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The relative effects of forest 
amount, forest configuration, and 
urban matrix quality on forest 
breeding birds
Alexandra Shoffner1, Andrew M. Wilson2, Wenwu Tang3,4 & Sara A. Gagné3

Urbanization modifies landscape structure in three major ways that impact avian diversity in remnant 
habitat: habitat amount is reduced and habitat configuration and matrix quality are altered. The 
relative effects of these three components of landscape structure are relatively well-studied in 
agricultural landscapes, but little is known about the relative effect of urban matrix quality. We 
addressed this gap by investigating the relative effects of forest amount, forest configuration, and 
matrix quality, indicated by degree of urbanization and agriculture amount, on the diversity of three 
guilds of forest birds using data from 13,763 point counts from Pennsylvania, USA. Forest amount 
had the largest independent effect on forest bird diversity, followed by matrix quality, then forest 
configuration. In particular, urbanization had strong negative effects on the relative abundance 
and species evenness of all forest birds and the relative abundance of forest generalist birds. To our 
knowledge, these are the first results of the effect of urban matrix quality on forest bird relative 
abundance and species evenness independent of forest amount and forest configuration. Our results 
imply that conservation practitioners in human-modified landscapes prioritize maximizing forest 
amount, then reducing the effects of disturbances originating in the matrix, and then preserving large, 
spatially-dispersed forest patches to most effectively conserve forest birds.

The projected doubling of developed land in the USA in the first quarter of this century1 was and will continue 
to be a significant contributor to biodiversity loss2. The urbanization of landscapes creates a pattern of remnant 
habitat patches surrounded by a matrix of residential, commercial, and industrial land uses. Three major aspects 
of landscape structure have important effects on avian diversity in remnant habitat in urban landscapes: habitat 
amount, habitat configuration, and matrix quality.

Habitat amount is the total area of remnant habitat in a landscape. Declines in biodiversity due to decreasing 
habitat amount are well-documented across taxa and regions3. For example, Smith et al.4 found that total habitat 
amount had strong and consistently positive effects on the presence of forest birds within human-altered land-
scapes. Habitat amount has been hypothesized to positively influence biodiversity by means of passive sampling, 
higher habitat diversity, and lower extinction rates due to larger population sizes or less frequent and intense 
disturbances5.

Habitat configuration is the spatial arrangement of habitat in a landscape, independent of habitat amount 
(Fahrig’s6 fragmentation per se). Habitat configuration has somewhat equivocal effects on biodiversity. Empirical 
studies show that the independent effects of configuration are generally weak and may be positive or negative6,7. 
For example, Villard et al.8 found that the number of forest fragments had a significant positive effect on Veery 
(Catharus fuscescens) occurrence, whereas fragment mean nearest-neighbor distance had a significant negative 
effect on Scarlet Tanager (Piranga olivacea) occurrence. Habitat configuration has been hypothesized to affect 
biodiversity through a number of different mechanisms: the reduced persistence of small, isolated populations 
in small patches, negative or positive edge effects, increased predator-prey system stability through the provision 
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of prey refugia in small patches, the enhanced co-existence of competing species, the reduced probability of 
simultaneous extinction of all subpopulations, higher immigration rate as a function of increased edge, increased 
colonization success due to smaller distances among patches, and landscape complementation6.

Matrix quality is the degree to which human activities in the matrix disturb natural processes9. As such, matrix 
quality is a major determinant of biodiversity in human-dominated landscapes10. For example, the abundance of 
native forest birds in forest patches is lower within intensely urban landscapes (low matrix quality) than within 
suburban or exurban landscapes (higher matrix quality)11. Three mechanisms have been hypothesized to explain 
the effect of matrix quality on biodiversity12. First, matrix quality may be indicative of dispersal mortality, e.g., 
collisions with buildings are a major source of mortality for birds13. Second, matrix quality may encompass varia-
tion in the availability of resources that are supplemental to those in habitat patches, such as bird feeders14. Finally, 
variation in matrix quality may be associated with varying disturbance occurrence, intensity, and frequency in 
habitat patches, such as human trail use15.

