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ABSTRACT 
 
 

BRENT C. BERGNER. Effects of edge roughness on optical scattering from periodic 
microstructures. (Under the direction of DR. THOMAS J. SULESKI) 

    
 
Planar photonic crystals and other microstructured surfaces have important 

applications in a number of emerging technologies.  However, these structures can be 

difficult to fabricate in a consistent manner.  Rapid, precise measurements of critical 

parameters are needed to control the fabrication process, but current measurement 

techniques tend to be slow and often require that the sample be modified in order to make 

the measurement.  Optical scattering can provide a rapid, non-destructive, and precise 

method for measuring these structures, and optical scatterometry is a good candidate 

technique for measuring micro-structured surfaces for process control.  However, 

variations in the profile, such as those caused by edge roughness, can make significant 

contributions to the uncertainty in scatterometry measurements.  Because of the multi-

dimensional nature of the problem, modeling these variations can be computationally 

expensive.  This dissertation examines the effects of edge roughness on optical 

scatterometry signals.  Rigorous numerical simulations show that the effects of edge 

roughness are sensitive to the correlation length and the frequency content of the 

roughness as well as its amplitude.  However, these rigorous calculations are 

computationally expensive.  A less computationally expensive model based on a 

generalized Bruggeman effective medium approximation is developed and shown to be 

effective for modeling the effects of short correlation length edge roughness on optical 

scatterometry signals. 
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CHAPTER 1: INTRODUCTION 
 
 

Micro-structured and engineered surfaces have applications in such diverse 

disciplines as biology, chemistry, mechanical engineering and the optical sciences.  

Evans and Bryan1 define engineered surfaces as 

surfaces where the manufacturing process is optimized to generate 

variation in geometry and/or near surface material properties to give a 

specific function 

 
while structured surfaces are  

surfaces with a deterministic pattern of usually high aspect ratio 

geometric features designed to give a specific function 

 

This dissertation is primarily concerned with micro-structured surfaces, specifically, 

as they are applied to engineering the optical dispersion characteristics of materials.  

However, for both types of surfaces, it is important to quickly and accurately measure a 

small set of critical parameters that can be used to control the fabrication process2.  

Techniques based on mechanical stylus instruments, atomic force microscopy, scanning 

electron microscopy, or various optical instruments can be used to measure surface 

topography.  However, each of these techniques has its advantages and limitations3.   

Optical scattering can provide a rapid, non-destructive method for measuring the 

properties of a surface.  This dissertation explores the effects that edge roughness has on 

the results of a particular measurement technique, referred to as optical scatterometry, 

that uses optical scattering to determine the parameters of periodic micro-structures. 
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1.1. Application of Micro/Nano-Structured Surfaces 
 

Improvements in metrology techniques and standards have been a driving force in 

sustaining the continued development of micro-lithography for fabrication of semi-

conductor electronics4.  In addition to semiconductor electronics, micro- and nano-

structured surfaces have applications in a number of other emerging technologies.  For 

example, hydrophobic surfaces have been created using surface structure5.   By 

structuring the surface, air can be trapped at the interface, further lowering the total 

surface energy and increasing the contact angle.   These types of structures can be created 

using selective etching techniques and might be used to reduce frictional drag on the hulls 

of watercraft or to prevent condensation or ice build up on airplane wings6.  It has also 

been suggested that structured hydrophobic and hydrophilic surfaces might be used to pin 

interfaces and guide flows in micro-fluidic devices7.  The lotus leaf has a structured 

surface that tends to make it hydrophobic.   As droplets move along these surfaces of the 

leaf they have tendency to transport contaminants, suggesting the possibility of 

fabricating a micro-structured, “self-cleaning” surfaces8 with the potential for high 

volume household and commercial applications.      

Micrometer scale features can also be used to improve the friction and wear 

characteristics of engineering surfaces9.  The structures are thought to trap wear debris 

and act as reservoirs for lubricant10.  Structuring the surface can also result in an increase 

in the hydrodynamic pressure, extending the elastohydrodynamic lubrication regime to 

lower sliding velocities, thereby reducing wear during starting and stopping11.   

Structured surfaces can even aid in bone12 and tissue13 growth and attachment.  

Currently, much of the research in this area seems to be concerned with improving the 
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performance of dental implants14, but may also have implications for patient specific 

bone and tissue grafts in other parts of the body13.     

In optical applications, micro-structured surfaces can act as surface relief diffractive 

optical elements (DOE)15-17.  If the period of the structure is less than the wavelength of 

the light then the higher diffraction orders will be evanescent. In some cases, the optical 

properties of these structures may be modeled using an effective medium approximation 

(EMA)(Figure 1). The grating region is replaced with a homogeneous effective medium 

layer that has an index of refraction that is some combination of the indices of refraction 

of the constituent materials18.  For the component of the incident field with the electric 

field polarized perpendicular to the grating vector (TE polarization), the effective 

permittivity ( effε ) can be approximated by17 

 0 (1 )eff s f fε ε ε= + −  (1.1) 

and for the orthogonal polarization (TM polarization) 
 

 
0

1 1 1
(1 )

eff s

f f
ε ε ε

= + −  (1.2) 

where 0ε is the permittivity of the host material,  sε is the permittivity of the fill material , 

and xf w P= is the percentage of the total area consisting of  the fill material.  These sub-

wavelength optical structures have been used, for example, to create antireflective 

surfaces19-21.   Because the effective index of refraction of the  sub-wavelength structured 

layer depends on the polarization, they can also been used to fabricate polarization 

sensitive components from homogeneous, isotropic materials 22-26.  Effective medium 

approximations (EMAs) will be discussed in detail in later chapters as a method for 

modeling the effect of roughness on optical scattering from periodic microstructures.  
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Figure 1 Using an EMA, a sub-wavelength grating can be modeled as a homogeneous 
effective medium layer with a generally anisotropic index of refraction that is some 
combination of the indices of refraction of the constituent materials.  

 

Photonic crystals are examples of periodic variations in index of refraction that can be 

used to engineer the dispersive properties of optical materials27. In 1987, Sajeev John 

wrote a paper where he hypothesized that28:  

… carefully prepared three-dimensional photonic superlatices with 

moderate disorder may provide the key to the predictable and systematic 

observation of strong localization of photons in nondissipative materials 

with an everywhere real positive dielectric constant.   

   
 
and Eli Yablonovitch proposed that29: 

“… full three-dimensional periodicity of λ/2 in the refractive index can 

result in a forbidden gap in the electromagnetic spectrum, near the 

wavelength λ, irrespective of the propagation direction  “  

 

He went on to directly compare this phenomenon to the periodic electronic potentials 

used in semiconductor electronics applications.  Since the publication of these two papers 

there has been great interest in the theory, application, and fabrication of these 

structures30. 

The origin of the band gap can be explained using a theory developed by Lord 

Rayleigh in 1887 to explain vibrations of a string under periodically varying 

tension27,31,32.  In a region of uniform index, a plot of frequency (energy) with respect to 

wavenumber (momentum) will be a straight line.  This plot is called a dispersion curve 
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and the line is referred to as the light line. The slope of the light line is proportional to the 

group velocity of an electromagnetic wave in the material (Figure 2a).  At each point on 

the dispersion curve, the ratio of the frequency to the wavelength is the phase velocity.  

When the material index is uniform, this dispersion diagram can be folded back onto 

itself without any loss of generality, forming multiple bands (Figure 2b). In a material 

with uniform index, the energy at the edge of the each band will be the same as the 

energy at the corresponding edge of the next band (see the dashed lines in Figure 2c). 

However, if a periodic variation is present in the index profile, the frequencies at points 

of symmetry will become degenerate.  Bloch’s theorem33 states that the eigenmodes of 

this system will also be periodic.  Solutions to the wave equation lead to a set of coupled 

differential equations with modes that are excluded from a range of allowed frequencies.  

These frequencies are within a photonic bandgap.  At intermediate wave vectors between 

the symmetry points, the band diagram will bend in order to make the curve continuous.  

Natural examples of this effect can be found in opal gem stones, the iridescent wings of 

certain insects34, and even ancient Roman glass objects, where, over time, minerals 

leached from the glass leaving a matrix of voids35.  
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Figure 2 Explanation of the origin of the band gap in photonic crystals based on Lord 
Rayleigh's argument.  a)  In an area of uniform permittivity, the dispersion relationship is 
represented by straight lines with a slope that is proportional to the permittivity.  b)  The 
band diagram can be folded periodically without loss of generalization.  c)  If a periodic 
change in the permittivity is introduced, then the degeneracy at the edges of the band 
diagram will be broken.  (Based on illustration from Joanopolous et. al. Photonic 
Crystals:  Molding the Flow of Light)27. 

 
 
In regions of the dispersion curve with shallow slope, the group velocity of the light is 

slowed relative to the bulk properties36,37. This effect can be used to create optical delay 

lines and enhance non-linear optical effects in the material38. However, regions where the 

curve is steep can result in large optical dispersion39,40. By introducing controlled defects 

into these arrays, integrated optical devices such as waveguides, beam splitters, and 

resonant cavities can be created25,41. 

Photonic crystals can also be used to improve the extraction efficiency of light 

emitting diodes (LEDs) used for solid state lighting42.  Because LEDs produces light 



 
 7 

through an electon-hole recombination at a semiconductor heterojunction, the source of 

the light is embedded within a high-index material.  In order for this light to be used for 

applications such as signaling or solid state lighting, the light must be coupled to a 

surrounding, low-index medium (air).  The Fresnel reflections at the semiconductor/air 

interface will reflect a significant portion of the light back into the semi-conductor where 

some of the energy will eventually be lost as heat.  In addition, any light that is incident 

on the interface at large enough angles will be totally internally reflected.  Simply 

roughening the surface can help to frustrate the total internal reflection.  Micro-

structuring the surface with inverted pyramids can be used to gradually transition from 

the high-index semi-conductor to the low-index air, essentially impedance matching the 

two materials43.  Photonic crystal structures can also be used to increase light extraction 

by eliminating guided modes within the bandgap and by coupling light into leaky 

(propagating) modes44-46.  

Another application of micro-structured surfaces is to improve the collection 

efficiency of photo-voltaic solar cells used to generate electricity47.  As with LEDs, the 

high index contrast between the air and the device material causes losses due to Fresnel 

reflections.  Structures such as the ones mentioned previously can be used to reduce these 

reflections.  In addition, the efficiency of photon to electron conversion within the cell 

can be improved by either increasing the photon lifetime (the total time that the photon 

spends in the material) or by increasing the photon density of states (DOS) in the 

material.  Both of these goals can be accomplished by the use of appropriate periodic 

structures.  In the simplest case, a one-dimensional Bragg reflector deposited on the back 

surface of the cell can increase the physical path length in the material for some range of 
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frequencies.   A two dimensional surface relief pattern on the back surface can further 

increase the path length by creating internal reflections in multiple directions48, 49.  The 

periodic structures can be specifically designed to engineer the dispersion of the host 

material and increase the DOS in the absorbing region47,50,51. 

However, for some photonic crystal applications, local variations of the boundary 

between the high index and low index materials (i.e. edge roughness) can reduce the band 

gap52 and increase propagation losses53-55. While this may not be significant for 

applications that operate near the center of the band gap, the effect is pronounced near the 

band edges56.  Even with improvements in fabrication techniques, edge roughness is 

expected to remain a significant problem for applications, such as slow light, that operate 

near the band edge53.  In addition, as minimum feature sizes continue to decrease, edge 

roughness is also becoming an important factor for semiconductor device 

performance.57,58   

1.2. Techniques for Fabricating Micro/Nano-Structured Surfaces 
 
In many cases micro-structured surfaces can be fabricated using lithographic 

techniques developed for producing semi-conductor electronics and micro-electro-

mechanical systems (MEMS)59, taking advantage of the significant resources that have 

been developed to support these industries.  However, the resolution of optical 

lithography techniques is limited by the wavelength of the light that is used to expose the 

resist.  To an extent the resolution limits of optical lithography can be extended by using 

a variety of techniques 60 such as: using shorter wavelengths in deep ultraviolet (DUV) or 

X-ray region of the spectrum;  increasing the numerical aperture (NA) of the system by 

immersing the objective and substrate in a higher index fluid; using structured 
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illumination; taking advantage of phase shifts in the mask; changing the pattern on the 

mask to  yield the desired result using optical proximity correction (OPC)61-64; or 

exposing the resist multiple times with a small shift in the position of the wafer65,66. 

For specific applications other fabrication techniques may have advantages over 

conventional optical lithography.  For example, interference lithography has been used to 

create large areas of periodic structures such as gratings, photonic crystals 67,68, and 

patterned magnetic storage media69.  However, the period of the pattern is limited by the 

wavelength of the light used in the interference setup.   

Electron-beam lithography is capable of very high resolution patterning70, which has 

been used to fabricate planar photonic crystal structures71and integrated optical devices72.  

However, writing with an e-beam is a serial process, which is, in general, time 

consuming, expensive, and limited to planar structures.   

Diamond machining is a flexible method for creating such diverse structures as 

simple gratings, retro-reflective micro-corner-cubes, Fresnel lenses, and free-form optical 

surfaces73.  While specialized techniques have been developed for diamond machining 

ferrous metals, there are a limited number of materials that are suitable for diamond 

machining.  Diamond machining is commonly used in conjunction with molding 

techniques. 

The high production volumes and/or large surface areas required for some of the 

previously mentioned applications make micro/nano-replication techniques attractive.  

Micro/nano-replication techniques include nano-imprint lithography74-76, compression 

and injection molding77-79,  and roll-to-roll (web) processes73,80,81.  With these techniques, 

the time, expense, and technical skill that is needed to produce the initial master surface 
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can be leveraged to produce very complex surfaces on a large scale.  There is little reason 

to think that these processes could not be extended to even smaller structures82.  

However, in order to control the fabrication process a fast, accurate, and non-destructive 

method for measuring these structures is needed81. 

1.3. Metrology for Micro/Nano Structured Surfaces   
 
Methods that have been used to measure attributes of micro/nano-structured surfaces 

include optical microscopy, electron microscopy, mechanical profilometry, atomic force 

microscopy, and scatterometry.  Each of these techniques has advantages, limitations, and 

range of utility.  In fact, an adequate picture of the process may only be achieved by 

using a combination of techniques83.    

1.3.1. Optical Microscopy 
 
Optical microscopy is a familiar and useful method for examining small structures.  As 

early as the first century A.D., the Roman philosopher Seneca observed that “Letters, 

however tiny and obscure, are seen larger and clearer through a glass ball filled with 

water.”84     The father and son team of Hans and Zacharias Janssen are credited with 

combining lenses in a tube to create the first compound microscope in the late 16th 

century85.  By the 19th century ruling engines were being used to create finer and finer 

gratings to compare the resolving power of microscopes until the pitch of the gratings 

finally exceeded the theoretical resolution limit of the microscopes86.  Optical microscopy 

remains a prolific and useful method for observing small objects.  The charge couple 

detector (CCD) camera and image processing software have helped to make the modern 

compound optical microscope a fast and precise way to measure features in variety of 

industries.  While there are techniques for extending the useful range of optical 
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microscopy in limited situations87, 88, in principle, the resolution of optical microscopes 

are limited to 

 
sinn NA

λ λ

θ
Λ ≥ =

⋅
 (1.3) 

for spatially coherent illumination, and 

 
2 sin 2n NA

λ λ

θ
Λ ≥ =

⋅ ⋅
 (1.4) 

for spatially incoherent illumination,  where Λ is the minimum resolvable period, λ is the 

wavelength of the light used to make the observation, and NA is the numerical aperture of 

the optical system.  The numerical aperture is defined as  

 sinNA n θ=  (1.5) 

where n is the index of refraction of the incident medium, and θ is the half angle of the 

cone of incidence.   

