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ABSTRACT 

 

 
MIN SUN. Evaluating and extending the wisdom of crowds in the context of problem solving. 
(Under the direction of DR. MIRSAD HADZIKADIC) 

 

 

James Surowiecki in his book on the wisdom of crowds [Jame04] wrote 

about the decisions made based on the aggregation of information in groups. 

Knowing the many case studies and anecdotes which show the success of wisdom 

of crowds, he argues that under certain circumstances the wisdom of crowds is 

often better than that of any single member in the group. This paper provides a 

new way of problem solving– using the wisdom of crowds (collective wisdom) to 

handle continuous decision making problems, especially in a complex and rapidly 

changing world. By extending the concept of Wisdom of Crowds, the method of 

using collective wisdom is applied to various fields, from Prisoner‘s Dilemma to 

simplified stock market. Simulations are built to evaluate this new problem 

solving method and different aggregation strategies are suggested based on 

different environments. 
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CHAPTER 1: INTRODUCTION 

 

 

Decision making has been the subject of research for a long time. Generally 

speaking, decision making is the process of selecting one course of action from 

among several alternatives. It involves using what you know (or can learn) to get what 

you want [Walk87]. The decision making abilities are related to time preference, risk 

preference, probability weighting, ambiguity aversion, endowment effects, anchoring, 

cognitive abilities, and other widely researched topics [Shan05]. Decision making 

involves expertise, information, experience, emotions, relationships, and goals, thus 

making it necessary that individuals have systematic tools to deal with any 

complicated problem. Many computer-based decision support systems [Dani02, 

Henk85, Efra08, Hols96] have been promoted to help people make decisions in either 

individual or business enterprise situations. Although computer-based decision 

support systems have been widely researched and used, managers sometimes feel 

disappointed with their performance for one or more of the following reasons: 1.) 

difficulties in collecting useful information in a specific field; 2.) the cost of setting up 

and updating knowledge databases; 3.) inherent inadequacies in dealing with complex 

and rapidly changing environments; and 4.) difficulties in determining the proper 

decision making model/strategy, especially for problems in social sciences or 

economics that involve numerous human interactions and uncertain personal feelings. 

With these concerns in mind, a new concept for making decisions is introduced – the 

(modified) wisdom of crowds. 



2 
        

 

The idea of using the wisdom of crowds for decision making was originally 

introduced by J. Surowiecki in a book entitled ―The Wisdom of Crowds‖ [Jame04]. 

He argues that under certain circumstances the performance of a crowd is often better 

than that of any single member of the group. This idea appears to be appropriate for 

explaining the behavior of financial markets, as observed by Nobel Prize-winning 

economist William Sharpe [Ayse04].   

The concept of ―wise crowds‖ might also be useful to decision makers 

encountering other complex problems. Given that 1.) a properly formed group makes 

better decisions than individuals do; 2.) aggregation method is related only to the 

types of groups, not the problem to be solved; 3.) the manner in which one person 

makes a decision is seldom changed, making decision using ―the wisdom of crowds‖ 

will save a lot when a decision-making system is built. A decision making system that 

uses the wisdom of crowds has various benefits, including reducing the cost of 

collecting information and assembling databases for each field, avoiding frequent data 

updates and canceling out human bias through information aggregation. The wisdom 

of crowds has been successfully used in the real world of technology. For example, 

collective voting has been successfully used by some search engines, including 

Google [Davi06].   

Even though there are many case studies and anecdotes that demonstrate the 

importance of collective wisdom, there are also authors supporting the opposite 

conclusion. Some of these opponents are cited in the famous mid-19th century 

Charles MacKay work, ―The Extraordinary Popular Delusions and the Madness of 

Crowds‖ [Char41]. For example, the South Sea Company bubble of 1711–1720, the 

Mississippi Company bubble of 1719–1720, and the Dutch tulip mania of the early 

seventeenth century. All three cases show that popular delusions began so early, 

http://en.wikipedia.org/wiki/The_South_Sea_Company
http://en.wikipedia.org/wiki/Mississippi_Company
http://en.wikipedia.org/wiki/Tulip_mania
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spread so widely, and had lasted so long. Nonetheless, even in cases where the crowd 

itself is not smart – as where mobs or crazy "herds" of investors predominate – the 

collective wisdom can still usually be shown to be superior to the average of all of the 

crowd members.  

In the following sections, Surowiecki‘s theory – that under certain circumstances, 

the performance of a crowd is often better than that of any single member of the group 

– is extended to address a continuous decision making problem, one that deals with a 

complex and rapidly changing world filled with interactions. The key criteria that 

separate the wise crowd from the irrational one are investigated using a computer-based 

simulation. A classical problem in game theory – the Prisoner‘s Dilemma – is 

introduced as the context of simulation.  

Additionally, the scenario of using the wisdom of crowds for good is extended by 

adding two other factors into the crowds which make both individuals and crowds 

"smarter" over time. Those factors are the ability to learn through individual contact 

and the ability to evolve through generations. Finally, the different types of crowds are 

investigated and a relationship between the formation of crowds and their performance 

(aggregation strategies) is suggested for varying environments.   

 Experiments show that the wisdom of crowds approach is always superior to 

the average and often to the best performing strategy in the crowd. A step-by-step 

procedure for making decisions by use of the wisdom of crowds is suggested.  

Finally, an additional experiment involving a simple stock market shows the 

possibility of using the wisdom of crowds in different fields, including stock market 

and trading in general. 



 

 

CHAPTER 2: BACKGROUND FOR DECISION-MAKING 

 

 

2.1 Concept of Decision Making   

All life is problem-solving [Karl99]. Each day, human beings make thousands of 

decisions in a variety of situations, in response to issues that range from the very 

simple to the very complex. Some are conscious and deliberate decisions; others are 

selections and choices that one makes without much thought or, as one might say, 

instinctively. When a person falls into sleep out of exhaustion, the body and mind are 

making a decision driven by the survival instinct. When one refuses to share a scarce 

amount of a food supply with a friend trapped with that person in a mine or hole, one 

is giving into a selfish instinct to survive. When one chooses to cooperate with an 

opponent so as to gain the opponent's reciprocal cooperation, one is deliberately 

calculating the odds that befriending the adversary will be in one's long-term interest.   

 Two different persons may make quite different decisions and choices in response 

to the same situation. You may be able to predict with certainty the response that a 

well-known friend will make to a given circumstance. On the other hand, a total 

stranger can either surprise you with his choice or, if you have sufficient clues about 

his thinking, he may act along the same lines that you can predict.  

 How do human beings make the numerous decisions that they face each day? Can 

you predict others' decisions? Scientific researchers may be able to answer part of the 

question. Decision making has been the subject of research for a long time, and 

theories have been developed to identify and explain decision-making patterns.  

Generally speaking, decision making is the process of selecting one course of 
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action from among alternatives. It involves using what you know (or can learn) to get  

what you want [Walk87]. From a cognitive perspective, the decision making process 

is regarded as a continuous process integrated with the environment. From a 

normative perspective, analysis of individual decisions is concerned with the logic 

and rationality of the decision making process and the invariant choice to which it 

leads [Dani00]. The decision making behavior is also affected by social pressure, time 

pressure, and other forces.   

For a real life decision, one cannot determine whether the correct decision has 

been made, since the decision maker could not possibly know what would have 

happened had he or she chosen a different option [Clif02]. But to a certain extent, the 

concept of decision making today is treated as, or mixed with, problem-solving: 

individuals believe that each decision is made to achieve some goal, and thus the 

correctness of the decision can be evaluated by comparing the consequence of the 

decision to the goal sought. In other words, only the outcome matters. Simple 

evaluation of the decision is made by understanding the consequences, and evaluating 

how closely those consequences come to the goal that was intended.   

2.2 Decision Making Techniques in Everyday Life 

When we recognize that individuals cannot always attain what they want, and that 

a decision can be evaluated by comparing the actual consequences to the intended 

goal, certain skills and techniques for better decision making emerge. The decision 

making techniques used in everyday life include:  

1.) flipping a coin;  

2.) asking the advice of friends or experts; 

3.) listing pros and cons, called ―Balance Sheet‖ [Jani77, Whee80]; 

4.) performing a cost-benefit analysis. 
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The first method is totally random. The result is always fortuitous. And, the total 

absence of any reasoning or thought in this method guarantees that it will never 

improve the decision making. While the other three methods are less random than the 

coin flip method, those other methods are also vulnerable to the influence of bias. 

Bias is a point of view or personal prejudice that tends to interfere with one's ability to 

be impartial, unprejudiced, and objective [DICT01]. Sources of one's bias include 

culture, ethnicity, geography, gender, political philosophy, personal feelings [Wiki01]. 

Bias may be introduced into the decision in the early stage – when information is 

collected – and, to that extent, bias may blind one to certain relevant information, or 

skew one's interpretation and assessment of the value of certain information or data. 

Bias may also be present throughout the entire process – even after information has 

been collected – thus subjecting the whole decision process to faulty or unwarranted 

interpretations.   

Various deficiencies are also another major issue that prevents individuals from 

making better decisions. This can include [Bill06]: 

1.) insufficient information; 

2.) insufficient time to review alternatives; 

3.) insufficient participation of key decision makers; 

4.) insufficient planning; 

5.) insufficient communication; 

6.) insufficient ongoing measurement and management of the decision‘s 

implementation.    

Since decision making involves various levels and amounts of expertise, 

information, experience, emotion, relationships, and goals, there are computer-based 

"decision support systems" that are promoted as useful in helping individuals to make 



7 

 

better decisions without (or with little) human interference. 

2.3. Current Computer-based Decision Support Systems  

Computer-based decision support systems can help individuals collect 

more-adequate information and make decisions more readily in complicated situations, 

while at the same time eliminating individual bias. A well-designed decision support 

system should provide integration and generation of the information, support the 

exploratory nature of the scientific discovery process, and allow for the development 

of alternatives and increase the effectiveness of those responsible for decisions. The 

computer can support and reinforce human judgment in the fulfillment of tasks, which 

have elements that cannot be specified beforehand [Segr03, Hgso83].  

According to Keen[Pete78], the concept of the decision support system first 

appeared in the late 1960s, and came into its greatest use in the 1980s. Having at its 

core computer-based information systems, the decision support system evolved as 

technology advanced. There emerged such tools as data warehousing [Ying02] and 

OLAP [Bhar01]. Table 1 summarizes the major developments in the evolution of 

decision support system concept [Dani00b]. 

Evolution of DSS Concepts 

1960s 1970s 1980s 1990s 

MIS and structured reports 

Interactive systems research 

Theory development 

BrandAid 

MDS 

RDBMS 

Key books 

GDSS 

EIS 

Data Warehousing 

OLAP 

Data mining 

Table 1: Evolution of DSS Concepts 

As suggested in ―Management Decision System: Computer-Based Support for 

Decision Making” written by Michael S. Scott Morton in 1971[Scot71], managers 

could benefit from using decision support systems. Since then, knowledge-based 

decision support systems have been widely used. Managers, however, sometimes 

express disappointment with the performance of such systems for a variety of reasons: 
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1.) the difficulties in collecting useful information in a specific field; 2.) the cost of 

setting up and updating knowledge databases; and 3.) the systems' inherent 

inadequacies to deal with complex and rapidly changing environments.  

And, in such areas as the social sciences and economics – which involve 

numerous human interactions and uncertain personal feelings – a fourth concern has 

arisen, namely, the difficulty of determining an effective decision making model or 

strategy that accurately accounts for those subjective factors.  With these concerns in 

mind, a new way of making decisions – termed "the wisdom of crowds" – has 

emerged, in hopes that it will relax the need to collect information and assemble 

databases, and instead use "the crowd" to resolve problems that involve numerous 

human interactions and uncertain personal feelings. The details of the new 

decision-making algorithm using the wisdom of crowds are introduced in the 

following chapter



 

 

CHAPTER 3: WISDOM OF CROWDS 

 

 

3.1. Definition of Wisdom of Crowds 

As identified by Herbert Blumer, there are four categories of crowds: a casual 

crowd, a conventional crowd, an expressive crowd, and an acting crowd [Herb69]. A 

―crowd‖ in Surowiecki‘s book [Jame04], is an acting crowd – any group of persons 

who can act collectively to make decisions and solve problems. Wisdom of Crowds 

theory simply suggests that a collective can solve a problem better than most of the 

individual members of the group acting alone.  

As MacKay [Char41] points out, not all crowds (groups) are wise. One need look 

no further than the stock market and its many examples of fads, market bubbles, and a 

"herd mentality" in which the majority proves to have been mistaken in its judgment. 

Consequently, efforts have been made to understand under what circumstances the 

crowd is wise. Surowiecki suggests the following key criteria to separate wise crowds 

from irrational ones [Jame04]: 

• Diversity of opinion - Each person should have private information, even if it is 

just an eccentric interpretation of the known facts. 

• Independence – Each person's opinion should not be determined by the opinions 

of those around them. 

• Decentralization – The persons comprising the crowd should specialize and 

draw on local knowledge. 

• Aggregation - Some mechanism exists for turning private judgments into a 

collective decision
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Three distinct settings have been identified in which crowds may be smarter than 

the individual members [Jame04]. The first is needle-in-the haystack problem, where 

some persons in the crowd may know the answer, while many, if not most, do not. 

The second is a stated estimation problem, where some person may "get lucky" and 

hit the precise answer (while not being aware in advance of the ―accuracy‖), but on 

the average, the group performs better than most of the member in the group. Finally, 

there is a prediction problem, where the answer has yet to be revealed [Scot07, 

Mich07]. For the prediction problem, the unrevealed answer can be either fixed (e.g., 

the prediction of the next Oscar winner does not change the answer itself) or it can be 

―fluid‖ (e.g., the return on your next investment where your action might affect the 

answer). 

A well-known example of the ―needle in the haystack‖ problem is seen in the 

television game show, ―Who Wants to Be a Millionaire?‖ The contestant is asked a 

series of multiple-choice questions, ultimately leading to the grand prize of $1 million. 

Where a contestant does not know the correct answer to any particular 

multiple-choice question, she has three options by which to narrow the guess: (1) 

eliminate two of the four possible answers, (2) call a predetermined ―expert‖ for 

counsel, and (3) poll the studio audience. Option two – calling the expert – has a 

respectable record of providing the correct answer two-thirds of the time.  Polling 

the entire studio audience – a group of folks who had nothing better to do that 

afternoon than to attend the show – has a success rate exceeding 90 percent. Normally 

the audience was asked for simpler common knowledge questions.   

