoys) in the network. The adaptive strategy could be adopted on both temporal

and spatial dimensions. But in this work, we only discuss the adaptive temporal

strategy and leave the adaptive spatial strategy to future work.

The adaptive temporal mutation strategy follows two goals. First, it aims to en-
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hance deterrence against external scanners by adapting mutation to attackers’ scan-

ning strategy and rate. Second, it aims to minimize unnecessary mutations when

there is no or little potential of scanning activity on the public address space.

Reactive Strategy: if a flow to an active IP of an internal host i is identified

as malicious, M-RHM adopts a reactive strategy against it by remapping that IP to

a shadow decoy of i for only this source (identified attacker). This defense strategy

of M-RHM is completely novel. We will discuss how we identify malicious flows for

M-RHM in Section 2.3.7. The reactive strategy is enabled by the temporal mutation

and as a result of short-lived nature of hosts’ IP addresses. However, it defeats active

internal scanning by identifying and redirecting these scans to shadow decoys.

In comparison to the adaptive strategy, if an activity is identifiably malicious then

M-RHM adopts reactive mutation strategy. But adaptive strategy focuses on analyses

of suspicious activities in order to learn about patterns or scanning rate of a potential

attacker and then adapts mutations to this learned behavior accordingly.

The combination of these dimensions and strategies results in four different mu-

tation strategies, which are shown in Figures 10 and 11. Figure 11 shows what

information is needed for each strategy, what type of reconnaissance it is targeting,

and what threat models would be affected by each of these four strategies.

2.3.3 Architecture

Figure 12 shows the architecture of M-RHM. Like RHM, M-RHM mutates at-

tributes of network hosts after relatively short durations (e.g., 5-30 minutes). This

duration is called mutation interval. This mutation includes externally-observable
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Figure 11: Various dimension and strategies of M-RHM and their threat models

parameters of a host, including IP and MAC addresses associated with its network

interfaces and domain name (that is provided to reverse-DNS queries).

Figure 12 depicts the architecture for deploying M-RHM in a TCP/IP enterprise

network. In this architecture, like RHM, a central entity called Mutation Controller

(MC) is responsible for determining new mutations for network hosts, and announc-

ing them to Mutation Gateways (MG), which are distributed entities located at the

boundaries of physical subnets (between subnet switch and default router). These

gateways act similar to NAPT (network address and port translation) devices, trans-

lating address/port pairs based on new mutations received from the MC.

Honeycloud is a consolidated subnet of high-end machines, each hosting a number

of virtual machines. These VMs are running the same platforms and services of

the production hosts. This cloud is maintained by a cloud controller that uses an

underlying centralized virtualization framework, such as Vagrant [32], for unified

and automated management of these virtual machines. The cloud controller uses
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Figure 12: Architecture of the M-RHM

VM introspection techniques (e.g., VMScope [64], NFM [122]) to detect and handle

infected VMs.

2.3.4 Mutation Parameters and Communication Protocols

In this section, we provide an overview of how mutations of different parameters

are realized in M-RHM.

Mutation of IP Addresses. M-RHM mutates IP addresses of network hosts,

both for public and internal hosts. Mutation of addresses is carried out as explained

for RHM in Section 2.2.2. Regular communication with network hosts occurs via their

domain names. When a user queries an authoritative DNS for IP address of a host,

the DNS reply provides the temporary IP address of that host to the user. Figure

3 provides a step-by-step description of how communication with a host via name

occurs in our network. The details are mentioned in Section 2.2.2 and are omitted

here for brevity.
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Fingerprint Anonymization. Mutation of IP addresses is not sufficient to defeat

advanced reconnaissance. This is because the fingerprint of a host could also be used

by an attacker to identify a host. For example, if only one host in the network is run-

ning a Web server, then attackers could use this to identify the host after its addresses

are mutated [60]. In data privacy, such attributes are known as quasi-identifiers [123];

i.e., an attribute or a collection of attributes that could unintentionally identify an

entity.

To address the problem of quasi-identifiers in data privacy, the concept of k-

anonymity [123] is defined and enforced on the data. A release of data is said to

have the k-anonymity property if the information for each entity contained in the

release cannot be distinguished from at least k − 1 entities whose information also

appears in the release. For our problem, the k-anonymity means that the fingerprint

of a host must be the same as at least k − 1 other hosts at any point. This idea also

coincides with the concept of shadow decoys [5] which has empirically shown to be

effective for attack slowdown.

So, for each host k − 1 shadow decoys with fingerprints identical to that host are

located in the address space. Since honeycloud includes one instance of every real

service in the network, traffic to all these k− 1 shadows are received and handled by

a one VM that has the same fingerprint as its host. The addresses for these shadow

decoys are mutated the same as production hosts, to make them indistinguishable.

These k − 1 shadow decoys are created by redirection to services in the honeycloud.

Figure 13 shows how this redirection occurs. Assume an attacker, as part of her

reconnaissance randomly selects an IP address IPrand and probes it to discover if it is
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running a Web application on port 80. If IPrand is not assigned to a Web server, which

is very probable even in a small address space, the NAPT module redirects them to

the predetermined Web application in the honeycloud, which resides on port 8080 of a

VM called Web honeypot. Note that no changes are required for any legacy protocol

or device, and the mutations are transparent to end-hosts, users, and network devices.

Figure 13: redirection of flows (destined to inactive address-port pairs) to honeycloud
for generating shadow decoys

Mutation of Host Names against rDNS. Also, to address mutation, RHM mu-

tates other attributes of network hosts to enhance its unpredictability and resistance

against reconnaissance and scanning. Reverse DNS (rDNS) is a useful IP-to-name

translation feature that an authoritative DNS may provide for domains in its zones.

The reason rDNS mutation is important is that the attacker may maliciously send a

rDNS query for a randomly-discovered currently legitimate eIP to discover its corre-

sponding name and record it for future attacks. To thwart this, when a host sends

a rDNS query for i, a temporally-mutated ephemeral name is returned. Ephemeral

names are generated and distributed by the controller using a standard symmetric

encryption algorithm such as AES. The key is generated based on time and source
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host identity. This ensures that network hosts are still able to utilize rDNS responses

for administrative logging, while the name is ephemeral and cannot be used for in-

formation gathering and hitlist attacks. Moreover, we only need to respond to rDNS

queries which are issued by necessary services and legitimate clients.

Reverse DNS is represented by PTR records and stored in a special zone called .in-

addr.arpa [47]. For example, the zone for the PTR record of address range 152.15/24

would be 152.15.in-addr.arpa. This zone is administered by the owner of the address

range.

Reverse-DNS mutation provides benefits of the rDNS while preventing its misuse

by potential attackers. One of the main uses of reverse-DNS on the Internet is to

verify that the sending server is not a malicious spammer. This is done by doing

reverse-DNS lookups for the IP of the sending server to ensure that there is a rDNS

record associated with it. If not, the receiving mail server considers the email as

spam. Without rDNS mutation, since we are constantly mutating the IP address of

our email server, we can not have a rDNS record for a specific IP address. Meanwhile

disabling rDNS makes Internet mail servers to consider our mail server as a spammer.

In M-RHM, we include a PTR record for every unused range of the public address

space. Now, once a receiving mail server issues a rDNS query, it will be delegated to

our DNS server. If the queried IP is currently assigned to an active host, we generate

an ephemeral name based on time and IP address of the querying source and send it

to the querying mail server.

Another use of reverse-DNS is in logging for administrative purposes. For exam-

ple, assume an internal Web server (for example Apache) in an enterprise network is
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logging incoming Web traffic, and the Web server has a tool for doing a reverse-DNS

lookup to discover the domain name of the source IP addresses in logs (logresolve

in Apache [8]). If rDNS is disabled, the web server will not be able to identify the

name of its clients, especially since IP addresses are constantly mutated. When rDNS

mutation is implemented, the reverse-DNS lookup of an eIP provides the ephemeral

name of that host. However, since each log is associated with a timestamp, an ad-

ministrator can recover the original names by recreating the key from the timestamp

and IP address of the source and decrypting the ephemeral name into its original real

name. This implementation allows the administrators to use rDNS for internal pur-

poses and also provides support for rDNS lookups for spam detection on the Internet.

Meanwhile, it does not allow an attacker to do a reverse-DNS on an active eIP of a

host and use the name later to discover the new IP from that name.

Mutation of MAC Addresses. M-RHM also mutates MAC addresses. Hosts

in a physical subnet use ARP protocol for resolution of network layer addresses into

link layer addresses. The objective of MAC mutation approach is to mutate MAC

addresses of hosts in a physical subnet, to disrupt local scanning and reconnaissance

threats. MAC addresses are mutated into ephemeral MAC addresses using naming

standards of EUI-48/EUI-64 similar to the random mutation technique. However, to

perform MAC mutation in legacy networks, a gateway must be located behind subnet

switch. For SDN, such gateway is not required, and the MAC mutation is handled

by the controller.

Randomizing MAC addresses to thwart reconnaissance in wireless networks has re-

cently been adopted by major operating systems such as iOS 8 [91]. However, we be-
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lieve that managing MAC address mutation at network level will make it transparent

to end-hosts and thus increases its manageability and effectiveness, while significantly

minimizing deployment cost. Next, we will investigate our four mutation strategies.

2.3.5 Proactive Temporal Mutation with Deception

Proactive temporal mutation mutates addresses of network hosts at regular inter-

vals. This includes both IP addresses of public hosts for Internet sources and IP

addresses of internal hosts for internal sources. While for public hosts, mutations

are only temporal (no spatial mutation), for internal hosts these mutations are also

spatially done based on the identity of the source: two different hosts i and j use

different addresses to reach a destination host t. Here, we focus our discussion on

mutation of private IP addresses for internal hosts. Mutation of public IP addresses

is a special case of this where all Internet hosts are considered as one source.

Assume an enterprise network with m unused internal IP addresses, represented

by A. To determine A, we encode used ranges as Boolean expressions using Binary

Decision Diagram (BDD) [21] operations. The total mutation space, A, can be gener-

ated by subtracting used ranges (e.g., used for real IPs), denoted as R1, . . . , Ru, from

the whole address space, R:

A← R ∧ ¬(R1 ∨ . . . ∨Ru) (21)

Each host t has an anonymity number, denoted as kt, where kt − 1 represents the

number of shadow decoys that are in the address to achieve kt-anonymity for host t.

Given kt for a host t, kt IP addresses are randomly chosen from A and assigned to
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t. The set of these random addresses is denoted as At and represents the mutation

space for host t.

The IP addresses to reach destination host t from every source host i are mutated

after every mutation interval. The current mutation interval duration is represented

by λ. The duration of this interval is initially set to a default number, λmax which

shows the maximum interval before IP addresses of a destination host i is mutated for

all source hosts j. For external hosts, λ could be reduced by the adaptive temporal

mutation strategy (Section 2.3.6) when more scanning activity is observed in the

network.

Assume intervals are numbered from 1. At kth interval, the IP address that a

source host i must use to reach a destination t is denoted as IP k
i→t. At every mutation

interval, this IP is randomly set to a different IP address from the set At. Assume

the chosen IP for the host j at this interval is x. All other addresses in At − {x} are

assigned to shadow decoys of t for the source host j.

Mutation Rule 1 (proactive temporal mutation with deception): mutate IP

addresses to reach t and its decoys for all source hosts j at every interval. Given n

as number of network hosts and At as the mutation space of host t, we can formally

define mutation rule 1 as follows:

∀i, t, k : IP k
i→t ∈ At; i 6= t (22)

∀i, t, k, x : (IP k
i→t = x)⇒ (IP k+1

i→t 6= x); i 6= t (23)

This necessarily means that a host will only swap its address with its shadow decoys

over time; i.e., at any point in time one and only one address from At is assigned
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to reach destination t and the rest are assigned to its decoys. This also means that

from the perspective of users, the address space configuration remains the same over

time; in other words, the same fingerprints are observed on the same addresses, and

this never changes over time. Therefore, the mutations are invisible to users; this is

a fundamental difference between previous approaches and M-RHM.

Also, note that the addresses are mutated every λmax seconds. We show that

higher DNS TTL values, which are determined based on the length of mutation

intervals, would result in less load on DNS servers. However, they would also slow

down the rate with which previous scanning results are deprecated, and thus lead to

less effective defense. A trade-off between the two can be achieved by keeping the

mutation interval long, but if suspicious scanning activities are observed, this interval

is adaptively reduced. This is the adaptive mutation strategy that will be discussed

in the next section.

2.3.6 Adaptive Temporal Mutation with Deception

When attackers’ scanning strategy (distribution) and the rate is characterizable, M-

RHM mutates addresses according to these characterizations. The adaptive temporal

is only applicable to public address space because internal scans are redirected to

decoys by reactive mutation strategy.

In Section 2.2.3, we introduced two hypotheses for characterizing patterns in scans

to the public address space. The first one tests whether scans are skewed toward

certain ranges of the network. If this hypothesis is verified, higher scan probabilities

are given to addresses in those ranges, based on Eq. 10. The second one tests whether
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scans are non-repetitive. If so, higher scan probabilities are given to addresses that

have received a lower number of scans. The result of these hypotheses is a scan

probability distribution over address space, denoted by π = {π1, . . . , πm}.

Given π, M-RHM mutates host addresses based on the following rule:

Mutation Rule 2-A (adaptive temporal mutation with deception): in mu-

tating IP addresses to reach public host t and its decoys for all external sources at

every interval, swap the address to reach t with a decoy that has a lower probability

of being scanned.

Given n as number of public hosts, m as the number of unused public addresses

addresses, At as the mutation space of host t, and π as characterized scanning prob-

abilities of public addresses, we can formally define mutation rule 2 as follows:

∀k, t, y, x : (IP k
ext→t = x) ∧ (y ∈ At − {x} ∧ πy < πx)⇒ (IP k+1

ext→t = y) (24)

where ext denotes any external client. In other words, if a decoy of public host t has a

lower probability of being scanned, we swap their addresses in the next interval. This

means that hosts are moved to fewer addresses that are less probable to be scanned

while decoys are moved to addresses that have a higher probability.

As noted in mutation rule 1, host addresses are temporally mutated every λmax

seconds. However, if some notable scanning activity is observed in public address

space, mutation interval duration is adapted to this rate. This is because, as shown

through evaluation in Section 2.2.2, when the scanning rate is high, faster mutation

is required for better deterrence against it. However, unnecessarily small intervals

will result in the generation of unneeded DNS queries and increase the overhead [59].
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Therefore, the duration must be decreased only when necessary.

Mutation Rule 2-B (adaptive mutation rate): the next mutation interval du-

ration for a public host t must be adapted to the current scanning rate observed on

public address space. Eq. 20 defines our technique for adapting mutation rates to

attackers’ scanning rate. Note that the adapted interval duration can never exceed

λmax, but it can never become less than λmin due to practical reasons.

2.3.7 Reactive Mutation against Internal Scans

The temporal mutation mutates addresses of network hosts periodically. The TTL

value of DNS replies is set to short values such that it expires after each mutation.

Therefore, to establish new connections to a host, user machines need to re-query

the authoritative DNS for acquiring the new IP address. For internal hosts, the host

itself will query the authoritative DNS, while for external hosts a local DNS resolver

or even a public DNS resolver could be querying on behalf of the host.

