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ABSTRACT 
 
 

SAEED MOHAJERYAMI. An investigation of the impact of Customer Baseline (CBL) 
calculation on peak time rebate program. (Under the direction of DR. PETER 

SCHWARZ) 
 
 In this thesis, the impact of customer baseline (CBL) accuracy on the Peak Time 

Rebate (PTR) program is investigated. In a hypothetical case, PTR is offered to the 

residential customers and its economic performance is evaluated with respect to the CBL 

accuracy performance. Since this program relies on CBL for payment settlement, its 

performance hinges on the accuracy of such calculations. The accuracy of CBL 

calculations are studied for residential customers. Moreover, for the purpose of this 

investigation, popular CBL methods of High5of10 (NYISO), Low4of5, Mid4of6, 

exponential moving average (ISONE) and regression methods and their adjusted forms 

are selected for CBL calculation. Then, this calculated CBL is utilized to examine the 

performance of a case of PTR program. The case consists of 262 residential customers. 

According to the results, in this case study, utility pays at least 50 percent of its revenue 

as a rebate just because of the inaccuracy of CBL methods. This loss increases if the 

aforementioned CBL methods get adjusted for their morning consumption. At the end, it 

is discussed that PTR can cause a significant loss to the customers and cause unfair 

redistribution of the utility’s revenue. It is shown that aforementioned inefficiencies are 

because of the failure of CBL calculation methods to predict the customer’s load profile 

on the event day.  

Index Terms— Customer Baseline (CBL), Demand Response (DR), Peak Time Rebate 

(PTR), percent accuracy metrics, percent bias metrics. 
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CHAPTER 1: INTRODUCTION 
 
 

1.1 Introduction 

The electricity markets are developing steadily over many years of restructuring 

and competition. However, there are still some areas in this industry are kept isolated 

from the market’s advancement, one of which is demand-side. Indeed, this area is 

underdeveloped due to the detachment from market price fluctuations as the regulatory 

bodies attempted to give immunity to retail customers vulnerable to such fluctuation. For 

instance, during 2000 and 2001, California experienced a major power crisis under the 

restructured wholesale market. Although numerous factors could be listed as a reason to 

create this crisis, most people agree that the lack of demand response exacerbated the 

situation [1]. Moreover, recent studies demonstrate that demand response (DR) programs 

can provide an environment that the customers could actively be engaged in the 

optimization process and change their consumption pattern in response to the wholesale 

market price signals.  

These programs can potentially create a number of possibilities for the system 

operators and utilities to improve both economic and technical indices of their system. As 

a matter of fact, power system operators can compensate for the lack of their supply 

during the peak time by using DR resources [2]. The expensive peak time resources 

deployed by the supply-side to meet the demand could impose a huge cost burden to the 

customers. Additionally, it is estimated that the capacity to meet demand during the top 

100 peak hours (1.1% of year) accounts for 10-20% of electricity cost annually [3]. On 
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the other hand, utilities can also benefit from DR by taking advantages of lower prices 

offered by such resources compared to electricity spot market.  

Although DR programs look very promising in theory, in practice a host of 

problems make them difficult to implement. These problems are rooted in diversity of 

customers, loads and heterogeneity in types of DR programs. Because of all these 

complications, policy makers are concerned about the way load aggregators compensate 

customers. Many DR programs rely on customer baseline (CBL) to compensate 

customers financially for their load reduction. It is worth mentioning that the load 

reduction in this context refers to a customers’ response to a financial incentive and it is 

basically a change to the customers’ normal consumption pattern. Indeed, to detect this 

shift from the normal pattern, first, it is necessary to find the normal pattern. CBL is a 

counterfactual consumption level, i.e. the amount of electricity that customers would 

have consumed in the absence of a DR event. DR event refers to a day that utility 

believes that the consumption is higher than the level they can meet. In days preceding a 

DR event, utilities inform customers to lower their consumption on the DR event.  CBL 

is also a basis to measure the performance of DR programs. Moreover, a well-designed 

baseline could benefit all stakeholders by aligning their incentives, actions and interests. 

However, baselines are a challenging aspect of DR programs because they represent a 

“counterfactual”, something that is not observable. In this thesis, different methods 

employed by the industry and the way they have dealt with baseline uncertainties will be 

reviewed.  

In this thesis, the CBL for residential customers are studied whereas previous 

works in this area merely focus on industrial and commercial customers. Industrial 
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customers as opposed to residential customers have a high degree of predictability due to 

their pre-scheduled loads [4]. Therefore, this author believes that the findings for 

industrial customers could not be generalized to residential customers. This thesis goes 

beyond analyzing accuracy and bias metrics of CBLs and explains how these metrics 

translate into financial losses for utility and customers. In order to achieve this, an 

investigation of the economic performance of a case of PTR for residential customers is 

undertaken. For this investigation, real data of residential customers are employed. In the 

future sections, the data and the implementation will be explained in detail as the results 

will be presented.  
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CHAPTER 2: LITERATURE ON CUSTOMER BASELINE  
 
 

In this chapter, the different studies about CBL measurement and verification are 

reviewed and their advantages and disadvantages are highlighted. This review is 

necessary to shed light on the shortcomings of the existing approaches and find possible 

avenues for improvement. It is necessary to mention that these findings are based on 

industrial customers and they must be reexamined for residential customers. However, 

these findings provide a good starting point. Moreover, CBL challenges are studied in 

this section. Afterward, CBL from both the customers and utility’s points of view are 

discussed.  

2.1 Measurement and Verification 

Several recent studies have reviewed and analyzed different methods for 

calculating demand response customer baseline [5-13]. In this section, many of these 

methodologies are introduced and compared in both the measurement and verification 

process. CBL, as previously discussed, is an estimate of the amount of energy the 

customer would have consumed in the absence of a DR event. Figure 1 illustrates the 

concepts of DR baseline, actual load and estimated load reduction [5]. Indeed, these three 

concepts are repeatedly employed hereafter to explain the different methodologies and 

their measurement and verification processes. 

The most extensive review of CBL methods is provided in [6]. This paper 

examines empirically numerous methods used by utilities and ISOs within the US. For 

carrying out such a task, it employs the real data from California State.  Moreover, in 
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order to evaluate the performance of these methods, the accuracy and bias metrics are 

utilized. These metrics will be comprehensively elaborated in the future sections of this 

thesis. This paper concludes from its results that the same day additive or multiplicative 

adjustment has superior performance to an unadjusted CBL or a CBL using the weather 

sensitive adjustment. However, the choice of multiplicative or additive adjustment does 

not change the outcome significantly. Furthermore, this work shows that X of Y methods 

such as CALISO, PJM economic, mid 4 of 6 and regression approaches, with a same day 

additive adjustment, produce similar satisfactory results. Y in this context refers to the 

number of non-DR days before the DR event and X refers to the number of days selected 

out of these Y days that have certain consumption characteristics. For instance, in 

HighXofY methods, X are the number of days with highest consumption out of Y days. 

However, these methods performed poorly for predicting load for variable load 

customers. Moreover, this paper shows that the regression approaches have higher 

administrative costs and associated complexity compared to X of Y methods. Therefore, 

it is recommended not to pursue such approaches to calculate the baseline. One of the 

striking findings of this work is that explicitly weather–dependent models did not 

generally outperform models that did not include weather. But given the weather stability 

of California State, this finding is recommended to be examined in the other States in 

order to verify its credibility. Incidentally, for readers unfamiliar with the aforementioned 

methods, they are comprehensively explained in the future sections of this thesis.  
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FIGURE 1: Illustration of CBL, actual load and estimated load reduction [5] 

Another study from California State is also an analysis of methods to estimate 

customer baselines [5]. This study is part of the broader evaluation of California’s 2004 

demand response programs which targeted the industrial and commercial customers. The 

methods examined in this study are 3-day, 10-day and prior-day baseline methods. In this 

study, the impacts of load size (small, medium, large or extra-large), business type 

(commercial, industrial and institutional), event day type (high demand, low demand or 

consecutive high demand) and weather parameters are investigated on the performance of 

the aforementioned baseline methods. According to the results, 10-Day Baseline with 

Same Day Adjustment is the most accurate of the methods. Moreover, 3-day baseline 

methods is ranked second. The prior-day method shows the poorest performance among 

the aforesaid methods in terms of variability and predictive accuracy. However, this 

method has the lowest bias. The obtained results are further confirmed in their next 

complementary works [7-8]. 

In another attempt to evaluate CBL methods, [10-11] evaluates CBL methods’ 

performance on non-residential buildings in California. This work is done in Lawrence 
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Berkeley National Lab (LBNL) on sample data from 32 sites in California. The methods 

investigated in this study overlap with [5, 7-8]. However, the approach used for weather 

effect adjustment is different. This work employs a statistical analysis to evaluate the 

performance of different CBL models for non-residential buildings participating in the 

DR program with emphasis on the importance of weather effects. According to the 

results, applying the morning adjustment could significantly reduce the bias and improve 

the accuracy of all CBL models. Moreover, this work suggests that the characterization of 

building loads by variability and weather sensitivity could serve as a useful screening 

indicator that could be used to predict which types of CBL methods suit better to each 

particular load. However, it shows that none of the examined CBL methods produce 

satisfactory results for highly variable loads. These types of customers are difficult to 

characterize with standard CBL models that rely on weather and historical data. Based on 

the results, this work also suggests that different CBL models should be utilized for 

different customers. For example, many commercial and institution buildings are 

weather-sensitive, while industrial customers are not sensitive to the weather.  Therefore, 

the baseline for each load should be based on a method specifically tailored to its 

characteristics. On the contrary to [6], this work finds that incorporating temperature (e.g. 

explicit weather models) improves accuracy of the estimated CBL and in cases where it 

does not improve the accuracy, it has relatively little impact.  