The success of polling lies in the fact that – assuming complete randomness in the 

answers provided – even a small percentage of the people in the crowd who know the 

correct answer can add a noticeable advantage to the group's "wisdom". If one 
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assumes – as with a coin flip – that those in a large audience who have no idea of the 

correct answer will cancel one another out (half get it right, half get it wrong), then 

the group's majority decision is determined by those in the audience who do know the 

answer. If an audience of 100 has 10 members who know the right answer and 90 who 

have no idea what the right answer is, then if the 90 who are ignorant cancel one 

another out (45 get it right, 45 get it wrong), then the 10 who know the answer lead 

the total audience tally to be 55 correct, 45 incorrect.   

The ―stated estimation‖ problem normally defines the ―guess a quantity or 

number‖ scenario. An interesting characteristic of this type of problem is that 

although one or several of the crowd members may come close to predicting the 

correct value/quantity of the target variable, none of them knows it for sure when the 

guess is offered. The well-known example is the ―Francis Galton's surprise.‖ The 

crowd at a county fair was asked to guess the weight of an ox that was exhibited at the 

fair. The person with the most accurate answer was promised a prize. Everyone tried 

his or her best to provide the right answer, while maintaining the secrecy of the guess. 

The participants included some experts (e.g., butchers) and many non-experts. It was 

obvious that the experts stood a better chance of winning the prize than the 

non-experts. However, since the target number was a continuous/real number, the 

non-experts had a small chance of hitting the most precise number by luck and 

thereby winning. To his surprise, Galton discovered that the average of all the 

responses was, in fact, closer to the ox's true butchered weight than the individual 

estimates of most crowd members, including those made by the cattle experts.  

Let‘s look closer into this stated estimation problem. The collective error can be 

described as [Scot07]:    

Collective error = Average individual error – Prediction diversity 
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The average individual error combines the squared errors of all of the 

participants, while the prediction diversity combines the squared difference between 

the individuals and the average guess. This equation tells us [Scot07]: 

1. The crowd‘s aggregate prediction is always better than those of most 

individuals in it, regardless of whether the crowd has a normal or skewed 

distribution of answers. Sometimes, it can even be better than the best 

individual, given enough diversity in the right direction. 

2. We can reduce the collective error by either increasing the accuracy or 

increasing the diversity of the crowds.    

Other types of problems have been grouped into the third category: the prediction 

problems. An interesting story is told in Surowiecki‘s book [Jame04], regarding a 

submarine lost at sea. The task was to locate the submarine with a very limited 

knowledge of when and under what weather conditions the submarine went down. A 

group of specialists with a wide range of expertise was asked to offer their best 

independent/individual guesses regarding the various scenarios for the submarine‘s 

trajectory in its last moments. Although no one knew exactly what had happened, by 

building a composite picture of the projected movements of the submarine, a 

remarkably accurate guess was formed and the submarine was found. In this case, 

even though no single individual in the group knew any of the exact answers, the 

group as a whole produced them all. This story suggests that even if the crowd is not 

aware of how much useful information each individual has, the appropriate 

aggregation of partially available information can provide the best answer. 

3.2. Using the Wisdom of Crowds vs. Other Decision Making Techniques  

3.2.1. Wisdom of Crowds vs. Traditional Group Voting 

Voting is a method by which a group – an electorate or a meeting of persons – 
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can make a decision or express an opinion, often following discussion, debates, 

speeches, or an election campaign [Wiki02]. Although the wisdom of crowds and 

group voting may share the same initial knowledge (information from group), they 

differ in many ways, as shown in Table 2. 

Wisdom of Crowd Traditional Voting  

Normally no meetings 

Little group pressure 

Normally face-to-face meetings 

Under group pressure 

Allow the variety  Normally need to reach group consensus 

Different aggregate methods to interpret  

the result  

Majority vote under the control of group 

leader or mediator 

Cancel out groupthink through the variety Groupthink 

Equal importance for each member in the 

group 

Normally leader has more importance 

Table 2: Difference between Wisdom of Crowds and Traditional Voting 

3.2.2. Wisdom of Crowds vs. Asking the Specialists 

Specialists are persons who devote themselves to one subject or to one particular 

branch of a subject or pursuit. The differences between using the wisdom of crowds 

and asking specialists are shown in Table 3. 

Wisdom of crowds Specialist 

Knowledge in all domains Knowledge in specific domain 

Not time-sensitive Time-sensitive  

Equal importance for each member in the 

group 

High importance for experts  

Cancel out bias through variety Might have bias 

Different aggregate methods to interpret  

the result 

Listen to specialist 

Table 3: Difference between Wisdom of Crowds and Specialist 

 Compared to the traditional group voting and asking specialists, using the 

wisdom of crowds to make the decision takes advantage of using collective wisdom 
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without the group pressure and individual bias.    

3.3. Using the Wisdom of Crowds – A New Way to Make Decisions 

Decision support systems (DSS) are a specific class of computerized information 

systems that support business and organizational decision-making activities. A 

properly-designed DSS is an interactive software-based system intended to help 

decision makers compile useful information from raw data, documents, personal 

knowledge, and/or business models so that they can identify and solve problems and 

make decisions [Wiki03].  

While widely-used model-driven DSS, data-driven DSS, and knowledge-based 

DSS suggest making decisions by abstracting information from individual cases, 

using wisdom of crowds/ collective wisdom provides a different way to make 

decisions by using aggregated information rather than individual detail. A decision 

making system using the wisdom of crowds can reduce the cost of collecting 

information and assembling databases for each field, avoid frequent data updates and 

cancel out human bias through information aggregation. 

In order to demonstrate the wisdom of crowds, we designed and implemented a 

simulation that can aggregate information from a ―crowd‖ in the context of a problem 

commonly referred to as the Prisoner‘s Dilemma. The Prisoner‘s Dilemma is a type of 

non-zero-sum game developed in game theory. We extended the two-player game into 

a situation involving hundreds of players (crowd) playing against each other pair-wise. 

This allows for exploration of various aggregation strategies. This simulation is useful 

to aid in exploring the effectiveness of the wisdom of crowds when the right answer is 

not fixed and continuous or serial decision-making is called for. The following 

sections provide the details of the simulation. 



 

 

CHAPTER 4: PRISONER‘S DILEMMA 

 

 

4.1. Definition of Prisoner‘s Dilemma 

Since Merrill Flood and Melvin Dresher first articulated the Prisoner's Dilemma 

(PD) in the 1950s [Floo58], it has been the subject of considerable research, 

especially after Robert Axelrod introduced the concept of the iterated PD in his book 

The Evolution of Cooperation [Robe84]. The PD is a typical non-zero-sum game 

explored in game theory. It is based on the well-known expression of PD, the 

Canonical PD payoff matrix [Robe84], which shows the non-zero net results for the 

players. In its classical form, the prisoner's dilemma ("PD") is presented as follows: 

Player A 

Player B 

 Cooperat

e 

Defect 

Cooperat

e 

3,3 0,5 

Defect 5,0 1,1 

Table 4: Definition of Prisoner‘s Dilemma Problem 

 In a game, two players are asked to choose to cooperate or defect separately. If 

both choose to cooperate, each one gains 3 points. If both choose to defect, each one 

gains only 1 point. If two players choose differently, the one choosing defect gains 5 

points while the one choosing cooperate gains none. The goal of the game is to get as 

many points as possible. Even if it is in both their best interests to cooperate, the two 

players might still choose to defect.   

4.2. Strategies for Prisoner‘s Dilemma   

Some of the best-known strategies for solving this game are listed below
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 [Robe84, Krai95]: 

 Tit-For-Tat – Repeat opponent's last choice; 

 Tit-For-Two-Tats – Similar to Tit-For-Tat, except that the opponent must 

make the same choice twice in a row before it is reciprocated; 

 Grudger – Cooperate until the opponent defects; then, always defect 

(unforgiving) 

 Pavlov - Repeat the last choice if it led to a good outcome; 

 Adaptive - Start with the set of pre-selected choices (c, c, c, c, c, c, d, d, d, d, 

d) ; then, after the initial 11 moves, select actions that give the best average 

score; re-calculated after each move 

Finding the strategy to gain the highest number of points is the ultimate problem 

for the Iterated Prisoner's Dilemma game. Every year, the IPD tournament [Pris01] is 

held to evaluate strategies from different competitors. Also, the genetic algorithms 

have been widely used [Axel87, Jenn02] to discover the best strategy. Currently, 

memory- and outcome-based strategies such as Tit-For-Tat [Pris02] and Pavlov 

[PRIS02] are regarded as the most effective ones [Foge93, Darw94, Krai93, Krai95]. 

4.3. Extended Prisoner‘s Dilemma and Wisdom of Crowds 

Extending the ―two-player‖ game to the ―many players‖ context brings about the 

situation where hundreds of players (a crowd) play together/against each other. With 

no central control, players begin to ―cooperate‖ or ―defect‖ based on their own 

strategies. After each round, points are added up for each player. Consequently, a 

potential ―smart‖ crowd is formed. This decentralization of strategies for playing is 

interpreted as a set of diverse opinions held in the crowd. Then, a simple polling of 

playing strategies serves as the aggregation method for understanding the 

vote/wisdom of the crowd. 
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As opposed to the needle-in-the-haystack problem and stated estimation problem, 

PD states a different type of problem -- dynamic prediction problem [Scot07]. The 

term ―dynamic‖ is used because the outcome is influenced not only by each play, but 

also by each player‘s history of previous predictions. The introduction of this 

―dynamic‖ process helps us evaluate performance of various strategies in different 

crowds over time, which is similar to the decision-making process or cognitive 

behavior of agents in real life.  

Although more complicated, the participating crowd in the context of PD satisfies 

the key criteria to get a smart crowd:  

1.) Diversity and Decentralization 

  Page [Scot07] divides diversity into four frameworks:   

• Perspective: ways of representing situations and problems;  

• Interpretations: ways of categorizing or partitioning perspectives; 

• Heuristics: ways of generating solutions to problem; 

• Predictive Models: ways of inferring causes and effects. 

Decentralization is defined as the dispersion or distribution of functions and 

powers, specifically, the delegation of power from a central authority to regional and 

local authorities. Types of decentralization include political decentralization, 

administrative decentralization, fiscal decentralization and economic decentralization 

[Akai02, Dubo09, Shar05, Stan05]. As one of the key criteria forming a smart crowd, 

decentralization emphasizes that individuals are able to specialize and draw on local 

knowledge [Scot07]. 

In the PD setting, each agent is given a memory and a strategy.  The memory 

serves to record and accumulate new knowledge, which represents diversity in two 

ways: the agent‘s game history with a certain player, and the accumulation of local 



18 

 

knowledge. The agent‘s strategy is the ability to choose either to cooperate or to 

defect based on the information stored in the memory. The strategy also represents 

diversity in two ways: diversity in the ways of generating solutions to the problem, 

and diversity in the ability to draw conclusions from the local knowledge, since the 

agent does so without the preset upper-level/centralized guidance. This diversity and 

decentralization among the agents is guaranteed through the combination of 

interpretations and heuristic frameworks described above, as well as through the 

process of dispersed decision-making.  

2.) Independence 

Different from the strict ―pure‖ independence required in Surowiecki‘s theory, the 

agents playing the PD in our system (the Iterated Prisoner‘s Dilemma) have limited 

independence, which allows communication between, and learning from other agents 

as well as evolution. The agents in our system are regarded as independent players 

with connections and learning ability.   

However, we provide a ―controller‖ to control the level of agent independence in 

the system, which enables us to experiment with both independence-securing and 

learning-enabling environments.   

3.) Aggregation 

Aggregation means combining outputs/solutions from different entities into 

higher-level entities. Information Aggregation can sometimes obtain more 

information than the sum of individual cases, by canceling out bias or obtaining 

hidden information from Privilege database which provides restricted information 

based on the user‘s privilege. In the PD game, aggregation assumes deriving a 

group-level solution by combining the individual members‘ contributions (or 

solutions), regardless of whether these contributions are duplicative, contradictory, or 
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incomplete. The most commonly used methods for this type of aggregation are 

sampling, polling, and voting. Sampling is an aspect of data collection. A good 

sampling is the select of an unbiased or random subset of individual observations 

within a population [Wiki04]. Polling and voting is a method for a group to make a 

decision or express an opinion.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 5: METHODOLOGY 

 

 

5.1. Definition of Complex Adaptive Systems (CAS)   

In this paper, a simulation using the framework of Complex Adaptive Systems 

(CAS) is designed and implemented to demonstrate the wisdom of crowds in the 

context of the Prisoner‘s Dilemma (PD) problem.   

The CAS framework represents a dynamic network of agents (representing cells, 

species, individuals, firms, nations, etc.) that act in parallel, while constantly reacting 

to what the other agents are doing [Mmit92, Wiki05].   

The term "system" derived from the Greek "systema", is widely used in culture, 

economics, and biology to describe a set of interacting entities forming an integrated 

whole. The characteristics of a system include a set of abstract entities, structure, 

behavior, and interconnectivity. A system may be either simple or complex. A system 

is considered complex if it is agent-based and exhibits non-linear behavior, feedback 

loops, self-organization, co-evolution, and emergence [Comp01, Eric99, Fcbi06, 

Gary98]. Agent in CAS is the smallest unit in the system, which can interact and act 

based on its rules. Such a system is considered adaptive if it has the capacity to 

change and learn from experience. In complex systems, the processes occur 

simultaneously on different scales or levels, and the intricate behavior of the whole 

system depends on its units in a nontrivial way [Tama02]. 

Different from traditional multi-agent systems, a CAS is known for its large 

number of agents, and relatively simple rules, which results in the system's being not 

complicated but complex and adaptive [Tama02, Mich02].  
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Complexity is non-deterministic. The emergence of complexity theory shows 

adomain between deterministic order and randomness that is complex [Paul98]. 

Randomness and determinism are both relevant to the system‘s overall behavior. Such 

systems exist on the ―edge of chaos‖—they may exhibit almost regular behavior, but 

also can change dramatically and stochastically in time and/or space as a result of 

small changes in conditions [Tama02, Perb96]. The research in CAS is to capture the 

principal laws behind the phenomena. 

The theory of and experiments with simple living systems – spanning statistical 

physics, information theory, self-organized criticality, percolation theory, and fitness 

landscapes – were introduced in ―Introduction to Artificial Life” by Christoph Adami 

[Chri98]. Key concepts and general methods used in studying complexity in statistical 

physics, evolutionary biology, and economics were revealed for the first time in 

―Foundations of Complex-Systems Theories: In Economics, Evolutionary Biology, 

and Statistical Physics”, in which the author highlights the features common to each 

area, and describes how we understand and deal with complexity [Sunn99]. 

