
Review

Fundamentals of genomic epidemiology, lessons learned from the
coronavirus disease 2019 (COVID-19) pandemic, and new directions

Denis Jacob Machado PhD1 , Richard Allen White III PhD1,2 , Janice Kofsky PhD1 and Daniel A. Janies PhD1

1University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, Charlotte, North Carolina and
2University of North Carolina at Charlotte, North Carolina Research Campus (NCRC), Kannapolis, North Carolina

Abstract

The coronavirus disease 2019 (COVID-19) pandemic was one of the significant causes of death worldwide in 2020. The disease is caused by
severe acute coronavirus syndrome (SARS) coronavirus 2 (SARS-CoV-2), an RNA virus of the subfamilyOrthocoronavirinae related to 2 other
clinically relevant coronaviruses, SARS-CoV and MERS-CoV. Like other coronaviruses and several other viruses, SARS-CoV-2 originated in
bats. However, unlike other coronaviruses, SARS-CoV-2 resulted in a devastating pandemic. The SARS-CoV-2 pandemic rages on due to viral
evolution that leads to more transmissible and immune evasive variants. Technology such as genomic sequencing has driven the shift from
syndromic to molecular epidemiology and promises better understanding of variants. The COVID-19 pandemic has exposed critical imped-
iments that must be addressed to develop the science of pandemics. Much of the progress is being applied in the developed world. However,
barriers to the use of molecular epidemiology in low- and middle-income countries (LMICs) remain, including lack of logistics for equipment
and reagents and lack of training in analysis. We review the molecular epidemiology literature to understand its origins from the SARS
epidemic (2002–2003) through influenza events and the current COVID-19 pandemic. We advocate for improved genomic surveillance
of SARS-CoV and understanding the pathogen diversity in potential zoonotic hosts. This work will require training in phylogenetic and
high-performance computing to improve analyses of the origin and spread of pathogens. The overarching goals are to understand and abate
zoonosis risk through interdisciplinary collaboration and lowering logistical barriers.

(Received 14 October 2021; accepted 15 October 2021)

How did genomic epidemiology become what it is?

Genomic epidemiology stems from molecular epidemiology, which
uses evidence ranging from gel electrophoresis tomultilocus sequence
typing to study the origins and spread of pathogenic microorganisms.
Janies et al1 reviewed the history ofmolecular epidemiology and com-
pared it with syndromic epidemiology. Here, we focus on recent
advances toward genomic epidemiology (Fig. 1), which includes
genomic sequencing combined with rapid data sharing as enabled
by the Internet. In 2002–2003, the severe acute respiratory syndrome
coronavirus (SARS-CoV)was the first infectious disease forwhich sci-
entists shared software and pathogen genetic data over the Internet to
rapidly respond to the disease. Thereafter, genomic epidemiology was
solidified by responses to H5N1, H1N1-2009, and other strains of
influenza such as H7N92 and expanded to respond to foodborne
and sexually transmitted diseases.3–5

The first SARS-CoV genome was shared after publication6,7 on
National Center for Biotechnology Information’s (NCBI)

GenBank website, which was customary. Meanwhile, dashboards,
graphs, and maps emerged to track cases over time and space.8

Janies et al9,10 combined genomic and geographic data for
SARS-CoV and H5N1 influenza, respectively, being the first to
project phylogenies onto a virtual globe. Janies et al11 used
Keyhole Markup Language (KML) to develop Supramap, which
facilitates geographic mapping of phylogenies. Supramap allowed
hypothesis testing ranging from the host and geographic origins of
pathogens12 to tracing mutations that conferred drug resistance or
host switching.13,14 Limitations of computing large data sets,
coupled with a preference for sharing data after publication,
resulted in a greater turnaround between data acquisition and
results than occurs today. However, these conditions did not
impede a hypothesis-driven field with value to decision makers,
as demonstrated in a 2007 congressional hearing.15

In the 2000s, some genomes were sequenced for respiratory
pathogens such as H1N1-2009. However, even SARS-CoV
genomes were not always sequenced completely, and sequences
were released gradually.9 This changed due to factors such as
new DNA sequencing technologies.

How did advances in sequencing technology reshape
genomic epidemiology?

