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Abstract.   Plant invasions substantially impact the ecosystem services provided by forests in urbanizing 
regions. Knowing where invasion risk is greatest helps target early detection and eradication efforts, but 
developing an accurate predictive model of invasive species presence and spread on the basis of habitat 
suitability remains a challenge due to spatial variation in propagule pressure (the number of individuals 
released) which is likely conflated with suitability. In addition to neighborhood propagule pressure that 
originates with propagules dispersing from naturalized populations within invaded habitats, we expect res-
idential propagule pressure arising from the widespread use of exotic plants in the yards of single- family 
residences to be an important driver of invasions, and to notably improve the predictive accuracy of species 
distribution models (SDMs). To this end, we collected presence/absence data for a widespread forest invader, 
Ligustrum sinense (Chinese privet), from 400 stratified random plots located along an urban gradient across 
the Charlotte, North Carolina metropolitan area. We assessed the relative contribution of residential prop-
agule pressure and neighborhood propagule pressure to improving the predictive performance of a probit 
SDM for Chinese privet that only contains environmental predictors. Our results indicate that, although the 
environment- only model predicted the highest geographic area to be at risk of invasion by privet, it also had 
the highest rate of failure to accurately predict observed privet occurrences as indicated by the omission (in-
correctly predicted absence) and commission (incorrectly predicted presence) error rates. Accounting for res-
idential propagule pressure substantially improved model performance by reducing the omission error by 
nearly 50%, thereby improving upon the ability of the model to predict privet invasion in suboptimal habitat. 
Given that this increase in detection was accompanied by a decrease in the geographic area predicted at risk, 
we conclude that SDMs for invasive exotic shrubs and potentially for other synanthropic generalist plants 
may be highly inefficient when residential propagule pressure is not accounted for. Accounting for residen-
tial propagule pressure in models of invasive plants results in a more focused and accurate prediction of the 
area at risk, thus enabling decision makers to feasibly prioritize regional scale monitoring and control efforts.
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IntroductIon

Urban forests provide several key ecosystem 
services such as clean air and water, mitigation 
of the urban heat island effect, and recreational 
opportunities that are essential to the quality of 
life and sustainability of cities and metropolitan 
areas. Yet, the continued provisioning of these 
ecosystem services is threatened by uncontrolled 
exotic species invasions. Of particular concern 
are exotic shrub invasions prevalent in the for-
est understory along the eastern seaboard of the 
United States due to their negative impacts on 
both biodiversity and forest regeneration (Merri-
am and Feil 2002, Hartman and McCarthy 2008). 
Several invasive shrub species of Eastern U.S. 
forests (e.g., Lonicera maacki, Ligustrum sinense, 
Elaeagnus umbellata) were originally introduced 
as ornamental plants and widely planted in res-
idential landscapes prior to escaping from yards 
and gardens to naturalize in forests (Dirr 1998, 
Martin et al. 2008). The same traits that enable 
them to grow under a wide variety of conditions 
in residential yards are also what enables them 
to be such successful forest understory invaders 
(Martin et al. 2008).

To date, remote sensing approaches have been 
ill- suited to the accurate detection and monitor-
ing of understory invasions without the costly ac-
quisition of hyperspectral or LiDAR data (Singh 
et al. 2015). Instead, the risk of invasion is as-
sessed using species distribution models (SDMs). 
SDMs statistically relate species occurrences 
with environmental and/or climatic predictors 
in a geographic information system to predict 
the probability of species presence on the basis 
of habitat suitability (Elith and Leathwick 2009). 
This approach has been met with mixed suc-
cess, as SDMs predict invader distribution much 
more accurately for species with narrow habitat 
requirements than those that possess wider en-
vironmental tolerances (Evangelista et al. 2008). 
Furthermore, deriving a generalist invader’s true 
ecological niche based solely on habitat suitabil-
ity data can lead to SDMs with poor predictive 
performance due to variations in propagule pres-
sure, which as we show below, can be conflated 
with suitability (Chytrý et al. 2008). Broadly 
defined, propagule pressure is the cumulative 
introduction effort of non- native propagules 
(seeds) to a novel location (Lockwood et al. 2009). 

Propagule pressure is linked to the probability 
of arrival and establishment at a site, two nec-
essary conditions beyond habitat suitability that 
must be met in order for invasion to occur (Shea 
and Chesson 2002, Tanentzap and Bazely 2009). 
Previous work has identified that habitat invasi-
bility, defined as the intrinsic susceptibility of a 
habitat to invasion, can be confounded by propa-
gule pressure (Lonsdale 1999, Chytrý et al. 2008). 
Under this scenario, locations receiving a heavy 
influx of propagules will have higher establish-
ment rates and thus be more invaded; conversely, 
lower invasion rates will be associated with low 
levels of propagules, regardless of the intrinsic 
invasibility of a site, or suitability of the site for 
a particular invader. This phenomenon, coupled 
with spatial autocorrelation resulting from both 
a characteristically patchy distribution of the 
invader across the landscape, and the tendency 
of environmental predictors to have increasing 
similarity with decreasing distance, may inflate 
the effect of environmental factors on the prob-
ability of invader presence in SDMs (Legendre 
1993, Dormann et al. 2007). Thus, unaccounted 
propagule pressure can lead to substantial model 
error (Eschtruth and Battles 2011).

