
Introduction

Results Conclusions

Future Works

• A code profiler analyzes performance by

measuring the execution time for each

function.

• Profilers are used to identify inefficient

parts of code.

• By utilizing a profiler, we were able to

identify bottlenecks in our second

application to optimize it for performance.

Application 1:

• Utilizing a GPU for video

rendering, frame rate improved

by 10 times its original value.

Application 2:

• Large predictions are

processed every 10 frames

instead of every frame to

maintain real-time look and

accuracy.

Applications after optimizations

Profiling

Optimizing the Performance of Computer Vision Application

Caleb Brohman, William States Lee College of Engineering

Erik Saule, College of Computing and Informatics

Application 1: Position Estimation

Objective:

• To identify and classify human actions

from a live webcam feed in real-time and

overlay the predictions.

Challenges:

• Ensuring real-time action recognition in a

live demonstration

• Recognizing and processing multiple

actions for display

Methods:

• Using a profiler to find bottlenecks in the

code

• Using basic strategies to decouple the

rendering and analysis sections.

How they work:

• Both computer vision applications,

supplied by Dr. Das’s lab, follow the same

structure of capturing a frame, processing

it with a machine learning model,

rendering it, and looping until completion.

Challenges:

• Performance is often limited by

computational resources, processing

speed, and accuracy, which can hinder

real-time processing and effectiveness.

Research Focus:

• Our research aims to optimize

performance by improving algorithm

efficiency and resource management,

enhancing speed and accuracy.

Computer Vision:

• Computer vision is a field that enables

machines to interpret and analyze visual

data, allowing us to demonstrate various

applications and optimalizations through

live demos.

Importance:

• Computer vision uses complex

algorithms to help machines interpret

and respond to visual data, making them

increasingly important in everyday life.

Output of profiler from application 2
Applications before optimizations

Application 2: Action Recognition

Objective:

• To increase performance of a live

webcam feed and make the application

estimate position in real-time.

Challenges:

• Ensuring real-time image processing

• Providing accurate position estimations

Methods:

• Utilize modern hardware to do complex

calculations faster.

• Using a profiler to determine inefficient

portions of code.

• Utilizing modern hardware for complex

computations is key for real-time image

processing.

• By leveraging modern hardware and

efficient software, noticeable

improvements in real-time performance

have been observed on both applications.

• Implementing threading in application 2 to

further separate rendering from analysis.

• Making the applications compatible on

different machines regardless of

hardware limitations.

Webcam output from application 1 and 2

Average FPS: 4.296 Average FPS: 44.471

Average FPS: 7.143 Average FPS: 16.712

	Slide 1

