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ABSTRACT 

LUKE BERGLIND. Time domain approach to stability in machining operations. (Under 

the direction of Dr. JOHN ZIEGERT) 

Machine tool chatter is a common occurrence in machining environments which 

can lead to undesirable part outcomes and can even cause damage to the machine.  Chatter 

is a result of regenerative dynamic forces inherent in the machining process which can 

cause the system to be either stable or unstable depending on the parameters of the cutting 

operation and the dynamic characteristics of the machine tool.  The study of chatter is a 

common research topic which aims to characterize the dynamic behavior of machining 

operations so that chatter can be avoided.  In this dissertation, a method is developed to 

analyze the dynamic behavior of cutting processes in the time domain.  This approach 

allows for the tool point behavior to be determined analytically over a finite number of 

cutting periods.  The analytical expressions describing the tool motion are then 

incorporated into a matrix solution which is used to determine dynamic stability directly 

without requiring a full time domain solution.  These methods are first developed for an 

orthogonal turning model, and then expanded for the analysis of low radial immersion 

milling, low radial immersion milling with variable pitch cutters, average angle 

approximation milling with non-constant number of teeth in the cut, and full milling with 

variable cutting force directions.   
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  INTRODUCTION 

Equation Chapter 1 Section 1  

Dynamic instability, or chatter, is a common occurrence in machining 

environments which can lead to undesirable part outcomes in terms of part surface and 

dimensional quality, and can cause damage to the part or cutting tool.  Chatter is a result 

of regenerative dynamic forces inherent in the machining process which can cause the 

system to be either stable or unstable depending on the parameters of the cutting operation 

and the dynamic characteristics of the machine tool (Schmitz 2009; Tlusty 1963).  One of 

the primary objectives of research in machine dynamics is to better understand and 

characterize the dynamic behavior of machining operations so that chatter can be avoided.   

The analysis of basic machining operations is based on the two system schematics 

shown in Figure 1 for turning and milling.  In the case of turning, the part, which is assumed 

to be rigid, rotates as a flexible tool removes material.  For milling, the assumed rigid work 

piece is stationary as a flexible tool rotates and removes material as it sweeps through the 

cut.  The resulting motion of these flexible tools throughout the operation must be 

investigated in order to determine whether the operation is stable or unstable.  The primary 

difference between the turning and milling operations shown in Figure 1 is in the direction 

of the cutting force which acts on the tools.  For turning operations the cutting tool is 

stationary relative to the coordinate reference frame (x-direction) and the resulting cutting 

forces act in a single direction throughout the operation.  For milling the cutting edges 

rotate relative to the coordinate reference frame (x and y directions), causing the force 

direction to change as the tool angle, ϕ, changes.  It is this angle dependent cutting force 
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direction which makes the analysis of milling operations significantly more complex than 

turning operations.   

 
Figure 1: Dynamic systems and cutting forces for turning and milling. 

The magnitude of the forces which act on the tools are assumed to be proportional 

to the area of the chips being formed.  In orthogonal cutting (with a rectangular chip profile) 

this area is determined based on the chip width, b, and the chip thickness, h.  The chip 

width, b, is equal to the depth of cut, or the out of plane dimension of the chip in the model 

schematics shown in Figure 1.  The chip thickness, h, is the dimension of the chip normal 

the cut surface.  If the tool is assumed to be rigid, the area of the chip would be constant 

for turning, or a repeated periodic shape in milling related to the radial immersion of the 

cut and the feed per tooth.   When tool flexibility is introduced, there are variations in the 

area of the chip that are a result of the tool vibrations.  When the tool first comes into 

contact with the work piece it experiences a sudden force, or perturbation, which causes it 

to vibrate.  These vibrations leave a wavy imprint on the surface of the work piece which 

effectively create a variation in the thickness of the chip.  When the tool passes over the 
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wavy surface during the next rotation, the variability in the chip thickness results in a 

variable force which again excites the tool, creating a new wavy surface on the work piece. 

As the tool repeatedly passes over the wavy surface left behind during each tool pass, 

regenerative force effects can cause the tool vibrations to become unstable over time.  The 

resulting variability in chip thickness is illustrated in Figure 2 for turning and milling.  In 

this figure the instantaneous chip thickness, h(t), is a function of the normal component of 

the tool motion in the current pass (x(t) for turning, and xN(t) and yN(t) for milling), and 

the normal component of the tool motion during the previous tool pass (x(t-τ) for turning, 

and xN(t-τ) and yN(t-τ) for milling).    

 
Figure 2: Regenerative forces in turning and milling due to chip thickness variation. 

The forces which act on the cutting tool due to variations in the chip thickness are 

then dependent on the position of the tool at any point in time (x(t), xN(t) and yN(t)) , and 

the position of the tool at time t-τ when the tool last passed over the current location (x(t-

τ), xN(t-τ) and yN(t-τ)).  In Equation 1.1 the resulting differential equations for turning and 

milling are shown, where the tool point dynamics are modeled as spring mass damper 

systems, with forcing functions which contain both current time and delayed terms (xτ and 

yτ).   
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 1.1 

The differential equations in Equation 1.1 are known as delay differential equations 

(DDEs) because the resulting behavior of the system is dependent on both the current states 

of the system and states of the system at previous points in time.  The inclusion of the delay 

effects in DDEs causes a significant increase in complexity for the analysis of cutting 

operations compared with other dynamic systems described by ordinary differential 

equations (ODEs).  As such, much research has been devoted to develop effective 

techniques for evaluating DDEs so that regenerative chatter in machining operations can 

be better understood, and ultimately avoided in practice.  

1.1 Background 

One of the first successful models for cutting processes was developed by Tobias 

and Fishwick (Tobias 1958) who attributed regenerative forces in machining processes as 

the underlining cause of chatter.  This model was later modified by Tlusty (Tlusty 1963) 

who recognized that the chip width and thickness normal to the cut surface were the critical 

components leading to the regenerative forces.  As such, Tlustys’ model considers only the 

normal components of the tool motion, resulting in the DDE model shown in Equation 1.1 

for turning.  Tlusty furthermore developed a strategy for determining the stability of 

Equation 1.1 for turning based on the frequency response function (FRF) of the tool and 

work piece (Tlusty 1963), which is still used reliably for continuous cutting operations such 

as turning.  An example of a stability lobe diagram developed using Tlustys’ approach is 
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shown in Figure 3, where the cuts with parameters in the gray regions are predicted to be 

unstable, and cuts in the white region are stable.  

 
Figure 3: Example of a stability lobe diagram, showing the spindle speeds and depths of cut where the cut 

is predicted to be stable or unstable.  

Tlusty later adapted the analytical stability approach developed for turning to 

approximate stability in milling (Tlusty 1999).In this approach the angle dependent cutting 

forces are assumed to act in a single, average direction and additional factors account for 

this force direction and the effective number of teeth in the cut.  Altintas modified the 

effective force values used in the analytical stability model for milling by considering the 

average force values over the rotation of the tool instead of using the average angle 

(Altintas 1995).  Altintas’ approach uses zeroth order approximation of the cutting forces 

to determine stability as an eigenvalue problem which has a closed form solution for the 

stability limit.  This method has been expanded to include higher order approximations of 

the cutting forces to yield higher accuracy in stability predictions (Budak 1998a; Budak 

1998b), although these higher order approximations to not allow for the direct calculation 

of stability limits.   
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While the analytical stability criteria developed for milling using the system FRF 

do approximate the stability boundaries in milling, they do not fully capture the nonlinear 

characteristics of the milling process.  Some of these nonlinear effects are the angle 

dependent cutting force, loss of contact between the tool and the work piece due to large 

vibrations, and relatively long periods of free vibrations in the case of low radial immersion 

milling.   

The use of numerical simulation is one approach for capturing the nonlinear effects 

of cutting processes.  Tlusty et al used numerical simulation to model the effects of the 

angle dependent cutting force and the effects of loss of contact between the tool and the 

work piece (Tlusty 1981) and later expanded the model for milling with variable pitch 

cutting teeth (Tlusty 1983).  Smith et al developed an algorithm to determine the steady 

state peak to peak forces and displacements in milling over a range of spindle speeds and 

depths of cut to form stability lobe diagrams with additional information regarding the 

steady state vibration magnitudes (Smith 1993).   Other researchers have used numerical 

simulation to evaluate the effects of multiple modes, multiple degrees of freedom (Eynian 

August, 2009; Marsh 1998) and chip formation processes (Gyliene 2013).  While 

numerical simulation is a versatile and effective method for the evaluation of tool point 

behavior, numerical techniques are computationally expensive, and many individual 

simulations are needed to characterize the dynamic behavior of a cutting operation over a 

range of parameters.    

Other researchers have sought new analytical approaches to account for some of 

the nonlinearities in the cutting process.  Davies et al developed an approach to evaluate 

the cutting process for low radial immersion milling by approximating the behavior of the 
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tool while in the cut and coupling these motions with the free vibration periods analytically 

to determine stability (Davies 2002).  Davies’ approach was later improved by increasing 

the accuracy of the tool motion prediction using temporal finite element analysis (TFEA) 

in (Bayly 2003), which was later generalized for the analysis of higher order systems in 

(Mann 2010).  Insperger and Stepan developed the semi-discretization method (SDM) for 

the analysis of delayed systems wherein the system is analyzed by discretizing the force 

input (Insperger 2002; Insperger 2004).  Altintas further developed a frequency domain 

solution by considering multiple harmonics of the tooth passing frequency (Altintas 

2008b).  More recently, a full discretization method (FDM) has been developed by Ding et 

al to determine stability of delayed systems (Ding 2010).  The FDM is similar to the SDM 

but has the potential advantage of producing stability limits more efficiently (Ding 2012; 

Insperger 2010). These analytical methods for evaluating cutting processes account for 

nonlinearities in the system and improve stability prediction when compared with the 

methods developed in (Altintas 1995; Tlusty 1963).   

In this dissertation, a new approach is developed for the analytical analysis of 

cutting processes in the time domain which is an alternative approach to the methods 

developed thus far.  This approach is first developed to determine the time response of the 

cutting tool analytically over a fixed number of tool passes.  The methods and equations 

developed to determine the time response are then used for stability prediction. 



  SINGLE DEGREE OF FREEDOM TURNING MODEL  

Equation Chapter 2 Section 1  

Determining the time response of a tool during cutting operations is a more complex 

process than for other dynamic systems modeled as ODEs due to the regenerative forcing 

effects inherent in the cutting process.  While numerical simulation can be used to evaluate 

the solutions to DDEs (Tlusty 1981), this approach is computationally expensive and does 

not lead to an analytical stability criterion.  The most common analytical approach, the 

method of steps (Myshkis 1998), has been employed to solve for the tool response for a 

single degree of freedom system (Ozoegwu 2012). However, a numerical solution 

developed for Matlab (Shampine 2001) was eventually used due to the cumbersome nature 

of the analytical solution. 

In this chapter, an alternative approach is developed to analytically evaluate the 

time response of a single mode tool.  In this approach, the time response is composed of a 

set of curves which are independent of the system delay.  These curves are determined 

analytically and then combined through superposition to form the full time response of the 

tool. This process developed to evaluate DDEs is described in the following sections.  

2.1 Model Description 

The basic model used to develop the time domain solution is shown in Figure 4.  

The tool is modeled as a single mode, single degree of freedom spring mass damper system 

which is flexible in the feed direction of the tool.  The forcing function which acts on the 

tool during the cutting operation is derived by assuming orthogonal cutting conditions, 
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which are illustrated in Figure 5.  Under the orthogonal cutting assumption, the tool face is 

oriented normal to the feed direction, and the magnitude of the cutting force, F, is found as 

the product of the chip area (area of contact between the tool and the material), and the 

material cutting force constant, Ks.  The dominant cutting forces are assumed to be in the 

direction of the material flow (Ft), and the feed direction (Fn), which are related to the force 

magnitude, F, through a cutting force angle, β.  As the tool is assumed to be flexible only 

in the feed direction, only the normal component of the force, Fn, affects tool motions.  The 

cutting force constant, Ks, and the cutting force angle, β, are determined experimentally, 

and the chip area is calculated as the product of the instantaneous chip thickness, h(t), and 

the chip width, b. 

 
Figure 4: Single mode, single degree of freedom cutting force model, where the cutting force is 

proportional to the chip width, h(t). 
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Figure 5: Illustration of cutting forces acting on the tool during orthogonal cutting. 

The resulting force acting on the tool varies over time due to variability in the chip 

area caused by changes in the chip thickness, h(t).  The chip width describes the dimension 

of the chip area in the direction in which the tool is flexible; as such, tool point vibrations 

change the effective area of the chip, and leave a wavy surface on the part.  The resulting 

value of the chip thickness, h(t), is then a function of the tool position in the current pass, 

x(t), the tool position in the previous pass, x(t-τ), and the global feed per revolution, hm.  

The resulting expressions describing the force which acts on the tool, Fn, and the 

instantaneous chip thickness, h(t), are shown in equations 2.1 and 2.2.  The resulting 

differential equation describing the tool point dynamics in turning processes is shown in 

Equation 2.3. 

      cosn s tF t K bh  2.1 

   +x(t- )-x(t)mh t h   2.2 

  
cos

x+ x+ x= +x(t- )-x(t)s
m

bK
h

c k

m m m


  2.3 

The inclusion of a time-delay term in equation 2.3 makes it difficult to solve the 

differential equation analytically to obtain a time domain response of the system.  However, 
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if superposition concepts are applied to the system, it is possible to eliminate the time-delay 

term from the differential equation; thus, an analytical solution is more obtainable.  Before 

discussing the process used to solve equation 2.3 for turning, the general approach used for 

the solution is illustrated through a relatively simple DDE example of similar form. 

2.2 General Solution Approach 

The time delay term, τ, in equation 2.3 is required to describe the system dynamics 

because the instantaneous cutting force is dependent on the tool position during the 

previous revolution.  The resulting time delay differential equation (DDE) significantly 

increases the complexity for an analytical time domain solution.  Before delving into the 

processes used to solve equation 2.3 in particular, we will first discuss the general solution 

strategies for problems of this type.  

The method of steps (Myshkis 1998) is the most common approach to solve DDEs 

of this form (linear with a single, discrete time delay).  This method has been used to 

develop a time domain solution for turning in (Ozoegwu 2012), however, the solution 

process proved to be extremely cumbersome after only a few part revolutions, and a Matlab 

solver, dde23 (Shampine 2001), was employed to simulate the tool behavior over longer 

periods of time.  In this chapter an alternative approach is used to solve equation 2.3 which 

uses superposition to simplify the solution process.  The two solution approaches are 

compared by examining a relatively simple example DDE shown in Equation 2.4.   

     00, 0 1, 1y y t y y      2.4 

The method of steps solves DDEs by replacing the delay term, y(t – τ), with a known 

function which defines y over the previous time interval,  1n t n    , starting with an 

initial function, y0, defining the position on 0t    to start the solution process.  By 
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replacing the delay term with a known function, the DDE is converted into an ordinary 

differential equation (ODE) that can be solved over discrete time periods.  The general 

solution procedure is shown in Equation 2.5, where the solution over the interval, 

 1n t n    , is the solution to Equation 2.5 when the position from the previous 

interval, yn, is the input.  The initial condition at the start of each new interval is equal to 

the condition of the system at the end of the previous interval.  In this way, the total solution 

is found as a set of individual solutions, each defined over a discrete time interval of length 

τ.  The solution to equation 2.4 using the method of steps with a time delay of τ = 0.5s is 

shown in Figure 6, where each interval is defined by a single function, yn(t).  

 
     

   
1

1

, 1 ,nn

nn

y t y t n t n

y n y n

 

 





     


 2.5 

 
Figure 6: Solution to equation 2.4 using the method of steps with a time delay of τ = 0.5s. 

The approach developed in this paper to solve Equation 2.4 is similar to the method 

of steps in that it converts the single DDE into multiple ODEs.  However, rather than having 

a separate function describing the response over each individual time interval, 
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superposition is used to construct the total response using a set of individual solution 

curves, called sequential responses.  The sequential responses, yj(t), used to form the 

solution to Equation 2.4 are found by solving the recursive differential equation shown in 

Equation 2.6.  Note that the sequential responses are defined on a range of zero to infinity, 

and the initial condition is always zero valued.  In Equation 2.7 the first four sequential 

responses are calculated according to Equation 2.6, starting with the initial function, y0=1.  

Based on the patterns that emerge from the recursive solutions, the expression for any 

sequential response for this problem can be calculated directly using Equation 2.8. 

      1 , 0 , 0 0j j jy t y t t y
       2.6 
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 1

!

j j

j

t
y

j


  2.8 

The sequential responses described by Equation 2.8 form a set of basis curves 

which combine through superposition to form the total solution to Equation 2.4.  To form 

the solution to the DDE, each sequential response is added to the total solution at a delayed 

time, such that the sequential response, yj, starts at time t=(j-1)τ.  The structure of the total 

solution is defined in Equation 2.9 and a depiction of the process is shown in Figure 7.  

Note that the value of each sequential response is zero at the time which it is added to the 

total solution.  This is due to the zero initial condition established in Equation 2.6 which 
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prevents discontinuities in the total response (i.e. the conditions at the start of each time 

interval in the method of steps is already accounted for by the previous sequential responses 

in the superposition approach).   

  
 

    0

0 , 1

1 , 1j j

t j
y t

y t j t j



 





 
 

   
  2.9 

 
Figure 7: Illustration of how the total solution is constructed using the sequential responses.   

It is also interesting to note that as the delay approaches zero, the total response 

described by Equation 2.8 and 2.9 reduces to Equation 2.10.  The resulting summation is 

the series definition of te , which is known to be the solution to  0 0y y t    . 

  
 

0 0

1

!

j j

t

j

j j

t
y t y e

j

 


 


     2.10 

What is most significant about the superposition approach is that the sequential 

responses which constitute the total response of the system are independent of the time 

delay term, τ.  As such, for a given system the sequential responses need only be derived 
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once, and the total response can be determined for different values of τ by changing where 

in time the individual sequential responses are applied.  For example, in Figure 8 the 

solution to equation 2.4 using the superposition approach is shown for four different time 

delays.  Each solution shows significantly different behavior, however, the sequential 

responses which constitute the total solutions are the same in each.  This is in contrast with 

the method of steps, where the individual functions for each time interval, yn, must be re-

calculated if τ is changed.   

 
Figure 8: Sequential responses used to solve equation 2.4 for multiple delays, where the sequential 

responses are the same for each solution. 

The general process discussed here to solve linear DDEs with a single discrete time 

delay is now applied to the more complex turning process.  In the following sections, 

Equation 2.3 is modified to a form in which the superposition approach can be applied, and 

the resulting sequential responses for turning are derived.  These sequential responses are 

then combined with different time delays to produce the total time response of the tool 

during the turning process.  

2.3 DDE Solution for Turning 

Before applying the general solution approach described in the previous section to 

turning, Equation 2.3 must first be modified.  Consider now if at any time during the cut 
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we had prior knowledge of the approaching chip shape, including thickness variations 

created in the previous passes.  Figure 9 shows a diagram of this modified view of the 

system, where the shaded area described by the function hnom(t) is the nominal shape of the 

approaching chip relative to x=0.  This new function, hnom(t), combines all of the 

information about the approaching chip geometry (hm and x(t – τ)) into a single function 

which is dependent only on the current time progression, t.  As a result, the time delay term 

is no longer necessary to describe the shape of the chip and it can be dropped from the 

equation.  The resulting modified differential equation is given in Equation 2.11.  

 
Figure 9: Modified view of the approaching chip shape, where all information about the chip is combined 

into a single function, hnom(t). 

  x+ x+ x= (t)-x(t) , cosnom s

c k bR

m m m
h R K   2.11 

 cossR K   2.12 

After moving all x terms to the left side of the equation and simplifying, we are left 

with a final differential equation, Equation 2.15, describing the dynamic system as the tool 

passes over the chip profile, hnom(t). 



17 

 

 x+ x+ x= ( )nom

c k bR bR
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
 2.13 

 
pk k bR   2.14 

 x+ x+ x= ( )
p

nom

kc b
t

R
h

m m m
 2.15 

Equation 2.15 can be solved analytically to obtain the time domain response of the 

tool, however it requires prior knowledge of the approaching chip shape, hnom(t).  This is 

where superposition comes into play.  Consider a diameter turning operation in which the 

part is initially cylindrical, as shown in Figure 10.  As the tool feeds into the cut with a 

constant feed rate, the initial thickness of the chip is zero when the tool first makes contact, 

and the chip thickness increases linearly during the first part rotation.  After the first 

rotation is complete, at time t = τ, the nominal thickness of the chip is equal to the feed per 

revolution, and becomes constant because the slope of the tool motion is nominally 

canceled out by the slope of the material left behind in the previous rotation.   

 
Figure 10: Nominal chip thickness profile for a diameter turning operation with an initially flat face.   
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The input function plot, hnom(t), in Figure 10 represents the nominal shape of the 

chip for a turning operation assuming a rigid tool tip.  Although there is compliance in the 

system, this plot serves as a starting point for the superposition analysis.  The first 

application of superposition is to address the slope discontinuity in hnom(t) at t = τ.  This is 

done by combining two ramp input functions; one positive ramp function starting at t = 0 

  rev
nom

f
h t t



 
 

 
, and one negative ramp function with equal slope starting at t = τ 

  rev
nom

f
h t t



 
  

 
.  Through superposition, these two functions form the nominal chip 

shape, with a positive slope from 0<t<τ and a constant value for t>τ (see Figure 11(left)).  

Similarly, the total response of the tool tip can be obtained by combining the tool response 

to the positive ramp input starting at t = 0 and the tool response to the negative ramp input 

starting at t = τ (see Figure 11(right)).    

 
Figure 11: Use of superposition to form the discontinuous nominal chip shape by combining two 

continuous ramp functions (left), and illustration of how the responses of the two ramp functions 

individually combine to obtain the global response.   

The system response shown in Figure 11 would represent the motion of the tool if 

the tool point deflections in the previous pass had no effect on the motion of the tool in the 
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current pass (i.e. if this were a broaching operation with a nominal chip thickness profile 

described in Figure 10).  In reality, the motion of the tool in the previous pass will have a 

residual effect on the current tool pass.  For example, during the first rotation, the deflection 

of the tool leaves behind additional material that is not yet accounted for during the second 

rotation.  Fortunately, the profile of this additional material left behind during the first 

rotation is known to be x(t).   