1.3.2. Electron and X-Ray Microscopy 

Scanning electron microscopy (SEM) can provided “images” of micro/nano-

structured surfaces with a very high effective magnification89.  While optical microscopes 

operate with photons at wavelengths on the order of a few hundred nanometers, an 

electron with an energy 100 keV corresponds to an electron wavelength of twelve 

picometers.  The “images” of an electron microscope are actually a composite result of 

scattered electrons that are collected as an electron beam is scanned across the surface.  

The ultimate resolution of the SEM is limited by the size of the interaction volume89.   

The interaction volume depends on several factors, including the energy of the incident 

electrons and the density of the material.  Secondary electrons (SE) are electrons that are 

scattered with energies less than 50eV.  They are typically scattered at large angles, and, 
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due to their low energies, originate from a small interaction volume, resulting in a high 

resolution image with resolvable feature sizes on the order of a few nanometers.   Back 

scattered electrons (BSE) are scattered at higher energies.  These electrons tend to 

originate from a larger interaction volume, resulting in lower resolutions (on the order of 

10s of nanometers).  

SEMs have found wide acceptance and specially calibrated SEMs are in common use 

in the semiconductor industry90.  However, due to the high vacuum environment usually 

needed to obtain acceptable images, SEMs typically require long load times and special 

sample preparation.  In addition, non-conducting substrates tend to accumulate charge 

during observation, further limiting the useful resolution.   

1.3.3. Scanning Probe Microscopy  

Mechanical profolimetry is conceptually one of the simplest metrology methods for 

examining micro/nano-structured surfaces.  A small stylus is moved across the surface of 

the sample with a controlled contact force.   A disadvantage of mechanical profilometry 

is that the stylus makes physical contact with the surface.  While attempts can be made to 

minimize the force, it cannot be completely eliminated or the stylus would not stay in 

contact with the surface.  In extreme cases some argue that these forces may even 

permanently deform the surface91.   

Atomic force microscopy (AFM) is similar to mechanical profilometry because a 

stylus is moved across the surface.  However, instead of making physical contact with the 

surface, the atomic forces between the probe tip and the surface are measured.  Typically, 

a control algorithm and piezo-electric transducers (PZT) are used to move the stylus in 

order to maintain a constant force while the position of the stylus is monitored by 
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observing the movement of a laser beam reflected from a mirror on the stylus.  Atomic 

force microscopes are capable of extremely high resolution images, however, the nature 

of scanning a probe across the surface and the limitation of the response of the control 

system limit the throughput of these instruments3.  

1.3.4. Optical Scattering Techniques 

Optical scattering techniques have been used extensively to measure the statistics of 

rough surfaces92 and have been used to determine specific profile parameters of periodic 

microstructures93.   These techniques do not depend on interpreting an image or a set of 

data points obtained by scanning a probe across a specific feature.  Optical scattering 

techniques make an aggregate measurement over many features because the signal that is 

obtained is integrated over the spot size of the instrument.   

Periodic features with dimensions on the order of the wavelength of the light that is 

used to probe the surface typically exhibit multiple diffraction orders, while sub-

wavelength scale features only diffract the incident light into the zeroth order.  To 

increase the sensitivity of scattering measurements for smaller structures shorter 

wavelengths can be used.  Small angle x-ray scattering (SAXS) has been demonstrated to 

accurately measure critical dimensions (CD) with resolutions of less than ten 

nanometers94 and has also been shown to be sensitive to side wall angle95 and line edge 

roughness96.  The x-ray source used in these experiments is a typically a synchrotron x-

ray source. If small, adequately intense laboratory sources can be developed, SAXS may 

prove to be a powerful technique for CD metrology 90. 

In general, the shape of the structure can not be determined analytically from the 

scattered signal97.  However, computational techniques such as rigorous coupled wave 



 
 14 

analysis (RCWA) or Green’s function eigenanalysis (GFE) can be used to obtain a 

rigorous solution for the scatter from a hypothetical structure98.  This solution is 

compared to experimental data and the structure of a sample can be determined using 

iterative methods to find the hypothetical structure that produces the same response as the 

experimental data.  However, in practice it is usually determined by comparing the 

experimental data to a library of previously calculated solutions99(Figure 3).  This 

technique is referred to as optical scatterometry.  Optical scatterometry is becoming an 

increasingly useful tool for controlling the fabrication of micro/nano-structures used in 

the semiconductor electronics industry100-114, because it is non-destructive and can be 

used in-line, or even in-situ to control the process115-117.    
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Figure 3. Flow chart of a general scatterometry algorithm illustrating use of libraries of 
pre-calculated solutions or the use of regression techniques to find the solution to the 
inverse problem. 

This dissertation examines the effect of edge roughness on optical scatterometry 

signals.  The 2007 International Technology Roadmap for Semiconductors identified the 
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ability to measure Line Edge Roughness (LER) as an important part of lithography 

process control118.  Furthermore, the ability to measure and control edge roughness may 

prove to be critical for fabricating planar photonic crystal devices.  If a robust, 

computationally efficient model can be developed for simulating the effects of edge 

roughness on optical scatterometry signals, it will allow metrologists to incorporate these 

effects in scatterometry models.  This is important for two reasons.  First, edge roughness 

might be measured directly using optical scatterometry if adequate models can be 

incorporated into the measurement system.  Second, even approximate models would be 

useful in determining the contributions that edge roughness makes to the uncertainties in 

the estimates of other grating parameters that are measured using optical scatterometry.    

In Chapter 2, approximation methods that have traditionally been used to model the 

effect of surface roughness on optical signals are examined, a method for propagating 

uncertainties in model based measurements is derived, and a description of line edge 

roughness (LER) based on self-affine functions is developed.  In Chapter 3, some of the 

rigorous electromagnetic techniques that are used to model grating structures are 

examined and two approximation methods for use in modeling the effects of edge 

roughness on these structures are derived.  In Chapter 4, a model for edge roughness 

based on a generalized anisotropic Bruggeman effective medium approximation 

(ABEMA) is developed and compared the results of rigorous calculations.  Finally, in 

Chapter 5 the work is summarized and some possible future directions for research are 

discussed.  



` 

 

 

 

CHAPTER 2: BACKGROUND 
 
 
2.1. Optical Scattering 

 
Optical scattering can refer to any number of phenomena concerning the interaction 

of optical radiation with matter119.  In the context of this dissertation, except for a brief 

discussion of the historical application of diffuse scattering measurements to measure 

surface roughness statistics, optical scattering refers specifically to the interaction 

between incident optical radiation and periodic surface relief structures as measured by 

the specular reflectance (i.e. zeroth order diffraction efficiency).   

Optical scattering can provide a powerful tool for characterizing surface structure.  If 

the structure can be decomposed into its Fourier components, then each of these 

components acts as a diffraction grating120.   The total scatter signature from the surface 

is a combination of the diffraction patterns from these individual gratings (Figure 4).   

+ + =+ + =

 

Figure 4.  A complex micro-structure can be decomposed into its Fourier components and 
the total scatter from the surface is a combination of the diffraction patterns from these 
individual components.   
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The angular distribution of the diffraction orders from a single grating are given by  

 ( ) 0sin sind i mθ θ λΛ − =  (2.1) 

where Λ is the grating period, θi is the angle of incidence with respect to the surface 

normal, θd is the diffraction angle with respect to the surface normal, λ0 is the probe 

wavelength, and m is the order number.  In the far field, the relative distribution of the 

energy into each of the diffraction orders can be determined using Kirchoff diffraction 

theory92.  The result depends on the grating profile, the incident angle, the orientation of 

the plane of incidence with respect to the grating vector, and the polarization of the light.  

For a relatively smooth surface, the relationship between the surface roughness and 

the scattered field can be adequately described in terms of small perturbations in the 

surface height.  These perturbations are related to the terms of the Rayleigh expansion of 

the propagating field121, 122.  The Rayleigh-Rice perturbation theory uses this observation 

to relate the power per unit solid angle in the scattered signal (
s

dP
dΩ ) to the two 

dimensional power spectral density (PSD) of the surface roughness  S(fx,fy) (measured in 

units of inverse square length) using  the formula: 

 ( )2
4

4
cos cos ,s

i s x y s
i

dP
d

QS f f d
P

π
θ θ

λ

Ω  = Ω 
   (2.2) 

where θi is the angle of incidence, θs is the angle of observation, 4
4π
λ

 is a term that 

describes the  wavelength dependence of the Rayleigh scattering, 2cos cosi sθ θ is an 

obliquity factor, and Q is a term describing the specular reflectivity of the perfectly 

smooth surface (Figure 5).  However, the Rayleigh-Rice perturbation theory is limited to 
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surfaces where that the average height of the roughness is much less than the wavelength 

and the surface slopes are small123.   
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Figure 5. Definitions of the variables used describing optical scattering  from a periodic 
structure. 

If the period of the roughness is much less the wavelength of the incident light,  

 0 2
λ
≥

Λ
 (2.3) 

then only the zero order diffraction peak (specular reflection) will be present.  All of the 

other orders will be evanescent for every incident angle.  However, information about the 

structure is still available by observing the dependence of the magnitude and phase of the 

reflectivity of the surface as a function of the angle of incidence, the wavelength of the 

incident light, and the incident polarization.  Measurement of these parameters can be 

used to gain further information about the surface structure by modeling the scattered 
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signal using rigorous electromagnetic modeling techniques and finding a solution to the 

inverse problem.  

In general, the term scatterometry can refer to any technique that uses observation of 

a scattered signal to determine the properties of the scattering medium or surface.  This 

would include the techniques discussed so far.  However, in semiconductor metrology 

applications the term scatterometry refers to a more specific set of techniques in which 

the scattered signal is compared to theoretical predictions of scattered signals from 

hypothetical models of the surface.  Since, in general, the surface profile cannot by 

determined analytically from the scattered signal, the models are adjusted until the 

theoretical data can be fit to the experimental data within an acceptable uncertainty.  

Naqvi et. al. proposed using scattering measurements in this manner in 1992124.  While 

the inverse solution cannot be shown to be unique, by applying appropriate constraints 

from a priori knowledge of the structures that are being fabricated, the technique can be 

used as an acceptable method for semiconductor process control83,102-105,108-111,113-117.  

Several companies have introduced commercially available metrology platforms using 

this principle.  Descriptions of two instruments that used to take optical scatterometry 

measurements are included in Appendix A.  A detailed example of an optical 

scatterometry measurement is included in Appendix B. 

2.2. Uncertainty in Model Based Measurements 

Given N sets of data { },i iyx , where iy is an observation (for example, a reflectance 

value ssR or ppR ) , with variance 2
iyσ , and ix is a vector containing the P measurement 

parameters describing the conditions under which that observation was made (for 

example the wavelength, angle of incidence, and azimuthal angle at which the particular 
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reflectance value was observed, such that  3P =  and [ ], ,i i i iλ θ φ=x T ), each with its own 

uncertainty 
ijxu , the goal of model based measurements is to find the set of M  model 

parameters, [ ]1 2, Ma a a=a … T , and their associated uncertainties 
mau , that optimize some 

objective function (S ) relating the results from some model to the observations.  The 

assumption is that this optimal set of model parameters is a good estimate of the true 

values of the parameters.  This model can be as simple as an analytic function such 

as 1 2( , )i if a a= +x a x , or it can be a relationship that must be calculated through a more 

complex algorithm (as in the case of RCWA).   

The difference between the observed values ( iy ) and the modeled values ( ( ),if x a ) is 

called the residual ( r ) 

 [ ]( , )i i ir y f= − x a  (2.4) 

A common objective function is the weighted sum of the squares of the residuals 
 

 2

1

S
N

i i
i

w r
=

= ∑  (2.5) 

where iw is some weighting factor for the ith residual.   If 1iw =  then SN is the root 

mean square (RMS) difference between the observed data and the model.  Another 

possible weighting factor, called a statistical weighting factor125, takes into consideration 

the possibility of the unequal uncertainties of the data and is given by:  

 
2

2 2

1

1

( , )
y xi ij

i
L

i

jj

w
f

x
σ σ

=

=
 ∂ +   ∂ ∑ x a

 (2.6) 

where 2
y i
σ  is the variance in the ith observation, ( , )i

j

f
x

∂
∂

x a is the sensitivity of the ith 

observation to changes in the jth measurement parameter, and 2
x ij
σ is the variance of the jth 
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measurement parameter for the ith observation.   The denominator of (2.6) is simply the 

combined standard uncertainty in the ith observation (
yicu ) assuming: no systematic bias 

in the stated values of the measurement parameters, a normal distribution in the actual 

values of the measurement parameters about the stated value, and no covariance between 

the measurement parameters.  A more complicated situation (such as including 

covariance between the measurement parameters) might be considered by using standard 

techniques to separately determining the combined standard uncertainty of each 

observation126, and then, without any further consideration as to how these uncertainties 

were determined,  continuing with the procedure described in the subsequent text to 

determine the uncertainties in the model parameters.    

The objective function can be optimized by setting its partial derivatives with respect 

to each of the model parameters to zero125.  By substituting (2.4) into (2.5) and taking the 

partial derivative, for each measurement parameter 

 [ ]
1 1

( , )S
2 2 ( , ) 0

N N
ii

i i i i i
m m mi i

fr
w r w y f

a a a

δδ δ

δ δ δ= =
= = − − =∑ ∑ x a

x a  (2.7) 

 
so that the objective function is optimized when  

 
1 1

( , ) ( , )
( , )

N N
i i

i i i i
m mi i

f f
w y w f

a a

δ δ

δ δ= =
=∑ ∑x a x a

x a  (2.8) 

 
If α  is the value of awhen the objective function is optimized, then αααα represents the 

best estimates of the true values of the model parameters.  However, since the optimum 

value of the objective function depends on the values of the measurement parameters (xi) 

and the observations (yi), each with their own uncertainty, there will an uncertainty in 

αααα given by127 
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 ( )
k k ku aα α≡ −  (2.9) 

 
Near the optimum value point ( , )if x a can be expanded in a first order Taylor series 

expansion about α such that 

 ( )
α

α
1

( , )
( , ) ( , )

M
i

i i k k
kk

f
f f aα

δα=

∂
= + −∑ x

x a x  (2.10) 

Substituting (2.10) into (2.8) and assuming that α( , ) ( , )i m i mf a fδ δ δα→ ∂x a x near α=a  

 ( )
α

α
1 1 1 1

( , ) ( , ) ( , ) ( , )
( , )

N N N M
i i i i

i i i i i k k
m m k mi i i k

f f f f
w y w f w a

a

δ δ δ
α

δ δα δα δα= = = =

∂
= + −∑ ∑ ∑∑x a x a x x a

x  (2.11) 

In matrix form this equation becomes 

 

 WJY = WJE + WCD  (2.12) 

where  

 
1

N

y

y

 
 
 =  
 
  

Y ⋮  (2.13) 

is a vector containing the values of the observations,  

 
1w 0

0 wN

 
 
 =  
 
 
 

w ⋱  (2.14) 

is a diagonal matrix of weighting factors for each data point,  

 
 

 

1 1

1

1

( , ) ( , )

( , ) ( , )

M

N N

M

f f

a a

f f

a a

 ∂ ∂ 
 ∂ ∂ 
 =  
 
∂ ∂ 
 ∂ ∂  

x a x a

J

x a x a

⋯
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⋯

 (2.15) 
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is an N M×  Jacobian matrix  relating the modeled values to the model parameters, 

 
( , )

( , )

i

N

f x

f x

α

α

 
 
 

=  
 
 
  

E ⋮  (2.16) 

 
is vector containing the values of the model using the best estimates for the model 

parameters,  

 

2 2

2
11

2 2

2
1

M

M M

f f

f f

α αα

α α α

 ∂ ∂ 
 ∂ ∂∂ 
 =  
 
 ∂ ∂ 
 ∂ ∂ ∂ 

C

⋯

⋮ ⋱ ⋮

⋯

 (2.17) 

 
is the curvature (Hessian) matrix, for the objective function and  

 
( )

( )

1 1

M M

a

a

α

α

 − 
 =  
 
 −  

D ⋮  (2.18) 

 
is a vector containing uncertainties in the best estimates of the model parameters.  Once 

the optimum values of the model parameters have been calculated, equation (2.12) can be 

used to relate the uncertainties in the in the model parameters ( ( )
α α= − =u a D ) to the 

uncertainties in the measurement parameters and the uncertainties in the observations.  Y 

and W come from the measurement.  Equation (2.10) can be used to estimate the values 

of the model parameters (E).  However, the elements of J and of C must be determined 

from knowledge of the behavior of the model around the optimum values.   The goal in 

Chapter 4 is to find a computationally efficient method for determining the elements of J 

and C that are related  to edge roughness. 
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2.3. Edge Roughness 

As critical dimensions (CD) decrease, line edge roughness (LER) and line width 

roughness (LWR), are becoming increasingly significant in determining device 

parameters57,58,128.    Edge roughness and disorder can also significantly affect the band 

structure of photonic crystals52-55,129,130.   While some authors have suggested techniques 

for designing photonic crystal structures that are less sensitive to these effects131, edge 

roughness remains a primary concern in realizing the potential of photonic crystal 

devices53,132.  