The relative effects of these three aspects of landscape structure on biodiversity are of great interest because 
they can directly inform the effectiveness of management and planning for species conservation in human-altered 
landscapes9. Though there is broad support for habitat amount being a more important determinant of biodi-
versity than habitat configuration4,6,16–23, there is less consensus regarding the relative effect of matrix quality. 
Existing evidence points to matrix quality having an effect on biodiversity smaller than that of habitat amount but 
larger than that of habitat configuration18,24–28.

Although some of the empirical studies that have compared the relative effects of these aspects of landscape 
structure have been carried out in landscapes altered by urban development (e.g.23), only one has included an 
explicitly urban indicator of matrix quality in analyses, i.e., amount of developed land29. Matrix quality in other 
studies has been assessed in terms of the influence of agricultural land uses and/or roads4,18,19,22,23,25 or manipu-
lated in small-field experiments17,30,31. Therefore, there is a significant need for research investigating the relative 
impacts of habitat amount, habitat configuration, and urban matrix quality.

In this article, we asked the following research question: What are the relative effects of habitat amount, habitat 
configuration, and matrix quality, including urban matrix quality, on the diversity of forest birds? Based on the 
strength of evidence to date, we predicted that habitat amount would have the largest effect, followed by matrix 
quality and habitat configuration, in that order. We addressed our research question by quantifying forest amount, 
forest configuration, and two measures of matrix quality, degree of urbanization and agriculture amount, at mul-
tiple scales in 13,763 landscapes across the state of Pennsylvania, USA. For each landscape, we estimated the 
relative abundance, species richness, and species evenness of three habitat guilds of forest birds – all forest birds, 
forest-area sensitive birds, and forest generalist birds – using data from the Second Pennsylvania Breeding Bird 
Atlas32. We determined the independent effects and relative importance of each of our three components of land-
scape structure of interest, controlling for the confounding effects of local habitat quality, landscape heterogeneity, 
and species detectability, using general linear modeling.

Results
Landscape variables in the best models of forest bird diversity were measured at four spatial scales: 0.2 km for 
models of all forest bird relative abundance, species richness, and species evenness and forest generalist bird spe-
cies evenness; 1 km for the best model of forest-area sensitive bird species richness; 6 km for models of the relative 
abundance and species evenness of forest-area sensitive birds and the relative abundance of forest generalist birds; 
and, 10 km for the best model of forest generalist bird species richness (see Supplementary Tables S1–S9).

Urbanization was the only landscape structure variable of interest that had a meaningful effect on the diversity 
of all forest birds (relative abundance: β (95% CI) = −0.06 (−0.08, −0.04); species evenness: β (95% CI) = −0.04 
(−0.06, −0.02)) (Fig. 1, see Supplementary Figs S1, S2). The diversity of forest-area sensitive birds was posi-
tively affected by forest amount (relative abundance: β (95% CI) = 0.34 (0.04, 0.63); species evenness: β (95% 
CI) = 0.24 (0.17, 0.32)) and forest patch density (species evenness: β (95% CI) = 0.12 (0.08, 0.16)) and negatively 
affected by agriculture amount (relative abundance: β (95% CI) = −0.22 (−0.39, −0.04); species evenness: β (95% 
CI) = −0.30 (−0.35, −0.25)) (Fig. 2, see Supplementary Figs S3–S7). The relative abundance of forest generalist 
birds was positively influenced by agriculture amount (β (95% CI) = 0.13 (0.08, 0.18)) and forest clumpiness 
index (β (95% CI) = 0.04 (0.002, 0.08)) and negatively influenced by forest patch density (β (95% CI) = −0.15 
(−0.19, −0.11)) and urbanization (β (95% CI) = −0.14 (−0.18, −0.11)) (Fig. 3, see Supplementary Figs S8–S11). 
Forest generalist species richness was positively influenced by forest amount (β (95% CI) = 0.29 (0.06, 0.52)) and 
agriculture amount (β (95% CI) = 0.20 (0.05, 0.35)) (Fig. 3, see Supplementary Figs S12, S13). Finally, the species 
evenness of forest generalist birds was negatively affected by forest amount (β (95% CI) = −0.06 (−0.09, −0.02)), 
forest patch density (β (95% CI) = −0.03 (−0.05, −0.01)), and forest clumpiness index (β (95% CI) = −0.04 
(−0.07, −0.02)) (Fig. 3, see Supplementary Figs S14–S16).

