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• A code profiler analyzes performance by 

measuring the execution time for each  

function.

• Profilers are used to identify inefficient 

parts of code.

• By utilizing a profiler, we were able to 

identify bottlenecks in our second 

application to optimize it for performance. 

Application 1:

• Utilizing a GPU for video 

rendering, frame rate improved 

by 10 times its original value.

Application 2:

• Large predictions are 

processed every 10 frames 

instead of every frame to 

maintain real-time look and 

accuracy.
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Application 1: Position Estimation

Objective:

• To identify and classify human actions 

from a live webcam feed in real-time and 

overlay the predictions.

Challenges:

• Ensuring real-time action recognition in a 

live demonstration

• Recognizing and processing multiple 

actions for display

Methods:

• Using a profiler to find bottlenecks in the 

code

• Using basic strategies to decouple the 

rendering and analysis sections.

How they work:

• Both computer vision applications, 

supplied by Dr. Das’s lab, follow the same 

structure of capturing a frame, processing 

it with a machine learning model, 

rendering it, and looping until completion. 

Challenges: 

• Performance is often limited by 

computational resources, processing 

speed, and accuracy, which can hinder 

real-time processing and effectiveness.

Research Focus: 

• Our research aims to optimize 

performance by improving algorithm 

efficiency and resource management, 

enhancing speed and accuracy.

Computer Vision:

• Computer vision is a field that enables 

machines to interpret and analyze visual 

data, allowing us to demonstrate various 

applications and optimalizations through 

live demos.

Importance: 

• Computer vision uses complex 

algorithms to help machines interpret 

and respond to visual data, making them 

increasingly important in everyday life.

Output of profiler from application 2
Applications before optimizations

Application 2: Action Recognition

Objective:

• To increase performance of a live 

webcam feed and make the application 

estimate position in real-time. 

Challenges:

• Ensuring real-time image processing 

• Providing accurate position estimations

Methods:

• Utilize modern hardware to do complex 

calculations faster.

• Using a profiler to determine inefficient 

portions of code.

• Utilizing modern hardware for complex 

computations is key for real-time image 

processing.

• By leveraging modern hardware and 

efficient software, noticeable 

improvements in real-time performance 

have been observed on both applications.

• Implementing threading in application 2 to 

further separate rendering from analysis.

• Making the applications compatible on 

different machines regardless of 

hardware limitations.

Webcam output from application 1 and 2

Average FPS: 4.296 Average FPS: 44.471

Average FPS: 7.143 Average FPS: 16.712
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