There are a variety of descriptors that can be used to characterize LER/LWR133, 

including correlation length (ξ), the autocorrelation function (ACF), the height-height 

correlation function (G), the power spectral density (PSD), and various fractal descriptors 

such as the roughness exponent (α)134.  One of the simplest and most common descriptors 

for line edge roughness is the root mean square (rms) deviation (σ) from the average line 

position ( x ).  

 ( )2

1

1
N

i
i

x x
N

σ
=

= −∑  (2.19) 

 

where the location of the ith point along the edge is given by coordinates { },i ix y  and N is 

the number of points in the sample135.    

Another useful descriptor is the correlation length ( ξ ).  The correlation length is 

defined as the distance over which the auto-correlation function (ACF) is greater than or 

equal to 1/e .  For a discreet set of data, the autocorrelation function can be estimated 

using: 



 
 25 

 ( )( )
2

1

1
( )

( )

N m

i m i
i

ACF y x x x x
N m σ

−

+
=

∆ = − −
− ∑  (2.20) 

While complex, model based descriptions of edge roughness have been developed136,  

self-affine structures have been used to describe rough surfaces137 and some authors have 

suggested that they also provide adequate descriptors for LER/LWR profiles133.  A self-

affine function has an autocorrelation function (ACF ) of the form: 

 

2

( )

y

ACF y e

α

ξ

∆ −   ∆ =  (2.21) 

where ρ is the distance between two points along the nominal edge, ξ  is the linear 

correlation length of the rough edge, and α is called the roughness exponent.  The 

roughness exponent, also referred to as the Hurst exponent, is related to the fractal 

dimension of the edge and it can be used to describe the relative amount of high 

frequency content in the power spectrum (Figure 6)137.  Profiles with a Gaussian 

autocorrelation functions have roughness exponent of one while profiles with exponential 

autocorrelation functions have relatively more high frequency content and a roughness 

exponent of one-half.    
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Figure 6  (a) The autocorrelation functions, and (b) the power spectral density of self-
affine roughness profiles with exponential (α = 0.5) (dashed line) and Gaussian (α = 1.0) 
(solid line) autocorrelation functions.  The power spectrum shows the relative increase in 
high spatial frequency content for the profile with the exponential autocorrelation 
function.   

 

Figure 7 shows four examples of line edge profiles with different correlation lengths 

and roughness exponents.   Various process steps used to lithographically fabricate 

gratings are thought to create edge profiles with different correlation length and 

roughness exponents, and some processes, such as reactive ion etching may introduce 

some directionality to the roughness138.   
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Figure 7 Examples of the two-dimensional grating profiles created to have various 
correlation lengths (ξ) and roughness exponents (α) 

 

As with surface roughness measurements139, roughness measurements are sensitive to 

the scan length (area) of the measurement and the correlation length (function) of the 

roughness.  The Metrology section of the 2007 International Technology Roadmap for 

Semiconductors118 recommends that the “LER/LWR metric is thus defined as the 3σ of 

the residuals measures along a 2 µm line for the present; however, transistor performance 

could be more sensitive against in-gate roughness in the future”  This dependence is of 

particular concern for comparing scatterometry measurements with other techniques 

since the scatterometry measurements inherently average values over the entire 

measurement area.  However, Constantoudis et. al. have concluded through extensive 

numerical simulations that the calculated value of the rms deviation tends to 

asymptotically approach a fixed value as the edge length approaches ten times the 

correlation length of the roughness133.   
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There is currently no similar agreed upon metric for quantifying the deviation of the 

edge of a lithographically produced hole.  However, Lee et. al.140 have proposed a 

definition of contact edge roughness (CER)   

 
[ ]2
1

( )

3

n

i
i

r r

CER
n

θ
=

−
=
∑

 (2.22) 

where r(θi) is the radius of the circle at angle θi, r is one-half of the CD (the mean radius 

of the circle), and n is the number of samples.  

Many factors throughout the fabrication process may contribute to edge roughness.   

For conventional photolithographic based processes, diffusion of the photo-active 

generator (PAG) during the post-bake process has been studied extensively141, 142.  The 

dry etch process can also contribute to LER138.  Interference lithography techniques are 

particularly susceptible LER143.  The actual nature of LER/LWR is a topic that is under 

active investigation144.  Some processes may produce an isotropic roughness while 

others, such as plasma assisted etch processes, may introduce directionality to the 

roughness145.   Work in this dissertation only examines the effect of an anisotropically 

rough edges on the scattering from sub-wavelength gratings.  Calculating the reflectance 

from the three-dimensionally periodic gratings that are needed to simulate isotropic edge 

roughness would not have been practical and insight into the limits of the approximation 

methods can be gained using the two-dimensional LER models.   

At one level, it is straightforward to determine roughness statistics from direct 

analysis of profile data obtained by SEM and AFM140,146-154.   However, for top-down 

SEM measurements, the image quality can have a significant effect on the measured edge 

roughness.  For example, Nelson et. al. were able to obtain estimates of rms edge 
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roughness of 3 nm (1σ) for an poorly stigmatized image and an estimate of 23 nm (1σ) 

for an image with correct stigmation150.  AFM measurements are extremely time 

consuming and often require special instruments and tooling154.   

Petit and Boher have used Fourier transform scatterometry to look at out of plane 

scattering from edge roughness 155.  Similar techniques for measuring edge roughness 

using Coblentz spheres have been proposed by Bischoff et. al.156.  Germer has 

computationally examined the effect of edge roughness on optical scatterometry signals 

using a mean field approximation based on Monte Carlo simulations using one 

dimensional rigorous coupled wave analysis157.  All of these studies have used techniques 

that are limited to measuring roughness with correlation lengths that are greater than the 

wavelength of the probe light.    Since x-rays have a much smaller wavelength, CD-

SAXS has been examined as a method for measuring smaller correlation length 

roughness using higher order diffraction peaks96,158,159.  Even more exotic metrology 

techniques such as small angle neutron scattering have been proposed160. 

Edge roughness is potentially a significant source of uncertainty in optical 

scatterometry measurements161,162.  Brill has proposed a variety of methods that might be 

considered for measuring edge roughness using optical scatterometry163.  However, 

further investigation is needed to incorporate the methods and develop models for edge 

roughness that can be incorporated into practical scatterometry systems.  

For this study, initial investigations into the effect of edge roughness on optical 

scatterometry signals involved fabricating a set of artifacts with intentional edge 

roughness. The artifacts were created in silicon with e-beam lithography, using a Raith 

150 e-beam lithography system70, and etched into the silicon using reactive ion etching 
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with a STS Silicon Fast Etcher164.  A detailed description of the artifacts is included in 

Appendix C.  However, as detailed in Appendix D, measurements on these artifacts 

proved to be problematic and few conclusions can be made from the experimental data.  

These issues demonstrate the need for appropriate theoretical models of effects of line 

edge roughness on optical scatterometry signals. 

However, modeling optical scatterometry signals from gratings with edge roughness 

can quickly become very computationally expensive.   The remaining chapters examine 

how approximation methods might be applied to simplify these models and decrease 

computation expense of modeling edge roughness.  These approximation methods could 

make it practical to include edge roughness as a parameter in optical scatterometry 

models.  Once edge roughness is incorporated into the models the contribution of edge 

roughness to the uncertainty in other parameters can be evaluated as outlined in 

section 2.2. 



` 

 

 
 
 
 

CHAPTER 3: THEORY 
 

 
Optical scatterometry measurements rely on fitting some theoretical model to the 

measured data.  Rigorous coupled wave analysis (RCWA) has emerged as the 

predominant model used for optical scatterometry measurements on periodic structures.  

The effect of LER/LWR on optical scatterometry signals can be simulated using a 

rigorous coupled wave analysis for a biperiodic structure (2D RCWA).  However, the 

computational expense needed to model edge roughness in this way can be prohibitive.  

For example, if one retains ±10 orders in each of the two dimensions of the field 

expansions, the calculation is theoretically about 9000 times more computationally 

expensive than if one retained ±10 orders for one-dimensionally periodic structures (1D 

RCWA).  In practice, to calculate a set of forty-seven reflectivities (one for each of 

fourty-seven different incident angles) requires approximately one hour and forty minutes 

on Intel Xeon 2.40GHz dual core processor using the 2D RCWA while the calculation 

using the 1D RCWA took only 7.2 seconds on the same system.   An approximation that 

enables an estimate of the effects of LER, without requiring a full 2D RCWA simulation, 

would allow such effects to be accounted for in scatterometry measurements.  In this 

chapter, a plane wave expansion (PWE) method is derived which leads into a description 

of the RCWA algorithm.  Two approximation methods are also examined, the volume 

current perturbation theory and the generalized anisotropic Bruggeman effective medium 

approximation (ABEMA).  The volume current perturbation method has been used 
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previously to predict band edge shifts in photonic crystals caused by edge 

roughness130,165.  The generalized anisotropic Bruggeman effective medium theory has 

been used to model anisotropic thin film structures166.  In Chapter 4, the generalized 

anisotropic Bruggeman effective medium theory is used to model the effects of edge 

roughness on optical scatterometry signals.   

3.1. Rigorous Electromagnetic Modeling Techniques 

Methods for rigorously solving Maxwell’s equations in optical system can, in general, 

be divided into two categories167,168.  One set of methods uses Maxwell’s equations to 

calculate the fields at discrete points in the spatial domain, while the other set in some 

way calculates the properties of the fields in the spatial frequency domain.   

In the former, the field is propagated through the system by solving Maxwell’s 

equations at each point, given the solutions at nearby points.  These methods include 

finite element  methods (FEM) and the Finite Difference Time Domain (FDTD) and 

Finite Difference Frequency Domain (FDFD) methods169, 170.  They are straightforward 

and have found wide application in software for designing photonic crystal devices and 

other complex optical structures.  However, the computational expense of these models 

tends to scale inversely with the grid spacing needed to approximate the profile.   

The second category of methods involves calculating the spatial frequencies of the 

electromagnetic fields.  The details of the computation vary among the different 

techniques, however, in general they all in some way: 

1. Form an expression for the electric or magnetic field in each region of 

interest. 

2. Apply the electromagnetic boundary conditions across regions. 



 
 33 

3. Solve the resulting set of linear equations. 

This category includes a number of related methods, including modal methods 

(MM)171-174, the transfer matrix (T-Matrix) method175, the scattering matrix (S-Matrix) 

method176-180, rigorous coupled wave analysis (RCWA)181-185, and the plane wave 

expansion (PWE) method168,186,187.    

3.1.1. Plane Wave Expansion (PWE) Method 

The plane wave expansion (PWE) method is a computational method for determining 

the band structure of a material with a periodically perturbed permittivity profile by 

solving for the eigen-modes of the system at various spatial frequencies (k-vectors).   

The relationships between the electric and magnetic fields are rigorously described by 

Maxwell’s equations188.  In cgs (centimeter, gram, second) units  

 4πρ∇ =Di  (3.1) 

 
1 4

c t c

π∂
∇× = +

∂
D

H J  (3.2) 
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c t

∂
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∂
B
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 0∇ =Bi  (3.4) 

 

where D is the electric displacement field, ρ is the free electric charge density, H is the 

magnetic field, c is the speed of light in vacuum, J is the free current density, E is the 

electric field, and B is the magnetic induction.   The constitutive equations relate the 

electric field to the electric displacement and the magnetic field to the magnetic induction 

in a linear, isotropic material through 

 ε=D E  (3.5) 
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and 

 µ=B H  (3.6) 

where 0eε χ ε= (1 + ) is the electric permittivity of the medium, given its electric 

susceptibility (χe) and the permittivity of free space (ε0), and 0mµ χ µ= (1 + ) is the 

magnetic permeability of the medium, given the magnetic susceptibility (χm) and the 

permeability of free space (µ0).  Most problems related to optics involve materials that 

can be considered non-magnetic.  Therefore, for optical systems 1µ = (in cgs units) so 

that =B H .   

The Bloch (Floquet) theorem states that33 

The eigenfunctions of the wave equation for a periodic potential are 

the product of a plane wave ie k ri times a function ( )ku r with the periodicity 

of the crystal lattice. 

 

 ( ) ( ) i
k ku eΨ = k r
r r

i
 (3.7) 

This implies that, given a periodic dielectric permittivity function ( ε ), the electric and 

magnetic fields may be decomposed into a set of plane-wave solutions186.  For time 

periodic fields, each of these solutions may be expressed as   

 0
i te ω−=E E  (3.8) 

 0
i te ω−=H H  (3.9) 

with time derivatives 

 0
i td

i e i
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E
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Substituting equation (3.11) into equation (3.2) and equation (3.3), using equation 

(3.5) and equation (3.6) to eliminate B and D, and assuming for the moment that 

0=J (and 1µ = ) 
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ε ε
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∇× = = −
∂
E

H E  (3.12) 

and   
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∂
H

E H  (3.13) 

Solving equation (3.13) for H and substituting into equation (3.12) results in an linear 

operator eigenvalue problem 

 ( )
21

c

ω

ε
∇×∇× =E E  (3.14) 

with a linear eigen-operator 1ε∇×∇× and eigenvalues ( )2cω .   Solving equation (3.12) 

for E and substituting into equation (3.13) results in a similar eigenvalue equation in H 

 ( ) Η
21

c

ω

ε
∇× ∇× =H  (3.15) 

For lossless systems, ε is real and equations (3.14) and (3.15) are Hermetian eigen-

problems that have real eigenvalues and a complete, orthogonal sets of eigen-states189. 

Since in deriving equation (3.14) and equation (3.15) the permittivity profile (ε) was 

assumed to be periodic, it can be expanded in terms of some complete periodic basis set, 

such as a Fourier series, such that 

 ( )( ) ( ) i

G

e
λ

ε ε=∑ G r
r G

i  (3.16) 

where r is a vector representing the spatial position and G is the corresponding vector in 

reciprocal space.   
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Figure 8. Definition of variables used to describe a Bloch wave. 

