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ABSTRACT 

 

 

BINGDUO YANG. Variable selection for functional index coefficient models and its 

applications in finance and engineering. (Under the direction of DR. ZONGWU CAI) 

 

 

Variable selection with a non-concave penalty function has become popular in 

recent years, since it has ability to select significant variables and to estimate unknown 

regression coefficients simultaneously. In this dissertation, firstly, I consider variable 

selection in a functional index coefficient model under strong mixing context. Due to the 

fact that the model is in a semiparametric form so that the convergence rate of parametric 

estimator is faster than nonparametric estimator, my selection procedures with smoothly 

clipped absolute deviation penalty function consist of two steps. The first is to select 

significant covariates with functional coefficients and it is then to do variable selection 

for local significant variables with parametric coefficients. The asymptotic properties 

such as consistency, sparsity and the oracle property of these two step estimators are 

established, whereas easy computational algorithms are suggested to highlight the 

implementation of the proposed procedures. Finally, Monte Carlo simulation studies are 

conducted to examine the finite sample performance of the proposed estimators and 

selection procedures. Two financial examples including functional index coefficient 

autoregressive models and functional index coefficient models for the stock return 

predictability are extensively studied. 

In the second part of this dissertation, I consider the estimation and variable 

selection for the local annual average daily traffic (AADT) using different groups of 

variables. It is well documented that in transportation networks, AADT estimation is very 

important to decision making, planning, air quality analysis, etc and a regression method 
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may be one of the most popular methods for estimating AADT on non-counters roads. 

The existing literatures focus on how to collect different groups of predicting variables, 

and to select significant variables by t-test and F-test. However, there is no theory on the 

validity of these multiple selecting steps. Furthermore, variables collected for high 

functional class roads maybe not suitable for the estimation of local AADT because of 

lacking counters. The variable selection by smoothly clipped absolute deviation penalty 

(SCAD) procedure is proposed and it can select significant variables and estimate 

unknown regression coefficients simultaneously at one step. The estimation algorithm 

and the tuning parameters selection are also presented. To demonstrate the usefulness of 

the proposed procedure, I use the real data observed from Mecklenburg County of North 

Carolina in 2007 for illustration. The analysis result shows that the selection procedure is 

indeed valid and it further improves the local AADT estimation by incorporating satellite 

information. The proposed method outperforms some other regression methods when it is 

applied to local AADT estimation. 

The third part of this dissertation is to consider how to calculate seasonal factors 

in annual average daily traffic (AADT) and vehicle miles traveled (VMT). It is well 

known that seasonal factors are very important to the estimation of AADT and VMT and 

they are used to transfer one or two days measured traffic data at portable traffic 

monitoring sites to the AADT. Most literatures focus on taking the average of seasonal 

factors within groups of roads. Factor grouping including three techniques to calculate 

seasonal factors has been recommended by the Federal Highway Administration 

(FHWA). However, as recognized, it is difficult to select a representative group sample 

of roads. In this part, to calculate seasonal factors, I propose a new nonparametric 
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approach by introducing the distance kernel and by using the local weights. The 

nonparametric seasonal factors estimation and test procedure are presented. Moreover, 

the proposed approach can be extended to grouping cases if prior information of grouping 

is available. Finally, the real example demonstrates the new approach by using the data 

observed in the North Carolina. 
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CHAPTER 1: INTRODUCTION

This dissertation covers three topics, including variable selection for functional

index coefficient models and their applications in finance, efficient local annual average

daily traffic (AADT) estimation via smoothly clipped absolute deviation (SCAD)

variable selection based on regression models and nonparametric approach to calculate

seasonal factors for AADT estimation. In this chapter, I will introduce the main

results I have done to these tree topics, respectively.

1.1 Variable Selection for Functional Index Coefficient Models

Varying-coefficient model proposed by Hastie and Tibshirani (1993) has gained

more and more attention in recent years due to desirable properties such as its flexibil-

ity and dimension reduction in nonparametric sense. To incorporate more variables

in the functional coefficients and to overcome the difficulty of the curse of dimen-

sionality, Fan, Yao and Cai (2003) proposed the following functional index coefficient

model (FIM)

yi = gT (βTZi)Xi + εi, 1 ≤ i ≤ n, (1.1)

where yi is a dependent variable,Xi = (X1i, X2i, . . . Xpi)
T is a p×1 vector of covariates,

Zi is a d×1 vector of covariates, εi are independently identically distributed (i.i.d) with

mean 0 and standard deviation σ, β ∈ Rd is a d×1 vector of unknown parameters and

g(·) = (g1(·) . . . gp(·))T is a vector of p−dimensional unknown functional coefficients.

Assume that ∥ β ∥= 1 or the first element of β is positive for identification.

Due to the efficiency of estimation and the accuracy of prediction, it is very

important to select significant variables and exclude insignificant variables in equation
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(1.1). Meanwhile, almost all existed variable selection procedures are based on the

assumption that the observations are identically independently distributed (i.i.d). In

this chapter, I consider variable selection in functional index coefficient models under

strong mixing conditions.