Considering the effects just described, forest amount ranked first in importance to forest bird diversity relative 
to other components of landscape structure, having the absolute largest meaningful effects on three diversity 
measures (forest-area sensitive bird relative abundance and forest generalist bird species richness and species 
evenness) and the absolute second largest meaningful effect on an additional measure (the species evenness of 
forest-area sensitive birds) (Figs 2 and 3). The meaningful effects of matrix quality variables (agriculture amount 
and urbanization) on forest bird diversity were just as often the absolute largest in magnitude (the relative abun-
dance and species evenness of all forest birds and forest-area sensitive bird species evenness) as the absolute 
second largest (the relative abundances of forest-area sensitive birds and forest generalist birds and the species 
richness of forest generalist birds) (Figs 1–3). Forest configuration variables (forest patch density and forest 
clumpiness index) typically ranked third in importance relative to forest amount and matrix quality variables, 
having either the absolute smallest meaningful effect or meaningless effects on forest bird diversity (forest-area 
sensitive bird relative abundance and species evenness and forest generalist bird species richness) (Figs 2 and 3).
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Discussion
Forest amount was the most important determinant of patterns of forest bird diversity in our data, followed by 
matrix quality and forest configuration. This order of importance matches our prediction based on the findings 
of a large majority of studies on the species4,6 and (references therein16,18,20). Forest amount typically had strong 
positive effects on the diversities of forest-area sensitive and forest generalist birds, which may be explained by 
passive sampling or lower extinction rates. Matrix quality variables also exhibited strong effects, particularly the 
negative effects of urbanization on the diversity of all forest birds and the negative effect of agriculture amount 
on forest-area sensitive bird species evenness. These effects are likely a result of disturbances associated with 
urbanization and agricultural practices that reduce habitat quality for forest birds and increase dispersal mortal-
ity. In comparison, forest configuration was the least important component of landscape structure, particularly 
to forest-area sensitive birds. These species preferentially occur in landscapes with large amounts of forest where 
variation in the configuration of forest may be restricted.

According to our results, landscapes with more forest cover in Pennsylvania should host more forest gener-
alist bird species and a greater relative abundance and species evenness of forest-area sensitive birds. The Passive 
Sampling Hypothesis, the Theory of Island Biogeography, and the Disturbance Hypothesis predict just such out-
comes5. The Passive Sampling Hypothesis assumes that the individuals in a community are randomly distributed 
within habitat in a region. A larger sample or area of habitat should contain a larger sample of the community’s 

Figure 1. The standardized effects (±2 SE) of forest amount (FA), forest patch density (FPD), forest clumpiness 
index (FCI), urbanization (URB), high intensity urbanization (URBHI), and agriculture amount (AG) on the 
relative abundance, species richness, and species evenness of the all forest breeding bird guild in Pennsylvania, 
USA.
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individuals and species. The Theory of Island Biogeography predicts an increase in species number with island 
size as a function of the lower extinction rates of larger populations on larger islands. Larger populations of a vari-
ety of species may explain the positive effect of forest amount on species evenness in our data. The Disturbance 
Hypothesis posits that the frequency and intensity of disturbances diminish on larger islands, thereby leading 
to lower extinction rates. A fourth explanation for the positive effect of habitat amount on species number is the 
Habitat Diversity Hypothesis that states that niche diversity increases with habitat area. We discount this hypoth-
esis in the present context because we controlled for habitat diversity in our models by including measures of 
landscape heterogeneity that accounted for the diversity of land cover types, including forest types, in landscapes. 
Our results also included a negative effect of forest amount on the species evenness of forest generalist birds. Some 
forest generalist bird species, such as the Prairie Warbler (Setophaga discolor) and the Louisiana Waterthrush 
(Parkesia motacilla), may make use of habitat types in addition to forest, such as shrubland and wetland. For a 
given area of agriculture and degree of urbanization in a landscape, an increase in forest cover results in a decrease 
in the covers of other habitat types, potentially negatively impacting a subset of forest generalist bird species and 
leading to lower species evenness for the group.