For internal hosts, when host i queries for the address of host t, the mutation

gateway can record the time of the query. Now, when flow from i to t is observed by

its gateway, the gateway checks to see if there is a DNS query from i for the address

of t since its last mutation. If not, then this flow is a scan because there exists no

valid DNS query issued by i for t in the last mutation interval. Therefore, the flow

is issued by a malicious entity that has been fortunate to probe the right address

(that is currently assigned to t). Note that the longer the mutation interval λmax, the

higher the number of DNS queries that we must record for an interval.

Mutation Rule 3 (reactive mutation): if a malicious scan is issued from source
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host i to destination host t (i.e., a flow not preceded by a DNS query), remap the

current IP for t to a shadow decoy of t for only source host i.

Reactive mutation is especially effective against active internal reconnaissance be-

cause any malicious scan from a host is redirected to decoys. A fundamental result of

this is those threat models that works based on active scanning, especially network

worms, are not able to propagate inside an M-RHM network. In other words, using

active scanning, a worm would only be able to infect public (DMZ) hosts, but any

scan to local address space would be detected and redirected to decoys. Note that the

temporal mutation plays a key role in making reactive mutation practical because by

mutating addresses in short intervals, MG needs to keep track of a smaller number of

DNS queries. Evaluation of the effect of shorter intervals on the overhead of reactive

mutation is left to future works.

One advantage of reactive mutation is that it can also be used against botnets. This

is especially the case where the IP addresses of bots are required to be known, such as

cases where bots are used by botmaster as redirector proxies in fast-ux networks [100],

or peer-to-peer botnets such as TDL-4 [44].

However, the reactive mutation may affect regular operations of legitimate peer-

to-peer applications, such as Skype, in the network, because in these application

IP addresses are attained from mechanisms other than DNS. Such applications are

whitelisted, and reactive mutation is not applied to them.
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2.3.8 Proactive Spatial Mutation

The static one-to-one binding of hosts to IP addresses allows adversaries to conduct

thorough reconnaissance to discover network hosts. Specifically, this fixed address

mapping allows distributed network scanners to aggregate information gathered at

multiple locations over different times to construct an accurate and persistent view

of the network. This enables adversaries to collaboratively share and reuse their col-

lected reconnaissance information in various stages of attack planning and execution.

Spatial mutation [61] presents a novel moving target defense strategy which enables

host-to-IP binding of each destination host to vary randomly across the network based

on the source identity (spatial mutation). This spatial mutation will distort attackers’

view of the network by causing the collected reconnaissance information to expire as

adversaries transition from one host to another or share their information with other

attackers. Consequently, adversaries are forced to re-scan the network frequently after

each lateral movement. These recurring probings significantly raise the bar for the

adversaries by slowing down the attack progress, while improving its detectability.

The spatial strategies address several limitations of the temporal strategies. Firstly,

while temporal mutation forces adversaries to redo their reconnaissance over time, it

does not provide any resistance against distributed reconnaissance [61]. Attackers

may use distributed reconnaissance to reduce the amount and rate of noise generated

by one specific host, to prevent detectors such as TRW [66] to detect them. It does not

also provide any resistance against information sharing between hosts. This allows

attackers to reuse reconnaissance information (such as hitlist [6]) collected at host
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i on another host j. The spatial dimension would counter these threat models by

providing a unique set of host-to-IP mappings to each network host.

Secondly, by providing a unique view of the network to each host, the spatial

mutation would significantly complicate advanced persistent threat which relies on

multi-stage intrusion. As described in our threat model, these adversaries are usually

external entities who initiate their attack by compromising a publicly accessible host.

Then, they gradually continue compromising hosts and laterally moving from one host

to another until they finally discover a path to the target [39]. In legacy networks,

as the attacker gathers more information and attacks new hosts, the search space

shrinks and her knowledge about network enhances, which allows her to gradually

move toward the target. However, with spatial mutation all gathered information

is invalidated by moving from one host to another. This invalidation obfuscates an

attacker’s view of the network, making her to blindly attack already attacked hosts.

Even if the attacker is informed of spatial mutation, this invalidation forces them

to recollect information again and on every host, thus deterring their progress and

increasing their efforts and detectability.

In legacy networks, a name is usually mapped to one static addresses which can

be used globally (by any host) to reach the target. In spatial approach, name-to-

address mapping occurs dynamically and as a function of source (requester) identity.

Specifically, each client must use a different IP address to reach a destination t.

Assume R, E, and N denote the set of rIPs, eIPs, and names of the network

respectively. The DNS functionality in static networks could be described as the
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following:

DNS : N→ R, DNS(nd) 7→ id (25)

Z where nd and id denote the name and rIP address of the queried host respectively.

In spatial mutation, the mapping function is changed to reflect the spatial IP

address assignment:

DNS ′ : N×N→ E, DNS ′(nd, ns) 7→ id (26)

where ns denote the name of the querying host (client). Note that the source iden-

tity is known to the authoritative DNS server for intra-enterprise DNS queries. For

external clients, although there are proposals to extend DNS resolvers to pass in part

of the client’s IP address in the DNS message [13], this information is not currently

available in DNS queries.

Mutation Rule 4 (proactive spatial mutation): for every pair of hosts i and j,

the address for reaching host t from i must be used on j to reach one of t’s shadow

decoys.

∀k, i, j, t : (IP k
i→t = x)⇒ (IP k

j→t 6= x); j 6= i 6= t (27)

This means that every pair of hosts must use two different IP addresses to reach the

same destination host. Therefore, if attacker moves from i to j (or vice versa) or

shares her information with an attacker on j, then using the IP of i to reach t would

only lead the attacker to a decoy of t. Moreover, since all addresses for t and its decoys

are chosen from At, and they all have the same fingerprints (based on k-anonymity),
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spatial mutations are invisible to attackers as they laterally move from one host to

another.

Assume a network has n internal hosts. From mutation rule 1 (proactive temporal

with deception), we know that the set of mutating addresses for host t is denoted as

At and must include kt IP addresses to achieve kt-anonymity. Therefore, to satisfy

mutation rule 4, At must include n− 1 addresses to achieve n-anonymity.

Assume m denotes the number of addresses that could be used for mutation. In

order to achieve n-anonymity for all n hosts, we need n(n − 1) IP addresses. For

example, for n = 1000 we need almost 1 million unused IP addresses, which may

not be satisfiable in some networks. When n(n − 1) > m, the number of available

addresses is less than what is required for perfect spatial mutation, we can not achieve

it. This limitation of addresses may prohibit achievement of perfect spatial mutation.

Investigation of how addresses are distributed and assigned when we have limited

number of addresses is left to future work.

Figure 14 shows an exemplary attack graph of a network with a critical host t

as final target. Our strategy in proactive spatial mutation is to provide maximum

deterrence and deception against a multi-stage attacker who may start from the initial

hosts (e.g., Web) and compromises a chain of hosts to take over T . Assume AT =

{x1, x2, x3}. The maximum deterrence and deception is achieved when Web, DB and

DC all use different IPs from AT to reach T .
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Figure 14: An example of spatial groups

2.3.9 Mutation Algorithms

In this section, we present an algorithm for M-RHM mutation. These algorithms

combine various mutation strategies in a consistent manner. The main algorithm of

M-RHM is defined in Alg. 1 and defines the inputs and strategies of the mutation.

The inputs of this algorithm include

� Number of external unused addresses and hosts: me and ne

� Number of internal unused addresses and hosts: mi and ni

� Minimum and maximum mutation interval values: λmin and λmax

Given these inputs, the mutation algorithm first initializes anonymity numbers for

both internal and public hosts. Then, using this anonymity number, it determines the

internal and public mutation spaces of internal and public hosts. After initialization,

the mutation algorithm enters an infinite loop in which it repeatedly fetches the

collected logs from the IDS and firewalls. Then, it updates data structures for flow

statistics using the new logs. Then, three different functions are called. The first
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function, called mutate proactive adaptive temporal performs proactive and adaptive

temporal mutation for external hosts.

The second function, called mutate proactive spatial temporal performs spatial and

temporal mutation for fixed mutation intervals for all internal hosts. Finally, the

third function called mutate reactive performs reactive mutation for malicious inter-

nal communications based on the update flow statistics. Alg. 2 to 7 define all aux-

iliary algorithms that are used by the main algorithm for consistent and synergistic

mutation of both internal and public hosts.

To understand how Alg. 1 works in practice, what conflicts may arise among differ-

ent strategies and how we address them, note that the mutation algorithm 1 mutates

both public addresses and local addresses. For public address space, only two strate-

gies are adopted: proactive and adaptive temporal. The proactive temporal strategy

is used only when no characterization of scans is possible, or no scanning activity is ob-

served in the address space. In contrast, the adaptive temporal strategy is only applied

when such characterization exists. Since one of these strategies is applied at an inter-

val, no conflicts arise between them. Alg. 3 called mutate proactive adaptive temporal

describes the algorithm for consistent mutation of public addresses based on proac-

tive and adaptive temporal strategies. Alg. 4 called characterize temporal performs

characterization of an attacker’s strategy and mutation rate on the public address

space.

For local addresses, the proactive spatial, proactive temporal and reactive strategies

are used in the following manner: At fixed mutation intervals (proactive temporal),

we change the mappings based on constraints of the spatial mutation. Therefore,
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temporal constraints define how addresses change from one interval to another, while

spatial constraints define how addresses must be assigned within one specific inter-

val. This makes the constraints for temporal and spatial strategies independent, and

therefore no conflict arises between the temporal and spatial strategies.

The reactive strategy is done after spatial assignments and can override some of

the assignments for individual flows. This is because if a flow from host i to j is

not preceded by a DNS query from i for IP of j, we know that this flow is certainly

malicious. Therefore, we ignore previous the assignment and redirect it to one of

the decoys of j, but only for source i and only for this individual flow This real-

time redirection is only limited to the current flow from i to j and has no effect on

assignments and therefore does not add to the constraints for mutation planning over

several intervals (temporal) or within one interval (spatial).

2.3.10 Evaluation

In this section, we evaluate the effectiveness of M-RHM against our two main threat

models: external scanners, and multi-stage attacks. To quantify this effectiveness, we

introduce two metrics.

Deterrence Ratio: by deprecating an attacker’s information about the network,

M-RHM forces the attacker to frequently redo his reconnaissance activities to regain

the lost information, thus delaying the completion of the attack. In M-RHM, this

loss occurs over time (temporal) and also over location (spatial). Deterrence in a

network is defined as the amount of time needed to finish the attack successfully. To

quantify deterrence magnitude against a specific threat model, we compare deterrence
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Algorithm 1 mutate(mi, ni, me, ne, λmin, λmax)

Inputs: mi as num. of unused internal addresses, ni as num. of internal hosts, me

as num. of unused public addresses, ne as num. of public hosts, λmin as minimum fea-
sible interval duration, λmax as maximum interval duration

{Initialize Parameters}
for all public hosts t do

randomly select ne − 1 addresses {x1, . . . , xne−1} from me

At ← {x1, . . . , xne−1}
end for
Γe ← {A1, . . . , Ane}
for all internal hosts t do

randomly select ni − 1 addresses {ip1, . . . , xni−1} from mi

At ← {x1, . . . , xni−1}
end for
Γi ← {A1, . . . , Ani}
while true do
L =← collect logs
(S, F,D)← update flow stats(L)
mutate proactive adaptive temporal(Γe, λmin, λmax, S)
mutate proactive spatial temporal(Γi, λmax)
mutate reactive(F , D, Γ)

end while

Algorithm 2 (S, F,D)← update flow stats(L)

Inputs: L = {(s1, d1, prot1), . . .} as logged flows

for all internal host i do
for all internal hosts t do
fi,t = false
if there is a flow from i to t in L then
fi,t = true

end if
qi,t = false
if there is a DNS query from i for t then
qi,t = true

end if
end for

end for
for all public addresses x do
Sx ← num. of flows with destination address x in L

end for

Outputs: S = {s1, . . . , sme} as num. of scans to public addresses, F = {fi,j} as
set of observed flows, D = {qi,j} as set of observed DNS queries
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Algorithm 3 mutate proactive adaptive temporal(Γe, λmin, λmax, S)

Inputs: Γe = {A1, . . . , Ane} as mutation spaces of public hosts, λmin as minimum
feasible interval duration, λmax as maximum interval duration, S = {s1, . . . , sme} as
num. of scans to all public addresses

for all destination hosts t do
if λ seconds passed since last mutation for t then

(π, λ)← characterize temporal(λmin, λmax, λ, S)
y ← IPext→t
randomly select x ∈ At − {y} from addresses with minimum probability in π
IPext→t ← x

end if
end for

Algorithm 4 (π, λ)← characterize temporal(λmin, λmax, λ, S)

Inputs: λmin as minimum feasible interval duration, λmax as maximum interval
duration, λ is previous mutation interval duration, S = {s1, . . . , sme} as num. of
scans to all public addresses

π1 ← non-uniformity test(S)
π2 ← non-repetition test(S)
π ← π1 ⊕ π2
c←

∑Sme

i=1 Si
λ← α · c

λ
+ (1− α) · λ

λ← min(max(λ, λmin), λmax)

Outputs: π as characterized scan probability distribution, λ as new mutation
interval duration

Algorithm 5 mutate proactive spatial temporal(Γi, λmax)

Inputs: Γi = {A1, . . . , Ani} as mutation spaces of internal hosts, λmax as maximum
mutation interval duration

for all destination host t do
if λmax sec passed since last mutation of t then
It ← assign spatial(t, At)

end if
end for
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Algorithm 6 It ← assign spatial(t, At)

Inputs: t as target host, At as mutation space of t

for all source hosts j ∈ ni − {t} do
y ← IPj→t
randomly select x ∈ At − {y}
IPj→t ← x
At ← At − {x}

end for

Outputs: It = {IP1→t, . . . , IPni→t} as new addresses to reach destination t

Algorithm 7 mutate reactive(Γi, F , D)

Inputs: Γi = {A1, . . . , Ani} as mutation spaces of internal hosts,
F = {fi,j} as set of observed flows, D = {qi,j} as set of observed DNS
queries

for all hosts i and j s.t. fi,j do
if ¬qi,j then
x← IPi,j
randomly select y ∈ Aj − {x}
IPi,j ← y

end if
end for

in an M-RHM versus that of a static network. Assume TMRHM and Tstatic denote

the deterrence of M-RHM and static networks respectively. The deterrence ratio is

defined as follows and shows the magnitude of the delay exerted on the attack before

its completion.

detRatio =
TMRHM

Tstatic
(28)

While in Section 2.2.2 we showed that RHM (and A-RHM) exert deterrence against

scanners and worms, here we show that M-RHM effectiveness goes beyond such au-

tomated attacks and deter sophisticated multi-stage attacks that are launched by

stealthy and elite human attackers.

Deception Ratio: by invalidating an attacker’s assumptions about the network,
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M-RHM increases the probability that attackers’ malicious or suspicious connections

hit decoys thus increasing the deception exerted on attackers and making the attack

more detectable and characterizable. Deception in a network is defined as the num-

ber of probes to decoys before an attack is completed successfully. To quantify the

increase in deception, we compare deception in M-RHM to that of a static network.

Specifically, assume CMRHM and Cstatic denote the deception in M-RHM and a static

network. The deception ratio is defined as:

decRatio =
CMRHM

Cstatic
(29)

2.3.10.1 Effectiveness against External Scanners and Worms

Scanners and worms (or any other automated malware) use various scanning tech-

niques to identify network hosts. These scanning techniques can be classified into two

main categories: (1) uniform scanning, and (2) strategic scanning. In uniform scan-

ning techniques, the scanner uniformly selects addresses from the intended address

space and probes them. However, uniform scanning generates a high volume of noise

which makes it highly susceptible to detection. Strategic scanning techniques, such

as cooperative or local-preference scanning, take advantage of network dynamics to

improve their effectiveness while reducing the volume of generated traffic. Therefore,

contrary to uniform scanning, strategic scanning techniques have a higher chance of

evading detection.