It is clear that model (1.1) is a semiparametric model. Therefore, to estimate

g(·), the initial estimators of β̂ are needed and they might not have huge effects on

the final estimation of g(·) if the sample size n is large enough, since the convergence

rate of the parametric estimators β̂ is faster than the nonparametric function esti-

mators ĝ(·). Thus, to estimate g(·) and β, a two-stage procedure is needed. Here,

I propose variable selection and estimation in two steps as follows. Firstly, I select

the significant covariates with functional coefficients, and then variable selection is

applied for choosing local significant variables with parametric coefficients.

Step One: Given an initial estimator β̂ such that ∥ β̂ − β ∥= Op(1/
√
n), minimize

the penalized local least squares Q(ĝ, β̂, h) to obtain ĝ(·), where (or maximize the

penalized local likelihood),

Q(ĝ, β̂, h) =
n∑

j=1

n∑
i=1

{
yi − ĝT

(
β̂TZj

)
Xi

}2

Kh

(
β̂TZi − β̂TZj

)
+ n

p∑
k=1

Pλk
(∥ ĝ·k ∥)

(1.2)

with K(·) being the kernel function, Kh(z) = K(z/h)/h and Pλk
(·) being the penalty

function, specified later.

Step Two: Given the estimator of function ĝ(·), minimize the penalized global least

squares Q(β, ĝ) (or maximize the penalized global likelihood), where

Q(β, ĝ) =
1

2

n∑
i=1

(
yi − ĝT (βTZi)Xi

)2
+ n

d∑
k=1

Ψλn(|βk|) (1.3)

with Ψ(·) being a penalty function, specified later..

In Chapter 2, I study the large sample behavior of these estimators such as

consistency, sparsity and the oracle property, meanwhile, computational algorithms
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are outlined. Finally, Monte Carlo simulations are conducted to examine the finite

sample performance and two financial examples including functional index coefficient

autoregressive models and functional index coefficient models for the stock return

predictability are extensively studied.

The first real example I consider is to use functional index coefficient autore-

gressive models (FIAR) to analyze asset return data. The FIAR model for this real

example is defined as

rt =

p∑
j=1

gj(β
T rt)rt−j + εt,

where rt is the asset return and gj(·)’s are unknown functions in Rd for j ≤ p and

rt = (rt−1, · · · , rt−d)
T is a vector of lagged returns. Clearly, it is an extension of

functional coefficient autoregressive (FAR) model, which was proposed by Chen and

Tsay (1993). To explore the performance of functional index coefficient autoregressive

models for asset returns, by taking p = 6, I simply assume my working model as

follows.

rt =
6∑

j=1

gj(zt)rt−j + εt,

where zt = β1rt−1,t + β2rt−2,t + β3rt−3,t and I assume β2
1 + β2

2 + β2
3 = 1 in order to

satisfy the identification assumption.

The data for asset returns consist of daily, weekly and monthly returns on the

Dow Jones Industrial Average, NASDAQ Composite and S&P 500 INDEX. I use

two step variable selection procedures to select significant variables and to estimate

unknown coefficients simultaneously. Firstly, I do variable selection on the regressors

based on penalized local maximum likelihood, then I do variable selection on the local

variables based on penalized global maximum likelihood. When two step estimations

and variable selections are employed in my model, the estimated coefficients of local

variables and the norms of covariates are reported in Table 2.4. An interesting finding

is that, all local variables perform the same for one day return of three index with



4

similar parameter coefficients. However, we cannot find this phenomenon with the

return of one week horizon and one month horizon.

Another interesting example I consider is the predictability for the stock re-

turn, which is very important in empirical finance since it is the center issue to the

asset allocation for practitioners in finance markets. Many literatures have revealed

that the coefficients of predictors may depend on other financial variables. In this

section, I consider the predictability for the stock return with the functional index co-

efficient models of Fan, Yao and Cai (2003), which can incorporate multiple variables

in the coefficients. I specify two type models as below.

Model 1: rt = g1(zt)z1,t + g2(zt)z2,t + g3(zt)z3,t + g4(zt)z4,t + εt,

where zt = β1z1,t + β2z2,t + β3z3,t + β4z4,t and zjt is a financial variable described

below, and

Model 2: rt =
6∑

j=1

gj(zt)rt−j + εt.

In Model 1, the covariates and local variables {zj,t} include “BamAa”, the spread

between Moody’s Baa corporate bond yield and Moody’s Aaa corporate bond yield,

“Bam3m”, the spread between Moody’s Baa corporate bond yield and a three-month

Treasury bill, “term1year”, the term spread between the one year and three-month

Treasury yields, and “term10year”, the term spread between the ten year and three-

month Treasury yields. In Model 2, I let the lagged returns to be covariates. To match

the predictors, I let the lagged data as covariates and local variables. The dependent

variables include monthly returns on the Dow Jones Industrial Average, NASDAQ

Composite and S&P 500 INDEX in both two models. Finally, the detailed analysis

results are summarized in Table 2.6 and Table 2.7 or Figure 2.11∼ Figure2.13.
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1.2 Efficient Local AADT Estimation via SCAD Variable Selection Based on
Regression Models

In transportation networks, annual average daily traffic estimation is very

important to decision making, planning, air quality analysis, etc. Regression method

may be one of the most popular approaches used for estimating AADT on non-

counters roads. Most literatures focus on how to collect different groups of predicting

variables, and to select significant variables by t-test and F-test. However, there is

no theory on the validity of these multiple selecting steps. This Chapter focuses on

the estimation and variable selection for the local AADT using different groups of

variables.