Urbanization had negative effects on the relative abundance and species evenness of all forest birds and the 
relative abundance of forest generalist birds. We attribute these results to the cumulative effects of the variety 
of disturbances associated with urbanization that act to increase avian mortality and decrease reproductive 

Figure 2. The standardized effects (±2 SE) of forest amount (FA), forest patch density (FPD), forest clumpiness 
index (FCI), urbanization (URB), high intensity urbanization (URBHI), and agriculture amount (AG) on the 
relative abundance, species richness, and species evenness of the forest-area sensitive breeding bird guild in 
Pennsylvania, USA.
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productivity. Urbanization is accompanied by increases in buildings, roads, and power lines33 and domestic cat 
(Felis catus) densities34, the four most common sources of mortality for birds in North America13. Urban devel-
opment is also associated with increased air pollution, higher air temperatures, human intrusion into remnant 
habitat, introduced plant species occurrence, higher brood parasite density, greater noise, and lower caterpillar 
abundance15,35–39. These factors have been shown to negatively impact the presence of breeding territories, hatch-
ing success, chick survival, the number of fledglings per nesting attempt, and chick and fledgling weight, and 
positively affect nest predation rate35,40–44.

Agriculture amount was just as likely to have negative as positive effects on forest bird diversity. Forest-area 
sensitive bird relative abundance and species richness declined with increasing agriculture amount in landscapes, 
whereas forest generalist bird relative abundance and species richness increased. Forest-area sensitive bird species 
were defined as requiring large amounts of forest in landscapes that, because of the positive association between 
forest amount and forest aggregation in our data, were likely more continuous. Thus, forest-area sensitive birds 
may also be considered as species adapted to interior forest conditions. As such, they would be particularly vul-
nerable to the negative edge effects associated with agriculture due to elevated nest parasitism and predation 
rates45 and exposure to herbicides and pesticides46–48. Forest-area sensitive birds may also be particularly vulner-
able to dispersal mortality in an agricultural matrix. Species that evolved in landscapes with continuous habitat 
and little or no matrix exhibit weak boundary responses and tortuous movement, characteristics that make them 

Figure 3. The standardized effects (±2 SE) of forest amount (FA), forest patch density (FPD), forest clumpiness 
index (FCI), urbanization (URB), high intensity urbanization (URBHI), and agriculture amount (AG) on 
the relative abundance, species richness, and species evenness of the forest generalist breeding bird guild in 
Pennsylvania, USA.
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more prone to dispersal mortality in the matrix following habitat loss compared to species that evolved in patchy 
habitat49. Forest generalist birds, on the other hand, clearly benefited from the additional resources provided by 
agriculture. For example, approximately a quarter of our forest generalist bird species are predators of insect pests 
in crop fields and pastures, e.g., Northern Parula (S. americana)50.

Habitat configuration was the least important component of landscape structure affecting forest bird diversity 
in our study. This result adds to the existing evidence that the configuration of habitat, independent of habitat 
amount or matrix quality, exerts the smallest relative influence on forest bird diversity16,18,20 and the diversity 
of other taxa6 and (references therein17,21,24,25,31). The lesser importance of habitat configuration with respect to 
habitat amount has been explained by the Habitat Amount Hypothesis, which states that the major determinant 
of species richness at a sampling site is the amount of surrounding habitat, by means of passive sampling, and that 
habitat configuration is unimportant51. Our results support this hypothesis in that forest configuration variables 
were less important to forest generalist bird species richness than forest amount. Forest configuration variables 
were also of lesser importance than forest amount and matrix quality variables to forest-area sensitive bird relative 
abundance and species evenness, which may seem surprising given that this guild is associated with continuous 
forest (see above). We suggest that, in the landscapes in which forest-area sensitive bird species preferentially 
occur, i.e., those with large amounts of continuous forest, there is necessarily less variation in forest configuration, 
and, as a consequence, a reduced likelihood of large meaningful effects of our configuration variables. We did 
find, however, relatively large effects of forest configuration variables on the diversity of forest generalist birds. 
Forest generalist bird relative abundance was higher in landscapes with lower forest patch densities or higher 
clumpiness, or spatial aggregation, of forest cover. Species evenness of the guild increased with decreasing forest 
patch density or decreasing forest aggregation. These results suggest that forest generalist species populations 
are larger in larger forest patches (for a given forest amount in a landscape, lower patch density implies larger 
patches) and more evenly so when forest is spatially dispersed. The dispersion of forest, manifested as increasing 
inter-patch distances and/or increasingly irregular and elongated patch shapes, increases the interdigitation of 
forest and other land covers, thereby facilitating landscape complementation for the subset of forest generalist 
species that make use of multiple habitat types.