There is one major difference between RHM (also A-RHM) and M-RHM regarding

worm propagation. For worm propagation to infect internal network hosts, it must
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propagate inside our network using internal and active scans. However, the reactive

mutation would identify active scans and remap them to decoys, because they are

not preceded by appropriate DNS queries. Therefore, M-RHM does not allow worms

to propagate inside the network. This means that a worm is only able to scan and

potentially infect only public hosts. In the rest of this section, we investigate the

effectiveness of M-RHM against scanners.

Cooperative Scanning. Sophisticated scanners usually aim to minimize connection

failures by avoiding repeated probing of the same IP address [135], because in a static

network the status of an address does not frequently change in a relatively long

interval.

Figure 15 compares the ratio of infected hosts in a static network vs. our M-RHM

network. Note that M-RHM is highly effective against such cooperative scanners.

Moreover, after a few initial infections, the number of infected hosts does not increase

after a certain time, because M-RHM constantly mutates host addresses to safe zones

(addresses that are less likely to be scanned).

Figure 16 compares the deception against such cooperative scanners in static vs.

M-RHM network. Note that the deception has a slight increase; this is due to the

mutation invisibility property of M-RHM, which means the space in which a host

mutates is limited to a small subset of the address space. This is contrary to RHM

and A-RHM, where a host could take any available unused address. This limits the

effect of the mutation on deception ratio.

Figure 17 shows the deterrence and deception ratios against cooperative worms, for

various network sizes, m, and anonymity numbers, k. First note that the deterrence
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Figure 15: Deterrence against coopera-
tive scanners

Figure 16: Deception against coopera-
tive scanners

Figure 17: Deterrence and deception
ratios against cooperative scanners for
various network settings

Figure 18: Deterrence against local-
preference scanners

is ∞ because a cooperative scanner in M-RHM would never be able to discover all

hosts. Secondly, note that the deception ratio is very high. However, the deception

ratio decreases for larger network sizes. Also, k has low effect on deception ratio.

Local-Preference Scanning. Local-preference scanning aims to increase propaga-

tion speed by considering the distribution of hosts in the network. When vulnerable

hosts are not uniformly distributed in a worm’s scanning space, local-preference scan

increases a worm’s propagation speed [135].

We evaluate our approach against two types of local-preference scanners; a stealthy
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scanner with a very low scanning rate of 8 scans per second, while the aggressive

scanner scans 128 addresses per second.

Figure 18 compares the ratio of infected hosts (i.e., a host that is hit by the scanner)

by a local-preference scanner. The network hast n = 27 hosts and m = 216, and k = 8;

i.e., for each host there are 7 decoys in the address space. The local-preference scanner

is assumed to scan some ranges with higher probability than others; in our simulation,

we assume a scanner is scanning a random range of size 27 in public address space

with probability 0.8; with probability 0.2 the target address for scanning is selected

uniformly. Note that for both static networks, the scanner success rate over time is

very high, and all network hosts would be discovered in less than 50 seconds. However,

for both stealthy and aggressive scanners, the M-RHM network significantly deters

the scanner.

Secondly, note that M-RHM adaptive temporal mutation is more effective against

stealthy scanners as compared to aggressive ones because the delay caused by the

stealthy scanning gives M-RHM sufficient time to discover the localized scanning

pattern and adapt to it.

Moreover, using mutation rule 2-A (adaptive temporal), M-RHM constantly moves

decoys into addresses that are more likely to be scanned. Therefore, the deception

that is exerted on the attacker is increased. Figure 19 compares the percentage of

probes that are destined to decoys, in static networks with the same number of decoys

to that of M-RHM network. Note that while for static networks the decoy hit rate

stays relatively low, this rate is almost 35% for our M-RHM network.

Figure 20 shows the deterrence ratio and deception ratio for various network sizes
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Figure 19: Deception against local-
preference scanners

Figure 20: Deterrence and deception ra-
tios against local-preference scanners

and anonymity numbers, k. Firstly, note that detRatio is almost independent of

network size. In contrast, note that decRatio increases with network size; because

the larger the network, the larger the deception space. However, note that with larger

k, the decRatio is decreased; but this does not mean that with larger k, we have lower

deception, but it means that with larger k the deception ratio is lower.

2.3.10.2 Effectiveness against Multi-Stage APT Intrusion

In legacy networks, as the attacker gathers more information and attacks new hosts,

the search space shrinks and her knowledge about network enhances, which allows her

to gradually move toward the target. However, in our M-RHM network, all gathered

information is invalidated by moving from one host to another or if the attacker stays

in a host for a long time.

Assume a network with n public and internal hosts, and 1 critical host. The network

has z zones, where each zone has n/z hosts, and the critical host is in zone z which

is the last zone. A host in zone k can only access hosts in zones k and k+ 1 and zone

1 can be accessed externally.
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For simplicity, assume that in the attack graph of the network, an average attack

path is of length r. In other words, starting from zone 1 the attacker must compromise

a chain of r hosts to reach the critical host. We assume that all hosts have anonymity

number k. With perfect spatial mutation, we could have k = n− 1, but we evaluate

the approach for a general k.

We compare our approach with a static network with d decoys, to understand the

benefit of each component and their integration against the above threat model.

Before continuing our evaluation, we introduce the effect of anonymized host iden-

tities on the reconnaissance. Assume from every host an attacker has to probe n hosts

to exploit 1 of them as the target, which is the next host in the chain. When host iden-

tities are not anonymized, the attacker does not need to probe a host twice, and the

sampling is uniform without replacement. However, when identities are anonymized,

the attacker must select (sample) hosts with replacements. When each host is selected

based on uniform sampling with replacement, the probability that the attacker hits

the host in each try is 1/n. The probability that the attacker hits in k tries follows

geometric distribution f(k) = (1− 1/n)k−11/n where 1 ≤ k. The average number of

tries before hitting the target is E(f(k)) = n.

However, if the attacker is sampling without replacement, the probability function

that the attacker fails in k − 1 first tries is (n−1
n

n−2
n−1 . . .

n−k−2
n−k−1). The probability that

he succeeds in the kth try is 1
n−k−1 , because he has tried k − 1 hosts out of n hosts.

Therefore the probability that he succeeds after k tries is g(k) = 1/n where 1 ≤ k ≤ n.



104

In this case, the average number of tries before hitting a target is:

E(g(k)) = 1 · 1

n
+ 2 · 1

n
+ . . .+ n · 1

n
⇒

E(g(k)) =
n+ 1

2
(30)

For simplicity of calculations, we estimate E(g(k)) ∼ n/2 since n is usually large

(order of thousands). At each host in the path, the attacker scans the address space

to fingerprint network hosts and then attempts to exploit each host. In APT attacks,

as described by cyber intrusion kill-chain [53], the reconnaissance (scanning) and

exploitation stages occur separately. For the reconnaissance stage, attacker relies on

tools such as Nmap [78] and Nessus [75] to identify what services are running and

what vulnerabilities exist. In the exploitation stage, the attacker uses tools such as

Metasploit [80] to potentially exploit a host. According to this threat model, an

attacker first scans the address space once and collects fingerprints of all reachable

hosts, and then attempts to exploit them in a uniform distribution, where this can

be without replacement or with replacement [46,53]. In the former case, the attacker

needs to check n/2 hosts on average, while in the latter he needs to exploit n hosts

on average.

The time for fingerprinting a host is denoted by tf and the time for attempting to

exploit (whether successful or not) is denoted as tx. The deterrence for a network,

which is the duration of attack completion, is calculated as:

T = f ∗ tf + x ∗ tx (31)

where f and x show the number of fingerprinted and attempted hosts respectively.
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Every zone includes (n+d)/z hosts. In a static network with n hosts and d decoys,

the attacker needs to fingerprint on average (n + d)/z hosts every time he laterally

moves to a new zone. However, if he moves laterally within the zone, fingerprinting

is not needed. Therefore, in a chain of length r, the attacker only needs to fingerprint

z times, and the number of fingerprinting for a static network is as denoted by fst.

For every zone, the attacker has to scan on average (n + d)/z new hosts and with z

zones, we have fst = (n+ d).

The average number of attempted exploits at each host in the chain is (n+ d)/2z,

because in a static network attacker selects hosts based on uniform sampling with-

out replacement and every zone includes (n + d)/z hosts. The average number of

attempted exploits is denoted as xst and for z zones, we have xst = z · n+d
2z

= n+d
2

.

Every zone includes d/z decoys. All d hosts are fingerprinted by the attacker.

Also, in each zone, the attacker must attempt d/2z hosts on average before hitting

the target. So with z zones, the average number of decoys that are attempted is d/2.

The average number of times decoys in a static network is denoted by hst = d+ d/2.

In summary, the following formulas show the number of fingerprinted hosts, the

average number of hosts that are attempted for exploitation, and the average number

of engagement with decoys in a static network, respectively.

fst = n+ d (32)

xst =
n+ d

2
(33)

hst =
3d

2
(34)



106

Analysis of Spatial Mutation against APT. For a network with only spatial

mutation and k-anonymity, each time the attacker moves laterally, he needs to finger-

print all the hosts in the zone again. At each host, the attacker needs to fingerprint

(kn)/z hosts, and the length of the chain is r. So, the attacker needs to fingerprint

(knr)/z hosts, which is denoted by fsp.

Also, at each host, the attacker needs to attempt to exploit on average (kn)/2z

hosts. This is because there is no temporal mutation and once the attacker attempts

to exploit a host, he does not need to attempt it again from the same source host.

Every time an attacker moves laterally in the path, he needs to exploit (kn)/2z hosts

on average. The average number of hosts that are attempted is denoted by xsp and

with a path of length r, xsp = (knr)/2z.

At each host, 1/k ratio of fingerprints and exploits hit real hosts, and 1− (1/k) hit

decoys. The average number of engagement with decoys is denoted by hsp.

fsp =
knr

z
(35)

xsp =
knr

2z
(36)

hsp = (1− 1

k
) · (fsp + xsp) (37)

To quantify the effectiveness of the spatial strategy, we measure its deterrence ratio

against a static network that includes a fixed number of decoys. In our analysis we

assume that r =
√
n; that is, the length of the chain is the square root of the number

of hosts. We also assume that tx is 5 seconds, and tf is 1 second.

Figure 21 compares the deterrence ratio of a network with spatial mutation and



107

Figure 21: Deterrence ratio with only
spatial strategy

Figure 22: Deception ratio with only
spatial strategy

different anonymity numbers against a static network with a relatively high number

of decoys where d = 5n. The y-axis uses a logarithmic scale for all figures in this

section. Note that spatial mutation can achieve deterrence ratio of 10, even with the

same number of decoys (k = 5). Also, note that as the number of decoys increases

the deterrence increases. However, this increase is slowed down with a larger k. Also,

note that the deterrence increases linearly to the number of hosts.

Figure 22 shows the deception, which is the number of probes that hit the decoys,

assuming that each fingerprint or exploit only needs one communication. Again

note that the spatial mutation substantially increases the deception. The deception

increases with larger values of k and n.

Analysis of Temporal Mutation against APT. For a network with only temporal

mutation, assume λ denotes the mutation interval for all hosts.

We assume that the time for attempting exploitation is larger than the time for

fingerprint; that is tx >> tf . Therefore, most of the attack time is spent on exploita-
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tions. The number of hosts that are attempted within one interval is as follows:

y = b λ
tx
c (38)

When the mutation is low, y is high. In the worst case, y = kn represents the

scenario where the mutation is so slow that all addresses remain unchanged during

the attack time. In this case, the attacker needs to attempt (kn)/2 hosts in total. In

the best case, when y = 0 it means that every time the attacker attempts to exploit

a host a mutation occurs and the attacker loses his information. In this case, the

attacker will select hosts based on uniform sampling with replacement, and he needs

to attempt kn hosts in total. Using this notion, we estimate the number of attempts

for temporal mutation as follows:

xtm = kn− y

2
(39)

With xtm attempts, the attack would take xtm · tx seconds to finish. During this time,

the following number of mutations happen:

u =
xtm · tx
λ

(40)

On the other hand, the number of fingerprints is equal to number of mutations, u,

multiplied by the number of hosts that must be fingerprinted after each mutation,

which at each host is (kn)/z. Therefore:

ftm =
ukn

z
(41)

(42)
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Figure 23: Deterrence ratio with only
temporal strategy

Figure 24: Deception ratio with only
temporal strategy

Again, 1/k ratio of fingerprints and exploits hit real hosts, and 1−(1/k) hit decoys.

htm = (1− 1

k
) · (ftm + xtm) (43)

Figure 23 compares the deterrence of a network with temporal strategy with the

same static network described above. Note that, with short mutation intervals, the

deterrence is significantly higher. As the mutation interval becomes larger, the deter-

rence becomes lower because slower mutation allows the attacker to avoid attempting

the same host multiple times for a long time, thus increasing the probability that he

hits the target. Also, note that the deterrence increases with the number of hosts

because the attacker needs to compromise a longer path of hosts (larger r) and the

disruption caused by the temporal mutation becomes higher.

Figure 24 compares the deception for these networks. Note that lower mutation

intervals λ results in higher deception. Also, the deception increases with the number

of hosts.

Analysis of M-RHM against APT. We assume an M-RHM network with tempo-
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ral, spatial and reactive strategies. We assume perfect spatial mutation is achievable

with the set of available addresses.

For number of attempts for M-RHM, we use the same methodology as that of the

temporal. However, since every lateral movement results in a mutation, the attacker

in the worst case needs to scan r · kn/z hosts:

xm =
knr

z
− y

2
(44)

where y is defined in Eq. 38. For M-RHM, the number of fingerprints is the sum-

mation of those because of the temporal and those because of the spatial mutations.

For u mutations and r lateral movements, where each mutation requires (kn)/z fin-

gerprints, we have:

fm =
ukn+ rkn

z
(45)

Again, hm is defined similar to htm in Eq. 43.

Figure 25 compares the deterrence in M-RHM network with a network with the

spatial mutation only. The mutation interval λ is assumed to be 60 minutes. Note

that even with k = 5, M-RHM outperforms the spatial. Also, note that with a

high number of k, the deterrence significantly increases. Also, the difference in the

deterrence increases as the number of hosts grows. Figure 26 compares the deception

in these networks. Again note that even with k = 5, M-RHM achieves a higher

deception than the spatial. These results show that M-RHM outperforms the spatial

dimension even with smaller anonymity numbers.

Figure 27 compares the deterrence in M-RHM network with a network that has the
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Figure 25: Comparison of deterrence in
M-RHM vs. only spatial

Figure 26: Comparison of deception in
M-RHM vs. only spatial

temporal mutation. Note that M-RHM outperforms the temporal, even with smaller

mutation intervals λ. Also, again note that lower mutation intervals (λ = 5m) result

in significant deterrence against the attack. Figure 28 compares the deception in

these networks. Again, note that the deception is higher for M-RHM even with

higher mutation intervals.

These results show that the combination of both spatial and temporal dimensions

achieves a deterrence and deception that is higher than that of the spatial or the tem-

poral alone. But is the benefit of this combination more than the sum of individual

components? Figure 29 and 30 compare the M-RHM deterrence and deception with

the summation of the deterrence and deception for individual spatial and temporal

mutations. Note that in the same scenarios, M-RHM achieves both higher deter-

rence and deception than the sum of individuals. This shows that M-RHM strategy

integration is synergistic.