Moreover, in a similar attempt, [12] has employed a statistical approach to 

examine three CBL methods in South Korea. These CBL methods include 10 prior 

weekdays averaging, 5 highest of 10 prior weekdays averaging and 8 days of 10 prior 

weekday averaging excluding maximum and minimum. In this paper, the data from 10 
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industrial customers at 10 weekdays in Nov. 2008 are used to select the best CBL method 

in terms of minimum total error. It is found that the 10 prior weekdays averaging method 

works slightly better than the others. However, when these CBL methods are adjusted, all 

of them have produced very close, good results.  

The choice of X relative to Y is one of the key questions in X of Y customer 

baseline methods. [14] has tried to investigate this question by examining 306 sites from 

several ISO and utilities’ customers. 540 baselines have been produced for each site (i.e. 

combination of several scenarios) to examine all these baselines for 3 proxy days (non-

event days similar to event days) in 2008 and 2009. According to the results, there 

appears to be a range of X/Y values which minimizes the bias. For all ranges of examined 

adjustments and all values of Y, error is minimized by 0.4 0.8X Y≤ ≤   . Thus, High 3 of 

10 is less accurate than High 5 of 10 and on the other hand, High 7 of 10 is more accurate 

than High 10 of 10. Moreover, this study has shown that the choice of X relative to Y is 

less critical when the baseline is adjusted. Furthermore, this study has investigated the 

effect of “cap” on the accuracy. According to the results, uncapped adjustments have 

slightly higher accuracy than capped adjustments.  

Although finding the right model for CBL is of the utmost importance for a 

variety of purposes such as measurement and verification, improving DR program design 

and operation and also financial settlement of DR participation rewards, there are some 

details in implementation which could plague the efficiency of CBL models and render 

them ineffective. [15] has tried to compare the different implementation choices to see 

their impact on DR performance results and the baseline estimation. This study has 

employed data from 38 large commercial buildings and industrial facilities in the Pacific 
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Gas and Electric Company (PG&E). The data are a collection of 15-min interval whole-

building electric demand and they belong to an automated critical peak pricing (CPP) 

program between 2007 and 2009. In what follows, the findings of this work are 

summarized briefly. One of the CBL implementation choices is the selection of weather 

station, typically based on the proximity of weather station to the target site. In this work, 

the data from two weather stations are utilized and their impact on the load reduction 

estimate is examined. According to the results, the load reduction estimate is strongly 

sensitive to the source of the outdoor air temperature data. Moreover, it is found that the 

choice of power outage filter strongly affects the load reduction estimate. Power outage 

filter refers to the process in which some minimum power consumption days are filtered 

out. These days are those with consumption less than x percent of the average minimum 

daily power consumption. Three filters of x=0 (no filter), x=50 and x=75 are examined in 

this work. As previously mentioned, the load reduction estimate is strongly sensitive to 

the choice of filter. On the other hand, the load reduction estimate is less sensitive to data 

alignment choice. Temperature and demand data are compared for two cases: a case with 

15-min offset and the other case that aligns temperature and data by time stamp (no 

offset). Moreover, it is found that the load reduction estimate is almost insensitive to the 

choice of data interval. In this study three cases of 15-min, 30-min and 60-min data 

intervals are examined. It suggests that it is acceptable to use 60-min interval rather than 

15-min interval and it could simplify metering needs and reduce the computational 

burden. This study is further extended into [16] that only elaborated the details of the 

aforementioned findings.  
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Furthermore, implementation choices can affect the performance of regression 

models. Therefore, it is important to examine the explanatory variables’ choices to see 

how they could be best employed in the regression model. [17] employs the similar data 

of [15-16] to provide a new regression model. In order to find the proper explanatory 

variables, it examines load sensitivity to outside air temperature and representative load 

pattern derived from cluster analysis of CBL. According to the results, the load is 

sensitive to outside air temperature. Therefore, it could be a suitable candidate as an 

explanatory variable. Moreover, it is found that the cluster analysis and its algorithms are 

effective tools to estimate CBL. Given the uncertainty of business types, cluster analysis 

could serve as a useful tool to categorize the data into the different types. This 

categorization could be utilized as an explanatory variable in the regression model. 

Indeed, combination of load sensitivity and cluster analysis improves the performance of 

the regression models. However, the goodness of fit of regression models, which is 

expressed by the coefficient of determination, adjusted R2, is still not ideal. 

In addition to the proper implementation choices, several papers have introduced 

some modifications in order to improve the accuracy and bias of the established CBL 

methods. [18] has proposed an exponential smoothing model to calculate CBL. This 

model weighs past observations with exponentially decreasing weights. In this model the 

recent changes are better reflected in the estimated baseline. The proposed method shows 

superiority over High5of10 and regression methods whether they are adjusted or not.  

Moreover, authors in [19-20] proposed a CBL calculation framework employing 

data mining techniques. This paper employs the real data from a large industrial building 

complex in Korea. The number of deployed smart meters in this complex is 
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approximately 2,500. These real data are used to analyze the customers’ electricity 

consumption behaviors for DR. This method utilizes two data mining techniques of 

Kohonen networks model (self-organizing map) and the unsupervised learning algorithm 

(k-means clustering). It starts with data preprocessing to remove the outliers and data 

inconsistency. Then it classifies the load in terms of the seasons of the year and type of 

weekday to reduce the data size. Self-organizing map (SOP) then is employed to map a 

multi-dimensional input space onto an output space with greatly reduced dimension. 

Afterward the SOP output is fed into k-means clustering which partitions the data set into 

k clusters. The data of each cluster can be used to determine CBL. This method has two 

key differences from the aforementioned CBL methods. First, unlike the other methods, it 

finds the most similar day given partial data. Second, it considers other parameters such 

as average temperature, the gradient of electricity consumption and occupied/unoccupied 

status. The aforesaid parameters are extracted by learning process through SOM and k-

means clustering. According to the results, compared to the averaging methods, the root 

mean square error is reduced by 15-22% on average and the mean absolute percentage 

error is reduced by 15-20% on average as well.  

Although CBL is best known in the context of DR programs, it may serve other 

functions. [21] proposed a methodology that employs CBL to identify non-technical 

losses of the system such as theft of electricity. This methodology utilizes historical 

demand of a certain customer to estimate the future consumption. Then it compares the 

estimate with the actual load in order to identify a suspicious reduction.  

In a patent application, authors of [22] provided a day-ahead load reduction 

system based on CBL for inducing a user to efficiently manage her energy consumption. 
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This system applies an incentive to achieve the desired load reduction and load 

decentralization. The authors also filed another patent [23] to present a load forecasting 

analysis system for calculating CBL based on the day-ahead reduction system mentioned 

before. The patent introduces a system which is composed of multiple components such 

as the CBL forecaster, a period selector for selecting conditions for forecasting, and 

eventually a CBL determiner to calculate the error value.  

2.2 CBL Challenges  

As previously discussed, CBL is the amount of electricity that customers would 

have consumed in the absence of a DR event. So far, several works related to the 

measurement and verification of CBL and their challenges are reviewed and discussed. 

However, there are some other challenges in this area that must be addressed. Many of 

these challenges stem from the design of DR programs and the nature of the people 

participating in these programs. In other words, the methods introduced so far neglected 

many of the real world challenges. But, these practical challenges are as important as the 

theoretical challenges and a CBL methodology must be able to address such challenges. 

In what follows some of these issues are reviewed and discussed.  

Since participation in DR programs is voluntary, customers have advantage over 

the utilities in terms of consumption information.  The customers know more about their 

baseline than the utilities. This asymmetric information imposes two possible challenges 

for utilities and consequently for CBL calculation. In another words, they can be used to 

game the system. They are an adverse selection and moral hazard problem. The adverse 

selection problem arises when customers with lower consumption anticipation have more 

incentive to participate in the program. Therefore, the participation is more likely to be 
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disproportionate. The moral hazard problem arises when customers engage in activities to 

change their CBL. This means customers might change their normal consumption pattern 

to affect the future CBL [24]. In what follows, some of the examples of these challenges 

are described.  

a)  Baseline manipulation  

The improper methodology to determine CBL can encourage the customers to 

inflate their baselines in order to gain a higher payment from the program. As discussed 

earlier, the moral hazard problem is a practical challenge and in the absence of an 

effective mechanism to handle such issues, the customers have incentive to change their 

CBL. Such manipulations are observed and reported by ISO New England [25] 

b)  Load shifting behind multiple meters  

The customers who have large consumption and several meters can game the 

system by changing the consumption behind each meter in a way to create illusory 

demand reduction. The concept is elaborated with a numerical example in [24]  

c)  Generation relocation and inefficient price formation  

This problem is better illustrated by an example. Assuming that the utility offers 

the flat rate of $70/MWh. It is also possible for the customer to sell her demand reduction 

as an energy supply in the wholesale market. Suppose the customer bids $80/MWh for 

demand reduction and the next cheapest generating unit offers $100/MWh in the 

wholesale energy market. In this case, the customer’s bid will be cleared in the market. 