Despite the theoretical motivation to account 
for propagule pressure in SDMs, it has rarely 
been done. When propagule pressure is account-
ed for, typically using a proxy variable, it has been 
shown to improve the performance of invasive 
species SDMs (Havel et al. 2002,  Meentemeyer 
et al. 2008, Dullinger et al. 2009). However, these 
studies have focused on estimating the likeli-
hood of invader dispersal from known invaded 
locations, which are largely nearby and within 
the same habitat type, and thus implicitly ignore 
the potential contribution of propagules from 
other sources. We refer to this as “neighborhood 
propagule pressure.” In addition to neighbor-
hood propagule pressure, residential propagule 
pressure arising from the dispersal of propagules 
from exotic shrubs planted in the yards of single- 
family residences is also likely an important fac-
tor explaining the distribution of exotic shrubs 
in metropolitan forests (Lockwood et al. 2009). 
Several studies have linked the presence of exot-
ic species in natural landscapes to anthropogenic 
variables such as housing density, urbanization, 
and human population density (Gavier- Pizarro 
et al. 2010, Pennington et al. 2010, Pyšek et al. 
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2010). Furthermore, the likelihood that an orna-
mental plant will escape from cultivation and 
naturalize has been linked to its popularity in 
the landscape trade and prevalence in residential 
landscapes (Kowarik 2003, Krivanek et al. 2006, 
Dehnen- Schmutz et al. 2007, Hanspach et al. 
2008). Given that the most popular and widely 
used ornamental shrubs tend to be habitat gen-
eralists and are among the most prevalent forest 
invaders, we investigated if a metric reflecting 
residential propagule pressure can be used to im-
prove the accuracy of SDMs developed for gen-
eralist invaders, using the invasive shrub Chinese 
privet (Ligustrum sinense) as a case study.

The proxy used in this study, the residential 
force of invasion (rFOI) was adapted from the 
force of invasion described by Havel et al. (2002). 
Based on the premise that single- family residenc-
es serve as external sources of invasive propa-
gules, the potential rFOI at a given location, i is 
measured by the cumulative sum of the inverse 
weighted distances from i, to every single- family 
house, weighted by age, within the study extent. 
We expect that explicitly weighting single- family 
residences by distance and age should result 
in a more realistic and more effective proxy of 
human- mediated invasion pressure in urban 
landscapes than a simple measure of housing 
density. Specifically, we expected to observe an 
increase in predictive accuracy in SDMs that ac-
count for residential propagule pressure in ad-
dition to neighborhood propagule pressure, as 
compared to those that do not. In addition, giv-
en that both sources of propagule pressure rep-
resent the inherently spatial process of invader 
spread, we also assessed the level of spatial auto-
correlation present in the residuals of each mod-
el. If both sources of propagule pressure are im-
portant to the distribution of the target species, 
then the addition of either source of propagule 
pressure should result in a reduction in spatial 
autocorrelation as compared to a model that in-
cludes only environmental predictors.

data and Methods

Study system and target species
We conducted our study in the Charlotte- 

Mecklenburg metropolitan area in North 
Carolina. Charlotte is one of the ten fastest 
growing cities in the United States, with a 2010 

population of over 730 000, and encompasses 
the majority of Mecklenburg County (2010 U.S. 
Population Census). It is located in the Piedmont 
physiographic province, which is characterized 
by gently rolling terrain, erosion prone soils, 
and forests dominated by mixed hardwood and 
pine. Steep slopes are limited and are primarily 
located adjacent to streams. Rapid population 
growth and an expanding human footprint that 
can be characterized as urban sprawl have 
consumed much of the forests and agricultural 
land in the area (Meentemeyer et al. 2013, 
Delmelle et al. 2014). The remaining forests are 
largely mixed deciduous, dominated by oaks 
and hickories, and are highly fragmented.