The relative importance of components of landscape structure on biodiversity is likely to be contingent on the 
diversity measure and indicators of landscape structure used in any given study. In the present study, the order 
of importance of forest amount, matrix quality, and forest configuration differed among diversity measures, with 
only two measures, forest-area sensitive bird relative abundance and forest generalist bird species richness, exhib-
iting the same ordering as forest bird diversity overall. The order of importance of our landscape structure com-
ponents of interest would also differ if we had used a limited subset of landscape structure variables. For example, 
matrix quality would have been the least important determinant of overall forest bird diversity if we had not 
included agriculture amount in analyses, whereas it would have been the most important if we had not included 
forest patch density. Similarly, there may be indicators of matrix quality for forest birds that we did not measure, 
such as road density4, whose inclusion in future analyses may result in different conclusions than those presented 
here. Thus, it may be difficult to predict the relative importance of habitat amount, habitat configuration, and 
matrix quality for any given measure of biodiversity and set of landscape structure indicators.

The overall order of importance of forest amount, matrix quality, and forest configuration that we report 
implies that planners and managers prioritize maximizing the amount of forest, irrespective of its spatial con-
figuration, to most effectively conserve forest birds. If this is not feasible, e.g., in multi-use landscapes with high 
development pressure, planners and managers should focus on minimizing the effects of disturbances originating 
in the matrix that negatively impact habitat quality in forest remnants and increase dispersal mortality. This could 
involve educational campaigns, incentives, and/or bylaws to keep cats indoors, make windows more visible to 
birds, and reduce pesticide and herbicide use, road traffic, impervious surface cover, introduced plant species 
cover, and recreation in forest remnants. Finally, if maintaining or increasing forest amount and/or limiting dis-
turbances originating in the matrix are not possible, the focus should be on preserving large forest patches that are 
elongate or irregularly-shaped and/or isolated from one another. This sequential implementation of conservation 
measures based on the relative effects of components of landscape structure is important. It ensures that planners 
and managers are implementing the most effective conservation measure, relative to those evaluated, given the 
limits of time and funding and the demands of other, often competing goals, such as building housing.

In conclusion, we report that forest amount had the largest independent effect on forest bird diversity, fol-
lowed by matrix quality and forest configuration. Forest amount generally had positive effects on forest bird 
diversity. Urbanization had negative effects on the relative abundance and species evenness of all forest birds and 
the relative abundance of forest generalist birds. To our knowledge, these are the first results of the effect of urban 
matrix quality on forest bird relative abundance and species evenness independent of forest amount and forest 
configuration. Agriculture amount had negative effects on the diversity of forest-area sensitive birds and positive 
effects on the diversity of forest generalist birds. Finally, forest patch density generally had negative effects on for-
est bird diversity, whereas forest clumpiness had positive and negative effects. The order of importance of forest 
amount, matrix quality, and forest configuration to forest bird diversity implies that planners and managers with 
the goal of conserving forest birds in landscapes modified by urbanization and agriculture prioritize maximizing 
forest amount, then reducing the effects of disturbances originating in the matrix, and then preserving large, 
spatially-dispersed forest patches.

Methods
Study Area. Pennsylvania has an area of 119,283 km2 and intersects three Bird Conservation Regions: the 
Appalachian Mountains, the Lower Great Lakes, and the Piedmont52. Mountains (maximum elevation = 979 m 
a.s.l.) are covered by northern hardwood forest, whereas agriculture and urban development dominate lower ele-
vations (minimum elevation = 0 m a.s.l.). Over half of the state’s population of 12.7 million people is concentrated 
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in the metropolitan areas of Philadelphia and Pittsburgh in the southeast and southwest corners of the state, 
respectively53. Developed land in Pennsylvania more than doubled between 1992 and 2005, primarily at the 
expense of open space and agricultural land surrounding urban areas53.

Second Pennsylvania Breeding Bird Atlas. We used point count data from the Second 
Pennsylvania Breeding Bird Atlas (PBBA)32. Between 2004 and 2009, 22 trained PBBA staff performed 33,763 
unlimited-distance roadside point counts, resulting in the observation of 176 bird species. Approximately eight 
point counts were conducted in each of 4,937 ‘blocks’, each approximately 24 km2 in area, covering the state. 
Points were situated at random locations that were shifted to the nearest non-highway road, while maintaining 
a minimum 400 m distance between points54. Counts occurred between May 25 and July 4 each year in suitable 
weather conditions between 5 and 10 am, with each point being visited once over the atlas period for 6 minutes 
and 15 seconds.