Current genomic epidemiology of infectious diseases originated
in response to the SARS-CoV epidemic.16 Sequencing the
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SARS-CoV genome was instrumental in recognizing it as a novel
coronavirus associated with HCoV-OC43 and HCoV-229E.6,7

Researchers combined genomic and epidemiological data to trace
the genotypic variation of the viral transmission paths between
2002 and 2003.17,18 However, today’s genomic surveillance evolved
with the advance of high-throughput sequencing (HTS) (Fig. 1).

Reuter et al19 summarized HTS history until 2015 and Pérez-
Losada20 reviewed recent HTS advances. We focus on the sequence
cost variation per raw megabase between 2001 and 202021 (Fig. 2a)
to illustrate the increasing feasibility of sequencing coronavirus
genomes (Fig. 2b). Considering raw nucleotide sequencing cost,
US$100 was not sufficient to sequence one coronavirus genome
in 2020, but $100 it would cover >400,000 genomes in 2020.

What are coronaviruses?

Coronaviruses correspond to the four genera of the subfamily
Orthocoronavirinae. Gammacoronavirus (GammaCoVs) and
Deltacoronavirus (DeltaCoVs) mainly infect birds and rarely infect
mammals.22,23 Alphacoronavirus (AlphaCoVs) and Betacoronavirus
(BetaCoVs) originated from Chiroptera (bats) and are often found
in other mammals, including humans.24

The coronavirus virion encapsulates one of the longest RNA
virus genomes (27–32 kb),25 which has complex gene expression26

and variable gene content among genera (Fig. 3a).27

Coronavirus infections in domestic animals are economically
significant.28–30 However, the episodic emergence of human coro-
naviruses (HCoVs) is a pressing concern because they cause infec-
tions in all age groups, often leading to respiratory or enteric
diseases.31 Neurological illness or hepatitis is less frequent.32 The
US Centers for Disease Control (CDC) website33 lists 7 HCoVs:
2 AlphaCoVs (HCoV-229E and HCoV-NL63) and 5 BetaCoVs
(HCoV-OC43, HCoV-HKU1, SARS-CoV, MERS-CoV, and
SARS-CoV-2). We added the human enteric coronavirus 4408
(HECV-4408) to the list because it was isolated from a child with
acute gastroenteritis.34

How did SARS-CoV-2 accelerate the growth of genomic
epidemiology?

Coronaviruses were not deemed highly pathogenic to humans
until the 2002 SARS-CoV outbreak.35,36 The dangers of HCoVs
were made more evident by the 2012 outbreak of Middle East res-
piratory syndrome (MERS) coronavirus (MERS-CoV).37

Nevertheless, coronaviruses did not receive the current level of
attention until the pandemic coronavirus disease 2019 (COVID-
19), caused by SARS-CoV-2, was first reported in humans in
Wuhan, China, in December 2019.38 However, Pekar et al39

inferred that the virus was present in Hubei approximately a
month before. On March 11, 2020, the World Health
Organization (WHO) declared a pandemic due to the spread of
SARS-CoV-2.38 By October 14, 2021, COVID-19 had caused
4,863,818 deaths worldwide.40

Understanding the emergence and evolution of SARS-CoV-2 is
vital to preventing future pandemics.41 The question can be divided
into 3 components. First, was the virus purposefully manipulated?
Several peer-reviewed publications have concluded that SARS-
CoV-2 emerged naturally via zoonosis (see eg, Anderson et al,42

Liu et al43, and Holmes et al44). Moreover, previous serology data
indicate natural human infections by bat-hosted, SARS-like
viruses.45

Second, was SARS-CoV-2 an accidental release? If a naturally
occurring virus was transported to a laboratory and humans were
infected shortly thereafter, the virus may not have accumulated
sufficient mutations to record its passage through controlled envi-
ronments.46 However, no evidence indicates that SARS-CoV-2 was
known to scientists before December 2019.47,48

Third, what is the natural source of SARS-CoV-2? The most
comprehensive phylogenomic analysis of coronavirus49 (Fig. 3b)
addressed the fundamental evolution of HCoVs (Fig. 3c) and
showed that SARS-CoV-2 results from bat-hosted viruses infecting
humans.50 SARS-CoV-2 finds its closest related bat-hosted corona-
viruses in the subgenus Sabercovirus, a subgroup of SARS-related
coronaviruses (SARSr-CoV) first identified in horseshoe bats