This leads to the primary application of superposition, where the dynamic response 

of the system during the second rotation can be determined by combining the response of 

the negative ramp function in Figure 11 with the response to the additional material profile 

“left behind” in the first rotation.  In Figure 12 the material left behind in the first rotation, 

x1(t), is superimposed at the start of the second rotation and labeled as hnom,2(t).  It is labeled 

as hnom,2(t) because this additional material is now considered to be part of the nominal chip 

profile as the tool begins the second rotation.  The effect that this additional material will 

have on the tool motion can be found by inputting hnom,2(t) into Equation 2.15 and solving 

for x2(t).  Superposition is then used, combining the initial ramp response, x1(t) (starting at 

t=0), the negative ramp response, - x1(t) (starting at t=τ), and the response to the material 

left behind during the first rotation, x2(t) (starting at t=τ), to obtain the total tool response 

for the first two rotations, x(t) for 0 < t < 2τ.   
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Figure 12: Superposition used to find the total response of the tool as the combination of the initial positive 

and negative ramp functions, x1(t) and – x1(t), and the response to the material left behind after the first 

pass, x2(t). 

From an analytical point of view, the use of superposition to find the total response 

of the system during the second rotation can be justified by the fact that the solution to a 

linear ODE with multiple input functions can be obtained by solving the system response 

for each input individually, and then combining the individual responses.  This is illustrated 

in Equation 2.16 where the tool response during the second rotation is calculated based on 

the known chip profile.  The approaching chip profile can be described as a combination 

of the negative ramp function used to define the initial nominal chip profile, -hnom,1(t), plus 

the material that was left behind in the first rotation, hnom,2(t) = x1(t).  The total response 

during the second rotation can then be found by calculating the response to -hnom,1(t), which 
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is known to be –x1(t), with the additional response to the material left behind in the first 

rotation, x2(t). 
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The resulting response during the second rotation, x2(t) – x1(t), are combined with 

the response during the first equation, x1(t), starting at t = τ to obtain the total tool point 

response for the first two rotations. 

For the third rotation the same process is followed, except the inputs to Equation 

2.16 A are hnom,3(t)- hnom,2(t), where hnom,3(t) = x2(t), and hnom,2(t) = x1(t).  The resulting 

responses of the tool during the third rotation, x3(t) – x2(t), are combined and applied to the 

total response of the system starting at t = 2τ. 

As the number of rotations increases, the process is repeated, where the subsequent 

responses, xj(t) and –xj-1(t), are applied to the total response of the system starting at t = (j-

1)τ.  The resulting time domain response for the turning operation shown in Figure 10 is 

given in Equation 2.17, where N is the total number of part rotations, and xj(t) is the jth 

response to the initial ramp input function. 

    
     1

2 1

0 , ( 1)

, ( 1)1 1

N

j j j

t j
x xt t

x t x t t jj j



   

 
  

     
  2.17   

It can be seen from Equation 2.17 that the entire time domain response for the 

turning operation can be obtained by adding and subtracting a set of individual dynamic 
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responses (x1, x2, x3, etc.).  These sequential responses all stem from some initial 

“excitation event” that occurs as a result of the initial nominal chip shape.  For example, in 

the turning operation described in Figure 10, there are two locations on the initial nominal 

chip profile where abrupt changes in the slope result in tool tip excitation.  These slope 

discontinuities occur at the start of the two ramp functions which define the initial nominal 

chip profile (at t=0 and t=τ).  After the initial excitations, the tool will repeatedly pass over 

the material profile left behind in the previous pass, and the tool motion response to the 

material profile left behind one rotation prior will then become the chip profile that will be 

encountered in the next rotation. In this way, the residual effects of the initial “excitation 

events” will propagate with each new rotation. 

2.4 Sequential Response Solutions 

The sequential responses used in the superposition method are found by taking 

repeated tool passes over the same section of material, starting with an initial ramp material 

profile.  This concept is illustrated in Figure 13, where in the first pass, the tool passes a 

ramp material profile described by hnom,1(t) = t (note that a slope of 1 is used for hnom,1 for 

simplicity, and all responses can be scaled to reflect the actual slope which depends on the 

feed per revolution and the spindle speed).  The resulting motion of the tool during the first 

pass, x1(t), is found by solving Equation 2.15 with the input function, hnom,1(t).  The first 

response, x1(t), has an AC component superimposed on linear component with slope, V0.  

During the second pass, the tool will pass over the profile left behind in the first pass, 

hnom,2(t) = x1(t), generating the second response, x2(t).  With each successive pass, the 

output, xj(t), becomes the input, hnom,j+1(t) to Equation 2.15 for the next pass.   
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Each time the tool passes over the material section, the linear response of the tool 

will have a slope that is less than the slope of the material that it is passing over, where 

slope(xj) = V0
j and V0 < 1.  As a result, the linear component of the sequential responses 

will diminish as the number of passes increases.  The resulting AC components of the 

sequential responses will ultimately determine the stability behavior of the system, where 

the magnitudes of the AC component will either grow or decrease with each successive 

pass depending on the system parameters. 

 
Figure 13: Illustration of the first four sequential responses, where the dynamic response from each pass 

becomes the input function, hnom, for the next pass.   

It is worth noting at this time that a slope of one is used to describe the initial 

material profile shape for simplicity in the calculations.  Because this is a linear system, 

the sequential responses can be scaled to reflect the appropriate machining conditions.  
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Also note that the initial conditions for each successive pass will always be zero velocity 

and zero displacement.  When the sequential responses are applied in Equation 2.17, the 

sequential responses which begin at the start of each new part rotation are simply added to 

the responses from previous revolutions.  The responses from the previous revolutions 

already account for the conditions of the tool at the instant a new rotation begins.  As such, 

the contribution of the material left behind from the previous sequential response can be 

added to the total response assuming zero velocity and zero position initial conditions (see 

Figure 12).   

2.4.1 Sequential Response Calculation 

The sequential responses are calculated by repeatedly solving Equation 2.18, which 

is a modified form of Equation 2.15.  In Equation 2.18 the hnom term is replaced by xj-1 

which is the previous sequential response.  The initial function (or history function) used 

to initiate Equation 2.18 is x0 = t for the ramp input shown in Figure 13.   

 1 0x + x + x = , ( ) , (0) 0, (0) 0j jj j j

p

j x t t
kc bR

x
m m m

x x     2.18 

Where pk k bR  ,  cossR K  , and b  is the depth of cut.  The first step is to solve for 

the first sequential response using the initial input, x0(t) = t, as shown in Equation 2.19.   

 1 1 1 1 1x + x + x = , (0) 0, (0) 0
pkc bR

m m m
t x x   2.19 

The particular solution to Equation 2.19 has the form, 
1 1 2( )p Cx t C t  , which is 

solved to obtain the steady state solution shown in Equation 2.20.  The term, V0, represents 

the slope of the linear component of the response (shown in Figure 13), and has the value, 

0

p

bR
V

k
 .  
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The complementary solution to Equation 2.19 has the form: 

  1 ,1 1, sin( ) cos( )( ) At
a p pc bW t W tx t e     2.21 

Where A is the exponential decay term calculated using Equation 2.22, and ωp is the 

damped natural frequency of the system during the cut (when the effective system stiffness 

is kp.) and is calculated using Equation 2.23 or 2.24.   
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Combining xp1 and xc1 and solving for W1,a and W1,a based on the initial conditions, 

we obtain the first response to the input ramp function, x1(t), shown in Equation 2.25.  The 

total response and the AC component of x1(t) is shown in Figure 14.  Note the parameters 

used in the current exercise to find the first sequential responses in Figure 14 through 

Figure 16 are listed in Table 1. 
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Figure 14: First tool tip response, x1(t), to the initial ramp input function. 
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After replacing the constant terms in Equation 2.25 with G and H (defined in 

Equation 2.26) the input function to determine the second sequential response becomes, 

 1 0( ) sin( ) cos( )At

p pt e G t t tx V H H     
 

, and the ODE is: 
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p At

p p

kc bR
V

m m m
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The solution to Equation 2.27 is rather more cumbersome due to the added 

complexity of the input function.  The responses to the linear and DC components of the 

input function, seen in sections b and c in Equation 2.28, are found to be xp2b and xp2c.  The 

response to the decaying oscillation portion of the input function, labeled a in Equation 

2.28, can be solved for by determining the constant values, W0, W1,a, and W1,b, in the 

particular solution, xp2a.  The particular solution to the decaying oscillation portion of the 

input function was derived under the assumption that the frequency of the response will 
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have the same frequency as the input, and that there will be a phase shift of –π/2 because 

the frequency of the input is equal to the damped natural frequency of the system.  Note 

that a detailed derivation of the coefficients of xp2a can be found in   APPENDIX A.  
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After solving for the three particular solutions (xp2a, xp2b, and xp2c) and solving for 

W2a and W2b based on the initial conditions, the resulting function for the second sequential 

response is x2(t) in equation 2.29 and in Figure 15.   
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Figure 15: Total response and AC component of x2(t). 

Repeating this process to find the response of the third pass with hnom,3=x2(t) yields 

x3(t) in Equation 2.30 and Figure 16.  Note that a detailed explanation of the process used 

to solve Equation 2.18 is provided in   Appendix A. 
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Figure 16: Total response and AC component of x3(t). 

As the number of sequential solutions increases it becomes increasingly difficult 

(and impractical) to solve them by hand.  However, there are several patterns that emerge 

in the sequential solutions that can be used to develop a general expression for the solutions. 

It is apparent from the first three sequential responses (Equations 2.25, 2.29 and 

2.30) that the responses are predominately determined by an increasing number of sine and 

cosine terms which are multiplied by increasing powers of t.  The first three responses are 

again displayed in Equation 2.31, this time with phase shifts within each response such that 

the G term is always associated with sine, and the H term with cosine.    

Looking at Equation 2.31, several patterns emerge in the sequential response 

solutions as the number of passes increases.  First, the linear component of the responses 

follows the pattern;  , 0

j
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A third pattern that can be readily observed from Equation 2.31 is the relationship 

between the power of t and the phase shift which ensures that all sine terms are associated 

with G, and cosine terms with H.  The phase shift for each power of t is equal to the order 

of t multiplied by negative π/2, and the highest power of t for each solution is j-1 for the jth 

solution.  

The final component of Equation 2.31 to be generalized is the coefficients which 

appear in in front of the sine and cosine terms.  The highest power coefficients can be 

calculated directly using Equation 2.32 for the sine terms and Equation 2.33 for the cosine 

terms (See   APPENDIX A).     
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The remaining coefficients are dependent on other coefficients of the same solution 

and coefficients from the previous solution.  In the case of the t0 terms, the coefficients are 
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dependent on all of the particular solutions of the solution and the initial conditions.  The 

expressions for these coefficients are best expressed in matrix form as described in the next 

section and in   APPENDIX A.    

2.4.2 Matrix Form of Sequential Responses 

With the components of the sequential responses generalized, it is possible to 

represent them in matrix form to obtain the time domain response for any number of 

sequential passes.  The generalized matrix solution which produces the tool tip motion as 

a function of time for each sequential response is shown in Equation 2.34 where each 

component represents one of the patterns described in the previous section. 
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Sx(t) is the linear component of the solutions and is calculated in Equation 2.35, 

where N is the maximum number of part rotations to be modeled.   
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The W and L matrices piece together the sine and cosine terms with the correct 

power of t and phase shift (L) with the corresponding coefficient (W).  The G and H 

subscripts indicate which initial constant the matrices are associated with.  The L matrices 

are shown in Equation 2.36, and the W matrices in Equation 2.37. 
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The coefficients of the W matrices are calculated based on their position in the 

matrix.  The diagonal terms, which are associated with the highest power of t for the jth 

sequential response, are calculated using Equation 2.38.   
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The coefficients of the first columns of the W matrices, which are associated with 

the t of zero power, are calculated using Equation 2.39. 
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The remaining coefficients for the lower triangle of the W matrices are dependent 

on the values of the coefficients of the previous sequential response (Wj-1,i-1) and the 

coefficient of the higher order term of the current sequential response (Wj,i+1).  The lower 

triangle coefficients are calculated using Equation 2.40, and the upper triangle coefficients 

are all zero.  
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Finally, the coefficient in front of the oscillating terms is accounted for by Ow as 

shown in Equation 2.41. 
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The x subscripts in Equation 2.34 indicate that these are the matrices used to solve 

for position as a function of time.  Matrix forms for the sequential solutions of velocity and 

acceleration as a function of time are provided in APPENDIX B. 

 

2.5 Analytical vs. Numerical Simulations for Turning 

The matrix solution provides a structured method for determining the sequential 

responses, and we can now apply the responses to Equation 2.17 to generate the tool tip 

motion for the turning operation in Figure 10.  In order to compare the results of the 

analytical model to the numerical simulations, the sequential responses which compose the 

analytical solution must all be scaled by a factor of RPM*fr/60, where fr is the feed per 

revolution in meters.  As all sequential responses are derived based on an initial input slope 

of one meter per second, the actual responses must be scaled to reflect the global feed rate 

of the tool during the simulation, and the global feed rate can be found as RPM*fr/60.  Two 
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examples will be shown, both of which have a depth of cut, b, set at 10% above blim,crit, and 

the system parameters are shown in Table 1. 

Table 1: System parameters for turning examples 

k 5E7 N/m 

m 0.88 kg 

c 663.325 Ns/m (ζ = 0.05) 

Ks 2E9 N/m^2 

Β 70 degrees 

Feed per rev .076 mm (0.003 inch) 

 

In example 1 the operation is simulated at 2000 rpm and in example 2 it is simulated 

at 12000 rpm.  In Figure 17 the two examples are shown on the stability lobe diagram for 

this system, which predicts that example 1 will be unstable and example 2 will be stable.   

 
Figure 17: Stability lobe diagram showing the predicted stability for examples 1 and 2.   
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Figure 18: Example 1 positional response of the tool tip generated using analytical model (left) compared 

with the same response from a numerical simulation (right). 

The results from Figure 18 show the positional response from the analytical model 

and the numerical simulation.  The position responses shown here are the tool 

displacements relative to the nominal position of the tool, which eliminates the global 

linear feed of the tool during the operation.  The results from Figure 18 show that the 

response from the analytical solution closely matches the response from the numerical 

simulation.  However, the dominance of the linear component of the response makes it 

difficult to see details of the AC component responses.  In Figure 19 the acceleration 

response is applied using Equation 12.23 in APPENDIX B to eliminate the linear 

component.  Here again, the vibrational component of the tool tip response using the 

analytical solution matches that of the numerical solution.   
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Figure 19: Example 1 acceleration response of the tool tip generated using analytical model (left) compared 

with the same response from a numerical simulation (right). 

The acceleration response of the tool tip for example 2 is shown in Figure 20, which 

also shows a close agreement between the analytical and numerical solutions.  The 

resulting differences between the accelerations predicted analytically and numerically in 

Figure 20 are dependent on the time step used for the numerical simulation.  In Figure 21, 

the errors between the two acceleration results are shown as the time step is decreased from 

4E-4 seconds (approximately 20 data points per tool period) to 4E-8 seconds 

(approximately 20,000 data points per tool period).  These results show that as the time 

step is refined, the numerical simulation approaches the results predicted analytically, 

where the maximum error is reduced from 0.3 to 8E-8 m/s2 as the time step decreases from 

4E-4 to 4E-8 s.   
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Figure 20: Example 2 acceleration response of the tool tip generated using analytical model (left) compared 

with the same response from a numerical simulation (right). 

 
Figure 21: Error in the accelerations predicted analytically and numerically as the time step for the 

numerical simulation is reduced from 4E-5 s to 4E-8 s for Example 2 results from Figure 20. 

The time domain responses for the two examples in Figure 19 and Figure 20 were 

obtained by applying the sequential responses to Equation 2.17.  This process is illustrated 

in Figure 22, where the individual acceleration components of the sequential responses are 

plotted along with the total acceleration response for both examples.  Because the depth of 

cut, b, is the same in both examples, the individual acceleration components which 

combine to generate the total response are the same for both examples (although they have 
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different amplitude scales).  As such, the only difference between the two examples is the 

value of the time delay, τ.   

In example 1 τ=0.03s, corresponding to a spindle speed of 2000 RPM, and the 

individual pulses are spread out far enough in time that there is little interaction between 

them, and each pulse can be easily observed in the total response.  The lack of interaction 

in example 1 between the individual pulses means that the trend of the total response will 

likely follow the trend of the individual responses (i.e. if the amplitudes of the individual 

vibrations grow, so will the total response).   

In example 2, τ is much smaller due to higher spindle speed, and the individual 

vibration pulses have significant overlap.  The resulting interactions between the multiple 

vibration pulses have a cumulative constructive or destructive interference effect, which 

causes the total response to be stable or unstable depending on the value of τ.  In example 

2, the cumulative destructive interference between the multiple vibration pulses create a 

circumstance where the total response has decreasing amplitude with time while the 

individual acceleration vibrations increase over time.  
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Figure 22: Illustration of how the total tool tip response is generated from the sequential responses.   

2.6 Stability Analysis Using Sequential Responses 

The primary advantage of the analytical solution is that it allows us to directly 

determine the behavior of the system at any point in time without the use of iterative 

numerical techniques.  This is especially useful for determining the stability of the system.  

In Figure 23, the AC components of the positional response are shown for the two examples 

discussed in the previous section.  The solid blue lines in Figure 23 represent the full tool 

tip response for each point in time; however, all of this information is not necessary for 

determining stability.  Nominally, only two data points are required to determine whether 

the vibration amplitudes grow or decrease over time.  In Figure 23, these two data points 

are amp1 at t1 and amp2 at t2, and the stability of the system can be predicted depending on 

whether the vibration amplitude at t2 is greater than or less than the amplitude at t1 (note 

that the strategy used to select t1 and t2 to evaluate stability is discussed in the next section).   

Using this approach it is possible to predict stability of a system for any depth of cut, b, 

and spindle speed.   
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Figure 23: AC component of the tool position with the vibration envelopes for Examples 1 and 2. 

The primary objective in determining the stability of the system based on the system 

parameters is to find the boundary between the stable and unstable regions in the parameter 

space (spindle speed and depth of cut).  This boundary is typically found using the FRF 

approach which produces multiple “stability lobes” which represents the maximum stable 

depth of cut as the spindle speed is varied.  As the time domain approach and the FRF 

approach are both used to model the same system, we would expect to find the same limit 

of stability using either approach.   

A program was created to determine how well the stability limit predicted using the 

time domain approach agrees with the stability lobe diagram predicted using the FRF 

approach.  The program calculates the magnitude of the vibration envelop (see Figure 23) 

at two points in time over a range of depths of cut, b, at a fixed spindle speed.  The 

difference in the vibration magnitudes is recorded for each value of b, and the limit of 

stability, blim, is found as the value of b at which both vibration magnitudes are equal.  This 

process repeats for multiple spindle speeds to produce a stability lobe diagram.  The 

resulting stability lobe diagram for the system described in Table 1 is shown in Figure 24 

along with the stability lobe diagram predicted using the frequency response approach.   
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Figure 24: Stability lobe diagram derived using the Frequency Response Function (FRF) and the time 

domain equations for the system described in Table 1. 

Note that the stability lobe diagram is shown here over a range of 3,000 to 150,000 

RPM.  These spindle speeds are extremely high for turning operations, however, it is 

convenient to compare the stability predictions of the time domain and frequency response 

approaches at higher speeds where the higher peaks in the stable regions occur.  

2.7 Sequential Response Equation Analysis 

The equations developed thus far to describe the sequential responses represent the 

exact solutions for an initial ramp input.  This exact form of the sequential responses is 

capable of generating the time response of the tool analytically, and can be used to generate 

a stability lobe diagram which matches the stability lobe diagram predicted using the FRF 

approach.  However, the complexity of the exact sequential responses increases as the 

number of responses increases, and it becomes difficult to perform additional analytical 

studies based on these equations.  As such, it is convenient for analysis purposes to reduce 

the equations into a more concise, approximate form. 

Looking at the W coefficient matrices in equations 2.37 through 2.40, the values of 

the coefficients decrease by approximately a factor of 1/ωp as the power of t decreases, 
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where ωp is the natural damped frequency of the system in rad/s (ωp is approximately 8000 

rad/s in the example in Table 1).  This effect can be seen in equation 2.42 where the 

coefficients of the first five responses are shown in matrix form.  In equation 2.42, each 

row corresponds to the coefficients for one of the sequential responses, and each column 

corresponds to a specific power of t, such that the coefficients of column 2 are multiplied 

by  sin
2pt t   , and coefficients from column 4 are multiplied by  3 3sin

2pt t   , 

and so on.  For each response, the highest power diagonal coefficients are calculated 

directly using equation 2.38, and the remaining coefficients to the left of the diagonal term 

are calculated using equations 2.39 and 2.40.  Because of the influence of ωp in equations 

2.39 and 2.40, it can be seen that the values of the coefficients are highest for the diagonal 

terms, and each subsequent term to the left decreases by approximately three orders of 

magnitude.  From this, it can be assumed that the AC component of each response is 

dominated by the highest order oscillation term if ωp is large, and each response can be 

approximated by neglecting the lower order coefficients.   

 ,
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After neglecting all lower triangle terms in the W coefficient matrices in equation 

2.34, the solution form for the AC component of the sequential responses reduces to 

equation 2.43.  In Figure 25 the AC components from the approximate sequential response 

solution (equation 2.43) are compared with the exact solutions for the first five responses.  

The results from this comparison show that there are some differences between the exact 
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and approximate solutions, especially at low values of t; however, the majority of the 

vibration behavior over the duration of the sequential responses is captured in the 

approximate expression.    
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Figure 25: Illustration of the vibrational envelope for the first ten sequential responses. 

The approximate form of the sequential responses can be further reduced if the 

actual magnitude and phase of the responses are not required.  This is the case when 

performing stability analysis, where the objective is to determine whether amplitudes grow 

or decrease over time.   As the global response of the tool is determined by superimposing 

the individual sequential responses together, the only information required to determine 

stability are the amplitudes and the phases of the responses relative to each other.  As such, 

all the constant terms in equation 2.43 can be neglected and the Gsin(θ) and Hcos(θ) terms 

can be combined into a single oscillatory term.  The resulting expression describing the 
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relative amplitudes and phases of the sequential responses is provided in equation 2.44.  