Therefore, the customer has incentive to use an on-site backup generator that is able to 

produce $150/MWh or lower. In this case, each MWh consumed by the customer from 
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the backup generator costs $150 or less, but she earns $80/MWh for the demand 

reduction; therefore, every MWh costs her $70 or less. In this example, everything looks 

the same for the customer and she consumes energy still with $70/MWh. However, from 

society’s point of view, it’s a big loss because the electricity cost increased to $150/MWh 

rather than $100/MWh. This setup encourages an inefficient investment since energy can 

often be produced more efficiently in the wholesale market [26].  

Furthermore, there are some problems in practice that can challenge customers' 

decisions. For instance, the poor accuracy performance of CBL also can undermine the 

efficiency of DR programs that rely upon CBLs for payment settlement. This issue, for 

some CBL methods, is explained and investigated in detail in [27].  

Practical challenges like what have been described so far could plague the 

effectiveness of CBL methods. Indeed, the performance of some of DR programs hinges 

on their CBL performance and if CBL could not deliver what is expected of it, it will 

deteriorate DR performance significantly. From an economic perspective, a properly 

established customer baseline should meet the following two conditions. First, the 

customer should be punished for extra consumption above her customer baseline. 

Second, the customer should be rewarded for its load reduction. In essence, a properly 

designed customer baseline is two-sided so that demand reduction and demand increase 

are treated symmetrically. 

If the first of the two conditions fails, the customer baseline becomes one-sided; 

this means that the consumer would still be able to consume electricity above the baseline 

as permitted in the retail tariff. If both conditions fail, then the customer doesn’t have any 
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incentive to partake in the program effectively. Therefore, it could create distorted 

incentives and gaming opportunities.  

2.3 CBL from Customers’ Point of View 

CBL calculation and the consequent payment settlement have very significant 

effects on the customer's decision. To start with, the fairness of a program, to some 

extent, hinges on the accuracy of the CBL method employed by that program. Therefore, 

if a CBL calculation methodology does not produce an accurate CBL, it can damage the 

efficiency of the DR programs employing such methodology. Although fairness by itself 

does not guarantee any positive response, lack of fairness seriously harms the customer’s 

response.  

Another fact that can affect the fairness of a program is the potential gaming 

opportunities of a CBL method. Although this fact might excite a minority of customers, 

for some behavioral reasons, it is very discouraging for the rest of customers. These 

potential gaming opportunities create an incentive for some customers to speculate about 

the possible event days and inflate their CBL in anticipation of higher gain in those event 

days.  

As a customer, load reduction is a means to gain financial rewards, either in terms 

of rebate or lower payment. Therefore, customers see load reduction in light of its 

financial impact. For this reason, any CBL shortcoming which affects the perceived 

financial reward of customers can affect the performance of the DR program employing 

that CBL. Authors in [28] explain how the financial offering of DR programs is an 

ultimate determinant of customers’ decisions. In this thesis, the main focus is on the 

impact of accuracy and bias of CBLs on the financial performance of DR programs.  
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2.4 CBL from Utilities’ Point of View 

Utilities are interested in CBL for different reasons. CBL is a tool for some DR 

programs in order to calculate their payments to customers. However, their main interest 

is the load reduction. Due to the obligation of utilities to serve, they must make sure that 

they are capable of serving customers in any situation. DR programs can help them out in 

emergency situations. One of these situations is peak time of some special days that 

electricity in the wholesale market is either very expensive or unavailable. DR programs 

can induce customers to lower their peak consumption.  

DR also plays a role in delaying investment for new infrastructures. In certain 

geographies, peak demand has grown significantly while overall energy consumption has 

not grown proportionally. This growing peak demand prompts the utilities to take an 

action and invest in new infrastructure which can drive the electricity rate higher. DR can 

provide an alternative solution to maintain reliability without investing in unnecessary 

infrastructure. This solution can keep rates low.  

In a competitive market, even a single event of violation of obligation to serve can 

have irreversible negative consequences. For that reason, utilities are more interested in 

the load reduction aspect of CBL and less sensitive to the financial aspect of it. Another 

reason for why utilities are less sensitive to the financial aspect of CBL is that they reflect 

their cost-of-service into their retail rates. Therefore, ultimately the customers are the 

ones who feel most of the possible financial losses. 
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 However, utilities are aware that CBL accuracy and fair payment settlement can 

affect the customer's load reduction. For this reason, utilities try to design CBL 

calculation method in a way to hinder any discouraging effect. 
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CHAPTER 3: CUSTOMER BASELINE MODELS 
 

 
In this section, different CBL methods and the details of their implementation 

such as their associated terminologies and standard mathematical presentation of the 

models are presented. In what follows, first, some important terminologies used in 

association with CBL are explained. Then the popular and established CBL methods are 

described mathematically and the baseline adjustment is explained. The other less 

popular CBL methods are reviewed and explained afterwards. Moreover, CBL 

performance metrics such as accuracy and bias are explained in detail. Eventually this 

section concludes with a thorough discussion of the industries that adopted the 

aforementioned CBL methods.  

3.1 Glossary 

a)  Weather sensitivity  

Weather sensitivity measures to what degree loads are sensitive to the local 

weather.  Temperature and humidity are two variables which could be employed for this 

purpose. However, in most climates, temperature is the only utilized variable and 

humidity is regarded as ineffective.  

Practically, weather dependence is often represented by using linear regression 

models. These models try to explain hourly load by utilizing explanatory variables such 

as hourly temperature. These models, in their complicated form, include lagged variables 

or more complex functions of temperature.  
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b)  Admissible days  

Event days normally happen on weekdays. Therefore, it makes sense to use 

exclusively normal working days as an input for calculating baseline. Admissible days 

refers to the days that are used for baseline calculation process. The standard procedure 

for selecting the admissible days is eliminating weekends, holidays and past curtailment 

events. However, some ISOs employ further exclusion systems to improve their baseline 

calculation. For example, PJM utilizes threshold of 25% to exclude the days on which 

consumption is below the threshold. Moreover, [11] recommended that scheduling 

information related to shutdowns and large swings in energy be employed by ISOs to 

improve the process of exclusion. However, the inclusion of threshold and scheduling 

information in the process of determining the admissible days could increase the 

complexity of baseline calculation.    

c)  Proxy event days 

Using proxy event days is a valuable means to examine the different baseline 

calculation methods. The advantage of proxy event days over actual event days in 

determining the baseline is the availability of the actual loads. Thus, the baseline could be 

compared with the actual load and the accuracy and bias of the method could be 

measured. The proxy event days are a subset of the admissible days and are to be selected 

so they are as similar as possible to the actual event days.   

Typically DR events are called on the hottest days. Therefore, the temperature 

plays a critical role in selecting the proxy event days.  
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3.2 CBL methods 

Several methods are introduced in the literature to calculate the CBL. In this 

section, these methods are explained mathematically. For the purpose of brevity and 

clarity, the terminology and nomenclature of [29] are used. Before starting to introduce 

the methods, some terms should be defined to facilitate the future mathematical 

presentation. They are as follows: 

C     A set of customers 

{ }0 ,..., TT t t=    Timeslot division within a day  

( , )il d t    Actual load of customer i C∈  on day d at timeslot t T∈  

( , )ib d t    Predicted baseline of customer i C∈  on day d at timeslot t T∈   

( , )ib d t∗    True baseline of customer i C∈ on day d at timeslot t T∈  

DR days are days when DR events are announced. In the absence of a DR event, 

the other days are called non-DR days hereafter. Two day types are used in this work: 

weekdays (Monday to Friday), and weekends (Saturday and Sunday). 

( , )D Y d  A set of Y non-DR days most recently preceding the day d having 

the same day type as d.  

( ) ( , )i it T
l d l d t

∈
=∑  Total load of customer i C∈  on day d 

3.2.1 HighXofY Method 

This method employs Y non-DR days before the DR event. In order to calculate 

the baseline, X highest consumption days will be selected from the aforementioned Y 

days. The baseline is an average load of these X days. If HighXofY is defined as



21 
 

( , , ) ( , )High X Y d D Y d⊆ , then the HighXofY baseline of customer i C∈  for timeslot 

t T∈  on day d is as follows: 

( , , )

1( , ) ( , )                                                 (1)i i
d High X Y d

b d t l d t
X ∈

= ∑
 

New York ISO uses High5of10 method and this method is employed in this 

thesis. The algorithm of NYISO method in its Day-Ahead Demand Response Program 

for approved demand response providers will be explained shortly [13]. It attempts to 

select 5 days with the highest consumption level (i.e. average daily kWh usage) out of a 

pool of 10 days chosen out of days prior to event day that meet certain criteria. These 

criteria will be defined in Steps 1-4.  

Step 1: Demand Side Resource (DSR) signs a contract with customers to 

participate in the Day-Ahead Demand Response Program.  