Fig. 1. Timeline of major events in sequencing technology (green) and genomic epidemiology (purple) alongside the first recorded occurrence of SARS-CoV, H1N1-2009, MERS-
CoV, and SARS-CoV-2 in humans. Associated references can be found in Supplementary Table 1.
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(Rhinophulus spp).51 Bat-hosted viruses similar to SARS-CoV-2
were collected in the Yunnan province, >1,500 km away from
Wuhan, but the hosts have a wide geographic range.45,52,53

Despite a confusing array of reports confirming54–56 and deny-
ing57 the origin of SARS-CoV-2 from pangolin (Manis javanica)
hosts, pangolins are not involved in the lineage of SARS-CoV-2
that infected humans.49 This finding is similar to the emergence
of SARS-CoV,9 which also infected humans from bat-hosted
viruses without any need for intermediate hosts, including
Himalayan palm civets (Parguma larvata) and raccoon dogs
(Nyctereutes procyonoides).

Are we sequencing SARS-CoV-2 genomes fast enough?

SARS-CoV-2 was identified on January 7, 2020. Three days later,
its genome and metadata were shared via the Global Initiative on
Sharing Avian Influenza Data (GISAID)58 EpiCoV database,59

before the first peer-reviewed article was published in February
2020.60

To put the SARS-CoV-2 genome sequencing speed into con-
text, consider that SARS-CoV was first reported in November
2002, but its genome was publicly released in April 2003.6 The
speed at which such data are released was changed by several
forces, illustrated by Janies et al.16 In brief, the reasons include
the increased feasibility of genome sequencing, the willingness
to share data before publication, and the rise of the popular
GISAID database, which credits submitting laboratories.

Figure 4 shows the accumulation of 4,224,785 complete SARS-
CoV-2 genomes in EpiCoV between January 10, 2020, andOctober
13, 2021. The curve is far from reaching a plateau, indicating that
we are not producing coronavirus genomes at total capacity.
Efforts to sequence SARS-CoV-2 following international

guidelines61,62 are welcome because these data inform epidemio-
logical forecasts (eg, increased transmission efficiency of SARS-
CoV-2 variants has led to projections of the rise of higher numbers
of cases63).

Genomic sequencing generates a snapshot of a viral lineage in a
place and time.When sequences are collected longitudinally, appli-
cations in genomic epidemiology and pandemic responses emerge,
which we illustrate with 4 examples. First, profiling mutation fin-
gerprints from the viral pangenome to individual infection quasi-
species enables molecular contact tracing.64 Second, genomic
sequencing informs the peptide mass fingerprinting (PMF) used
to predict novel structures and find inhibitors for viral peptides,65

although results must be tested in randomized controlled trials66 to
identify effective antivirals.67,68 Third, the data are used to model
epidemic or pandemic size and severity.63 Fourth, viral sequences
are fundamental for developing mRNA vaccines.69 For a review on
current pitfalls and opportunities in applying HTS to SARS-CoV-2
genomes, see Chiara et al.70

As SARS-CoV-2 becomes endemic,71,72 sequencing demand
will remain high. SARS-CoV-2 infections are decreasing as more
people develop immunity through natural infection or vaccina-
tion.73 However, variants may evade infection and vaccine-
induced antibodies,74 especially with infections occurringmonths
after vaccination (ie, breakthrough infections).75,76 Given break-
through infections, increased transmission of some variants, and
the lack of full vaccination among eligible people, we can predict
that SARS-CoV-2 will continue to evolve. Whether SARS-CoV-2
is evolving toward more severe or more benign COVID-19
phenotypes is a pressing research question for genomic
epidemiology.

Effective countermeasures depend on understanding SARS-
CoV-2 lineages, such as sampling variants for which phenotype
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is not fully understood77 and addressing sampling bias.78 For
example, if we restrict sequencing viral isolates from hospitalized
patients, the relationships between any variables associated with
hospitalization will be distorted when compared to the general
population. Thus, we would miss mutations associated with
asymptomatic and symptomatic cases that did not require

hospitalization, which could lead to inducing or misinterpreting
the evidence for phenotype-genotype associations.79–81

Brito et al82 analyzed the spatiotemporal heterogeneity in each
country’s SARS-CoV-2 genomic surveillance efforts based on
metadata submitted to GISAID until May 30, 2021. These
researchers estimated that when the prevalence of a rare lineage
is 2%, 300 cases would need to be sequenced to detect at least 1
genome of that lineage with 95% probability. Therefore, sequenc-
ing capacity should be at least 0.5% of cases per week when inci-
dence is >100 positive cases per 100,000 people.