2.3.10.3 Evaluation Summary

M-RHM outperforms previous models for the following reasons:
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Figure 27: Comparison of deterrence in
M-RHM vs. only temporal

Figure 28: Comparison of deception in
M-RHM vs. only temporal

Figure 29: Comparison of deterrence in
M-RHM vs. sum of strategies

Figure 30: Comparison of deception in
M-RHM vs. sum of strategies

� Defeating advanced reconnaissance: contrary to RHM and A-RHM, this model

can defeat advanced reconnaissance. This is because, in addition to mutating

host IP and MAC addresses, M-RHM anonymizes network fingerprints of hosts

by hiding them in a pool of shadow decoys, as described in the next section.

Therefore, contrary to previous approaches, even the most skilled attackers are

not able to identify a host from previous reconnaissance. Also, contrary to

RHM and A-RHM, this approach mutates host IP addresses internally; this

means that every internal host has its unique vision of the network; As a result,
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different internal (insider) attackers are not able to share their information with

each other; more importantly, if attacker laterally moves from a host to another,

all her previous reconnaissance is invalidated.

� Defeating multi-stage intrusion (APT) attacks: contrary to previous models

that mostly focused on scanners, M-RHM can defeat multi-stage intrusion at-

tacks by disrupting their reconnaissance stage; this is achieved by (1) introduc-

ing a spatial mutation into the model to disrupt information sharing in lateral

movements; (2) incorporating reactive mutation to disable internal and active

reconnaissance; this means that attacker is not able to use tools such as Nmap

or Nessus to actively scan internal address space; (3) incorporating fingerprint

anonymization, using the idea of k-anonymity and shadow decoys, to defeat

advanced reconnaissance to enumerate network hosts; and (4) deceptive mu-

tation both in temporal and spatial dimensions, by replacing a host location

(IP address) only with its shadow decoys; this means that contrary to RHM

and A-RHM address space layout looks static. This invisibility of mutation in-

creases the probability that even a skilled attacker stays unaware of mutation,

thus increasing both deterrence and deception on the attack.

� Defeating internal scanners: the reactive mutation identifies malicious probes

to active hosts and remaps them on-the-fly to their respective shadow decoys.

This means that (1) network worms can not propagate internally unless they

rely on passive reconnaissance (e.g., discovering IPs using open connections);

and (2) internal attackers cannot use active scanning tools such as Nmap or

Nessus to discover network hosts. This is a significant achievement over RHM
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and A-RHM.

� Achieving maximum deception through invisible mutation: contrary to RHM

and A-RHM, in M-RHM the address mutation is not visible to attackers. This

is because a host only mutates its address with one of its decoys; therefore,

an attacker would not immediately become aware of mutation. This lack of

awareness would prohibit an advanced attacker from adapting to our mutation;

however, an attacker in an RHM network would immediately discover that

addresses are being mutated and would adapt to it.



CHAPTER 3: A FORMAL FRAMEWORK FOR CYBER DECEPTION
PLANNING

3.1 Motivation

The important role of deception as a warfare tactic has been known in military

sciences for thousands of years [124]. Over time, as this warfare has evolved, so has

the sophistication of these deception tactics, evolving from simple deception tech-

niques like Trojan Horse by Greeks [124] to complex multi-faceted deception plans

like Operation Fortitude by Allies in World War II [124]. With the emergence of

cyber warfare, defensive deception has re-emerged as a proactive defense paradigm in

protecting information systems [96] by diverting attackers from reaching their targets,

while potentially learning about their motive and techniques.

Pioneered by preliminary works like Stoll [120], the popularity of defensive decep-

tion picked up in the late 90s by the advent of honeypot systems [96] and formation

of Honeynet project [116]. Over time, as the nature and sophistication level of cyber

threats evolved, more sophisticated deception systems were proposed; from dynamic

honeypots [72] and honeyfarms [126] to honey router [41] and honeyclient [3]. How-

ever, the popularity and evolution of honey techniques have rather diminished since

the late 2000s, mostly because the focus has remained on devising isolated systems

and techniques. The isolated and limited benefit of these systems has not been able to

justify their high deployment and analysis cost [7], especially in contrast with reactive
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defensive technologies like intrusion detection paradigms which have constantly risen

in prominence due to their high benefit-cost ratio.

While prevention (e.g., firewall) and detection (e.g., IDS) technologies remain a

core component of cyber defense, they are no longer adequate in addressing the ever-

increasing threats of evolving cyber attacks [62, 125]. In recent years, we have wit-

nessed novel classes of advanced and persistent attacks using stealthy or zero-day

threats that can not be fully mitigated by defense technologies [62, 63] such as IDS

and firewalls. Examples are very stealthy indirect link flooding attacks [68, 121] or

on-the-rise advanced Persistent Threats (APT) [53, 79]. In lack of effective reactive

countermeasures, defensive deception, as a proactive defense paradigm, could again

play a significant role in resisting against such stealthy and undetectable threats [125].

Our motivation for this chapter is to advance cyber deception as a powerful defense

strategy against advanced attacks [53] by disrupting their reconnaissance through

strategic and mission-oriented planning. This entails a new outlook and direction in

defensive cyber deception.

3.2 Challenges

In this revisiting of cyber deception in defeating reconnaissance, we must note

that random use of a few individual deception or honey things (e.g., honey hosts,

honey services, honey applications, honey files, etc.) where each have their own

isolated goal will have limited effectiveness, especially against advanced attackers.

Instead, effective deception of such attackers requires a strategic combination of a

group of coordinated lies in a manner that manipulates the attackers’ thinking and
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leads them to a predetermined false conclusion. This false conclusion would then

persuade attackers to adopt a false course of action in their planning, thus leading to

a high benefit for defense.

We define active cyber deception as an act of intentional and consistent misrepre-

sentation of a group of facts to provide a distorted depiction of reality to attackers. In

other words, the objective of cyber deception is depicting a wrong perception of the

reality in receiver’s mind, by a synergistic and consistent combination of several small

lies to persuade attacker about a big lie. This big lie aims to mislead attackers to the

desired state of knowledge (e.g., making attacker believe a real host is a decoy host),

thus deflecting the attack from targeting that host, even when attacker’s techniques

are unknown or undetectable.

Solving deception problems as a combination of a group of lies (deceptive actions)

requires a planning paradigm that provides a realistic but formal modeling of decep-

tion and its effect on attackers’ thinking. This modeling must also consider the benefit

and cost associated with different combinations of deceptive actions. This framework

must provide necessary paradigms for defining various deception actions, along with

their interdependencies, benefits, and costs. More importantly, such framework must

provide paradigms for modeling how such deceptive actions would as a whole ma-

nipulate cognitive thinking process of attackers who may have different goals and

sophistication levels. It must also be able to reason and identify the most beneficial

deception plan (set of actions) with the given budget. We show that this planning

problem is a generalization of 0-1 knapsack problem and thus it is NP-hard.
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3.3 Approach Overview

In this chapter, we present a formal framework for the aforementioned problem

of modeling and identifying optimal deception plans against advanced cyber threats.

The framework introduces a deception logic for defining deception models, where each

deception model addresses a specific class of threats (e.g., DDoS, network reconnais-

sance) in the cyber domain. The deception logic is an abstraction over satisfiability

modulo theories (SMT) [12,87] that is extended with Gödel logic [10,43]. Gödel logic

is a many-valued logic that provides a logical framework for modeling uncertainty.

Our framework provides necessary user interfaces for knowledge engineers to define

their deception models. Alternatively, the deception model could be externally fed

into the framework, usually as an output of an automated model generation program.

The given deception model is synthesized into an SMT instance, which is then solved

by the underlying SMT solver, for which we use Microsoft Z3 Theorem Prover [12].

The Z3 SMT solver finds a satisfiable assignment to the given instance. These as-

signments define what set of deceptive actions are optimal and are referred to as the

deception plan. Each deceptive action is actuated in the system by a set of deception

techniques that are implemented in the system.

To formalize deception modeling and planning for cyber defense, first, we need to

provide formal definition of cyber deception. Deception is defined differently across

various disciplines such as philosophy, psychology, military sciences, and cyber se-

curity. In philosophy and psychology, deception is defined as intentionally causing

another person to believe in a statement that is considered to be incorrect by the
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deceiver [18]. Here, the emphasis is on the intention and the perlocutionary nature of

deception. A perlocutionary act changes feelings, thoughts or actions of the receiver

as intended by the sender. Other examples of such acts are persuading, scaring,

and inspiring. This means whether an act of deceiving has occurred on whether a

particular effect (intention of deception) has been produced in the target of deception.

In military sciences, this particular effect (intention) must lead to changing the

target’s course of actions to what the deceiver desires. Definitions in cyber security

[103,107] is similar to military sciences in the sense that the focus is on the changing

the behavior of the target.

By considering these definitions, we propose the following definition which captures

all the important aspects of defensive deception against cyber attackers: deception is

a set of intentional actions aimed at causing a belief in attackers’ minds to influence

their course of actions in a way that is intended by the defender.

Given this definition, a formal model of deception must model at least the following

five core components [36, 107]: reality, belief, cause-effect, actions, and intention:

� Reality and Belief: it must be able to model the reality of the domain, as well

as attacker’s belief on this reality. The reality represents the real configuration

of cyber systems, while the belief represents attackers’ level of deception on this

reality.

� Cause-effect: the logic must be able to model cognitive thinking process of

attackers, by modeling how each deceptive action would manipulate attacker’s

belief, and also how an attacker’s perception of a fact affects her belief about

another fact.
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� Deceptive actions: the logic must be able to model deceptive actions and their

manipulative effect on an attacker’s perception of reality. The model must also

be able to define inconsistency among actions because conflicting lies would

reveal the deception plan.

� Intention: the logic must be able to model deception goals as a set of beliefs to

which the attacker must be driven.

In addition to these components, we identify the following components as essential

elements for modeling deception in cyber defense:

� Risk modeling: the logic must be able to model how risk is manipulated by a

deception plan. Moreover, it must be able to consider this risk in deception

planning. In our model, intention or goal is defined based on risk.

� Reasoning about uncertainty: reasoning on deception involves uncertainty. A

deception plan aims to deceive an attacker with a high certainty, and the model

must be able to reason based on this uncertainty. Better deception plans achieve

the deception goals with a higher certainty.

� Deception Cost: since the deployment of deceptive actions is costly, the model

must be able to consider the cost of individual actions in constructing the de-

ception plan.

� Attack models: the framework must be able to model a variety of attack models.

Contrary to deception in the human society, the attacker modeling is needed

for the formal definition of cyber deception, because there is a difference be-

tween deception in general and cyber deception. While in generic deception

we usually have complete information about the target of deception, in cyber
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deception we can rarely make such assumption. For example, in deceiving a

multi-stage network intrusion attack, deceiving a naive attacker is expectedly

different (and easier) from deceiving a highly-elite attacker. But identifying

whether an attacker is naive or elite is not usually possible, at least not before

persistent engagement and analysis of the attacker’s behavior. In lack of such

complete information about attackers, the deception modeling must support

the definition of attack models and their effect in crafting the deception [17].

Finally, to adapt cyber deception plan to new observations about the attacker or

changes in the system, the deception framework must also provide formal modeling

for the following component:

� Adaptability: as we collect more information about an attacker, our assumptions

about what the attacker knows or is after changes. The framework must be

able to update the deception plan adaptively, by taking recent observations

and characterizations regarding attacker’s knowledge, beliefs, and motifs into

consideration.

3.4 Related Work

Although we can trace back the use of defensive deception in computer security

to more than three decades ago in works such as Stoll [120], the interest from secu-

rity professionals and researchers picked up in late 90’s by the advent of honeypot

systems and formation of Honeynet Project in 1999. In early 2000s, several seminal

works such as [11,54,88,96,96,114,117,132] proposed different type of honeypots like

honeyd, honeytokens, dynamic honeypots, and honeyfarms to enhance the security of
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information systems by giving insight to defenders and by diverting attackers from

production systems. Since then, defensive deception has been considered as one of

the pillars of proactive defense. In this section, our objective is to review the litera-

ture on deception briefly. We investigate existing literature on cyber deception in two

categories: works focused on deception systems, which we broadly refer to as honey

things; and works that have focused on devising a formal theory, logic, or framework

for modeling and planning cyber deception.

3.4.1 Deception Systems

Deception systems or honey things have been the main focus of research on cy-

ber deception. The main example of these systems are honeypots; decoy resources

that are placed in a computing system or network to be probed, attacked and com-

promised by attackers [96]. Honeypots are typically categorized as high-interaction

and low-interaction. Low-interaction honeypots emulate services where the level of

emulation built into the services determines the degree of intruder interaction with

the honeypot [116]. Low-interaction honeypots could emulate the network stack such

as honeyd [95], the service vulnerabilities like nepenthes [11], or networking protocols

like dionaea [114]. High-interaction honeypots provide a real operating system de-

signed to respond interactively to intruders [116]. Spitzner [116] proposed honeynet,

a network of honeypot machines, to present a more plausible network environment to

intruders. Kuwatly et al. [72] constructed a dynamic honeypot, based on honeyd, that

is capable of adapting its configuration by monitoring changes in the configuration of

production systems. Vrable et al.proposed honeyfarm [126], which is an architecture
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to simplify large honeypot deployments by locating all honeypots in a single place and

redirecting the traffic to sink IP addresses to the honeypots in this honeyfarm; there-

fore, enhancing the utilization of resources. Rowe [105, 106] introduced the concept

of fake honeypots, which are production systems with artifacts of honeypots, such

as using virtualization and system monitoring tools, created to fool attackers into

thinking they have compromised a honeypot, hence reducing the number of attacks

on the production systems. Another type of honeypots are tarpits such as Labrea,

which consume attacker’s resources by keeping their TCP connections open [76].

Another class of honey things are client honeypots; fake client applications that

actively crawl on thes Internet and interact with potentially malicious services to find

and blacklist malicious ones. Examples are HoneyClient [110], Strider HoneyMonkey

[127], Monkey-Spider [54], Capture-HPC [109], and PhoneyC [89].

Several honey-thing technologies have been proposed for protecting network infras-

tructure; for example, HoneySpot [113] to detect attacks on wireless access points,

and Honey Router [41] to detect anomalous behavior of malicious routers.

Finally, several research works have been proposed to protect data breaches, where

the general idea is to insert tainted data in a dataset and then observe the access

requests to that dataset; major examples are HoneyToken [118], Honeyfile [132], Hon-

eyGen [128], and honeyword [65].

3.4.2 Deception Modeling and Planning Frameworks

We categorize works on deception modeling and planning into three groups of

logic-based, game-theoretic, and probabilistic models. In our review of these works,
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note that none of the existing works provide a framework that can address generic

deception problems in cyber defense. To the best of our knowledge, our work is

the first that offers a framework that enables modeling and solving generic cyber

deception problems to craft effective and economical deception plans.

3.4.2.1 Logic-based Models

Several logic-based models of deception exist in the formal methods literature.

Sakama et al. [107] introduce a modal logic for the deception that can express the

concepts of belief, action, and intention and formulate eight different categories of

deception. Authors in [108] introduce a propositional multi-modal logic that can

represent three modalities: belief, intention, and communication. Using the logic,

they formulate various types of dishonest communications between agents. These

logical models cannot be directly used to address cyber deception planning problem;

however, they can be used to formally express both an act of deceiving and its effect

on addressee’s beliefs.