Referring to Figure 8, the reflected k-vector (k’) can be related to the incident wave-

vector (k) through 

 ' ( )= +k k G  (3.17) 

Using equation (3.7), the electric and magnetic fields can be expressed as  
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and 
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λ
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 (3.19) 

where eλ is the unit vector representing the polarization direction and eGλ and hGλ are the 

Bloch modes of the system.  Equations (3.14) and (3.15) can be solved for the 

characteristic frequencies (eigenvalues) of each of these Bloch modes (eigenvectors).  

The dispersion diagram (band-diagram) is created by plotting these characteristic 

frequencies as a function of the incident wave-vectors (Figure 9). 
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(a) (b)(a) (b)  
Figure 9. a)  The index profile for one period of a simple lamellar grating and b)  the 
dispersion diagram for the grating calculated using the PWE method.  The dashed lines 
are for the homogeneous low index medium and the solid lines are for the periodic 
structure. 

A flowchart of an implementation of the plane wave expansion method is shown shown 

in Figure 10.   
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Figure 10. Flowchart describing an algorithm for implementing the plane wave expansion 
(PWE) method for calculating the dispersion of a periodic medium.   
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3.1.2. Rigorous Coupled Wave Analysis (RCWA) 

In homogeneous media, the permittivity values ( ε ) are constant and equation (3.14) 

reduces to the Helmholtz equations  

 

 ( )2 2 0k∇ − =E  (3.20) 

 
where 02k nπ λ= , n is the generally complex index of refraction of the medium and 0λ is 

the free space wavelength of the field.  Equation (3.20) has particular solutions of the 

form  

 
( )x y zi k x k y k zAe + +=E  (3.21) 

where [ ], ,x y zk k k are the components of a wave vector perpendicular to a plane wavefront 

and A is a proportionality constant determined by the boundary conditions of the 

problem.  The general solution is then 

 
( ) ( )( , , ) x y z x y zm m m m m mi k x k y k z i k x k y k z

m n
m n

x y z A e B e
∞ ∞

+ + + −

=−∞ =−∞
= +∑ ∑E  (3.22) 

 
Equation (3.22) is the Rayleigh expansion190 for the total field within the 

homogeneous region.  It is the sum of forward propagating and evanescent components 

and backward propagating and evanescent components (Figure 11).   
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Figure 11. Definition of terms used in the description of RCWA 

In an isotropic, homogeneous media, the relationship between the terms in the 

Rayleigh expansion remains fixed. However, a change in the permittivity will cause a 

mixing between the components191.  For example, if a forward propagating plane wave 

traverses the boundary between a low index medium and a higher index medium, some of 

the energy in the forward propagating wave will be coupled into a backward propagating 

(i.e. reflected) wave.  For the homogeneous media it is relatively straightforward to 

calculate the fraction of the ratio of the incident and reflected fields192.    

The situation is somewhat more complex if one or more of the layers has a 

periodically perturbed permittivity profile.  RCWA is a computational method used to 

relate the spatial frequencies (Fourier components) of reflected and transmitted fields to 

the incident field by calculating the coupling strengths between incident and reflected 

fields in a material with a periodically perturbed permittivity profile and matching the 

boundary conditions at the interfaces.   
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As with homogeneous thin films192, the incident, and diffracted fields can be related 

to each other using a transfer matrix (T).  However, the transfer matrix must account for 

all modes that are supported by the periodic structure. 
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where 0a  are the Rayleigh coefficients for the forward propagating (and/or evanescent) 

incident waves, 0b  are the Rayleigh coefficients for the backward propagating (and/or 

evanescent) diffracted waves in the incident medium (the “reflected” diffraction orders), 

Na  is a vector representing the Rayleigh coefficients for the forward propagating 

(transmitted) diffraction orders, and Nb is a vector representing the Rayleigh coefficients 

for the backward propagating orders in the transmitted medium (this term is usually 

considered to be zero).  Unfortunately, this formulation of the problem is susceptible to 

numerical instabilities due to exponentially growing terms in the propagation matrices for 

optically thick gratings193.  This problem was solved by rearranging the terms in (3.23) so 

that the incident components of the field ( 0a  and Nb ) are related to the reflected and 

transmitted components ( Na  and 0b ) through a scattering matrix (S ) 
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In Chapter 4, the specular reflectance functions of a rough periodic grating are 

calculated using RCW algorithms as described by Moharam et al. 183,184 with a 

modification proposed by Lelanne and Morris185 and Li194 and extended to two 

dimensionally periodic structures by Li173.    The software that was used for the 1D 

RCWA simulations is available online195 while the software used for the 2D RCWA 

simulations will be made available to the general public in a future release of the 

software.   Examples of the script language used to control the software are included in 

Appendix E.   

3.2. Volume Current Perturbation Theory  

In deriving the equations for the plane wave expansion method, it was assumed that 

there were no current sources in the system.  A more general solution can be derived if 

the free current term is considered, so that equation (3.12) becomes  
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Substituting (3.10) into (3.25) 
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and, solving for the electric field 
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Using the relationship in equation (3.11) and substituting equation (3.27) into equation 

(3.13) then gives 
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So that, finally 

 ( )
ε

24

c

π ω

ε
∇× ∇× − ∇× =
1

H J H  (3.29) 

where J is the current density.  Perturbation methods can be used to calculate a shift in 

the characteristic frequencies (eigen-frequencies) of a system due to small changes in the 

operator196.  Equation (3.29)is of the form 

 λx + b =  xA  (3.30) 

Therefore, a perturbation (b) on the original eigenvalue problem ( λx =  x A ) can be 

thought of as the addition of a field due to a current J.  For a shifting dielectric boundary, 

J is proportional to ∆εE, where E is the electric field in the unperturbed system and ∆ε is 

a small change in the permittivity130. 

If the eigenvalue equation for the unperturbed system is represented by 

λx x=A where λλλλ are the eigenvalues and x  are the associated eigenvectors of the 

unperturbed system, then the perturbed system can be represented by196 

 y d b zyα+ ⋅ =A  (3.31) 

where y are the eigenvectors and z are the eigenvalues of the perturbed system and dα is 

a parameter equal to some small perturbation factor. If the perturbation is small then the 

change in the eigenvalues and associated eigenvectors are also expected to be small. 

Expanding the y and z terms in equation (3.31) in powers of dα  

 
(0) (1) 2 (2)y x d x d xα α= + + …  (3.32) 

and  
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(0) (1) 2 (2)z d dλ αλ α λ= + + …  (3.33) 

 

where λ(n) and x(n) are the n-th order perturbation terms for the eigenvalues and associated 

eigenvectors. Note that λ(0) and x(0) are simply the eigenvalues and eigenvectors for the 

unperturbed system.  Substituting equations (3.32) and (3.33) into equation(3.31), 

neglecting higher order terms in dα, and equating like powers of dα,  

 λ(0) (0) (0)x x=A  (3.34) 

 λ λ(1) (0) (1) (1) (0)x b x x+ = +A  (3.35) 

     

Note that equation (3.34) is simply the equation for the unperturbed system. Rearranging 

the terms in equation (3.35) gives 

 ( )λ λ(0) (1) (1) (0)x x b− = −A  (3.36) 

    

 Since A is Hermitian, x(0)† A=x(0) †λ(0) where x(0) † is the complex conjugate transpose 

of x(0). Therefore, x(0)†(A - λ(0)) = 0. By multiplying equation (3.36) by x(0) † the left hand 

side can be eliminated. Then, solving for the first order perturbation of the eigenvalue 

 λ

†

†

(0)
(1)

(0) (0)

x b

x x
=  (3.37) 

      

Applying equation (3.37) to equation (3.33), comparing with equation (3.29), and 

dividing both sides by dα, we obtain 
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ε

†

†

(0) (0)
(0)

(0) (0)2

d
d d
d

ε
ω ω α
α
= −

E E

E E
 (3.38) 

 

where dω/dα is the sensitivity of the system to the perturbation factor at a particular 

eigen-frequency (ω(0)) with an associated eigenvector E(0), dε/dα is the rate of shift in the 

permittivity profile with α, and ε is the permittivity profile of the unperturbed system. 

The system is most sensitive to dα when dα/dω is large. The denominator in equation 

(3.38) can be viewed as the total energy in the unperturbed mode, while the numerator is 

the rate of change in the energy in the mode with respect to the perturbation.  Ideally, the 

system would be operated where it is least sensitive to the perturbation, but measured 

where it is most sensitive. 

hhh

 

Figure 12. Illustration of a perturbation to the system by shifting the dielectric boundary 

 Johnson et. al.197 have derived an expression for the change in the energy of the 

modes in terms of a shift in the dielectric boundary  (dh/dα) (Figure 12). 
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ε

α α
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⊥
 = −  ∫E E D  (3.39) 

 

where ∆ε12 and ∆(ε-112) are the differences in the permittivity and in the inverse 

permittivity E(0)
|| is the component of the unperturbed electric field that is parallel to the 

boundary, and D(0)
┴ is the component of the electric displacement perpendicular to the 

boundary. Since the normal component of the electric field is discontinuous at the 

boundary, care must be taken in calculating D┴
(0) 198.  This problem can be solved by 

calculating D┴
(0) from E┴

(0)
 using  

 ε
(0) (0)
⊥ ⊥=D Eɶ  (3.40) 

where 

 ε ε( ) ( )sg x x x dx− −′ ′ ′= −∫1 1ɶ  (3.41) 

   

Equation (3.41) is the convolution of the inverse of the permittivity profile with some 

smoothing function.  A cosine squared function, truncated at ±π radians,  satisfies the 

requirements for the smoothing function specified by Johnson et al.197 and has a slope 

that approaches zero at the edge of the filter.   A flowchart for one possible 

implementation the volume current perturbation method using the plane wave expansion 

method is shown in Figure 13. 
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Figure 13. Flow chart of the algorithm used to calculate the perturbation in the band 
diagram due to shifts in the dielectric boundaries. 
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There is significant initial computational overhead associated with the perturbation 

method due to the need to calculate the electric field and the electric displacement for 

each of the plane wave components in the unperturbed system.  However, once the fields 

for the unperturbed system have been calculated, new perturbations can be quickly 

assessed by simple addition, subtraction, and scalar multiplication operations.  Care must 

also be taken because the results are only valid for small perturbations from the nominal 

structure. The validity of the method should be confirmed on a case by case basis by 

comparing representative perturbations with other methods. The validity may be 

extended by including higher order terms in equation (3.32) and equation(3.33).   

Since the eigenvalue problem for the RCWA algorithm is similar to the eigenvalue 

problem for the PWE method, a similar approximation technique might be possible for 

calculating new solutions for slightly different RCWA problems.  For example, the 

reflectance for a slightly rough grating might be calculated from the solutions for the 

nominal grating without solving the 2D RCWA problem.  However, more work is needed 

to develop an appropriate volume current perturbation method for RCWA algorithms. 

3.3. Effective Medium Approximations 

Effective medium approximations have already been mentioned in section 1.1 in 

relationship to subwavelength diffractive optical elements.  In much of the literature on 

sub-wavelength diffractive optical elements 17 equations (1.1) and (1.2) are correctly 

referred to as effective medium approximations (EMA).  However, in this dissertation 

these equations will be referred to as the form birefringence effective medium 

approximation (FBEMA) to distinguish them from the effective medium approximations 

derived directly from the classic formalism attributed to Maxwell Garnett199, 200.  In 
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section 3.3.3 the FBEMA equations are shown to be a special case of the generalized 

anisotropic Bruggman effective medium approximation (ABEMA).   The ABEMA is 

used to model the effect of edge roughness on optical scatterometry signals in Chapter 4. 

3.3.1. Form Birefringence Approximations 

An anisotropic effective medium approximation for modeling sub-wavelength 

lamellar gratings can be derived by considering the continuity of the electric field within 

“a regular assembly of parallel plates” as described in Born and Wolf119(Figure 14).  If 

the distance between the plates (i.e. period of the grating) is much less than the 

wavelength of the incident light, and the lateral extent of the plates (depth of the grating) 

is large compared to the wavelength, then the field within the grating region can be 

considered to be uniform.  The electric displacement normal to the interface between the 

high and low index region within the grating (D⊥ ) must then be continuous so that 

t0 t1

x

z

y

D┴

E║

ε0
ε1

t0 t1

x

z

y

x

z

y

D┴

E║
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Figure 14. Definition of variables used in the calculation of the form birefringence of a 
"regular assembly of parallel plates" as described by Born and Wolf119. 
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 1 1 0 0D E Eε ε
⊥ ⊥⊥ = =  (3.42) 

 

where 1ε  and 0ε  are the permimitivities of the high index and low index regions of the 

grating, respectively, and 1⊥E and 0⊥E are the components of the electric field 

perpendicular to the interface within each material.  Therefore, the mean electric field 

perpendicular to the interface ( ⊥E ) is  

 
0 1

0 0 1 1 0 1

0 1 0 1

D D
t t

t E t E D
E

t t t t

ε ε

ε
⊥ ⊥

⊥ ⊥

⊥
⊥

⊥

++
= = =

+ +  (3.43) 

 

where  0t  is the thickness of the high index region and 1t is the thickness of the low index 

region.  The effective inverse permittivity for the field perpendicular to the grating profile 

is  

 ( )0 1

0 1 0 0 1 1 0 1

1 1 1 1 1
1

t tE f fD t t t tε ε ε ε ε
⊥

⊥⊥

                 = = + = − +                         + +
 (3.44) 

 

where 1 0 1( )f t t t= + is the fraction of grating period occupied by the high index material.  

Equation (3.44) is just the harmonic average of the high index and low index regions.  

Similarly, if we consider the component of the electric field that is tangential to the 

interface (E� ), then  

 
1 0

1 0

D D
E

ε ε
= =� �

�  (3.45) 

so that the mean electric displacement parallel to the interface ( D� ) is  

 



 
 51 

 
0 0 1 1

0 1

t E t E
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ε ε
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+
� �
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and the effective permittivity for the field parallel to the interface is simply the geometric 

average of the high index and low index regions 

 

 ( ) 0 11 f fε ε ε= − +�  (3.47) 

 

These results are equivalent to the results obtained by Yariv and Yeh201 by neglecting 

higher order terms in a series expansion of the dispersion relationship of Bloch waves in 

periodic media as explained qualitatively in section 1.1 and calculated using the PWE 

method in section 3.1.1.   These results are also equivalent to the results obtained by 

Southwell43 in analogy to the dispersion relationship for periodic thin films, and by 

Rytov202 in considering an approximation for multiple scattering in stratified media. 

3.3.2. Maxwell Garnett Effective Medium Approximation 

Classical effective medium approximations199,200,203 are derived based on the 

assumption that the effective medium can be modeled as inclusions distributed in a 

homogeneous host medium.  If these inclusions are small in comparison with the 

wavelength of the incident field then the field can be considered to be uniform over the 

extent of the inclusion.  The polarizability (α) of a homogeneous, spherical inclusion, 

with permittivity ε, in an otherwise homogeneous dielectric medium, with permittivity εh, 

in the presence of a uniform field and in the absence of free charge is188 

 3
2
h

h
h

V
ε ε

α ε
ε ε

−
=

+  (3.48) 
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where V is the volume of the spherical inclusion.  In the presence of a uniform field (E0), 

the spherical inclusion acts as an induced electric dipole with a dipole moment (p) having 

a magnitude 

 
1 3

0
1

( )

( 2 )
h

h

p E a
ε ε

ε ε

−
= −

+  (3.49) 

 

oriented in a direction as to oppose to the applied field.  In the absence of dipole-dipole 

interactions, Maxwell Garnett showed that the relationship between the effective 

permittivity of materials made up of sparsely distributed spherical inclusions is of the 

form200 

 
12 2

N
eff h i h

i
eff h i hi

f
ε ε ε ε

ε ε ε ε=

− −
=

+ +∑  (3.50) 

 

where effε is the effective permittivity,  hε is the permittivity of the host medium, iε is the 

permittivity of the i
th constituent material, and if is the volume fraction of the i

th 

constituent material.  This equation assumes that the volume fraction of the inclusions are 

small and gives divergent answers for the effective permittivity in the case of near equal 

volume fractions when the role of the host and inclusion material are interchanged.  Since 

this formulation does not account for interactions between dipoles (or higher order multi-

poles), its accuracy is limited to cases where the distribution of the inclusions is sparse.  