Brito et al82 observed that countries like Denmark, which have a
quick turnaround for sequencing, processing, and sharing SARS-
CoV-2 genomic data (<18 days) and a high sequencing rate
(>32%), observe greater lineage diversity. Many variants may be
missed when sampling rates are low. However, disparities in
wealth, investment in research and training, coordination, and
supply chain logistics affect the ability of countries to perform
genomic surveillance, especially LMICs. Therefore, efforts must
be made to provide funds, training, and logistic support for
researchers based in LMICs to improve their genomic surveillance
capacity and public-health decision making.

How do we classify the variants of SARS-CoV-2?

Any genome sequence that is genetically distinct from the refer-
ence can be called a variant. In practice, the SARS-CoV-2 variants
represent clades that share a set of key mutations while still permit-
ting a small amount of other sequence variation.83,84 Moreover,
convergent evolution among geographically distant variants has
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been observed (Table 1).85 Although variants and strains are differ-
ent, some researchers use these terms interchangeably
(eg, Awadasseid et al,86 Hossein et al,87 and Ul-Rahman et al88).
The term “strain” is typically associated with lineages that became
sufficiently divergent to exhibit a changed phenotype.89

In late 2020 and throughout 2021, as vaccine availability
increased, information on variants began to dominate the
COVID-19 response.90–92 The emergence of variants that might
pose an increased risk to global public health prompted the
WHO to characterize specific variants of interest (VOIs) and var-
iants of concern (VOCs) to prioritize global monitoring and
research.93 The US government SARS-CoV-2 interagency group
(SIG) developed a separate variant classification scheme,94 which
we compare to the WHO system in Table 2.

In March 2021, the WHO assigned letters of the Greek alphabet
to categorize VOIs and VOCs,93 for simplicity and to avoid associ-
ation with particular localities. These labels do not replace existing
classifications by GISAID (https://gisaid.org/),95 Nextstrain (https://
nexstrain.org/),96 and Pango lineages (https://cov-lineages.org/).97

SARS-CoV-2 variants were reviewed by Harvey et al.98

Why are vaccines still not enough against COVID-19?

The speed of development and testing of COVID-19 vaccines devel-
opment is one of history’s most outstanding public health achieve-
ments. Vast vaccination of eligible individuals is the best and safest
way to control the pandemic.99 Although some SARS-CoV-2 var-
iants show a degree of escape from protective antibodies induced
by natural infection (and, to a lesser degree, after immunization),
T-cell responses are retained.100 Furthermore, first-generation
SARS-CoV-2 mRNA-based vaccines induce public antibodies
(ie, antibodies with similar genetic elements and modes of recogni-
tion against a different antigen observed in multiple individuals)
with robust neutralizing and potentially durable protective activity
against variants such as alpha (α), beta (β), and gamma (γ).101

SARS-CoV-2 variants will continue to emerge,102 requiring
close international monitoring to determine the need for vaccina-
tion boosters and or redesign.102 As variants emerge in areas of low
vaccination, a global COVID-19 vaccination rollout is imperative.

Since the vaccine rollout, new questions have arisen regarding vac-
cine efficacy against the transmission of different variants,100 the
duration of protection,103 and the efficacy of prime-boost sched-
ules.99,104–106 A demand has also arisen for studies to determine
the immunological correlates of protection against COVID-19
as cases decline and prevention of severe disease gainsmore impor-
tance in vaccine efficacy.107 Meanwhile, nonpharmaceutical inter-
ventions to reduce the spread of SARS-CoV-2 and other pathogens
are still warranted.102,108,109

How can we bridge the knowledge gap between disease
origin and transmission?

Genomic epidemiology can be a tool to study emerging infectious
diseases (EIDs) in humans, but its effectiveness is maximized when
it accounts for animal and environmental components. In the case
of zoonosis, there is a knowledge gap between the animal and
human components of EID research, and One Health can bridge
this gap.