The control in a CAS is distributed.  Any coherent behavior of the system has to 

arise from the competition and cooperation among the agents (constituent parts) 

themselves. The overall behavior of the system is a result of the decisions made by 

individual agents in each cycle [Mmit92].   

The CAS system often exhibits the property of self-organization and emergency 

[Haro02, Fcbi06, Stev01]. Self-organization is a process in which the internal 

organization of the system increases in complexity without being guided or managed 

by an outside source. Self-organizing systems frequently demonstrate emergent 

properties [Wiki05]. Every resultant is either a sum or a difference of the co-operant 

forces: their sum, when their directions are the same; their difference, when their 
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directions are contrary. The emergent is unlike its components insofar as these are 

incommensurable; it cannot be reduced to their sum or their difference [Blit92].  

5.2. Agent-based Modeling in CAS 

Bottom-up model is another feature of CAS [Jmep96, Pete02]. A bottom-up 

approach consists of piecing together systems to give rise to grander systems, thus 

making the original systems sub-systems of the emergent system. In a bottom-up 

approach, the individual base elements of the system are first specified in great detail. 

These elements are then linked together to form larger subsystems, which in turn are 

linked, sometimes in many levels, until a complete top-level system is formed. This 

strategy often resembles a "seed" model, where the beginnings are small but 

eventually grow in complexity and completeness [Wiki06]. 

An agent-based model (ABM) is a computational model for simulating the 

actions and interactions of autonomous individuals with a view to assessing their 

effects on the system as a whole [Wiki07]. The benefits of ABM over other modeling 

techniques are threefold: 1.) ABM captures emergent phenomena; 2.) ABM provides a 

natural description of a system, and 3) ABM is flexible [Eric02]. ABM is well suited 

for modeling a CAS in a bottom-up style. 

5.3. Implementation of Prisoner‘s Dilemma in CAS 

Examples of CAS include the stock market, social insect and ant colonies, the 

biosphere and the ecosystem, the brain, the immune system, and any human social 

group-based endeavor [John01, Kels95, John07].   

Hence, it is natural to describe the Prisoner's Dilemma as a complex adaptive 

system in order to reveal spontaneous reactions among individual players, as well as 

the wisdom hidden inside the group as a whole. 

As mentioned before, the Prisoner‘s Dilemma is a type of non-zero-sum game 
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developed in game theory. The basic idea builds upon two suspects charged with 

having committed a crime. During questioning – which occurs after they have been 

separated – each must decide whether to ―cooperate‖ with each other or to ―defect‖ by 

cooperating with the police. Cooperating is the best outcome for both, since they both 

will go free, given that there is no proof that they actually committed the crime. 

However, as they do not trust each other, they are enticed to "defect" and confess the 

crime, in which event each defector will get a lighter sentence than his partner. Of 

course, the worst-case scenario is if they both defect, thus securing a lengthy prison 

sentence for both.   

In order to establish a crowd, we extended the two-player game into a situation 

involving hundreds of players (crowd) playing against each other pair-wise. This 

allows for exploration of various aggregation strategies. The details describing the 

Prisoner‘s Dilemma in this context are introduced in Chapter 6. 

 

 

 

 

 

 

 

 



 

 

CHAPTER 6: DESIGN OF AGENT-BASED MODEL IN THE CONTEXT OF 

PRISONER‘S DILEMMA 

 

6.1. Design of Player-agents  

In order to design the crowds as CAS for the Prisoner‘s Dilemma game, first we 

need to create individual ―player-agents‖ who can ―cooperate‖ or ―defect‖ when 

playing the game, based on their own strategy. Since agents play against each other 

repeatedly without a central control (via random selection), we assign each agent a 

memory that is used to store information (knowledge) about its previous ―matches,‖ 

such as opponent's last action, points gained overall, etc.  The player-agents initially 

―receive‖ a randomly allocated strategy that they use to select their actions, based on 

the information that they have. The strategy may be abandoned or modified later 

during the learning process, through the interactions with opponents.   

The question now becomes: what kind of strategies should be available to the 

agents? One way to approach this problem is to understand how humans perceive and 

approach problems. This is obviously related to human personality factors. Raymond 

Cattelle suggests that there are 16 personality factors [Catt66] that influence human 

perceptions of and approaches to problems. To keep things manageable in this project, 

we selected three personality factors to describe the way that people perceive 

problems: dominance, vigilance, and openness to change. 

1.) Dominance 

Agents who are less dominant are deferential, cooperative, averse to conflict, 

submissive, humble, obedient, easily led, docile, and accommodating. An agent who 

is perceived as dominant is characterized as forceful, assertive, aggressive,  
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competitive, stubborn, and bossy. 

2.) Vigilance 

Agents who are low in vigilance indicate behavior that is trusting, unsuspecting, 

accepting, unconditional, and easy-going. A highly vigilant agent is characterized as 

suspicious, skeptical, distrustful, and oppositional. 

3.) Openness to change 

Not-so-open-to-change agents are defined as traditional, attached to the familiar, 

conservative, and respectful of traditional ideas. Highly open agents are defined as 

analytical, critical, freethinking, and flexible. 

In the Prisoner‘s Dilemma simulation, the action of each agent includes methods 

for perceiving and solving problems. The methods for perceiving problems can be 

described by considering the questions described in Figure 1: 

 

 

 

 

Figure 1: Personality vs. Action Mode 

a. How many previous ticks will be considered as a recent history?  

Agents with a ―conservative personality‖ prefer consulting a longer history; 

otherwise, they are open to change and only care about the most recent history.   

b. How long will it take for an agent to react to an opponent’s change in behavior?  

Agents with a ―vigilant personality‖ are more suspicious of negative behavior.  

They are also easier to make hostile. Otherwise, they are less sensitive to betrayal.  

c. How does an agent evaluate its own performance? 

Agents with a ―domineering personality‖ are more aggressive and competitive, 

Dominance 

Vigilance 

Openness to change 

How many previous ticks will be considered as 

recent history? 

How long will it take for an agent to react to 

opponent‘s change? 

How does an agent evaluate his own 

performance? 
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thinking of their opponents relative to their own gain or loss. Otherwise, they care 

only about their own absolute gain. 

The methods for solving problems can be described with the following rules [4]: 

a. Repeat the opponent's last action 

b. Assume an action opposite to the opponent’s last action  

c. Cooperate  

d. Defect   

e. Repeat own last action   

f. Assume an action opposite to your own last action 

Consequently, in the system, each player-agent is described using a 

chromosome-like structure: [Mirs07] 

Agent Number 

Basic 

Strategy 

Limitation Reaction1 Reaction2 

where – 

 Agent Number identifies each player. 

 Basic Strategy indicates the strategy an agent chooses to guide its behavior.  

 Limitation modifies the Basic Strategy as described below.  Taken together, 

Basic Strategy and Limitation define the situation the agent is facing. 

 Reaction1 defines the behavior of the agent if the situation described by Basic 

Strategy + Limitation applies in the current case/match.  

 Reaction2 defines the behavior of the agent if the situation described by Basic 

Strategy + Limitation does not apply in the current case/match. 

There are five basic strategies that show how an agent perceives problem: 

0. The agent does not care what happened before. 

1. The agent takes into consideration the total number of times the opponent 
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cooperated or defected in the past.   

2. The agent takes into consideration whether during the previous X number of 

matches/time (X defined by Limitation) the opponent cooperated or defected 

(X times in a row). 

3. The agent takes into consideration the average number of points it received 

previously by cooperating/defecting when playing against the same opponent.  

4. The agent takes into consideration whether the number of points it received 

from the last play is less than three points. 

Reaction1 and Reaction2 demonstrate the methods by which an agent approaches 

problem which can assume one of the following values: 

0. Repeat opponent's last action 

1. Assume an action opposite to opponent‘s last action  

2. Cooperate 

3. Defect 

4. Repeat own last action 

5. Assume an action opposite to its own last action 

For example, Competitor 001 shown below simply repeats the opponent‘s last 

action.  This is a typical Tit-for-Tat. 

001 0 0 0 0 

Competitor 101 repeats the opponent‘s last action if its opponent cooperated the last 

two times/matches; otherwise, it chooses an action opposite to its own last action.  

101 2 2 0 5 

As can be seen from the above, our agents do not simply ―cooperate‖ or ―defect.‖  

They choose to ―repeat‖ or ―reverse‖ an action performed earlier by their opponents 

or by themselves.  This may be more similar to the way people behave in real life.  
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This process also aggregates redundant strategies often present in evolutionary 

algorithms.   

Another parameter, ―forgiveness,‖ could be added to the chromosome to 

represent the random or predefined likelihood of cooperation (when defecting for a 

long time) or defection (to test the opponent after cooperating for a long time). Using 

―forgiveness,‖ the chromosome could represent an even greater variety of strategies.  

Also, the parameter called ―history-weight‖ is added to the chromosome to 

represent the different attitudes that agents could have regarding their own history. 

They may choose to regard every match in their entire history equally, or they may 

adjust how much emphasis they want to put on either their earlier matches or their 

more recent ones.  

6.2. Design of Aggregator-agents  

Aggregator-agents are special participants (competitors) in the game. 

―Aggregator-agents‖ represents the wisdom of crowds by acting as aggregators of 

various groups within the crowd of agents.   

These aggregators also participate in the game, but they have a different 

decision-making procedure. The aggregator-agents are given the ability to make their 

decisions upon consulting with their ―advisory group,‖ formed from the set of 

player-agents selected by each aggregator-agent. 

   On each turn, aggregator-agents choose to cooperate or to defect according to the 

opinions from their chosen player-agent group. Unlike the regular player-agents, 

aggregator-agents have no strategy that can give them guidance regarding cooperation 

or defection; their only strategy is to decide (a) which player-agent group they want to 

listen to and (b) the manner in which they plan to aggregate the group‘s advice.  

Each Aggregator-agent is described using a chromosome-like structure: 
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Agent Number 

Selection 

Strategy 

Select_Number 

Aggregation 

Strategy 

where – 

 Agent Number identifies each aggregator-agent. 

 Selection Strategy indicates the strategy used to select a player-agent group. 

 Select_Number indicates how many player-agents are chosen to form the group; 

it can be any number between 1 and the total number of player-agents. 

 Aggregation Strategy indicates the strategy used for aggregation. 

There are four selection strategies: 

0. The agent chooses the top Select_Number player-agents ranked by points. 

1. The agent chooses the bottom Select_Number player-agents ranked by points. 

2. The agent chooses the top N and bottom (Select_Number–N) player-agents 

ranked by points. 

3. The agent chooses Select_Number player-agents randomly. 

There are two aggregation strategies: 

0. The agent chooses the majority opinion 

1. The agent chooses the minority opinion 

For example, Aggregator 001 shown below simply has the best ten player-agents as 

its advisory group, and then chooses the majority opinion. 

001 0 10 0 

Aggregator 101 shown below simply has the worst ten player-agents as its advisory 

group, and then chooses the minority opinion (opposite to the majority opinion). 

001 1 20 1 

6.3. Implementation Using Multi-agents Programming Tools 

Netlogo is a multi-agent programming modeling and simulation tool. Using 
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Netlogo, crowds in the context of the Prisoner‘s Dilemma are simulated. Agents act 

and interact autonomously through playing games with each other; at the same time, a 

view of their effects on the system as a whole (emergency) is shown.    

As shown in Figure 2, all agents are scattered randomly in the display area 

(90*90 grids in the NetLogo environment) with player-agents represented by red dots 

and aggregator-agents represented by yellow person-shaped images. A set of basic 

strategies are assigned randomly to each agent. Agents move randomly in the display 

area (the speed of agents can be changed via the control panel). If two agents happen 

to be in the same neighborhood (8-neighbor grid), a meeting is initiated. Agents play a 

match based on the strategy they follow and the information they have about each 

other. After each play, the points are added and the agents move on to the next match 

[Mirs07].  

 

Figure 2: Application 

 

 

 

 



 

 

CHAPTER 7: UNDERSTANDING THE CROWDS 

 

 

7.1. Definition of Crowds in the Context of Prisoner‘s Dilemma  

The term "crowd" denotes a group of persons. The individuals in a crowd – e.g., 

a crowd at a political rally or the audience at a concert – may share a common 

purpose or a set of emotions.  A crowd in the context of the Prisoner‘s Dilemma 

simulation is formed by common behavior – playing cooperates or defects intensely 

with each other.  The formation of crowds can be metro-type people or relatively 

homogenous ones. The diversity of crowds guarantees the fidelity of information 

input.  

As in reality, individuals in the simulated crowds have the ability to learn during 

the game, and they may be replaced completely under the natural selection rule.  The 

criterion of ―independence‖ is violated and the concept of ―Wisdom of Crowds‖ is 

extended by introducing communication and learning into the crowds.     

7.2. Interaction between Individual Player and Crowds  

7.2.1. Lucifer Effect or Situational Influence 

In order to understand crowds in the context of the Prisoner‘s Dilemma, we need 

to examine both the individual players‘ behavior and their effect on the system as a 

whole.  

Stanford Prison Experiment described in Dr. Philip Zimbardo's book, The Lucifer 

Effect: Understanding How Good People Turn Evil, is a classic simulation study of 

the Psychology of Imprisonment. In the study, normal college students were randomly 

assigned to play the role of guard or inmate for two weeks in a simulated prison. The 
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guards quickly became so brutal that the experiment was terminated after only six 

days [Phil07].  

Unlike the Stanford Prison experiment described above, the crowds‘ simulation in 

the context of the Prisoner‘s Dilemma focuses on situational influences without 

touching the long discussed but unsolved question about notion of human nature.  

The crowd simulation experiments show that even a person using a simple 

strategy/philosophy behaves differently in changing situation. For example, 

Tit-For-Tat, in which one simply repeats the opponent‘s last action, actors cooperate 

when the opponent/situation is friendly, and defect when the opponent/situation is 

hostile. Without changing the strategy/philosophy, individuals change from the Good 

to the Evil because of situational influence. 

The interactions between individual player and crowd include communication, 

cooperation, competition, and so on. Learning is required for the goal of evolution, 

since adaptation is the key point in natural selection as well as in human society 

[Dawk89, Blum93, Vrie00].   

7.2.2. People Performance and Crowds Performance 

   7.2.2.1. Player-agents‘ Performance in Fixed Crowds vs. Evolutionary Crowds  

In this experiment, we focus on the player-agents‘ performance in crowds with 

different preferences. Three different crowds have been tested: fixed crowds, 

evolutionary crowds for higher points/gains, and evolutionary crowds for lower 

points/gains. In a fixed crowd, the crowd composition is unchanged during the whole 

running time, while in evolutionary crowds, an evaluation will be made at designated 

stages, and part of the crowd will be replaced with preferred player-agents. For 

example, in the one for higher points, the chromosome of those player-agents with 

lower points will be replaced by the one with the highest point. During each round, 
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250 player-agents have been put into game.      