For example, the plot in Figure 15 shows the effective permittivity calculated for a 

vacuum/silicon mixture as a function for the volume fraction of silicon using either 
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silicon or vacuum as the host material.  It is clear from this graph that the choice of host 

material makes a difference in the results and that these results differ significantly when 

the volume fill fractions are nearly equal.  
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Figure 15. Plot of the effective permittivity calculated for an air/silicon mixture using the 
Maxwell-Garnett formula with either the high-index material (dashed line) or the low 
index material (solid line) as the host material, showing the inconsistencies in the 
calculation. 

3.3.3.  Bruggeman Effective Medium Approximation 

Bruggeman corrected this problem by making the assumption that the host medium is 

the effective medium203-205, so that, for a two component mixture, the formula for the 

effective permittivity becomes 
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This relationship leads to a quadratic equation that can be solved for the effective 

permittivity. 
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 (3.52) 

 

It can also be shown that the form birefringence approximations in equations (3.44) 

and (3.47) are equivalent to the Bruggeman approximation in the case of elliptical 

inclusions.  For the spherical inclusion, the solution to the Laplace equation was aided by 

the spherical symmetry of the problem.  For more arbitrary shapes, a closed-form 

solution is not generally possible.  Sihvola and other have calculated the polarizability of 

several classes of shapes by solving the integral equation formulation for the static 

potential using the Method of Moments (MoM)206,207.   However, for permittivity 

contrasts of less than an order of magnitude, the permittivity of an arbitrary shape can be 

closely approximated by that of an ellipsoid with similar aspect ratios208.  The 

polarizability for an ellipsoid along the ith axis is given by208-210 

 
1 0

, 0
1 0 1 0

3
( )N i
i

V
L

ε ε
α ε

ε ε ε ε

−
=

+ −  (3.53) 

 
where iL , the depolarization factor along the ith axis can be determined by solving  
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where , ,i j ka a a are the lengths of the semi-axes of the ellipsoid.   
 
   For a sphere:   1 3x y zL L L= = =  
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Using equation (3.53), equation (3.50) can be recast in terms of the polarizability of a 

non-spherical inclusion such that along the ith axis 
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This is consistent with the results obtained by Stroud in relation to the conductivity of 

non-spherical particles211 and with the more general solutions in terms of polarization 

dyadics obtained by Makay166.   

With some algebra, equation (3.55) can be arranged in terms of effε   

 
[ ]
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i eff

i i i eff i

L f f

f L L f L L L f f

ε
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− + +

− − + − − + + = (3.56) 

 

In the limit of a thin disk this generalized anisotropic Bruggeman EMA (ABEMA) 

reduces to the FBEMA.  The regular assembly of parallel plates in Figure 14 can be 
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approximated by an array of thin disks oriented such that 1xL =  and 0y zL L= = .   For 

the electric field component oriented in the y-direction or the z-direction  

 
2

0 1 0 0 1 1( ) ( )eff efff f f fε ε ε ε+ = + , (3.57) 

so that when 0 1 1f f+ =  
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which agrees with equation (3.47).  For the component of the electric field in the  x-

direction  
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so that when 0 1 1f f+ =  
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which agrees with equation (3.44). 

For an array of thin needles oriented with their long axis in the z-direction, 

1 2x yL L= =  and 0zL = .  The effective permittivity direction will again be given by 

equation (3.57) while the effective permittivity in the x and y-directions will be given by 

solving the quadratic equation 
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In chapter 4 it will be shown that a model based on a generalized ABEMA can 

provide a computationally efficient method for modeling the effects of LER in 

scatterometry measurements.  A MATLAB™ m-file for calculating the effective index 

values using the ABEMA is included in Appendix F. 



` 

  
 

 
 
 
 

CHAPTER 4: NUMERICAL RESULTS 
 
 

Line edge roughness (LER) has been identified as a potentially significant source of 

uncertainty for optical scatterometry measurements161. While  witness gratings that are 

measured using optical scatterometry are typically one-dimensionally periodic (at least at 

the moment), roughness tends to break the transverse symmetry of the system and 

imposes an inherently three-dimensional nature to the problem.  The computational 

resources needed to numerically model these systems can increase quickly as more 

Fourier coefficients (or smaller grid sizes) are needed for the solutions to converge. An 

approximation technique which restores the problem to a one-dimensionally periodic 

system would reduce the computational expense of adding LER to optical scatterometry 

models.   

In this chapter, scatterometry signatures from a randomly rough periodic grating were 

calculated using a 2D RCWA algorithm and compared with the results from a 1D RCWA 

model that replaced the roughness by an effective medium layer (Figure 16).   
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Figure 16 Examples of the index profiles within a one period by one period cell used in 
the simulations.  The figures show (a) the nominal profile, (b) a 2D periodic profile used 
to directly calculate the effect of LER using a 2D RCW algorithm, and (c) a 1D periodic 
profile used to approximate the effect of the LER with an effective medium layer.  
Profiles with a large peak to valley roughness are shown for clarity.  Much smaller 
roughness amplitudes were used in the simulations.  The dark areas correspond to areas 
containing the grating material, the gray area corresponds to the effective medium layer, 
and the light areas correspond to areas containing the fill material.     

 
The comparisons between the models are based on a nominal unperturbed silicon 

grating with vertical sidewalls, a period of Px = 200 nm, a linewidth of w = 100 nm, and a 

height of h = 200 nm. The structure of the nominal grating is illustrated in Figure 16(a).   

Roughness was simulated by perturbing the edges of the grating as shown in Figure 

16(b).  The sides of the line were modulated independently, corresponding to 

uncorrelated LER.   The 2D RCW algorithm must be used to model this structure.  For 

the EMA models, the modulated regions of Figure 16(b) are replaced by uniform 

effective medium layers illustrated in Figure 16(c). This structure can be modeled with a 

1D RCW algorithm, yielding a significant savings in computational expense.   
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4.1. Rigorous Models of Gratings with LER 
 
The RCWA algorithm requires that the electric and magnetic fields are each 

expanded in a Floquet series.  The algorithm converges on an exact solution when the 

number of Floquet expansion orders (G) that are retained for the calculation approaches 

infinity.  However, the number of operations that are needed for the computation is 

proportional to G 
3 for the 1D RCW algorithm.  For the 2D RCW algorithm this increase 

to Gx 
3 for the grating direction and Gy

3 for th transverse direction, where Gx and Gy are 

the number of terms that are retained in each direction.  For the examples in this chapter, 

the expansions were truncated to ±10 orders in each dimension, corresponding to a total 

of 21 total orders for the one-dimensionally periodic gratings.  For the two-dimensionally 

periodic gratings the orders where truncated to ±10 orders in the direction along the 

grating vector and ±20 orders on the transverse direction, for a total of 841 orders.  By 

examining the relative change in the results of the 2D RCW calculation as more orders 

were added, the numerical error in the calculated reflectance due to the truncation of the 

Fourier series was estimated to be less than 0.005.   

Various roughness profiles with known statistics were created using the procedure 

outlined by Zhao et. al.137.  In summary, the procedure involves: 

1. Calculating the auto-correlation (ACF) function for the desired profile   

2. Using the Wiener-Khinchin theorem to calculate the power spectral 

density (PSD) of the profile. 

3. Multiplying the square root of the PSD by a random phase function.  

4. Taking the inverse Fourier transform to recover a random profile in the 

spatial domain with a known PSD. 
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This was the method used to create the profiles shown earlier in section 2.3.  A 

MATLAB™ m-file for generating self-affine profiles is included in Appendix F.  In 

practice, a separate realization of the roughness profile was generated for every change of 

variable in the input to the 2D RCWA algorithm (such as wavelength or angle of 

incidence).  An average of fifteen realizations was sufficient to obtain a reasonable 

convergence; the standard difference between the mean of fourteen iterations and the 

mean of fifteen iterations was an order of magnitude smaller than the numerical errors 

due to the truncation of the Fourier series.   

4.2. Effects of Roughness Parameters on the Scatterometry Signal 

Figure 17 shows the angle-resolved reflectance for the nominal grating probed with a 

wavelength of 633 nm as predicted by the 2D RCW calculations.  The grating is oriented 

such that the grating vector lies in the plane of incidence (classical mounting). The 

electric field for s-polarization (often called transverse-electric or TE polarization) and 

the magnetic field for p-polarization (often called transverse-magnetic or TM 

polarization) are normal to the grating vector and parallel to the lines.  Initial simulations 

confirmed that, even for large rms roughness values, the coupling between polarizations 

is less than 1 part in 106 for gratings in the classical mounting.  Therefore, for this 

analysis, the specular reflectance for each polarization is considered independently.  The 

reflectance differences are larger for some incident angles than for others, and for this 

particular example, the p-polarized reflectance is much less sensitive to the roughness 

than the s-polarized reflectance.   
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Figure 17 Angle resolved scattering signal (reflectance) from a silicon grating with a 
200nm pitch, 100 nm width, and 200 nm depth simulated for a 632.8 nm wavelength 
incident beam.  The curves are for the (□) s-polarization and (o) p-polarization 
reflectance from the nominal grating and for (x) s-polarization and (*) p-polarization for a 
grating with LER defined by σ = 2.5 nm, ξ = 20 nm, and α = 0.5.  For this particular 
example the change in the p-polarization due to the LER is small.   

 

Figure 18 shows the rms difference between the nominal grating and a grating with 

line width roughness as a function of the three roughness parameters described in 

section 2.3.  These graphs indicate that the change in the reflectance signal due to line 

width roughness is a function not only of the rms amplitude of the roughness, but also its 

correlation length and, to some extent, the relative frequency content of the roughness as 

expressed by the roughness exponent.  Therefore, it would not be reasonable to expect 

that a single effective medium approximation could perfectly model the line width 

roughness characterized by a range of roughness parameters using only the effective 

medium layer thickness (t) as a variable.    
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Figure 18 Graphs indicating the relative effects of variations in the rms amplitude (σ), 
correlation length (ξ), and roughness exponent (α) of the line width roughness on the 
angle resolved scattering signal from a silicon grating with a 200nm pitch, 100 nm width, 
and 200 nm depth simulated for a 632.8 nm wavelength incident beam.   For each graph 
the line width roughness is defined by (a) α = 0.5, ξ = 20 nm and various rms roughness 
amplitudes (σ) from 0.5 nm to 5 nm (b) σ = 2.5 nm, α = 0.5, and various correlation 
lengths (ξ) from 10 nm to 100 nm; (c)   σ = 2.5 nm, ξ = 20 nm, and various roughness 
exponents (α) from 0.1 to 1.    
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4.3. Optimization of ABEMA Parameters for a Specific Example 
 
First, an attempt was made to find a set of effective medium parameters that can be 

used to model the effects of LER predicted by the 2D RCW calculations for a specific set 

of roughness parameters and then generalize that model.   An examination of the 

literature on line width roughness133,134,136,138,212-214 indicates that typical values for the 

correlation length range between 5 nm and 30 nm, roughness exponents can range 

between 0.15 and 1, and typical rms roughness values are around 2.5 nm.  For a specific 

example we will examine the fit between different effective medium models and a 

grating with LER characterized by σ = 2.5 nm, ξ = 20 nm, and α = 0.5.  

The quality of the fit between the data calculated using the 2D RCW algorithm and 

the data calculated using a particular EMA model can be quantitatively expressed using 

an objective function (S)125.  For this case a weighting factor was chosen such that: 

 
( )

S

2

1
i i

N
EMA RCW

i

x x

N
=

−
=
∑

 (4.1) 

 

where N is the number of data points, EMA
ix is the ith data point calculated using the EMA 

model, and RCW
ix is the mean of the ith data point calculated using the 2D RCW algorithm.  

This is simply the root mean square difference between the two data sets.  The term in the 

numerator ( )
i i

EMA RCWx x− is referred to as the residual difference.  
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Figure 19 Residual difference between reflectance from the grating with LER defined by 
σ = 2.5 nm, ξ = 20 nm, α = 0.5 calculated using a 2D RCW algorithm and the reflectance 
calculated using a 1D RCW algorithm and (□)an ABEMA with (Lx,Ly,Lz) = (0,1,0), f = 
50 %, and t = 2σ; (o) an ABEMA with  (Lx,Ly,Lz) = (0.33,0.33,0.33), f = 50 %, and t = 
2σ (∆); an ABEMA with  (Lx,Ly,Lz) = (0.5,0.5,0), f = 50 %, and t = 2σ; and (*) an 
ABEMA with (Lx,Ly,Lz) = (0.7,0.3,0), f = 50 %, and t = 2σ for (a) s-polarization and (b) 
the p-polarization  The nominal grating has a pitch Px = 200 nm, width w = 100 nm, and 
height h = 200 nm. 
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The graphs in Figure 19 show these residual differences in the reflectance calculated 

using the 2D RCW algorithm applied to LER with σ = 2.5 nm, ξ = 20 nm, and α = 0.5 

and the reflectance calculated using a 1D RCW algorithm  and ABEMAs with different 

sets of parameters.  The effective index values used for the ABEMA were calculated 

using the MATLAB™ m-file in Appendix F.  For any particular combination of best fit 

depolarization factors there was a specific effective medium layer thickness that 

minimized the objective function.  Because of the computational efficiency gained by 

using the ABEMA model, it was possible to search through various EMA parameter sets 

for a combination of depolarization factors (Lx,Ly,Lz) and fill factors (f) that minimized 

the objective function for any particular effective medium layer thickness (t).   For the 

sample case with a layer thickness of  2σ = 5.0 nm  and a LER characterized by σ = 2.5 

nm, ξ = 20 nm, and α = 0.5, the objective function had a minimum for (Lx,Ly,Lz) = (0. 

7,0.3, 0) and f = 50 %.    In addition: 

1. The fit for the p-polarization is relatively insensitive to changes in Lx and 

Ly while the fit for the s-polarization is very sensitive to changes in these 

parameters.   

2. The fit for the p-polarization is sensitive to changes in Lz while the fit for 

the s-polarization is dominated by changes in Lx and Ly. 

3. The best fit values for Lz depends on the fill factor. 

4. The best fit values of Lx and Ly depend on the correlation length (ξ) of the 

roughness (see Figure 20). 
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Figure 20 Best fit EMA parameters (◊) Lx, (■)Ly, (∆)Lz, and (x) fill factor as a function 
of (left hand column) correlation length (ξ);  (central column) roughness exponent (α), 
and (right hand column) rms roughness (σ) for the grating with LER defined by σ = 2.5 
nm, ξ = 20 nm,  and α = 0.5 calculated using a 2D RCW algorithm and the reflectance 
calculated using a 1D RCW algorithm and an EMA with fill factor f = 50 %, and (top 
row) effective medium layer thickness t = 1σ, (middle row) t = 2σ, and (bottom row) t = 
2.5σ.  The nominal grating has a pitch Px = 200 nm, width w = 100 nm, and height h = 
200 nm. The best fit parameters are determined by minimizing the root sum square of 
objective functions for the s-polarization and for the p-polarization reflectance. 