In [104], Rowe presents an automated deception planner that take a sequence of op-

erating system commands as input and find viable deception plans that are consistent

with constraints that are defined in second-order logic.

Rosis et al. [31] propose a formal deception planning model that formalizes infor-

mation impact on the receiver’s mind. The deception plan consists of the decision of

whether to deceive, the selection of a deception object, the form of deception, and a

deception instrument. The deception strategy considers various receiver’s criteria for

believing, including content plausibility, source informativity, and information safety.
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3.4.2.2 Game-theoretic Models

Another approach in addressing deception planning problems is modeling deceptive

engagement between an attacker and a defender using game theory. Among all types

of games, the signaling game [17,36,40,133] has been the primary modeling paradigm

since the concept of signaling is inherently a natural fit for deception planning.

Zhuang et al. [133] define a signaling game to model a multiple-period attacker-

defender resource-allocation problem in which the attacker attempts to obtain some

secret information while the defender tries to keep her secret safe by allocating re-

sources to develop enough security mechanisms in her environment with low cost.

Ettinger et al. [36] present a game-theoretic modeling of bargaining tactic problem

using belief manipulation and determine its equilibrium. Carroll et al. [17] investi-

gate the effects of deception on the interaction between an attacker and a defender

in a computer network. In their game, a defender has a network with a mixture of

production servers and honeypot systems and uses camouflaging to either disguise a

production system as a honeypot or to disguise a honeypot as a production server.

The game-theoretic models, although insightful, only target specific deception prob-

lems and are far from being expressive or scalable in defining deception models in a

more generic context.

3.4.2.3 Probabilistic Models

Rowe [101] presents a probabilistic model based on a decision tree to determine

whether a single deception plan should be performed. The proposed model is for a

scenario in which the defender wants to decide whether to deceive attackers about



126

the availability of network resources or not. To determine when to deceive, the cost

of the do not deceive branch must be more than the deceive one. Rowe [101] extended

the idea and show how decision trees can be used for multi-stage deception planning.

They built a probabilistic model for an environment where attackers first attempt

to guess system administrators’ credentials, and if they were not successful, they

attempt to obtain the regular user’s credentials.

Rowe [102] introduces an obstructive counter-planning model that uses a proba-

bilistic approach to determine the optimal set of deceptive mechanisms (called ploys)

to deter the attack. The model builds a Markov model of the attack sequence with

state/transition probabilities, determines the set of ploys for each state, and finally

using the given benefit/cost parameters for each ploy, it determines the optimal set

of deceptive mechanisms as deception plan.

Similar to game-theoretic models, these probabilistic models only provide modeling

for specific deception problems and attack scenarios.

3.5 A Formal Framework for Active Cyber Deception Framework

Figure 31 shows the overall architecture, including inputs, components, and pro-

cesses of the framework. The deception model is given to the framework as input.

This formal model is defined using our deception logic, that is introduced next. This

deception logic is an abstraction over Microsoft Z3 SMT logic, that is extended with

G{o:}del fuzzy logic [10,43].

The deception model is given to a module called synthesizer to refine and update

it and translate it into an SMT instance [12]. An SMT instance is a generalization of
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Figure 31: A schematic depiction of the deception framework architecture, compo-
nents, and processes

a Boolean SAT instance in which various sets of variables are replaced by predicates

from a variety of underlying theories. SMT formulas provide a much richer modeling

language than is possible with Boolean SAT formulas. Although satisfiability prob-

lems are NP-complete in general, recent advances in SMT solvers have made them

scalable to problems with millions of variables.

The synthesized deception model is, in fact, a Z3 SMT instance that is crafted by

adding required parameters and constraints to the given deception model. Next, the

framework uses Z3 SMT solver [12] to solve this instance and generate a deception

plan. This plan determines the optimal set of deceptive actions that are needed to

be proactively deployed (actuated) in the system to achieve the deception goal. The
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deception plan is implemented in the given domain by actuators. These actuators

are responsible for applying deceptive actions in the domain. They could be net-

work devices that manipulate inbound or outbound traffic, or system-level processes

running on network hosts that manipulate network packets, or the configuration of

applications, memory, and other system entities.

After deployment of a deception plan in a system, attackers will interact with that

system. These interactions, as well as other changes in the system, allow attributors

to update the deception model’s inputs regarding both attackers and the system.

Attributors use inputs from sensors such as IDS, firewall, or other security devices

or processes to provide feedback on attacker’s current knowledge and changes in the

system. Given these new inputs, the framework updates the deception plan. For

example, assume that we observe an outbound connection from a honeypot. This

means that this honeypot has been compromised and the attacker has privileged

access to this system. So, the deception model is again solved by considering this

new piece of information to construct a new adaptive plan.

3.5.1 Deception Modeling Logic

3.5.2 Modeling Reality

The deception model for a cyber threat against a system is defined based on at-

tributes, where each attribute describes configuration parameters that could be ma-

nipulated by actions or parameters that an attacker may have beliefs about them.

These attributes depend on the involved parameters in the deception and change

from one threat model to another. The set of attributes that describe a deception
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model must be identified as part of defining the model, which is given to the framework

as input. The set of attributes is denoted as {ϕ1, . . . , ϕm}.

3.5.3 Modeling Beliefs

An attacker’s belief on an attribute denotes the state of an attacker’s knowledge on

that attribute. In other words, it shows the certainty that attacker is deceived about

that attribute.

We define symbol Di as a many-valued variable to denote the degree of certainty

that an attacker is deceived on attribute ϕi. This belief variables is defined based

on a finite-valued Gödel logic system, denoted as G11 [10]. Based on this system,

Di ∈ T = {0, 1/10, . . . , 9/10, 1} is a finite- and many-valued variable and T defines

the set of truth values. For example, Dos1 = 0.7 means that an attacker is deceived

about what OS a host 1 is running with certainty 0.7. Higher certainties define higher

degree of deception.

Beliefs are divided into two categories. initial beliefs are those that their initial

truth values are defined based on actions and attack models. In contrast, derivative

beliefs are those that their truth values are calculated from initial belief values using

the formulas defined by the causality rules. For each initial belief, a formula is defined

over the set of actions and attack models as will be in defined in Section 3.5.8. These

formulas are given to the model as input.

3.5.4 Modeling Attack models

The set of attack models is denoted as Θ = {θ1, . . . , θn} and given to the model as

input.
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For an attack model θi, The truth value associated with an attack model is denoted

as χi ∈ T and represents the modeler’s degree of certainty to observe such an attack

model in the system.

Attack model consistency constraints. The modeler must also define consistency

rules for attack models. These rules define the inter-dependency among attack models

and are defined as follows:

χi ↔ ¬χj (46)

For example, assume we have if two attack models of naive and advanced reconnais-

sance never happen together, then the following rule must be defined in the system:

χadv ↔ ¬χnaive (47)

3.5.5 Modeling Actions

An action denotes a potentially deceptive change in the system that explicitly

manipulates an attacker’s belief on one attribute. Initial beliefs are those for which

the attacker’s belief can be manipulated directly via a deceptive action.

An action is denoted as Integer variable αj. The set of actions that could be

assigned to an action variable αj is given as Aj. To denote that no action is adopted

on ϕj, we denote αj = ∅. The deception plan is essentially an assignment to all action

variables in a manner that satisfies the given constraints of the model.

Action Consistency Constraints. The deception plan must present a coherent and

consistent deceptive depiction of the system, or else it would result in an unconvincing

deception. This consistency is modeled as a system-dependent set of constraints that
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are incorporated into the model to define semantic interdependency among actions.

The modeler defines action consistencies as follows:

(αi = a1)↔ ¬(αj = a2) (48)

where ϕi, ϕj, ϕk are attributes and a1 and a2 are action values in Ai and Aj respec-

tively.

Action costs. Applying deceptive actions on attributes are costly, as it requires

manipulation of attribute values. We assume that these costs are all expressible as

financial values. The cost associated with applying action a ∈ Ai is denoted by a

numerical value ci(a) which is given as input to the model. Only one action can be

assigned to each actionable attribute.

Budget constraint. The cost of a deception plan is simply calculated as the linear

summation of the cost of all actions of a deception plan.

The budget is given to the model as input, Cmax. The framework must ensure that

the aggregated cost of all actions does not surpass Cmax.

∑
i

∑
k

cj(k)(αj = k) ≤ Cmax added at synthesis (49)

3.5.6 Modeling Cause-Effect

Modeling cause and effect between actions, beliefs, and goals aims to model how

actions manipulate an attacker’s beliefs and then what combinations of these beliefs

would successfully lead the attacker to the desired belief that is the goal. These

desired beliefs, which are the goal of deception, would change the attacker’s course of
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action in the defender’s favor. Modeling these relationships requires logical formulas

for combining the connection between actions, beliefs, and goals.

A causality rule has the following general form:

(D1 ∧ . . . ∧Dj)︸ ︷︷ ︸
scenario 1

∨ . . . ∨ (Dl ∧ . . . ∧Dm)︸ ︷︷ ︸
scenario n

↔ Dk (50)

where Di is a belief variable or a formula over belief variables using logical connectives

∧, ∨, and ¬.

The left side is called antecedent, and the right side of the formula is called conse-

quent. Consequent is a belief variable over attribute ϕk. Note that the antecedent is

expressed in Disjunctive Normal Form (DNF).

3.5.7 Modeling Deception Goal

Conceptually, the intention of deception is to make an attacker believe a false

statement about the system. In other words, this intention is to induce an attacker

toward certain knowledge states. However, a deception model may have several con-

flicting goals. The goals have different benefits for different attack models or defense

objectives.

The aggregate benefit is defined as the likelihood of a belief times impact of that

belief. While the impact of a belief is a reality beyond our control, the likelihood

or certainty of the belief is determined by the chosen deception plan. In fact, the

main contribution of this deception framework is to manipulate belief likelihoods by

manipulating an attacker’s knowledge regarding them.

The impacts of a goal belief are defined for every attack model, and by considering
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the mission and risk values of the enterprise. A variety of techniques such as OWASP

risk rating methodology [28] could be used to this aim.

A deception model may have different goal beliefs, each with different impacts.

Assume G1, . . . , Gm denote the goal beliefs of the system which are a subset of all

beliefs in the model. The impact associated with a goal belief Gi is denoted as a value

Ii, that is given to the model as input. Ii has an impact value of 0 unless its value is

stated as input to the model.

The goal of the deception model is given as the minimum acceptable benefit value

that makes a deception plan effective. This minimum benefit is denoted as Bmin

and given to the model as input. The following constraint is added to the model at

synthesis to calculate the benefit based on goal values:

∑
i

Gi · Ii ≤ Bmin (51)

Figure 32: Example of a deception graph
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3.5.8 Solving Deception Models

The deception model in essence defines a deception graph which shows the inter-

dependencies among actions, beliefs and goals. Figure 32 shows an example of a

deception model. The actions (and attack models) determine the initial beliefs; ini-

tial beliefs assign values to derivative beliefs, and the goal belief is assigned by the

derivative (and also initial) beliefs.

To justify our choices for solving the deception model, assume the deception model

of Figure 32. The goal belief is defined as a logical formula over initial belief variables,

which in turn are determined by the actions. For simplicity, assume that we only have

one goal belief G.

Therefore, given the action space A = {A1, . . . , Am} and attack models Θ =

{θ1, . . .} where Ai defines the set of action values for action αi, the deception model

defines a logical formula for G, which for a given deception plan denotes the truth

value of G.

For example, in Figure 32 the goal could be defined as the logical formula:

((D1 ∧D2) ∨D3) ∨ (D4 ∧D5 ∧D6)↔ G (52)

Note that derivative beliefs do not appear in the goal formula. In other words,

derivative beliefs are merely aliases for formulas based on initial belief variables.

They allow the modeler to model a deception problem as a sequence of intermediary

beliefs.

Every initial belief variable is defined based on action variables and attack models.
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If we think of belief variables as a classic Boolean propositional variable, then an

initial belief, like D1 in the example, could be defined as follows:

D1 ↔ (α1 = x ∧ χ1) ∨ (α1 = y ∧ χ2)

If we assume that belief variables are classic Boolean propositional ones, then the

problem of solving the deception model becomes assignments to all action variables

αi, such that G becomes true. Therefore, the problem of solving the deception model

is a satisfiability problem. We solve this problem by defining a deception model using

the satisfiability modulo theories [12]. SMT provides built-in support for arithmetic

data types such as integers and real data types which allows us to expand satisfiability

assignments from Boolean values to Integer and Real values.

Defining belief variables as Boolean is only possible if we assume a certainty of

knowledge in deception modeling. However, such assumption would result in unre-

alistic deception planning. The problem of deception planning is, in essence, finding

a plan that achieves the deception goal with a higher certainty. In other words, the

goal is to select a plan to maximizes our certainty on the fact that the deception goal

is realized.

Therefore, instead of defining belief variables as Boolean, we define them as many-

valued variables. Instead of assuming that Di (e.g., the attacker is deceived on at-

tribute ϕ) is either true or false, we can define it as a three-valued variable with

truth values (F,U, T ) where Di = U means that the attacker is deceived on ϕi with

an unknown certainty. Defining Di as a three-valued variable entails definition of a

three-valued logic system that defines U and also provides interpretation for conjunc-
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tion and implication. Several three-valued logic systems exist in the literature [38,94]

and the meaning of U differs from one system to another. This semantics defines the

meanings of formulas such as U ∧ F and U ∧ T . For example, the U state is thought

of as neither true nor false as in the Kleene logic [38], but it is considered as both

true and false in the Priest logic [94]. Different three-valued logics are appropriate

for different types of systems and the choice of a meaningful three-valued logic for a

domain depends on the application [97].

To achieve lower granularity in expressing uncertainty, a better design choice is to

extend this three-valued logic and define belief variables Di as many-valued variables.

Again, there are many logic systems for defining whether Di is finite- or infinite-

valued variable, and for interpreting conjunction and implication. The correctness

of this interpretation depends on the application and is an engineering decision. For

example, we can use a many-valued product logic where conjunction is defined as

product [49]. Another choice is the Lukasiewicz logic [24] where u → v is defined as

min{1, 1− u+ v}.

By considering a variety of many-valued logic systems, we find the Gödel finite-

valued logic [10, 43] as the most appropriate for modeling deception for two reasons.

First, the semantics of Gödel logic is considered to be suitable for formalizing relative

comparison, as compared to logics such as Lukasiewicz [24] or product logic [49] which

are more suitable for absolute or metric comparison. In other words, in Gödel logic,

whether a belief D1 evaluates to 1 or not depends on the relative ordering of the truth

values of atomic formulas, not on the set of truth values or the specific values of the

atomic formulas [10]. This relativeness in comparison makes Gödel logic very suitable
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for deception modeling, because if for a plan F , we achieve D1 = 0.7 and for a plan

F ′ we achieve D1 = 0.6, what is important for our reasoning is that the plan F is

better than the plan F ′, rather than measuring the specific value of this difference.

Second, the min and max operators are good representatives for modeling the con-

cept of conjunction and disjunction in the deception. For example, the believability

of fingerprint of a decoy host that consists of a two decoy services of Web Server and

a DB server could be defined as the minimum believability among all of its services.

This is consistent with reality, because if a decoy host has a very believable Web

server, but the DB server is not very believable as a real service, then believability of

the decoy host is only as high as the DB server, which is the minimum.