Chinese privet is an ideal case study species 
for this research as it is prevalent in forests 
throughout the southeast and has been report-
ed as invasive throughout the eastern United 
States. It is also widely utilized as an ornamental 
shrub due to its tolerance to a wide variety of en-
vironmental conditions. Chinese privet was first 
imported for ornamental use in 1852 (Dirr 1998). 
It was reported as being naturalized in forests 
throughout the North Carolina Piedmont as ear-
ly as the 1930s (Radford et al. 1968). This semi-
evergreen to evergreen shrub is still widely used 
as a hedge, as it tolerates shade, heat, drought 
and the clay soils that are characteristic of the 
Piedmont. The shrub produces small bluish- 
black drupes in the late fall that are consumed 
by birds (Wilcox and Beck 2007) and deer (Stro-
mayer et al. 1998, Williams et al. 2008). Invasion 
by Chinese privet is a threat to biodiversity be-
cause it is capable of forming dense thickets, 
which crowd out native vegetation and prevents 
forest regeneration (Merriam and Feil 2002, Hart 
and Holmes 2013).

Field data collection
To examine the effects of residential devel-

opment and environmental factors on the prob-
ability of Chinese privet presence, we sampled 
345 field plots (100 m2 in size) in patches of 
primarily deciduous forests stratified across 
three classes of building density: urban, sub-
urban and rural in Mecklenburg County during 
2009–2012 (Fig. 1). Building density was mapped 
from 2011 countywide parcel data (Mecklenburg 
County Geospatial Information Services) using 
a 1 km circular moving window and was 
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assigned to one of three classes using the method 
described by Theobald (2005).

We used a stratified random sampling method 
to select forest patches that were a minimum of 2 
hectares in each class to ensure that the number of 
forest patches sampled reflects their spatial dis-
tribution by class within the study extent. Each 
forest sampled contained a minimum of 3 plots 

and a maximum of 10 plots, as determined by 
forest patch size to ensure that the spatial hetero-
geneity within each patch was well represented. 
Most forests contained 5–6 plots. Plot locations 
were chosen randomly in a GIS for each forest 
patch and were located in situ using a Trimble 
GeoXT global positioning system (GPS). At each 
plot, we recorded whether privet was present or 

Fig. 1. Study extent showing the distribution of forests sampled for Chinese privet.
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absent, and if present, assigned scores of one to 
five to each plot according to the percentage of 
coverage by Chinese privet: 1–20, 21–40, 41–60, 
61–80, or 81–100%. Thirty patches embedded in 
urban areas were sampled (136 plots), 31 subur-
ban forests (139) and 11 rural forests (50). Due 
to difficulty in obtaining landowner permission, 
we augmented our study using an additional 55 
plots from 14 rural forests and 4 suburban forests 
obtained via a random subset from the Mecklen-
burg County Department of Natural Resources 
(DNR) systematic invasive survey conducted 
from 2003 to 2009. The final combined data set 
has 400 observations.

Environmental data
Several topographic variables and habitat fac-

tors were examined as potential predictors of 
privet presence as indicated by theory, previous 
research, and based on the authors’ field ob-
servations. We calculated the topographic mois-
ture index (TMI) as the natural log of the ratio 
of the upslope contributing area to the slope 
and delineated convex, concave, and flat areas 
using the soil curvature method of Moore et al. 
(1991). The TMI and curvature are derived from 
a 10 m resolution DEM. Relative slope position 
(RSP) provides a measure of the relative position 
of each pixel/geographic location as compared 
to its neighbors using a 100 m moving window. 
Aspect was transformed using the method de-
scribed in Beers et al. (1966). The annual mean 
potential solar radiation (SI) based on monthly 
intervals was derived using the area solar ra-
diation tool in the ArcGIS 10. All these metrics 
were derived from a 10 m resolution DEM. 
Canopy closure (CC) was obtained from the 
Multi- Resolution Land Characteristics (MRLC) 
Consortium and is based on the 2011 National 
Land Cover Database (NLCD).

Due to Chinese privet’s high adaptability to 
various climatic conditions and present geo-
graphic range that spans throughout the eastern 
United States, we assumed that climate would 
have little effect on more localized distributions. 
Therefore, climatic variables were not used in 
this study.

Residential propagule pressure
Our proxy of residential propagule pressure, 

the rFOI is based on the premise that the yards 

of single- family residences serve as external 
sources of propagules of Chinese privet. Thus, 
the potential rFOI at a given forest location i 
is measured by the cumulative sum of the in-
verse weighted Euclidean distances dik from i, 
to every single- family residence (k) within 
1500 m of i, weighted by their age (wk), as 
recorded in the county’s georeferenced property 
database (Mecklenburg County Geospatial 
Information Services), using an inverse distance 
dispersal kernel (  ):

 (1)

The α parameter modifies the degree to which 
the likelihood of arrival from residential sites to 
forest sites decreases as the distance between 
them increases (Havel et al. 2002). The optimal 
value for α was identified using likelihood pro-
filing (Appendix A). We weighted the rFOI by 
housing age as it was assumed that the residen-
tial force of invasion would be more established 
and stronger out of older housing developments 
where Chinese privet may have been used as an 
ornamental since the early 19th century.