The results for the performance of player-agents are summarized in Figure 3. The 

jagged blue line shows the highest average point (winner‘s point). For each 

player-agent, the average-point is calculated by dividing the total number of points 

gained from the previous plays by the total number of plays. The average point is a 

number between 0 and 5. The purple line shows the average of the player-agents' 

averages. It is computed by dividing the sum of average points by the number of all 

competitors. The average average point is a number between 0 and 5, which outlines 

the average performance of the whole society. Finally, the black line shows the basic 

strategy chosen by the player-agent winner.  

 

(a) Fixed Crowds  

 

 

 

 

 

(b) Evolutionary Crowds for Higher Points 
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(c) Evolutionary Crowds for Lower Points 

Figure 3: Fixed vs. Evolutionary Crowds 

In the three graphs in Figure3, Chart (a) shows smoother lines for the best 

performance – slightly higher than a score of 3 – and average performance, which is a 

little lower than 3. In this fixed society, no evolution happens – meaning that the good 

keep good and the bad keep bad, without any change. The best performer is a greedy 

player, who takes advantage of the naïve peace player. But, the best performer still 

ends up with a score that is only a little better than the average people. The best player 

does not achieve the five points advantage that it expected.  

Charts (b) and (c) show more ups and downs as the composition of the crowds 

changes. In (b), crowds are replaced gradually by those with the highest points. 

During the run, at the beginning the evolution shows a preference for the greedy 

player and eliminates the naïve player, which causes the score for the best 

performance to drop and for the average performance to increase, resulting in smarter 

overall crowds.   

Later, after getting too many greedy players and no naïve ones, the greedy ones 

die out and are replaced gradually by those who are ―smarter‖ enough to play both 

cooperation and defection according to the specific situation. At last, the crowds end 
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up at the score of 3, which suggests a final cooperation in whole society.  

In (c), crowds are replaced gradually by those with the lowest points. This is 

different from what we expected: getting rid of the greedy and replacing with the 

naïve only helps the average score increase for a short time. Later, the overwhelmed 

sympathy destroy the more peaceful society by keeping on replacing the best 

performer with the one with the lowest points. The whole society ends up full of the 

ones who are afraid of being eliminated by playing cooperate. 

Also, something interesting happens in the experiments: the dominant strategies 

in (b) and (c) are the same, which shows the importance that situational influence has 

on strategy. The same people can perform quite differently, depending on the 

particular crowd in which they find themselves.   

7.2.2.2. Different Crowds, Different Winners  

Crowds can be categorized into different types according to the distribution of 

strategies, as follows:    

 Type I Crowds: crowds with diverse strategy distribution 

 Type II Crowds: crowds with homogenous strategy distribution, which include 

 no-history crowds: crowds with basic strategy 0, in which player-agents care 

about no history 

 Long-history crowds: crowds with basic strategy 1, in which player-agents 

care about long-time history 

 Latest-history crowds: crowds with basic strategy 2, in which player-agents 

care about short-time history 

 Absolute-gain crowds: crowds with basic strategy 3, in which player-agents 

care about absolute gains 
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 Relative-gain crowds: crowds with basic strategy 4, in which player-agents 

care about relative gains 

Type I crowds are those with diversity of opinion, which satisfies the criteria for 

―smart‖ crowds.  Type II crowds are those in which the members share the same 

perceptions. In reality, Type II crowds can often be found in a crowd where 

interaction is allowed or group pressure is presented. Type I and II Crowds show 

different emergency.   

Experiments are run in the simulation system several times with randomly 

established initial settings, including the strategies assigned, play order, and 

distribution of each strategy in both Type I and II crowds. The results are shown 

below: 

a) Type I Crowds:  

Type I crowds are the crowds formed by player-agents whose basic strategy is 

randomly assigned from 0 to 4. Type I crowds show great diversity in the formation of 

crowds. 

In Figure 4, the jagged green line shows the highest average-points (winner‘s 

points). For each player-agent, the average points is calculated by dividing the total 

number of points gained from the previous plays by the total number of plays. The 

―average points‖ is a number between 0 and 5. The red line shows the average of 

player-agent averages. It is computed by dividing the sum of average points by the 

number of all competitors. The average average points is a number between 0 and 5. 

It outlines the average performance of the whole society. Finally, the black line shows 

the basic strategy chosen by the winner. 
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 (a)           (b) 

Figure 4: ―Cooperate‖ as the Winning Strategy 

The two graphs of Figure 4 (a and b) represent two different runs of the system. 

Although the final winning strategies are different, the green line and the red line 

converge into one line at the exact number three, which shows that in the end the 

highest average points equals the average average points. In other words, in the end, 

all competitors cooperate and gain three points after each run. 

Even the winning strategies are essentially similar to one another. The final 

winning strategy for the case represented in Figure 4(a) is the agent with the 

chromosome 

 0 0 0 0 

which is a typical Tit-for-Tat strategy: repeat opponent‘s last action. A player-agent 

competitor with this strategy reacts quickly to the actions of others. It is quite 

defensive when it meets a defector, but friendly when it meets a collaborator. In the 

beginning of the run, Tit-for-Tat can be neither the best nor the worst strategy.  

However, when the whole society becomes friendlier, this strategy has a chance to be 

both the best and the dominating one. 

In the graph represented in Figure 4(b), the final winning strategy is the agent 

with the chromosome 

 4 -1 5 0 

   The player-agent looks at the points it earned from the last play. If it received 
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three or more points (it gets three points if they both cooperate, or five points if it 

defects while the opponent cooperates), it chooses to repeat the opponent‘s last action 

(cooperate). However, if it earned fewer than three points from the last play (zero if it 

cooperates while the opponent defects, or one if they both defect), the agent chooses 

the action opposite to its own last action. Similarly to the Tit-for-Tat player, the player 

with this ―History Matters‖ strategy is friendly as soon as the opponent cooperates, 

and it punishes opponents quickly when it feels betrayed. The only difference is that 

―History Matters‖ shows the willingness to cooperate first when it notices that both 

players are in the situation of defection, and it will try to end the ―lose-lose‖ situation.  

This approach helps it become a winner earlier than does the Tit-for-Tat.       

Our experiment also indicates that player-agents with different strategies not 

only compete with each other; they are also necessary components for building the 

whole society. For example, the final winning strategy is seldom that of the initial 

points leader. The agent with the winning strategy is usually in the middle of the pack 

at first, but it demonstrates its power when the whole society develops a preference 

for cooperation. Strategy 3 is important in terms of its ability to change the society 

from a hostile society into a friendly one. From Figure 4, we can see that the average 

average points began to go up as the highest average points inched down, marking the 

time when Strategy 3 became the dominant strategy in the society. A player with 

Strategy 3 cares only about the average points it earned previously by either 

cooperating or defecting – a relatively stable player who does not change quickly. 

This makes it a ―society changer‖. Without the participation of players with Strategy 3, 

Tit-for-Tat or ―History Matters‖ would have little chance to end up being the best 

strategies.  

In the long run, Type I crowds represent themselves as cooperate societies 
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formed by player-agents who only care about the latest history and react quickly.  

b) Type II Crowds 

Type II crowds are formed by player-agents who share the same basic strategy 

selected from 0 to 4. Player-agents in Type II crowds have different ways to approach 

the problem but use the same way to perceive the world. After a long run in the 

simulation system, the crowds may show three different tendencies: 1.) most of the 

player-agents play defect; 2.) most of the player-agents play ―mix‖ (defect and 

cooperate from time to time); 3.) most of the player-agents play cooperate. The best 

player (player-agent with the highest points) also has three tendencies: 1.) play defect; 

2.) play ―mix‖ (defect and cooperate from time to time; 3.) play cooperate. Thus, the 

combinations of tendencies for the best player and crowds leave us nine scenarios to 

expect. Crowds with different basic strategies show different ―flavor‖ as follows:  

i. No-history Crowds 

No-history crowds are formed by the player-agents who do not care what 

happened before. Considering the randomly set initial settings – including the 

strategies assigned, play order, and distribution of each strategy – the chart in Figure 

5 shows the possibility that each of the nine scenarios may occur. As shown in the 

graph in Figure 5, the possibility that the best player will play defect is 0.75, while 

the possibility that the crowds will play defect is close to the possibility that the 

crowds will play ―mix‖ or cooperate. The ―oblivious‖ property of player-agent 

encourages the best player to play defect and take advantage from others. This action 

causes chaos in the whole crowds. Whether the crowd is friendly or hostile is 

unpredictable from the initial setting and is changed by play order, learning speed, 

and other factors.     
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no-history crowds best player-agent Crowds possibility 

 

mix Mix 0.125  

mix Defect 0.125  

mix Cooperate 0.000  

defect Mix 0.125  

defect Defect 0.250  

defect Cooperate 0.375  

cooperate Mix 0.000  

cooperate Defect 0.000  

cooperate Cooperate 0.0  

   Figure 5: No-history Crowds 

ii. Long-history Crowds 

Long-history crowds are formed by the player-agents who take into 

consideration the total number of times the opponent cooperated or defected in the 

past. Considering the randomly set initial settings – including the strategies assigned, 

play order, and distribution of each strategy – the chart in Figure 6 shows the 

possibility each of the nine scenarios may happen. As shown in the graph in Figure 6, 

the best player has over 0.60 chances to play ―mix‖ and slightly bigger than the 

chance to play defect, while the crowds show the tendency to play cooperate over 

―mix‖.  The ―unforgotten‖ property of player-agents makes the survivors in the 

long-history crowds more cautious and friendly, avoiding playing defect. The 

long-history crowds show the tendency to avoid ―pure‖ defect. 
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long-history crowds best player-agent Crowds possibility 

 

Mix Mix 0.250  

Mix Defect 0.000  

Mix Cooperate 0.375  

Defect Mix 0.125  

Defect Defect 0.000  

Defect Cooperate 0.250  

Cooperate Mix 0.000  

Cooperate Defect 0.000  

Cooperate Cooperate 0.000  

      Figure 6: Long-history Crowds 

iii. Latest-history Crowds 

Latest-history crowds are formed by the player-agents who take into 

consideration whether during the previous X number of matches/time (X defined by 

Limitation, normally no more than 3) the opponent cooperated or defected (X times in 

a row). Considering the randomly set initial settings – including the strategies 

assigned, play order, and distribution of each strategy – the chart in Figure 7 shows 

the possibility that each of the nine scenarios may happen. As shown in the graph in 

Figure 7, best player always plays harsher than the crowds: in cooperate crowds, the 

best player chooses to play ―mix‖; otherwise, the best player play defect all the time.  

 The ―Tit-for-Tat‖ property of player-agents in the ―latest-history crowds‖ makes 

them react promptly, but at the same time, leaves the whole crowds unstable. Whether 

the crowd is friendly or hostile is unpredictable from the initial setting and is changed 
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by play order, learning speed, and other factors. 

 

 

latest-history crowds best player-agent Crowds possibility 

 

Mix Mix 0.000  

Mix Defect 0.000  

Mix Cooperate 0.500  

Defect Mix 0.250  

Defect Defect 0.250  

Defect Cooperate 0.000  

Cooperate Mix 0.000  

Cooperate Defect 0.000  

Cooperate Cooperate 0.000  

       Figure 7: Latest-history Crowds 

iv. Absolute-gain Crowds 

Absolute-gain crowds are formed by the player-agents who take into 

consideration the average number of points received previously by 

cooperating/defecting when playing against the same opponent. Considering the 

random factor caused by randomly set initial settings – including the strategies 

assigned, play order, and distribution of each strategy – the chart in Figure 8 shows 

the possibility that each of the nine scenarios may happen.  As shown in the graph in 

Figure 8, the possibility for the crowds playing defect is over 0.85, while the best 

player plays ―mix‖ all the time. Actions based on the absolute gain create a hostile 

environment; and in hostile crowds, in order to obtain higher points, the best strategy 
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for a player is to find the ally. The absolute-gain crowds show dominance of defect, 

yet the best player seeks to create an ally, which adds a unique property to the crowds: 

being friendly to the newcomer.  

 

absolute-gain crowds best player-agent Crowds possibility 

 

Mix Mix 0.125  

Mix Defect 0.875  

Mix Cooperate 0.000  

Defect Mix 0.000  

Defect Defect 0.000  

Defect Cooperate 0.000  

Cooperate Mix 0.000  

Cooperate Defect 0.000  

Cooperate Cooperate 0.0  

       Figure 8: Absolute-gain Crowds 

v. Relative-gain Crowds 

Relative-gain crowds are formed by the player-agents who take into 

consideration whether it received fewer points from the last play, compared to its 

opponent. Considering the randomly set initial settings – including the strategies 

assigned, play order, and distribution of each strategy – the chart in Figure 9 shows 

the possibility that each of the nine scenarios may happen. As shown in the graph in 

Figure 9, the possibility for the crowds playing cooperate is over 0.85, while the best 

player swings between playing ―mix‖ and playing defect. The player-agents inside the 

relative-gain crowds only ask for not being taken advantage by their opponents, and 
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get a friendly environment in return in long run.  

 

 

 

 

 

 

relative-gain crowds best player-agent Crowds possibility 

  

Mix Mix 0.000  

Mix Defect 0.125  

Mix Cooperate 0.250  

Defect Mix 0.000  

Defect Defect 0.000  

Defect Cooperate 0.625  

Cooperate Mix 0.000  

Cooperate Defect 0.000  

Cooperate Cooperate 0.000  

       Figure 9: Relative-gain Crowds 

7.2.2.3. New Founding in the Crowds 

When observing the crowds, we notice some tipping points in the running period: 

i.) Cooperate crowds points threshold; ii.) Cooperate percentage threshold. We will 

explain the tipping points in the following section. 

i.)Cooperate crowds points threshold 

―Cooperate crowds points threshold‖ is the number used to tell the trend of 
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crowds. The two graphs in Figure 10 represent two typical scenarios in different runs 

of the system.  

In the ―peoplechoice‖ chart, there are two lines:  

1.) pink line between 0 and 1 shows the dominant choice in the crowds during the 

time, 0 representing defect and 1 representing cooperate 

2.) black line between 2 and 3 shows the best player-agent choice in the crowds 

during the time, 2 representing defect and 3 representing cooperate 

In the ―average player-agents‖ chart, the performance of the average player-agent 

during the time is shown. 