The vibrations in equation 2.44are normalized such that the initial response is a decaying 

oscillation of an initial magnitude of one, such that    
,1

pi A t

Normx t e
 

 , and the remaining 

responses have amplitudes and phases relative to xNorm,1.  
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2.8 Stability Analysis 

The stability lobe diagram is the primary outcome of stability analysis for 

machining operations.  Shown in Figure 26, the stability lobe diagram shows the stable and 

unstable regions as a function of the depth of cut, b, and the spindle speed.  There are two 

important features of the stability lobe diagram which will be used to compare the results 

obtained from the frequency domain approach and the approximate time domain approach 

using equation 2.44.  The first feature is the value of blim,crit, which is the maximum depth 

of cut at which the operation will be stable at any spindle speed, and the second is blim, 

which represents the boundary between the stable and unstable regions, and gives the 

maximum stable depth of cut at a given spindle speed.   
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Figure 26: Stability lobe diagram, showing the regions of stability and instability based on the spindle 

speed and the depth of cut.   

2.8.1 Calculation of blim,crit 

An approach to determine a value of blim,crit based on the time domain equations can 

be found by observing the behavior of the sequential responses as the value of b is varied.  

In Figure 27, the first ten sequential responses are plotted using the equation 2.44 for two 

different values of b.  It can be seen from both sets of responses that each individual 

response contains a pulse of vibration that is the result of excitation from the previous 

vibration pulse, starting with the initial decaying oscillation.  With each successive pass 

the pulses widen out and the location of the maximum amplitude shifts later in time.  The 

primary difference between the two sets of responses in Figure 27 is that the vibration 

magnitudes decrease when b is less than blim,crit, and increase with each successive pass 

when b is greater than blim,crit.  As the growth rate of the sequential response amplitudes 

depends on the value of b, the strategy for finding blim,crit is to determine the value of b at 

which the maximum amplitudes of subsequent vibration pulses neither increase or decrease 
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as the number of responses increases.  As the total response of the tool is a combination of 

the sequential responses, it can be assumed that if the sequential response amplitudes 

diminish to zero, than the total response must also diminish over time (stable condition).  

Furthermore, if the sequential responses grow over time, than there is a potential that the 

total response will also grow (unstable condition).   

 
Figure 27: First ten sequential responses when b<blim,crit (left) and when b>blim,crit (right) approximated 

using equation 2.44. 

In order to determine the behavior of the sequential response amplitudes, it is 

convenient to use the absolute value form of Equation 2.44 which describes the oscillation 

envelopes of the sequential responses (see Equation 2.45).  The vibration envelopes of the 

first ten sequential responses are plotted in Figure 28, where the same amplitude trends can 

be observed depending on the value of b.   
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From Figure 28 it can be observed that there is a regular spacing in the time at 

which the maximum amplitudes occur from one response to the next.  By differentiating 

equation 2.45 and setting the result equal to zero, it can be determined that the maximum 
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amplitude of the jth response occurs at time, 
( 1)

t
j

A



 (see APPENDIX C for derivation).  

The time of the maximum amplitude can then be substituted into equation 2.45 to determine 

the maximum amplitude of the jth response, as shown in equation 2.46. 
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Figure 28: Illustration of how the maximum amplitudes of the vibrational envelope either decrease or 

increase which each subsequent pass depending on the value of b.   

blim,crit is calculated as the value of b at which the maximum amplitudes from two 

subsequent responses are equal as the number of responses goes to infinity, as shown in 

equation 2.47.   

 
, , , , , 1when aslim crit Env max j Env max jx jxb    2.47 

To evaluate this expression, equation 2.46 is used and two subsequent maximum 

amplitudes are set to be equal, as shown in Equation 2.48.    
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After evaluating equation 2.48 as j goes to infinity, the expression for b reduces to 

Equation 2.49.   
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After applying the identities, 
2

p

k bR k

m m m
   , 

k
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m
 , and 

cossR K  , and solving for b, the resulting expression for blim,crit, which satisfies 

equation 2.48 is: 
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The expression for blim,crit in equation 2.50 derived from the sequential response 

equations is the same expression for blim,crit derived from the frequency response approach.  

Note that a detailed derivation of blim,crit using both approaches is provided in APPENDIX 

C. 

2.8.2 Calculation of blim  

The calculation of blim,crit in the previous section can be achieved by examining the 

amplitudes of the individual sequential responses as the number of responses increases.  

The determination of blim is more involved because we are now interested in the behavior 

of the total response as a function of the spindle speed.  The behavior of the total response 

can be approximated by applying the normalized sequential response functions in equation 

2.44 to equation 2.51. 
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Equation 2.51 is a simplification of equation 2.17 which describes the exact tool 

response for the “double ramp” turning model developed previously.  Equation 2.51 

neglects the second “negative ramp” input and only considers how the sequential responses 

resulting from the initial ramp function interact over time.  Since the effect of both ramp 

inputs is the same, the stability behavior resulting from one of the ramp inputs will be the 

same as for the combination of the two inputs which start at different points in time.  For 

example, since the total response is determined by the effects of two initial excitation 

events, such that       1
B tBt Bt B

totx t C e e Ce e
      , then the stability behavior, 

determined by the sign of B, of the total system is equal to the stability behavior of the 

individual components as long as 0  . 

The strategy for determining blim is to calculate the amplitude of the total response 

according to equation 2.51 at two points in time, and find the value of b at which the two 

amplitudes are equal.  The first thing to consider is how to select the two points in time 

which will be used during the analysis.  From Figure 23, it can be seen that the total 

response has a wavy oscillation envelope which can lead to errors in the global stability 

determination if the two points in time are not selected appropriately.  The strategy 

employed here is to select two points in time which correspond to the maximum amplitude 

locations of two subsequent sequential responses.  This concept is illustrated in Figure 29, 

where the times selected to evaluate the system, ta and tb, correspond to the peak amplitudes 

of the fifth and sixth sequential responses.  The times used to evaluate stability can be 

calculated using Equation 2.52, where NEval is the number response  used to find the peak 

time, ta (NEval = 5 in Figure 29).  Although times ta and tb are not guaranteed to be the local 

peak locations of the full solution, this approximation strategy does show to be effective 
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when comparing stability limit predictions with stability limits predicted using other 

techniques (see Figure 30).   
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ta and tb represent the global times at which the total vibration amplitudes are 

sampled.  In order to construct all of the individual responses according to equation 2.51, 

each individual sequential response must be evaluated at a local time, defined as ta,j and tb,j, 

in equation 2.53 which corresponds to the global times, ta and tb, for each individual 

response.   After evaluating all of the sequential responses using equation 2.53, we are left 

with two vectors describing the relative magnitudes and phases of the sequential responses 

at ta and tb.  The magnitude of the total response at times ta and tb can then be determined 

as the absolute value of the vector summation of all of the individual responses, as shown 

in equation 2.54.  The general process used to determine stability based on the depth of cut, 

b, and the spindle speed is depicted in Figure 29. 
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Figure 29: Depiction of the multiple impulses which are active at two points in time. 

The process depicted in Figure 29 is used for multiple values of RPM (or τ) to 

generate a stability lobe diagram based on the approximate time domain equations shown 

in equation 2.44.  In Figure 30 the stability lobe diagram generated by evaluating the two 

points in time associated with the maximum amplitudes of the 10th and 11th pulses is 

compared with the stability lobes generated from the frequency response function and the 

complete time domain solution.  These results show that the stability lobe diagram 

produced using the complete time domain solution is closely aligned with the FRF lobes, 

while there is a small shift to the right for the stability lobes produced using the approximate 

solution.  While there are some discrepancies, it is clear from Figure 30 that the 

approximate sequential response equations can be used to effectively approximate stability 

behavior in a significantly more concise solution form.  
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Figure 30: Comparison of stability lobe diagrams generated using the FRF approach, the complete time 

domain solutions, and the approximate time domain solutions.   

2.9 Conclusions 

In this chapter the sequential response approach for solving DDEs was developed 

to solve for the time response of a tool analytically.  This method is a convenient approach 

because the sequential responses are independent of the time delay term, so they need only 

be calculated once for a given depth of cut, b.  It was shown through example that the time 

responses predicted analytically match those found through numerical simulation and that 

the global stability behavior exhibited by the analytical solutions match those predicted 

using frequency domain methods.   

In the following chapters the basic concepts developed in this chapter for a single 

mode turning model are expanded to incorporate multiple modes and different machining 

operations.



  EXPANDING TO MULTIPLE MODES  

Equation Chapter 3 Section 1  

An analytical time domain model is developed to predict the motion of a multi-

mode cutting tool during orthogonal turning operations.  This model is an extension of a 

single mode model that finds the solution to the governing delay differential equation 

(DDE) as a combination of constituent curves (sequential responses) which are 

independent of the delay term, τ.  In the current model, the delay independent constituent 

curves are found through a recursive state-space solution wherein the individual modal 

displacements are determined for each sequential response.  In this chapter, the solution 

process is described in detail for a 2 mode system and the resulting analytical time 

responses are compared with numerical simulations.   

3.1 Turning Model 

  ,
x+ x+ x= x(t- )-x(t)

s xbc k

m m m

K
   3.1 

A time-domain solution for turning is developed in which the total solution of the 

delay differential equation (DDE), shown in Equation 3.1, is composed of a fixed set of 

curves which combine together through superposition.  These constituent curves, referred 

to as sequential responses in the previous chapter, are determined by recursively solving 

the ordinary differential equation shown in Equation 3.2.   
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Where m is the modal mass, c is the damping coefficient, k is the stiffness, b is the 

depth of cut (for orthogonal turning), Ks,x is the material cutting force coefficient in the x-

direction, xj is the current tool point position, xj-1 is the solution of the previous sequential 

response, and xinit. is the initial input function from which the recursive solutions progress.  

The sequential responses derived in Equation 3.2 are independent of the delay term, τ, 

however the delay term is accounted for when the total solution is composed according to 

Equation 3.3. 
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For single mode systems, the sequential responses can be iteratively solved directly 

using Equation 3.2 as was done in the previous chapter.  For multiple modes, however, 

intermodal dependencies due to the forcing function require a state space solution.   That 

is, because the total motion of the tool contains components of each individual mode, the 

instantaneous chip thickness, and thus the force applied to each mode is dependent on the 

motions of every mode.   

Take for example the two DOF linear, orthogonal turning model shown in Figure 

31.  Through modal analysis, the total position of the tool can be determined as the 

summation of the two modal mass positions, assuming that the eigenvector matrix is 

normalized to x1, such that, 1 1 2x q q  .   Although the free response of the system can 

be determined by analyzing the two decoupled modal systems independently, the inclusion 

of the forcing term, F(t), which is dependent on the position of both modes according to 

Equation 3.4 causes the modal system to be recoupled when the tool is in the cut.   
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Figure 31: Two degree of freedom turning model local and modal representation, where the force applied to 

the two independent modal systems is proportional to the position of the tool point, x1.  

The resulting system of equations for the two modes in Figure 31 is shown in 

Equation 3.5.  The approach for solving this system of linear delay differential equations 

(DDEs) is the same approach used to determine the sequential responses for the single DOF 

system in Equation 3.2.   
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  3.5 

The system of equations is evaluated by first putting them in a recursive form from 

which the subsequent sequential responses can be calculated.  This is done by separating 

all of the terms by placing all current time terms (t) on the left side of the equation, and all 

delayed terms (t-τ) on the right side.  The resulting recursive expression used to determine 
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the sequential responses for the two degree of freedom system is shown in Equation 3.6, 

where the subscript, j, indicates the jth sequential response.  Note that in Equation 3.6 the 

subscript for x1 is omitted, and the new x subscripts indicate the motion of the tool for each 

response.  In the recursive solutions, the initial conditions are zero for the initial velocities 

and displacements         1, 2, 1, 2,0 0 0 0 0j j j jq q q q     except for the initial 

response (    
1,1 1, 2,1 2,0 , 0init initq q q q  ,    

1,1 1, 2,1 2,0 , 0init initq q q q  ) which are 

defined by the user, and the history function describing the initial shape of the surface is 

defined as  
0 initx x t . 
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  3.6 

After modifying the system of equations by separating the current time and delay 

terms in Equation 3.6, the system equations are recoupled due to the presence of all modal 

positions in each equation.  To solve for the coupled modal positions, and thus the 

sequential responses, xj, a state space solution is used to again decouple the modified 

system.  The state variable, r, is defined in terms of the modal positions and velocities in 

Equation 3.7, and the matrix form of the state space equations is shown in Equation 3.8 
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The state space system in Equation 3.8 is decoupled by substituting 
1A VDV  , 

where V is the matrix of eigenvectors of A, and D is a diagonal matrix of the eigenvalues 

of A.  After pre-multiplying both sides by 
1V 
, and substituting the variables, 1W V R , 

and 1

1jG V F x

 , the system of equations becomes: 

       W D W G    3.9 

The decoupled system of equations in Equation 3.9 can now be used to solve for 

W, which is then converted back to modal coordinates to ultimately determine the motion 

of the tool for each sequential response.   

Before discussing the solutions to Equation 3.9, consider the general process used 

to determine the sequential responses for the 2 mode system.  In Figure 32 the iterative 

solution described in Equation 3.6 is shown in relation to Equations 3.8 and 3.9.  During 

each iteration, the function describing the previous sequential response is applied to the 

forcing vector, F, in Equation 3.8, which is then transformed to the forcing vector, G, in 

the decoupled system in Equation 3.9.  Once the decoupled variables, W, are solved for 
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based on the forcing vector, G, the solutions are transformed back to obtain the solutions 

for the state variables, R.  The resulting state variable solutions for the modal displacements 

are then combined to determine the total tool displacement for that iteration , xj.  This 

process repeats, where in each iteration the sequential response, xj, becomes the input, xj-1, 

to determine the next sequential response. 

  
Figure 32: Diagram showing the recursive solution process used to find the sequential responses for 

multiple modes, where a new function, xj, is found during each iteration which is dependent on the previous 

function, xj-1. 

3.2 Solutions for Decoupled State Variables 

The decoupled state space variables, wn, are found by solving the first order 

differential equation shown in Equation 3.10 based on the input function, gn.  The solution 

form for wn is dependent on the form of the of the input function, gn, which has the same 

form as the previous sequential response function, xj-1(although the coefficients will change 

while transforming from xj-1 to F to G).   

 n n n nw w g    3.10 

Let us start by finding the solution to the first sequential response when the initial 

function (or history function) is zero, xinit(t) = 0, the initial modal displacements are zero, 

and the initial modal velocities are one         1 3 2 40 0 0, 0 0 1r r r r    .  Note that in this 

example the DC force component caused by the constant feed per revolution, hm, is 
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neglected, and the initial modal velocities serve as the initial system perturbation.  During 

this first response the input function, G, is zero, so the decoupled state solutions are found 

as the complementary solutions satisfying the initial conditions.  After transforming the 

initial conditions,   10 (0)W V R , the decoupled state solutions for the first response are 

calculated using Equation 3.11. 

  
, ,0 , ,0, 0nt

n w n w n nw a e a w


    3.11 

Once the decoupled state variables are known, they are converted back to the initial 

state variables, R VW , and the actual tool point position is found as      
1 1 3jx t r t r t   .  

In this two mode example, the function describing the tool motion for the first response has 

the form shown in Equation 3.12.  

 31 2 4

1 ,1,0 ,2,0 ,3,0 ,4,0

tt t t

x x x xx a e a e a e a e
  

      3.12 

During the second sequential response, the forcing terms in the decoupled system 

of equations are obtained from the previous sequential response, resulting in the system of 

first order equations shown in Equation 3.13. 

 
31 2 4

2

,1,0 gn,2,0 gn,3,0 gn,4,0 gn,u,0

1

u

N
t tt t t

n n n gn n n

u

n
g

w w a e a e a e a e w a e
    



         3.13 

The solutions to Equation 3.13 are found as a combination of the particular 

solutions from each individual forcing term, and the complementary solution based on the 

initial conditions (note that all initial conditions are zero for all sequential responses except 

for the first).  The solution process for the particular solutions depends on the forcing term 

being applied, which is associated with the eigenvalue λu, to a particular decoupled state 

variable, which is associated with the eigenvalue λn.  Take for example the solution to w1 
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shown in Equation 3.14.  When the eigenvalue in the forcing term is not equal to the 

eigenvalue of the decoupled state variable (n ≠ u), the resulting particular solution has the 

same form as the forcing function.  However, if the two eigenvalues are the same (n = u), 

the particular solution form cannot be the same as the forcing function because the forcing 

function has the same form as the complementary solution.  As such, an additional term 

with an increase in degree t is added to the particular solution when n=u as shown for w1,1 

in Equation 3.14. 
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Once determined, the decoupled state variables are again converted back to x, and 

the resulting function describing the second sequential response has the form shown in 

Equation 3.15.  The second sequential response now contains polynomials of degree 1 due 

to the particular solutions for w when n=u.  In the following sequential response, these 

polynomials are applied in the forcing function, and the resulting solutions will contain 

polynomials with an increase in degree of one (due to the particular solutions when n=u).  

With each subsequent response the resulting solution polynomials increase by one degree 

so that the solution form for the jth response has the form shown in Equation 3.16, where 

the subscript v indicates polynomial coefficient of degree v.  

        31 2 4

2 ,1,0 ,1,1 ,2,0 ,2,1 ,3,0 ,3,1 ,4,0 ,4,1

tt t t

x x x x x x x xx a a t e a a t e a a t e a a t e
  

          3.15 
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  
12 2

2 1

,n,0 ,n,1 ,n,2 ,n, j 1 ,n,

1 1 0

... n n

jN N
t tj v

j x x x x x v

n n v

x a a t a t a t e a t e
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




  

 
       

 
     3.16 

The solution coefficients are found by solving the first order differential equation 

in Equation 3.10 when the forcing function, g, is a polynomial with known coefficients, ag, 

multiplied by an exponential term, ut
e


.  The solution coefficients, aw, are calculated 

directly based on the input coefficients using Equation 3.17, and then converted back to r 

where like terms are combined to determine the sequential response coefficients, ax.  Note 

that a detailed explanation of Equation 3.17 can be found in Appendix D. 
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3.3 Example Solution 

The solution process described in the previous section is applied to a two mode 

system having the system modal parameters shown in Table 2.  The example system is 

evaluated at a depth of cut of 3mm and at a spindle speed of 8000 RPM in the first example, 

and 6000 RPM in the second.  In both examples the initial modal positions are zero and the 

initial modal velocities are 1 m/s, and the cutting force constant in the x direction is, Ks,x = 

6.84x108 N/m2.  Not that in these examples the initial velocity conditions serve as the initial 

perturbation event instead of the double ramp approach used in the previous chapter.  The 

stability lobe diagram of the system is shown in Figure 33, where the conditions are in the 

stable region for example 1, and in the unstable region in example 2.   
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Table 2: Modal Parameters for Example System 

 

 
Figure 33: Stability Love Diagrams found using Tlusty’s approach for the for the two mode example 

system with parameters shown in Table 2, where the spindle speeds and depth of cut for the two examples 

are labeled.   

A Matlab program is used to solve for the coefficients of the sequential response 

solutions and to construct the total tool point response for the two examples.   Within the 

program, the state transition matrices are first determined based on the modal parameters, 

and the solution process illustrated in Figure 32 is used to find solutions for the sequential 

responses.  For each response, the solution coefficients are found base on the transformed 

coefficients from the previous response according to Equation 3.17.  Finally, the individual 

sequential response solutions are combed to form the total tool point response according to 

Equation 3.3.  The total tool point response for the first 12 rotations for example 1, and the 

first 8 rotations for example 2 are shown in Figure 34.   

The long term tool behavior in the two examples agree with the predictions of the 

stability lobe diagram (stable for example 1 and unstable for example 2).  The two examples 
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have differing spindle speeds but have the same depth of cut, as such, the sequential 

responses which form the total solutions are the same (the sequential responses are 

independent of the delay, but dependent on the depth of cut, b, due to the forcing vector, 

F, in Equation 3.8).  This is illustrated in Figure 35 which shows the sequential responses 

plotted with delays according to Equation 3.3 which are then combined to form the total 

solution.  It can be seen from these two examples that despite having the same set of 

sequential responses, the total long term behavior of the system is determined by the 

cumulative constructive and destructive interferences between the sequential responses at 

different delay periods. 

 
Figure 34: Total tool point response for the first 12 part rotations for Example 1, and the first 8 part 

rotations for Example 2. 
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Figure 35: Plots of the sequential responses which are shifted in time to compose the total tool point 

response according to Equation 3.3  

3.4 Numerical Simulation Comparison 

The analytical solutions based on the sequential response approach for multiple 

modes are compared with numerical simulations for the conditions of example 2 in Figure 

34.  Euler integration is used in the simulations to numerically evaluate the modal 

displacements based on the delay differential equation in Equation 3.1.  The analytical 

solution is compared with the numerical solution evaluated a time steps from 5x10-5 to 

2.5x10-6 seconds, which corresponds to a range of 21 to 425 points per oscillation of the 

highest frequency mode.  The resulting error plots in Figure 36 show that the error between 

the two solutions decreases as the time step in the numerical simulation is decreased.  The 

decrease in the error as the time step is refined can be seen in Figure 37, which shows the 

maximum error decreasing as the number of points used in the numerical simulation 

increases. 
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Figure 36: Error plots comparing the tool responses obtained using the analytical sequential response 

approach and numerical simulations.  

 
Figure 37: Plot of the maximum error between the numerical and analytical results for example 2 as the 

time step is refined. 
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3.5 Conclusions 

The ability to analytically predict the time response of a tool with multiple modes 

greatly expands the potential applications of the methods developed in this dissertation.  

Moving forward, the equations and processes developed in this chapter are incorporated 

into a matrix solution which allows for the sequential responses to be determined more 

effectively.  However, first, the analytical predictions made thus far in this dissertation are 

tested experimentally to verify that the predictions are representative of the physical 

process. 

 

 



  EXPERIMENTAL VERIFICATION  

Equation Chapter 4 Section 1  

Experimental tests are conducted to verify that the tool motions predicted in the 

analytical solution for orthogonal turning developed in this work can be observed 

experimentally.  The experiment is set up to create a single mode cutting tool, however, 

due to additional significant modes which appear in physical measurements of the system, 

the multiple mode solution is used for comparison.   

