Optimizing the Performance of Computer Vision Application
Caleb Brohman, William States Lee College of Engineering UNIVERSITY OF NORTH CAROLINA

Erik Saule, College of Computing and Informatics CHARLOTTE

Introduction Application 1: Position Estimation Application 2: Action Recognition

Computer Vision: How they work: - L

P - L Objective: Objective:

» Computer vision is a field that enables * Both computer vision applications, . . . To identifv and classifv h .
machines to interpret and analyze visual supplied by Dr. Das’s lab, follow the same * To Increase performance of a Ilvg | o} enp y and classity human agtlons
data, allowing us to demonstrate various structure of capturing a frame, processing webcam feed and make the application from a live webcam feed in real-time and
applications and optimalizations through it with a machine learning model, estimate position in real-time. overlay the predictions.
live demos. rendering it, and looping until completion.

Challenges: Challenges:

Importance: Challenges: Ensuring real-time image processing * Ensuring real-time action recognition in a

» Computer vision uses complex * Performance is often limited by » Providing accurate position estimations ive demonstration
algorithms to help machines interpret computational resources, processing « Recognizing and processing multiple
and respond to visual data, making them speed, and accuracy, which can hinder actions for display
increasingly important in everyday life. real-time processing and effectiveness. Methods:

« Utilize modern hardware to do complex Methods:
Research Eocus: calculations faster.
i i Using a profiler to determine inefficient + Using a profilerto find bottlenecks in the
» Our research aims to optimize gap code

portions of code.

performance by improving algorithm
efficiency and resource management,
enhancing speed and accuracy.

* Using basic strategies to decouple the
rendering and analysis sections.

Webcam output from application 1 and 2

Profiling Conclusions
_ Total Frames and Render Time Comparision Graph Total Frames and Render Time Comparision Graph cee
+ A code profiler analyzes performance by o — » Utilizing modern hardware for complex
measuring the execution time for each Application 1 computations is key for real-time image
function. » Utilizing a GPU for video Z0s. 20, processing.
- Profilers are used to identify inefficient rendering, frame rate improved | "~——— |
parts of code. by 10 times its original value. -~ “ * By_ Igveraglng mOdem hardware and
o | efficient software, noticeable
* By utilizing a profiler, we were able to N T T A improvements in real-time performance
identity bottlenecks in our second Totl Frames T Wiane T have been observed on both applications.
application to optimize it for performance. Average FPS: 4.296 Average FPS: 44.471
0200 Total Frames and Render Time Comparision Graph 0,200 Total Frames and Render Time Comparision Graph
T " G e Applicati .
3 ©.983 0.013 {method :rLL.ad' oFI'cv2l.VideoCapture' objeg‘lcs} ' . p p I I Catl O n 2 . 0.150 - 0.150 -
E IS R SR g o T vt | Future Works
S OED DR U Do e o e s « Large predictions are . z | MU\M
5923 0.282 g 0.282 0.000 {built-in method torch._C._nn.linear} ': 0.100 - t 0.100 4
e L processed every 10 frames | vl Foon WALULLLL
D —— instead of every frame to » Implementing threading in application 2 to
17 0.123 8.001 0.001 {built-in method torch._ops.torchvision.nms}
S maintain real-time look and further separate rendering from analysis.
L oL accuracy. TR R R e e e TS ke e e e ape ko
Average FPS: 7.143 Average FPS: 16.712 « Making the applications compatible on
Output of profiler from application 2 - :
Applications before optimizations Applications after optimizations different machines regardless of

hardware limitations.

	Slide 1