 

(a) Defect Crowds 
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(b) Cooperate Crowds 

Figure 10: Cooperate Crowds Points Threshold 

Experiments show that once the average player-agent points is larger than 2.6, the 

crowds will eventually show the dominance of cooperate. Let x represent the 

possibility, cooperate will happen in the crowds at time T; 

3*x*x + (1-x)*x*5 + (1-x)(1-x)1 = 2.6 => x = 0.69 

In other words, once the possibility of meeting a cooperative opponent is over 69 

percent, the crowds will end up as cooperate. We call the number 2.6 here ―Cooperate 

crowds points threshold‖. 

ii.)Cooperate percentage threshold   

―Cooperate percentage threshold‖ is the number denoting the current status of 

crowds. It can be used in reality when a person does not want to give out its current 

choice, but the history data is available. By using history data and ―cooperate 

percentage threshold‖, the current status of crowds – i.e., whether most of the crowds 

cooperate or defect – can be predicted. The two graphs of Figure 11 show in each run 

the percentage of cooperation previously and actions of best players and crowds in 

long run. 

Average Cooperate Percentage in Different Crowds 

 

No-history Long-history Latest-history Absolute-gain Relative-gain 

0.458  0.819  0.145  0.323  0.897  

0.704  0.745  0.349  0.265  0.473  

0.399  0.722  0.550  0.292  0.891  

0.243  0.537  0.607  0.345  0.908  
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0.509  0.924  0.605  0.436  0.836  

0.695  0.905  0.585  0.540  0.918  

0.753  0.511  0.613  0.309  0.859  

0.560  0.459  0.606  0.628  0.917  

(Best Player Action, Crowds Action) in Different Crowds 

 

 

 

 
No-history Long-history Latest-history Absolute-gain Relative-gain  

(mix,defect) (mix, cooperate) (defect, defect) (mix, defect) (defect, cooperate) 

(defect,cooperate) (defect, cooperate) (defect, defect) (mix, defect) (mix, defect) 

(defect, defect) (defect, cooperate) (defect,mix) (mix, defect) (defect, cooperate) 

(defect, defect) (defect,mix) (mix, cooperate) (mix, defect) (defect, cooperate) 

(defect,mix) (mix, cooperate) (mix, cooperate) (mix, defect) (mix, cooperate) 

(defect, cooperate) (mix, cooperate) (defect,mix) (mix,mix) (defect, cooperate) 

(defect, cooperate) (mix,mix) (mix, cooperate) (mix, defect) (mix, cooperate) 

(mix,mix) (mix,mix) (mix, cooperate) (mix,mix) (defect, cooperate) 
 

Figure 11: Cooperate Percentage Threshold 

Experiments show that  

1.) if average cooperate percentage < 0.5, most of the crowds play defect; 

 

2.) if average cooperate percentage < 0.5,0.6 >, most of the crowds play mix; 

 

3.) if average cooperate percentage > 0.6, most of the crowds play cooperate. 



 

 

CHAPTER 8: MAKING DECISION USING THE WISDOM OF CROWDS  

 

 

8.1. Aggregator-agent in Type I Crowds  

8.1.1. Aggregator-agent Performance V.S. Player-agent Performance 

 In this experiment, we focus on the effect of controllable factors on the 

aggregator-agents‘ performance in Type I Crowds. Given different aggregation 

methods, the ―selected frequency‖ of replacement, the percentage of replacement, and 

the fitness function, the performance of the player-agents and the aggregator-agents is 

recorded and compared. 

a. Given different “select frequency” for aggregator-agent in fixed crowds and 

evolutionary ones for higher point 

In this experiment, we focus on the effect of different ―select frequency‖ on 

aggregator-agents in different crowds. During each round, 250 player-agents have 

been put into game. After player-agents play for a while, aggregate-agents with 

different ―select frequency‖ are introduced to the game. For example, 

aggregator-agent whose strategy is to listen to those player-agents with highest point 

may choose to listen to the group of player-agents with highest point currently or keep 

the consult group for a while to evaluate average performance. 

The ―select frequency‖ shows the ability how an aggregator-agent can choose the 

currently best people. The results for different select frequency for aggregator-agent in 

different crowds are shown in Figure 12. 
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(a) Fixed Crowds 

 

 

 

 

(b) Evolutionary Crowds 

Figure 12: Different Select Pace in Crowds 

In Figure 12, the charts on the left show the better performance of 

aggregator-agent than the player-agent, while the charts on the right show the 

difference having different choosing frequency, 1step means choosing every round, 

100 step means choosing every 100 step and keep the same consult player-agent 

group for 100 runs. Results show that the more often the aggregator-agent check the 

current best, the more point it can get, while checking will be costly both in the 

experiment and real life. In (a) fixed crowds, only 3% different between 1 step check 

and 100 step check, and the 100 step, 200 step, 500 step check has only slightly 

different, even with 500 step does better job as time goes by. In (b) evolutionary 

crowds, the different between different frequencies can be ignored. Results show that 

given expense limitation, frequency for checking won‘t affect the performance very 
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much as long as the pace is relatively small to the whole running time. 

b. Given different replacing percentage of player-agent in evolutionary crowds for 

higher point and the ones for lower point 

In this experiment, we focus on the effect of different replacing percentage of 

player-agents in different crowds and related influence for aggregator-agents. During 

each round, 250 player-agents have been put into game. In evolutionary crowds, every 

certain time, evaluation will be executed to replace certain percentage of the crowds 

with preference player-agents, for example, in the one for higher points, the setting of 

replacing 10 percentage means 25 player-agents with lowest points will be replaced 

by the player-agent who has the same chromosome as the one with the highest point.     

The results for different select percentage of player-agent in different crowds are 

shown in Figure 13. 

 

  

 

 

    (a) Evolutionary Crowds for Higher Point 

 

 

 

 

 (b) Evolutionary Crowds for Lower Point 

Figure 13: Different Replacing Percentage in Crowds 
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The replacing percentage shows how fast the components of crowds are 

changing.  

The larger the percentage, the bigger the change in the components of crowds 

happens. In figure 13, (a) shows the performance of best aggregator in the crowd 

which player-agents with lower point are replaced by the highest one, while (b) shows 

the performance of best aggregator in the crowd which player-agents with higher 

point are replaced by the lowest one. Although (b) shows a period of upward during 

the run at first, (a) and (b) have the same pattern: The percentage under 20% won‘t 

change the trend, the larger the percentage is, the fast the effect of evolution shows.  

c. Given different fitting function for player-agent in evolutionary crowds for higher 

point and the ones for lower point 

In this experiment, we focus on the effect of different fitting function of 

player-agents in different crowds and related influence for aggregator-agents.  

During each round, 250 player-agents have been put into game. In evolutionary 

crowds, every certain time, evaluation will be executed to replace certain percentage 

of the crowds with preference player-agents, for example, in the one for higher points, 

those player-agents with lowest points will be replaced by the player-agent who has 

the same chromosome as the one with the highest point, while in the one for lower 

points, those player-agents with highest points will be replaced by the player-agent 

who has the same chromosome as the one with the lowest point.     

The results for different fitness function for player-agent in evolutionary crowds 

are shown in Figure 14. 
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(a) Evolutionary Crowds for Higher Point 

 

 

 

 

 (b) Evolutionary Crowds for Lower Point 

Figure 14: Different Fitness Function for Player-agent 

In Figure 14, both charts show the better performance of aggregator-agent than 

the player-agent in evolutionary crowds. In (a) evolutionary crowds for higher point, 

which will end up being a friendly crowd suggested by the experiment 1, the 

interlaced three lines for aggregator-agent with highest point, aggregator-agent with 

average point and player-agent with highest point and an obvious separated line for 

player-agent with average point suggest that in the evolution for higher point crowd, 

the aggregator-agent cannot perform much better than the best individual while it can 

beat the player-agent with average point easily during most of the time. The 

aggregator-agents still perform better than most of the crowds. In (b) evolutionary 

crowds for lower point, which will end up being a more hostile crowd suggested by 

the experiment 1, the obvious difference between the lines of aggregator-agent and 
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player-agent suggests that in changing crowds which try to eliminate the better 

performer, the aggregator-agent can beat the player-agent easily.   

d. Player-agents’ and Aggregator-agents’ performance with the learning ability in 

evolutionary crowds 

Adding the learning ability to the player-agents enables them to learn 

individually to improve their decisions; although this violates part of Surowiecki‘s 

criteria –independence – it is common and necessary in real life. Experiments show 

that by keeping enough diversity of opinion, the aggregate wisdom of the crowd can 

still perform better than most individual members, even the best individual. In this 

experiment, we focus on the player-agents‘ performance with learning ability in 

evolutionary crowds.  

Since the formation of crowds is important to the performance of agents in the 

Prisoner‘s Dilemma Problem, we run the experiments 10 times having different 

random seeds. During each round, 250 player-agents have been placed on the grid.  

After player-agents have had a chance to play against and learn from each other for 

certain learning period, aggregator-agents with different strategies are introduced into 

this game.  Aggre1, 5, 9.., 250 represent the aggregator-agent with different 

aggregation strategies. For example, an aggregator-agent whose strategy is to consult 

player-agents with the highest scores may choose to follow the advice of the group of 

player-agents having the current highest score, and we call it aggre1 … likely a wise 

strategy for the aggregator-agents. Similarly, best_people, median_people, 

average_people represent the player-agents. For example, best_people represents one 

of the player-agent having the current highest score. 

In Figure 15, the charts show the performance of player-agents and 

aggregator-agents, after certain duration of learning, using 10 different seeds 
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(formations of crowds).  

By introducing the ability to learn, the performance of player-agents and 

Aggregator-agents show increasing volatility on scoring for different seeds (crowds). 

When no learning happens, the performance of player-agents and aggregator-agent 

keeps relatively stable no matter what seed (formation of crowds) is used. Although 

the line for best-people is always on the top, we observe that the lines for Aggre19 

and Aggre29 are close to the one for best_people, which suggests that the best way to 

make the decision by using the wisdom of the crowd in this situation is to listen to 

10% of the crowd, so that the performance will be similar to the best individual in the 

crowds but only slightly lower. The Best individual might change for each tick while 

the performance of aggregators keeps good all the time.  

While introducing the learning period, more volatility occurs, and best-people is 

no longer the all-time winner. In the chart Fig. 5 which shows the situation after 

learning for 150,000 ticks, the aggregator-player performs better than best_people six 

times out of ten. This suggests that more than half the time, making a decision using 

the wisdom of the crowd is even better than the best individual in the crowds.  
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Figure 15: Performance of Player-agent and Aggregator-agent in Different Seeds, 

Varying in Duration of Learning 

 

e. Player-agents’ and Aggregator-agents’ performance varying in the size of crowds  

The size of crowds which is related to the diversity of opinions is another factor 

for agents‘ performance. In this experiment, we focus on the ‗player-agents‘ and 

‗aggregator-agents‘ performance while varying the size of the crowds. Two sets of 

experiments were run using different random seeds: 250 player-agents and 500 

player-agents. 

In Figure 16, avg_people_250 and best_people_250 represent the average 

player-agent and the player-agent with the current high score in a crowd of 250 

player-agents; aggre250 represents the aggregator-agent who chooses the strategy to 

listen to all 250 player-agents in the crowd; likewise for avg_people_500, 

best_people_500 and aggre500.  

These charts in Fig. 16 show that despite the different random seeds, the 

increased size of the crowd (which increases diversity of opinion) results in better 

performance for both player-agents and aggregator-agents. And for most of time, the 



56 

 

aggregator-agent using the wisdom of the crowd is better than the best player-agents 

in those crowds. C represents the points gained by Aggregator-agent using the 

wisdom of crowds; B represents the points gained by Best Player-agent; and A 

represents the points gained by Average Player-agent. 

 

 

Figure 16: Performance of Player-agent and Aggregator-agent, Varying in Size of 
Crowds 

8.1.2. Findings in Type I Crowds 

A simulation using the concept of Complex Adaptive Systems is built to 

demonstrate the wisdom of crowds, while at the same time Surowiecki‘s four criteria 

to form a smart crowd are tested. However, it is hard to imagine a continuous 

decision-making example where members of the crowd are truly independent from 
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each other in the real world. Therefore, by partially violating the independence criteria, 

we added learning ability to the crowd. Experiments show although many aggregation 

methods we can have, the simplest majority rule still gets its glory in Type I Crowds, 

and also knowing keep track of the performance of player-agent all the time to form 

the consulting group may improve the performance of aggregator-agent, given 

expense limitation, frequency for checking the crowd‘s performance won‘t affect the 

aggregator-agent very much. In all, regardless of the type of crowds and the rate of 

change in the crowds, aggregator-agent with appropriate aggregation method can 

always perform better than most of the crowds, even better than the best individual 

performer nearly all the time in Type I Crowds. And also our experiments show that 

learning process makes both individual players and the aggregate-players smarter, 

while still guaranteeing diversity of opinion. Furthermore, these experiments show 

that in a crowd where the ―membership‖ can be defined dynamically, and where 

members can communicate with each other and learn from each other, the 

wisdom-of-crowds approach is superior to the best performing members in the crowd.     

8.2. Aggregator-agent in Type II Crowds 

8.2.1. Aggregator-agent Performance vs. Player-agent Performance 

Aggregator-agents using simple polling can perform better than the average in 

Type I crowds most of the time, as we see from above. But the same aggregation 

method may not work in all kinds of Type II crowds. Given different aggregation 

methods, the performance of the player-agents and the aggregator-agents is recorded 

and compared in Type II crowds. 

i. No-history Crowds 

No-history crowds are formed by player-agents who do not care what happened 
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before. Considering the random factor caused by randomly set initial settings – 

including the strategies assigned, play order, and distribution of each strategy – the  

chart in Figure 17 shows the performance of average player-agent, best player-agent, 

aggregator-agent using all crowds, aggregator-agent using 10 percent crowds. C 

represents the points gained by aggregator-agent using the wisdom of crowds; B 

represents the points gained by best player-agent; and A represents the points gained 

by average player-agent.  

As shown in Figure 17, three out of seven times, aggregator-agent using all 

crowds plays better than the average player-agent, never in seven times does  

aggregator-agent using 10 percent crowds play better than the average player-agent. 

In no-history crowds, no good aggregation method is recommended. The wisdom of 

crowds does not work well, and the best strategy is to play defect.  