Step 2: Create a “baseline calculation window.” In other words, create a storage 

file for 10 selected days. Start from two days prior to the event day and calculate 

an “average daily event period kWh usage” value for that day. This value is the 

sum of the 24 hourly demands. This day must not be a weekend, holiday, event 

day or curtailment day. If so, go backward and pick another day. 

Step 3: Go backward and pick the next previous day before the day selected in 

Step 2. If it is a weekend, holiday, event day or curtailment day, then go backward 

and pick another day. Calculate an “average daily event period kWh usage” value 

for that day.  
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Step 4: Compare the values of “average daily event period kWh usage” in Step 2 

and Step 3. If the value of Step 3 is greater than 25% of the value of Step 2, then 

add it to the “baseline calculation window.” Otherwise, discard it.  

Step 5: Repeat Step 3 and 4 until 10 days are stored in the “baseline calculation 

window.” 

3.2.2  LowXofY Method 

This method is the opposite of HighXofY. This method is included because [29] 

found that this method shows a better bias performance. In addition, excluding the 

highest use day, it actually might lead to a better outcome for the utility, since highest use 

could be an anomalous day or could be due to gaming. In order to calculate the baseline, 

X lowest consumption days will be selected out of Y days. The baseline is an average 

load of these X days. If LowXofY is defined as ( , , ) ( , )Low X Y d D Y d⊆ , then the 

LowXofY baseline of customer i C∈  for timeslot t T∈  on day d is as follows: 

( , , )

1( , ) ( , )                                                 (2)i i
d Low X Y d

b d t l d t
X ∈

= ∑
 

3.2.3  MidXofY Method 

In this method, some of the lowest and highest consumption days will be dropped 

and the retaining X middle consumption days will be used to calculate the baseline. Let 

,X Y ∈  , X Y≤ , and ( ) mod 2 0Y X− =  . Moreover, let ( ) 2Z Y X= −  . By dropping 

Z-lowest and Z-highest consumption days, the rest will be X days used in this baseline.  

If MidXofY is defined as ( , , ) ( , )Mid X Y d D Y d⊆ , then the MidXofY baseline of 

customer i C∈  for timeslot t T∈  on day d is as follows. 
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( , , )

1( , ) ( , )                                                 (3)i i
d Mid X Y d

b d t l d t
X ∈

= ∑
 

3.2.4  Exponential Moving Average Method 

This method is a weighted average of a customer’s historical data from the 

beginning of her subscription. The weight of each day decreases exponentially with time.  

Let { }1( , ) ,..., kD d d d∞ = . Moreover, let 1 kτ≤ ≤  be a constant. This constant is 

the number of days that are used to determine the initial average. ( , )is d tτ is the initial 

average load of customer i C∈  for timeslot t T∈ . 

1

1( , ) ( , )                                                         (4)i i j
j

s d t l d t
τ

τ τ =

= ∑  

The exponential moving average for j kτ ≤ ≤  is as follows:  

( ) ( )1( , ) . ( , ) + (1 ). ( , )                            (5)i j i j i js d t s d t l d tλ λ−= −  

where [ ]0,1λ∈  . The baseline for customer i C∈ on day d for timeslot t T∈ is as 

follows: 

( , ) ( , )                                                                       (6)i i kb d t s d t=  

In this method, the baseline for days earlier than 1dτ +  is undefined.  

New England ISO (ISONE) employs this method. ISONE also is employed in this 

thesis as one of CBL methods. This baseline creation methodology consists of two 

calculations based on when the customer joined the program [13]. If a customer is a 

newly joined participant of the program (i.e. no previous record of consumption history), 

the calculation of the baseline starts with the hourly average of the electricity 

consumption of the first five business days, Monday through Friday, excluding holidays 
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and other event days. The outcome value of this step is called “Customer Baseline 6.” 

The “6” refers to the day following the first five business days or the sixth day. This step 

can be formulized as follows: 

CB6 = (Sum Meter kW value for the hour)/5        (7) 

Once CB6 is calculated for the customer, the customer can be considered as the 

current customer and different rules will be applied to calculate her baseline. When the 

customer has CB6, the baseline is calculated using (5) with 0.9λ = . 

Every day excluding weekends, holidays and event days, a new baseline is 

calculated for the customer. The referred calculation equation put a weighting factor of 

90% for the previous day and a weighting factor of 10% for the current day. The rationale 

behind this setup is that by putting more weight on the previous day, the opportunity for 

customers to “game” the program will be reduced. The topic of “gaming” the baseline is 

not the concern of this thesis, but will be discussed briefly in the future sections of this 

thesis.  

3.2.5 Regression Method 

This method uses linear regression as a basis to calculate the baseline. The 

baseline of customer i C∈ on day d for timeslot t T∈ is as follows: 

( ), , ,( , ) +                                                          (8)
T

i i t i t i tb d t xθ ε=  

Where ,i tx is the feature vector, ,i tθ is the vector of regression coefficients and ,i tε is the 

error term. The feature vector consists of explanatory variables like historical load, 

temperature, humidity or sunrise/sunset time. This extra information as well as some 

information about each household habits and their economic standing can improve the 
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results significantly. But in practice, getting access to such information is a cumbersome 

task. Table 1 provides the key summary of methods introduced so far.  

TABLE 1: Key summary of CBL methods 

Methods Type Data Proxy day selection 
Criteria 

ISOs using 
methods Admissible days 

HighXofY Averaging Consumption Days with highest 
consumption 

PJM, CAISO, 
NYISO 

Non-event 
Working days 

MidXofY Averaging Consumption 
Days excluding 
highest/lowest 
consumption 

- Non-event 
Working days 

LowXofY Averaging Consumption Days with lowest 
consumption - Non-event 

Working days 
Exponenti
al Moving 
Average 

Rolling 
averaging Consumption All admissible days ISONE Non-event 

Working days 

Regressio
n Regression 

Consumption/
Calendar/Tem

perature/etc 
All admissible days ERCOT 

All days 
(excluding event 

and holidays) 
 

3.3 Baseline Adjustment 

As discussed earlier, the subset of X days are selected to consist of days similar to 

the event day. Nevertheless, the conditions on the event day are often different from the 

selected prior days. For this reason, X of Y baseline methods could be adjusted by the 

event day data. According to North American Energy Standards Board (NAESB) [30], an 

adjustment to a HighXofY baseline is necessary to more accurately reflect load 

conditions of the event day. The adjustment is defined by the time frame of adjustment, 

multiplicative or additive, capped or uncapped and symmetric or asymmetric. In what 

follows the aforementioned choice of adjustments will be elaborated.  

Time frame of adjustment is normally 2-4 hours before the start of the event. The 

time frame must have two properties. It must be at least one hour earlier for the event not 

to overlap with people who start the load reduction sooner. Also, it should not be too far 

away from the event.  The inappropriate choice of time frame could penalize customers 
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for early curtailment and inadvertently reward some others for temporary increase of their 

loads.  

In order to adjust the baseline, the difference between the actual load and the 

estimated baseline in the adjustment time frame could be employed in two ways.  

Multiplicative adjustment uses the percentage change and applies it to the estimated 

baseline. For example, if the actual load is 30% higher on average than the estimated 

baseline during the time frame, the estimated baseline will be adjusted to 130% for the 

whole duration of the event. Additive adjustment, on the other hand, uses the absolute 

change. For example, if the actual load is 30kW higher on average than the estimated 

baseline during the time frame, 30kW will be added to the estimated baseline for the 

whole duration of the event. Figure 2 illustrates the concept of baseline adjustment.  

 

FIGURE 2: Example baseline adjustment [14] 

Some programs limit the magnitude of the adjustment by utilizing a cap. For 

example, if a program uses a 20% cap, in case of 30kW absolute change between the 

actual load and the estimated baseline, just 6kW (i.e. 20% of 30kW) is allowed to be used 

for the adjustment purpose.  
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Some programs limit the adjustment to upward adjustment (i.e. asymmetrical). 

This practice overestimates the load reduction in cases where the actual loads are lower 

than the estimated baseline in the adjustment time frame. However, it eschews some 

unintended consequences of symmetric adjustment such as when a customer decides to 

start the load reduction very soon in anticipation of the upcoming event [14]. 

3.4 Other Baseline Methods 

There are a few other proposed CBL methods that are less popular. They are 

reviewed in this subsection briefly. “Comparable day” is a CBL method that allows an 

aggregator to find a day similar to the event day and use its load profile as a baseline. 

This method unlike average methods uses only data from one day. However, finding a 

suitable objective criteria to select the target day is very difficult task [14].  

Maximum Base Load (MBL) is a method that uses an entirely different approach 

compared to all aforementioned methods so far. It selects some of the peak hours from 

the previous year and determines the maximum energy usage expected of each customer. 

Then it specifies a level to which the customer should drop her consumption during the 

event. This level is a maximum level minus the committed capacity of the customer. The 

baseline shape is static in this method and it relies upon previous year’s historical data. 

Two well-known examples of employing this method are special case resources (SCR) 

programs in NYISO and emergency load response program (ELRP) in PJM [14]. 

Although MBL baseline offers simplicity, this benefit is outweighed by its poor accuracy. 