Although most human health researchers have only started
focusing on coronaviruses since the emergence of SARS-CoV-2,
veterinarians, virologists, and zoologists have been researching
animal coronaviruses long before the COVID-19 epidemic.110

One Health proposes placing these realms of research (on humans
and animals) in the same environmental context. The next steps in
pandemic prevention science are to understand factors that create
opportunities for zoonosis,111,112 such as entering infectious
habitats such as bat caves and the use of wildlife as food and
medicine.113–117

Deep sequencing the microbiomes and viromes of taxonomi-
cally, geographically, and temporally deep biorepository archives
of putative host animals will serve as the basis of new approaches
to zoonosis, risk assessment, and threat mitigation.118–120

Therefore, another step toward furthering the One Health
approach is leveraging biorepositories in biomedical research.
Although the Global Museum initiative already offers a route of
international integration among museum biorepositories in a
decentralized and geographically dispersed network,121 the link
to EID research is still not fully realized.

Table 1. Notable Variants of SARS-CoV-2 and Their Main Attributesa

SIG Class WHO Class WHO Label Pango Lineages CDC Lineages First Identified Characteristic Spike Mutations

VOC VOC delta (δ) AY.1, AY.2, B.1.617.2 AY India T19R, K417N, L452R, T478K, P681R, D950N

VBM VOC alpha (α) B.1.1.7 and Q lineages Q UK HV69-, Y144-, N501Y, A570D, P681H, T716I, S982A, D1118H

VBM VOC beta (β) B.1.351 South Africa D80A, D215G, E484K, N501Y, A701V

VBM VOC gamma (γ) P.1 P.1 Brazil T20N, P26S, K417T, E484K, N501Y, T1027I

VBM VOI mu (μ) B.1.621 and B.1.621.1 India T95I, Y145N, R346K, E484K, N501Y, D614G, P681H, D950N

N/A VOI lambda (λ) C.37 South America G75V, T76I, RSYLTPG246-, L452Q, F490S, D614G, T859N

VBM VUM epsilon (ϵ) B.1.427 and B.1.429 USA S13I, W152C, L452R, D614G

VBM VUM eta (η) B.1.525 UK and Nigeria Q52R, E484K, Q677H, F888L

VBM VUM iota (ι) B.1.526 USA L5F, T95I, D253G, E484K, D614G, A701V, S477N, Q957R

VBM VUM kappa (κ) B.1.617.1 India L452R, E484Q, P681R

VBM VUM zeta (ζ) P.2 Brazil E484K

VBM N/A N/A B.1.617.3 India T19R, L452R, E484Q, P681R, D950N

Note. SIG, US government SARS-CoV-2 Interagency Group; VBM, variant being monitored; VOC, variant of concern; VOI, variant of interest; VUM, variants under monitoring; EUA, emergency use
authorization.
aThis table was modified and updated from the WHO website,93 the CDC website,94 Rambaut et al,97 and Soh et al.167 SIG and WHO classifications are detailed in Table 2.
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The recent creation of the Museums and Emerging Pathogens
in the Americas network (MEPA) is vital for linking bioreposito-
ries and EID research.122 The overarching goal of the MEPA is to
leverage museum biorepositories in a global, decentralized patho-
gen surveillance system by expanding biodiversity infrastructure
and opening communication channels that foster collaboration
among biorepositories and biomedical communities.

The need for this host-based approach to genomic epidemiol-
ogy is made evident by the transmissible nature of SARS-CoV-2,123

which has the potential to infect a range of hosts, including
tigers,124–126 minks,127,128 domestic cats,129–131 ferrets,132–134 rac-
coon dogs,135 cynomolgus and rhesus macaques,135–137 rabbits,138

Egyptian fruit bats,138,139 Syrian hamsters,140 and white-tailed
deer.141–143

How can we track SARS-CoV-2 variants faster?

Vaccines are still effective in preventing severe outcomes against all
SARS-CoV-2 variants,100 which are ravaging unvaccinated peo-
ple.144,145 However, the likelihood of new mutations increases as
cases rise, possibly leading to enhanced transmission, immune
escape, or increased pathogenicity. This process has resulted in
more transmissible variants.146,147

Researchers face 2 main challenges in keeping pace with SARS-
CoV-2 variants: using resources at optimal capacity and lowering
barriers to technology and training in genomic epidemiology
across the world. On the one hand, countries with a high positivity

rate, like India, are not sequencing isolates at full capacity.148 The
United States is an even more extreme example because it has
ranked low in SARS-CoV-2 sequencing despite its capacity and
expertise.149,150 On the other hand, countries like South Africa have
sequencing laboratories struggling with reagent shortages and the
scarcity of trained scientists.151