To illustrate the proposed method is practically useful, I consider a real data

set observed in Mecklenburg County of North Carolina in 2007. I consider four

groups of 19 variables including general driving behavior, characteristics of the roads,

information from satellite and socioeconomic variables. The incorporated satellite

information has a great improvement in our model, and it makes R-square to go up

from 0.48 to 0.65. According to the R-square and the prediction error, our method

produces a better result to estimate AADT in the local functional class roads.

1.3 Nonparametric Approach to Calculate Seasonal Factors for AADT Estimation

Seasonal factors are very important to the estimation of annual average daily

traffic (AADT) and Vehicle Miles Traveled (VMT) and they are used to transfer one

or two days measured traffic data at portable traffic monitoring sites to the AADT.

Most literatures focus on taking the average of seasonal factors within groups of roads.

In this chapter, to calculate the seasonal factors, I propose a nonlinear regres-

sion model based on the nonparametric method by introducing the distance kernel and

by using the local weights. The factors utilize the similarity of seasonal variability and

traffic characteristics at the count sites in a nearby area. They are decomposed into

monthly factors and weekly factors. Then, I introduce a nonlinear distance weighting
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kernel to estimate the weekly factors. It puts more weight on the observation points

which are much closer to the interested point, and puts less weight on the far away

observation points. Thus, it makes the seasonal factor estimation more reasonable

and accurate to be close to the true value.

Firstly, I can calculate seasonal factors as follows

Fmw = Fm · Fw, (1.4)

where Fmw is the seasonal factor for the m-th month and the w-th week, Fm is the

monthly factor for the m-th month, and Fw is the weekly factor for the w-th day in

a week.

Secondly, I can obtain the Nadaraya-Watson estimator of Fw(x0, y0) by

ĝw(x0, y0) =
n∑

i=1

wiFw(xi, yi), (1.5)

where wi is defined in (4.9), defined later.

To test whether there exists location effect or not, I construct the hypothesis

testing by generalized likelihood ratio test (GLR test). At last, the detail estimation

procedures for the seasonal factors and AADT are clearly presented by an example.



CHAPTER 2: VARIABLE SELECTION FOR FUNCTIONAL INDEX
COEFFICIENT MODELS

2.1 Introduction

Varying-coefficient model proposed by Hastie and Tibshirani (1993) has gained

more and more attention during the recent years. Many extensions (Xia and Li, 1999;

Fan and Zhang, 1999; Cai, Fan and Li, 2000; Fan, Zhang, and Zhang, 2001; Huang,

Wu, and Zhou, 2002; Fan, Yao and Cai, 2003; Fan and Huang, 2005; Li and Liang,

2008) have been considered on the estimation of parameters and functionals and

hypotheses testing. Specially, to overcome the difficulty of the curse of dimensionality,

Fan, Yao and Cai (2003) proposed the following functional index coefficient model

(FIM)

yi = gT (βTZi)Xi + εi, 1 ≤ i ≤ n, (2.1)

where yi is a dependent variable, Xi = (X1i, X2i, . . . Xpi)
T is a p× 1 vector of covari-

ates, Zi is a d × 1 vector of covariates, εi are independently, identically distributed

(i.i.d) with mean 0 and standard deviation σ, β ∈ Rd is a d × 1 vector of unknown

parameters and g(·) = (g1(·) . . . gp(·))T is a vector of p−dimensional unknown func-

tional coefficients. We assume that ∥ β ∥= 1 or the first element of β is positive for

identification.

Xia and Li (1999) studied the asymptotic properties of model (2.1) under

mixing conditions when the index part of the above model is not constraint to linear

combination of Zi. However, due to the efficiency of estimation and the accuracy of

prediction, it is very important to select significant variables in Zi and exclude insignif-

icant variables in equation (2.1). Fan, Yao and Cai (2003) proposed a combination
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of the t-statistic and the Akaike information criterion (AIC) to select significant vari-

ables of Zi and they deleted the least significant variables in a given model according

to t-value, and selected the best model according to the AIC. However there is no

theoretical foundation for their work. As mentioned in Fan and Li (2001), a stepwise

deletion procedure may suffer stochastic errors inherited in the multiple stages. Thus,

it is very critical to develop a variable selection procedure which can simultaneously

select significant variables and estimate unknown regression coefficients for the above

model.

In fact, the motivation of this study comes from functional coefficient autore-

gressive (FAR) model proposed by Chen and Tsay (1993). The coefficients in FAR

model are unknown functional form and depend on lagged terms and it satisfies

rt = g1(r
∗
t−1)rt−1 + · · ·+ gp(r

∗
t−1)rt−p + εt, (2.2)

where r∗t−1 = (rt−i1 , rt−i2 , · · · , rt−id)
′ for j = 1, · · · , d. Due to the curse of dimen-

sionality, Chen and Tsay (1993) just considered one single threshold variable case

r∗t−1 = rt−k for some lagged term rt−k. To overcome the curse of dimensionality and

incorporate more variables in the functional coefficients β’s, we assume that r∗t−1 is

a linear combination of rt−ij ’s, e.g. r∗t−1 = βT rt, where rt = (rt−1, · · · , rt−d)
T . The

FAR model can be reduced as a special case of FIM of Fan, Yao and Cai (2003). We

name it as functional index coefficient autoregressive models (FIAR).

rt = g1(β
T rt)rt−1 + · · ·+ gp(β

T rt)rt−p + εt. (2.3)

As mentioned above, there is no theory on the variable selection procedure for model

(2.1) and so, neither is for model (2.3). Also, Fan, Yao and Cai (2003) did not address

how to select the covariates rt−j in model in (2.3). This motivates us to do variable

selection with local variables rt and covariates rt−i in model (2.3).