However, in the same example, the believability that this decoy host is exploitable

could be defined based on the disjunction which is the maximum operator. This is

again consistent with reality because if the Web server has more vulnerabilities than

the DB server, then the believability of exploitability of a decoy depends on the Web

server, which is the maximum.

We define Di as a k-valued Gödel logic [10, 43] system denoted as G11, where the

truth values are defined as {0, 1
k−1 ,

2
k−1 , . . . ,

k−2
k−1 , 1}. We select k = 11 as a trade-off

between solving time and granularity of defining uncertainty. Therefore, the set of

truth values, T is defined as follows:

T = {0, 1/10, . . . , 9/10, 1} (53)

In the Gödel logic, the conjunction ∧ and disjunction ∨ are defined respectively as



138

the minimum and maximum of the operands [43]:

u ∧ v := min{u, v} (54)

u ∨ v := max{u, v} (55)

The negation and implication are also defined as follows:

¬u =


1 u = 0

0 u > 0

(56)

u→ v =


1 u ≤ v

0 u > v

(57)

For example, assume u = 1/10 and v = 1/5. Then, based on the G11 logic system,

u ∧ v = 1/10 and u ∨ v = 1/5.

Every deception goal could be rewritten as a logical formula over initial beliefs.

This is because the deception goal is defined based on a formula over initial and

derivative beliefs, and derivate beliefs are defined based on the initial beliefs. The

formula for a goal belief Gk can be defined based on initial beliefs D1, . . . , Dm with

the following format:

(D1 ∧ . . . ∧Di) ∨ . . . ∨ (Dj ∧ . . . ∧Dm)↔ Gk (58)

The initial belief values are as defined as formulas over action variables, action
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values, and attack model values.

Di ↔ (((αj = a1 ∧ χ1 = b1) ∨ (αj = a2 ∧ χ1 = b2)) ∧ t1) ∨ . . .

(((αj = a3 ∧ χk = b3) ∨ (αj = a4 ∧ χk = b4)) ∧ tn)

(59)

where t1, . . . , tn ∈ T are constant truth values that define initial beliefs values for vari-

ous scenarios, a1, a2, a3, a4 ∈ Aj are potential actions values of αj, and b1, b2, b3, b4 inT

are truth values that define certainty with regard to observing that attack model.

Note that Di is defined as a disjunction (maximum) of different assignment scenarios

of the form (((αj = a3 ∧ χk = b3) ∨ (αj = a4 ∧ χk = b4)) ∧ tn) where

((αj = a3 ∧ χk = b3) ∨ (αj = a4 ∧ χk = b4))

defines an assignment scenario for which Di is assigned tn.

By combining Eq. 58 and 59 we can rewrite a goal as a logical formula over action

variables, constant action values, and constant attack model values.

To solve the plan, the planner must determine assignment to action variables based

on goal formulas. To achieve this, we rely on the support of integer data type and

nonlinear arithmetic in Microsoft Z3 [98]. This is because the set of truth values T

is an ordered set of 11 members, and min and max operators are non-linear.

Given a deception model, the framework solves the modeling by taking the following

steps. In here, the instance refers to the Z3 SMT instance that is generated by the

framework and based on the deception model.

Step 1: the framework generates the dependency graph of the model (Section 3.5.9).

If the dependency graph is not a DAG, the model is invalid and will be rejected.
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Step 2: the initial belief variable constraints (Eq. 59) are added to the model.

Step 3: given constraints for initial beliefs Di, the framework rewrites the goal belief

by replacing derivative beliefs with their logical formulas until no derivative belief

exists in each goal formula, as exemplified in Eq. 52.

Step 4: using G11 Gödel logic interpretations of conjunction and disjunction, the

framework adds a goal formula for every goal such as Gk as follows:

Gk ↔ max{min{D1, . . . , Di}, . . . ,min{Dj, . . . , Dm}} (60)

For each initial belief Di, the framework is given a formula as defined by Eq. 59.

Using the same approach as above, the framework converts this formula by redefining

conjunctions and disjunctions with min and max operators.

Step 5: given impact values for goal beliefs and a minimum benefit, the framework

adds the goal constraint of Eq. 51 to the model.

Step 6: given action costs and a budget, the framework adds the budget constraint

of Eq. 49 to the instance.

Step 7: the framework adds action consistency constraints (Eq. 48) and attack

model consistency constraints (Eq. 46) to the instance.

Step 8: the framework uses Z3 to solve the generated instance. The result is an

assignment to action variables that satisfies the goal and budget constraints, in ad-

dition to all the consistency constraints of the model. If no satisfiable assignment to

the instance is found, the budget and minimum benefit values must be relaxed.

Figure 33 shows some belief values for a deception plan.
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Figure 33: An example of belief values for a deception plan

3.5.9 Assumptions for Modeling

In the previous section, we showed that a deception goal could be written as a

logical formula over initial beliefs. This is because the deception goal is defined by on

a formula over initial and derivative beliefs. The derivate beliefs are defined based on

the initial beliefs, and initial belief values are determined based on values assigned to

action variables in addition to the given attack model values (Eq. 59). Therefore, in

a well-formed logic with no circular dependency among belief variables (more detail

on this later), a goal belief variable could be rewritten as a logical formula over action

variables, constant action values, and constant attack model values.

Given this, to make the logical deception model well-formed and meaningful, the

given deception model must satisfy the following assumptions:

Assumption 1. Actions must be independent, except for dependencies that are ex-
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plicitly defined by action consistency constraints. Action variables, constant attack

models values and constant truth values in Eq. 59 are the atomic formulas in our

logic. An atomic formula is a formula with no deeper propositional structure; that

is, a formula which contains no logical connectives. In our logic, this means that ac-

tion variables, attack model values, and initial belief values must be atomic; in other

words, there must be no hidden relationship between pairs of action variables, pairs

of attack model values, and pairs of truth values in formulas for initial beliefs.

For action variables, if assignment of a value a1 to an action variable αi prohibits or

entails assignment of action a2 to action variable αj, this dependency must be defined

explicitly using action consistency constraints (Eq. 48). In the security domain, this

assumption is justified because based on the definition of attributes, every deceptive

action of the model affects one configuration parameter of the system. However, when

there are consistency dependencies among the configuration parameters (e.g., if OS

is Linux, the Web server must not be IIS), this dependency is explicitly defined in

the model. Satisfying this assumption ensures that action variables are well-formed

atomic formulas with no deeper propositional structure except those defined by the

action consistency rules.

Assumption 2. Attack model values must be independent, except for dependencies

that are explicitly defined by attack model consistency constraints. Based on the dis-

cussion for assumption 1, attack model values that are constant and given to the model

as input must be independent, unless their dependency is explicitly defined by attack

model consistency constraints (Eq. 46). For example, if for a deception model we have

two attack models nave and advanced, then we need to define χnaive ↔ ¬χadvanced.



143

However, if for a deception plan that aims to defeat two disjoint threat models such as

DDoS and intrusion attacks together, no dependency exists between the two models

and no attack model consistency constraint is defined for them.

Assumption 3. Initial belief values must be independent. A pair of (action, attack

model) such as (αj, χk) may contribute to several initial beliefs. If the formulas for two

initial beliefDi andDj include the same pair of (action, attack model) such as (αj, χk),

belief value assignments must be determined based on independent properties of that

pair. For our example of Chapter 4, we derive two beliefs from each action. The first

belief models believability of fingerprint and the second belief models believability of

exploitability.

In our discussion in Section 4.2.4, we show that these two beliefs are derived from

different sources. Believability of a service is derived from the frequency of occurrence

of that service in typical enterprise networks (global believability) as well as the given

network (local believability). Eq. 76 shows this formula. In contrast, the believability

of exploitability is derived from the vulnerability scores of that service, as represented

by Eq. 77. Therefore, these two beliefs are defined based on the same action but based

on independent sources of information. Still, there might be some hidden correlation

between the two beliefs; for example, older services are less believable and at the

same time have higher vulnerability scores (for example, Windows XP). However,

such correlations must be proven to be small and negligible. Methodologies for the

derivation of these initial beliefs must be defined in a manner than ensures no or

negligible dependency among these beliefs. This entails development of techniques

for quantifying this correlation, which is left to future work.
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But when this correlation is not negligible, the two beliefs must be defined as one

belief. For example, if believability of fingerprint and believability of exploitability are

dependent, instead of defining them as two individual beliefs, we must define them

as one single belief which shows believability of fingerprint and exploitability.

Assumption 4. The belief dependency graph must be directed and acyclic (DAG).

From the definition of causality rules in Eq. 50, we define the dependency graph of

a deception model as a graph G where belief variables are nodes and there exists an

edge from Di to Dj if and only if Di appears as in the antecedent of the rule for which

Dj is the consequent.

To be able to rewrite a deception goal as a logical formula over belief variables as

in Eq. 58, this dependency graph must be a directed acyclic graph (DAG) with no

loops. This assumption is reasonable as it is the assumption for other belief networks

such as Bayesian [71].

Assumption 5. Each initial belief is derived from at most one action. To simplify

the definition of the deception model, we assume that only one action can contribute

to an initial belief (Eq. 59). This assumption is not necessary since assumption 4

could be extended to define scenario pairs as (action 1, ..., action k, attack model).

However, this will complicate the correlation analysis of the initial beliefs in the

modeling, because several actions may contribute to a belief, and at the same time

several beliefs might be affected by each action. In the deception model, if a set of

action variables contribute to a belief, the modeler must define that set of action

variables as one single action. However, in this modeling assumption 4 must be

satisfied; i.e., if two beliefs depend on the same action, initial belief values must be
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defined based on independent properties of that action.

3.5.10 Modeling Adaptability

Modeling adaptability refers to the process of adapting the deception plan to re-

cently collected information regarding attacker’s beliefs or system changes. The at-

tributors in the domain provide attribution information to the framework, as depicted

in Figure 31.

By analyzing the collected logs from IDS or firewalls, attributors update our initial

assumptions about attacker’s knowledge or type. For example, assume in our IDS

logs, we observe a flow with a decoy as its source address. From this, we know that

the honeypot has been taken over by an attacker, and our initial assumption about

the certainty of the belief that attacker believes exploitation of decoy i is changed.

We update the initial values for this belief and solve the deception model again. This

can be done by an attributor that checks the outbound connections from decoys and

if an outbound connection is observed assigns the initial value of 1 to this belief.

The attributors can also update the inputs as a result of changes in the system.

Assume the deception model which is presented against APT in Chapter 4. As an

input to this model, we provide the real configuration of the enterprise network, and

the deception plan is determined based on this given configuration. Now, assume

a new host is added to the network. This will change the input to the deception

plan, and therefore the deception model must be updated and solved again. To this

aim, we can develop an attributor that probes the enterprise address space at regular

intervals to identify if a new host has been added or not. The attributor provides
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this information to the framework at regular intervals. If the framework notices a

change in the system configuration, it will solve the model with the new inputs to

find a deception plan that is adapted to these changes in the network.

The main drawback of this approach is that solving an updated deception model,

especially for a large system, requires non-trivial computation time. This limitation

may not allow the framework to update the deception plan adaptively. To address this

limitation, several deception plans could be determined in advance, each appropriate

for various sets of scenarios that are expected to be recurring in the system. The

monotonicity assumption [4], i.e., the attacker would never willingly give up previously

attained knowledge, could be used to decrease the number of scenarios.

3.6 Evaluation Metrics

The framework needs to be evaluated from three dimensions.

Usability: for the framework to be usable, it must be able to express a wide variety

of deception models. Understanding what kind of deception problems are expressible

by the model requires a comprehensive investigation of potential deception solutions

against various cyber attacks. Usability shows how intuitive and straightforward it is

to express a deception model against a specific threat model using our framework. We

claim the framework has high usability due to its intuition for modeling deception:

how an attacker’s observations affect her beliefs, and how this can be used to lead the

attacker to a conclusion in the defender’s favor. This definition of deception follows

human cognitive thinking process, thus allowing complicated deception paradigms

to be expressed as a cause and effect relationship among beliefs. In Chapter 4, we
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model a complex deception problem in cyber domain to exemplify the usability of

our model.

Computational Overhead: It refers to the cost of synthesizing and solving the

model. The synthesis process consists of adding formulas for calculating truth val-

ues and also including action and goal constraints. All these steps have polynomial

complexity.

The goal of deception modeling is to determine an optimal deception plan that

satisfies the given constraints. Each action variables can have some options; assuming

that a model has n actions, and each has k different option values to be assigned to, the

deception planning problem is a selection of one of at most kn alternative deception

plans.

To see that the deception planning problem is NP-hard, we reduce it to the 0-1

knapsack problem. The general knapsack problem is defined as follows: given a set of

items, each with weight and value, determine the number of each item to include in a

collection so that the total weight is less than or equal to a given limit and the total

value is as large as possible. The most common type is the 0-1 knapsack problem,

which restricts the number of copies of each kind of item to zero or one. Given a set

of n items numbered from 1 up to n, each with a weight wi and a value vi, along with

a maximum weight capacity W , the 0-1 knapsack problem is defined as follows:

maximize
n∑
i=1

vixi (61)

subject to
n∑
i=1

wixi (62)
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Accordingly, our problem could be defined as:

maximize
∑
i

Di · Ii (63)

subject to
∑
j

∑
k

cj(k) · (αj = k) ≤ Cmax (64)

Therefore, the deception modeling problem is NP-hard, and therefore we convert

the problem to a satisfiability problem, using generalized Boolean/arithmetic format

of satisfiability modulo theories (SMT) [12]. SMT formulas provide a much richer

modeling language than is possible with Boolean SAT formulas. Although satisfiabil-

ity problems are NP-complete in general, recent advances in SMT solvers have made

them scalable to problems with millions of variables [87].

Solving the model by the Z3 incurs the main computational cost. The actual cost

depends on the number of attributes and action variables in that model and number

and boundaries of constraints in the model.

Our modeling is computationally efficient because although probability calculation

results in non-linear arithmetic, the only variables that must be directly assigned by

the solver are belief and action variables. Truth values are driven by assignments to

action variables. Moreover, by assuming that a truth value set is discrete, the state

space of a belief/action variable could be reduced tremendously.

Effectiveness: Deception is a proactive defense paradigm. In Chapter 2 we showed

that this effectiveness could be calculated in terms of deterrence and deception ratios.

This is because, as discussed in 3.5.7 the deception goals basically aim to either

deflect or characterize the attacker, or both. The deflection goal could be measured
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by deterrence ratio, while the characterization goal could be measured by deception

ratio. Therefore, the effectiveness of a deception model could again be explained

regarding how much deterrence or deception is incurred on an attacker.

One of the main challenges in evaluating the framework is that since the deception

plan aims to defeat human attackers, realistic evaluation of the effectiveness or good-

ness of deception plans could only be achieved by testing it against human attackers.

This is one of the main future research works for this project.



CHAPTER 4: DECEPTION PLANNING AGAINST MULTI-STAGE APT
ATTACKS

In this chapter, we use our deception planning framework that is introduced in 3

to construct a deception plan against multi-stage intrusion attacks. Note that this

example primarily serves as a hypothetical case study. While we provide values for

impacts, costs, and initial beliefs, there is no way to demonstrate the validity of these

value assignments, unless the deception plan is tested in red-teaming experiments and

with real human attackers. This serves as an example that demonstrates hypothetical

benefits of the deception framework, and also provides intuition for defining the model

and calculating initial beliefs, impacts, and costs for a deception model.