The general experimental setup is shown in Figure 38 and a picture of the actual 

setup is shown in Figure 39.  The main component of the experiment setup is a monolithic 

leaf type flexure machined from Aluminum 6061.  The flexure is mounted to the machine 

axis and is designed to be most flexible in the z direction.  To create an orthogonal turning 

operation, the cutting tool is mounted to the flexure tool holder orthogonal to the z axis, 

and a tubular work-piece (also Aluminum 6061) with a known wall thickness is machined.  

The use of a tubular work-piece guarantees that chips being formed have a rectangular 

profile with a constant depth of cut (equal to the wall thickness) and a variable thickness 

in the z direction.   

The objective of the experiments is to measure the motion of the tool after it is 

perturbed while engaged in the work-piece.  According to the regenerative chatter theory 

on which the analytical solution is based, the tool will be repeatedly excited by the wavy 

surface that the tool left behind during the previous part revolution.  During the 

experiments, the tool is initially excited by striking the back end of the tool holder with an 

impact hammer (PCB 086C04).  Force data from the hammer impact is used in post 



68 

 

processing to obtain the initial states of the tool after the hammer strike for use in the 

analytical solution and for FRF measurements while the tool is in the work piece.  The 

resulting motion of the tool is measured using a capacitance gage (Lion Precision C5-D 

W/LEMO).  The capacitance gage is mounted to the machine z axis along with the base of 

the flexure and measures the relative z displacement of the tool.   

 
Figure 38: General experimental setup, using a flexure tool holder to machine a tubular work-piece. 
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Figure 39: Picture of experimental setup. 

Before each experiment the work piece is pre-machined to have a constant wall 

thickness which is then measured.  Prior to the start of the test, the flexure is struck multiple 

times with the impact hammer and displacement measurements are taken with the 

capacitance gage.  These impact measurements are used to obtain the FRF of the system 

while the tool is free.   After the free FRF measurements are taken the tool feeds into the 

rotating work-piece at a constant feed rate.  Once fully in the cut, the tool holder is again 

struck multiple times and the tool displacements are measured.  Striking the tool with the 

impact hammer while in the cut has two primary purposes for the experiment; first, the 

measurement of the perturbation force is used to determine the conditions of the system 

after the strike for use in the analytical model, second, it is used for a cutting FRF 

measurement that provides direct information on the amount of process damping present 

while the tool is cutting.  After the tests the force and displacement data are processed and 
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the analytical solution is compared with the experimental results.  Further details of each 

of these steps is provided in the following sections. 

4.1 Flexure Modal Testing 

The aluminum flexure for these experiments was designed to be most flexible in 

the z direction (feed direction).  FRF measurements are taken for the flexure structure in 

all three directions, where the x y and z directions are shown with respect to the flexure in 

Figure 40.  The FRF measurements are found using tap tests using a PCB 086C04 impact 

hammer and a PCB 352C23 accelerometer and the resulting FRF measurements were 

generated using TXF software.  Five measurements were taken, three direct FRFs in the x 

y and z directions (FRFXX, FRFYY and FRFZZ), and two cross FRFs (FRFXZ and FRFYZ). 

 
Figure 40:  Flexure coordinates for modal tap tests. 

The resulting FRF measurements are shown in Figure 41 and the stiffness values 

and natural frequencies of the most flexible modes from Figure 41 are shown in Table 3.  

From Figure 41 it can be seen that the most flexible mode occurs at 447 Hz in the z direction 

and the second most flexible mode occurs at 1358 Hz in the x direction.  The flexible mode 

present in the x direction is likely due to twisting motions in the flexure when forces are 

applied to the tool point location.  However, motions in the x direction are not expected to 
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significantly affect the results of the experiments because motions the x direction do not 

affect the profile of the chip in orthogonal turning.  Furthermore, as discussed in the 

following section, the cutting forces in the x direction are negligible compared with forces 

in the z and y directions.   

The resulting stiffness values in the y direction (which can affect the chip profile) 

are 28 times larger than the z direction, and the effective stiffness in the z direction as a 

result of forces in the x and y directions are 17 and 22 times larger respectively for the most 

flexible modes.  The results from these measurements indicate that the flexure structure 

designed for these experiments can effectively represent the analytical model, which only 

considers forces and motions in the z direction. 

 
Figure 41:  Five frequency response functions for the experiment flexure, where the most flexible mode of 

the structure is in the Z direction (black).  
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Table 3: Stiffness and natural frequency of the most flexible modes from Figure 41.. 

FRF k (N/m) fn (Hz) 

FRFZZ 1.36 x107 447 

FRFXX 4 x107 1358 

FRFYY 38.3 x107 347 

FRFXZ 22.9 x107 431 

FRFYZ 29.9 x107 451 

 

4.2 Cutting Force Tests 

Cutting force tests are conducted to determine the cutting force coefficient of the 

work-piece material (6 inch diameter Aluminum  6061) using the same tool insert used for 

the position measurement experiments (coated carbide insert with 8° rake angle and 11° 

relief angle).  A diagram of the cutting force test setup is shown in Figure 42.  The objective 

of this test is to determine the magnitude and direction of the cutting forces as the area of 

the chip changes.  Forces are measured using a Kistler 9257B dynamometer which is 

attached to the machine axes and holds the tool holder.   

 
Figure 42: Cutting force experimental setup to measure the cutting forces as the chip area changes. 

Three values of chip width, b, are used during the experiments (b=0.025”, 0.041”, 

and 0.057”), and for each chip width, the tool moves at three feed rates (feed/rev=0.002”, 

0.003”, 0.004”), resulting in a total of nine different chip areas.  Each of the tests is 
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conducted at 300 and 600 RPM.  An example of the force signal collected during one of 

the tests is shown in Figure 43.  During the test the chip width is held constant and the 

machine is programed to move at three separate feed rates, resulting in three different chip 

areas.   

 
Figure 43: Example of the force measurements obtained from one test, where the chip width, b, is held 

constant at 0.041 inch, and the chip thickness changes from 0.002” to 0.003” to 0.004” as the feed rate 

changes with a spindle speed of 300 RPM. 

When the cutting force tests are complete, the average cutting forces in the three 

directions are found over each feed rate range.  These average values are then plotted as a 

function of the chip area, as shown in Figure 44.  The mean slope of the average cutting 

forces are then found to determine the cutting force coefficients in the three directions.  The 

result from the cutting force tests show that the cutting forces are mostly in the y and z 

directions, while the forces in the x direction are nearly zero for all chip areas (as expected 

in orthogonal turning).  The resulting cutting force coefficients in the y and z directions are 

Ks,y=759 N/mm2 and Ks,z=468 N/mm2.  The absolute cutting force coefficient is found to 
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be Ks=892 N/mm2 using 2 2

, ,s s y s zK K K   , and the cutting force angle is found to be β=58° 

using  11

, ,tan s y s zK K  . 

 
Figure 44: Average cutting force values plotted as a function of the chip area to determine the cutting force 

coefficient of the material-tool combination.   

4.3 Free and Cutting FRFs 

During the experiments two types of FRF measurements are taken; free FRFs 

(FRFF) before the tool enters the cut, and cutting FRFs (FRFC) taken when the tool is in 

the cut.  The purpose of these FRF measurements is to experimentally determine the modal 

parameters of the system while in and out of the cut.  Before the tool enters the cut the tool 

is struck multiple times with the impact hammer (approximately five times) and the 

resulting motions are measured with the capacitance gage (see Figure 38).  The process of 

striking the tool and measuring the displacement is repeated once the tool is in the cut.  An 

example of the force and displacement measurements for a chip width of 0.082 inches, feed 

rate of 0.003 inch/rev, and 600 RPM is shown in Figure 45.  After each strike, the force 

and displacement data is collected for a time duration equal to the part rotation period for 
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that test (time of 0.1 seconds for the 60 RPM case).  The purpose of this time duration is to 

eliminate regenerative effects that occur after the part completes one full rotation.  A 

detailed view of the tool responses in and out of the cut is shown in Figure 46 for the first 

0.035 seconds after a strike. 

 
Figure 45: Force and displacement measurements for a chip width of 0.082 inches, feed rate of 0.003 

inch/rev, and 600 RPM. 

 
Figure 46: Detailed view of the force input and the tool response when the tool is free (left) and in the cut 

(right). 
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The free and cutting FRFs are obtained by dividing the fast Fourier transform (fft 

in Matlab) of the displacement data by the fft of the force data for each strike.  The FRF 

data is then averaged over all of the free and cutting strikes to obtain FRFF and FRFC.  Note 

that all FRFs are corrected to account for phase lag in the sensor signals using the methods 

developed by Ganguly et al in (Ganguly 2014). 

The resulting FRFs for the experiments with a chip width 0.082 inches, and a feed 

rate of 0.003 in/rev are shown in Figure 49 for a spindle speed of 600 RPM.   

 
Figure 47: Free and Cut FRFs plotting for b=0.082 inches, feed=0.003 inch/rev, at 600 RPM. 

In order to determine the modal parameters to be used in the analytical solution, the 

peak picking method discussed in (Schmitz 2009) is implemented in a Matlab program and 

used to calculate the modal mass, stiffness and damping from the FRFs.  The resulting 

modal parameters from this program for the three modes in the free FRF in Figure 47 in 

order of increasing natural frequency are: m=3, 31 and  11 kg, k= 2.3x107, 32.7 x107 and 
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12.8 x107 N/m, and c= 518, 2005 and 1,779 Ns/m.  In Figure 48 the analytical FRF 

calculated using Equation 4.1 (Schmitz 2009) using the modal parameters found using peak 

picking are compared with the experimental FRF.  From these results, application of the 

simple peak picking method effectively approximates the modal parameters of the system 

based on the experimental FRFs.  

 
3

2
1

1

j j j j

X

F m c k 


  

   4.1 

 
Figure 48: Comparison of the analytical FRF calculated using the modal parameters found using peak 

picking with the experimental FRF.  

4.4 Process Damping and Effective Stiffness Considerations 

The resulting FRFs for the experiments with a chip width 0.082 inches, and a feed 

rate of 0.003 in/rev are shown in Figure 49 for spindle speeds of 400, 600 and 1000 RPM.  

The free FRFs on the left side of Figure 49 are nearly identical for each set of impact tests, 

as is to be expected because the free system dynamics are not affected by spindle speed.  
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The resulting Cutting FRFs on the left of Figure 49 do differ depending on the spindle 

speed.  Both sets of FRF measurements show the same basic structure, with the most 

flexible mode near 440 Hz and two additional modes near 520 and 560 Hz.  The most 

significant difference between the two sets of FRFs is in the magnitudes of the FRFs for 

the first mode near 440 Hz.  While the peak magnitudes of the FRFs are a result of multiple 

factors, the most likely cause of the decrease in the peak magnitudes in the cut is process 

damping.  The effects of process damping can be seen directly in the cutting FRFs in Figure 

49.  The peak magnitudes of the 1000 RPM cutting FRF are nearest to those of the free 

FRFs, and as the spindle speed is decreased, the additional effects of process damping 

cause the peak magnitudes in the FRFs to decrease.   

Process damping is an effect of the machining process which causes an increase in 

the effective damping in the system which increases as the spindle speed decreases.  There 

are multiple theories as to the cause of process damping, such as an introduction of 

nonlinear force relations due to changes in tool-chip interactions as the chip wave length 

decreases (Stepan 2001), or due to the interactions of the tool flank face an the wavy surface 

of the part (Tlusty 1999).  Among these theories, process damping is most commonly 

attributed tool flank interference, although it is difficult to determine experimentally the 

precise cause (Taylor 2010).  While some have developed analytical models to predict 

process damping based on tool flank interference (Tunc 2012), a more typical approach is 

to determine the effects of process damping for a given tool and work piece through 

experiment.  Altintas and Eynian developed an experiment in which the tool vibrations are 

controlled using a fast servo to negate regenerative effects (vibrations kept in phase) so that 

additional damping forces could be measured (Altintas 2008a; Eynian 2010).  Kurata et al 
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determined new cutting speed dependent stability limits by determining at what cutting 

speed chatter was suppressd in a constant RPM plunge cut (Kurata 2010).   Tyler developed 

a method to fit an analytical model for process damping stability lobes to experimentally 

determined stability lobes to determine an effective process damping coefficient (C. 2012).   

 
Figure 49: Free and Cut FRFs plotting for b=0.082 inch, feed=0.003 inch/rev, at 400, 600 and 1000 RPM. 

While process damping is not a focus of these experiments, the effects of process 

damping will have a significant effect on the  analytical solution, especially with the limited 

range of spindle speeds typically used in turning.  As such, the effects of process damping 

must be considered to adequately compare the analytical results with the experimental 

measurements.   

As the amount of damping in the system while cutting is known from the in cut 

FRF tests, the in cut damping coefficient is used in the analytical model.  For the current 

system, the free damping coefficients are only replaced by the cutting damping coefficients 

for the most flexible mode (from Figure 49, the other stiffer modes are less effected by 

process damping).  The mass and stiffness coefficients from the free FRF remain 

unchanged as a result of process damping.  In Figure 50 the flow of operations is shown to 
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determine the modal parameters that are to be used in the analytical solution to model the 

turning operation with process damping effects. 

The effectiveness of the process damping compensation process in Figure 50 can 

be seen in the resulting plots in Figure 51.  When the damping coefficients are not corrected 

(Figure 51 left) the errors between the analytical and experimental results are great even 

after the initial impact, and grow significantly in each part rotation.  When process damping 

effects are included (Figure 51 right) the analytical and experimental motions are much 

closer even after three part rotations. 

 
Figure 50: Flow of dynamic parameters used in the analytical solution to model the model the experimental 

system with process damping effects. 

 
Figure 51: Comparison of experimental and analytical displacement data when process damping is ignored 

(left) and when process damping is compensated for (right) with b=0.082 inch at 400 RPM.  
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The differences between the free and cutting FRFs are due in part to the effects of 

process damping, however, process damping alone does not explain why there is a shift in 

the natural frequency (in Figure 49 the natural frequency of the first mode is shifted right 

by 10 Hz).  Recall from the single degree of freedom analytical model that the tool stiffness 

is effectively increased while the tool is in the cut, such that  . coseff sk k bK   .  This 

increase in effective stiffness can be observed experimentally here as an increase in the 

natural frequency of the system while the tool is in the cut.  Consider the three sets of FRFs 

plotted (first mode only) in Figure 52 for b=0.035 and 0.082 inch at 1000 RPM.  The red 

and blue FRF plots are the measured FRFs while free and in the cut.  The black dashed 

FRF plot represents a modified version of the free FRF plot, where the modal mass is held 

constant, the damping coefficient is equal to the cutting damping coefficient, and the 

stiffness is increased by  cossbK  .  It can be seen that together the adjustments for 

damping obtained experimentally, and the adjustments for stiffness obtained analytically 

account for the differences in the two FRF measurements.  

 
Figure 52: Free and cut FRFs with an additional altered free FRF which makes predicted modifications to 

the free modal parameters to match the cutting FRF. 



82 

 

4.5 Experimental results 

The tool displacements measured in the experiments are now compared with 

analytical solutions.  In the analytical solution the process summarized in Figure 50 is used 

to define the modal parameters, where, in these examples the first three modes are 

considered.  Once the modal parameters are determined, the initial conditions for the 

analytical solution must be determined to match those of the experiment.   

The initial conditions for the analytical solution cannot be determined by simply 

observing the conditions of the experimental data at any point in time.  This is because the 

analytical solution requires initial conditions for each individual mode in the system, and 

these cannot be determined based solely on a single position and velocity state provided by 

the experimental data (i.e. the experimental data only provides the sum of the modal states 

and not their individual components).  The initial modal states are determined by solving 

for the modal states through numerical simulation.  In these simulations, the measured 

impact force is input and Euler integration is used to simulate the modal states over the 

duration of the impact.  The modal conditions at the end of the impact are then set as initial 

conditions for the analytical solution.  This process is shown in Figure 53 which shows the 

measured force profile of one impact and the resulting measured motion of the tool (left).  

In this example the modal system with the measured input force is simulated for 0.0004 

seconds assuming that the system is initially at steady state (zero valued initial conditions) 

and that the vibrations of the tool during the rotation prior to impact are significantly less 

than the vibrations caused by the hammer impact.  The conditions of the individual modes 

at the end of this period are then set as the initial conditions.  The resulting combined initial 

conditions are shown on the right of Figure 53, where the simulation based initial 

conditions closely match the measured states at the end of the impact.   



83 

 

 
Figure 53: Process used to determine the initial conditions of the tool for the analytical solution based on 

the input force. 

The process of defining the modal parameters based on Figure 50 and the initial 

conditions based on Figure 53 are automated in a Matlab program, and the resulting 

analytical solutions are compared with the measured displacements of the tool.  In Figure 

54 through Figure 56 the solutions are plotted for b=0.035 inch at 1000 RPM, b=0.082 inch 

at 400 RPM and b=0.082 inch at 1000 RPM.  From the full time range plots it can be seen 

that the general behavior of the analytical solutions closely resemble experimental 

measurements, where the tool is excited once per revolution and the amplitudes generally 

decrease.  At closer inspection the differences between the two plots are more apparent, 

where the analytical solutions generally exhibit larger amplitudes.  As would be expected, 

the two plots agree most during the first revolution where the motions are only a result of 

the initial impact.  In these regions the phases of both plots closely match and the shape of 

the oscillation envelopes also closely match.  As the number of rotations increase, the errors 

between the two plots also increase.  This can be attributed in part the cascading effects of 

the errors, where errors during one rotation lead to errors in the next rotation due to the 

regenerative forces.  Despite the increasing error as the number of revolutions increases, 

with the exception of the 400 RPM example, all of the plot results show that the frequencies 
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and phases of the predicted in the analytical solution match those determined 

experimentally. 

 
Figure 54: Experimental and analytical displacement data comparison for b=0.035 inch at 1000 RPM.  
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Figure 55: Experimental and analytical displacement data comparison for b=0.082 inch at 400 RPM.  
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Figure 56: Experimental and analytical displacement data comparison for b=0.082 inch at 1000 RPM.  

The results from this experimental study show that the general regenerative 

characteristics predicted by the analytical model are also observed physically.  While the 

analytically predicted behavior of the tool deviates from the measured behavior as the 

number of rotations increase, the phase, frequency and general form of the oscillation 

envelopes closely agree.    

 



  MATRIX SOLUTIONS  

Equation Chapter 5 Section 1  

The analytical framework developed thus far in this dissertation has shown to be 

effective in determining the time response of a cutting tool in turning when compared with 

numerical simulation and experimentation.  However, one drawback of the approach 

developed here is that the structure of the solution process becomes quite cumbersome.  

The objective in this chapter is to simplify the solution process for the sequential responses 

by generating a single matrix transformation to directly calculate the coefficients of one 

sequential response based on the coefficients of the previous sequential response.  In 

Chapter 3: the general solution process was developed for multiple modes, which includes 

four primary steps to go from the coefficients of the previous response, xj-1, to the 

coefficients of the current response, xj, as illustrated again in Figure 57.  Due to the number 

of transformations required and the conditional nature of the coefficient calculation process 

in the decoupled state space form (see Equation 3.17), this solution process becomes rather 

cumbersome especially as the number of modes increases.  As such, a matrix solution is 

desired which incorporates all of the steps of the solution process into a more concise form, 

1j jx x  Z . 

The sequential response transformation matrix, Z, is developed by going through 

the solution process and making the necessary modifications so that all of the coefficients 

of the various transformations (W coefficients and R coefficients) are expressed in terms 

of the coefficients of the previous sequential response, xj-1. 
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Figure 57: Process used to calculate the coefficients of the sequential responses. 

Let us first start by assuming that the coefficients of xj-1 are known and 

systematically go through the solution process.  The previous x coefficients are first applied 

to the forcing function of the state space model (see Figure 57A) as shown in Equation 5.1

, where x1,j-1 and x2,j-1 are the two modal position from the previous sequential response.   
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  5.1 

The forcing terms in F are then transformed to G in the decoupled system using the 

transformation matrix V-1 (see Figure 57B).  In order to represent the new forcing 

functions, G, in terms of the coefficients of the previous response, a new vector, H, is 

defined which scales the coefficients of xj-1 according to the transformation , V-1F, as shown 

in Equation 5.2. 
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  5.2 

The resulting decoupled system can now be expressed in terms of the coefficients 

of the previous sequential response as shown in Equation 5.3: 
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  5.3 

Equation 5.3 is the stage of the process in which new coefficients are calculated 

based on the solutions to the decoupled first order differential equations.  Take for example 

the solutions to w1.  The general form of xj-1 is shown in Equation 5.4, so if we take the 

maximum order of the polynomials to be 2, the solution to w1 is found by solving Equation 

5.5.  The solution to Equation 5.5 is described in the previous chapter when the forcing 

terms are ag using Equation 3.17.  However, in Equation 3.17 when n≠u the solution 

coefficients (ag,λ,n) are dependent on the higher order solution coefficients (ag,λ,n+1).  Here, 

Equation 3.17 is modified so that the solution coefficients are dependent only on the forcing 

coefficients, ax, as shown in Equation 5.6 (See Appendix F for derivation of Equation 5.6

). 
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  5.6 

The solutions to the w1 coefficients based on Equation 5.6 are applied in matrix 

form in Equation 5.7.  Here, the transformation matrix, Y1, is used to solve for the 
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coefficients of w1 based on the coefficients of x, where the vectors Aw1 and Ax represent 

the coefficients of the combined polynomial and exponential basis.   
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 5.7 

The diagonal block elements of Equation 5.7 , Y1,λu, represent the particular 

solutions to w1 based on the input coefficients associated with λu.  The particular solution 

transformation blocks, Yn,λu, can be generated for all of the w solutions using Equation 5.8

.  As it is known that the maximum degree of the solution polynomials increases by one in 

each sequential response, the total size of the Yn,λu matrices should be JxJ, where J is the 

total number of sequential responses being generated (so the transformation matrix in 

Equation 5.7 is applicable to the first three sequential responses).  The size of the total 

transformation matrix solving for the w1 coefficients is mode mode2 2JN JN , where there are 

mode2N  state variables. 