Variable selection methods and their algorithms can be tracked back to four
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decades ago. Pioneer criterions include the Akaike information criterion (Akaike,

1973) and the Bayesian information criterion (Schwarz, 1978). Various shrinkage type

methods have been developed recently, including but not limited to the nonnegative

garrotte (Breiman, 1995; Yuan and Lin, 2006), bridge regression (Fu, 1998), least

absolute shrinkage and selection operator (Tibshirani, 1996; Knight and Fu, 2000),

smoothly clipped absolute deviation (Fan and Li, 2001), adaptive LASSO (Zou, 2006),

and so on. The reader is referred to the review paper by Fan and Lv (2010) for details.

Here we prefer the SCAD of Fan and Li (2001) since it merits three properties of

unbiasedness, sparsity and continuity. Furthermore, it has oracle property. Namely,

the resulting procedures perform as well as if the subset of significant variables were

known in advance.

The shrinkage method has been successfully extended to semiparametric mod-

els; for example, variable selection in partially linear models (Liang and Li, 2009),

partially linear models in longitudinal data (Fan and Li, 2004), single-index models

(Kong and Xia, 2007), semiparametric regression models (Brent et al., 2008; Li and

Liang, 2008), varying coefficient partially linear models with errors-in-variables (Zhao

and Xue, 2010), and partially linear single-index models (Liang et al., 2010), and the

references therein.

However, the aforementioned papers focused mainly on the variable selection

of significant variables with parametric coefficients. Also, the shrinkage method was

extended to select significant variables with functional coefficients. Lin and Zhang

(2006) proposed component selection and smoothing operator (COSSO) for model

selection and model fitting in multivariate nonparametric regression models in the

framework of smoothing spline analysis of variance (ANOVA), meanwhile, Zhang

and Lin (2006) extended the COSSO to the exponential families. Wang, Li and

Huang (2008) proposed the variable selection procedures with basis function approx-

imations and SCAD, which is very similar to the COSSO, and they argued that their
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procedures can select significant variables with time-varying effects and estimate the

nonzero smooth coefficient functions simultaneously. Huang, Joel and Wei (2010)

proposed to use the adaptive group LASSO for variable selection in nonparametric

additive models based on a spline approximation, in which the number of variables

and additive components may be larger than the sample size. Adopted the idea of

grouping method in Yuan and Lin (2006), Wang and Xia (2009) used kernel LASSO

(KLASSO) to shrinkage functional coefficient in the varying coefficient models. Their

pure nonparametric shrinkage procedure is different from spline and basis functions

(Lin and Zhang, 2006; Wang, Li and Huang, 2008; Huang, Joel and Wei, 2010).

Almost all the variable selection procedures mentioned above are based on the

assumption that the observations are identically independently distributed (i.i.d).

To the best of our knowledge, there are few papers to consider variable selections

under non i.i.d settings. It might not be appropriate if it is applied in to analyze

financial and economic data, since most of the financial/economic data are week

dependent. To address this issue, Wang, Li and Tsai (2007) extended to the regression

model with autoregressive errors via LASSO. In this Chapter, we consider variable

selection in functional index coefficient models under very general dependent structure

– strong mixing conditions. Our variable selection procedures include two steps.

Firstly, we select the significant covariates with functional coefficients, and then do

variable selection for local significant variables with parametric coefficients.

The rest of this paper is organized as follows. In Section 2.2, we present the

conditions for identification in functional index coefficient models, two step estima-

tion procedures and some properties of SCAD penalty functions. In Section 2.3, we

propose variable selection procedures for covariates with functional coefficients, and

establish consistency, sparsity and the oracle property of the estimators. In Section

2.4, variable selection procedures for local variables with parametric coefficients are

provided together with their asymptotic properties. A simple bandwidth selection
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method is introduced, and two computational algorithms for these two procedures

are also developed in Section 2.5. Monte Carlo simulation results for two cases are

reported in Section 2.6. In Section 2.7, two financial examples are extensively studied.

They include functional index coefficient autoregressive models (FIAR) and functional

index coefficient models (FIM) for the stock return predictability. Section 2.8 con-

cludes the chapter and all the regularity conditions and technical proofs are gathered

in the appendix.

2.2 Identification, Estimation and Penalty Function

2.2.1 Identification

The identification problem in single index model was first investigated by

Ichimura (1993), and extensively studied by Li (2007) and Horowitz (2009). Mean-

while, partial conditions for identification in functional index coefficient models were

showed in Fan, Yao and Cai (2003). Here we present the conditions for identification

below.