 

 Aggregator-agent using all 

crowds 

Aggregator-agent using 10% 

crowds 

C>B>A B>C>A B>A>C C>B>A B>C>A B>A>C 

0 0.43 0.57 0 0 1 

Figure 17. No-history Crowds 
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ii.  Long-history Crowds   

Long-history crowds are formed by the player-agents who take into consideration 

the total number of times the opponent cooperated or defected in the past. Considering 

the random factor caused by randomly set initial settings – including the strategies 

assigned, play order, and distribution of each strategy – the chart in Figure 18 shows 

the performance of average player-agent, best player-agent, aggregator-agent using all 

crowds, and aggregator-agent using 10 percent crowds. C represents the points gained 

by aggregator-agent using the wisdom of crowds; B represents the points gained by 

best player-agent; and A represents the points gained by average player-agent. As 

shown in Figure 18, six out of seven times aggregator-agent using all crowds plays 

better than the average player-agent, while three out of seven times, aggregator-agent 

using 10 percent crowds plays better than the average player-agent. In long-history 

crowds, aggregator-player using all crowds is recommended. The wisdom of crowds 

works well and the best strategy is to make decisions based on the majority opinion in 

the whole crowds.  
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 Aggregator-agent using all 

crowds 

Aggregator-agent using 10% 

crowds 

C>B>A B>C>A B>A>C C>B>A B>C>A B>A>C 

0.57 0.29 0.14 0.43 0 0.57 

    Figure 18: Long-history Crowds 

iii. Latest-history Crowds 

Latest-history crowds are formed by the player-agents who take into 

consideration whether during the previous X number of matches/time (X defined by 

limitation, normally no more than 3) the opponent cooperated or defected (X times in a 

row). Considering the random factor caused by randomly set initial settings – 

including the strategies assigned, play order, and distribution of each strategy -- the 

chart in Figure 19 shows the performance of average player-agent, best player-agent, 

aggregator-agent using all crowds, and aggregator-agent using 10 percent crowds. C 

represents the points gained by aggregator-agent using the wisdom of crowds; B 

represents the points gained by best player-agent; and A represents the points gained 

by average player-agent. As shown in Figure 19, never in seven times does  

aggregator-agent using all crowds play better than the average player-agent, while six 

out of seven times, aggregator-agent using 10 percent crowds plays better than the 

average player-agent. In latest-history crowds, aggregator-player using 10 percent of 

crowds is recommended. The wisdom of crowds works well, and the best strategy is to 

make decisions based on the majority opinion from the top 10 percent crowds.  
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# out 

of 7 

Aggregator-agent using all 

crowds 

Aggregator-agent using 10% 

crowds 

C>B>A B>C>A B>A>C C>B>A B>C>A B>A>C 

0 0 1 0.43 0.43 0.14 

     Figure 19: Latest-history Crowds 

iii. Absolute-gain Crowds 

Absolute-gain crowds are formed by the player-agents who takes into 

consideration the average number of points received previously by 

cooperating/defecting when playing against the same opponent. Considering the 

random factor caused by randomly set initial settings – including the strategies 

assigned, play order, and distribution of each strategy – the chart in Figure 20 shows 

the performance of average player-agent, best player-agent, aggregator-agent using all 

crowds, and aggregator-agent using 10 percent crowds. C represents the points gained 

by aggregator-agent using the wisdom of crowds; B represents the points gained by 

best player-agent; and A represents the points gained by average player-agent. As 

shown in Figure 20, seven out of seven times, aggregator-agent using all crowds plays 

better than the average player-agent, while never in seven times does aggregator-agent 

using 10 percent crowds play better than the average player-agent. In absolute-gain 



62 

 

crowds, aggregator-player using all crowds is recommended. The wisdom of crowds 

works well, and the best strategy is to make decision based on the majority opinion in 

the whole crowds.  

 

 Aggregator-agent using all 

crowds 

Aggregator-agent using 10% 

crowds 

C>B>A B>C>A B>A>C C>B>A B>C>A B>A>C 

0.86 0.14 0 0 0 1 

     Figure 20: Absolute-gain Crowds 

iv.  Relative-gain Crowds 

Absolute-gain crowds are formed by the player-agent who takes into 

consideration whether it received fewer points from the last play, compared to its 

opponent. Considering the random factors caused by randomly set initial settings – 

including the strategies assigned, play order, and distribution of each strategy – the  

chart in Figure 21 shows the performance of average player-agent, best player-agent, 

aggregator-agent using all crowds, and aggregator-agent using 10 percent crowds. C 

represents the points gained by aggregator-agent using the wisdom of crowds; B 

represents the points gained by best player-agent; and A represents the points gained 
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by average player-agent. As shown in Figure 21, six out of seven times, 

aggregator-agent using all crowds plays better than the average player-agent, while 

never in seven times does aggregator-agent using 10 percent crowds play better than 

the average player-agent. In long-history crowds, aggregator-player using all crowds 

is recommended. The wisdom of crowds works well, and the best strategy is to make 

decision based on the majority opinion from the whole crowds.  

 

 Aggregator-agent using all 

crowds 

Aggregator-agent using 10% 

crowds 

C>B>A B>C>A B>A>C C>B>A B>C>A B>A>C 

0.29  0.57 0.14  0  0  1  

    Figure 21: Relative-gain Crowds 

 

8.2.2. Performance of Aggregator-agent and Formation of Top 10 percent Crowds 

From the above, we come to the conclusion that using appropriate aggregation 

method aggregator-agent can always perform better than most of the crowds, even 

better than the best individual performer in Type II Crowds, except for No-history 

Crowds.  We also notice that in latest-history crowds, aggregator-agent using 10 
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percent crowds as advisory group plays better than the one using the whole crowds, 

while in other Type II groups, the one using the whole crowds is better. Experiments 

show that the difference in performance of aggregator-agent is related to the 

formation of top 10 percent crowds in different Type II crowds.  

In latest-history crowds, aggregator-agent using 10 percent crowds as advisory 

group plays better than the one using the whole crowds.  The typical formation of 

top 10 percent crowds in latest-history crowds is shown in Figure 22. Each line 

represents one of Top N (1< N < 25) player-agents during the running time. Flatness 

in the lines suggests the formation of top 10 percent crowds does not change. 

Up-downs in the lines suggest the formation of top 10 percent crowds change during 

the time. As shown in Figure 22, the relatively-flat lines suggest the formation of top 

10 percent crowds change little during the time. The performances of top 10 percent 

player-agents are stable, and the formation of top 10 percent crowds remains nearly 

the same during the running time.    

 

Figure 22: Top 10% Crowds Formation in Latest-history Crowds 
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The typical formation of top 10 percent crowds in relative-gain crowds is shown 

in Figure 23. Each line represents one of Top N (1< N < 25) player-agents during the 

running time. Flatness in the lines suggests the formation of top 10 percent crowds 

does not change. Up-downs in the lines suggest the formation of top 10 percent 

crowds change during the time.  The relatively-bumpy lines in Figure 23 suggest the 

formation of top 10 percent crowds in a relative-gain crowd change often during the 

time. The performances of top 10 percent player-agents are unstable, and the 

formation of top 10 percent crowds changes during the running time. 

 

Figure 23: Top 10% Crowds Formation in Relative-gain Crowds 

Based on the experiments' results, we reached the conclusions that – 

1.) In most of the Type II crowds, the aggregator-agent using all the crowds 

performs better than the one using top 10 percent crowds as advisory group. 

Suggestions on the selection of advisory groups for different crowds are shown 

below. 
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Type II Crowds Using all the crowds Using 10% top of the 

crowds 

No-history Crowds Yes  

Long-history Crowds Yes  

Latest-history Crowds  Yes 

Absolute-gain Crowds Yes  

Relative-gain Crowds Yes  

Figure 24: Strategies on Selection of Advisory Group in Type II Crowds 

2.) In most of the Type II crowds, aggregator-agent using wisdom of crowds 

(either all the crowds or top 10 percent crowds) performs better than the average 

player-agent, even the best player-agent. The only exception is no-history crowds. 

In a no-history crowds, playing random is the basic strategy for the single 

Player-agent thus aggregator-player using collective wisdom cannot show its 

superiority. Aggregator-agents‘ performance in Type II crowds are shown in 

Figure 25. C represents the points gained by aggregator-agent using the wisdom of 

crowds; B represents the points gained by best player-agent; and A represents the 

points gained by average player-agent. 

probability C > B > 

A 

B > C > A B > A > 

C 

No-history Crowds 0 0.43 0.57 

Long-history 

crowds 

0.57 0.29 0.14 

Latest-history 

Crowds 

0.43 0.43 0.14 

Absolute-gain 

Crowds 

0.86 0.14 0 

Relative-gain 

Crowds 

0.29 0.57 0.14 

Average 0.43 0.37 0.20 

Figure 25: Performance of Aggregator-player  

3.) Aggregator-players, using different strategies to select the advisory group, 

perform differently in each of Type II crowds. Experiments show that the 
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formation of top 10 percent crowds in different Type II crowds can be the key 

factor. 

In a crowd that has a relatively-stable top 10 percent group, aggregator-agent 

using the top 10 percent as advisory group does a better job than the one using all the 

crowds. On the other hand, in a crowd whose top 10 percent formation is changing all 

the time, using temporary top 10 percent crowds as advisory group would not help the 

aggregator-agent make a good decision and using all the crowds as advisory group 

does a better job.  

8.3. Choosing the Best Strategy to Make Decision in the Crowds 

The above experiments show that in both Type I and Type II crowds 

aggregator-agent using the wisdom of crowds in a proper way can perform better most 

of the time than the average individual player-agent in the crowds, and can even 

perform the best some of the time.  The formation of the crowds is the key factor to 

choose the best aggregation method for the aggregator-agent. Experiments in both 

Type I and Type II crowds show that the formation of crowds can be evaluated by 

simply observing 1) the performance of top 10 percent crowds or 2) the performance 

of best player-agent and average player-agent. 

As described in 8.2, in a crowd that has a relatively-stable top 10 percent group, 

aggregator-agent using the top 10 percent as advisory group does a better job than the 

one using all the crowds. On the other hand, in a crowd whose top 10 percent 

formation is changing all the time, using temporary top 10 percent crowds as advisory 

group would not help the aggregator-agent make a good decision and using all the 

crowds as advisory group does a better job.  

Choosing the best aggregation method based on the formation of crowds may not 
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be easy to apply when the detail of crowds is unknown. There are other ways to 

choose the best aggregation methods, for example, making decision based on the 

performance of best player-agent and average player-agent. The strategy is useful 

when the scores from the best player-agent and average player-agent are available, 

while the top 10 percent crowds data is too large or too hard to collect and analyze.   

Using the points that best player-agents and average player-agents get during the 

game, we generate rules for the aggregator-agents that enable them to choose the best 

strategy to make a decision using the wisdom of crowds in all kinds of crowds in the 

context of Prisoner‘s Dilemma. Rules are shown below in Figure 26. 
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Figure 26: Procedure Making Decision Using Wisdom of Crowds 

The evaluation of the above decision-making procedure is shown in Figure 27. C 

represents the points gained by aggregator-agent using the wisdom of crowds and A 

Best Player-agent Points 

 – Average Player-agent Points 

< 0.1 < 0.1, 0.25> >0.25 

Best strategy for 
Aggregator-agent: 
Choosing Top 10% 
of the crowds as 
advisory group 

Best strategy for 
Aggregator-agent: 
Choosing all of the 
crowds as advisory 
group 
 

If the crowd is 

cooperate? 

Yes No 

If  

Best Player-agent points> 2.5? 
Best strategy for 
Aggregator-agent: 
Choosing all of the 
crowds as advisory 
group 
 

Best strategy for 
Aggregator-agent: 
Choosing all of the 
crowds as advisory 
group 
 

Yes 

Best strategy for 
Aggregator-agent: 
Choosing Top 10% 
of the crowds as 
advisory group 

No 
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represents the points gained by average player-agent. 

Judging the crowds based on different 

between Best Player-agent Points and 

Average Player-agent Points 

Probability that C > A 

< 0.1 .83 

<0.1, 0.25. .64 

>0.25 .93 

Overall  .83 

Figure 27: Evaluation Decision Making Procedure Using the Wisdom of Crowds 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 9: APPLICATION: USING THE WISDOM OF CROWDS IN A 
SIMPLIFIED STOCK MARKET 

 

9.1. Using the Wisdom of Crowds in Stock Market 

   The equity markets have long been the subject of research in a number of fields: 

mathematics finance, computational finance, quantitative behavioral finance, and 

others. Mathematical finance is a branch of applied mathematics concerned with the 

financial markets [Wiki08]. Computational finance is a cross-disciplinary field that 

relies on computational intelligence, mathematical finance, numerical methods, and 

computer simulations to make trading, hedging, and investment decisions, and to 

facilitate the risk management of those decisions [Wiki09]. Quantitative Behavioral 

Finance attempts to quantify basic biases and use them in mathematical models 

[Gcag99].   

By developing theoretical models, mathematical finance, when combined with 

computational finance, attempts to evaluate real market data and predict stock trends, 

including crashes. Stochastic analysis and partial differential equations are currently 

widely used methods, including the Black Scholes Model, the Stochastic Volatility 

Model, and the Poisson Market Model [Blac73, Slhe93, Neil05, Alan97].  

Others see the stock market as a disorganized crowd of individuals, buying and 

selling, with the sole common purpose of ascertaining the future mood of the market 

[Jaso04]. Behavioral finance is the study of the influence of psychology on the 

behavior of financial practitioners and its effect on markets [Sewe01]. It builds 

models based on analyses of human behavior, especially in financial markets, using 
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mathematical and statistical methodologies, in conjunction with valuation [Char06, 

Oliv04].  

While most of the research efforts focus on building a more accurate financial 

model and providing the best strategy to the investors based on their model, the idea 

of using the Wisdom of Crowds is to help the investor be the better-than-most player 

for the long run. Using the Wisdom of Crowds in the stock market focuses on the 

collective human behaviors. And those behaviors may cancel out the individual biases 

caused by mood, personality, or peer pressure. Understanding the collective wisdom 

helps the individual investor sense the foreseeable changes in the market before they 

become a fad.  

GSPC -- S&P 500 INDEX is a free-float capitalization-weighted index published 

since 1957 of the prices of 500 large-cap common stocks actively traded in the United 

States. The S&P 500 is one of the most widely followed indexes of large-cap 

American stocks [Wiki10]. It is considered a bellwether for the American economy. 

Figure 28 shows the profit gained by investing on GSPC or trading GSPC using our 

strategy in different time periods. The interest rate is 2% per year and no transaction 

cost is considered. Experiments prove that using the wisdom of crowds is a good 

strategy in a fast-changing market.   