[14] has performed a comparative study and according to the results, HighXofY methods 

outperform MBL methods significantly.  
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Another method is presented by [31] to produce a CBL to be used by the first DR 

program in Colombia. The method is an adaptation of the forecasting with decomposition 

approach. It utilizes a multiplicative decomposition to represent the daily consumption of 

the users. The method is computationally burdensome, but it is argued that it best fits the 

unique nature of the Colombian electricity industry.  

Moreover, [32] proposes an engineering algorithm. Under this approach, the 

overall client facility should be modeled. It includes all energy consuming elements 

including variable loads as well as interruptible load equipment. Also, a comprehensive 

thermodynamic model for building is necessary to accurately determine electrical loads. 

The measurement of loads can then be employed by the customer during a DR event to 

determine how much load is being reduced or eliminated by shutting down certain 

equipments. This approach is mostly beneficial to the customers to reduce or power off 

the best combination of loads during a DR event. Another engineering algorithm is 

proposed in [33], which builds its methodology on a norm behavior convention. Norm 

behavior convention, in this paper, refers to the normal consumption of the flexible 

devices. This norm behavior can be derived from the status and configuration data of 

these flexible devices. The flexible device in this paper is defined as either postponable 

smart devices (e.g. electrical vehicles, smart washing machines, etc.) or (thermally) 

buffered devices (e.g. air conditioner). In this paper, models for postponable and buffered 

devices are introduced. Then a cluster of non-controllable and controllable devices is 

defined. For each of the devices in the cluster a baseline is defined according to its model 

and then all the baselines are aggregated to compose the CBL. This methodology requires 

a complete knowledge of the loads deployed by the customers.  
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3.5 Bias and Accuracy Metrics 

Different proposed methods can be compared by their bias and accuracy. For this 

purpose, two metrics for bias and accuracy are defined in this research. The hourly 

accuracy and bias of each baseline is defined as follows: 

 Let C be the set of all the customers, D be the set of all days in the data set, and T 

be the set of hourly timeslots in a day. Mean Absolute Error (MAE) is utilized for 

measuring baseline accuracy as shown in (9). 

( , ) ( , )
 =                                       (9)

. .
 

i i
i C d D t T

b d t l d t

C D T
α ∈ ∈ ∈

−∑∑∑
 

The lower the MAE, the higher the accuracy. Baseline bias is defined as shown in (10). 

( )( , ) ( , )
                                    (10)

. .

i i
i C d D t T

b d t l d t

C D T
β ∈ ∈ ∈

−
=
∑∑∑

 

According to (10), baseline methods with positive bias overestimate the customers’ actual 

consumption and vice versa.  

3.6. Industry Application of CBL Methods  

In this subsection, the methods employed by different ISOs in North America are 

reviewed and discussed. Different ISOs use different methods primarily based on the 

nature of their offering programs. For example, within a summer emergency DR 

program, an event is expected to be driven by extreme weather conditions. Therefore, 

HighXofY methods suit better to these programs while for some other programs, 

operators may choose to use midXofY or LowXofY baseline methods.  

PJM Economic Load Response Program (ELRP) employs High4of5 for a 

weekday and High2of3 for a weekend DR event. Beginning in 2012, ELRP upgraded its 
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CBL calculation. It now includes a symmetric additive adjustment with a three hour 

adjustment window [34]. In NYISO customers can select between two CBL formulas of 

average day CBL and weather adjusted CBL. For average day CBL, NYISO utilizes 

High5of10 for a weekday and High2of3 for a weekend. Moreover, for weather adjusted 

CBL, the CBL would be adjusted upward or downward based on the actual usage in the 

two hours prior to the event notification [35-36]. CAISO uses High10of10 for a weekday 

and High4of4 for a weekend [37]. Ontario, Canada uses High15of20 method [29]. 

LowXofY and MidXofY have not been employed by industry yet, but as [29] shows they 

have their own merits.  

ISONE uses exponential moving average to calculate the baseline.  It uses 5τ =  

and 0.9λ =  for this purpose. As it is discussed before, the baseline is undefined for a 

customer who joined the program for less than five days.  

Regression models are employed by ERCOT and are also developed and 

introduced in [38].  
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CHAPTER 4: ACCURACY AND BIAS  
 
 

In this section, the data employed for the analysis of “classic” metrics of accuracy 

and bias are introduced and the metrics are defined. Afterwards, these metrics are applied 

to CBL calculations and the results are presented. 

4.1 Setup 

In this paper, the Irish CER smart metering trial dataset [39] has been employed. 

This dataset contains measurements of around 5000 customers over one and a half years 

(most of the smart meters used in this trial are selected randomly throughout Ireland, 

more information about the meters used in the field trial is available in [40]) , which is 

available to the public. The customers consist of a residential sector and small and 

medium-sized enterprises and the data interval is 30 minutes. The measurements started 

in July 2009 and ended in December 2010. The purpose of the trials was to assess the 

impact on consumer’s electricity consumption. The intention of the study is performing 

the cost-benefit analysis for a national rollout in Ireland. Customers who participated in 

the trials had an electricity smart meter installed in their homes/premises. They have 

agreed to take part in research to help to understand how smart metering can be helpful to 

shape energy usage behaviors across a variety of demographics, lifestyles and home 

sizes. The trial has two phases of pre-trial and trial. In the dataset, the data from the start 

of the experiment till Dec. 31st of 2009 are pre-trial and benchmark data. The benchmark 

data are customers’ consumption in the traditional fixed rate tariff environment. These 

data were supposed to be utilized later to study the impact of multiple DR programs 
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utilized in this pilot project (e.g. TOU, PTR, …) . In this paper, the benchmark data of 

262 customers from Oct. 24th to Dec. 31st (total of 69 days) in 2009 are used for the 

analysis. The reasons 262 customers were selected are twofold; first, the customers’ 

original data has multiple files and are not sorted well, therefore, it took a lot of time and 

programming to clean the data, and second, this author must make sure that he has access 

to all the consumption data (sometimes, probably because of communication failures, the 

record of some consumption is missing). Figure 3 shows the total consumption of all 

customers in this dataset. This information is utilized to select the closest day to an event 

day later. 

 
FIGURE 3: Total consumption of the data set (Color-coded for different months, 

blue for October, red for November, green for December) 

4.2 Analysis 

In this part, CBL for all customers is calculated. In what follows, the results of 

calculating CBL for all five methods, mentioned in the previous chapter, are presented. 

However, as it is shown later, because adjustment did not improve the results, the 
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illustrative results of adjustment of each CBL are not included in this thesis. At the end of 

this section, all these CBL methods and their adjustments are compared and a discussion 

about the results of accuracy and bias metrics of the CBLs are provided.  

4.2.1 High5of10 (NYISO) Method 

Figure 4 shows the results of NYISO CBL and actual loads in an aggregated 

manner. This picture is helpful to provide a sense about the overall accuracy and bias. 

Moreover, this aggregated picture shows why many utilities think CBL is an appropriate 

tool for load reduction, because in the aggregated manner, many random parameters and 

their effects will even out. In other words, it is because each individual’s daily 

consumption dictates many random variables, while on the aggregate level, all this 

randomness will even out and the overall daily consumption shows a very predictable 

behavior.  

 As it is shown, this method has a positive bias during event hours. But for the 

whole day, the positive bias during an event will even out with the negative bias during 

non-event hours, which is not positive. This is because if one uses an entire day index 

which some reports do, it masks many details about the bias. It is worth mentioning that 

all the claims about the direction of bias from now on are based on the observation. This 

author has not done any rigorous calculation to prove the claims. 
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FIGURE 4: Actual data vs. NYISO CBL for all the customers 

4.2.2 LowXofY Method 

Figure 5 shows the results of Low4of5 CBL calculation method and actual loads 

in an aggregated manner. As it is shown, this method has a negative bias during event 

hours and non-event hours. 

 
FIGURE 5: Actual data vs. Low4of5 CBL for all the customers 

 



35 
 
4.2.3 MidXofY Method 

Figure 6 shows the results of Mid4of6 CBL calculation method and actual loads 

in an aggregated manner. As it is shown, this method has a negative bias during event 

hours and non-event hours. 

 
FIGURE 6: Actual data vs. Mid4of6 CBL for all the customers 

 
4.2.4 Exponential Moving Average (ISONE) Method 

Figure 7 shows the results of ISONE CBL calculation method and actual loads in 

an aggregated manner. As it is shown, this method has a negative bias during event hours 

and non-event hours. 
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FIGURE 7: Actual data vs. ISONE CBL for all the customers 

 
4.2.5    Regression Method 

Figure 8 shows the results of Regression CBL calculation method and actual loads 

in an aggregated manner. As it is shown, this method has a negative bias during event 

hours and non-event hours. In the case of regression, care must be taken not to jump to 

conclusions. Unlike other methods, this method has this potential to be enhanced 

significantly by adding more explanatory parameters in order to capture the effect of 

some behavioral patterns of residential customers.  
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FIGURE 8: Actual data vs. Regression CBL for all the customers 

 
4.2.6 Comparative Study 

In this section, the accuracy MAE and bias value of all CBLs employed in this 

thesis are presented. Table 2 presents an accuracy and bias for event hours and Table 3 

shows the same accuracy and bias for the entire event day. Since the payment settlement 

is based on the load reduction during event hours, the metrics for the event hours are 

more indicative of the power of CBL than the same metrics for the entire event day.  