Neighborhood propagule pressure
To examine the influence of neighborhood 

propagule pressure on the probability of invader 
presence, we estimated the neighborhood force 
of invasion (Havel et al. 2002, Meentemeyer 
et al. 2008) occurring at each field plot gener-
ated by observed presences within 1500 m. 
Similar to the derivation of the rFOI, the neigh-
borhood force of invasion (nFOI) is estimated 
as the distance (dik) from every known invaded 
cell present in the training data set, k, to every 
other cell (i) excluding itself in the study extent 
using an inverse distance power dispersal kernel 
(Clark et al. 2005), weighted by the invasive 
cover (Wick):

 (2)
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values ranging from 1 to 5, with 1 representing 
the lowest cover category of 1–20% and 5 repre-
senting the highest cover of 81–100%. We used a 
neighborhood of 1500 m to account for the scope 
of spatial dispersion around each site, as 99% of 
fleshy fruited seeds released from shrubs have 
been shown to be dispersed within this radius 
(Vittoz and Engler 2007). Likelihood profiling 
analysis was used to identify the optimal β pa-
rameter for nFOI (β = 1.5) (Appendix A).

Model development
We developed the models using generalized 

linear modeling with the probit- link function 
in the “stats” package of R, version 2.15.3 (R 
Core Team, 2012). Probit models differ from 
the more commonly used logit- link function in 
that the probit model assumes a normal dis-
tribution of the errors, whereas the logit model 
assumes a standard logistic distribution of the 
errors, but both typically yield very similar 
results (Long and Freese 2006). Probit model 
errors have the advantage of being analytically 
more tractable when trying to account for spatial 
dependence (Anselin 2002, Johnson et al. 2012). 
In probit models, the probability that a location 
will be invaded is calculated as:

 (3)

The link function is indicated by Ф, the cumula-
tive normal distribution, X represents a vector 
of predictors and β are the parameters to be es-
timated. We used the overall privet prevalence 
(0.31) as the threshold to score plots as being in-
vaded (1) or not invaded (0) (Manel et al. 2001).

To avoid overfitting, all possible models were 
enumerated by the bestglm package in R, and 
were evaluated using Akaike’s information crite-
rion (AIC) to select the best set of environmen-
tal predictors. Higher order variable interactions 
were examined, but resulted in a decrease in 
 prediction, suggesting overfitting (Wenger and 
Olden 2012). We then investigated the effect 
of adding (1) rFOI (the “rfoi” model); (2) nFOI 
(“nfoi” model); and (3) rFOI and nFOI (“nrfoi” 
model); to the environment- only model, to iso-
late the relative contribution of rFOI and nFOI 
to improving model performance. We also com-
pared the rFOI with a simpler metric of residen-
tial propagule pressure that is computationally 

faster to derive, namely single- family housing 
density (the “sfhd” model). Single- family hous-
ing density was calculated for each forest loca-
tion using a 1500 m neighborhood.

Model evaluation
We used 75% of the data to estimate our 

models and the remaining 25% for validation 
(Fielding and Bell 1997). Both data sets con-
tained approximately equal prevalence of 
Chinese privet. Model performance was eval-
uated based on omission error and commission 
error, overall predictive accuracy, and area 
under the receiver operating characteristic curve 
(AUC) (Pearce and Ferrier 2000). The observed 
probability of privet occurrence is plotted against 
the probability predicted by each model using 
a loess smooth function to assess model fit and 
check the assumption of linearity (Jacoby 2000). 
Model fit was assessed using the AIC.

Assessment of spatial dependence
Spatial autocorrelation (SAC) can be the result 

of an omitted abiotic or biotic variable or of 
poor model specification (Austin 2007). If our 
hypothesis is correct, we expect SDMs that do 
not include both measures of propagule pressure 
to have significant spatial autocorrelation, which 
can lead to an overestimation of the effects of 
the environmental predictors (Legendre 1993, 
Dormann et al. 2007). To assess the degree of 
SAC that may be present, we calculated the 
Moran’s I statistic for the generalized residuals 
(numerator) of each SDM model, standardized 
by the square root of the variance (denominator) 
(Amaral et al. 2013):

 (4)

where Ф is the cumulative normal distribution 
of the predicted value given by xiβ, x is a N × k 
matrix of the predictors, and β is a k × 1 vector 
of coefficients. The distribution of the Moran’s I 
test statistic under the null hypothesis is asymp-
totically normal and can be used for hypothesis 
testing (Kelejian and Prucha 2001, Amaral et al. 
2013). We standardized the residuals following 
Amaral et al. (2013) to minimize the effects of het-
eroskedasticity which is often present in probit 

Prob(Y=1|X)=ΦXβ+�.

yi−Φ
√
Φi(1−Φ)
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residuals and can bias the Moran’s I test statistic. 
A binary neighbors (observations were consid-
ered as neighboring if they were no further than 
1500 meters apart) list was used to construct a 
row standardized spatial weight matrix (Bivand 
2013).