Landscape Selection. Landscapes were defined as circular areas centered on point count locations that were 
surrounded by ≥50% forest cover within a 0.2 km radius. We chose ten landscape radii (0.2, 0.5, 1, 2, 4, 6, 8, 10, 
12, and 16 km) to account for scale-dependent variability in the relative importance of habitat amount, habitat 
configuration, and matrix quality4. This range of scales generally encompassed the median natal dispersal dis-
tances and territory or home range sizes of the non-raptor and non-waterfowl species observed during the PBBA 
at the count locations that we selected55–59, as well as the scales at which habitat amount, habitat configuration, 
and matrix quality have been found to affect forest bird diversity4,16,18,20. In addition, we considered a wide range 
(1.9 orders of magnitude) and high density (0.6 scales/km) of scales in order to improve the likelihood that we 
identified the true scales of effect of our landscape variables of interest60. In our selection of point count locations, 
we omitted those that were ≤16 km from the state border to ensure that all selected points were surrounded by 
entire landscapes at all scales. These selection criteria resulted in 13,763 landscapes at each of 10 scales (Fig. 4).

Forest Bird Diversity. We excluded species from the 176 detected at selected points that had the fol-
lowing characteristics: (1) hybrid species; (2) irregular breeder in the state; (3) raptor; (4) waterfowl; and (5) 
occurrence at fewer than 30 count locations. The resultant selection of 101 species was divided into three hab-
itat association guilds using species’ empirical patterns of occurrence across landscape scales. Avian responses 

Figure 4. Locations of the 13,763 point counts selected from the 2nd Pennsylvania Breeding Bird Atlas, USA. 
The inset depicts the landscapes of ten different scales surrounding each count location. Land cover is from the 
National Land Cover Database74.
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to forest configuration have been shown to vary both regionally61–63 and temporally64. For example, the effects 
of forest configuration on the Wood Thrush (Hylocichla mustelina)65 and Scarlet Tanager have been shown to 
vary regionally66,67, which might explain why evidence for area-sensitivity can be equivocal for some species 
(e.g.,68). Our empirical approach avoided such ambiguities by ensuring that guild definitions were accurate in 
the context of our study. We derived guilds by comparing the cumulative distribution of counts of each spe-
cies, across all 33,763 count locations, to the cumulative distribution of forest amount in landscapes at each 
scale using Kolmogorov-Smirnov tests of no difference (see Supplementary Table S10 and Fig. S17). If a large 
proportion of the individuals of a species occurred in the landscapes with the most forest, then the species was 
classified as “forest-area sensitive”. Thus, forest-area sensitive species were those that required large amounts of 
forest in landscapes. Conversely, if a large proportion of the individuals of a species occurred in the landscapes 
with the least forest, then the species was classified as “edge/open country”. These species required large amounts 
of non-forest habitat in landscapes. Species that accumulated individuals in landscapes at the same rate that forest 
cover increased in landscapes were classified as “forest generalists”. Thus, forest generalist species required forest 
in landscapes but occurred across a broad range of forest amounts, i.e., they were not restricted to landscapes with 
large amounts of forest as was the case for forest-area sensitive species.

We calculated nine measures of diversity at each count location: relative abundance, species richness, and spe-
cies evenness for each of the forest-area sensitive, forest generalist, and all forest (area sensitive and generalist spe-
cies combined) bird guilds. We measured relative abundance as the sum of species counts. We estimated species 
richness using the Chao1 estimator. Chao1 is a non-parametric estimator of true species richness that is based 
on the number of rare species observed69,70. The estimator performs well when most observations are relatively 
rare species, as is commonly the case for point counts69. We measured species evenness using Pielou’s evenness 
index71. Chao 1 and Pielou’s evenness index were calculated using the fossil72 and asbio73 packages, respectively, 
in R, version 3.3.174.