TABLE 2: Accuracy “MAE” and bias for event hours 

 Accuracy MAE 
(kWh/hr) 

Bias 
(kWh/hr) 

NYISO 1.440 +0.1266 
Adjusted NYISO 1.6855 +0.7232 

Mid4of6 1.2823 -0.2267 
Adjusted Mid4of6 1.7816 +0.9333 

Low4of5 1.2789 -0.3793 
Adjusted Low4of5 2.0470 +1.2957 

ISONE 1.1654 -0.3213 
Adjusted ISONE 1.4531 +0.4816 

Regression 1.4057 -0.4642 
Adjusted Regression 1.4534 -0.1466 
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TABLE 3: Accuracy “MAE” and bias for entire event day 

 Accuracy MAE 
(kWh/hr) 

Bias 
(kWh/hr) 

NYISO 0.944 +0.0092 
Adjusted NYISO 1.2403 +0.6058 

Mid4of6 0.8668 -0.1750 
Adjusted Mid4of6 1.5121 0.9850 

Low4of5 0.8645 -0.2601 
Adjusted Low4of5 1.8651 +1.4149 

ISONE 0.7832 -0.2411 
Adjusted ISONE 1.1772 +0.5617 

Regression 0.9686 -0.3626 
Adjusted Regression 1.509 -0.0450 

 

Figures 9 and 10 illustrate the results of Tables 2 and 3. The horizontal axis in 

these figures is accuracy MAE (kWh/hour) and the vertical axis is bias (kWh/hour). As it 

is shown, ISONE has the best accuracy among the employed CBL methods. Figure 11 

compares the CBL results of all the methods with the actual load data. 

 

FIGURE 9: Accuracy “MAE” and bias for event hours 

 



39 
 

 

FIGURE 10: Accuracy “MAE” and bias for entire event day 

 

FIGURE 11: Actual data vs. different CBL results for all the customers 
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CHAPTER 5: CASE STUDY  
 

 
For economic analysis of PTR program, the accuracy of CBLs employed for 

payment settlement must be taken into consideration. In this section, a case of PTR 

program is introduced and its economic performance is analyzed.  

PTR is one of the popular DR programs in electricity industry. This program is 

frequently employed by utilities for their industrial customers. The performance of this 

program strongly depends on the performance of CBL. Although it is capable of 

capturing baseline for industrial customers quite accurately, its performance for 

residential customers is untested.  

Moreover, this program is extremely appealing from the policy point of view as it 

requires a minimal revision to status quo and could provide a huge positive impact if it 

works correctly. However, it is vulnerable to many implementation deficiencies. Chao in 

[24] reviews some of these practical issues including opportunities for gaming and 

problems with CBL methods. Moreover, authors in [28] studied behavioral aspects of 

customers’ involvement in PTR. It is shown that the reward mechanism which PTR 

employs to incent the customers for load reduction is another source of inefficiency in 

this DR program. In this thesis, PTR is studied from the different angle.  

 In PTR program, one challenge is to select a reasonable rebate rate. In order to 

have a practical rebate and fixed rate values, in this thesis, the relevant values of 

Anaheim Public Utility (APU) pilot project in residential sector [41] are employed. APU 

project paid $0.35/kWh incentive and an average base price of $0.097/kWh as fixed 
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tariff. It is worth emphasizing that these two values, incentive payment and fixed tariff, 

are selected from APU project but they are applied to Ireland data.  

In this case study, a day with maximum consumption from Figure 3 (i.e. Dec. 

22nd) is chosen as an event day for PTR. The event starts from 3:00 p.m. and ends at 

9:00 p.m. This time interval is selected for the event, because almost all the peak 

consumptions statistically are observed to be happening during this interval.  
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CHAPTER 6: RESULTS AND DISCUSSION 
 
 

 During the event, it is expected that the customers respond to the incentive and 

decrease their consumption. If one assumes that CBL is able to predict the customers’ 

baseline 100% accurate, then, all the difference between CBL and actual load is because 

of PTR incentive effect. However, if CBL is inaccurate, the difference between CBL and 

actual load would have two components; one component is in response to PTR program 

and the other is because of CBL inaccuracy. In this paper, the focus is on the latter. Since 

there is no event in the real data, the first component is zero and the difference between 

CBL and actual data is all because of the second component (i.e. CBL inaccuracy).  

The revenue of this hypothetical utility out of these 262 customers on event day is 

$1279.80 for selling 13,194kWh. Table 4 lists the false load reductions under different 

CBL methods. It also shows how much rebate this utility must pay to these customers on 

event day. Moreover, Figure 12 illustrates the rebate as a percent of utility revenue (%) 

for different CBL methods. As discussed earlier, all the rebate money is incurred because 

of CBL inaccuracy. According to the results, in this PTR program for residential 

customers, the inaccuracy of CBLs costs this hypothetical utility at least half of its 

revenue for the event day.  

As discussed earlier, according to the findings of multitudes of successful PTR 

programs offered to industrial customers, adjustment improves the results of CBL 

methods significantly, but in this case, adjustment deteriorates the outcome of these 

methods. 
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This author believes that the acceptable performance of CBL in industrial sector 

stems from the predictability of such loads, whereas for the residential customers, the 

presence of many non-correlated activities makes the loads highly unpredictable. In the 

absence of such predictability, CBL calculation methods, which worked successfully in 

the industrial case, perform very poorly as shown in this section.  

Due to the obligation of utilities to serve, they must make sure that they have 

enough electricity to serve in any situation. DR programs can help them out in emergency 

situations. One of these situations is peak time of some special days that electricity in the 

wholesale market is either very expensive or unavailable. DR programs can help to 

relieve part of this pressure. Utilities, in response to such pressures, might accept any 

available program that induces customers to lower their peak consumption regardless of 

its damage to their revenue. 

 However, the utilities reflect their cost-of-service into their retail rates. Therefore, 

ultimately the customers are the ones who feel most of the aforementioned financial loss. 

Moreover, this loss of revenue redistributes among the customers randomly. In other 

words, this program rewards and punishes the wrong customers. This random 

redistribution of the loss casts a shadow on the fairness of the program.   
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TABLE 4: Load reduction and “PTR” payment settlement on event day 

 
False load 
reduction 

(kWh) 

False load 
reduction as a 

percent of 
consumption on 
event day (%) 

Rebate 
value 
($) 

Rebate as a 
percent of 

utility revenue 
(%) 

NYISO 2,998 22.7 1049.3 81.9 
Adjusted NYISO 5,804 43.9 2,031.3 158.7 

Mid4of6 2,175 16.4 761.2 59.4 
Adjusted Mid4of6 7,850.9 59.5 2,747.8 214.7 

Low4of5 1,900 14.4 665.04 51.9 
Adjusted Low4of5 10,312 78.1 3,609.3 282 

ISONE 1,704 12.9 596.5 46.6 
Adjusted ISONE 5,467 41.4 1,913.4 149.5 

Regression 1,905 14.4 666.86 52.1 
Adjusted Regression 3,162 23.9 1106.9 86.5 

 

 

 

FIGURE 12: Rebate as a percent of utility revenue (%) for different CBL methods on 
event day 
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CHAPTER 7: CONCLUSION 
 

In this thesis, the impact of accuracy of CBL on a PTR program offered to the 

residential customers was investigated. Previous works in this area merely focus on 

industrial and commercial customers. Residential customers as opposed to industrial 

customers show a high degree of unpredictability due to multitudes of non-correlated 

personal and household activities. For the purpose of analysis, High5of10 (NYISO), 

Low4of5, Mid4of6, exponential moving average (ISONE) and regression methods and 

their adjusted forms are selected to calculate CBL. The calculated baselines are utilized 

later to examine the economic performance of the PTR program. According to the results, 

in the case studied in this paper, for these 262 customers and just for an event day, the 

hypothetical utility of the case study, pays at least half of its revenue on event day as a 

rebate just because of the inaccuracy of these CBL calculation methods. Moreover, if 

these methods were adjusted based on their morning consumption, the results would 

worsen. 

At the end, it is discussed that PTR can cause a significant loss to the customers 

and cause unfair redistribution of the utility’s revenue. Based on these results, it could be 

concluded that PTR programs are very inefficient for the residential customers. As 

discussed previously, these inefficiencies originate from the failure of CBL calculation 

methods to predict accurately the residential customers’ load profile on event day.  
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As a future study, this author plans to confirm these findings with data from smart 

meters of residential customers within the USA. At this point, the availability of such 

data is very limited. Moreover, with having broad time span in data, it is possible to 

select multiple event days. With using multiple event days, some characteristics of a 

single event day will balance and it is possible to claim that the results are independent 

from the characteristics of the event day. Furthermore, with having the proper data from a 

pilot project, the individual characteristics of each household including income, 

education, house size, weather and etc. can be included in the models.  