 
 

4.4. Limits of Extension of Optimized Model to Other Examples 

The next step is to attempt to extend the ABEMA model to other measurement 

configurations.  Not only may this help to reduce the expense in calculating the 

theoretical wavelength resolved spectra for real gratings, but it also provides some insight 

into the limits of the EMA models.  To this end, the 2D RCWA algorithm was used to 
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calculate the wavelength resolved specular reflectance at a 65 degree incident angle for 

the nominal grating with LER characterized by σ = 2.5 nm, ξ = 20 nm, and α = 0.5 and 

compared the data to similar results calculated using the optimized ABEMA model.  
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Figure 21  Wavelength dependent specular reflectance for an incident angle of 65 degrees 
for the nominal grating with a pitch Px = 200 nm, width w = 100 nm, and height h = 200 
nm (solid lines),  for the grating with LER defined by σ = 2.5 nm, ξ = 20 nm, α = 0.5 
calculated using a 2D RCW algorithm (long-dashed lines), and for the grating with an 
effective medium layer defined by  (Lx,Ly,Lz) = (0.5,0.5,0), f = 50 %, and t = 2σ.   The 
upper curves are for the s-polarization and the lower curves are for the p-polarization.  

 

Just as for the angle resolved data, the ABEMA model matches the 2D RCW 

calculations for the s-polarization for long wavelengths.  The ABEMA model matches 

the 2D RCW very well for longer wavelengths (S < 0.007 between 600 nm and 980 nm) 

but starts to deviate for wavelengths less that 400 nm (S = 0.012 between 198 nm and 

400 nm).    Since the RCWA is slower to converge for shorter wavelengths, care must be 
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taken when drawing conclusions about the wavelength dependent fit of the ABEMA 

model to the 2D RCWA model.  However, the ABEMA model seems to break down 

when the correlation length of the roughness is greater than approximately 1/20 of the 

incident wavelength. This is consistent with the long wavelength approximation used the 

ABEMA derivation.  Maxwell Garnett’s EMA formulation assumes that the inclusions 

are much smaller that the wavelength.  

Finally, the optimum ABEMA model (Lx = 0.7, Ly = 0.3, Lz = 0, f = 50%) that was 

developed for the nominal grating (Py = 200 nm, w  = 100 nm, d = 200 nm) was applied 

to other, related gratings.  In the first case the line width (w) was changed to 50 nm (25% 

of the grating pitch) and then to 150 nm (75% of the grating pitch).  The model was also 

applied to shallow (h = 50 nm) and deep (h = 500 nm) gratings.  The results are shown in 

Figure 22.   
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Figure 22 Objective functions (rms difference between the angularly resolved scattering 
data calculated using the 2D RCW algorithm and the angularly resolved scattering data 
calculated using the EMA model with (Lx,Ly,Lz) = (0.7, 0.3, 0) and 50% fill for various 
gratings with LER defined by s = 2.5 nm, x = 20 nm, a = 0.5.  The nominal grating has a 
pitch (Px) of 200 nm, a width (w) of 100 nm, and a height (h) of 200 nm.  Either the width 
(w) or height (h) of the grating was changed for the other four examples.   

 



 
 70 

The ABEMA model worked just as well for the gratings with different line widths as 

for the nominal grating for which it was developed.  This has important implications if 

the ABEMA model is to be used to study the effect that LER might have on critical 

dimension (CD) measurements using optical scatterometry.   However, the ABEMA 

model did not work well for modeling gratings with different heights.  While the actual 

fits for the shallow grating (h = 50 nm) are significantly better than the other gratings, 

this is misleading because the change in the signal due to LER is very small in this 

instance.  The fits for the deep grating (h = 500 nm) show that the ABEMA that was 

optimized for modeling LER on the nominal grating does not work well for gratings with 

different heights.  Intuitively this seems reasonable.  The relationship between the rms 

roughness value and the height of the grating does not change for gratings with different 

line widths. However, for gratings with different heights, the ratio between the height (h) 

and the thickness (t) of the effective medium layer changes (see the side view in Figure 

16) and it might be expected to have a different set of optimum depolarization values.  



` 

 

 

 
 

CHAPTER 5: CONCLUSIONS 
 
 
A generalized anisotropic Bruggeman effective medium approximation (ABEMA) 

was developed as an alternative to 2D RCWA simulation for modeling the effect of edge 

roughness on optical scatterometry signals.  The ABEMA model provides a less 

computationally expensive method for modeling LER than models using 2D RCWA.  

The computation time needed to model the effect of LER on a single angle resolved 

optical scatterometry signature was reduced from more than one and a half hours to less 

than ten seconds for the example presented in Chapter 4.  LER is becoming an 

increasingly important factor in semiconductor process control118 and edge roughness 

will be an important factor in determining the performance planar photonic crystal 

devices.53  This less computationally expensive model will make it practical to include 

edge roughness effects in optical scatterometry models so that the uncertainty 

contributions due to edge roughness can be appropriately considered.  It may also enable 

to direct measurement of edge roughness using optical scatterometry techniques.     

Chapter 1 presented a brief overview of some of the applications of micro-structured 

surfaces, the fabrication techniques that are used to make these surfaces, and the 

measurement techniques that might be used to control the fabrication process.  Optical 

scatterometry is introduced as a rapid, non-destructive, and precise method for measuring 

micro-structured surfaces.   In Chapter 2, optical scattering was discussed as a method for 

measuring surface roughness.  The Rayleigh-Rice perturbation theory has been used to 
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model scattering from optically smooth surfaces121,122 while effective medium 

approximations have been used to model interfacial roughness in thin film stacks215.  In a 

similar manner, the volume current perturbation theory outlined in Chapter 3 might be 

used for modeling long correlation length variations in grating structures, while an 

effective medium theory may prove useful in modeling edge roughness with 

characteristic length scales that are much less than the wavelength of the light used to 

interrogate the structure.   

In chapter 4 it is shown that simple periodic structures do not give the same results as 

a more realistic LER model based on self-affine functions so that a mode complicated 

model is required to model the effects of realistic edge roughness.  This more 

complicated model required an average of 2D RCWA calculations for multiple 

realizations of uncorrelated self-affine functions.  Various EMA models were compared 

to the 2D RCWA results for a specific grating and a specific set of roughness parameters.  

A form birefringence effective medium approximation (FBEMA) has been proposed in 

the patent literature and isotropic Bruggeman effective medium approximation (IBEMA) 

that is commonly used to model interfacial roughness in ellipsometric measurements of 

thin film stacks.   While the results from these models generally follow the changes 

caused by the LER, it was shown that a generalized ABEMA can be optimized to more 

closely approximate the 2D RCWA results for a specific set of roughness parameters.  

This approximation can be used to greatly reduce the time needed to evaluate the effects 

of edge roughness in optical scatterometry measurements.  By optimizing the ABEMA 

parameters, the useful range of effective medium approximations has been extended.   
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Further work is needed to probe the limits of the ABEMA model and to examine the 

possible overlap with perturbation197 and mean field157 techniques.  The ABEMA model 

would not be expected to work well for roughness with correlation lengths that are not 

small compared to the wavelength of light.  However perturbation techniques and mean 

field techniques would not be expected to work well for sharp deviations from the 

nominal grating.  The perturbation techniques that are developed in Chapter 3 for the 

PWE method need to be extended to the RCWA algorithm and the results of all three 

approximation methods need to be compared with rigorous simulations of optical 

scatterometry signals from gratings with LER having a range of correlation lengths.    

In this work it was not possible to directly compare either the rigorous numerical 

results or results from the approximation to experimental data.  The LER artifacts that 

were fabricated by using e-beam lithography had much longer correlation lengths than 

can be modeled using the ABEMA.  In addition the sample areas that were practical 

using high resolution e-beam lithography were too small to be measured with 

scatterometry systems without introducing bias due to overfilling the sample area.    The 

background signal from the area around the sample region might be separated from the 

desired signal by measuring more elements of the Mueller matrix216,217.  Because of the 

long correlation length of the LER artifacts that were fabricated, perturbation techniques 

or mean field approximations might be more appropriate for modeling measured data.  

LER artifacts with larger sample areas and more realistic LER statistics might be created 

by varying the process conditions used to fabricate replicated gratings.218   

If these models presented in this dissertation are to be incorporated into commercial 

scatterometry systems more comprehensive studies over a larger range of grating 
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parameters, roughness parameters, and measurement conditions will be needed to 

confirm the robustness of the model. Optimum ABEMA parameters will need to be 

determined for each specific system, but may be extended to other systems as described 

in Chapter 4.  Round-robin studies have compared measurements of LER from SEM 

images149,153, and CD-SAXS data219  with measurements taken from AFM profiles. 

Similar studies will need to be conducted to compare LER measurements from optical 

scatterometry data to these other techniques.   
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APPENDIX  A:  OPTICAL SCATTEROMETRY INSTRUMENTS 
 
 
A1.  Goniometric Optical Scattering Instrument (GOSI) 
 

Fixed wavelength angle resolved measurements of the artifacts were taken using the 

Goniometric Optical Scattering Instrument (GOSI) at National Institute of Standards and 

Technology (NIST)220.  A schematic diagram of the entire system is shown in Figure 23. 
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Figure 23. Schematic layout for the Goniometric Optical Scattering Instrument (GOSI) 

 GOSI is a general purpose instrument for studying both specular and diffuse optical 

scattering from surfaces at various angles of incidence and azimuthal orientations.  It has 

provision for inserting polarization optics both before and after the samples so that it can 

be used to perform generalized Stokes polarimetry.  The source is configured so that it 

can be easily interchanged by redirecting the beam path using auxiliary mirrors.    For 
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these experiments, a 35 mW helium-neon (HeNe) LASER operating at a wavelength of 

632.8 nm was used as the source.  The source was aligned to the existing system by using 

mirrors M1 and M2 (Figure 23) through apertures A1 and A2.  Apertures A3 and A5 

fixed during the initial setup of the instrument and are used to ensure that the beam path 

is aligned approximately to the center of rotation of the goniometer.  A set of neutral 

density (ND) filters was placed on a filter wheel after the LASER so that the intensity 

could be adjusted to not saturate the detectors during measurements, but to allow for 

optimal contrast during alignment.  A beam chopper was used to modulate the source 

beam so that the signals from the detectors could be synchronized using lock-in 

amplifiers after being electronically filtered to remove high frequency noise.  After 

passing through a shutter, the beam is directed through a series of turning mirrors to a set 

of polarization optics.  Typically, LASER sources have a preferred polarization direction.  

However, the Glan-Thomson polarizer is used to ensure that the polarization extinction 

ratio is at least 100,000:1 and that the polarization has a fixed orientation with respect to 

the rest of the system.  Depending on the type of polarization measurement being taken, 

either a half-wave plate or quarter wave plate can be inserted after the source polarizer in 

order to control the incident polarization.  For these experiments, only a half-wave plate 

was used so the orientation of the incident polarization could be changed, but not the 

ellipticity.  After the polarization optics, a beam expander (L1 and L2) is used to expand 

the beam in order to more easily control the numerical aperture of the incident beam 

using aperture A4 and lens L3.  A beam splitter (BS1) is used to “pick off” a portion of 

the beams energy to be collected by lens L4 and focused onto the reference detector.  

Holographic diffusers are placed in front of both the reference and signal detectors in 



 
 99 

order to minimize interference effects that may be caused by a cover glass over the 

detector.  The incident beam is focused onto the sample using L3.  The focal length of L3 

and the size of aperture A4 were chosen to minimize the numerical aperture of the 

incident beam while still ensuring that the beam did not significantly overfill the sample 

area.  A detector assembly is located at the end of an arm attached to the third rotary 

table.  It consists of an optional auxiliary lens (AUX LENS), a wave plate and polarizer 

(similar to the ones used in the source path), a holographic diffuser, an aperture, and the 

detector.  The aperture acts as the field stop for the system.  The polarizer and waveplate 

act to select the polarization state of the detected signal.  For these experiments a half-

wave plate was used so the linear orientation of the polarization could be selected, but 

information about the phase difference between two orthogonal polarizations is lost.   

The sample is held in place with vacuum on a fixture placed in the center of the 

goniometer.  The goiniometer consists of a rotary stage (used to adjust the sample 

azimuthal angle) fixed to two linear stages that are used to position the sample in the 

incident beam.  This entire assembly rests on a second rotary table that is used to set the 

incident angle.  A third rotary table, used to position the detector, is mounted coaxially to 

the second rotary table.   

A2.  Nanometrics Atlas Scatterometer Platform 

The Nanometrics Atlas scatterometer platform221 contains a normal incidence 

spectroscopic reflectometer and a fixed angle J.A. Woollam M-88 spectroscopic 

ellipsometer with integrated wafer handling and pattern positioning hardware and 

software (Figure 24).  The ellipsometer has a sixty-five degree fixed angle of incidence in 

a rotating analyzer configuration.  In order to make rapid measurements, broad band 
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illumination is used and the spectrum is analyzed with a grating spectrometer and linear 

array detector.  The ellipsometer illuminates the sample with an elliptical spot that is 40 

micrometers along the major axis, while the reflectometer measures a 25 micrometer 

circular spot.    
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Figure 24  Conceptual schematic of Nanometrics ATLAS scatterometer 

 
The reflectometer records the normal incidence reflectivity of the sample for two 

orthogonal linear incident polarizations.  For the reflectometer, the polarization labeled 

‘TE’ is polarized with the electric field normal to the plane of incidence of the 

ellipsometer while the polarization labeled TM is polarized with the electric field in the 

plane of incidence of the ellipsometer.   
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APPENDIX B:  MEASUREMENT OF NOMINAL GRATING PARAMETERS  
 
 
The angle resolved reflectance data for the grating on the five lobe chip that was 

fabricated without intentional edge roughness is described in Appendix C.  The 

polarization dependent reflectance of the sample is described by a reflection matrix222  

 

pp ps

sp ss

R R
R

R R

 
 =      (B.1) 

where Rss is the ratio of  the reflected intensity of the s-polarized light to the incident 

intensity of the s-polarized light, Rsp is the ratio of  the reflected intensity of the s-

polarized light to the incident intensity of the p-polarized light, Rps is the ratio of  the 

reflected intensity of the p-polarized light to the incident intensity of the s-polarized light 

and Rpp is the ratio of  the reflected intensity of the p-polarized light to the incident 

intensity of the p-polarized light.  The plane of incidence is a plane defined by the surface 

normal and the incident wave vector.  The s-polarization (from senkrecht, a German word 

meaning perpendicular) has an electric field vector perpendicular to the plane of 

incidence, while the p-polarization (from the German word for parallel, simply parallel) 

has an electric field vector completely in the plane of incidence.  Since preliminary 

measurements confirmed that the coupling between orthogonal linear incident 

polarizations was less than 1:104, only the diagonal terms of the matrix (Rss and Rpp) were 

considered.   

This data was fit to a grating model using a one dimensionally periodic RCWA 

algorithm to determine the nominal parameters for the grating used in this study.  The 
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gratings were designed to have a period of 736 nm, a depth of 500 nm, a line width of 

368 nm, and vertical sidewalls (Figure 25). 
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Figure 25. Comparison of measured signal and signal from a model of grating as 
designed. 

Although some of the major features of the measured signal and the modeled signal 

appear in roughly the same angular position, as indicated by the very large chi square 

values, the curves are not close at all.  The next step in the fitting process is to generate a 

library of curves having parameters that deviate systematically from the expected 

parameters and compare the measured curves to each of the library curves.  A map of the 

chi squared value of the fit between the measured curves and the library curves is shown 

in Figure 26.    It is clear that depth and duty cycle (line width) are coupled strongly.   
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This map indicates that there is significant correlation between the changes in the 

signal caused by depth variations and changes in the signal caused by variations in the 

width of the line.   
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Figure 26. Sensitivity of chi squared fit to variation in model parameters for 0 deg 
azimuthal angle demonstrating coupling between factors (Averaged over other two 
parameters)  It is clear that depth and duty cycle (line width) are coupled strongly.   