The block elements in the first row of Equation 5.7, YIC1,λu, represent the 

complementary solution to Equation 5.5.  Recall that the sequential responses are 
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calculated assuming zero valued initial conditions, so the total solution must be equal to 

zero at t=0.  As such, the complementary solution must offset the initial displacements 

associated with the particular solutions, which, in this system are equal to the sum of all 

coefficients of degree zero (aw1,λu,0).  Notice that the YIC1,λu blocks are the negative values 

of the first rows of the Y1λu blocks.  The complementary solution blocks can be generated 

for the w coefficients solutions using Equation 5.9. 
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The general solutions to all of the w coefficients are found based on the x 

coefficients of the previous response using Equation 5.10.  Note that in Equation 5.10 the 

YICn blocks correspond to the row n of the Yn matrices.   
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Where Yn has the size mode mode2 2JN JN . 

The next step in the solution process is to transform the W solutions back to the 

state space variables, R, using the transformation matrix V, as shown in Figure 57C.  Recall 

that the R variables are the state space representations of the modal positions and velocities, 

as shown in Equation 5.11. 
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V
  5.11 

Since we are only concerned with the modal position values, x, Equation 5.11 can 

be reduced by considering only the odd rows of matrix V which correspond to the modal 

positions.  The modified transformation is shown in Equation 5.12 in both the variable 

form and the corresponding coefficient form.  In the coefficient form the coefficients, Ax, 
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from the W solutions are replaced by Ax
j-1 to indicate that these variables are from the 

previous sequential response.   
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  5.12 

The transformation from the w coefficients to the coefficients of the first modal 

position, x1, is carried out in Equation 5.13 where values 1,nv  correspond to the first row in 

the matrix oddV   associated with the first modal position (note that for the second modal 

position values of 3,nv  are used).  The resulting transformation matrix, Z1, defined by 

Equation 5.14, directly relates the coefficients of the previous sequential response to the 

coefficients of the first mode of the current sequential response.  

  

1 1 1 1

1 1,1 1 , 1 1,2 2 , 2 1,3 3 , 3 1,4 4 , 4

1
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N
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n
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Once the Z transformation matrices are obtained the individual modal positions can 

be directly determined based on the previous sequential response solution using Equation 

5.15. 
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As the coefficients of the total solution are a combination of the components of the 

individual modal solutions  1 2

j j j

x x x A A A , Equation 5.15 can be combined to form 

Equation 5.16, or the total solution can be determined directly using Equation 5.17. 
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1 11 1

1
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j j

x x

j j

x x
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Z Z
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1

1 2,j j

x seq x seqZ where Z Z Z  A A   5.17 

Equations 5.16 and 5.17 allow for the sequential response solutions to be obtained 

directly through the Z transformation matrices, where the input coefficient vectors, 1j

x


A , 

are the solution coefficients from the previous sequential response.  Two forms of the 

transformation matrices are provided in Equations 5.16 and  5.17 because each one is more 

advantageous depending on the application.  For determining sequential responses, 

Equation 5.17 is better because the total solution is determined directly without concern 

for the motions of the individual modes.  However, moving forward, the transition matrices 

developed here will be applied for stability analysis where the states of the individual 

modes are required within the solution process (see next chapter).  As such, Equation 5.16 

is needed to “keep track” of the modes individually.   

5.1 Matrix Dimensions for Z 

It is well known that delay differential equations have solutions in infinite 

dimensional space (Stepan 1989).  The solution process developed here determines the 

exact solution in finite dimensional space over a finite period of time, assuming the initial 

input function is finite dimensional.  If the solution is continued over an infinite period of 

time, the solution will be infinite dimensional.   
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The sequential responses discussed in this paper each begin at the start of a new 

period in the solution process, where the period length is equal to the delay term, τ.  Each 

time a new sequential response is found there is an increase in dimensionality relative to 

the dimensionality of the previous sequential response due to the solution process when 

u=n in Equation 5.6.  The total solution of the Jth sequential response (for a 2DOF system) 

is shown in Equation 5.18 as a combined polynomial-exponential basis function with the 

set of complex coefficients, Ax
j, in Equation 5.19.   

The size of the basis function is determined by the total number of delay periods 

over which the system is to be evaluated, J, (which is equal to the number of sequential 

responses which must be determined) and the number of modes in the system.  Looking at 

Equation 5.18, there are four sets of polynomials with maximum order, J-1, which each 

correspond to the eigenvalues of the state transition matrix, A, in Equation 3.8.  As there 

are two state variables per mode, the number of dimensions in a solution over J periods 

with Nmode modes is mode2JN , and the size of the transformation matrix Zseq. is 

mode mode2 2JN JN . 
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A   5.19 

Note that the basis function coefficients in Equations 5.18 and 5.19 are fully 

populated only for the Jth sequential response, and the previous responses have nonzero 

coefficients for t of order less than or equal to j-1.  Starting with the first sequential 

response, which has nonzero coefficients only for the t of order zero terms, each subsequent 
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response gains nonzero coefficients for t of order j-1 due to the terms under the diagonal 

of the Yn matrices. 

 



  STABILITY  

Equation Chapter 6 Section 1  

In the previous chapter a transition matrix, Zseq., was developed to derive the 

coefficients of the sequential responses based on the coefficients of the previous response.  

Zseq. incorporates all of the transformations and conditional calculations (Equation 5.6) of 

the solution process in Figure 57 into a concise form which allows for the first J sequential 

responses to be found through simple matrix operations.  While Zseq. allows for a more 

direct process when using the sequential response approach, it is not possible to define an 

analytical stability criterion based on the sequential responses alone.  This is because the 

characteristics (or the coefficients) of the sequential responses individually cannot be used 

as an indicator of global behavior of the tool.  As a result, the transformation matrix, Zseq., 

cannot not be used alone to determine stability 

Take for example the tool response plot in Figure 58, which is composed of the first 

five sequential responses.  The transformation matrix, Zseq., is useful to determine each 

sequential response based on the previous response, however, this transformation only 

provides information on the sequential responses but not the global behavior.  The global 

behavior of the tool cannot be observed until the sequential responses are combined 

according to the delay period τ, as shown at the top of Figure 58, where the functions, yj, 

form the total tool motions for each τ period.   Note that the variable y is used to describe 

the total motion of the tool during each jth period, where the variable xj describes the jth 

sequential response.   
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Figure 58: Example tool point response composed of the first five sequential responses, where the 

functions, yj, describe the total tool point response during each τ period.  

Ultimately it is the functions, yj, describing the total tool motions during each τ 

period that are useful in determining the global stability of the system.  Furthermore, if a 

new transition matrix, U, is found which directly relates the total tool motions during one 

revolution, yj, to the total tool motions during the previous revolution, yj-1, than a modified 

version of Floquet theory can be applied to determine stability based on the eigenvalues of 

U.  The modifications to the transition matrix, Zseq., required to obtain the total transition 

matrix, U, are developed here based on the method of steps. 

One difference between the U and Zseq. transition matrices is in the way that the 

forcing functions are applied to the solution process.  In both cases, the transition matrices 

are used to determine the coefficients of a current function based on the coefficients of a 

previous function (or forcing function).  For Zseq., the forcing coefficients are related to the 



99 

 

coefficients of the previous sequential response (see Figure 58), while the forcing 

coefficients for U (using the method of steps) are related to the coefficients of the total tool 

motion during the previous period (see Figure 59). 

Fortunately, the set of equations relating the forcing function coefficients to the 

solution coefficients are the same in both cases (see Equation 5.6), so the transformations 

already established in Z are directly applicable for U.  The primary difference for U, 

however, is that the initial conditions which define the modal states at the beginning of 

each τ period can no longer be assumed to be zero.  According to the method of steps, the 

initial conditions for each period are equal to the state conditions at the end of the previous 

period, as shown in Figure 59.  As such, the transformation matrix U must contain 

additional components which define the initial conditions for one period based on the 

coefficients of the previous period evaluated at time, τ.  The resulting matrix U, thus, is 

dependent on τ, where Zseq. is independent of τ.    
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Figure 59: Functions, yj, describing the total tool position for each τ period which are obtained using the 

method of steps.   

6.1 Matrix Dimensions for Stability Analysis 

One advantage of the sequential response approach is that the sequential responses 

can be determined by assuming zero valued initial conditions (with the exception of the 

first response which has defined initial conditions).  The assumption of zero initial 

conditions is significant because the solutions are not dependent on the conditions of each 

mode independently, so it is not necessary to “keep track” of the motions of each mode 

individually.  This allows us to simply combine the motion of all of the modes by 

combining the coefficients of Ax1 and Ax2, and the individual transition matrixes, Z1 and 

Z2, to obtain the compact relation, 
1

.

j j

x seq xZ A A , where the size of Zseq. is 

mode mode2 2JN JN .   

The situation is different when applying the method of steps because the initial 

conditions of each individual mode must be known in order to solve for the tool response 

during each period.  As a result, the motions of multiple modes can no longer be combined, 

and it is necessary to maintain the coefficients describing the motion of each mode as 

separate entities.  For this reason, Equation 5.16 is used for stability analysis instead of 

Equation 5.17, resulting in the transformation matrix, U, with dimensions of

2 2

mode mode2 2JN JN . 

The resulting general form of the transformation matrix for the method of steps is 

shown in Equation 6.1.  The Z components of Equation 6.1 solve for the solution 

coefficients of the current period based on the coefficients of the previous period (just as 
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in Equation 5.16), and the  ICy components are added to relate the initial conditions of the 

current period to the modal conditions at the end of the previous period. 
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  TURNING STABILITY  

Equation Chapter 7 Section 1  

The process for generating the transformation matrix, U, which directly relate the 

motion of the tool during one rotation and the motion of the tool during the previous 

rotation for turning is developed in this chapter.  

The general form of the functions describing the total motion of the first system 

mode for the first J part revolutions is shown in Equation 7.1, where all functions for 

periods prior to J have zero valued coefficients for t of order greater than j-1.  In order to 

apply the method of steps, the transformation matrix U must be able to first determine the 

initial conditions for each period, then apply those initial conditions to the new solution 

coefficients.   
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 7.1 

To determine the initial conditions of one period, the function from the previous 

period must be evaluated at t=τ to determine the modal states at the end of the previous 

period.  A new vector, Γ in Equation 7.2, is defined to evaluate the function , yj,n, at t=τ.  

The value of  yj,n at t=τ is found by multiplying the vector Γ by the coefficient vector, Aj
n, 

as shown in Equations 7.3 and 7.4. 

 2 1 2 1 2 1 2 131 2 41 1 1 1J J J Je e e e
     

                               Γ   7.2 



103 

 

  

1

1

1

1

1

1

1

1

1

1

1

1

y , 1,0

y , 1,1

y , 1,2

y , 2,0

y , 2,1

y , 2,22 2 2 2

3,1

y , 3,0

y , 3,1

y , 3,2

y , 4,0

y , 4,1

y , 4,2

31 2 41 1 1 1j

a

a

a

a

a

a
y

a

a

a

a

a

a

e e e e

























      
        

 
 
 
 
 
 
 
 

                  
 
 
 
 
 
 
 
  

  7.3 

  
,1 1

j

j yy   ΓA   7.4 

The modal velocities at the end of the previous period must also be determined to 

define the initial conditions of the current period.  The first derivative of the position 

function, yJ,1 in Equation 7.1, is shown in Equation 7.5.  A new vector Ω, defined in 

Equation 7.6, is created to account for the additional factors resulting from the 

differentiation process.  The resulting velocity of mode n at t=τ can be found based on the 

position coefficient vector, Aj
n , in Equation 7.7. 
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Where ○ is an element-wise vector multiplication. 

Equations 7.4 and 7.7 are critical for applying the method of steps to the 

transformation matrix, U, because they provide a method of determining the states of the 

system at the end of the previous period based on the coefficients of the previous period in 

matrix form.  In other words, these equations give us “access” to the conditions at the end 

of the previous period which allow us to determine the initial conditions of the current 

period within the transformation matrix.   

Before these equations can be applied, we must first consider how the coefficients 

of the current solution are affected by the initial conditions by returning to the general 

solution process from Figure 57.  The initial values of the W functions are found according 

to Equation 7.8 based on the initial conditions, Y(0).   
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Expanded in Equation 7.9, the initial conditions for each W function are dependent 

on all of the modal initial conditions.  Recall that the decoupled state space solutions, wn, 

contain components associated with all of the eigenvalues, λ, however, the initial 

conditions only effect the coefficients associated with λn.  As such, the solutions to 

Equation 7.9 will be associated with λn and t of order zero.   
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Once the initial W coefficients are known, they are converted back to Y using 

Equation 7.10.  In Equation 7.11 the position components of Equation 7.10 are expanded, 

and the eigenvalue components of the solutions are shown. 
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Substituting Equation 7.9 into Equation 7.11 and separating each eigenvalue 

component, the initial coefficients of the two modes can be calculated using Equation 7.12 

based on the initial modal conditions.   
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Substituting Equations 7.4 and 7.7 into Equation 7.12 and reducing in Equations 

7.13 through 7.15, the resulting transformation matrix to determine the initial coefficients 
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of the current solution based on the coefficients of the previous solution, Aj-1
y, and the 

delay period, τ, is found as UIC,Reduced, in Equation 7.16.   

 

 

 
 

1

1 1 1 1 1 1 1 1

1, 1,0 1,1 1,1 1 1,2 1 1,3 2 1,4 2

1 1 1 1 1 1 1 1

1, 2,0 1,2 2,1 1 2,2 1 2,3 2 2,4 2

1 1 1 1 1

1, 3,0 1,3 3,1 1 3,2 1 3,3

0
y

j j j j

y y y y y

j j j j

y y y y yj

j j

y y y

a v v v v v

a v v v v v

a v v v v







       

       

    

     

     


   

ΓA ΓA ΓA ΓA

ΓA ΓA ΓA ΓA
A

ΓA ΓA Γ 
 

 

 

2

1 1 1

2 3,4 2

1 1 1 1 1 1 1 1

1, 4,0 1,4 4,1 1 4,2 1 4,3 2 4,4 2

1 1 1 1 1 1 1 1

2, 1,0 3,1 1,1 1 1,2 1 1,3 2 1,4 2

1 1

2, 2,0 3,2 2,1 10
y

j j

y y

j j j j

y y y y y

j j j j

y y y y y

j

y yj

v

a v v v v v

a v v v v v

a v v v







  

       

       

 

 

     

     

 


A ΓA

ΓA ΓA ΓA ΓA

ΓA ΓA ΓA ΓA

ΓA
A

 
 
 

1 1 1 1 1 1

2,2 1 2,3 2 2,4 2

1 1 1 1 1 1 1 1

2, 3,0 3,3 3,1 1 3,2 1 3,3 2 3,4 2

1 1 1 1 1 1 1 1

2, 4,0 3,4 4,1 1 4,2 1 4,3 2 4,4 2

j j j

y y y

j j j j

y y y y y

j j j j

y y y y y

v v

a v v v v v

a v v v v v





     

       

       

   

     

     

ΓA ΓA ΓA

ΓA ΓA ΓA ΓA

ΓA ΓA ΓA ΓA

  7.13 

 

 
1

1
1 1 1 1 1

11, 1,0 1,1 1,1 1,2 1,3 1,4
2

1
1 1 1 1 1

11, 2,0 1,2 2,1 2,2 2,3 2,4
2

1 1 1

1, 3,0 1,3 3,1 3,2 3,3 3,4

0
y

j

y
jy
y

j

y
jy
yj

y

a v v v v v

a v v v v v

a v v v v v








   




   



  

 
              

 
 

              
 

     

A
Γ Γ

A

A
Γ Γ

A
A

Γ

 
2

1
1 1

1

2

1
1 1 1 1 1

11, 4,0 1,4 4,1 4,2 4,3 4,4
2

1
1 1 1 1 1

12, 1,0 3,1 1,1 1,2 1,3 1,4
2

2, 2,0 3,2

0
y

j

y
j

y

j

y
jy
y

j

y
jy
y

y
j

a v v v v v

a v v v v v

a v













   




   



 
      

 
 

              
 

 
              

 





A
Γ

A

A
Γ Γ

A

A
Γ Γ

A

A

1
1 1 1 1 1

12,1 2,2 2,3 2,4
2

1
1 1 1 1 1

12, 3,0 3,3 3,1 3,2 3,3 3,4
2

1
1 1 1 1 1

2, 4,0 3,4 4,1 4,2 4,3 4,4

j

y
j

y

j

y
jy
y

j

y
y

v v v v

a v v v v v

a v v v v v






   




   




   

 
             

 
 

              
 

            

A
Γ Γ

A

A
Γ Γ

A

A
Γ Γ 1

2

j

y



 
 
 A   7.14 



107 

 

 
 

 
1

2

1 1 1 1

1,1 1,1 1,2 1,3 1,4

1 1 1 1
1, 1,0 1,2 2,1 2,2 2,3 2,4

1, 2,0

1, 3,0

1, 4,0

2, 1,0

2, 2,0

2, 3,0

2, 4,0

0

0
y

y

y

y

y
j

y
j

y

y

y

y

v v v v v

a v v v v v
a

a

a

a

a

a

a

















   

   

           
              
 
  
   
   
 
 
 
 

Γ Γ

Γ Γ

A

A

1 1 1 1

1,3 3,1 3,2 3,3 3,4

1 1 1 1

1,4 4,1 4,2 4,3 4,4

1 1 1 1

3,1 1,1 1,2 1,3 1,4

1 1 1 1

3,2 2,1 2,2 2,3 2,4

3,3 3,1

v v v v v

v v v v v

v v v v v

v v v v v

v v

   

   

   

   

           
           
           
           

Γ Γ

Γ Γ

Γ Γ

Γ Γ

1

1
1

2

1 1 1 1

3,2 3,3 3,4

1 1 1 1

3,4 4,1 4,2 4,3 4,4

j

y
j

y

v v v

v v v v v





   

   

 
 
 
 
 
   
   

  
 
 

            
              

A

A

Γ Γ

Γ Γ

  7.15 

 
 

 
1

2

1

1
1,R educed

2

0

0
y

y

j j

y
j jIC

y

U




   
   

    

A A

A A
  7.16 

The components of UIC,Reduced can be found using Equation 7.17, where   is a 

Kronecker product.  The subscript “Reduced” in UIC,Reduced is present here because the rows 

of UIC,Reduced correspond only to the t of order zero rows of the transition matrix.  In the full 

transition matrix, the rows of UIC,Reduced are shifted to match the t of order zero terms to 

form UIC. 

 

         
1 2
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We now have all of the components required to describe the motions of the tool 

during one period based on the motion of the tool during the previous period.  In Equation 

7.18, the Z component of the transition matrix (calculated using Equation 5.14) determines 

the motion of the tool based on the “surface left behind” in the previous period, and the UIC 

component sets the initial conditions of the current period based on the conditions at the 

end of the previous period.   
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After combining these two components the total transformation matrix, Uturn, is 

obtained, as shown in Equation 7.19.   

 

1

1 1
1

2 2

1 1

2 2
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j jturn
y y
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A A

A A
  7.19 

7.1 Example 

The transition matrix for turning in Equation 7.19 is now compared to numerical 

simulation results to verify that the tool motions described analytically match numerical 

results.  Euler integration is used in the numerical simulations using a time step which 

results in approximately 100 iterations per tool oscillation.  In both the analytical and 

numerical simulations, the system parameters shown in Table 4 are used, and the initial 

conditions at the start of the cutting process are    0 0,and 0 1y y m s  . Two example 

solutions are plotted using the machining parameters of b=2.5mm at 6000 and 8000 RPM 

as shown in the stability lobe diagram in Figure 60.   

Table 4: System parameters used in the single mode turning examples. 

k 1E7 N/m 

m 0.88 kg 

c 400 Ns/m 

Ks 2E9 N/m2  

β 70° 
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Figure 60: Two time domain examples for a single mode system evaluated at a depth of cut, b=2.5mm at 

6000 and 8000 RPM. 

The two example solutions are plotted in Figure 61 over 8 part revolutions.  These 

results show that the functions, yj, match those of the numerical solution over this range.  

Also, the stability predictions based on the stability lobe diagram in Figure 60 agree with 

the time domain plots, where example 1 appears to be unstable while example 2 is stable.   

 
Figure 61: Two time domain examples for a single mode system, where the analytical motions for each 

period are fount using Equation 7.19.  As predicted by the stability lobe diagram, Example 1 is unstable, 

and Example 2 is stable. 

A second set of example solutions is shown for a two mode system using the modal 

parameters shown in Table 5.  The machining parameters shown in the stability lobe 
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diagram in Figure 62 are used for the two examples, with b=3.75mm and spindle speeds of 

6000 and 8000 RPM.  The same numerical simulation parameters used in the single mode 

examples are used here.   

Table 5: System parameters used in the multi-mode turning examples. 

k1, k2  1E7, 4E7 N/m 

m1, m2  0.88, 1.2 kg 

c1, c2  500, 600 Ns/m 

Ks 2E9 N/m2  

β 70° 

 

 
Figure 62: Two time domain examples for a multi-mode system evaluated at a depth of cut, b=3.75mm at 

6000 and 8000 RPM. 

The resulting time domain plots for the two mode examples are shown in Figure 

63.  These results also show that the analytical and numerical results agree even though the 

system dynamics are more complex as a result of the additional mode.  The stability 

characteristics of these plots also agree with the predictions of the stability lobe diagram, 

where example 1 is unstable and example 2 is stable.   
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Figure 63: Two time domain examples for a multi-mode system, where the analytical motions for each 

period are fount using Equation 7.19.  As predicted by the stability lobe diagram, Example 1 is unstable, 

and Example 2 is stable. 

7.2 Stability Analysis 

The ability to describe tool motions analytically during a cutting operation is 

convenient, however, it is typically more important to be able to determine whether the 

tool motions will be stable or unstable (chatter) based on the parameters of the machining 

operation.  In this section, the possibility of using characteristics of the transition matrix, 

Uturn in Equation 7.19, to determine stability directly is investigated.  Here, a modified 

version of Floquet theory is used to determine stability based on the eigenvalues of Uturn.  

Floquet theory is used to evaluate the stability of delay systems where the coefficients 

describing the system at periodic points in time are related through a single transition 

matrix (Uturn Equation 7.19) (Bayly 2003; Insperger 2002; Insperger 2004; Minis 1993).  