Forest Amount, Forest Configuration, and Matrix Quality. We measured the amount of forest and its 
configuration in landscapes using the National Land Cover Database 2006 (NLCD75) and FRAGSTATS, version 
4.276. We quantified forest amount as the proportional area of landscapes covered by the Deciduous, Evergreen, 
and Mixed Forest classes. We measured forest configuration using two metrics: patch density and the clumpiness 
index76. We chose these metrics because patch density is one of the more common habitat configuration metrics 
in the literature, while the clumpiness index is supported as a measure of configuration with low correlation to 
habitat amount that retains differentiability among landscapes76–79. Increasing forest patch density indicates that 
forest cover in landscapes is divided into a greater number of patches, whereas decreasing forest clumpiness indi-
cates that forest cover in landscapes is more spatially dispersed.

We used degree of urbanization and agriculture amount in landscapes as measures of matrix quality. For each 
landscape scale, degree of urbanization was derived using a principal component analysis (PCA) of six stand-
ardized variables: the proportional area of landscapes in each of the NLCD’s four Developed land covers (Open 
Space, Low Intensity, Medium Intensity, and High Intensity), area-weighted average population density, and 
area-weighted average housing density. We measured the population density and housing density variables as the 
averages of 2010 US Census block-level population and housing densities in landscapes80, respectively, weighted 
by block area81. We selected only those principal components that had eigenvalues >1, the Kaiser-Guttman cri-
terion, as meaningful measures of degree of urbanization82. The first and second components, accounting for 
62–76% of total variance, were selected at the 0.2 and 0.5 km scales while only the first component, accounting for 
67–90% of total variance, was selected at larger scales. The first component was highly correlated with population 
and housing density (r > 0.90) and the areas of Developed land covers (r ≥ 0.70). The second component was 
highly correlated with High Intensity Developed cover (r ≥ 0.75). We termed the first component simply ‘urban-
ization’ and the second component ‘high intensity urbanization’. We quantified variation in matrix quality due to 
agriculture as the proportional area of landscapes covered by the NLCD’s Cultivated Crop and Pasture/Hay land 
cover classes. We chose the amount of agriculture, rather than a more explicit measure of the intensity of agri-
cultural practices, because, to our knowledge, the latter data do not exist for our study extent. Also, we chose to 
include both of the NLCD’s agricultural cover classes because they each represented activities that would impact 
matrix quality for forest birds, such as row cropping (encompassed by the Cultivated Crop class) and pasturing 
(encompassed by the Pasture class)83. Matrix quality variables were created using FRAGSTATS, version 4.276, the 
isectpolypoly tool in the Geospatial Modelling Environment81, and R, version 3.3.174.

Analyses. We used general linear modeling to estimate the relative effects of forest amount, forest patch den-
sity, forest clumpiness index, urbanization, high intensity urbanization, and agriculture amount on each of the 
nine measures of forest bird diversity. Models also included variables that accounted for local habitat quality, 
landscape heterogeneity, and species detectability (Table 1; see Supplementary Methods). We standardized all 
explanatory variables to a mean of 0 and a standard deviation of 1 prior to modeling. We used the negative inverse 
transformation on the relative abundance and species richness of forest-area sensitive birds and the species rich-
ness of forest generalist birds to meet the assumptions of normality and homoscedasticity.

We discerned among the effects of landscape variables measured at different spatial scales using Akaike’s 
Information Criterion (AIC)84. For each measure of forest bird diversity, we ranked models that differed in the 
scale of measurement of landscape variables, i.e. each model contained landscape variables measured at the same 
scale, and chose the model with the lowest AIC as the best representation of variation in the forest bird diversity 
measure.

We chose to use simple general linear modeling to address our research question because it produces unbi-
ased estimates of effect size even when explanatory variables are highly correlated, i.e., r = 0.90, assuming that 
major sources of variation in the response have been included in the model85. In our case, the absolute value of 
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correlations between pairs of explanatory variables in the best models of measures of forest bird diversity averaged 
0.30 (range = 0.00–0.93) and variance inflation factors averaged 4.40 (range = 1.03–32.97) (see Supplementary 
Tables S11–S23).