Theorem 1. (Identification in functional index coefficient models) Assume that

dependent variable Y is generated by equation (2.1), Xi = (X1i, X2i, . . . Xpi)
T are

p−dimensional vector variables and Z are d− dimensional vector variables. β ∈ Rd

are d−dimensional unknown parameters and g(·) = (g1(·) . . . gp(·))T are p−dimensional

unknown vector functional coefficients. Then β and g(·) are identified if and only if

the following conditions hold:

(I1) The vector functions g(·) are continuous, bounded, and not constant every-

where.

(I2) The components of Z are continuously distributed random variables.

(I3) There exists no perfect multi-collinearity within each components of Z and none
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of the components of Z is constant.

(I4) There exists no perfect multi-collinearity within each components of X.

(I5) The first element of β is positive, and ∥ β ∥= 1, where ∥ · ∥ is the Euclidean

norm (L2 norm) and ∥ β ∥=
√

β2
1 + β2

2 + · · ·+ β2
d .

(I6) E(Y |X,Z) can not be the form as below

E(Y |X,Z) = αTXβTX + γTX + c,

where X = Z, and α, γ ∈ Rd, c ∈ R are constant and α and β are not parallel

to each other.

Remark 1: Assumption I1 holds true since continuous and bounded functions are

commonly assumed in nonparametric estimation, and it is obvious that β can not be

identified if g(·) is a constant. we can relax Assumption I2 with some components

of Z being discrete random variables. But two more conditions should be imposed,

see Ichimura (1993) and Horowitz (2009) for detail. The perfect multi-collinearity

problem in Assumptions I3 and I4 is similar to that for the classic linear models. In

fact, it is also hard to get an exact estimator of β if high correlation of components

exists in Z and X, respectively. It is not identified if any one component of Z

is constant. For example, if Z1=1, E(Y |X,Z) = gT (β1 + β2Z2 + · · · + βdZd)X =

fT (β2Z2+ · · ·+βdZd)X. An alternative of Assumption I5 is to let the first coefficient

be 1, e.g. β1 = 1. However, it is infeasible for estimation and variable selection

simultaneously, since we do not have any prior information that whether the coefficient

β1 of Z1 is zero or not. Assumption I6 is also imposed by Fan, Yao and Cai (2003).
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2.2.2 Estimation Procedures

Model (2.1) can be regarded as a semiparametric model. Therefore, to estimate

both the functionals g(·) and parameters β, it is common to use a two-stage approach.

To estimate g(·), it needs a initial estimator of β̂ which might have little effects on the

final estimation of g(·) if the sample size n is large enough, since the convergence rate

of the parametric estimators β̂ is faster than the nonparametric function estimators

ĝ(·). Here we propose variable selection and estimation in two steps:

Step One: Given an initial estimator β̂ such that ∥ β̂ − β ∥= Op(1/
√
n), minimize

the penalized local least squares Q(ĝ, β̂, h) to obtain ĝ(·), where (or maximize the

penalized local likelihood),

Q(ĝ, β̂, h) =
n∑

j=1

n∑
i=1

{
yi − ĝT

(
β̂TZj

)
Xi

}2

Kh

(
β̂TZi − β̂TZj

)
+ n

p∑
k=1

Pλk
(∥ ĝ·k ∥) ,

(2.4)

withK(·) is the kernel function,Kh(z) = K(z/h)/h and Pλk
(·) is the penalty function.

As recommended, an initial estimator β̂ can be obtained by various algorithms such

as the method in Fan, Yao and Cai (2003). As long as the initial estimator satisfies

∥ β̂ − β ∥= Op(1/
√
n), as expected, the parameter estimator β̂ does not have any

effect on the shrinkage estimation of functional coefficients ĝ(·) in the above equation.

We choose penalty term Pλk
(·) as SCAD function, which is described in Section 2.2.3,

and the L2 functional norm ∥ ĝ·k ∥ is defined in Section 2.3.1. The purse of using the

penalized locally weighted least squares is to select significant variable Xi in model

(2.1).

Note that when the penalty term Pλk
(z) = λk|z|, the penalized local likelihood

becomes the Lasso type, so that the above penalized local least squares in (2.4) is

reduced to the case in the paper by Wang and Xia (2009).

Step Two: Given the estimator of function ĝ(·), minimize the penalized global least
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squares Q(β, ĝ) (or maximize the penalized global likelihood), where

Q(β, ĝ) =
1

2

n∑
i=1

(
yi − ĝT (βTZi)Xi

)2
+ n

d∑
k=1

Ψλn(|βk|) (2.5)

with Ψ(·) being a penalty function.

Clearly, the above general setting may cover several other existing variable

selection procedures as a special case. For example, when p = 1 and the regressor

X = 1, the above procedure becomes variable selection for the single-index model

in Kong and Xia (2007), which provided an alternative variable selection method

called separated cross validation to do variable selection in the single-index model.

When p = 2 and the only one regressor is market return, then the above model

reduces to the case in the paper by Cai and Ren (2011) for an application in finance.

In particular, they considered a nonparametric estimate of time-varying betas and

alpha in the conditional capital asset pricing model (CAPM) with a variable selection.