From this theory, the eigenvalues of the transition matrix can be used to indicate the 

stability of the system, where if the maximum eigenvalue magnitude is less than 1 the 

system is stable, and if any of the eigenvalue magnitudes are greater than 1, the system is 

unstable. 
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The stability lobes generated using Floquet theory are compared with stability lobes 

generated using numerical simulation in Figure 64 using the system parameters in Table 4.  

For the simulated stability lobes, time domain simulations are run over 50 revolutions using 

a time step resulting in approximately 20 iterations per tool oscillation.  The simulation is 

repeated over a range of 30 values of b from 0.01mm to 10mm and 100 spindle speeds 

from 100 to 13000 RPM, resulting in a total number of 3000 simulations.  During each 

simulation, once per revolution samples are taken of the position of the tool, and the slope 

of the last two thirds of the absolute values of the sampled positions is found using the 

“polyfit” command in Matlab.  If the slope of these points is greater than zero, it is 

determined to be unstable, and if the slope is less than zero it is stable.   

The analytically determined stability lobes are found by evaluating the eigenvalues 

of Uturn with J=8 part revolutions over 100 values of b from 0.01mm to 10mm and 100 

spindle speeds from 100 to 13000 RPM.  If the magnitude of any of the eigenvalues is 

greater than one, the system is unstable, if less than one, the system is stable.  Both stability 

lobe plots are generated in Matlab as contour plots, where the line associated with the value 

zero over a grid of slope values is plotted for the simulated stability lobes, and the line 

associated with the value one over a grid of maximum eigenvalue magnitude is plotted for 

the analytical stability lobes.  (Note that the remaining stability lobe plots in this document 

are plotted using this method) 

The resulting stability lobe diagrams are shown in Figure 64.  It can be seen in this 

figure that the stability boundaries closely match at higher spindle speeds, but as the spindle 

speed is decreased, the analytically determined stability boundary begins to bend upward 

relative to the simulated stability boundary.   
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Figure 64: Single Mode stability lobe comparison using numerical simulation with 20 points per oscillation 

over 50 revolutions, and the analytical stability prediction found by evaluated the eigenvalues of the 

transition matrix in Equation 7.19 using Nrev=8. 

The “upward bend” in the analytical stability lobes is a result of the parameter, J, 

used to produce the transition matrix, Uturn.  Recall that J is the number of part revolutions 

(or delay periods) for which the solution to Equation 7.19 is exact.   To see how the value 

of J affects the analytical stability boundary, in Figure 65, the stability lobes are plotted for 

J=2, 4, 6, and 8 along with the stability boundary generated using Tlusty’s FRF approach.  

It is clear from this figure that as J is increased, the stability boundaries approach those 

predicted by Tlusty, and the upward bend occurs at lower spindle speeds.  While increasing 

J produces more accurate results, there is a drawback to increasing J due to the size of the 

Uturn matrix.  For example, in this single mode system, if J is increased from 2 to 8, the size 

of Uturn increases from 4x4 to 16x16 (where   2 2

mode mode2 2turn rev revsize U N N N N  ). 
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Figure 65: Single mode stability lobe diagram determined analytically using J = 2, 4, 6, and 8 compared 

with Tlusty’s stability lobes (gray). 

To better understand how J affects the stability boundary, consider the point A in 

Figure 65 in between the J=4 and 6 boundaries.  Recall that DDEs are inherently infinite 

dimensional systems.  The solution process developed in this dissertation provides an 

exact, finite dimensional solution to a DDE, however, the solution is only exact over a 

finite number of delay periods.  If a transition matrix generated to be exact for J periods is 

used to generate the tool response for more than J periods, then all coefficients of the 

solutions of order greater than J are ignored, and accuracy is lost.  For example, in Figure 

66 the analytical time responses are shown for 50 revolutions when the transition matrices 

are limited to J= 4 and 6 using the machining parameters at point A in Figure 65.  It is 

known based on Tlusty’s model that the system is unstable at A.  When Uturn with J=4 is 

evaluated over 50 revolutions, the time response appears to be stable, while the time 

response is shown to be unstable if J is increased to 6 (note that both of these results agree 
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with their respective stability boundaries).  The takeaway from Figure 65 and Figure 66 is 

that as the spindle speed decreases (and the delay period increases) higher order terms are 

required to accurately predict stability in turning, and all of the stability boundaries become 

more accurate as the spindle speed increases (delay period decreases). 

 
Figure 66: Comparison of analytical solutions at point A in Figure 65 when the transition matrix, Uturn, is 

created as J = 4 and 6 and carried out over 50 revolutions. 

The stability boundaries for the two mode system from Table 5 is plotted in Figure 

67 for J=2, 4, 6 and 8 along with the stability boundary predicted by Tlusty.  The results 

from Figure 67 show that the application of Floquet theory is effective in predicting 

stability limits even as more modes are applied to the system.  Here again we see that as J 

is increased, the accuracy of the stability boundaries increases.  However, as J is increased 

for a two mode system, the resulting increase in the size of Uturn is more significant, where 

an increase of J from 2 to 8 causes an increase in the size of Uturn from 16x16 to 64x64 

(where   2 2

mode mode2 2turnsize U JN JN  ). 
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Figure 67: Multi-mode stability lobe diagram determined analytically using J = 2, 4, 6, and 8 compared 

with Tlusty’s stability lobes (gray). 

7.3 Conclusions 

The use of Floquet theory in this chapter to evaluate turning stability based on the 

transition matrix, Uturn, has been shown to be effective at higher spindle speeds, with 

decreasing accuracy as the spindle speed decreases.  As the spindle speed increases, the 

stability limits approach those predicted using Tlustys’ FRF approach.  One way to increase 

the accuracy using the current method at lower spindle speeds is to increase the value of J, 

and thus the size of Uturn, at increased computational expense.  It is interesting to note that 

the upward bends shown in the stability lobes resemble the upward bends known to exist 

as a result of increased process damping at lower spindle speeds.  However, there is no 

consideration of process damping in the current model so there is no physical link between 

the upward bends shown here and process damping.  

The processes used in this chapter to determine the transition matrix, Uturn, and to 

determine stability analytically have shown to be effective for the most basic cutting 
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operation (turning).  In the following chapters, these methods will be expanded for the 

evaluation of more complex machining operations. 



  STABILITY IN LOW RADIAL IMMERSION MILLING  

Equation Chapter 8 Section 1  

Low radial immersion milling (LRIM) is a type of milling operation in which the 

tool is engaged in the work piece for a relatively short period of time as it rotates.   

Classical stability criteria (Altintas 1995; Tlusty 1963) becomes less accurate for 

LRIM because the tool is only in the work piece for a short period of time, while it vibrates 

freely for the rest of the time.  The introduction of intermittent free vibration periods 

increases the complexity of the stability prediction process because the system is, in effect, 

governed by two different dynamic models depending on if the tool is in the cut or not.  

The result of the free vibrations, noted by Davies et al in (Davies 2002), are additional lobe 

features that appear in the stability lobe diagram.  Davies et al was able to produce these 

additional lobes by pairing the “free” dynamic system to an “approximate “cutting” 

dynamic system (Davies 2002).  Davies’ process was later improved in (Bayly 2003) by 

incorporating temporal finite element analysis (TFEA) to better approximate the system 

dynamics while cutting and Mann et al gained similar results using the Chebyshev 

collocation method (Butcher 2009; Butcher 2005).  Other analytical methods which 

produce the additional stability lobe features are the multi-frequency solution (Merdol 

2004) and the semi-discretization method (Insperger 2002), which has been shown to better 

match experimental stability results (Gradisek 2005). 

The combination of forced vibrations while the tool is in the cut and free vibrations 

while the tool is out of the cut increases the complexity of this type of milling operation.  
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However, because the tool is engaged in the work piece for a relatively small angle range 

in LRIM, the angle dependent cutting force can be more accurately approximated as acting 

in a single direction (as in turning).  This fact makes a “turning model” approximation of 

the system dynamics more appropriate for LRIM than for higher radial immersion 

operations, thus, LRIM is the most obvious machining operation to apply the analytical 

methods developed for turning in the previous chapters. 

A general schematic of a LRIM operation with a single tooth cutter is shown in the 

left side of Figure 68. As the tool rotates, it feeds into the material and makes one cut per 

revolution.  In this simple model it can be seen that the tool is engaged in the work piece 

for a short period of time and the range of angles which the tool is cutting is relatively 

small.  If it is assumed that the cutting forces can be approximated as acting in a single 

direction (as done in (Bayly 2003)), than the LRIM operation can be modelled as a 

modified turning operation, where the tool cuts a protrusion of material once per revolution, 

as shown in the center of Figure 68.  The motion of the tool in this interrupted turning 

model is shown in Figure 68 right, where the tool makes a new cut at the start of each 

period, τ, is in the cut for time, tc, and is freely vibrating for time, tf.  The free and cutting 

times are determined by the parameter ρ which describes the ratio of time in the cut relative 

to the tool passing period, τ.  tc and tf can be calculated using Equation  8.1 (Bayly 2003).  

  , 1c ft t       8.1 
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Figure 68: Single tooth low radial immersion model (left), the turning model approximation of LRIM 

(middle) and the single force direction approximation model (right). 

In the previous chapter, Floquet theory was applied to determine the stability of 

turning operations by evaluating the eigenvalues of the transition matrix, Uturn.  Uturn 

directly relates the tool motion coefficients of two subsequent periods when the initial 

conditions of the current period are equal to the conditions at the end of the previous period.  

For the LRIM case, this same approach is used, however, modifications are needed to 

account for the free vibrations of the tool.   

The presence of the free vibrating periods effectively means that the tool behavior 

is governed by two separated dynamic systems.  During the cutting sections the forces are 

based on present and past states of the tool (DDE) in Equation 8.2, while there are zero 

external forces on the tool (ODE) in Equation 8.2 while the tool is freely vibrating (Davies 

2002). 

 
 , y(t- )-y(t) 0 2

my+c ; 0 2
0 2 2

y+ s ybK
ky

  
 

  

 
  

 
  8.2 

The solution to the DDE Equation 8.2 is already known based on the previous cut 

period coefficients and the initial conditions.  The general solution to the DDE in Equation 
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8.2  is shown in Equation 8.3, where the eigenvalues f,(1,2)  are those of the free vibrating 

system, and the state solutions based on the initial conditions of the free sections is shown 

in Equation 8.4 (Bayly 2003). 
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  8.4 

A schematic of the time response of the tool during LRIM is shown in Figure 69, 

where the blue sections indicate the tool motion while cutting, and the red dashed sections 

are when the tool is vibrating freely.  It can be seen in this figure that the initial conditions 

at the beginning of each cutting section are equal to the conditions at the end of the previous 

free vibration period.  Furthermore, the conditions at the beginning of each free vibration 

section are equal to the condition at the end of the cutting section of the same period.  The 

new transformation matrix for the LRIM case, ULRIM, must account for both of these 

“condition transfers” in order to determine the motion during one cutting period based on 

the motion during the previous cutting period. 
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Figure 69: Time response of the tool as it repeatedly enters the cut, where the initial conditions as the tool 

enters the cut are equal to the conditions at the end of the free vibration period of the previous period. 

In Figure 69 the cutting operation is shown over three rotations, cutting at A B and 

C.  Although displayed as three separate material sections, A B and C are actually the same 

material section shown at three points in time.  As such, the wavy surface that the tool 

encounters when cutting B is the surface left behind after cutting A, and the surface 

encountered at C was left behind after cutting B, and so on.  This repeated interaction 

between the tool and the surface allows us to apply the same basic procedure to determine 

the response of the tool as it repeatedly passes over the same material section as was used 

in turning.  The primary difference for LRIM is that the initial conditions of each cut are 

not equal to the conditions at the end of the previous cut because of the additional free 

vibrations.  Therefore, the initial condition portions of the transition matrix, ULRIM, must 

account for these additional free vibrations.   

Let us start by considering the initial conditions at the start of cut B in Figure 69.  

The initial conditions of ycB at point 3 are equal to the modal conditions of the free 

vibrations of, yfA, evaluated at tf from the start of yfA.  The initial conditions of yfA at point 
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2 are equal to the conditions at the end of cut A, which is equal to ycA evaluated at the cut 

time, tc.   

The conditions of the first mode at the end of A (point 2) are shown in Equation 8.5

, where the subscripts of Γ and Ω indicate that τ is replaced by tc in Equations 7.2 and 7.6 

respectively.   
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The conditions at the end of the free vibration period, at point 3, can be calculated 

based on the initial conditions at point 2 by expanding Equation 8.4 as shown in Equation 

8.6, where D is the 2x2 matrix in Equation 8.4. 
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Note that the free eigenvalues in Equation 8.4 must correspond to the modal 

parameters of each individual mode.  Recognizing that the conditions of  cA,Mode1 cy t  are 

equal to the conditions of  
, 1 0fA Modey , and that the conditions at  , 1fA Mode fy t  are equal to 

the initial conditions of cut B at point 3, we can obtain the expression for the initial 

conditions of  
, 1 0cB Modey  shown in Equation 8.7 
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In order to account for the free vibrations in matrix form, the derivation of UIC,Reduced 

is revisited and adjustments are made based in Equation 8.7.  Equation 7.12, which is 
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shown again below, gives the zeroth order coefficients of the tool motion solution based 

on the initial conditions at the beginning of the cut.   
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Substituting Equation 8.7 into this equation and reducting in the same way as was 

done in Equations 7.13 through 7.16, we obtain a new transition matrix,  
,LREM,

,c f IC
U t t , to 

determine the zeroth order coefficients for one cut based on the coefficients of the previous 

cut when there is a period of free vibration between cuts.  The elements of  
,LREM,

,c f IC
U t t

can be calculated using Equation 8.9, where   is a Kronecker product. 
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Finally, the components of the transition matrix relating the coefficients of one cut 

based on the coefficients of the previous cut are combined in Equation 8.10 to form 

U(tc,tf)LRIM. 
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8.1 Example 

The time domain solutions to Equation 8.2 found using Equation 8.10 are now 

compared with simulated time domain results for the turning approximation model for 

LRIM shown in Figure 69.  For these examples the system parameters shown in Table 6 

are used, which are the same parameters used in (Bayly 2003) for the analysis of LRIM 

using the TFEA approach.  Two examples are shown which are plotted in the LRIM 

stability lobe diagram in Figure 70, having a depth of cut of b=4mm at 5500 and 5850 RPM 

using ρ=0.1.   

Table 6: System parameters used in the LRIM examples (Note these are the same parameters used in Bayly 

et al, 2003 (Bayly 2003)).. 

k  2.2E6 N/m 

m  2.5859 kg 

c  18.1272 Ns/m 

Ks cos(β) 2E8 N/m2  

 

 
Figure 70: Two time domain examples for a single mode system evaluated at a depth of cut, b=4mm at 

5500 and 5850 RPM. 
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The resulting time domain solutions for the two LRIM examples are shown in 

Figure 71 when the initial conditions at the start of the cutting process are 

   0 0,and 0 1y y m s  .  In Figure 71 the red analytical portions of the solution only 

represent the motion of the tool while the tool is in the cut since the analytical solution only 

provides the tool point motions during this time.  It can be seen in the first 8 part revolutions 

that the analytical solutions match the simulated solutions, and at these spindle speeds, the 

time which the tool is in the cut is significantly shorter than the oscillation period of the 

tool.  By observing the first 8 revolutions, it is difficult to determine the long term stability 

of the system, however, when plotted over the first 50 revolutions, it is clear that example 

1 is unstable while example 2 is stable, as indicated by the stability lobe diagram. 

 
Figure 71: Comparison of the time domain plots for example 1 and 2 with the numerical simulation for the 

first 8 revolutions (top) and the first 50 revolutions (bottom).  Note that the analytical solutions are only 

plotted during time that the tool is engaged in the cut, and the numerical solutions are plotted over the 

entire time range.. 



127 

 

8.2 Stability 

Stability lobe diagrams are produced based on the transition matrix, ULRIM, by 

determining whether the maximum eigenvalue magnitude is greater than or less than one.  

The resulting stability lobe diagrams are compared with stability lobes produced through 

numerical simulation, using the same process used in the turning stability lobes.  The 

resulting stability lobe diagrams are shown in Figure 72 when the time step used for the 

simulation produces 20 and 100 calculations per tool oscillation.  When only 20 points per 

oscillation are used (as was the case for turning), the two stability lobes are similar, but 

have significant differences.  When the time step is decreased to 100 points per oscillation 

the simulated stability lobes align more closely to the analytical stability lobes.  As the tool 

is only engaged in the material for a relatively short period of time, a more refined time 

step is needed for the LRIM simulations to accurately predict the tool motions.  

 
Figure 72: Analytical LRIM stability lobe diagrams using J = 4 compared with numerical simulations using 

50 revolutions and approximately 20 points per oscillation (left) and 100 points per oscillation (right) for 

the simulations.  

A significant difference between analytical stability lobes for turning and LRIM is 

the importance of J on the accuracy of the stability lobes.  In Figure 73 the LRIM stability 
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lobes are shown for J=2, 4, 6 and 8.  The first observation is that the LRIM lobes do not 

show the same upward bend that appears in the turning lobes as the spindle speed is 

decreased.  Furthermore, the difference between the stability lobes as J is increased is much 

less significant for LRIM than it is for turning.  In Figure 73 the is a small adjustment in 

the lobes when J is increased from 2 to 4, but the lobes as J is increased from 4 to 6 to 8 

are nearly identical.   The difference in the dependence on J for turning and LRIM can be 

attributed to the fact that the tool is only engaged in the work piece for a short period of 

time in LRIM.  As such, the higher order terms of the solution have a smaller effect on the 

motion of the tool over the short cutting periods (i.e. the values of the high order polynomial 

terms are relatively small for small values of t), and the tool motion can be more accurately 

approximated using fewer terms.   

 
Figure 73: Comparison of analytical LRIM stability lobes using Nrev = 2, 4, 6, and 8, where the stability 

lobes for Nrev = 4, 6, and 8 are nearly identical. 
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The LRIM stability lobes produced using the current analytical approach are now 

compared with those generated using the TFEA method in (Bayly 2003).  For both methods 

the same model is used (see Figure 68) to approximate the LRIM process and the same 

system parameters are used for the analysis.  In Figure 74 the stability lobes produced using 

both methods are plotted together for ρ=0.05, 0.1, 0.25 and 0.5.  It can be seen in this 

comparison that the stability lobes are nearly identical using both methods, where the 

greatest deviation (although small) occurs in the ρ=0.5 plot near 2900 RPM. 

 
Figure 74: Comparison of the LRIM stability lobes produces using the current approach (red) and the 

TFEA method for ρ = 0.05, 0.1, 0.25, and 0.5 (TFEA stability lobes from Bayly et al, 2003) (Bayly 2003). 

8.3 Conclusions 

The analytical processes developed in this dissertation have been shown to be 

effective for modeling intermittent cutting operations, where the time domain results match 

numerical results, and the stability results match those obtained using TFEA.  In the next 

chapter the matrix solutions for intermittent cutting are used for variable pitch cutting. 



  LRIM WITH VARIABLE PITCH CUTTERS  

Equation Chapter 9 Section 1  

The use of variable pitch cutters have been applied in milling applications in order 

to alter the stability characteristics of equal pitch tool cutters.  Researchers have 

investigated variable pitch as a potential for increasing stability limits by “interrupting” the 

regenerative processes in the cutting operation (Smith 2010).  This work has focused on 

characterizing the effects of and designing variable pitch and variable helix angle cutters 

to improve performance (Altintas 1999; Olgac 2006; Sims 2008; Tlusty 1983).  The results 

of this work have shown some increases in the stability limits, or shifts in the ideal spindle 

speeds. 

In this chapter, a model is developed to analyze a variable pitch LRIM cutting 

process.  The LRIM component of this model again allows for the force to be approximated 

as acting in a single direction.  It also allows for the assumption that the tool has a period 

of free vibrations in between each cut, as is required for the model developed here.  Figure 

75 illustrates the variable pitch LRIM cutting process model.  In this example there are 

three cutting teeth used which are separated by angles ϕA,B,C.  The unequal angle spacing 

between the cutters causes the free vibration period to differ in length after each tooth exits 

the cut, tfA,B,C, while the time that the tooth is in the cut is the same for each cutter, tc.  The 

free and cutting times can be calculated using Equation 9.1, and the resulting system of 

ODEs and DDEs describing the system are shown in Equation 9.2.  Figure 75 also shows 
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the cutting and free periods for one complete tool revolution, where the material sections 

labeled A, B and C indicate which tool is cutting.   

 
Figure 75: LRIM with variable pitch cutters, where the time in the cut is the same for each tooth, but the 

free vibration periods vary for each tooth. 
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  9.2 

Analysis of the variable pitch system is more complex than the equal pitch (or 

single tooth) cutters because multiple free vibrations periods and multiple delay periods 

must be considered.  Rather than searching for a direct solution to the DDE with multiple 

delays in Equation 9.2, we can simply piece together the solution by using the transition 

matrices already developed for LRIM.  The transition matrix for LRIM, ULRIM, determines 
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the tool motions when the tool encounters a surface described by the set of coefficients, Aj-

1, when the tool was in the previous cut for time, tc, and vibrating freely for a time, tf, before 

reentering the cut.  In effect, the times (tc and tf) used to construct ULRIM account for the 

delay period between two consecutive cuts, so in the current three tooth cutter example 

with three delays in Equation 9.2, three transition matrices (ULRIM) are needed to describe 

the tool motions going from tooth A to B to C and back to A. 

In Equation 9.3 the relations between the tool motions in the three subsequent cuts 

are shown, where AyABC are the coefficients (for a two mode system) describing the tool 

motions while each tooth is cutting.  The transition matrix, U(tc,tf)LRIM, relates the 

coefficients from one cut to the next when the time of the first cut is tc, and the time of the 

free vibration in between cuts is tf.  For the LRIM case, this transition matrix need only be 

derived once because there is a single tc and single tf.  For variable pitch, this transition 

matrix must be determined multiple times to account for the multiple free vibration periods.   