In this Chapter, we use the term decoy host to denote a host with an arbitrary

fingerprint that includes a decoy OS and a number of decoy services. This is different

from the shadow decoys introduced in Chapter 2 which mimic the fingerprint of a

real host.

4.1 Problem Statement

Our goal is to deflect attackers from critical network hosts and also increase the

certainty that attackers with different levels of sophistication are characterized.

Assume a typical Enterprise network with zoning for defense-in-depth purposes.

Specifically, the network is partitioned into several zones, where each zone has its

access control policies. For example, the DMZ is externally accessible from the In-
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ternet, while the secure internal network is highly restricted and only accessible by

certain servers.

Our threat model is an attacker whose objective is to infiltrate the network to

reach the critical hosts, which are usually in the secure internal zones that are not

accessible externally. This is the same attack model as the one described in Chapter

2. Due to zoning, the attacker must initiate their attack by compromising a publicly

accessible host. Starting from the DMZ, they gradually continue compromising hosts,

and moving from one host to another, and from one zone to another, until they finally

discover a path to critical network hosts. Figure 34 shows an exemplary network with

potential attack paths from the DMZ to the restricted zone.

Figure 34: An exemplary network and potential attacks paths
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The objective is to complicate an attacker’s path toward critical network hosts

by placing carefully-configured decoy hosts in strategically-selected locations of the

network. In other words, we want to extend the attack graph with deceptive paths in

a manner that the certainty that an attacker compromises a critical host decreases.

By luring the attacker to traverse these fake paths, we waste an attacker’s resources

and time. Moreover, by trapping the attacker in decoys, we can characterize the

attacker’s motives and strategies. Our goal is to determine a deception plan that

achieves these goals with a high certainty and bounded cost.

Figure 35 shows the attack graph for the network of Figure 34 extended with

deceptive paths for a specific deception plan that consists of two decoys in the external

DMZ, 1 in the internal DMZ, and 1 in the restricted zone.

Figure 35: An attack graph extended with deception paths

However, instead of determining the fingerprint and the location of decoy hosts

randomly, our goal is to determine a synergistic and also consistent combination of
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these decoys, to orchestrate a deception plan that is tailored to the goals as well as the

attack graph of the network. Given the set of critical network hosts, their fingerprints,

and their locations, the deception model aims to address two fundamental questions:

1. What decoy services must be located on each decoy host for achieving desired

protection? Each decoy service is modeled as a deceptive action.

2. Where must each decoy host be placed? The location of each decoy host refers

to the zone in which it is located.

4.2 Deception Model

Each routable and unused IP address in the address space of the network is a

candidate location for a decoy host placement. Assume network includes m routable

and available (unused) IP addresses. The network also includes n hosts, and each

real host belongs to a zone. The network has been partitioned into z zones. Hosts in

zone i can access only zones in zone i and i+ 1 and zone 1 is accessible externally.

Table 1: List of Attributes

attribute description Initial Deriv. goal

reali,j
an attacker believes the decoy ser-
vice j on decoy host i is real

X × ×

hackedi,j
an attacker believe the decoy ser-
vice j on host i is compromised

X × ×

reali
an attacker believes decoy host i is
real

× X ×

hackedi
an attacker believes that decoy
host i is compromised

× X ×

deflectedi attacker is deflected by decoy i × × X
chari attacker is characterized by decoy i × × X

Every decoy host i can host a number of decoy services and decoy applications.

Each class of decoy service (OS, Web Server, SSH Server, Web application) is de-
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scribed by a specific index j. Examples of decoy service classes are operating system,

Web server, Web application, SSH server, etc.

4.2.1 Attributes

Figure 36 shows a part of the deception graph for the given deception model. Action

variables define decoy services for hosts. If no decoy OS is assigned to a decoy host,

then that address is assumed to remain unused.

Figure 36: An example deception graph for one decoy host

In the modeling of a deception problem, the first step is to determine the system

attributes. Table 1 describes system attributes, as well as their types and real values.

Attributes reali,j describe the believability of a decoy service of class j on decoy

host i as a real service. For example, reali,1 and reali,2 describe this for the operating

system and Web server of the decoy host i. Accordingly, reali shows attacker believes

that decoy host i is real.

Attribute hackedi,j denotes the believability of exploitability of a service j of host
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i. Also, hackedi denotes whether decoy host i is considered by the attacker as com-

promised.

Finally, attribute deflecti denotes the goal belief that an attacker is deceived and

deflected by decoy i. Accordingly, chari denotes the goal belief that an attacker is

deceived and characterized by decoy i.

Deceptive Actions. For each dark address, the deception plan must determine

whether it will be designated as inactive or active.

The system must determine the fingerprint of each decoy host regarding operating

system and services. Action variable αi,j is the action variable that denotes the decoy

service of class j on host i. Specifically, αi,j = ∅ is a truthful response which means

no decoy service of type j is running on i.

Consistency constraints define inter-relationships among values associated with ac-

tion variables, such that the deception plan is meaningful and believable. To this

aim, there must be compatibility between the decoy OS and the decoy services on a

decoy host. These rules can be automatically generated from a list of compatible OS

and services. For example, the following constraint denotes that if OS is Linux, the

Web server can not be IIS Web server.

(αi,1 = Linux)↔ ¬(αi,2 = IIS) (65)

The deployment cost of a deception plan depends on the cost of implementing the

incorporated actions of that plan. This cost is calculated by considering the resources

(memory, CPU, etc.) which that service requires, and its installation and maintenance

overhead. Figure 37 shows some exemplary values for action costs for a number of
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services.

4.2.2 Attack Models

The attack could be either naive or advanced: Θ = {naive, adv}. We assume that

these two attack models are independent. In other words, the attacker may use a

combination of both naive reconnaissance and exploitation techniques and advanced

ones.

4.2.3 Causality Rules

The causality rules are defined in Eq. 66 to Eq. 69.

Believability of Service

(
∧
j

Dreali,j)↔ Dreali (66)

Exploitability of Service

(
∨
j

Dhackedi,j)↔ Dhackedi (67)

Goals

(¬Dhackedi ∧Dreali)↔ Ddeflectedi (68)

(Dhackedi ∧Dreali)↔ Dchari (69)

Deception Goal. To show how different goals lead to different deception plans, we

consider two goals. The first goal is to deflect attackers from critical network hosts,

and the second goal is to characterize the attacker’s techniques and exploits. Both

goals require a deception that is believable. Therefore, believability is a factor that

contributes to both goals.
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However, while the characterization goal requires decoy hosts that are easy to

compromise, the deflection goal requires decoy hosts that are difficult to compromise.

This would increase the attacker’s effort on them, and also increases the potential

that the attacker is dissuaded from attacking real hosts.

Goal A: Deflection goal. The goal is to deflect attackers from critical hosts in a

zone by placing decoys in that zone. To define the goal we need to associate impact

values with goal beliefs. The goal belief for a deflection by decoy i is defined by

deflectedi. Given these impacts, the following goal constraint is added to the model

at the synthesis.

m∑
i=1

(Ddeflecti · Ideflecti) ≥ Bnmin [added at synthesis] (70)

The aggregate benefit is the summation of the benefit achieved as a result of de-

flecting attacks by all the decoys. The minimum acceptable benefit is defined by the

threshold Bnmin.

Goal B: Characterization Goal. The goal here is to maximize an attacker’s

engagement with decoy hosts at various zones to increase the potential of character-

izing an attacker’s goals and motifs. The goal belief for engagement with a decoy i is

defined as chari. Given the impact value Ichari , the following goal constraint is added

to the model at synthesis:

m∑
i=1

(Dchari · Ichari) ≥ Bnmin [added at synthesis] (71)
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4.2.4 Numerical Inputs

Impact Values for Deflection Goals. The impact of deflecting an attacker by

engaging him with a decoy i depends on two factors: (a) how reachable address i is

by an attacker, and (b) criticality of hosts in the zone k to which i is assigned.

Reachability of address i by attacker could be modeled by the likelihood that

attacker has access to the zone k, denoted as rk, multiplied by the likelihood that

decoy i is probed by the attacker in N scans, denoted by pi. As a simple heuristic,

we assume that a host in zone k can be reached with likelihood

rk =
1

k2
(72)

This is based on the assumption that an internal zone k is less reachable than the

zone k − 1 because it is only accessible after the attacker exploits a real host at zone

k − 1. A better approach is to determine the reachability likelihood of a zone based

on the vulnerability scores of real hosts and attack paths in the attack graph. This

extension provides a more realistic modeling of zone reachability likelihood, and it is

left to future work. The probability of probing a host in the next scan is calculated

based on the characterization framework introduced in Section 2.3.6.

The characterization framework determines the potential scan probability of an

address from the sequence of observed scans to unused addresses of the network. For

an address i, this probability is denoted as πi (Section 2.3.6).

The second factor, criticality of hosts in a zone could be determined by considering

the financial values of those hosts. As a simple heuristic, assume vj ∈ [100, 500]
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denotes the financial value of a real host j. The criticality value of a zone k is

denoted as ck and calculated as:

ck =
∑
j

vj (73)

where j is a host in the zone k.

The impact of the deflection goal by a decoy i in a zone k could be defined as:

Ideflectedi = πi · rk · ck (74)

This definition is, in essence, the definition of risk where vi denotes the impact, and

pi · rk denotes the likelihood. These impact values reflect the significance of a zone.

Impact Values for Characterization Goals. The impact of engagement with

a decoy i host at zone k is determined by how reachable that decoy host is by an

attacker, plus the value of characterization at that level. Assume a characterization

at zone k has a value of k∗100. This is based on the observation that characterization

at zone k is more valuable than characterization at zone k − 1. The impact of

characterization belief is defined as:

Ichari = pi · ck · (k · 100) (75)

Initial Belief Values for Believability of Services. Table 37 denote how initial

belief values are determined based on the chosen action. The truth values for believ-

ability and engagement are given in the table for cases where χadv = 1 and χnaive = 1

respectively.

The truth values for believability of the fingerprint of a service is calculated based
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Type of honey  
OS/Service/App 

Honey OS/Service 
Instance 

Believability of Fingerprint 
 

Believability of Exploitability 

 
Cost of lying 
action ($) 

Naïve Advanced Naïve Advanced 

Operating 
System 

Windows XP SP 1 1 0.2 0.8 0.9 50 

Windows 10 1 0.8 0.8 0.6 80 

Redhat 7 1 0.6 0.8 0.4 100 

Web Server IIS 6.0 1 0.2 0.8 1 50 

IIS 7.0 1 0.9 0.7 0.8 80 

Apache Tomcat 8 1 0.5 0.7 0.9 100 

Web 
Application 

Highly vulnerable 1 0.3 0.6 0.9 25 

Medium vul. 1 0.8 0.4 0.7 50 

Low vulnerable 1 0.9 0.2 0.6 100 

Figure 37: An example of decoy OS and services with believability of fingerprint and
exploitation values

on actions values and attack models. To this aim, we use the following formula for

calculating believability values for a pair of (action value, attack model value) pair as

defined in Eq. 59. For a pair of (αi = a, χj = b) the truth value is defined as:

λa,j,b = (
globalja + localja

2
) · b (76)

where globalja denotes the general believability of having a decoy service a against

an attacker of type θj, and localja denotes this believability specifically for the given

Enterprise network. Parameter globalja is independent of the input network and to

calculate it we investigate the fingerprints of a large number of machines for both

cases where the attacker is using naive or advanced reconnaissance. We calculate

globalja as the ratio of hosts that are running service a. If no instance of a is observed

in the network, then this value is 0. To differentiate between the two attack models,

we assume that an advanced attacker can identify critical services from non-critical

ones, and only calculates globalja by only considering such services.
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In contrast, localia depends on the host configurations of the given network. It is

calculated in the same manner, but only by considering the fingerprints of the input

network.

Initial Belief Values for Exploitability of Services. The values for believability

of how exploitable a service could be is calculated based on the vulnerability level of

that service. This is based on the assumption that the more vulnerable a service is,

the more believable its exploitability is to an attacker. To this aim, we propose the

use of Lai and Hsia’s model [73] which is an extension of CVSS score metric. For a

pair (αi = a, χj = b), the believability of exploitability is defined as:

γa,j,b =

sa︷ ︸︸ ︷
(

kja∑
l=1

va,l × ta,l)× ya

maxi(sa)
(77)

where kja denotes the number of known vulnerabilities that belong to an attack model

of type j for the decoy service a, va,l is the CVSS Base Score for vulnerability j, ta,l

is the weight of the threat class for vulnerability j, and yl denotes the asset weight of

service l. This value is normalized to a value in the set of truth values, denoted as T .

These values are different from different attack models because more vulnerabilities

are known to an advanced attacker than a naive one. Figure 37 exemplify some of the

initial belief values. These values are hypothetical and have been intuitively assigned

by relative comparison of the considered services regarding believability of fingerprint

and exploit. In future, we will improve our model by using Eq. 76 and 77.
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4.3 Analysis of Deception Plans

4.3.1 Analysis of Deception Plans against Single-Stage Attacks

We first analyze the deception plans for a network with only one zone and then

extend this analysis to networks with more zones.

In this thesis, we consider a small network with n = 10; that is, the DMZ address

space has 10 unused addresses that could be used for deception. In order to visualize

our results, we divide all potential decoy hosts into four groups based on their fidelity

level that is defined based on the vulnerability score as follows:

fidelityi = 1−max
a∈i
{γa,adv,1} (78)

This value is calculated based on the given beliefs for an advanced attacker (denoted

as adv) with a certainty of 1, and a denotes decoy services that are assigned to decoy

i.

� Very low fidelity: decoy hosts with fidelity values in [0, 0.1, 0.2].

� Low fidelity: decoy hosts with fidelity values in [0.3, 0.4, 0.5].

� Medium fidelity: decoy hosts with fidelity values [0.6, 0.7, 0.8]

� High fidelity: decoy hosts with fidelity values in the set [0.9, 1].

Figures 38 and 39 show two different deception plans for a deflection goal with

two different budgets and various distributions of attack models. First, note that for

both budgets, as attack model becomes more advanced (left to right), the fidelity

levels of decoys increases. However, for advanced attackers and a limited budget

of $800, the number of decoy host decreases (more addresses are unused), but still



163

Figure 38: deception plan for deflection
goal with budget = $800

Figure 39: deception Plan for deflection
goal with budget = $1000

the budget is spent on creating high-fidelity decoy hosts. This is intuitive because

the deflection goal requires believable yet high fidelity decoys especially for advanced

attackers. When the budget is increased to $1000 (Fig. 39), the number of unused

addresses decreases (more decoy hosts are generated), and for the same distribution,

the decoy hosts have higher fidelities.

Figures 40 and 41 show deception plans for the characterization goal and for the

scenarios with the same budgets. Note that contrary to deception plans with the

deflection goal, decoy hosts are built using lower fidelity services. This is also intuitive

because the characterization goal requires vulnerable decoy services that are easy to

compromise, but not easy to discover. Also, note that as attacker becomes more

advanced, the fidelity level of the decoys increases to account for the fact that an

advanced attacker has better techniques to differentiate decoys from real hosts.

To show that this deception plan is better than random planning, we compare the

generated deception plan with three different planning strategies and for the deflection

goal:
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Figure 40: deception Plan for character-
ization goal with budget = $800

Figure 41: deception Plan for character-
ization goal with budget = $1000

� Uniform: a plan where the budget is uniformly distributed among the four

classes of decoys.

� All low-fidelity: a plan that only consists of low-fidelity services with the given

budget.

� All high-fidelity: a plan that only includes high-fidelity decoy hosts with the

given budget.