 
 

Figure 27 shows the comparison between the measured signal and the best fit signal 

from the library search.  This signal was obtained for a grating with a 736 nm period, a 

375 nm depth, a 294 nm line width, and vertical sidewalls.  As indicated by the chi 

squared values, the fit is much better, but still larger than would be desired for a 

reasonable uncertainty in the fit parameters. 
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Figure 27. Comparison of measured signal and the best fit model from the library search 

One possible method for improving the fit is to fix parameters that can be determined 

by other means.  For example, the pitch of the grating can be determined by measuring 

the angle between the position when the normally incident beam is reflected back into the 

aperture and the Littrow position (Figure 28).  The first order Littrow position is the 

position of the grating when the first diffraction order diffracts back along the incident 

beam such that i dθ θ θ= − =  in equation (2.1).  If the stage errors are small, then the 

uncertainty in determining θ (in radians) is approximately ( )2 / d uδ , where uδ is the 

uncertainty in determining when the centroid of the return spot is aligned with the 

aperture.  Once this angle is determined, the pitch of the grating can be calculated from 

equation (2.1).  Due to the relatively long distance (d) between aperture A4 and the 

sample as depicted in Figure 23, the angle, and therefore the pitch of the grating, can be 

determined with a very small uncertainty.  Using this method, the pitch of the grating was 

determined to be 735.75 +/- 1.3 nm (1σ). 
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Figure 28. The pitch of the grating can be determined by measuring the angle between the 
position (a) when the face of the grating is normal to the optic axis and (b) the Littrow 
position. 

With this new value for the period of the grating, the other model parameters were fit 

to the measured data using a non-linear least squares fit.  The results are shown in Figure 

29. 
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Figure 29. Comparison of the measured signal to the signal from the model with the 
period determined experimentally and the other parameters determined using a non-linear 
least squares fit. 
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 The reduced chi squared values are still significantly larger than one.  This indicates 

that there is significant bias in the measured data or that the model is does not contain 

enough parameters.  These are common problems for optical scatterometry 

measurements.  The biased estimate of the grating parameters are summarized in  

Table 1.  The grating period was measured as using the previously described method with 

an independently estimated uncertainty.  However, the uncertainties in the other 

parameters must be determined from the model fit (as described in section 2.2).  Since a 

significant bias is suspected, it is meaningless to assign uncertainties to these values. 

 

Table 1  Nominal grating parameters used in the models 

Grating Period: 735.75 nm +/- 2.6 nm (2σ) 

Grating Depth: 396.68 nm 

Line Width: 296.06 nm 

Sidewall Angle 1: 0 deg 

Sidewall Angle 2 : 0 deg 
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APPENDIX C:  ROUGHNESS ARTIFACT 
 
 
In order to experimentally examine the effects of edge roughness on scatterometry 

signals, a set of artifacts was created in silicon with e-beam lithography, using a Raith 

150 e-beam lithography system70, and reactive ion etching using an STS Silicon Fast 

Etcher164. 

Originally, the set of artifacts fabricated on silicon were to be used to develop the 

fabrication process and an additional set of artifacts was to be created in silicon over an 

oxide cladding layer using silicon on insulator (SOI) wafers.  However, the process that 

was developed for etching the silicon wafer did not yield acceptable results for the SOI 

wafers.  The artifacts fabricated using the SOI substrate should have aided in confining 

the field in the direction normal to the substrate surface.71,223,224    This should have made 

it possible to resolve the resonant anomalies of the periodic structures225, so that the 

spectral data could have been directly related to the band diagrams for the structures.223, 

226-230  However, the broad spectra from the angle resolved scattering measurements of 

the silicon artifacts also exhibited sensitivity to the edge roughness.  These are the spectra 

that are compared in Appendix D. 
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Figure 30  Illustration of the layout of one chip in the artifact set. 
 
 

The set of artifacts contains four chips.  Each chip consists of five groups of four one-

hundred micrometer by one-hundred micrometer square pattern areas:  a 736 nm pitch 

grating, a 300 nm wide isolated line, a square lattice of 406 nm holes with a 736 nm 

lattice spacing, and a 776 nm hexagonal lattice of 410 nm holes with a 770 nm lattice 

spacing (Figure 30 and Figure 31).  Each group within a chip is associated with a 

different level of edge roughness.  The central set in each chip is fabricated without any 

intentional edge roughness.  The other groups were fabricated to have intentional peak-

to-valley edge roughness that is 2%, 5%, 10%, or 25% of the nominal radius of the hole 

or half width of the line.   
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Figure 31 Detail of the nominal patterns within each group. 

 

Lobe structures were used to simulate the edge roughness in a systematic manner.  

This is similar to the manner used to describe cylindricity in traditional machine tool 

metrology139,231.  The profiles of the circular features were defined by the parametric 

equations.     

 
( ) ( )( )

( ) ( )( )

( ) cos( ) sin 2 1
2

( ) sin( ) sin 2 1
2

D
U n

D
V n

θ θ ρ θ πφ

θ θ ρ θ πφ

= + +

= + +
 (C.1) 

 
where ( ) ( )( ),U Vθ θ describes the Cartesian coordinates of the edge with respect to the 

center of the feature, D is the nominal diameter of the feature, ρ is the peak to valley 

roughness, n is an integer defining the rotational symmetry of the deviations (i.e. the 

number of lobes), φ is a phase factor describing the orientation of the deviations, and θ  
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varies from zero to 2π .  For the linear grating structures, the periods of the deviations of 

the edges of the lines were defined as if the lobe structures were unwrapped along the 

edges of the lines.     

736 nm Pitch Grating 736 nm Square Lattice 779 nm Hexagonal Lattice 

+ +
2 Lobe 3 Lobe 5 Lobe

=

Pseudo-Random

(a)

(b)

736 nm Pitch Grating 736 nm Square Lattice 779 nm Hexagonal Lattice 736 nm Pitch Grating736 nm Pitch Grating 736 nm Square Lattice 736 nm Square Lattice 779 nm Hexagonal Lattice 779 nm Hexagonal Lattice 

+ +
2 Lobe 3 Lobe 5 Lobe

=

Pseudo-Random

+ +
2 Lobe2 Lobe 3 Lobe3 Lobe 5 Lobe5 Lobe

=

Pseudo-Random

=

Pseudo-RandomPseudo-Random

(a)

(b)  

Figure 32. Scanning Electron Micrographs (a) illustrating how two-lobe, three-lobe, and 
five-lobe roughness was combined to simulate random roughness and (b) examples of 
random roughness super-cells for linear gratings, square lattice photonic crystals, and 
hexagonal lattice photonic crystals 

Three different chips were fabricated with two, three, and five lobes in order to 

represent the three lowest order, independent lobe structures.  A fourth chip with twenty-

one lobes was attempted in order to directly simulate the higher frequency roughness.  

However, this structure proved to be beyond the resolution of the fabrication process.  A 

fifth chip was created with pseudo-random edge roughness.  The pseudo-random edge 

roughness was created by combining the deviations from the two-lobe, three-lobe, and 

five-lobe roughness (Figure 32).  The three different roughness components were 

combined with exponential weighting (with the two lobe component having a peak to 
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valley deviation equal to the stated roughness and the five lobe component having an 

relative weight of 2
1
e

) and random phase relationships between the three components for 

each feature within a ten by ten period super-cell.  SEM images of the patterns are shown 

in Figure 33 through Figure 35. 
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Figure 33  SEM images of the linear gratings fabricated on the roughness artifacts.   
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Figure 34 SEM images of the square lattice photonic crystal structure fabricated on the 
roughness artifacts. 
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Figure 35 SEM images of the hexagonal lattice photonic crystal structure fabricated on 
the roughness artifacts. 
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APPENDIX D:  EXPERIMENTAL DATA FROM ROUGH GRATINGS 
 
 

Fixed wavelength, angle resolved scattering measurements were taken using the 

Goniometric Optical Scattering Instrument (GOSI)220 at the National Institute of 

Standards and Technology (NIST). Fixed angle spectroscopic ellipsometry measurement 

were taken using the Nanometric Atlas scatterometry system221.   

Fixed wavelength, angle resolved measurements were taken of each grating on the 

roughness artifacts.  The results are shown in Figure 36.  It is difficult to make any 

quantitative comparison since there is known bias in the measurements as indicated by 

the poor chi square fits in Appendix B.  This bias is likely due to misalignment of the 

grating region with the incident beam, additional signal from the region around the 

grating because the incident spot overfilled the grating region and misalignments of the 

detector as it was rotated. However, the relative position of peaks within the spectra gives 

a clear indication that the edge roughness has an effect on the scatterometry signal.   

Similar measurements were made using the normal incidence spectroscopic reflectometer 

and fixed angle spectroscopic ellipsometer of the Nanometrics ATLAS scatterometry 

system (Figure 37 and Figure 38).  As with the angle resolved data, features in the spectra 

tend to become less distinct as the rms value of the roughness is increased.  However, for 

the random roughness case new features begin to appear in the spectra at large values of 

rms roughness.  This is an interesting result that should be examined in detail in future 

work. 
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Figure 36  Fixed wavelength (632.8 nm) angle resolved data from gratings with 
intentional edge roughness.  The dashed lines indicate spectral features that  change with 
rms roughness amplitude. 
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Figure 37 Normal incidence spectroscopic reflectometry data (taken over a spectral range 
from 213 nm to 780 nm) from gratings with intentional edge roughness  The dashed lines 
indicate spectral features that  change with rms roughness amplitude. 
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Figure 38  65 degree fixed incident angle spectroscopic ellipsometry data (taken over a 
spectral range from 198nm to 980 nm) from gratings with intentional edge roughness.   
The dashed lines indicate spectral features that change with rms roughness amplitude 
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APPENDIX E:  SCATMECH MODELS 
 
 

In chapter 4, scatterometry signatures from a randomly rough periodic grating were 

calculated using a 2D RCWA algorithm and compared with the results from a 1D RCWA 

model that replaced the roughness by an effective medium layer. The RCWA algorithms 

used were as described by Moharam et al. 183,184 with a modification proposed by Lelanne 

and Morris185 and Li194 and extended to two dimensionally periodic structures by Li173.    

The software that was used for the 1D RCWA simulations is available online195 while the 

software used for the 2D RCWA simulations will be made available to the general public 

in a future release of the software.    The software is controlled using scripts written using 

the Model Integrated Scatter Tool (MIST)195.  This Appendix includes examples of the 

script files used to generate the data in chapter 4.   
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For the 2D RCWA simulations the CrossRCW_BRDF_Model was used: 

; RCW solution for crossed gratings 
MODEL = CrossRCW_BRDF_Model 
 
VARIABLES:  
 pi = 4*atan(1) 
 deg = pi/180 
 
 halfangle = 0.01    ; Half angle over which BRDF is spread for a delta-function  
 detector = pi*halfangle^2    ; The solid angle collected by the detector 
 thetai = 80    ; Incident Angle in degrees 
 inpol = 45    ; 0 for s, 90 for p 
 
 period = 0.2    ; Period of the grating 
 depth = 0.2    ; Depth of the grating 
 duty_cycle = 0.5    ; Fraction of period filled with grating medium 
 sidewall_angle = 0    ; Sidewall Angle in degrees 
 wavelength = 0.6328    ; Wavelength of the light in vacuum 
 
 iteration = 1   ;  counting variable for multiple realizations  
 rms_roughness = 0.0025  ; rms deviation of the edge from nominal     
 roughness_period = 0.2 ; period of patern repeat along the transverse direction 
 clength = 0.020;  ; correlation length of the roughness 
 exponent = 0.2   ; roughness (Hurst) exponent 
 mode = 1 ; LER = 1 and LWR = 0 
 
 sample_rotation = 0    ; Rotation angle of sample in degrees 
 n = 0    ; Diffraction order 
 k.x = sind(thetai)+n*wavelength/period*cosd(sample_rotation)    ; Diffraction equation for x 
 k.y = n*wavelength/period*sind(sample_rotation)    ; Diffraction equation for y 
 phis = atan2d(k.y,k.x)    ; Azimuthal angle of diffraction 
 thetas = thetai 
 #quiet = 1 
 
 minsamples = 1 
 differential = (2*deg)^2 
 incidentangle = thetai*deg 
 incidentpol = (1,cos(2*inpol*deg),sin(2*inpol*deg),0) 
 rotation = sample_rotation*deg 
 
 ; Wavelength [um] <double> 
 lambda = wavelength 
 #lambda = lambda 
 
 ; Substrate <dielectric_function> 
 $substrate = silicon 
 
 type = 0   ; (0) for Reflection or (1) for Transmission <int> 
 #type = type 
 
 ; Half angle of detector [rad] <double> 
 alpha = halfangle 
 #alpha = alpha 
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 ; RCW Simulator <CrossRCW_Model_Ptr> 
 $RCW = CrossRCW_Model 
 
 ; Incident angle [deg] <double> 
 RCW.thetai = thetai 
 #RCW.thetai = RCW.thetai 
 
 ; Rotation angle of sample [deg] <double> 
 RCW.rotation = rotation 
 #RCW.rotation = RCW.rotation 
 
 ; Wavelength [um] <double> 
 RCW.lambda = wavelength 
 #RCW.lambda = RCW.lambda 
 
 ; Grating <CrossGrating_Ptr> 
 $RCW.grating = Random_Wiggle_CrossGrating 
 
 ; Fourier order in direction #1 <int> 
 RCW.grating.order1 = 10 
 #RCW.grating.order1 = RCW.grating.order1 
 
 ; Fourier order in direction #2 <int> 
 RCW.grating.order2 = 20 
 #RCW.grating.order2 = RCW.grating.order2 
 
 ; Angle of lattice vectors from perpendicular [deg] <double> 
 RCW.grating.zeta = 0. 
 #RCW.grating.zeta = RCW.grating.zeta 
 
 ; Lattice constant #1 [um] <double> 
 RCW.grating.d1 = period 
 #RCW.grating.d1 = RCW.grating.d1 
 
 ; Lattice constant #2 [um] <double> 
 RCW.grating.d2 = roughness_period 
 #RCW.grating.d2 = RCW.grating.d2 
 
 ; Number of sampling points in direction #1 <int> 
 RCW.grating.grid1 = 2048 
 #RCW.grating.grid1 = RCW.grating.grid1 
 
 ; Number of sampling points in direction #2 <int> 
 RCW.grating.grid2 = 2048 
 #RCW.grating.grid2 = RCW.grating.grid2 
 
 ; Incident medium <dielectric_function> 
 RCW.grating.medium_i = (1,0) 
 #RCW.grating.medium_i = RCW.grating.medium_i 
 
 ; Transmitted medium <dielectric_function> 
 $RCW.grating.medium_t = silicon 
 
 ; Grating <Grating_Ptr> 
 $RCW.grating.grating = Single_Line_Grating 
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 ; Period of the grating [um] <double> 
 RCW.grating.grating.period = period 
 #RCW.grating.grating.period = RCW.grating.grating.period 
 
 ; Graded boundary between materials [um] <double> 
 RCW.grating.grating.boundary = 0 
 #RCW.grating.grating.boundary = RCW.grating.grating.boundary 
 
 ; Incident medium <dielectric_function> 
 RCW.grating.grating.medium_i = (1,0) 
 #RCW.grating.grating.medium_i = RCW.grating.grating.medium_i 
 
 ; Transmitted medium <dielectric_function> 
 $RCW.grating.grating.medium_t = silicon 
 
 ; Line material <dielectric_function> 
 $RCW.grating.grating.material = silicon 
 
 ; Space between lines <dielectric_function> 
 RCW.grating.grating.space = (1,0) 
 #RCW.grating.grating.space = RCW.grating.grating.space 
 