For example,  ,c fA LREM
U t t  is used to determine 

1j

yB

A  based on 
1j

yA

A ,  ,c fB LREM
U t t  

is used to determine 
1j

yC

A  based on 
1j

yB

A , and  ,c fC LREM
U t t  is used to determine 

j

yAA  based 

on 
1j

yC

A .  By combining these relations in Equation 9.4, the multiple relations for the 

multiple free periods are reduced to a single transition matrix, UVarPitch, in Equation 9.5 

which directly relates the coefficients of 
j

yAA  and 
1j

yA

A .  As a result, it is possible to 

determine the motion of the tool during cut A based solely on the motion of the tool during 

the previous cut A, where all of the complex behaviors, due to multiple cuts and free 

vibrations in between two A cuts, are built into the transition matrix, UVarPitch.   
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NOTE that the subscripts of AyABC indicate which tooth that is in the cut, however, 

the basis functions for each are the same because all of the cutting parameters are the same 

for each tool.  In other words, the relationship between cuts A and B in the variable pitch 

model are the same as the relationship between two subsequent LRIM cuts with equal pitch 

or a single tooth cutter.  This allows us to use the same relationships already established, 

 ,c fB LRIM
U t t , to relate motions between different cutting teeth.  (In other machining setups 

the basis function between two cut sections can change due to a cutting parameter change, 

and a different approach must be used to relate the motions between the two sections). 

9.1 Example 

Two example time domain solutions are evaluated and compared with numerical 

simulations of the variable pitch LRIM model.  The system parameters found in Table 7 

are used in the examples, and the machining parameters labeled in the stability lobe 

diagram in Figure 76. 
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Table 7: System parameters used in the Variable Pitch LRIM examples (Note these are the same 

parameters used in Bayly et al, 2003 (Bayly 2003)).. 

k  2.2E6 N/m 

m  2.5859 kg 

c  18.1272 Ns/m 

Ks cos(β) 2E8 N/m2  

θ1,2,3 0°, 100°, 250° 

 

 
Figure 76: Two time domain examples for variable pitch LRIM milling evaluated at a depth of cut, 

b=10mm at 2000 and 2500 RPM. 

The resulting time domain plots are shown in Figure 77 for the first 6 revolutions.  

In Figure 77, the simulated results are plotted in two different colors depending on whether 

the tool is in the cut or not, where the blue sections are when the tool is in the cut, and the 

black sections are when the tool is freely vibrating.  The red analytical sections of Figure 

77 are only plotted for when tooth A is in the cut.  This is because the transition matrix, 

UVarPitch, need only “keep track” of the motions while only one tooth is in the cut per 

revolution, and all of the motions between A cuts are accounted for within UVarPitch. 
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Figure 77: Simulated and analytical time-domain plots for the two variable pitch LRIM examples.  The 

simulated response is shown as black when the tool is out of the cut and blue when the tool is in the cut.  

The Analytical solution (red) only determines the motion of the tool when tooth A is in the cut and is 

determined using Equation 9.5 

9.2 Stability 

Stability lobe diagrams are produced based on the eigenvalues of UVarPitch using the 

system parameters of Table 7.  The stability lobes produced using UVarPitch are compared 

with simulation based stability lobes in Figure 78.  The simulations used for Figure 78 used 

a time step which produced approximately 300 calculations per tool oscillation, and the 

same stability criteria developed in the simulated turning stability lobes is used.  The results 

from Figure 78 show that the stability lobes produced analytically and through simulation 

do closely agree over the range of machining parameters evaluated.   
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Figure 78: Analytical variable pitch LRIM stability lobe diagram with Nrev=4 compared with numerically 

simulated stability lobes evaluated over 50 revolutions using approximately 300 points per oscillation.   

The analytical stability lobes for the variable pitch angles shown in Table 7 are 

compared with the stability lobes of an equal pitch, three tooth cutter in Figure 79.  As 

expected, the shape of the equal tooth spacing stability lobes resemble those of the LRIM 

lobes in the previous chapter.  The variable pitch lobes show a less ordered structure which 

agrees more closely with the equal pitch cutter at higher spindle speeds, then deviates as 

spindle speed decreases.  From this example there is no clear advantage to the variable 

pitch cutter in terms of raising the stability limit, although there are areas of high stability 

limits which occur at different spindle speed locations when compared with the equal angle 

cutter.  It is possible that a different tooth number and angle combination would result in a 

more beneficial stability characteristics, however, investigation of the optimum tool 

arrangement is outside the scope of the current work. 
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Figure 79: Stability lobe comparison between an equal pitch and variable pitch cutter using the system 

parameters from Table 7. 

9.3 Conclusions 

It is shown here that application of the matrix solutions for the time-domain and 

stability analysis of a variable pitch cutting operation match those predicted numerically.  

The key takeaway from this section, however, is that the solution process developed for 

LRIM can be applied to systems with increased complexity due to the increased number of 

time delays (see Equation 9.2).  Despite increasing from a single time delay in the previous 

chapters to three here, the solution process is a simple matter of “piecing together” the 

multi-delay solution using the same tools developed for single delay systems. 



  MILLING USING AVERAGE ANGLE APPROXIMATION  

Equation Chapter 10 Section 1  

At higher radial immersions the single force direction approximation loses accuracy 

because change in force direction as the tool sweeps around the cut has a more significant 

effect on the motion of the tool.  In this chapter the milling process is approximated using 

the solution methods developed in this dissertation to model the effects of changing the 

number of teeth in the cut.  Milling operations have been analyzed previously by 

approximating the variable force direction using the average angle (Tlusty 1999), or 

average force values (Altintas 1995; Tlusty 1999).  In this chapter, the analytical results 

produced will be compared with the average angle approximation approach.  Although 

only an approximation of the effects of the variable force direction, the average angle 

approximation provides an additional “machining scenario” that can be used to expand and 

test the current analytical approach.   

Consider the 50% radial immersion diagram using a 6 tooth cutter in Figure 80.  In 

Figure 80A, the dynamic system is oriented to allow motions of a single mode system only 

in the direction normal to the average cut angle, ϕavg, surface.  The average angle orientation 

of the dynamic system is a simplification of Tlusty’s model, which uses force direction 

factors to project the cutting force onto two modes oriented in different directions.  The 

average angle simplification shown here projects all of the tool motions in the y-direction 

(normal to the average cut angle), and if the cutting forces in the y-direction are 

approximated to be proportional to the motion of the tool in this direction (using the 
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average angle approximation), than the analytical tools developed in the previous chapters 

can be applied to approximate the tool behavior.  The resulting linearized approximation 

of the milling process is shown in Figure 80B, where the tool forces in the y-direction are 

proportional to the tool motions in the y-direction.    

 

 
Figure 80: (A) Single DOF milling operation where all motions are normal to the average cut angle 

direction, and (B) a linear approximation of the milling operation assuming the average angle 

approximation. 

While the system presented in Figure 80 is a significant simplification of Tlusty’s 

average angle approximation model, it allows us to investigate the use of the analytical 

tools developed in previous chapters to model in detail how the “number of teeth in the 

cut” affects the behavior of the system.  The issue of number of teeth in the cut arises in 

milling because there are typically multiple cutting teeth on the tool, and depending on the 

number of teeth and the radial immersion, the number of teeth that are engaged in the work 

piece can change as the tool rotates.  In Tlusty’s stability model for milling using the 

average angle approximation (which is a modification of his turning stability model with 
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an assumed single force direction), the number of teeth in the cut is accounted for by 

shifting the stability lobe diagram by a factor, Nt*.  Nt* represents the average number of 

teeth in the cut during one rotation of the tool.  Nt* can be calculated using Equation 10.1, 

where Nt is the number of teeth and ϕcut is the total angle in which the tool is engaged in 

the cut.  The resulting stability limit in this model is found using Equation 10.2, where Ks 

is the cutting force constant and FRForient is the oriented FRF which accounts for the force 

direction factors.    

 
*

2

t cut
t

N
N




   10.1 
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b
K FRF N


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The analytical model developed in this work provides an opportunity to investigate 

the effects of the number of teeth in the cut in a more direct way.  Rather than assume that 

the system dynamics can be adequately represented by considering the average number of 

teeth in the cut, we can explicitly model how the tool behaves when the number of teeth in 

the cut repeatedly switches from one to two (or two to three etc.) as the tool rotates.  

Take for example the six tooth cutter in Figure 80A.  As the tool rotates the tooth 

passing frequency is associated with the angle separation between two adjacent teeth, ϕτ. 

Referring to Figure 80A, each time a tooth enters the cut there is another tooth which is 

already engaged in the cut (tooth 1 is in the cut when tooth 2 enters the cut).  As the tool 

continues to rotate, both teeth are engaged over an angle range of ϕ2b until tooth 1 exits the 

cut (in the tooth 1’ and 2’ positions).  After tooth 1 exits the cut, tooth 2 is alone in the cut 

over the range ϕb, until it reaches tooth position 1 and the third tooth enters the cut. 
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As a result of teeth entering and exiting the cut at different times as the tool rotates 

through one ϕτ period, the system effectively exhibits different dynamic characteristics 

depending on whether there is one or two teeth engaged in the work piece.   To account for 

these effects, the multiple teeth of the six tooth mill are modeled as a single tooth cutter 

which passes through regions of b and 2b chip width depending on the number of teeth in 

the cut, as shown in Figure 81B.  Note that the motions of the multiple cutters in Figure 

81A can be modeled as a single cutter in Figure 81B because the multiple teeth are assumed 

to be rigidly attached to the same mill, thus their motions are equal.  

 
Figure 81: Linear approximation of the milling operation and (B) and the single tool approximation, where 

the effective chip width alternates between b and 2b. 

The DDE describing the tool motions in the model illustrated in Figure 81 is shown 

in Equation 10.3, where the angles, ϕτ, ϕb, and ϕ2b are illustrated in Figure 80. 

 
 

 
, 2

, 2 2

y(t- )-y(t)
my+cy+

y(t- )-

2

y(t

0

)
; 0

s y b

s y b b b

bK
ky

bK


  
 

    

 
  

  
  10.3 

In the low radial immersion model discussed previously, the system dynamics were 

separated into two separate sections depending on whether the tool was in the cut or freely 

vibrating.  A similar circumstance exists in the current model, where the equations of 
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motion differ depending on the effective chip width (b or 2b).  As the equations of motion 

for the tool are dependent on the value of b in the state-space solution, there will be two 

separate equations of motion (or basis functions) describing the tool motion depending on 

whether there is one or two teeth in the cut.  For example, the motion equations for the b 

and 2b sections shown in Figure 82 will have the forms shown in Equation 10.4 assuming 

a single mode system, where the eigenvalues, λb and λ2b, are found by applying b and 2b 

respectively to the state-space solution (see Equation 3.8).  
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Figure 82: Depiction of the tool motion, where the conditions at the intersections of the b and 2b cut 

regions are equal. 

As the chip width effects the state space solutions which are accounted for in the Z 

portion of the transition matrixes, a new subscript is added to the Z matrices to describe 

the state space solutions for each section (Zb and Z2b).  In other words, the Zb and Z2b 
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matrices are used to determine the motion of the tool in the b and 2b sections respectively 

based on the motion of the tool in the b and the 2b sections of the previous period.    

The initial conditions at the beginning of each cut region are found as the conditions 

of the tool at the end of the previous cut region using UIC.  As there are two separate state 

space solutions for the two regions, some extra effort is required to match the conditions at 

the end of one region to the conditions at the beginning of the next within the UIC matrix.  

First, the conditions at the end of the previous cut region are found by applying the cut time 

of the previous region and the eigenvalues of the state space solution of the previous cut 

region.  This determines the modal states at the end of the previous region based on the 

motion function of the previous region.  Second, the states at the end of the previous region 

must be applied as initial conditions of the current region based on the eigenvector matrix, 

V, of the current region.   

For example, the motion of the tool as it passes between cut regions over two τ 

cycles is shown in Figure 82.  The motion of the tool for 2

j

by  is found as a response to the 

tool motion during the previous 2b region using 1

2 2

j

b bZ 
A , where 1

2

j

b


A  is the set of 

coefficients describing the motion during the previous 2b region.   The motion of y2b
j based 

on initial conditions is found as  2, , j

IC b b b bU t λ V A , where j

bA  is the set of coefficients 

describing the motion during the previous cut region, tb is the time the tool is engaged in 

the previous cut region, λb, is the set of eigenvalues associated with the b state space 

solution, and V2b is the eigenvector matrix associated with the 2b state space solution.  The 

resulting equations used to determine the tool motions for both cut regions are shown in 

Equation 10.5 
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After substituting Ab
j into A2b

j (see Equation 10.6), the transition matrix, Umill,avg,ang, 

is found directly relating the motions of the tool during one τ period to the motions of the 

tool during the previous τ period in Equation 10.7. 
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The reduced form (only degree zero rows) of the UIC matrices in Equation 10.7 can 

by calculated using Equation 10.8, where 
.b bt Γ  and 

b
  are found using Equations 10.9 

and 10.10, 
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10.1 Example 

The solution to Equation 10.3 using Equation 10.7 is now compared with numerical 

simulation.  The system parameters used for the analysis are shown in Table 9.  Two 
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example solutions are shown using spindle speeds of 3,500 and 4,000 RPM both at a depth 

of cut of 2mm, as shown in the stability lobe diagram in Figure 83 for a six tooth cutter and 

50% radial immersion.   

Table 8: System parameters used in the single mode average angle approximation milling examples. 

k 1E7 N/m 

m 0.88 kg 

c 400 Ns/m 

Ks 2E9 N/m2  

β 70° 

 

 
Figure 83: Two time domain examples for average angle milling approximation  evaluated at a depth of 

cut, b=2mm at 4000 and 3500 RPM. 

In Figure 84 the two example solutions are compared with the numerically 

simulated solutions.  The analytical solutions are plotted in blue for the regions in which 

only one tooth is in the cut, and red in the regions where two teeth are in the cut.  It can be 

seen in Figure 84 that the analytical solutions match the numerical solutions, and that the 

transition matrix, UMill,Avg.Ang, successfully couples the modal conditions as the tool passes 

between the b and 2b cut sections.  The results from Figure 84 also show that the stability 

behavior predicted in the stability lobe diagram in Figure 83 agree with the behavior of the 

numerical and analytical solutions.   
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Figure 84: Simulated and analytical time domain plots for the example average angle milling 

approximations. 

Using the relatively high spindle speeds in the solutions shown in Figure 84 it is 

difficult to observe the effect that changing the number of teeth in the cut has on the 

behavior of the system.  In Figure 85 an additional solution is shown at a depth of cut of 

2mm and a spindle speed of 200 RPM.  At this slower spindle speed there are more 

vibrations that occur during each cut section so the difference in behavior as the number of 

teeth in the cut changes can be more easily seen.  When only one tooth is in the cut (blue) 

the vibration amplitudes during each pass tend to decrease, while the amplitudes increase 

over time when there are two teeth in the cut due to the doubling of the effective depth of 

cut.   
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Figure 85: An additional example of average angle milling at a reduced spindle speed, showing the 

difference in dynamic behavior in the 1b and 2b sections of the cut. 

10.2 Stability 

The stability lobe diagrams generated by evaluating the eigenvalues of the matrix, 

UMill,Avg.Ang, in Equation 10.7 are compared with those predicted using Tlusty’s average 

angle approximation approach using Equation 10.2.  The three stability lobe diagrams for 

the six tooth cutter with the system parameters shown in Table 8 for radial immersions of 

30, 50 and 70% are shown in Figure 86.  The results from Figure 86 show that the predicted 

stability lobes generated using the current approach match those predicted by Tlusty at 

higher RPM, where the lobes found using the current approach show the same upward bend 

observed in the turning stability lobes at lower RPMs.  
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Figure 86: Average angle milling stability lobes at REM = 0.3, 0.5 and 0.7 found by evaluating the 

eigenvalues of UMill,avg.ang. (red), compared with Tlusty’s stability lobes (gray). 

10.3 Conclusions 

The degree to which the stability lobes match using both methods is an interesting 

outcome of this study.  The stability lobes generated using the current approach take into 

account the additional complexity associated with the repeated change in the number of 

teeth in the cut.  In Tlusty’s approach, the stability lobes are generated by effectively 

assuming that a single tooth is constantly engaged in the cut, and then scaling that stability 

limit by the factor Nt*.  In the end, both approaches provide the same effective result in 

terms of stability. 



  VARIABLE CUTTING FORCE DIRECTION MILLING  

Equation Chapter 11 Section 1  

The approaches developed in the previous sections are now applied to approximate 

tool point motions for milling operations.  The method of using different effective dynamic 

system sections and piecing them together through end and initial conditions is now applied 

to single tooth milling operations, where the separate dynamic systems to be pieced 

together account for the changing direction forces acting on the tool as it sweeps through 

the cut. 

In a full milling model, the forces acting on the tool continually change direction 

as the angle of the cutter rotates through the cut region.  A diagram of a single tooth mill 

is shown in Figure 87 which shows the cutting force, F, acting at an angle β from the surface 

normal, and the angle θF in the fixed X-Y coordinate frame. 

 
Figure 87: Angle dependent force direction for 2 DOF Milling model. 

The magnitude and direction of the angle dependent cutting force, F, are found by 

expanding the regenerative force model to include the cutting angle, ϕ, and motions in two 
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orthogonal directions.  The resulting cutting force model is shown in Figure 88.  The 

magnitude of F is found by multiplying the cutting force constant, Ks, by the instantaneous 

chip area, bhϕ.  It is assumed that the chip width, b, is constant, so the only variable 

component of the chip area, and thus the tool force, is the chip thickness, hϕ.  The 

instantaneous chip thickness is found as the thickness of the chip in the direction normal to 

the cut surface, labeled N in Figure 88. In the regenerative force model, the chip thickness 

is determined by considering the normal components of the tool motion during the current 

period and the previous period.  The normal components of the x and y axes are found 

using Equation 11.1, where the normal angle, θN, is found using Equation 11.2.  The 

resulting instantaneous chip thickness, hϕ, and the resulting force projections onto the x and 

y directions are found using Equation 11.3, where the force angle, θF, is found using 

Equation 11.2. 

 
Figure 88: Force diagram for milling where the force magnitudes are proportional to the chip thickness, hϕ. 
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  11.3 

The angle dependent regenerative cutting forces in the x and y directions from 

Equation 11.3 are applied to the system of equations describing the motions of the tool in 

the x and y directions in Equation 11.4  

           
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  11.4 

A state-space solution is used to solve the 2DOF system in Equation 11.4 using the 

same process used to solve for the tool motions in turning.  The first step is to separate the 

current time and delay terms by bringing all current time terms to the left side of the 

equation, as shown in Equation 11.5. 
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  11.5 

Using the state variable, r, the state-space representation of Equation 11.5 is shown 

in Equation 11.6 and the matrix form of the state-space representation is shown in Equation 

11.7. 
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  11.7 

The process for solving Equation 11.7 is the same process illustrated in Figure 57, 

although there are some minor modifications required for the transition matrix, Z, to 

account for the two orthogonal modes (as opposed to multiple modes in the same direction).  

Recall Equation 5.16 (shown again below) for determining the modal coefficients based 

on the previous modal coefficients, where Z1,2 are defined in Equation 5.14.  In the single 

force direction solution (for the turning model) the total motion of the tool is found as the 

sum of the modal motions which all act in the same direction.  In the milling case, where 

the modes are orthogonal, the forces are not related to the total motion of the x and y modes 

due to the sine and cosine terms present in the forcing function (

        , , , ,cos sini i N i av i N iF x y      ) .  These directional scaling factors can be applied to the 

solution in the final Z transition matrix, Zmill,ϕi, as shown in Equation 11.8. 
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Another more significant difference for the milling solution is the fact that Equation 

11.7 can only be used to approximate the motion of the tool assuming a fixed angle, ϕ, 

where θF and θN are also fixed, to prevent variable entries in the state space solution.  In 

reality, the terms in matrix A of Equation 11.7 continually change as the angle of the tool 

changes throughout the cut.  However, the solution methods developed thus far (illustrated 

in Figure 57) are only valid for linear systems in which the terms of matrix A are constant.  

While this limitation prevents us from determining the motion of the tool exactly as it 

rotates in the cut, we can approximate the tool motion by discretizing the cut into multiple 

linearized increments and applying the solution process to each increment individually.    

Consider the 50% radial immersion milling operation shown in Figure 89.  As the 

tool rotates in the full milling diagram (top left), the angle of the surface normal, and thus 

the cutting force, relative to the fixed x and y reference coordinates are continually 

changing.  One way to approximate the effects of this continuous change in force direction 

is to linearize the system by assuming that all of the cutting forces act in a single average 

angle associated with the average angle of the cut.  This situation, illustrated in Figure 89 

with Nincs=1, is equivalent to the average angle approximation developed by Tlusty.  While 

the average angle approximation is the simplest way to approximate the milling process, 

higher accuracy can be achieved by breaking the cut into more linearized increments.  As 

shown in Figure 89 for up to five increments, as the arc of the tool is broken into finer and 
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finer segments, the resulting force model more accurately represents the forces in the full 

milling diagram.   

 
Figure 89: Increasing the number of linear increments used to approximate the effects of changing cutting 

force direction in milling. 

The multiple incremental linear segments in Figure 89 each account for the tool 

motion while the tool is in the angle range specified by ϕav,i, and within that range the 

surface normal and the cutting force angle are assumed to be constant.  As the angle, ϕav,i, 

alters the matrix terms in the state-space solution, each segment will possess a separate 

basis function with coefficients, ,

j

x iA  and y,

j

iA .  In effect, the system shows different 

dynamic characteristics from segment to segment similar to how the dynamic 

characteristics differed depending on whether there is one or two teeth in the cut in the 

average angle approximation model in the previous chapter.  Once the state-space solutions 

are known for each increment, the end and initial conditions at the points where the 
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segments meet must be tied to determine the tool motion over the entire cut.  For discussion 

purposes, the coefficients describing the motion in the x and y directions are combined to 

form XY,

j

iA  as shown in 11.9. 
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Consider the 50% radial immersion cut shown in Figure 90 with three linear 

increments.  Starting with the final increment over the range ϕav,3, the motion of the tool in 

this segment is related to the motion of the tool in this segment during the previous 

revolution by 1

, 3 , 3 , 3

j j

XY mill XYZ  

A A .  The initial conditions of the ϕav,3, segment are found as 

the end conditions of the previous segment using  , 3 2 2 3 , 2, ,j j

XY IC XYU t    A λ V A , where 

, 2

j

XY A  are the coefficients of the previous segment, tϕ2 is the time the tool is in the previous 

segment, λϕ2 are the eigenvalues for the previous segment, and Vϕ3 is the eigenvector matrix 

of the current segment.  The total resulting tool motion during the ϕav,3 segment is found 

using Equation 11.10.  Moving back increment by increment the tool motions can be 

determined in this way except for the first increment, ϕav,1, where additional information is 

required to account for the free vibration of the tool as shown in Equation 11.10.   
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Figure 90: Example milling approximation using three linear increments to model the changing force 

direction. 
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Substituting components of Equation 11.10 so that the motion in each current 

increment is defined in terms of the motion during the previous pass, as shown in Equation 

11.11, a final transition matrix can be determined relating the motion of the tool during the 

current previous pass, as shown in Equation 11.12 
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11.1 Example 

The incremented milling solution developed in the previous sections is compared 

with numerical milling solutions in this section.  In these examples the analytical solutions 

are compared with two types of milling simulations.  The first simulation is a full milling 

simulation in which the cutting force direction changes during each time step based on the 

instantaneous angle of the tool. ϕ.  In the second simulation the cutting force directions are 

constant over each incremental angle range, directly simulating the incremental analytical 

solutions.  The dynamic parameters used in the examples are provided in Table 9. 