� Relative plan: a plan that distributes the budget proportionate to the sophisti-

cation level of the attacker.

Figure 42 shows the benefit that is achieved from each of these plans, according to

the impact values for goal beliefs that were given in the deception model. Note that

the generated deception plan outperforms all other four competing plans.

4.3.2 Analysis of Deception Plans against Multi-Stage Attacks

We assume that m = 64 for every zone and z = 3. The most critical services

are assumed to be in zone 3, which is the restricted zone. Also, services in zone 2,

which is the internal DMZ, are more critical than those in zone 1, that is the external
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Figure 42: Comparison of the framework’s deception plans with alternative scenarios

DMZ. The network includes n = 30 real hosts that are uniformly distributed across

three zones. The hosts are also divided into three categories regarding criticality and

monetary values. The highly critical hosts have high values (benefit impact) of $500,

the medium critical hosts have a value of $250, while the non-critical hosts have a

value of $100. The zone k = 1, 2, 3 can be reached with likelihood 1/k2. The critical

hosts are in zone 3, the medium hosts are in zone 2, and the non-critical hosts are in

zone 1.

To visualize the deception plans and investigate their intuitions, we analyze each

plan concerning the number and fidelity values of the decoy hosts that are assigned

to each zone. We calculate a decoy host fidelity value based on the fidelity of the

decoy services associated with it as defined in Eq. 78.

Figure 43 shows the number of decoy hosts that are assigned to each zone for

various attack models and the deflection goal. First, note that for all scenarios the
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Figure 43: No. of decoy hosts in various
zones for deflection goal

Figure 44: Fidelity values of decoy hosts
in various zones for deflection goal

Figure 45: No. of decoy hosts for various
goal types (χadv = 0.5)

Figure 46: fidelity values for various goal
types (χadv = 0.5)

number of decoy hosts assigned to zone 1 is more than those assigned to zone 2, and

both more than that of zone 3. This means that, according to the deception plan,

maximal deflection from critical hosts that are in zone 3 is achieved when most decoy

hosts are located in the zones that have a higher likelihood of being reached by the

attackers.

To understand why this planning is intuitively true, note that in the deception

model, the location of a decoy host is determined based on the fact that placing a

decoy host in zone k increases the certainty of deflecting an attacker from real hosts
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in that zone and since they have higher reachability than hosts in zone k + 1, the

impact of deflection in this zone, as defined in Eq. 74, is higher.

Second, note that as the adversary becomes more advanced, the number of de-

coy hosts allocated to each zone is decreased, but the fidelity values of decoy hosts

increases. This is because, as the results from the previous section also showed, de-

feating more advanced attackers requires decoy services that are more believable and

less vulnerable. This is because an advanced attacker would easily identify a ser-

vice that has low fidelity. However, high-fidelity decoy services are more expensive,

because they have higher computational and configuration overheads.

Figure 45 compares the deception plans for three different goals of deflection, char-

acterization, and a combined goal that is the summation of the benefit of both goals.

First, note that for the characterization goal the number of decoy hosts again de-

creases as we move toward more critical services. This is because it is more likely for

an attacker to engage with a decoy host at a zone 1 than zone 2 and so forth. This is

also true for the combined goal. Therefore, all three different goals result in deception

plans that assign more decoy services to more reachable zones of the enterprise.

Second, note that the characterization goal includes more decoy hosts than both

other goals. Moreover, the combined goal plan includes more decoy hosts than the

deception plan for the deflection goal. However, as shown in Figure 46, the charac-

terization plan includes decoy services with lower fidelity values. This is because, as

we also noted in the results of the previous section, the characterization goal prefers

decoy services that are more vulnerable to maximize the potential that an attacker

compromises them. In contrast, the deflection goal prefers decoy services that have
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higher fidelity, to decrease their likelihood of being compromised and therefore the

effort that attacker needs to compromise them. Finally, note that as in the previous

section, the combined goal is the middle-ground between deflection and characteriza-

tion goals.

The deception plans depend on the distribution of critical services in the zones.

In previous figures, we assumed that the most critical services are located in the

innermost zone, which is zone 3. However, in order to analyze the flexibility of

the model to tailor the deception plan to the mission, we compare this with two

other scenarios: (1) critical services are dispersed uniformly across all zones (uniform

scenario), and (2) most critical services are located in zone 1, and zone 2 includes

more critical services than zone 3 (reverse scenario).

Figure 47 shows how the deception plan changes according to these different sce-

narios. These plans are generated for the combined goal and by assuming equal

probability distribution for both attack types.

Note that for the uniform scenario, a higher number of decoy hosts are located in

zone 1 as compared to the original scenario (noted as zone 3 in the figure). Also,

as shown in Figure 48, the fidelity values of decoy hosts are almost equal for all the

zones.

In comparison, the deception plan for the reverse scenario (noted as zone 1) almost

assigned all the budget to zone 1, by selecting high-fidelity decoy services and assign-

ing almost all of them to zone 1. This result is intuitive because most critical services

are in zone 1, and therefore the highest impact is given to the goals of zone 1. As

the result shows, the deception plan is constructed and tailored to the attack model,
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Figure 47: no. of decoy hosts for various
network types

Figure 48: fidelity values for various net-
work types

mission and risk assessments, budget, zoning hierarchy and access control rules of the

enterprise.



CHAPTER 5: CONCLUSION AND FUTURE WORK

In this thesis, we introduce three approaches for proactive defense against advanced

and novel attacks on networks and enterprises. These approaches provide agility into

the system to counter such attacks in their network reconnaissance stage. Contrary

to traditional reactive techniques, these approaches can address novel and stealthy

cyber attacks.

5.1 Overview of Contributions, Technical Approaches, and Evaluation

Results

5.1.1 A multi-dimensional, multi-parameter, and multi-strategy host

identity anonymization

In this chapter, we introduced a multi-dimensional, multi-strategy, and multi-

parameter host identity hiding technique, called M-RHM, that provides a synergistic

composition of several mutation techniques to achieve maximum deterrence against

even most advanced reconnaissance launched by stealthy and advanced attackers. To

this aim, we provide a comprehensive review and comparison of all major works in

this area. We also introduced our preliminary works on host identity hiding, including

RHM [56] and A-RHM [59].

Building on these preliminary works, we introduced M-RHM as a cyber deterrence

technique that defeats advanced cyber attacks in their reconnaissance stage of the
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kill chain. Contrary to previous approaches, M-RHM mutates multiple parameters

of networks hosts, rather than only mutating their IP addresses. This is because

we show that defeating adversarial reconnaissance can be restated as the problem of

anonymizing the identity of a host over time and location; therefore, defeating such

reconnaissance is achievable by anonymizing every parameter of a host that could

serve as an identifier or quasi-identifier for that host. We show that to achieve full

anonymization; we need to anonymize host IP addresses and fingerprints to defeat

advanced network reconnaissance. To anonymize fingerprints, M-RHM uses shadow

decoys and the concept of k-anonymity from data privacy. We also mutate hosts’ MAC

addresses to defeat layer-2 reconnaissance, and name mutation to defeat reverse-DNS

attacks.

M-RHM also mutates host addresses using a synergistic composition of mutation

strategies: proactive mutation to defeat unknown attacks, adaptive mutation to adapt

IP selection and mutation rate to attackers’ scanning, and reactive mutation to de-

ter internal scans by redirecting them to decoys. This synergistic composition of

these strategies enables us to maximize deterrence against both external and internal

reconnaissance while avoiding unnecessary mutation and overhead.

M-RHM also mutates host addresses over spatial dimension, in addition to the

temporal dimension. In spatial dimension, every internal host has its own unique set

of IP addresses to reach other internal hosts; therefore lateral movements and any

other reconnaissance sharing between internal hosts is disabled by spatial mutation.

We show that a combination of these techniques would maximally deter adversarial

reconnaissance for multi-stage advanced intrusion attacks, in addition to previous
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threat models, including external scanners and network worms.

In summary, M-RHM outperforms previous cyber deterrence approaches for several

reasons. First, contrary to previous approaches which achieved limited effectiveness

against external scanners, M-RHM can almost completely thwart these scanners. For

example, while RHM only saves up to e−1 = 37% of network hosts from the most

advanced class of scanning called cooperative scanning, M-RHM saves up to 99% of

network hosts via adaptive mutation. M-RHM also can also thwart localized scanning

approaches such as local-preference and sequential scanning significantly.

More importantly, M-RHM prevents internal propagation of network worms in the

private network, because the reactive mutation vector of M-RHM completely blocks

internal scanners. This means that network worms that rely on scanning are easily

detected and quarantined. This disables propagation of network worms beyond the

public hosts that are accessible from the Internet. In addition to scanners, M-RHM

achieves high resistance against advanced reconnaissance. In fact, by combining data

privacy, deception, and randomization, M-RHM provides high robustness against po-

tential de-anonymization techniques that a skilled attacker may use, especially using

fingerprints as quasi-identifiers. This robust anonymization makes M-RHM effective

against advanced and persistent multi-stage intrusion attacks. M-RHM deters pro-

gression of multi-stage attacks, by making re-identification of an already-probed host

difficult. This means that while the attacker collects information, her knowledge does

not increase over time; i.e., an attacker may unintentionally probe a host multiple

times, since she is not able to identify it, not from its address nor fingerprint.
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5.1.2 A Formal Framework for Active Cyber Deception Planning

In the second chapter, we propose a solution for crafting high-agility, dynamic and

adaptive cyber deception plans. We introduce a deception planning framework for

modeling and identifying optimal deception plans for cyber deception problems. The

necessity for introducing such framework emanates from the observation that while

individual deceptive actions (like placing a single decoy host in address space) is

effective to some extent, unleashing the full potentials of cyber deception requires a

synergistic combination of various deceptive actions, and understanding the collective

effect of a various combination of these actions on an attacker’s thinking process. The

framework provides a language for modeling an attacker’s thinking process and the

effect of a group of deceptive actions (called deception plan) on it, in addition to a

quantification of the deception cost for various plans. The framework introduces a

deception logic for defining deception models, where each deception model addresses

a specific deception problem in the cyber domain. This deception modeling logic is

an abstraction over satisfiability modulo theories (SMT) combined with Gödel many-

valued logic, Gk. The logic can capture both qualitative (e.g., belief, cause-effect, and

intention) and quantitative (e.g., certainties, benefit, and cost) traits of deception and

allows for reasoning on alternative deception plans.

5.1.3 Deception Planning against Multi-stage APT attacks

In the third work, we use the deception planning framework to devise a deception

plan that consists of a variety of decoy services to defeat multi-stage intrusion attacks

by disrupting their reconnaissance. Specifically, our goal is to determine a plan that



174

identifies location, type, and configuration of a number of decoy services in a coor-

dinated manner, to defend a given enterprise network against an APT attack whose

objective is to intrude the network to reach the critical services. The objective is to

complicate an attacker’s path toward critical network services, by devising an opti-

mal deception plan that determines what decoy services with what configuration and

in which locations would maximally deceive such APT attacks. By luring attackers

to traverse fake paths, we deflect their reconnaissance to waste their resources and

time. Moreover, by trapping attackers in decoys, we can characterize their motives

and strategies. However, instead of determining location or configuration of these

decoy services randomly or individually, we determine them by defining the problem

as a deception model in the framework, to orchestrate a setup that is tailored to the

mission as well as properties of the given network. We show that the generated decep-

tion plan outperforms competing alternative plans. We evaluate deception plans for

single-stage and multi-stage attacks and show how different factors including attack

model, distribution of critical hosts, and budget would result in different deception

plans.

5.2 Future Research

Evaluating agility through red-teaming experiments. For both cyber deterrence and

deception techniques, we plan to extend our evaluation to quantify the effectiveness of

these techniques against real red-hat or white-hat human attackers; a technique that

is known as red-teaming [27]. The goal is to evaluate if the presented techniques are

effective and sufficient to deter and deceive advanced and adaptive human attackers.
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The main theoretical challenge is the design and development of an isolated and

flexible evaluation testbed.

Automated generation of deception models. We will propose techniques for auto-

mated or semi-automated generation of the deception models. This is done through

systematic investigation of existing body of knowledge on attackers’ potential tactics

and techniques (kill-chain [53]), ATT&CK matrix [85], STIX [29]); systemic analysis

of these data structures would provide us with a systematic approach for identify-

ing necessary or potential deceptions that could be used to defeat individual attack

techniques. More specifically, using the same methodology for automated generation

of attack graphs [112], we intended to propose a methodology and develop tools for

the automated creation of deception models against various classes of advanced and

persistent threats. This automated tool would extend a network’s attack graph with

potential fake paths to which attackers could be misled, and quantifies the effect of

such deflections on deterring the attacker’s progress in the network.

Modeling real-time adaptive planning in deception framework. The deception plan-

ning framework includes paradigms for generating an adaptive deception plan based

on new observations about attackers or the system. In future, we intend to enable

this planning to adapt in real-time to the changes in the system. The objective would

be to devise a deception plan that is adapted dynamically and deployed quickly. This

adaptation considers an attacker’s partially-observable actions in a real-time compo-

sition of the plan while avoiding the attacker’s potential counter-deceptions. The real

challenge is the timeliness of this planning, as well as susceptibility to manipulation

by stealthy and evasive attackers. To this aim, the framework will be extended to
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include generic interfaces for real-time deployment of an updated deception plan in

the system, and also interfaces for real-time information collection and conversion to

input parameters that will be given to the deception model.

Constructing a deception kill chain for cyber attacks. The deception planning

framework targets the reconnaissance stage of cyber attacks, through providing mis-

leading information. However, to maximally engage an attacker with a deception

plan, the deception plan must provide a deceptive step corresponding to other stages

of the kill chain; i.e., weaponization, delivery, exploitation, command and control, and

actions on an objective such as lateral movements. In the future work, we investigate

how the deception planning framework could be extended to provide engaging and

believable deception that misleads an attacker into pursuing all stages of her intrusion

kill-chain. To this aim, the framework must be extended to include components for

modeling attackers’ potential courses of actions at each stage, and also mechanisms

for validating that the attacker is conforming to our expectations and taking the de-

sired course of action. It must also include mechanisms and paradigms for generating

and validating a hypothesis about an attackers’ motif and dynamically adapting the

deception environment to them. The resulting deceptive kill-chain is referred to as

deception chain [50] and will define a high-level discrete description of active steps for

successful and maximal engagement of a cyber attacker with a given cyber system.
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[71] B. Kordy, L. Piètre-Cambacédès, and P. Schweitzer. Dag-based attack and
defense modeling: Dont miss the forest for the attack trees. Computer science
review, 13:1–38, 2014.

[72] I. Kuwatly, M. Sraj, Z. Al Masri, and H. Artail. A dynamic honeypot design
for intrusion detection. In Pervasive Services, 2004. ICPS 2004. IEEE/ACS
International Conference on, pages 95–104. IEEE, 2004.

[73] Y.-P. Lai and P.-L. Hsia. Using the vulnerability information of computer sys-
tems to improve the network security. Computer Communications, 30(9):2032–
2047, 2007.

[74] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: rapid prototyping
for software-defined networks. In Proceedings of the Ninth ACM SIGCOMM
Workshop on Hot Topics in Networks, Hotnets ’10, pages 19:1–19:6. ACM,
2010.

[75] A. P. Laudicina. Nessus – a powerful, free remote security scanner. SysAdmin,
11(5), 2002.

[76] T. Liston. Labrea:sticky honeypot and ids. SourceForge.net,[cit. 2012-05-26],
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