 ; Height of grating <double> 
 RCW.grating.grating.height = depth 
 #RCW.grating.grating.height = RCW.grating.grating.height 
 
 ; Width of top of line [um] <double> 
 RCW.grating.grating.topwidth = period*duty_cycle 
 #RCW.grating.grating.topwidth = RCW.grating.grating.topwidth 
 
 ; Width of bottom of line [um] <double> 
 RCW.grating.grating.bottomwidth = period*duty_cycle+depth*tan(sidewall_angle*deg) 
 #RCW.grating.grating.bottomwidth = RCW.grating.grating.bottomwidth 
 
 ; Shift of bottom relative to top [um] <double> 
 RCW.grating.grating.offset = 0+iteration*1E-16 
 #RCW.grating.grating.offset = RCW.grating.grating.offset 
 
 ; Number of levels <int> 
 RCW.grating.grating.nlevels = 1 
 #RCW.grating.grating.nlevels = RCW.grating.grating.nlevels 
 
 ; Root mean square roughness [um] <double> 
 RCW.grating.rms = rms_roughness 
 #RCW.grating.rms = RCW.grating.rms 
 
 ; Correlation length [um] <double> 
 RCW.grating.clength = clength 
 #RCW.grating.clength = RCW.grating.clength 
 
 ; Roughness exponent <double> 
 RCW.grating.exponent = exponent 
 #RCW.grating.exponent = RCW.grating.exponent 
 
 ; Mode:0 for line edge roughness1 for line width roughness2 for line position roughness <int> 
 RCW.grating.rmode = 0 
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 #RCW.grating.rmode = RCW.grating.rmode 
 
 $RCW.grating.SaveGratingImage = corr_020_exp_05_rms_025.img 
 
END  
 
VARY:  
 FOR iteration FROM 1 TO 15 STEP 1 
 FOR thetai FROM 12 TO 72 STEP 4 
END  
 
INTEGRALS:  
 I = DIFFERENTIAL 
  CENTER = (thetas*deg,phis*deg) 
  POL = (1,0,0,0); Unpolarized 
  END 
 Q = DIFFERENTIAL 
  CENTER = (thetas*deg,phis*deg) 
  POL = (0,1,0,0) 
  END 
 U = DIFFERENTIAL 
  CENTER = (thetas*deg,phis*deg) 
  POL = (0,0,1,0) 
  END 
 V = DIFFERENTIAL 
  CENTER = (thetas*deg,phis*deg) 
  POL = (0,0,0,1) 
  END 
 Rs = DIFFERENTIAL 
  CENTER = (thetas*deg,phis*deg) 
  POL = (0.5,0.5,0,0) ; S-polarized 
  END 
 Rp = DIFFERENTIAL 
  CENTER = (thetas*deg,phis*deg) 
  POL = (0.5,-0.5,0,0) ; P-polarized 
  END 
END  
 
OUTPUTS:  
    1 Rs=2*Rs*detector 
    2 Rp=2*Rp*detector 
    3 RI=I*detector 
    4 RQ=Q*detector 
    5 RU=U*detector 
    6 RV=V*detector 
END  
 
FILES:  
 ;  
 results = "" 
 
 ;  
 listing = "" 
 
END 
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For the 1D RCWA simulations using the EMA layer the RCW_BRDF_Model was 

used. The refractive index values for the effective medium layer are calculated using the 

“Aniso_Bruggeman“ MATLAB™ script in Appendix F and assigned from a list file 

using the commands “@variable_fill_variable_depolarization_index_list(index,6)”, etc.  

 
; Rigorous coupled wave theory for a grating, form fitted into a BRDF_Model 
MODEL = RCW_BRDF_Model 
 
VARIABLES:  
 ;  
 pi = 4*atan(1) 
 
 ;  
 deg = pi/180 
 
 ; Half angle over which BRDF is spread for a delta-function  
 halfangle = 0.01    ; Half angle over which BRDF is spread for a delta-function  
 
 ; The solid angle collected by the detector 
 detector = pi*halfangle^2    ; The solid angle collected by the detector 
 
 ; Incident Angle in degrees 
 thetai = 80    ; Incident Angle in degrees 
 
 ; 0 for s, 90 for p 
 inpol = 45    ; 0 for s, 90 for p 
 
 ; Period of the grating 
 period = 0.2    ; Period of the grating 
 
 ; Depth of the grating 
 depth = 0.2    ; Depth of the grating 
 
 ; Fraction of period filled with grating medium 
 duty_cycle = 0.5    ; Fraction of period filled with grating medium 
 
 ; Sidewall Angle in degrees 
 sidewall_angle = 0    ; Sidewall Angle in degrees 
 
 
 ; Wavelength of the light in vacuum 
 wavelength = 0.6328    ; Wavelength of the light in vacuum 
 
 ; p-v deviation from nominal 
 pv_roughness = 0.005    ; p-v deviation of the roughness from the nominal profile 
 
 ; p-v deviation from nominal 
 roughness_period = 2    ; period of the roughness variation   
 
 ; Rotation angle of sample in degrees 
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 sample_rotation = 0    ; Rotation angle of sample in degrees 
 
 ; Diffraction order 
 n = 0    ; Diffraction order 
 
 ; Diffraction equation for x 
 k.x = sind(thetai)+n*wavelength/period*cosd(sample_rotation)    ; Diffraction equation for x 
 
 ; Diffraction equation for y 
 k.y = n*wavelength/period*sind(sample_rotation)    ; Diffraction equation for y 
 
 ; Azimuthal angle of diffraction 
 phis = atan2d(k.y,k.x)    ; Azimuthal angle of diffraction 
 
 ;  
 thetas = thetai 
 
 ;  
 roughness_layer_thickness_fraction = 0.01 
 
 ;  
 fill_factor = 0.5 
 
 ;  
 #quiet = 1 
 
 
 ;  
 minsamples = 1 
 
 ;  
 differential = (2*deg)^2 
 
 ;  
 incidentangle = thetai*deg 
 
 ;  
 incidentpol = (1,cos(2*inpol*deg),sin(2*inpol*deg),0) 
 
 ;  
 rotation = sample_rotation*deg 
 
 
 ; Wavelength [um] <double> 
 lambda = wavelength 
 #lambda = lambda 
 
 ; index count 
 index = 1 
 
 ; Substrate <dielectric_function> 
 $substrate = silicon 
 
 ; (0) for Reflection or (1) for Transmission <int> 
 type = 0 
 #type = type 
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 ; Use old method for epsilon matrix <int> 
 oldmethod = 0 
 #oldmethod = oldmethod 
 
 ; Half angle of diffraction cone [rad] <double> 
 alpha = halfangle 
 #alpha = alpha 
 
 ; Maximum order <int> 
 order = 10 
 #order = order 
 
 ; Grating <Grating_Ptr> 
 $grating = Generic_Grating 
 
 ; Period of the grating [um] <double> 
 grating.period = 1 
 #grating.period = grating.period 
 
 ; Graded boundary between materials [um] <double> 
 grating.boundary = 0 
 #grating.boundary = grating.boundary 
 
 ; Incident medium <dielectric_function> 
 grating.medium_i = (1,0) 
 #grating.medium_i = grating.medium_i 
 
 ; Transmitted medium <dielectric_function> 
 $grating.medium_t = silicon 
 
 ;  Assign index values from file 
 rnx =  @variable_fill_variable_depolarization_index_list(index,6) 
 rny =  @variable_fill_variable_depolarization_index_list(index,8) 
 rnz =  @variable_fill_variable_depolarization_index_list(index,10) 
 inx =  @variable_fill_variable_depolarization_index_list(index,7) 
 iny =  @variable_fill_variable_depolarization_index_list(index,9) 
 inz =  @variable_fill_variable_depolarization_index_list(index,11) 
  
 
 ; Filename <string> 
 $grating.filename = Variable_ANISO_BRUG.ggd 
 
 ; Parameter string <string> 
 grating.pstring = 

(period,depth,period*duty_cycle,sidewall_angle,sidewall_angle,depth/2,1,roughness_layer_thickn
ess_fraction*period/2,fill_factor,rnx,rny,rnz,inx,iny,inz) 

 #grating.pstring = grating.pstring 
 
 ; Approximate number of levels <int> 
 grating.nlayers = 20 
 #grating.nlayers = grating.nlayers 
 
END  
 
VARY:  
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 ; 
 mpi_FOR index FROM 66 TO 665 BY 1   
 
 ; 
 FOR roughness_layer_thickness_fraction FROM 0.05 TO .15 BY 0.0025  
 
 ;  
 FOR thetai FROM 0 TO 90 BY 2 
 
END  
 
INTEGRALS:  
 I = DIFFERENTIAL 
  CENTER = (thetas*deg,phis*deg) 
  POL = (1,0,0,0); Unpolarized 
  END 
 Q = DIFFERENTIAL 
  CENTER = (thetas*deg,phis*deg) 
  POL = (0,1,0,0) 
  END 
 U = DIFFERENTIAL 
  CENTER = (thetas*deg,phis*deg) 
  POL = (0,0,1,0) 
  END 
 V = DIFFERENTIAL 
  CENTER = (thetas*deg,phis*deg) 
  POL = (0,0,0,1) 
  END 
 Rs = DIFFERENTIAL 
  CENTER = (thetas*deg,phis*deg) 
  POL = (0.5,0.5,0,0) ; S-polarized 
  END 
 Rp = DIFFERENTIAL 
  CENTER = (thetas*deg,phis*deg) 
  POL = (0.5,-0.5,0,0) ; P-polarized 
  END 
END  
 
OUTPUTS:  
    1 Rs=2*Rs*detector 
    2 Rp=2*Rp*detector 
    3 RI=I*detector 
    4 RQ=Q*detector 
    5 RU=U*detector 
    6 RV=V*detector 
END  
 
FILES:  
 ;  
 results = "" 
 
 ;  
 listing = "" 
 
END  
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APPENDIX F:  MATLAB™ m-Files 
 
 

A self-affine functions were used to describe edge roughness in Chapter 2 and 

Chapter 4. A self-affine function has an autocorrelation function ( ( )A ρ ) of the form: 

 ( )2( ) exp[ / ]A
αρ ρ ξ∝ −  (F.1) 

where ρ is the distance between two points along the nominal edge, ξ  is the linear 

correlation length of the rough edge, and α is called the roughness exponent.  The 

roughness exponent, also referred to as the Hurst exponent, is related to the fractal 

dimension of the edge and can be used to describe the relative amount of high frequency 

content in the power spectrum.  Various roughness profiles with known statistics were 

created using the procedure outlined by Zhao et. al.137.  In summary, the procedure 

involves: 

1. Calculating the auto-correlation (ACF) function for the desired profile   

2. Using the Wiener-Khinchin theorem to calculate the power spectral density (PSD) 

of the profile. 

3. Multiplying the square root of the PSD by a random phase function.  

4. Taking the inverse Fourier transform to recover a random profile in the spatial 

domain with a known PSD. 
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The following MATLAB™ m-file was used to generate these functions: 

function Profile = calcAffineProfile(corr_length,roughness_exponent,N) 
  
if nargin < 3 
    N = 2048; 
end 
if nargin < 2 
    roughness_exponent = 1; 
end 
if nargin <1 
    corr_length = 0.05; 
end 
  
%  Generate ACF 
s = linspace(0,1,(N/2)+1); 
ACF = exp(-(abs(s./2)./corr_length).^(2*roughness_exponent)); 
symetric_ACF = [ACF,fliplr(conj(ACF((2:(N/2)))))]; 
  
% Calculate the PSD 
PSD = fft(symetric_ACF); 
  
%  Generate a White Noise Function 
rand('state', sum(100*clock)); 
White_Noise = (rand(1,N)-0.5); 
  
%  Take the Fourier transform of the white noise 
ftwn = fft(White_Noise); 
  
%  Normailze the Fourier transform of the white noise 
%  and make the function complex cojugate symetric 
nftwn = ftwn./abs(ftwn); 
  
%  Multiply the sqrt of the PSD by the symetric normalized  
%  Fourier Transform of the white noise function 
fty = sqrt(PSD).*nftwn; 
  
  
%  Take the inverse Fourier transform  
y = ifft(fty); 
  
%  Normalize the answer and subtract the mean  
%  and clean up small imaginatry part 
x = linspace(0,1,N); 
y = y./calcrms(y); 
y = y - mean(y); 
y = real(y); 
  
Profile.x = x; 
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Profile.y = y; 
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The anisotropic Bruggeman effective medium approximation (ABEMA) was developed 

in Chapter 3 and used in chapter 4 to model LER.  The following MATLAB™ m-file 

calculates the effective indices (nf) from the indices of the constituent materials (n1 and 

n2), the fill factors (f1 and f2), and from the depolarization factors (Lx, Ly, and Lz) that 

describe the ABEMA: 

function nf = Aniso_Bruggeman(n1,f1,n2,f2,Lx,Ly,Lz) 
  
if nargin < 2 
    f1 = 0.5; 
end 
if nargin < 3 
    n2 =1; 
end 
if nargin < 4 
    f2 = 1- f1; 
end 
if nargin < 5 
    Lx = 0.5; 
end 
if nargin < 6 
    Ly = 1-Lx; 
end 
if nargin < 7 
    Lz = 0; 
end 
  
ax = (f1+f2)*(Lx-1); 
bx = f1.*(n1.^2-Lx.*n1.^2-Lx.*n2.^2)+f2.*(n2.^2-Lx.*n1.^2-

Lx.*n2.^2); 
cx = (f1+f2).*Lx.*n1.^2.*n2.^2; 
if ax == 0 
    ax = 0.0000001; 
end 
  
ay = (f1+f2)*(Ly-1); 
by = f1.*(n1.^2-Ly.*n1.^2-Ly.*n2.^2)+f2.*(n2.^2-Ly.*n1.^2-

Ly.*n2.^2); 
cy = (f1+f2).*Ly.*n1.^2.*n2.^2; 
if ay == 0 
    ay = 0.0000001; 
end 
  
az = (f1+f2)*(Lz-1); 
bz = f1.*(n1.^2-Lz.*n1.^2-Lz.*n2.^2)+f2.*(n2.^2-Lz.*n1.^2-

Lz.*n2.^2); 
cz = (f1+f2).*Lz.*n1.^2.*n2.^2; 
if az == 0 
    az = 0.0000001; 
end 
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nxn = ((-bx-(bx.^2-4*ax.*cx).^(1/2))/(2*ax)).^(1/2); 
nyn = ((-by-(by.^2-4*ay.*cy).^(1/2))/(2*ay)).^(1/2); 
nzn = ((-bz-(bz.^2-4*az.*cz).^(1/2))/(2*az)).^(1/2); 
  
nxp = ((-bx+(bx.^2-4*ax.*cx).^(1/2))/(2*ax)).^(1/2); 
nyp = ((-by+(by.^2-4*ay.*cy).^(1/2))/(2*ay)).^(1/2); 
nzp = ((-bz+(bz.^2-4*az.*cz).^(1/2))/(2*az)).^(1/2); 
  
nx = zeros(size(n1)); 
ny = zeros(size(n1)); 
nz = zeros(size(n1)); 
for i = 1:size(nxn) 
    if angle(nxn(i))>= 0 
       nx(i) = nxn(i); 
    else 
       nx(i) = nxp(i); 
    end 
    if angle(nyn(i))>= 0 
       ny(i) = nyn(i); 
    else 
       ny(i) = nyp(i); 
    end 
    if angle(nzn(i))>= 0 
       nz(i) = nzn(i); 
    else 
       nz(i) = nzp(i); 
    end 
end 
nf = [nx,ny,nz]; 
 
 