Global efforts to strengthen pathogen sequencing capacity are
still required to respond to technical, logistical, and financial chal-
lenges in resource-limited settings despite increased sequencing
feasibility. Moreover, good SARS-CoV-2 sequencing performance
for some LMICs (eg, Democratic Republic of the Congo, Brazil,
Senegal, and Thailand) further encourages international and
domestic collaboration among public health authorities, healthcare
facilities, academia, and industries.149

Additional challenges include consistent handling of isolates as
well as metadata and sequence data curation and deposition in a
way that facilitates combining data sets from different laboratories.
These challenges require coordinated efforts152 and data stan-
dards153 to guarantee rapid access to large volumes of raw and
processed molecular data at unprecedented scales.70

We also need to address bioinformatics bottlenecks to respond
faster to the threat of emergent diseases and to manage the fast-
paced production of genomic information. Most tools are co-opted
from evolutionary biology’s arsenal to study the lineages of higher
taxa with exemplar approaches.154 Although these tools were not
designed to manage big data from rapidly evolving pathogens,154

some have already started to respond to these demands. For

Table 2. Comparing the Different Categories in the WHO Variant Classification System93 With the System Used by the US government SARS-CoV-2 Interagency Group
(SIG)94,a

SIG WHO

Category Potential Attributes Category Working Definition

VBM Variants for which data indicate a potential or clear impact on
approved or authorized medical countermeasures or that have
been associated with more severe disease or increased
transmission but are no longer detected or are circulating at very
low levels in the United States, and as such, do not pose a
significant and imminent risk to public health in the United States

VUM A SARS-CoV-2 variant with genetic changes that are suspected to
affect virus characteristics with some indication that it may pose
a future risk, but evidence of phenotypic or epidemiological
impact is currently unclear, requiring enhanced monitoring and
repeat assessment pending new evidence

VOI Specific genetic markers that are predicted to affect transmission,
diagnostics, therapeutics, or immune escape

VOI With genetic changes that are predicted or known to affect virus
characteristics such as transmissibility, disease severity, immune
escape, diagnostic or therapeutic escape AND
identified to cause significant community transmission or
multiple COVID-19 clusters, in multiple countries with increasing
relative prevalence alongside increasing number of cases over
time, or other apparent epidemiological impacts to suggest an
emerging risk to global public health

Evidence that it is the cause of an increased proportion of cases
or unique outbreak clusters

Limited prevalence or expansion in the United States or in other
countries

VOC Evidence of impact on diagnostics, treatments, or vaccines VOC Increase in transmissibility or detrimental change in COVID-19
epidemiology OR increase in virulence or change in clinical
disease presentation OR decrease in effectiveness of public health
and social measures or available diagnostics, vaccines,
therapeutics.

Evidence of increased transmissibility

Evidence of increased disease severity

Evidence of increased transmissibility

Evidence of increased disease severity
VOHC Impact on medical countermeasures (MCM) (No equivalent WHO category)

Demonstrated failure of diagnostic test targets.

Evidence to suggest a significant reduction in vaccine effectiveness, a
disproportionately high number of infections in vaccinated persons, or very
low vaccine-induced protection against severe disease

Significantly reduced susceptibility to multiple EUA or approved therapeutics

More severe clinical disease and increased hospitalizations

Note. VBM, variant being monitored; VOC, variant of concern; VOI, variant of interest; VUM, variants under monitoring; VOHC, variant of high consequence; EUA, emergency use authorization.
aCurrently, no variants are being classified as VOI or VOHC by the CDC and SIG.
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example, the ultrafast sample placement on existing trees (UShER)
enables the rapid placement of novel genomes into a reference tree
using the parsimony optimality criterion.155 Thus, as phylogenetic
principles underpin how we view genetic changes over time, One
Health will also include the exchange of knowledge among evolu-
tionary biologists and epidemiologists.