However, Cai and Ren (2011) did not provide any theory for the variable selection

procedures. Furthermore, the model includes a special case of variable selection in

partially linear single-index models as addressed in Liang et al. (2010), if only the first

functional coefficient g(·) is nonlinear and all others are constant. Finally, it includes

variable selection in semiparametric regression modeling by Li and Liang (2008), if

the dimension of local variables d = 1 and some of the functional coefficients g(·) are

constant and others are not.

2.2.3 Penalty Functions

As pointed out by Fan and Li (2001), a good penalty function should enjoy

the following three nice properties.

(a) Unbiasedness, the estimator should be unbiased when the true unknown

parameter is large.

(b) Sparsity, the estimator is a threshold rule, it can set small estimator to be



15

−4 −2 0 2 4

0.
0

0.
5

1.
0

1.
5

2.
0

x

y_
pe

na
lty

Figure 2.1: SCAD penalty function (solid line) and its derivative (dotted line) a = 3.7
and λ = 1

zero automatically.

(c) Continuity, the estimator is continuous to avoid instability in model pre-

diction.

To achieve all the aforementioned three properties, Fan and Li (2001) proposed

the following so called SCAD penalty function,

Pλ(|β|) =


λ|β|, |β| ≤ λ,

−(|β|2 − 2aλ|β|+ λ2)/[2(a− 1)], λ < |β| ≤ aλ,

(a+ 1)λ2/2, |β| > aλ,

(2.6)

The important property for the SCAD penalty function is that it has the following

first derivative,

P ′
λ(|β|) =


λ, |β| ≤ λ,

(aλ− |β|)/(a− 1), λ < |β| ≤ aλ,

0, |β| > aλ,

for some a > 2. (2.7)

so that it makes the computational implementation easily. The plots of penalty
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function and its derivative are displayed in Figure 2.2.3. It can be clearly seen that

Pλ(|β|) is not differentiable at 0 with respect to β. Thus it is not easy to minimize the

penalized least squares functions due to its singularity. Fan and Li (2001) suggested

to approximate the penalty function by a quadratic function as

Pλ(|βj|) ≈ Pλ(|β(0)
j |) + 1

2
{P ′

λ(|β
(0)
j |)/|β(0)

j |}(β2
j − β

(0)2
j ) for βj ≈ β

(0)
j . (2.8)

Alternatively, Zou and Li (2008) proposed local linear approximation (LLA) for non-

concave penalty functions as

[Pλ(|βj|)]′ = P ′
λ(|βj|)sign(βj) ≈ {P ′

λ(|β
(0)
j |)/|β(0)

j |}βj, (2.9)

which can reduce the computational cost without losing any statistical efficiency.

Recently, other algorithms such as mimorize-maximize (MM) algorithm are proposed

by Hunter and Li (2005).

Given a good initial value β(0) such as maximal likelihood estimator (MLE)

without the penalty term, in view of (2.8), we can find the one-step estimator as

follow

β(1) = argmin
1

2
(β − β(0))T [−∇2ℓ(β(0))](β − β(0)) + n

d∑
k=1

P ′
λ(|β

(0)
k |)

2|β(0)
k |

β2
k , (2.10)

where ∇2ℓ(β(0)) = ∂2ℓ(β0)/∂β∂β
T . As argued in Fan and Li (2001), there is no

need to iterate until it converges as long as the initial estimator is reasonable. Also,

the MLE estimator from the full models without penalty term can be regard as the

reasonable estimator. For using the local linear approximation in Zou and Li (2008)

and (2.9), the sparse one-step estimator given in (2.10) becomes to

β(1) = argmin
1

2
(β − β(0))T [−∇2ℓ(β(0))](β − β(0)) + n

d∑
k=1

P ′
λ(|β

(0)
k |)

|β(0)
k |

βk. (2.11)

As demonstrated in Zou and Li (2008), this one step estimator is as efficient as the

fully iterative estimator, provided that the initial estimator is good enough. For
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example, we let β(0) be the maximal likelihood estimator without the penalty term.

2.3 Variable Selection for Covariates with Functional Coefficients

2.3.1 Notations and Technical Conditions

Let {(Xi, Zi, yi)} be a strictly stationary and strong mixing sequence, and

f(z, β) be the density function of z = βTZ, where β is an interior point of the compact

set B. Define Az = {Z|f(Z, β) ≥ ε, ∀β ∈ B and ∃a, b, βTZ ∈ [a, b]} as the domain

of Z, such that βTZ is bounded and the density of f(Z, β) is bounded away from

0. Also, define the domain of bandwidth h, Hn = {h| ∃C1andC2, C2n
−1/5 < h <

C1n
−1/5}. For Z ∈ Az, β ∈ B, and h ∈ Hn, define n by p matrix penalized estimator

as

Ĝ
(
β̂
)
=

[
ĝ
(
β̂TZ1

)
, · · · , ĝ

(
β̂TZn

)]T
= [ĝ·1, · · · , ĝ·p] ,

where

ĝ
(
β̂TZ

)
=

[
ĝ1

(
β̂TZ

)
, · · · , ĝp

(
β̂TZ

)]T
∈ Rp,

and

ĝ·k =
[
ĝk

(
β̂TZ1

)
, · · · , ĝk

(
β̂TZn

)]T
∈ Rn.