Time period\Strategy Investing on GSPC Trading GSPC using WoC 

1 118961.1713 385714.087 

2 117595.3795 513837.69 

Figure 28: Comparison between different strategies 

9.2. Simplified Stock Market  

In a simplified stock market simulation, there is only one stock trading. The 

prices of any particular stock are derived from the actual market prices [Yaho01] and 

change daily based on the history records; they are not affected by the investors‘ 

http://en.wikipedia.org/wiki/Capitalization-weighted_index
http://en.wikipedia.org/wiki/Stock_market_index
http://en.wikipedia.org/wiki/Market_capitalization
http://en.wikipedia.org/wiki/Common_stock
http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/Bellwether
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actions in the system. 250 individual investors and 42 aggregator investors buy/sell 

stocks, or just watch in the market. ―Individual investors‖ can buy or sell based on 

their own strategy. ―Aggregator-investors‖ can buy or sell based on the aggregated 

information deprived from the crowds. 

Since individual investors make their own decisions continuously, we assign each 

agent a memory that is used to store information (knowledge), not only their previous 

decision but also their market observations as well, such as the duration of stock price 

rises since the investor's most recent transaction. The individual investors initially 

―receive‖ a randomly allocated strategy that they use to select their actions, based on 

the information that they have. The strategy may be abandoned or modified during the 

learning process, based on perceptions of and interactions with other investors.   

Aggregator investors are special participants (investors) in the game. The 

aggregator-investors represent the wisdom of crowds by acting as aggregators of 

various groups within the crowd of agents. These aggregators also participate in the 

game, but they have a different decision-making process. The aggregator investors are 

given the ability to make their decisions after consulting with their ―advisory group‖ , 

formed from the set of individual investors selected by each aggregator-agent. On 

each turn, aggregator investors choose to buy, sell, or watch according to the opinions 

from their chosen advisory group. Unlike the regular individual investors, aggregator 

investors have no strategy that can give them guidance regarding trading; their only 

strategy is to decide (a) which individual investor group they want to listen to and (b) 

the manner in which they plan to aggregate the group‘s advice.  

In the system, each individual investor is described using a chromosome-like 

structure:  

Agent Number Buy time Sell time 
Trade 

percentage 
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where: 

 Agent Number identifies each individual investor. 

 Buy time indicates the standard that an individual investor uses to decide to buy.  

 Sell time indicates the standard that an individual investor uses to decide to sell. 

 Trade percentage indicates the percentage of money/stocks that individual 

investor will trade in one transaction.  

Buy time suggests when an individual investor decides to buy, based on the 

previous stock price change. It can be any integer number randomly selected from [-N, 

N] (N is a natural number). In the experiment, Buy time is chosen from [-4, 4], which 

can assume one of the following values: 

-4. The individual investor buys when the stock price goes down 4 days in a row. 

-3. The individual investor buys when the stock price goes down 3 days in a row. 

-2. The individual investor buys when the stock price goes down 2 days in a row. 

-1. The individual investor buys when the stock price goes down. 

0. The individual investor buys or sells randomly. 

1. The individual investor buys when the stock price goes up. 

2. The individual investor buys when the stock price goes up 2 days in a row. 

3. The individual investor buys when the stock price goes up 3 days in a row. 

4. The individual investor buys when the stock price goes up 4 days in a row. 

Sell time suggests when an individual investor decides to sell, based on the 

previous stock price change. It can be any integer number randomly selected from [-N, 

N] (N is a natural number). In the experiment, Sell time is chosen from [-4, 4], which 

can assume one of the following values: 

-4. The individual investor sells when the stock price goes down 4 days in a row. 

-3. The individual investor sells when the stock price goes down 3 days in a row. 
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-2. The individual investor sells when the stock price goes down 2 days in a row. 

-1. The individual investor sells when the stock price goes down. 

0. The individual investor buys or sells randomly. 

1. The individual investor sells when the stock price goes up. 

2. The individual investor sells when the stock price goes up 2 days in a row. 

3. The individual investor sells when the stock price goes up 3 days in a row. 

4. The individual-investor sells when the stock price goes up 4 days in a row. 

Trade percentage suggests the percentage of money/stocks that individual 

investor will trade in one transaction, which can be one of the integer values between 

[1, 3]. For example, value 1 means individual investor trades all its money/stocks and 

value 3 means individual investor trades 1/3 of its money/stocks. 

For example, individual investor 001 shown below will buy stocks using all its 

money when the stock price goes up 2 days in a row, and it sells all its stocks 

immediately when the stock price go down. 

001 2 -1 1 

 

In the system, each aggregator investor is described using a chromosome-like 

structure:  

Agent Number 
Selection 

Strategy 

Aggregatio

n Strategy 

Trade 

Percentage 

Select 

Number 

Where: 

 Agent Number identifies each aggregator investor. 

 Selection Strategy indicates the strategy used to select an individual investor 

group. 

 Aggregation Strategy indicates the strategy used for aggregation. 

 Trade percentage indicates the percentage of money/stocks that aggregator 
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investor will trade in one transaction.  

 Select_Number indicates how many individual investors are chosen to form the 

group; it can be any number between 1 and the total number of individual 

investors. 

There are three selection strategies: 

0. The agent chooses the bottom Select_Number individual investors ranked by 

their total assets, including money and current value of stocks. 

1. The agent chooses the top Select_Number individual investors ranked by their 

total assets, including money and current value of stocks. 

2. The agent chooses all the individual investors in the market 

There are two aggregation strategies: 

1. The agent chooses the majority opinion. 

0. The agent does not choose the majority opinion. If the majority suggests to 

buy/sell, the aggregator investor chooses not to trade; otherwise, it chooses to 

buy/sell randomly.  

 Trade percentage indicates the percentage of money/stocks that aggregator investor 

will trade in one transaction.  

For example, aggregator investor 001 shown below will choose the top 20 

individual investors as its advisory group, and trade all its money/stocks as the group 

suggests. 

001 1 1 1 20 

9.3. Experiments Result 

  In a simplified stock market, where only one stock is being traded, individual 

investors and aggregator investors are buying, selling, or not trading, based on their 

strategies, starting with the same amount of money and stocks. The goal for each 
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investor is to increase its assets, which includes money and stocks. Individual 

investors can change their strategies by learning from those around him who perform 

better, while the performance of aggregator investor will also change along with the 

whole changing crowds.  

In the experiments, there are 250 individual investors and 42 aggregator investors. 

A set of basic strategies is assigned randomly to each investor. Investors buy/sell 

stocks or just watch the market, and there is only one stock that is trading. The price 

of the stock comes from real market data from the past five years. The stock price will 

change day by day, not as a result of the investor's actions but based on actual 

historical data. In the experiments we choose two different types of stocks -- 

Microsoft and Bank of America. As shown in Figure 28, stock price for Microsoft and 

Bank of America show different pattern. The stock price for Bank of America has 

relatively smooth up-downs while the one for Microsoft shows dramatic changes in a 

short time period. Here the stock of Microsoft represents the ones with low velocity, 

and the stock of Bank of America represents the ones with high velocity.   

 

Figure 29: Stock Price: Microsoft and Bank of America 

Two different crowds have been tested in the experiments: no-learning crowds 
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and adaptive/extended crowds. In a no-learning crowd, the crowd composition is 

unchanged during the whole running time and follows the four key criteria suggested 

in the book ―wisdom of crowds‖. Each individual investor use the same invest 

strategy during the whole running time. While in real life, it‘s hard to imagine an 

investor without consulting with experts or friends. By adding communication within 

crowds and allowing individual to learn from each other, adaptive/extended crowds 

violate ―independent‖ criteria -- one of the four key criteria mentioned previously yet 

is more realistic. For example, after each trading day, an individual investor can 

choose to learn from others to improve its performance, by adopting other‘s strategy. 

The experiment's results are shown below:  

a. Performance of Individual investors in No-Learning Crowds 

In this experiment, we focus on the performance individual investors in the stock 

market. During the randomly selected time period, 250 individual investors have been 

put into game. A set of basic strategies is assigned randomly to each investor and 3 

time period is randomly selected. Investors buy/sell stocks or just choose not to trade 

in the market, and there is only one stock that is trading. The crowd is defined as 

no-learning crowds. Its composition is unchanged during the whole running time and 

follows the four key criteria suggested in the book ―wisdom of crowds‖. 

Performances of individual investors are recorded below.  

For Microsoft, results are shown below 

Time 

period 

Best strategy for 

Individual investors 

Assets for best 

Individual investors 

Assets for average 

Individual investors 

1 (-3,1,1) 19543.55 16427.54 

2 (-4,1,1) 16553.48 12280.53 

3 (-4,1,1) 15130.83 11229.35 

For Bank of America, results are shown below 

Time 

period 

Best strategy for 

Individual investors 

Assets for best 

Individual investors 

Assets for average 

Individual investors 
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1 (4,-4,5) 18565.21 14509.64 

2 (-3,2,1) 24847.6 21045.47 

3 (-4,2,1) 15530.83 13233.79 

Figure 30: Individual-investors in No-Learning Crowds 

As shown in Figure 30, the best strategy for individual investors, assets for best 

individual investors and assets for average individual investors are recorded. Assets 

for individual investors are calculated based on the money and stocks the investors 

owns as well as the current stock price. Experiments show that in a no-learning 

environment, mostly the best strategy for individual investor is (-N1, N2, 1) (N1 and 

N2 are natural numbers), which suggests that 

1. Not considering the transaction cost, the best strategy still suggests the investor 

to trade all its money/stocks every time. 

2. -N1 in the individual strategy chromosome indicates the standard that an 

individual investor uses to decide to buy. For both stocks, the best strategy suggests 

the investor to buy cautiously after the stock price goes down in a row for days. 

3. N2 in the individual strategy chromosome indicates the standard that an 

individual investor uses to decide to sell. For the stock of low velocity, such as Bank 

of America, the best strategy would encourage the investors to buy/sell more 

cautiously – observing until the stock price changes for days. For the stock of high 

velocity, such as Microsoft stock, it would encourage the investors to sell immediately 

when the price go up, because the price often change dramatically in a short period as 

shown in Figure 29. 

4. The best strategies for high velocity stocks, such as Microsoft, in different time 

periods share the same pattern – buy when the price goes down for days and sell 

immediately when the price goes up.  

5. The best strategy is not the same for different stocks and different time periods. 

There is no all-time individual winner in the stock market. 
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b. Performance of Aggregator investors in a No-Learning Setting 

In this experiment, we focus on the performance for aggregator investors in the 

stock market. During the randomly selected time period, 250 individual investors and 

42 aggregator investors have been put into game. A set of basic strategies is assigned 

randomly to each investor and 3 time period is randomly selected. Investors buy/sell 

stocks or just choose not to trade in the market, and there is only one stock that is 

trading. The crowd is defined as no-learning crowds. Its composition is unchanged 

during the whole running time and follows the four key criteria suggested in the book 

―wisdom of crowds‖ 

 Performances of aggregator investors and individual investors are recorded 

below.  

For Microsoft, results are shown below 

Time 

period 

Best strategy for 

Aggregator 

investors 

Assets for best 

Aggregator 

investors 

Assets for best 

Individual 

investors 

Assets for 

average 

Individual 

investors 

1 (1,0,1,1) 19567.97 19543.55 16427.54 

2 (1,0,1,1) 14246.92 16553.48 12280.53 

3 (1,0,1,1) 13919.5 15130.83 11229.35 

For Bank of America, results are shown below 

Time 

period 

Best strategy for 

Aggregator 

investors 

Assets for best 

Aggregator 

investors 

Assets for best 

Individual 

investors 

Assets for 

average 

Individual 

investors 

1 (2,1,1,0) 18775.74 18565.21 14509.64 

2 (1,0,1,21) 28888.79 24847.6 21045.47 

3 (1,0,1,11) 13626.98 15530.83 13233.79 

Figure 31: Aggregator investors in a No-Learning Setting 

As shown in Figure 31, the best strategy for aggregator investors, assets for best 

aggregator investors, assets for best individual investors and assets for average 

individual investors are recorded. Assets for investors are calculated based on the 

money and stocks the investors owns as well as the current stock price. Experiments 
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show that in a no-learning environment, mostly the best strategy for aggregator 

investor is (1, N1, 1, N2) (N1 and N2 are natural numbers), which suggests that:  

1. The aggregator investor should consult with part of the crowds -- the top 

performers in the crowds.  

2. Not considering the transaction fee, the best strategy still suggests the investor 

to trade all its money/stocks every time.  

3. N2 in the strategy chromosome indicates how many individual investors are 

chosen to form the advisory group. For the stocks with low velocity, such as Bank of 

America, the best aggregator investor prefers larger advisory group even the whole 

crowds occasionally, while for the stocks with high velocity, such as Microsoft, it 

prefer smaller advisory group, for example, having the best individual as adviser.  

 

Standardized Profit for Microsoft Standardized Profit for BoA 

Best 

Aggregator 

investor 

Best 

Individual 

investor 

Average 

Individual 

investor 

Best 

Aggregator 

investor 

Best 

Individual 

investor 

Average 

Individual 

investor 

1 1.083 0.836 1 0.996 0.824 

 

Figure 32: Comparison among investors in a No-Learning Setting 

Figure 32 shows that the performance of aggregator investors is better than the 

performance of the average individual investor, and is close to or even better than the 

performance of the best individual investor, by following an appropriate aggregation 

strategy.  
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c. Performance of Aggregator investor in Adaptive/Extended Crowds  

In this experiment, we focus on the performance for aggregator investors in the 

stock market. During the randomly selected time period, 250 individual investors and 

42 aggregator investors have been put into game. A set of basic strategies is assigned 

randomly to each investor and 3 time period is randomly selected. Investors buy/sell 

stocks or just choose not to trade in the market, and there is only one stock that is 

trading. The crowd is defined as adaptive/extended crowds. After each trading day, an 

individual investor can choose to learn from others to improve its performance, by 

adopting other‘s strategy 

Performances of aggregator investors and individual investors are recorded 

below.  

For Microsoft, results are shown below 

Time 

period 

Best strategy for 

Aggregator 

investors 

Assets for best 

Aggregator 

investors 

Assets for best 

Individual 

investors 

Assets for 

average 

Individual 

investors 

1 (0,1,1,11) 19014.92 18509.36 16583.95 

2 (0,0,1,1) 14081.71 15465.35 12575.09 

3 (2,0,1,0) 13233.51 12062.48 11007.71 

For Bank of America, results are shown below 

Time 

period 

Best strategy for 

Aggregator 

investors 

Assets for best 

Aggregator 

investors 

Assets for best 

Individual 

investors 

Assets for 

average 

Individual 

investors 

1 (2,1,1,0) 19070.26 18565.21 12873.95 

2 (1,1,1,1) 25744.96 26397.37 22023.16 

3 (1,1,1,1) 14240.48 14411.08 13467.58 

Figure 33: Aggregator investors in an Adaptive Setting 

As shown in Figure 33, the best strategy for aggregator investors, assets for best 

aggregator investors, assets for best individual investors and assets for average 

individual investors are recorded. Assets for investors are calculated based on the 

money and stocks the investors owns as well as the current stock price. Experiments 
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show that the best strategies for aggregator investors in different scenarios differ.  