Moreover, this author plans to expand the economic analysis of this thesis to 

study the effect of financial performance of CBL-dependent DR programs on economic 

social welfare. 
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APPENDIX A: DESCRIPTION OF DATA 
 
 
The following are the description of the data.  
Holidays and weekends in Ireland in 2009:  

• Oct. 24 Saturday 
• Oct. 25 Sunday 
• Oct. 26 Bank Holiday 
• Oct. 31 Saturday 
• Nov. 1 Sunday 
• Nov. 7 Saturday 
• Nov. 8 Sunday 
• Nov. 14 Saturday 
• Nov. 15 Sunday 
• Nov. 21 Saturday 
• Nov. 22 Sunday 
• Nov. 28 Saturday 
• Nov. 29 Sunday 
• Dec. 5 Saturday 
• Dec. 6 Sunday 
• Dec. 12 Saturday 
• Dec. 13 Sunday 
• Dec. 19 Saturday 
• Dec. 20 Sunday 
• Dec. 25 Christmas day 
• Dec. 26 Saturday 
• Dec. 27 Sunday 
• Dec. 28 St. Stephen’s day 

 

TABLE 5: The description of the days in data 

Day 1 (Sat) Oct. 24 Day 24 (Mon) Nov. 16 Day 47 (Wed) Dec. 9 
Day 2 (Sun) Oct. 25 Day 25 (Tue) Nov. 17 Day 48 (Thur) Dec. 10 
Day 3 (Mon) Oct. 26 Day 26 (Wed) Nov. 18 Day 49 (Fri) Dec. 11 
Day 4 (Tue) Oct. 27 Day 27 (Thur) Nov. 19 Day 50 (Sat) Dec. 12 
Day 5 (Wed) Oct. 28 Day 28 (Fri) Nov. 20 Day 51 (Sun) Dec. 13 
Day 6 (Thur) Oct. 29 Day 29 (Sat) Nov. 21 Day 52 (Mon) Dec. 14 
Day 7 (Fri) Oct. 30 Day 30 (Sun) Nov. 22 Day 53 (Tue) Dec. 15 
Day 8 (Sat) Oct. 31 Day 31 (Mon) Nov. 23 Day 54 (Wed) Dec. 16 
Day 9 (Sun) Nov. 1 Day 32 (Tue) Nov. 24 Day 55 (Thur) Dec. 17 
Day 10 (Mon) Nov. 2 Day 33 (Wed) Nov. 25 Day 56 (Fri) Dec. 18 
Day 11 (Tue) Nov. 3 Day 34 (Thur) Nov. 26 Day 57 (Sat) Dec. 19 
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Day 12 (Wed) Nov. 4 Day 35 (Fri) Nov. 27 Day 58 (Sun) Dec. 20 
Day 13 (Thur) Nov. 5 Day 36 (Sat) Nov. 28 Day 59 (Mon) Dec. 21 
Day 14 (Fri) Nov. 6 Day 37 (Sun) Nov. 29 Day 60 (Tue) Dec. 22 
Day 15 (Sat) Nov. 7 Day 38 (Mon) Nov. 30 Day 61 (Wed) Dec. 23 
Day 16 (Sun) Nov. 8 Day 39 (Tue) Dec. 1 Day 62 (Thur) Dec. 24 
Day 17 (Mon) Nov. 9 Day 40 (Wed) Dec. 2 Day 63 (Fri) Dec. 25 
Day 18 (Tue) Nov. 10 Day 41 (Thur) Dec. 3 Day 64 (Sat) Dec. 26 
Day 19 (Wed) Nov. 11 Day 42 (Fri) Dec. 4 Day 65 (Sun) Dec. 27 
Day 20 (Thur) Nov. 12 Day 43 (Sat) Dec. 5 Day 66 (Mon) Dec. 28 
Day 21 (Fri) Nov. 13 Day 44 (Sun) Dec. 6 Day 67 (Tue) Dec. 29 
Day 22 (Sat) Nov. 14 Day 45 (Mon) Dec. 7 Day 68 (Wed) Dec. 30 
Day 23 (Sun) Nov. 15 Day 46 (Tue) Dec. 8 Day 69 (Thur) Dec. 31 
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APPENDIX B: MATLAB CODES 
 
 

Part One: Code for each CBL methods 

a) NYISO code 

%%%% 
for f=1:262 
    for i=1:69     %%% creat an empty matrix 
        r(i,f)=0; 
    end 
    %%% selecting 10 admissible day 
    for i=45:49 
        for j=1:48 
            k=48*(i-1)+j; 
            ff=3*f; 
            r(i,f)=data(k,ff)+r(i,f); 
        end 
    end 
    for i=52:56 
        for j=1:48 
            k=48*(i-1)+j; 
            ff=3*f; 
            r(i,f)=data(k,ff)+r(i,f); 
        end 
    end 
%%%%%%%%%%%%%% sorting the consumption in an ascending 
order %%%%%%% 
    rsort=sort(r(:,f)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
%%%%%% finding the days with higher consumption level 
%%%%%%%%%%%%% 
    for i=1:10 
        no(i)=0; 
    end 
    for j=1:10 
        for i=1:69 
            u=70-j; 
            if rsort(u)==r(i,f) 
                no(j)=i; 
            end 
        end 
    end 
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%%%%% finding customer baseline (5 out of 10 days) 
%%%%%%%%%%%%%%%%%%%%% 
    for i=1:48 
        cbl(i,f)=0; 
        act(i,f)=0; 
    end 
    for e=1:5 
        i=no(e); 
        for j=1:48 
            k=48*(i-1)+j; 
            ff=3*f; 
            cbl(j,f)=data(k,ff)+cbl(j,f); 
        end 
    end 
    for j=1:48 
        cbl(j,f)=cbl(j,f)/5; 
    end 
%%%%%%%%%%%%%%%% creating a matrix for actual consumption 
%%%%%%%%% 
    for i=60 
        for j=1:48 
            k=48*(i-1)+j; 
            ff=3*f; 
            act(j,f)=data(k,ff)+act(j,f); 
        end 
    end 
end 

b) Mid4of6 code 

%%%% 
for f=1:262 
    for i=1:69  %%% creat an empty matrix 
        r(i,f)=0; 
    end 
%%% selecting 6 admissible day 
    for i=52:56 
        for j=1:48 
            k=48*(i-1)+j; 
            ff=3*f; 
            r(i,f)=data(k,ff)+r(i,f); 
        end 
    end 
    for i=59 
        for j=1:48 
            k=48*(i-1)+j; 
            ff=3*f; 
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            r(i,f)=data(k,ff)+r(i,f); 
        end 
    end 
%%%%%%%%%%%%%% sorting the consumption in an ascending 
order %%%%%%% 
    rsort=sort(r(:,f)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
%%%%%% finding the days with higher consumption level 
%%%%%%%%%%%%% 
    for i=1:6 
        no(i)=0; 
    end 
    for j=1:6 
        for i=1:69 
            u=70-j; 
            if rsort(u)==r(i,f) 
                no(j)=i; 
            end 
        end 
    end 
%%%%% finding customer baseline (4 out of 6 days) 
%%%%%%%%%%%%%%%%%%%%% 
    for i=1:48 
        cbl(i,f)=0; 
        act(i,f)=0; 
    end 
    for e=2:5 
        i=no(e); 
        for j=1:48 
            k=48*(i-1)+j; 
            ff=3*f; 
            cbl(j,f)=data(k,ff)+cbl(j,f); 
        end 
    end 
    for j=1:48 
        cbl(j,f)=cbl(j,f)/4; 
    end 
%%%%%%%%%%%%%%%% creating a matrix for actual consumption 
%%%%%%%%% 
    for i=60 
        for j=1:48 
            k=48*(i-1)+j; 
            ff=3*f; 
            act(j,f)=data(k,ff)+act(j,f); 
        end 
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    end 
end 

c) Low4of5 code 

%%%% 
for f=1:262 
    for i=1:69   %%% creat an empty matrix 
        r(i,f)=0; 
    end 
%%% selecting 5 admissible day 
    for i=53:56 
        for j=1:48 
            k=48*(i-1)+j; 
            ff=3*f; 
            r(i,f)=data(k,ff)+r(i,f); 
        end 
    end 
    for i=59 
        for j=1:48 
            k=48*(i-1)+j; 
            ff=3*f; 
            r(i,f)=data(k,ff)+r(i,f); 
        end 
    end 
%%%%%%%%%%%%%% sorting the consumption in an ascending 
order %%%%%%% 
rsort=sort(r(:,f)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
%%%%%% finding the days with higher consumption level 
%%%%%%%%%%%%% 
    for i=1:5 
        no(i)=0; 
    end 
    for j=1:5 
        for i=1:69 
            u=70-j; 
            if rsort(u)==r(i,f) 
                no(j)=i; 
            end 
        end 
    end 
%%%%% finding customer baseline (4 out of 5 days) 
%%%%%%%%%%%%%%%%%%%%% 
    for i=1:48 
        cbl(i,f)=0; 
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        act(i,f)=0; 
    end 
    for e=2:5 
        i=no(e); 
        for j=1:48 
            k=48*(i-1)+j; 
            ff=3*f; 
            cbl(j,f)=data(k,ff)+cbl(j,f); 
        end 
    end 
    for j=1:48 
        cbl(j,f)=cbl(j,f)/4; 
    end 
%%%%%%%%%%%%%%%% creating a matrix for actual consumption 
%%%%%%%%% 
    for i=60 
        for j=1:48 
            k=48*(i-1)+j; 
            ff=3*f; 
            act(j,f)=data(k,ff)+act(j,f); 
        end 
    end 
end 