Risk maps
Binary distribution maps were created using 

the Geospatial Data Abstraction Library as im-
plemented in R (rgdal package, Bivand et al. 
2014) to summarize the risk of invasion across 
the study extent as estimated by each of the 
four models (environment- only, rfoi, nfoi, and 
nrfoi). We then used overlay analysis to assess 
the degree of spatial consistency of the predicted 
distribution of privet between the environment- 
only model, and the rfoi, nfoi, and nrfoi models, 
respectively.

results

Environment- only model
The results of the five best performing models 

as denoted by AIC are reported in Table 1. 
They indicate that the best set of environmental 
predictors for privet presence is RSP, SI, and 

CC. RSP and CC are negatively related to the 
prevalence of privet, not surprisingly, as it 
prefers lower floodplains and mesic environ-
ments that receive some sun, even though it 
can tolerate shade and upland habitats (Table 2). 
Despite having the highest omission rate of all 
the models examined (Table 3), the base model 
predicts the greatest geographic area (976 km2) 
as being vulnerable to invasion by privet 
(Fig. 2a). Overall, the environment- only model 
for privet has the lowest predictive performance, 

Table 1. Model selection for the best subset of envi-
ronmental predictors of the distribution of Chinese 
privet, showing the five best performing 
environment- only models as indicated by AIC, in 
comparison to the full model containing all six pre-
dictors (last model in table).

Model AIC

SI + CC + RSP 316.44
SI + ASP + CC + RSP 316.74
SI + CUR + CC + RSP 317.55
SI + CUR + ASP + CC + RSP 317.81
SI + TMI + CC + RSP 318.41
SI + TMI + CUR + ASP + CC + RSP 319.80

Table 2. Model coefficients for each predictor, with standard errors shown in parentheses.

Predictor

Model

sfhdenv† rfoi nfoi nrfoi

RSP −1.6206 (±0.3315) −1.5356 (±0.3235) −1.3590 (±0.3236) −1.328 (±0.3326) −1.5588 (±2.9967)
SI 0.0018 (±0.0008) 0.0013 (±0.0008) 0.0013 (±0.0008) 0.0013 (±0.0008) 0.0011 (±0.0008)
CC −1.2061 (±0.3064) −1.0407 (±0.3160) −0.9320 (±0.3136) −0.8387 (±0.3206) −0.8635 (±0.3211)
rFOI NA 0.0006 (±0.0001) NA 0.0005 (±0.0001) NA
nFOI NA NA 1758 (± 361.8) 1444 (±354.7) NA
SFHD NA NA NA NA 0.0041 (±0.0008)

† Environment- only model.

Table 3. Evaluation of the species distribution models developed for Chinese privet.

Model AIC Threshold Omission Commission Accuracy AUC Moran’s I‡

env† 320.00 0.31 0.29 0.30 0.70 0.80 0.210***
rfoi 293.45 0.31 0.15 0.20 0.82 0.91 0.138***
nfoi 284.97 0.31 0.24 0.24 0.76 0.87 0.136***
nrfoi 271.78 0.31 0.15 0.14 0.86 0.94 0.091**
sfhd 294.59 0.31 0.18 0.19 0.82 0.89 0.145***

† Environment- only model.
‡ Significance levels: *P < 0.05, **P < 0.01, ***P < 0.001.
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also exhibiting the highest commission rate and 
lowest accuracy and AUC, as compared to the 
other models (Table 3). The environment- only 
model has the highest residual spatial autocor-
relation as indicated by Moran’s I, suggesting 
a misspecification error (i.e., the omission of 
one or both forms of propagule pressure); and 
the highest AIC, indicating that the 
environment- only model has the poorest fit of 
the models examined (Table 3).

Influence of residential propagule pressure on 
model performance

The addition of rFOI substantially decreased 
the omission and commission error rates, and 
increased the AUC (Table 3). Although the 
overall accuracy of models containing rFOI or 
sfhd is the same, rFOI appears to be a better 

predictor of Chinese privet distribution as 
compared to sfhd, having a lower omission 
error, slightly lower AIC and higher AUC 
(Table 3). The addition of rFOI reduced the 
level of Moran’s I observed in the environment- 
only model by nearly half. The rFOI model 
predicts the second highest geographic area 
as vulnerable to invasion by Chinese privet 
(Fig. 2b).