These can be: 1.) consult with the best individual investor and do what it suggests; 2.) 

consult with the worst individual investor or group and do what it suggests or not; or 

3.) consult with the whole crowds and do what it suggest or not in the market and . 

The first two strategies above suggest consulting with part of the crowds with better 

performance. The third strategy suggests consulting with the whole crowds. There is 

no all-time winning strategy pattern for aggregator investors in a stock market with 

adaptive crowds.   

 

Standardized Profit for Microsoft Standardized Profit for BoA 

Best 

Aggregator 

investor 

Best 

Individual 

investor 

Average 

Individual 

investor 

Best 

Aggregator 

investor 

Best 

Individual 

investor 

Average 

Individual 

investor 

1 0.994 0.866 1 1.003 0.825 

 

Figure 34: Comparison among investors in an Adaptive Setting 

Figure 34 shows that the performance of aggregator investors is better than the 

performance of the average individual investor, and is close to or even better than the 

performance of the best individual investor, by following an appropriate aggregation 

strategy. 

d. Comparison between Individual investors and Aggregator investors 

Figure 32 and Figure 34 show that the performance of aggregator investors is 



84 

 

better than the performance of average individual investor, and close to or even better 

than the best individual investor, by following an appropriate aggregator strategy. 

e. Effect of Other Factors 

Other factors may also affect the performance of individual investors and 

aggregator investors, for example, transaction cost, bank interest rate. In economics 

and related disciplines, a transaction cost is a cost incurred in making an economic 

exchange. For example, most people must pay a commission to their broker when 

buying or selling a stock. That commission is a transaction cost of doing the stock 

deal [Wiki11]. An interest rate is the rate at which interest is paid by a borrower for 

the use of money that they borrow from a lender. Interest rates are normally expressed 

as a percentage rate over the period of one year [Wiki12]. 

In this experiment, we focus on the effect of adding transaction cost and bank 

interest rate in the stock market. During the randomly selected time period, 250 

individual investors and 42 aggregator investors have been put into game. A set of 

basic strategies is assigned randomly to each investor and 3 time period is randomly 

selected. Investors buy/sell stocks or just choose not to trade in the market, and there 

is only one stock that is trading. The crowd is defined as no-learning crowds. The 

transaction cost is $10 per-transaction and the interest rate is 0.02/360 per-day. 

Performances of aggregator investors and individual investors are recorded below. 

Experiments show that – 

1. The best strategy for individual investors changes as shown in Figure 35,  

stock name 
Time 

period 
Type 

without 

transaction  

cost and 

interest rate 

with transaction  

cost and interest 

rate 

Microsoft 1 No-learning crowds (-3,1,1) (-4,4,5) 

 2 No-learning crowds (-4,1,1) (-4,3,4) 

 3 No-learning crowds (-4,1,1) (-3,4,4) 

 1 Adaptive crowds (-4,1,1) (-4,4,5) 
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 2 Adaptive crowds (-4,2,1) (-4,1,5) 

 3 Adaptive crowds (-2,1,1) (-4,4,2) 

Bank of 

America 
1 No-learning crowds 

(4,-4,5) 
(4,-4,5) 

 2 No-learning crowds (-3,2,1) (-2,4,1) 

 3 No-learning crowds (-4,2,1) (4,-4,5) 

 1 Adaptive crowds (4,-4,1) (4,-4,5) 

 2 Adaptive crowds (1,-1,1) (-2,4,1) 

 3 Adaptive crowds (-3,2,1) (4,-4,5) 

Figure 35: Strategies for Best Individual investors 

Best strategy in a more realistic stock market with transaction cost and daily 

interest suggests that the investors should buy or sell more cautiously, by 1.) trading 

only part of their money/stocks , for example 1/5 of their money/stocks instead of all 

each time, despite the transaction cost they have to pay for each trade and 2.) 

observing the market trend for longer time, for example more than three days before 

sell, instead of the one or two day preferred by the simplified stock market which has 

no transaction cost and bank interest.  

2. The best strategy for aggregator investors changes as shown in Figure 36. 

Stock name 
Time 

period 
Type 

without 

transaction  

cost and 

interest rate 

with transaction  

cost and interest 

rate 

Microsoft 1 No-learning crowds (1,0,1,1) (0,1,1,11) 

 2 No-learning crowds (1,1,1,1) (2,1,3,0) 

 3 No-learning crowds (1,0,1,1) (2,0,3,0) 

 1 Adaptive crowds (0,1,1,11) (0,1,1,11) 

 2 Adaptive crowds (0,0,1,1) (2,0,3,0) 

 3 Adaptive crowds (2,0,1,0) (2,0,1,0) 

Bank of 

America 
1 No-learning crowds 

(2,1,1,0) 
(2,1,1,0) 

 2 No-learning crowds (1,0,1,21) (2,1,1,0) 

 3 No-learning crowds (1,0,1,11) (1,1,1,21) 

 1 Adaptive crowds (2,1,1,0) (2,1,1,0) 

 2 Adaptive crowds (1,1,1,1) (1,1,1,11) 

 3 Adaptive crowds (1,1,1,1) (2,0,3,0) 

Figure 36: Strategies for Best Aggregator investors 

Adding transaction cost and daily interest change the best strategy for aggregator 
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investor. As shown in Figure 36, the best aggregation strategy in a more complicated 

market tends to be in the format of (2,X,X,X) which suggest the investors listening to 

the whole crowds. On the other hand, the most popular aggregation strategy in a 

simplified market tends to be in the format of (1,X,X,X) which suggest the investors 

listening to part of crowds. It may suggest that with the more complexity in the 

real-world market, the power of using the wisdom of the whole crowd shows more.   

3. Comparison between Individual investors and Aggregator investors 

Figure 37 shows that the performance of aggregator investors is better than the 

performance of average individual investor, and close to or even better than the best 

individual investor, by following an appropriate aggregator strategy in a stock market 

with transaction cost and interest rate. 

For Microsoft, results are shown below 

Time 

period 

Type Assets for best 

Aggregator 

Investors 

Assets for best 

Individual 

investors 

Assets for average 

Individual 

investors 

1 No-learning 

crowds 
16647.78 17081.34 15060.98 

2 No-learning 

crowds 
12442.96 12800.27 10949.72 

3 No-learning 

crowds 
12118.00 11640.13 9406.46 

1 Adaptive crowds 16647.81 17081.35 15061.00 

2 Adaptive crowds 12417.10 12889.06 10032.26 

3 Adaptive crowds 13236.65 12745.83 9845.99 

 

For Bank of America, results are shown below 

Time 

period 

Type Assets for best 

Aggregator 

Investors 

Assets for best 

Individual 

investors 

Assets for average 

Individual 

investors 

1 No-learning 

crowds 
17899.97 16251.03 9630.04 

2 No-learning 

crowds 
19706.32 20395.15 17724.76 

3 No-learning 

crowds 
12603.61 13437.03 11707.58 
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1 Adaptive crowds 14151.36 16251.03 7609.00 

2 Adaptive crowds 19536.87 20395.15 12274.49 

3 Adaptive crowds 12535.66 13437.03 10394.16 

Figure 37: Comparison among investors in a stock market with transaction cost and 

interest rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 10: LESSONS LEARNED AND FUTURE WORK 

 

 

 In the previous chapters, we use the concept of Wisdom of Crowds to a 

continuous decision making problem – The Prisoner‘s Dilemma and a simple stock 

market model.  

Originally introduced by J. Surowiecki, Wisdom of Crowds theory simply 

suggests that a collective may solve a problem better than most of the individual 

members of the group acting alone under certain circumstances. In areas such as the 

social sciences and economics – which involve numerous human interactions and 

subjective decision making, it is difficult to determine an effective decision making 

model or strategy that accurately accounts for those subjective factors. Wisdom of 

Crowds uses "the crowd" to resolve problems that involve numerous human 

interactions and subjective decision making and relax the need to collect information, 

assemble and update database. A decision making system that uses the wisdom of 

crowds has various benefits, including reducing the cost of collecting information and 

assembling databases for each field, avoiding frequent data updates, and canceling out 

human bias through information aggregation. The effectiveness of Wisdom of Crowds 

in decision making depends on the type of crowds and the aggregation method using 

to obtain collective wisdom. Surowiecki suggests four key criteria to form smart 

crowds: Diversity of opinion, Independence, Decentralization and Aggregation. We 

built a simulation, using the concept of Complex Adaptive Systems, to demonstrate 

the wisdom of crowds, while at the same time testing Surowiecki‘s four criteria to 

form a smart crowd.  
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However, it is hard to imagine a continuous decision-making example where 

members of the crowd are truly independent from each other in the real world.  

Therefore, by partially violating the independence criteria, we added learning ability 

to the crowd. Our experiments show that this addition makes both individual players 

and the aggregate-players smarter, while still guaranteeing diversity of opinion and 

the effectiveness using wisdom of crowds. Evolution is also added into the 

decision-making process of crowds.  

In the Prisoner‘s Dilemma experiments, both the individual players‘ behavior and 

their effect on the system as a whole are examined in order to understand the type of 

crowds and the performance of aggregation methods.  

Experiments show that 

1.) In a fixed crowd, the crowd composition is unchanged during the whole running 

time. Although no evolution happens (which means the good keep good and bad keep 

bad without any change), the best performer -- a greedy player who takes advantage 

of naïve cooperate players still ends up with the score only slightly better than the 

performance of the crowds, instead of 5 points advantage which it had expected for. 

2.) In the extended crowds where Player-agents are replaced gradually by those with 

the highest point, the crowds end up with the score of 3, which suggests that all 

players accepted cooperation as their mode of operation. 

3.) In the extended crowds where Player-agents are replaced gradually by those with 

the lowest score, the whole society ends up consisting of the players who are afraid of 

being eliminated by playing ‗cooperate‘. 

Also, the fact that the same player can perform differently in different crowds, 

without changing its action rules, tells us that the Lucifer Effect may not be related to 

the notion of human nature but only to the interaction of participants. 
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Experiments in extended crowds including Type I crowds -- crowds with diverse 

strategy distribution and Type II Crowds -- crowds with homogenous strategy 

distribution give us a close look at the structure of crowd more precisely by using 

elements such as size, density, and various kind of behavior settings, including 

heuristic, behavior pattern, social influence, learning speed. When observing the 

crowds, we notice some tipping points in the running period: 1.) Cooperate crowds 

points threshold; 2.) Cooperate percentage threshold. ―Cooperate crowds points 

threshold‖ is the number used to tell the trend of crowds. ―Cooperate percentage 

threshold‖ is the number denoting the current status of crowds. By using history data 

and ―cooperate percentage threshold‖, the current status of crowds – i.e., whether 

most of the crowds cooperate or defect – can be predicted. There two variables can 

help us to predict the crowds trend in advance.  

 Experiments show that in both Type I and Type II crowds the aggregator-agent, 

using the wisdom of crowds in a proper way, performs better than the average 

individual player-agent. It can even perform better than the best performer sometime.    

The formation of the crowds is the key factor for choosing the best aggregation 

method for the aggregator-agent. Experiments in both Type I and Type II crowds 

show that the formation of crowds can be evaluated by simply observing 1.) the 

performance of the top 10 percent performers in the crowds or 2.) the performance of 

the best player-agent and the average player-agent. In a crowd that has a 

relatively-stable top 10 percent group, the aggregator-agent using the top 10 percent 

performer as the advisory group does a better job than the one using all the players in 

the crowds. On the other hand, in the crowd whose top 10 percent formation is 

changing all the time, using the current top 10 percent performers as the advisory 

group would not help the aggregator-agent make a good decision. Using all the 
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players in the crowds as an advisory group is the best possible aggregation method. 

Since the detailed information of the crowds is hard to obtain in real life, choosing the 

best aggregation method based on the formation of crowds may not be realistic 

sometimes. There are other ways to help to choose the best aggregation methods, for 

example, by making decision based on the performance of the best player-agent and 

the average player-agent. The strategy is useful when the scores of the best 

player-agent and the average player-agent are available, and the top 10 percent 

performer of the crowd data is too large or too hard to collect and analyze. Using the 

scores that the best player-agent and the average player-agents obtain during the game, 

we generate rules for the aggregator-agents that enable them to choose the best 

strategy for making a decision using the wisdom of crowds in all kinds of crowds in 

the context of Prisoner‘s Dilemma.  

  A simplified stock market system was introduced to demonstrate the utility of 

wisdom of crowds in real life. Given different stocks, performances of individual 

and aggregator investors are examined.  

In a simplified no-learning stock market -- where the crowd composition follows 

the four key criteria suggested in the book ―wisdom of crowds‖ and no transaction 

cost or interest rate is considered, experiments show that 

1. The best strategy suggests the investor to trade all its money/stocks every time. 

2. For the stock of low velocity, such as Bank of America, the best strategy would 

encourage the investors to buy/sell more cautiously – observing until the stock price 

changes for days. For the stock of high velocity, such as Microsoft stock, it would 

encourage the investors to sell immediately when the price go up, because the price 

often change dramatically in a short period. 

3. For the stocks with low velocity, such as Bank of America, the best aggregator 
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investor prefers larger advisory group even the whole crowds occasionally, while for 

the stocks with high velocity, such as Microsoft, it prefer smaller advisory group, for 

example, having the best individual as adviser.  

4. The performance of aggregator investors is better than the performance of the 

average individual investor, and is close to or even better than the performance of the 

best individual investor, by following an appropriate aggregation strategy.  

In a simplified adaptive/extended stock market -- where the ―independent‖ 

criterion is violated and communication/learning is introduced, similar conclusion is 

yield as in simplified no-learning stock market. The performance of aggregator 

investors is better than the performance of the average individual investor, and is 

close to or even better than the performance of the best individual investor, by 

following an appropriate aggregation strategy.  

In a more complicated stock market setting, in which bank interest rate and 

transaction cost are added, experiments show that the best aggregation strategy in 

such market is to listen to the whole crowds. This may suggest that the greater 

complexity in the real-world market, the higher the power of using the wisdom of the 

whole crowd.  

In conclusion, in both Prisoner‘s Dilemma system and the simplified stock 

market, experiments show that the wisdom of crowds approach is always superior to 

the average and often to the best performing strategy in the crowd.  

The future work will focus on the application using wisdom of crowds in 

different fields, including better defined stock market, other types of trading and 

social problem decision-making.  
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