d) ISONE code 

%%%%%%%%%%%%% creat empty matrices %%%%%% 
for f=1:262 
    for i=1:48 
        cbl6(i,f)=0; 
        cbl(i,f)=0; 
        act(i,f)=0; 
    end 
end 
%%%%%%%%%% for all customers %%%%%% 
for f=1:262 
    %%%%%%%% creat CBL6 out of first five days %%%%%%%% 
    for i=4:7        %%% day 4, 5, 6 and 7 
        for j=1:48 
            k=48*(i-1)+j; 
            ff=3*f; 
            cbl6(j,f)=data(k,ff)+cbl6(j,f); 
        end 
    end 
    for i=10      %%%% and day 10 
        for j=1:48 
            k=48*(i-1)+j; 
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            ff=3*f; 
            cbl6(j,f)=data(k,ff)+cbl6(j,f); 
        end 
    end 
    for j=1:48 
        cbl6(j,f)=cbl6(j,f)/5; 
    end 
%%%%%%%%%%%%%%% creat CBL %%%%%% 
    for i=1:48 
        cbl(i,f)=cbl6(i,f); 
    end 
     
    for i=11:14 
        for j=1:48 
            ff=3*f; 
            k=48*(i-1)+j; 
            cbl(j,f)=0.1*data(k,ff)+0.9*cbl(j,f); 
        end 
    end 
    for i=17:21 
        for j=1:48 
            ff=3*f; 
            k=48*(i-1)+j; 
            cbl(j,f)=0.1*data(k,ff)+0.9*cbl(j,f); 
        end 
    end 
    for i=24:28 
        for j=1:48 
            ff=3*f; 
            k=48*(i-1)+j; 
            cbl(j,f)=0.1*data(k,ff)+0.9*cbl(j,f); 
        end 
    end 
    for i=31:35 
        for j=1:48 
            ff=3*f; 
            k=48*(i-1)+j; 
            cbl(j,f)=0.1*data(k,ff)+0.9*cbl(j,f); 
        end 
    end 
    for i=38:42 
        for j=1:48 
            ff=3*f; 
            k=48*(i-1)+j; 
            cbl(j,f)=0.1*data(k,ff)+0.9*cbl(j,f); 
        end 
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    end 
    for i=45:49 
        for j=1:48 
            ff=3*f; 
            k=48*(i-1)+j; 
            cbl(j,f)=0.1*data(k,ff)+0.9*cbl(j,f); 
        end 
    end 
    for i=52:56 
        for j=1:48 
            ff=3*f; 
            k=48*(i-1)+j; 
            cbl(j,f)=0.1*data(k,ff)+0.9*cbl(j,f); 
        end 
    end 
    for i=60     %%%%% CBL for event day 
        for j=1:48 
            ff=3*f; 
            k=48*(i-1)+j; 
            cbl(j,f)=0.1*data(k,ff)+0.9*cbl(j,f); 
        end 
    end 
     
%%%%%%%%%%%%%%%% creating a matrix for actual consumption 
%%%%%%%%% 
    for i=60 
        for j=1:48 
            ff=3*f; 
            k=48*(i-1)+j; 
            act(j,f)=data(k,ff)+act(j,f); 
        end 
    end 
end 

e) Regression code 

%%%%%%%% 
for f=1:262 
    a=1; 
    for i=1:3312 
        sort(i,1)=0; 
        sort(i,2)=0; 
        sort(i,3)=0; 
        sort(i,4)=0; 
        sort(i,5)=0; 
        sort(i,6)=0; 
        sort(i,7)=0; 
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        sort(i,8)=0; 
        sort(i,9)=0; 
    end 
%%%%%%% all the consumptions of each half an hour will be 
sorted after 
%%%%%%%% each other in one place. Therefore, the first 69 
rows are the 
%%%%%%%% first half an hour of all the 69 days 
    for i=1:48 
        t=1; 
        for j=1:69 
            k=48*(j-1)+i; 
            ff=3*f; 
            sort(a,1)=data(k,ff); 
            sort(a,2)=t; 
            a=a+1; 
            t=t+1; 
        end 
    end 
    for i=1:3312 
        if mod(sort(i,2),7)==1; 
            sort(i,3)=1; 
        elseif mod(sort(i,2),7)==2; 
            sort(i,4)=1; 
        elseif mod(sort(i,2),7)==3; 
            sort(i,5)=1; 
        elseif mod(sort(i,2),7)==4; 
            sort(i,6)=1; 
        elseif mod(sort(i,2),7)==5; 
            sort(i,7)=1; 
        elseif mod(sort(i,2),7)==6; 
            sort(i,8)=1; 
        else 
            sort(i,9)=1; 
        end 
    end 
    
X=[sort(:,3),sort(:,4),sort(:,5),sort(:,6),sort(:,7),sort(:
,8),sort(:,9)]; 
    Y=sort(:,1); 
%%%%%%%%%%%%%%%% mvregress %%%%%%%%%%%%%%%%%%%%%%% 
    for i=1:48 
        for j=1:59 
            k=(i-1)*69+j; 
            XX(j,:)=X(k,:); 
        end 
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        for j=1:59 
            k=(i-1)*69+j; 
            YY(j,:)=Y(k,:); 
        end 
        [beta,sigma,resid]=mvregress(XX,YY); 
        cbl(i,f)=beta(4,1); 
    end 
%%%%%%%%%%%%%%%% creating a matrix for actual consumption 
%%%%%%%%% 
    for i=60 
        for j=1:48 
            k=48*(i-1)+j; 
            ff=3*f; 
            act(j,f)=data(k,ff); 
        end 
    end 
end 
Part Two: Code for adjustment 

%%%%%%%%%%%% 
for p=1:262    %%%% create empty matrices 
        adjXX(p)=0; 
        adjYY(p)=0; 
        adjaax(p)=0; 
        adjyyx(p)=0; 
        adjAA(p)=0; 
        adjacc(p)=0; 
        adjacc1(p)=0; 
        adjaccuracy(p)=0; 
        adjbias(p)=0; 
        adjbias1(p)=0; 
        adjbias(p)=0;         
    end 
for f=1:262 
    for j=21:24 
        adjXX(f)=act(j,1)+adjXX(f); 
    end 
    adjaax(f)=adjXX(f)/2; 
    for j=21:24 
        adjYY(f)=cbl(j,1)+adjYY(f); 
    end 
    adjyyx(f)=adjYY(f)/2; 
    adjAA(f)=adjaax(f)-adjyyx(f);    %%%% adjustment value 
     
    for j=1:48 
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        adjcbl(j,f)=cbl(j,f)+adjAA(f);           %%%% 
adjusted CBL 
    end 
end 
Part Three: Accuracy and Biases  

%%%% 
for f=1:262 
%%%% accuracy with additive adjustment %%%% 
%%%% for entire day 
    for j=1:48 
        adjacc(f)=abs(adjcbl(j,f)-act(j,f))+adjacc(f); 
    end 
    adjaccuracy(f)=(adjacc(f)/24); 
%%%% bias with additive adjustment %%%% 
%%%% for entire day 
       for j=1:48 
        adjbias(f)=adjcbl(j,f)-act(j,f)+adjbias(f); 
    end 
    adjbiasday(f)=(adjbias(f)/24); 
%%%% accuracy with additive adjustment %%%% 
%%%% for event hours  
    for j=29:42 
        adjacc1(f)=abs(adjcbl(j,f)-act(j,f))+adjacc1(f); 
    end 
    adjaccuracyevent(f)=(adjacc1(f)/7); 
%%%% bias with additive adjustment %%%% 
%%%% for event hours  
       for j=29:42 
        adjbias1(f)=adjcbl(j,f)-act(j,f)+adjbias1(f); 
    end 
    adjbiasevent(f)=(adjbias1(f)/7); 
end 
AAregeventday=mean(adjaccuracy); 
ABregeventday=mean(adjbiasday); 
AAregeventhours=mean(adjaccuracyevent); 
ABregeventhours=mean(adjbiasevent); 
Part Four: Payment Settlement 

%%%%%%%%%%%% CBL payment settlement after adjustment 
%%%%%%%%%%%%%%%% 
for u=1:48 
    axis(u)=u; 
end   
for i=1:48 
       aatotal(i,1)=0 



63 
 
  end 
  for i=1:48 
       aatotal(i,1)=sum(act(i,:)); 
  end 
  plot(axis,aatotal,'--rs') 
utilityrevenue=sum(aatotal)*0.097; 
%%%%%%%%%%%%rebate payment%%%%%%%%%%%%%%%%%%%%%% 
for f=1:262 
    for j=1:48 
        diff(j,f)=adjcbl(j,f)-act(j,f); 
    end 
end 
for f=1:262 
    for j=1:48 
        if diff(j,f)>0 
            posdiff(j,f)=diff(j,f); 
        else 
            posdiff(j,f)=0 ; 
        end 
    end 
end 
  for i=1:48 
       hourlyrebatetotal(i,1)=sum(posdiff(i,:)); 
  end 
falseloadreduction=sum(hourlyrebatetotal); 
utilityrebate=sum(hourlyrebatetotal)*0.35; 
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