The effects of forest amount, forest configuration, and matrix quality variables estimated in the best model of 
each measure of forest bird diversity were independent effects, i.e., effects controlling for the effects of all other 
explanatory variables in the model. For example, the estimated effect of forest amount represented a change in the 
total amount of forest in a landscape for a given forest patch density, forest clumpiness, degree of urbanization, i.e., 
housing and population densities and amount of developed cover, amount of agricultural cover, landscape heter-
ogeneity (representing elevation mean and range, Shannon’s diversity of land cover classes, and forest-developed 
edge density (see Supplementary Methods)), local habitat quality, and species detectability. As such, an increase in 
forest amount in a landscape occurred at the detriment of open water, barren land, shrubland, herbaceous covers, 
and/or wetlands, and represented an increase in the amount of habitat available to forest birds. Similarly, a change 
in forest patch density or forest clumpiness in a landscape represented a change in forest configuration, with no 
change in the amounts and intensities of other land covers, including forest, landscape heterogeneity, including 
the amount of forest-developed edge, local habitat quality, or species detectability. An increase in urbanization, 
high intensity urbanization, or agriculture amount in a landscape represented a positive or negative change in 
matrix quality for forest birds, depending on whether developed covers, including open space and low-density 
development, and cultivated crops and pastureland replaced land covers, i.e., open water, barren land, shrubland, 
herbaceous covers, and/or wetlands, with higher or lower rates of dispersal mortality, fewer or more resources, 
and/or higher or lower levels of disturbance for forest birds.

In order to gain a general understanding of the relative importance of forest amount, forest configuration, 
and matrix quality to forest bird diversity overall, we counted the number of times the variable with the largest 
absolute effect representing each component of landscape structure placed first, second, or third in effect magni-
tude across the nine diversity measures. In doing so, we considered only meaningful effects, i.e., those with 95% 
confidence intervals that did not overlap 0, with the exception of meaningless effects when diversity measures 
were meaningfully affected by two landscape structure components. We ranked these meaningless effects third 
in relative importance. The landscape structure component that placed first most often across diversity measures 
was deemed the most important determinant of overall forest bird diversity, the component that placed second 
most often was considered the second most important determinant, and the component that placed third most 
often was considered the least important. All analyses were performed in R, version 3.3.174 using the glm function 
in the stats package and the vif function in the car package86.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.

Source of variability Variable Description Data source

Landscape structure Forest amount Proportional area of landscapes in Deciduous, Evergreen, and 
Mixed Forest land covers National Land Cover Database75

Landscape structure Forest patch density Number of patches of Deciduous, Evergreen, or Mixed Forest 
land cover per unit landscape area National Land Cover Database75

Landscape structure Forest clumpiness 
index

Spatial aggregation of Deciduous, Evergreen, and Mixed 
Forest land covers in landscapes National Land Cover Database75

Landscape structure Urbanization
First component of principal component analysis of the 
proportional areas of landscapes in Developed land covers 
and average population and housing densities of landscapes

National Land Cover Database75, 2010 US Census80

Landscape structure High intensity 
urbanization

Second component of principal component analysis of the 
proportional areas of landscapes in Developed land covers 
and average population and housing densities of landscapes

National Land Cover Database75, 2010 US Census80

Landscape structure Agriculture amount Proportional area of landscapes in Cultivated Crop and 
Pasture/Hay land covers National Land Cover Database75

Landscape structure Landscape 
heterogeneity 1

First component of principal component analysis of landscape 
elevation mean and range, Shannon’s diversity of land covers, 
and forest-developed edge density

3.2-ft digital elevation model of Pennsylvania87, 
National Land Cover Database75

Landscape structure Landscape 
heterogeneity 2

Second component of principal component analysis of 
landscape elevation mean and range, Shannon’s diversity of 
land covers, and forest-developed edge density

3.2-ft digital elevation model of Pennsylvania87, 
National Land Cover Database75

Local habitat quality Land use change Occurrence of recent or active land use change at point count 
locations Second Pennsylvania Breeding Bird Atlas32

Local habitat quality Dominant habitat type Dominant habitat type within 75 m of count locations Second Pennsylvania Breeding Bird Atlas32

Species detectability Observer Observer identity Second Pennsylvania Breeding Bird Atlas32

Species detectability Start time Survey start time Second Pennsylvania Breeding Bird Atlas32

Species detectability Date Julian date of survey Second Pennsylvania Breeding Bird Atlas32

Species detectability Year Survey year Second Pennsylvania Breeding Bird Atlas32

Table 1. The explanatory variables included in general linear models of forest bird diversity in Pennsylvania, 
USA. Landscapes were circular areas surrounding point count locations.
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