Table 9: System parameters used in the multi-mode turning examples. 

kx, ky  1E7, 5E7 N/m 

mx, my  0.88, 1 kg 

cx, cy  500, 60 Ns/m 

Ks 2E9 N/m2  

β 70° 

 

The example solution is performed using a spindle speed of 20,000 RPM at a depth 

of cut of 7mm and a radial immersion of 100%.  Using these dynamic and cutting 

parameters, the analytical solutions are compared with the numerical solutions as the 

number of linear increments used in the analytical solutions are increased from one to five 

over five tool revolutions.  The resulting solutions for the x and y motions are shown in 

Figure 91, where the analytical solutions (red dashed) are only plotted while the tool is in 

the cut.  The results from Figure 91 show firstly that the analytical results regardless of the 

number of increments do match the incremented numerical solutions.  However, the degree 

to which the analytical solution matches the full milling simulation is highly dependent on 

the number of increments used.  When only a single increment is used there are significant 

differences between the analytical and numerical solutions, appearing during the first tool 
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revolution.  As the number of increments is increased, the analytical solution approaches 

the full milling simulation, where at Nincs=5, there is little visible difference between all 

three solutions. 

 
Figure 91: Comparison of the full milling simulation and the incremental milling simulation as the number 

of linearized increments increases.  The analytical plots model the incremental simulations and are plotted 

only while the tool is in the cut.  The parameters used for the simulations are shown in Table 9 with: 

REM=100%, Nt=1, RPM=20,000, b=7mm. 
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11.2 Conclusions 

The segmented linearization approach to approximate full milling shows that the 

nonlinear behavior of the tool in milling can be predicted to various degrees of accuracy 

depending on the number of increments used.  While this approach appears to be effective 

for predicting the time domain behavior of the system, applications of Floquet theory on 

the transition matrix in Equation 11.12 to predict stability have been unsuccessful.  At this 

time the cause of this issue is unknown and will be a topic of future research.   



  CONCLUSIONS AND FUTURE WORK 

The initial goal of the work presented in this dissertation was to develop a new 

strategy for analytically solving linear delay differential equations by taking advantage of 

the fact that the sequential responses can be calculated independently of the time delay 

period, and can be combined to form the solution.  While the sequential response approach 

has been shown to be effective in determining the time response of a tool with single or 

multiple modes, this approach alone showed little improvement over numerical approaches 

for practical applications, where the primary objective for these types of systems is to 

determine the limits of stability.   

However, it was the equations and techniques developed for the sequential response 

solution approach that provided the ability to expand to a more applicable, matrix solution.  

By applying the sequential response approach it was possible to analytically determine the 

behavior of the tool during one period based on the behavior of the tool during the previous 

period.  Combining this approach with the method of steps to determine the initial 

conditions of each period, it was possible to create a single transition matrix which fully 

describes the tool behavior from period to period.  Once this transition matrix was 

developed it was possible to apply Floquet theory to directly predict the stability of the 

system analytically without the need to determine the time response.  

Once the tools were in place to predict stability for the most simple machining 

operation (turning), the process of expanding to more complex machining operations was 
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relatively trivial.  The key is to recognize the two basic analytical tools present in all of the 

applications presented in this dissertation; the Z transition matrices which determine how 

the tool will respond when it encounters the surface profile left behind during the previous 

pass, and UIC, which describes the initial conditions of the tool based on its previous 

motions.  By combining these two analytical tools in different ways to effectively “piece 

together” the machining operations, it was possible to determine the time response and 

stability of more complex systems. 

Moving forward, there is still much research that can be done in this area.  Firstly, 

there is still a need to perform further experimental tests to verify both the time response 

and stability predictions of the analytical methods developed here.  It was shown in this 

dissertation that the time response predictions closely match those measured 

experimentally for turning, despite the influence of process damping.  However, further 

tests can be done to experimentally verify the other machining operations studied here.  

Although process damping was not a focus of this research, it would be possible to use the 

processes developed in this dissertation to correct for process damping to perform a more 

thorough characterization of process damping.  

Another focus of future work will be on determining why Floquet theory fails to 

predict stability in the case of full milling while the same transition matrix accurately 

predicts the time response of the tool.   

The final potential focus of future work would be to study more thoroughly the 

application of the methods developed in this paper for other applications.  As the solution 

process developed here for delayed systems is based on a state-space model, there is no 

reason that it could not be generalized to accommodate linear DDEs of higher order.  
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  APPENDIX A: SEQUENTIAL RESPONSE SOLUTIONS 

Equation Chapter 12 Section 1  

12.1 Detailed Sequential Response Solutions 

This section provides a detailed solution to equation 2.15 when the input function, 

hnom(t), contains decaying oscillation terms.  We will start with the solution to the 

oscillating input in equation 2.28 (for the calculation of x2(t)).  This portion of the ODE 

and the corresponding particular solution, xp, are shown in equation 12.1.  In order to solve 

for the constants, W0, W1,a, and W1,b, we first take the first two time derivatives of xp2. 
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 12.1 

Using Matlab, the first time derivative is: 

px = W0*exp(-A*t)*(-A*t*W1a*sin(wp*t-(pi/2))-A*t*W1b*cos(wp*t-

(pi/2))... 
               +W1a*sin(wp*t-(pi/2))+W1b*cos(wp*t-(pi/2))... 
                  +t*W1a*cos(wp*t-(pi/2))*wp-t*W1b*sin(wp*t-

(pi/2))*wp) 

 

And the second time derivative is: 

px = -W0*exp(-A*t)*(-A^2*t*W1a*sin(wp*t-(pi/2))-A^2*t*W1b*cos(wp*t-

(pi/2))... 
         +2*A*W1a*sin(wp*t-(pi/2))+2*A*W1b*cos(wp*t-(pi/2))... 
            +2*A*t*W1a*cos(wp*t-(pi/2))*wp-2*A*t*W1b*sin(wp*t-

(pi/2))*wp... 
            -2*W1a*cos(wp*t-(pi/2))*wp+2*W1b*sin(wp*t-

(pi/2))*wp... 
            +t*W1a*sin(wp*t-(pi/2))*wp^2+t*W1b*cos(wp*t-

(pi/2))*wp^2) 

 

Applying the time derivatives to the left side of the ODE, we obtain: 

x +2Ax + x
p

p p p

k

m
=-W0*exp(-A*t)*... 

      (-t*(kp/m)*W1a*sin(wp*t-(pi/2))-t*(kp/m)*W1b*cos(wp*t-

(pi/2))... 
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          +A^2*t*W1a*sin(wp*t-(pi/2))+A^2*t*W1b*cos(wp*t-

(pi/2))... 
             -2*wp*W1a*cos(wp*t-(pi/2))+2*wp*W1b*sin(wp*t-

(pi/2))... 
             +t*wp^2*W1a*sin(wp*t-(pi/2))+t*wp^2*W1b*cos(wp*t-

(pi/2)))... 

 

Note that c/m is replaced by 2A in the above equation to reduce the number of 

variables.  

After applying the relation, 2 2 0p

pk
A

m
    , (see equation 2.23) the equation 

reduces to: 

 x +2Ax + x
p

p p p

k

m
=W0*exp(-A*t)*(2*W1a*wp*cos(wp*t-pi/2)-

2*W1b*wp*sin(wp*t-pi/2))  12.2 

The constants of xp2 can now be solved for by equating equation 12.2 to the right 

side of the ODE in equation 12.1, recognizing that sin(ωpt-pi/2) = -cos(ωpt) and so on.   

During the next pass, the input function, hnom,3(t), will contain oscillating terms 

described by xp2 as well as oscillating terms from the complementary solution, 

2, 2,sin cos
2 2

a p b p

At

cx e W t W t 
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
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, which takes into account all of the 

particular solutions and the ICs.  The oscillation terms for the input for the following pass 

(to find x3) will then be: 
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 12.3 

And the particular solution to this input will have the form: 

2 2

0,3, 1, 2, 2,1, sin 2 co
2 2 2

s 2 sin 2 cos 2
2

p osc p b a

t

b

A
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 12.4 
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Again, when x3(t) is calculated, the complementary solution will add sine and 

cosine terms which are not multiplied by t.  So, as the number of passes increases, the 

oscillating portion of the responses will contain sine and cosine terms multiplied by 

increasing orders of t, where the highest order is t^(j-1), and the lowest is t^0, for the 

response, xj(t).  The primary objective of the sequential response analysis is to find all of 

the W coefficients to describe the oscillating component of the tool motion during each 

pass. 

We could go on solving the sequential responses individually in this way… Let’s 

look for patterns in the solution to simplify the process.  

Skipping ahead now to the response to the sixth pass, the oscillating portion of the 

input function has the form: 
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And the particular solution has the form: 
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Differentiating equation 12.6 and applying to the differential equation, we get: 

x +2Ax + x
p

p p p

k

m
=W0*exp(-A*t)*...  12.7 
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  (10*wp*W1*t^4*cos(wp*t-5*(pi/2))-10*wp*W2*t^4*sin(wp*t-

5*(pi/2))... 

  
        +20*W1*t^3*sin(wp*t-5*(pi/2))+20*W2*t^3*cos(wp*t-

5*(pi/2))... 
        +8*W3*t^3*wp*cos(wp*t-5*(pi/2))-8*wp*W4*t^3*sin(wp*t-

5*(pi/2))... 

  
        +12*W3*t^2*sin(wp*t-5*(pi/2))+12*W4*t^2*cos(wp*t-

5*(pi/2))... 
        +6*W5*t^2*wp*cos(wp*t-5*(pi/2))-6*wp*W6*t^2*sin(wp*t-

5*(pi/2))... 

  
        +6*W5*t*sin(wp*t-5*(pi/2))+6*W6*t*cos(wp*t-5*(pi/2))... 
        +4*W7*t*wp*cos(wp*t-5*(pi/2))-4*wp*W8*t*sin(wp*t-

5*(pi/2))... 

  
        +2*W7*sin(wp*t-5*(pi/2))+2*W8*cos(wp*t-5*(pi/2))... 
        +2*W9*wp*cos(wp*t-5*(pi/2))-2*wp*W10*sin(wp*t-5*(pi/2))) 

 

From equation 12.7 we start to see two patterns emerge; factors of 2, 4, 6, 8, and 

10 (2i) appear in the second line for each order of t, and factors of 2, 6, 12, and 20 (i(i+1)) 

appear on the first line.  These patterns continue as the number of passes increases, and 

from them we can obtain a general form for the evaluated particular solution as shown in 

equations 12.8 through 12.10. 
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General solution 
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Note that equation 12.10 is the result after terms are cancelled based on 

2 2 0p

pk
A

m
    . 

It is now a matter of solving for the coefficients in equation 12.9 by equating 

equation 12.10 to equation 12.8.  Keep in mind that the C coefficients in equation 12.8 are 

the W coefficients from the previous pass.   

Here again, we could go on solving for the coefficients individually in this way… 

Let’s look for patterns that can simplify the process.  

We will start by looking at the coefficient, W0.  W0 is simply equal to C0, where C0 

is equal to W0 from the previous pass multiplied by bR/m.  So as the number of passes 

increases, W0 can be determined by the following equation: 

 

1

0, 0j

j
bR

W V
m



 
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 
 12.11 

The V0 term in equation 12.11 is present because the factor multiplied by the 

oscillating term after the first pass is V0 (i.e. V0 is the initial C0) (See equation 2.25).  In 

subsequent passes, the W0 term is repeatedly multiplied by bR/m according to equation 

2.15. 

W0 takes care of the effect of the forcing constant which carries through from 

solution to solution.  Moving forward, we can consider the constant terms, C, to be simply 

equal to the W coefficients from the previous pass.   

The next coefficients to be solved for are those associated with the highest order t 

terms, W1.  Because of the shift in phase from equation 12.8 and equation 12.10, W1,a will 

be associated with C1,a, and W1,b with C1,b.  Looking at W1,a, it is always multiplied by 
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2 ( 1)p j  in equation 12.10 so that 
1,

1,
2 ( 1)

a

p

a

C
W

j



.  After the first pass the initial C1,a 

constant is G (equation 2.27) and as the number of passes increase, W1,a is found by 

repeatedly applying the equation, 
1,

1,
2 ( 1)

a

p

a

C
W

j



, as shown in equation 12.12.  From the 

pattern that emerges for W1,a in terms of the initial constant, G, the resulting value of W1,a 

can be found directly using equation 12.13. The same equation is used to determine the 

value of W1,b, accept that G is replaced by H, as shown in equation 12.14.    
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 12.14 

The general solution for the remaining W coefficients becomes more cumbersome 

because each W term is dependent both on a C term and another W term (i.e. W2 is 

dependent on C2 and W1).  One feature of equation 12.10 which is not easily apparent, but 

will simplify the generalization process.  Each order t set of coefficients, say W2, has two 

values, W2,a corresponding to the sine term and W2,b corresponding to the cosine term.  The 

a and b terms of W2 are always independent of each other, but the W2,a term is dependent 
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on the W1,b term.  However, just as the equations for W1,a and W1,b are dependent on either 

the initial G term or the H term,  the cascading solutions for the remaining coefficients also 

follow two separate independent paths, one always dependent of the initial G term and the 

other always dependent on the initial H term.  For example, W2,a is dependent on W1,a(G) 

and C2,a(G).  So in effect, the W coefficients in equation 12.10 will follow two separate 

paths which follow the same pattern as the number of W terms increases, and the only 

difference between the two coefficients at each level of W will depend on the initial values 

G and H.  This can also be seen in equation 2.31 where the first three responses are given 

with phase shifts at each order of t, such that the G line of coefficients always corresponds 

to sine, and the H line of coefficients always corresponds to cosine (the non-phase shifting 

form in equation 12.8 and 12.10 is an artifact of the derivation process). 
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The dependency on the previous solution (j-1) and other coefficients of the same 

solution (j) creates a cascading effect, where the coefficients for any solution are dependent 

on the coefficients of all previous solutions.  As such, it is convenient to organize all of the 

coefficients together in matrix form as shown in equation 12.16, where the rows represent 

all of the coefficients for the jth solution, and the columns represent the order of t that the 

coefficients correspond to.   



173 

 

 0 1 2 3

1

12

3 2

4 3 2

1

1

1

2

3

4

0 0 0

0 0

0

j

j

j

j

t t t t

i

W

W W
W

W W W

W W W W











 
 
 
 
 
 

 12.16 

The diagonal W1 terms can be calculated directly using equations 12.13 and 12.14 

(there will be two W matrices, one for the G line of coefficients and one for H).  The lower 

triangle terms, excluding the first column, can be calculated by rearranging equation 12.15

, keeping in mind that now i is the column number moving from left to right, and that the 

C terms are actually the W terms from the row above the solution number being evaluated.   

  
1
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There is one final thing to consider when constructing the coefficient matrix, W, 

and that is the calculation of the first column coefficients corresponding to t0.  Looking at 

equation 12.9, you will notice that the coefficients of the particular solution correspond to 

tj-1 down to t1.  The coefficients corresponding to t0 come from the complementary solution, 

, ,, sin cos
2 2

j a p

At

c j b pjx e W t W t
 

   
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  
   




 



, which must also take into account the 

linear components of the solution. 

The first column coefficients can be calculated using equation 12.18 for the G 

matrix, and equation 12.19 for the H matrix.  They were derived by repeatedly solving the 

differential equations with zero initial velocity and displacement. 
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For completeness, the linear components of the sequential response functions can 

be calculated using Equation 12.20.  This pattern can be easily observed in equation 2.31 

 
0 ( )jV t jH  12.20 

In APPENDIX B the derivations discussed in this section will be combined to 

generate the complete sequential response solutions.   
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APPENDIX B: SINGLE MODE MATRIX EQUATION 

12.2 Single Mode Matrix Equations 

Equations of Matrix solution 
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Diagonal terms 
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First column terms 
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Lower triangle terms 
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All upper triangle terms are zero 
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Diagonal terms 

 
1

( , )
( 1)!(2 ) jH

p

H
j j

j  



W  12.29 

First column terms 
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Lower triangle terms 
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All upper triangle terms are zero 
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L vectors for position 
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The L vectors for velocity are found by differentiating the Lx matrices multiplied 

by the exponential term,     , ,, ,
( ) ( )( ) , ( )G HG v x v xH

d d
t tt t

dt dt
 L LL L . 
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The L vectors for acceleration are found as, 
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Note that the exponential term, 
Ate

, does not appear on the L matrices because it 

is pulled out and placed at the front of equations 12.22 and 12.23. 
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APPENDIX C: CALCULATION OF CRITICAL STAILITY LIMIT 

12.3 blim,crit , chatter frequency, and maximum amplitude location 

12.3.1 Location of Maximum Amplitude 

The equation describing the oscillation envelope for the jth sequential response is 

given in equation 12.41 
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 12.41 

To find the time, t, of the maximum oscillation, we differentiate equation 12.42, 

where C combines all of the constant terms, and solve for t after setting the derivative equal 

to zero.    

 
1( ) j At

j tf t C e   12.42 

 

2 1

2 1

( 1)

( 1)

( 1)

( 1

( ) 0

)

j At j At

j

j At j At

j t t

j

f t C e A e

e A e

j

A

j
t

tA

t t

   

   

     















 12.43 

From equation 12.43, the maximum oscillation amplitude for the jth response occurs 

at 
( 1)

t
j

A



, and the value of the maximum amplitude can be calculated using equation 

12.44. 
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12.3.2 Calculation of blim,crit 

blim,crit is calculated as the value of b at which the maximum amplitudes from two 

subsequent responses are equal as the number of responses goes to infinity as shown in 

equation 12.45 

 
, , 1,lim crit j max j maxb when f as jf    12.45 

To do this, we use equation 12.44 and set two subsequent maximum amplitudes 

equal to each other, as shown in equation 12.46, and solve for the value of b which satisfies 

this condition.   
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The two identities in equation 12.50 are used to eliminate the j term from equation 

12.49, resulting in the reduced equation for b in equation 12.52 
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The ωp term in equation 12.52 is a function of b, so we must expand the equation 

to obtain the final value of blim,crit. As 
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 cossR K   12.57 

After reducing the expanded equation in equations 12.54 through 12.56, we obtain 

the final equation for blim,crit in equation 12.58. 
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Equation 12.58 is the value of blim,crit derived from the time domain solution.  In 

equations 12.59 (Schmitz 2009) through 12.63 the same quantity is derived based on the 
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frequency response solution.  The resulting value of blim,crit is the same from both methods, 

as seen in equation 12.58 and 12.63. 
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12.3.3 Chatter Frequency at blim,crit  

The frequency response solution predicts a chatter frequency when b=blimcrit as:  

 )( )1 (1c n

k

m
      12.64 

In the time domain solution the tool frequency, ωp, is determined based on the 

system parameters and the depth of cut, b.  When the cutting frequency, ωp, is calculated 

when b=blimcrit, the same chatter frequency is obtained (see equation 12.65). 
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APPENDIX D: DDE SOLUTION EXAMPLES 

12.4  Additional DDE Solution Examples 

The general approach used to solve the delay differential equation describing the 

dynamics of a machine tool are applied in this section to find the solutions for two more 

basic DDEs.   
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APPENDIX E: MULTI-MODE COEFFICIENT SOLUTIONS 

12.5 Multi-mode solutions for aw 

The aw coefficients are solved by applying the forcing term which contains a 

polynomial multiplied by an exponential to the first order differential equation.  An 

example of the solution process is shown below when the polynomial in the forcing 

function is of degree 2.  In Equation 12.78 the form the of particular solution, wn,u, is shown 

when n≠u.   
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  12.78 

Applying the particular solution form to the differential equation and equating to 

the forcing term, 
n,u n,u ,n n uw w g  , the following equation is obtained.  The coefficients are 

then calculated by equating the polynomial degree terms and solving based on the forcing 

coefficients as shown in Equation 12.79.  As the degree of the input polynomial increases 

with each successive response, the solution coefficients, aw, can be calculated directly 

using 3.17 when n≠u.   
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 The solution approach in Equation 12.79 cannot be applied in the case where n=u 

due to the zero denominator (λu-λn=0).  A solution is obtained in the case where n=u by 

increasing the degree of the particular solution by one.  Applying the modified particular 

solution as shown in Equation 12.81, a new set of coefficient solutions are obtained, which 

are shown in Equation 12.81 and can be calculated directly using the formula in Equation 

3.17.  Note that in the case where n=u, the coefficient, awn,u,0, is determined based on the 

initial conditions. 
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12.6 Multi-mode matrix coefficient solutions 

In the case when n≠u, the w coefficients, awn,u,v, are dependent on the higher order 

w coefficients, awn,u,v+1.  Using the higher order w coefficients to calculate the lower order 

coefficients is convenient when calculating using Equation (1.82), however, it is possible 

to obtain these values based only on the g coefficients for a matrix solution.   Take for 

example the solutions for w1 (n=1) and the forcing mode is 2 (u=2) in a 2 mode system 

when the maximum order of the g coefficients is 3.  Equation (1.83) gives the solutions for 

the w1 coefficients based on Equation (1.82), and the solutions are given in reduced form 

in Equation (1.85). 
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The generalized w coefficient solutions are given in Equation 5.6, where the 

subscript vg indicates the order of the g coefficient, and V is the highest order g coefficient. 
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