Similarly, we can define true value G0 (β) , g0
(
βTZ

)
and g0·k. Without loss of gen-

erality, we assume that first p0 functional coefficients are non-zero, and other p − p0

functional coefficients are zero, e.g. ∥ g·k ∦= 0 and g·k are not constant everywhere

for 1 ≤ k ≤ p0, ∥ g·k ∥= 0 for p0 < k ≤ p. Let αn = max{P ′
λ (∥ g·k ∥) : 1 ≤ k ≤ p0}.

Then αn = 0 as n → ∞. For an arbitrary matrix X = (Xij), we define L2 norm as

∥ X ∥=
√∑

i,j X
2
i,j and the kernel function Kh = K (x/h) /h. Also we define object

function

Q(Ĝ, β̂, h) =
n∑

j=1

n∑
i=1

{yi − ĝT
(
β̂TZj

)
Xi}2Kh

(
β̂TZi − β̂TZj

)
+ n

p∑
k=1

Pλk
(∥ ĝ·k ∥) .

(2.12)
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By minimizing the above object function with respect to ĝ(·), one can obtain the

penalized local least squares estimator for g(·).

To study the asymptotic distribution of the penalized local least squares esti-

mator, we impose some technical conditions as follows.

(A1) The vector functions g(·) are bounded, not constant everywhere and have con-

tinuous second order derivatives with respect to the support of Az.

(A2) For any β ∈ B and Z ∈ Az, the density function f
(
βTZ

)
is continuous and

there exists a small positive ε such that f
(
βTZ

)
> ε.

(A3) The kernel function K(z) is twice continuously differentiable on the support

(−1, 1), Let
∫
z2K(z)dz = µ2, and

∫
K2(z)dz = ν0.

(A4) limn→∞ infθ→0+ P ′
λn
(θ)/λn > 0, n−1/10λn → 0, h ∝ n−1/5 and ∥ β̂ − β ∥=

Op(1/
√
n).

(A5) Define Ω
(
βTZ

)
= E

(
XiX

T
i |βTZ

)
, Ω

(
βTZ

)
is nonsingular and has bounded

second order derivative on Az.

(A6) {(Xi, Zi, yi)} is a strictly stationary and strongly mixing sequence with mixing

coefficient α (m) = O (ρm) for some 0 < ρ < 1.

(A7) Let z = βTZ, the conditional density f (zi, zs|zj) is continuous and has bounded

second order derivative.

(A8) Let Ω (zi, zs, zj) = E
(
XiX

T
i XsX

T
s |zi, zs, zj

)
be continuous and has bounded sec-

ond order derivative. Define Ω (zj, zj, zj) = Ω (zi, zs, zj) |zi=zj ,zs=zj ,Ω1 (zi, zs, zj)

= ∂Ω (zi, zs, zj) /∂zi and Ω2 (zi, zs, zj) = ∂Ω (zi, zs, zj) /∂zs.

Remark 2: The conditions in A2 imply that the distances between two ranked val-

ues βTZ(i) are at most order of Op(logn/n) (Janson 1987). For any value Λ ∈ Az,
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we can find a closest value βTZj of Λ such that | βTZj − Λ |= Op(logn/n). With

the conditions in A1, ∥ g(βTZj) − g(Λ) ∥= Op(logn/n), which is smaller order of

nonparametric convergence rate n−2/5. This implies that we only need to estimate

ĝ(βTZi) for i = 1, 2, · · · , n rather than ĝ(Λ) for all the domain Λ ∈ Az. For the

detailed argument, we refer to the paper by Wang and Xia (2009). A3 is the com-

mon assumption in nonparametric estimation. ∥ β̂ − β ∥= Op(1/
√
n) in A4 implies

that the estimators of β̂ have little effect in the estimation of ĝ(·) if the sample size

n is large, since the convergence rate of the local parametric estimators β̂ is faster

than the nonparametric function estimators ĝ(·). The assumptions in A5 - A8 are very

standard and used for the proof under mixing conditions; see Cai, Fan and Yao (2000).

2.3.2 Asymptotic Properties

To obtain the oracle property of the estimator, firstly, we present Lemma 1 -

Lemma 3 below.

Lemma 1: Let {(Xi, Zi, yi} be a strong mixing and strictly stationary sequence with

mixing coefficient as in (A6), the conditional densities fz1|x1(z|X) and fz1,zℓ|x1,xℓ
(z1, zℓ|

X1, Xℓ) are bounded for all ℓ > 1, h ∝ n−1/5, then

sup
Z∈Az ,β∈B,h∈Hn

∣∣∣∣∣ 1n
n∑

i=1

[Kh(β
TZi − βTZ)XiX

T
i − E(Kh(β

TZi − βTZ)XiX
T
i )]

∣∣∣∣∣
= O

(
(log n)1/2

n3/5h

)
.