Contribution of neighborhood propagule pressure to 
model performance

The addition of nFOI to the environment- only 
model also results in lowered omission and 
commission error rates and thus increased pre-
dictive accuracy. The Moran’s I of the nfoi 
model is also substantially lower as compared 
to the environment- only model. However, as 

Fig. 2. Risk maps generated by each model: (a) environment- only, (b) rfoi, (c) nfoi, and (d) nrfoi. The area 
predicted by each model to be at risk of invasion by Chinese privet is listed adjacent to each map.
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compared to the rfoi model, the omission and 
commission error rates are higher, and the AUC 
is lower (Table 3). The nfoi model predicts a 
much smaller area (274 km2) to be at risk of 
invasion by privet than the rfoi model (789 km2) 
(Fig. 2c).

Models with residential and neighborhood 
propagule pressure

As evidenced in Table 3, the best predictive 
model contains both rFOI and nFOI, having 
the lowest commission rate, and highest accu-
racy and AUC. This model also has the lowest 
Moran’s I, suggesting that rFOI and nFOI are 
indeed representing two distinct sources of 
propagule pressure and that either unaccounted 
neighborhood propagule pressure or unac-
counted residential propagule pressure can 
generate at least some of the spatial dependence 
observed in the environment- only model resid-
uals. The nrfoi model predicts the lowest area 
at risk of privet invasion (Fig. 2d).

Comparison of risk maps
The environment- only and rfoi models have 

the highest spatial agreement with regard to 
predicting privet presence (Table 4). The level 
of agreement between the environment- only 
and nfoi or nrfoi model is much lower, due 
to these models predicting a much lower geo-
graphic area at risk of invasion by privet. 
Notably, the location of areas predicted as 
devoid of privet by the nfoi model but invaded 
according to the rfoi model (Appendix B) are 
mostly located in the older, more densely 

urbanized sections of Charlotte, which suggests 
that the rFOI is a mechanism distinct from 
nFOI in influencing the risk of privet invasion. 
The degree of consistency of predicted absences 
between the environment- only and each of the 
other models is very high, ranging from 88 
to 99% (Table 4). Maps highlighting the dif-
ferences between models can be found in 
Appendix B.

dIscussIon

We investigated whether the addition of met-
rics of residential propagule pressure and neigh-
borhood propagule pressure to SDMs developed 
for Chinese privet better explains invasion pat-
terns in metropolitan forests and improves 
model accuracy. Our results show that (1) res-
idential propagule pressure does influence the 
likelihood of invasion by Chinese privet and 
its inclusion generated a significant decrease 
in omission errors as compared to either 
environment- only or nfoi models; and (2) the 
highest predictive accuracy is obtained when 
both residential and neighborhood sources of 
propagule pressure are included in the models. 
We discuss our results in more detail below.

A comparison of models with and without resi-
dential propagule pressure measured as the rFOI, 
reveals that the addition of rFOI  results in sub-
stantially lower omission and commission  errors. 
The risk map generated by the environment- only 
model (Fig. 2a) suggests that the majority of the 
study extent has suitable habitat for privet. This 
is not surprising, given that Chinese privet has 
a broad geographic distribution and tolerates a 
wide range of environmental conditions. Howev-
er, the rfoi distribution map revealed that much 
less habitat is at risk of  invasion  after  accounting 
for residential propagule pressure via the rFOI 
(Fig. 2b). More significantly, the results of the 
overlay analysis identified an  additional 47 km2 of 
forest area at risk of invasion after accounting for 
the rFOI (Table 4), which is striking considering 
that the environment- only model had the high-
est predicted geographic distribution of Chinese 
privet of all the models considered. This indicates 
that SDMs for privet and potentially for other in-
vasive species may be grossly inefficient, both un-
der-  and over predicting the distribution of the in-
vader when residential propagule  pressure is not 

Table 4. Results from overlay analysis showing the per-
centage spatial agreement of the predicted distribution 
of privet between the environment- only and the rfoi, 
nfoi, and nrfoi models, respectively.

Model
Environment-only

Presence Absence
Presence

rfoi 76% (742 km2) 12% (47 km2)
nfoi 12% (273 km2) 1% (1 km2)
nrfoi 13% (252 km2) 3% (14 km2)