Phylogenetic trees are hard to compute and interpret. The need
to consult professional phylogeneticists is made plain by the num-
ber of prominent papers that did not adhere to the standards of
phylogenetics and failed to identify the fundamental hosts of coro-
naviruses.156 Moreover, a good phylogenetic analysis requires
many elements: careful choice of the collected taxa, sequence,
and or phenotypic data; method and quality control of sequence
data and alignment; evaluation of substitution and indel models;
treatment of partitions; tree-search protocol; measures of fit or
confidence; and strategies for character coding and optimiza-
tion.49,156,157 Moreover, results may vary with parameterization.158

These are only a few of the difficult decisions that go way beyond
the level of sophistication of any software manuals and automated
systems.156,159

Are trees mapped to globes always needed?

In many cases, such as the initial spread of H5N1 influenza, trees
and Supramaps were very useful to understand the geographic
spread of the pathogen, its multiple geographically and mutation-
ally distinct patterns of zoonosis,10 and drug resistance.14 However,
due to occlusion, Supramaps were not suitable for the visualization
of cosmopolitan diseases, such as strains of Salmonella (eg,
Hoffman et al3), seasonal influenza (eg, H3N2), pandemic influ-
enza (H1N1-2009),16 and SARS-CoV-2. In response, researchers
have worked on alternative visualization tools, including point-
maps and route maps13,160 and eventually moved beyond the need
for mapping trees to globes with Strainhub.161

Unlike Supramap, Strainhub is less computationally demand-
ing. It can be executed from a web browser; it does not depend
on closed source software (Google Earth), and geographical data
are optional (Fig. 5). Moreover, Strainhub can be used to test
hypotheses on the relative importance of hosts or places in disease
spread. Future efforts for Strainhub will focus on usability, inter-
operability, visual clarity, and quantification of the relative impor-
tance of hosts or places in the spread of disease to better understand
zoonosis.

How do we prepare for the next pandemic?

The COVID-19 pandemic has illustrated how unprepared our
interconnected global society is for zoonotic disease. For the next
pandemic, 2 frontiers of investigation are interesting for genomic
epidemiology as a tool to survey microbes of pandemic potential to
predict, prevent, or respond faster to the emergence of new disease.

First, we must survey the natural diversity of coronaviruses and
other microbes of pandemic potential present within animals.120

Second, we must develop the science of pandemic prevention by
moving from tracking pandemics that are occurring to predicting
outbreaks. For example, combining artificial intelligence with
genomic epidemiology can lead constructing a “viral forecast“ to
inform decisions about viruses with pandemic potential.162

Moreover, we have proposed a novel mathematical modeling
framework based on agent-based modeling to predict pathogen
patch dynamics underlying zoonosis.163

Final remarks

The COVID-19 pandemic, while ongoing, has caused 4,863,818
deaths worldwide as of October 14, 2021,164 and it has surpassed
the US death toll from the 1918–1919 H1N1 pandemic, which was
∼675,000. As SARS-CoV-2 becomes endemic, we must remember
that it is not as lethal as other pathogens such as H5N1 influenza or
Nipah virus. In its last 100 years of existence, smallpox killed
300 million people, and Variola major (the major variant of
smallpox) killed 30% of these patients.165

A novel pathogen at 30% mortality infecting 50% of the US
population (166.7 million) would have resulted in 50 million
deaths. MERS-CoV, henipaviruses, and hantavirus all have high
mortality (>30%) and virulence with no approved vaccines or
antivirals available. The 2018 Nipah outbreak had a 91% case-
fatality rate, claiming 21 lives.166 We must heed the warning that
pathogens with more severe disease phenotypes than SARS-CoV-2
could resultin a far more devastating pandemic.

Fig. 5. Comparison between Supramap and Strainhub visualizations. (a) Supramap
phylogenetic visualization of bat-hosted and pangolin-hosted coronaviruses that
share recent ancestry (2005–2019) with human-hosted SARS-CoV-2. The underlying
data are genomic sequences, temporal and geographic metadata. (b) Strainhub visu-
alization of the same data plus host metadata in a network using arbitrary space.
Arrow colors correspond to different types of transmission (red = bat to human,
green = bat to bat, yellow = bat to pangolin). The size of the circle represents the
source hub ratio (SHR). SHR is the number of transitions originating from a node
as a fraction of the total number of transitions related to that node. A node scoring
SHR close to 1 indicates a source (eg, Hubei, Yunnan, and Zhejiang), SHR close to 0.5 a
hub and SHR close to 0 a sink for the pathogen. The thickness of the line represents a
higher frequency of viral transmission (eg, Hubei to Zhejiang).
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