Absence
rfoi 24% (234 km2) 88% (337 km2)
nfoi 88% (703 km2) 99% (383 km2)
nrfoi 87% (724 km2) 97% (371 km2)
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accounted for. Furthermore, the superiority of the 
rfoi model in comparison to the environment- only 
or nfoi models in correctly identifying habitats al-
ready invaded by Chinese privet (as indicated by 
the omission error, Table 3), indicates that privet 
is found in habitats predicted as unsuitable by the 
environment- only or the nfoi models presumably 
due to high residential propagule pressure. Thus, 
marginally suitable habitats that receive high 
amounts of seed rain from residences harboring 
the invader for ornamental use are more suscep-
tible to invasions than what otherwise would be 
predicted by models that do not estimate residen-
tial propagule pressure. These results suggest that 
residential propagule pressure can overwhelm 
abiotic resistance to invasion, as has been ob-
served previously with neighborhood propagule 
pressure (Von Holle and Simberloff 2005, Thom-
son 2007, Eschtruth and Battles 2011). Accounting 
for neighborhood propagule pressure does little to 
improve the omission error, and instead results in 
a dramatic reduction in the predicted area at risk 
of invasion by Chinese privet (Fig. 2c). As com-
pared to the rfoi model, the nfoi model has great-
er rates of omission and commission and lower 
AUC, despite having a lower AIC. Although these 
measures are often consistent, the AIC provides 
an in- sample measure of the goodness- of- fit of the 
model compared to the observed data, whereas 
the AUC is a measure of discriminatory power, 
and, was derived “out- of sample” using the hold-
out/testing data.

The addition of either rFOI or nFOI to the 
environment- only model greatly reduces the 
level of spatial autocorrelation present in the re-
siduals as indicated by Moran’s I, and the low-
est level is obtained in the nrfoi model, which 
includes both rFOI and nFOI. The nrfoi model 
also has the highest overall accuracy and AUC. 
This suggests that the failure to account for either 
source of propagule pressure can cause the pre-
dictive error and spatial dependence observed in 
the environment- only model. However, a draw-
back to accounting for neighborhood propagule 
pressure using metrics like the nFOI, is that a pri-
ori data on known invaded locations is required. 
The consequence of this is that models that incor-
porate neighborhood effects are suitable only for 
interpolation and ill- suited for extrapolative ap-
plications such as predicting the potential distri-
bution in a novel geographic range. Furthermore, 

our knowledge of invader presence is limited to 
the locations that were sampled, thus if broad 
geographic areas exist within the study extent 
where no data were collected or presences were 
not identified, then neighborhood propagule 
pressure may be poorly estimated or unknown 
for these locations. An advantage of the rFOI as 
compared to the nFOI, is that all the values of 
the rFOI can readily be determined for the entire 
study extent both within the model calibration 
area and if needed, outside the model calibration 
area, since all of the cells belonging to residences 
can be derived via GIS. However, the rFOI can 
also introduce uncertainty and predictive error 
into the model since it assumes that all residenc-
es are a potential source of propagules, and this 
is difficult, if not impossible, to verify. If the spe-
cies are missing from residences at random, this 
can result in over- estimation of residential prop-
agule pressure, which is not likely to affect mod-
el performance unless the overall prevalence of 
species presence in residential landscapes is very 
low. If the errors are spatially clustered, this may 
reflect spatial variability in residential propa-
gule pressure due to a mismatch of the age of the 
housing development and the popularity of the 
plant, resulting in more substantial model error. 
However, this can be addressed by examining if 
model accuracy varies with housing age and/or 
by incorporating assumptions based on the in-
vader’s popularity over time in the nursery trade. 
We conclude from this that although our results 
point to the most robust model as including both 
residential and neighborhood propagule pres-
sure, our results demonstrate that accounting 
only for residential propagule pressure can result 
in models with good accuracy. Thus, the inclu-
sion of rFOI in extrapolative models developed 
for predicting the spread of invasive plants with-
in the context of land cover- or climate change 
scenarios may improve their performance and 
warrants future investigation.

When dealing with invasive species it is high-
ly likely that the response variable is spatially 
autocorrelated owing to dispersal and other bi-
otic processes (Legendre 1993, Dirnböck and 
Dullinger 2004, Bahn et al. 2008). We have shown 
that residential and neighborhood propagule 
pressures are sources of residual SAC in a SDM 
for Chinese privet and can be utilized to improve 
prediction. This marks a radical departure from 
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the dominant approach to species distribution 
modeling that advocates accounting for residual 
SAC using an autocovariate or removing it using 
spatial filters, thus overlooking the opportunity 
to investigate the origins of the spatial depen-
dence (Van Teeffelen and Ovaskainen 2007, De 
Knegt et al. 2010, Miller and Franklin 2010,).

One thing to keep in mind when examining the 
classification accuracy of SDMs is that commis-
sion errors may not be the result of model error, 
but due to the factors distinct from environmen-
tal suitability, such as that the organism has not 
colonized the site because it has yet to arrive 
there, or it has arrived there, but has failed to es-
tablish a reproducing population due to demo-
graphic stochasticity (Taylor and Hastings 2005, 
Barbosa et al. 2013). Other difficult to measure 
factors such as biotic resistance, competition, 
and predation may also prevent establishment 
(Theoharides and Dukes 2007). The failure to 
colonize all suitable sites has also been attributed 
to presumed lack of equilibrium of the invader 
with the environment due to an insufficient res-
idence time (Václavík and Meentemeyer 2012). 
 Accounting for residential propagule pressure 
has improved our model commission error by 
identifying suitable habitat that is estimated to 
receive a relatively low number of propagules 
and thus highly likely to experience dispersal 
or establishment failure. A much greater reduc-
tion in omission error was observed, revealing 
the potential importance of source- sink dynam-
ics in driving invader distributions in human- 
dominated landscapes. However, in order to 
maximize the likelihood that residential propa-
gule pressure will have a measurable effect on 
the performance of SDMs, this approach is best 
suited to improving the prediction of invasions 
by species that are widely planted, have long 
residence times, and are not at the early stage of 
invasion (Pyšek et al. 2009).

A potential caveat to this work is that we only 
sampled from a subset of Chinese privet’s large 
geographic range (Jarnevich et al. 2015). Other 
environmental or climactic predictors may be im-
portant for explaining the distribution of Chinese 
privet and other invasive species at the continen-
tal or global extent. However, our conclusions 
are drawn from a stratified random sampling 
design yielding high- quality presence- absence 
data, the majority of which was collected by us, 

with additional sampling points obtained from 
Mecklenburg Department of Natural Resourc-
es that were collected by seasoned, knowledge-
able professionals. A key disadvantage of using 
data from throughout Chinese privet’s range in 
the United States is that we would have had to 
rely on presence- only data from a multitude of 
secondary (or tertiary) sources with varying ac-
curacy with regard to spatial location and spe-
cies identification. A drawback common to most 
SDMs, including ours, is that they are developed 
using  a cross section of data points obtained 
from only a single visit to a location, thus, the 
species could have been present in the past, but 
has not persisted, due to demographic stochastic-
ity, or the species has not yet arrived at a suitable 
habitat (Sinclair et al. 2010, Barbosa et al. 2013). 
The latter presents a more significant source of 
error, but likely only when extrapolating models 
outside the current known distribution (Sinclair 
et al. 2010).

The main thrust of this study was to determine 
whether the seed rain of propagules dispersing 
from Chinese privet grown as ornamental shrubs 
in residential landscapes generates a measurable 
propagule pressure measured as the rFOI. A 
follow- up question was whether it can be used to 
explain the presence of Chinese privet in addition 
to a metric that takes into account dispersal from 
known invaded field plots. As such, we expected 
the dispersal kernel used in the residential and 
neighborhood force of invasion models to be the 
same. Although we applied a 1500 m neighbor-
hood to both rFOI and nFOI, different optimal 
values were identified, suggesting that although 
propagules are arriving from both sources, the 
predominant dispersal vectors are different. The 
rFOI α value of 0.5 implies that more propagules 
are dispersing farther from their source as com-
pared to the β value of nFOI. This may be due 
to deer, birds, and other urban- adapted wild-
life preferentially foraging in residential yards 
for food as opposed to forest interiors (Williams 
et al. 2008).

This is the first study that explicitly inves-
tigates the potential links between propagule 
pressure and the performance of SDMs in urban 
landscapes. We have shown that high residential 
propagule pressure increases the risk of invasion 
in habitats that would otherwise be identified as 
unsuitable for invasion. This suggests that resi-
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dential propagule pressure can surmount unfa-
vorable environmental conditions and result in 
the establishment of the invader. Our study has 
also demonstrated that omission and commis-
sion errors of the environment- only model are 
associated with unaccounted residential propa-
gule pressure and to a lesser degree, neighbor-
hood propagule pressure. As observed in Fig. 2a, 
invasive species with wide environmental tol-
erances will likely have a vast potential distri-
bution predicted by models that consider only 
environmental factors and such large risk areas 
can overwhelm regional scale monitoring and 
control efforts (Evangelista et al. 2008). This work 
has shown the potential for accounting for rFOI 
and/or nFOI to derisk areas of suitable habi-
tat that have low propagule pressure, thereby 
enabling land managers to focus on a feasible 
number of forest locations for monitoring and 
control of invaders. Accounting for residential 
propagule pressure has the potential to improve 
the accuracy of SDMs developed for other prev-
alent invasive plants that were originally intro-
duced to the United States as ornamental species 
and continue to be widely planted in residential 
landscapes (e.g., Lonicera maacki, Elaeagnus umbel-
lata). Our approach is not limited to ornamental 
plants and can also be applied to the improved 
mapping of any problematic synanthropic gen-
eralist species whose current and/or future dis-
tribution under given climate change or land use 
change scenarios threatens species of conserva-
tion concern (McKinney 2006). Our results sug-
gest that SDMs that do not consider residential 
propagule pressure or similar mechanistic prox-
ies of human- mediated propagule pressure, will 
be wildly inaccurate when predicting the risk of 
invasion by exotic species that have strong ties to 
human settlement patterns.
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