The above lemma directly follows from Lemma A.2 of Xia and Li (1999). Let

Σ̂(βTZ) = 1
n

∑n
i=1Kh(β

TZi−βTZ)XiX
T
i . By Assumption A5, it is not hard to derive
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E(Kh(β
TZi − βTZ)XiX

T
i ) = f(βTZ)Ω(βTZ) +O(h2). Then, we have∣∣∣Σ̂(βTZ)− f(βTZ)Ω(βTZ)

∣∣∣
≤

∣∣∣Σ̂(βTZ)− E(Kh(β
TZi − βTZ)XiX

T
i )

∣∣∣
+
∣∣E(Kh(β

TZi − βTZ)XiX
T
i )− f(βTZ)Ω(βTZ)

∣∣
≤ O

(
(log n)1/2

n3/5h

)
+O(h2). (2.13)

Lemma 2: Let {(Xi, Zi, yi} be a strong mixing and strictly stationary sequence.

Under Assumptions A1−A8. Assume that h ∝ n−1/5, n−1/10αn → 0 and ∥ β̂ − β ∥=

Op(1/
√
n), we have

n−1

n∑
i=1

∥ ĝ
(
β̂TZi

)
− g0

(
βT
0 Zi

)
∥2= Op(n

−4/5).

Lemma 3: Let {(Xi, Zi, yi} be a strong mixing and strictly stationary sequence,

h ∝ n−1/5, limn→∞ infθ→0+ P ′
λn
(θ)/λn > 0, and n−1/10λn → 0. Then, ∥ ĝ.k ∥= 0 as

n → ∞ for k > d0.

The above lemma shows the sparsity of the estimator ĝ.k for k > d0.

Theorem 2 (Oracle Property): Let (Xi, Zi) be a strong mixing and strictly

stationary sequence. Under Assumptions (A1)−(A8), limn→∞ infθ→0+ P ′
λn
(θ)/λn >

0, h ∝ n−1/5 and n−1/10λn → 0 as n → ∞, then

(a) Sparsity: ∥ ĝb(β̂
TZj) ∥= 0 j = 1, · · · , n, where

ĝb(β̂
TZj) = [ĝp0+1(β̂

TZj), ĝp0+2(β̂
TZj), · · · , ĝp(β̂TZj)]

T .

(b) Asymptotic Normality:

√
nh

(
ĝa(β̂

TZj)− g0a(β
T
0 Zj)−B(βT

0 Zj)
)
∼ N(0, VβT

0 Zj
),

where VβT
0 Zj

= ν0M
−1
βT
0 Zj

σ2, and

B(βT
0 Zj) = h2µ2M

−1
βT
0 Zj

{
∫

XaX
T
a ġ(β

T
0 Zj)fz(Xa, β

T
0 Zj)dXa +

1

2
g̈(βT

0 Zj)MβT
0 Zj

}
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with MβT
0 Zj

= f(βT
0 Zj)Ω(β

T
0 Zj) and fz(Xa, z) = ∂f(Xa, z)/∂z.

Theorem 2 indicates that the estimator merits the oracle property by our

variable selection procedures. Note that our result can be extended to entire domain

Z ∈ Az from Remark 2.

2.4 Variable Selection for Local Significant Variables with Parametric Coefficients

2.4.1 Notations and Technical Conditions

Let {(Xi, Zi, yi)} be a strictly stationary and strong mixing sequence,f(z, β)

be the density function of z = βTZ, and β be an interior point of the compact set B.

Define A′
z = {Z : f(Z, b) ≥ δ,∀b ∈ B}, where δ is a small positive constant. Also,

define penalized least squares object function

Q(β, ĝ) =
1

2

n∑
i=1

(yi − ĝT (βTZi)Xi)
2 + n

d∑
k=1

Pλn(|βk|). (2.14)

We assume the first d1 coefficients of β are nonzero, and all rest of parameters are

zero, e.g., β0 = (βT
10, β

T
20)

T , all elements of β10 with dimension d1 are nonzero, and

d − d1 dimensional coefficients β20 = 0. Finally, define Vn =
∑n

i=1 g
T
z (β

T
0 Zi)Xi(Zi −

E(Zi|βT
0 Zi))εi, where vector gz(·) is the first derivative of function g(·) vector, and εi

are independently, identically distributed (i.i.d) with mean 0 and standard deviation

σ. Let Ṽ0 =
1
n
V ar(Vn)/σ

2, and define ε be an asymptotically standard normal random

d−dimensional vector such that Vn = n1/2σṼ
1/2
0 ε. V1n =

∑n
i=1 g

T
z (β

T
10Z1i)Xi(Z1i −

E(Z1i|βT
10Z1i))ε1i, where ε1i is the same as εi since β20 = 0. Similarly, we define Ṽ10 =

1
n
V ar(V1n)/σ

2 and ε1 be an asymptotically standard normal random d1−dimensional

vector such that V1n = n1/2σṼ
1/2
10 ε1.

To study the asymptotic distribution of the penalized least squares estimator

β̂, we impose some technique conditions as below.

(B1) The vector functions g(·) are bounded, not constant everywhere and have con-

tinuous second order derivatives with respect to the support of A′
z.
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(B2) The components of Z are continuously distributed random variables.

(B3) The kernel function K(z) is twice continuously differentiable on the support

(−1, 1), Let
∫
z2K(z)dz = µ2, and

∫
K2(z)dz = ν0.

(B4) limn→∞ infθ→0+ P ′
λn
(θ)/λn > 0, λn → 0 ,

√
nλn → ∞ and h ∝ n−1/5.

(B5) {(Xi, Zi, yi)} is a strictly stationary and strong mixing sequence with mixing

coefficient α(m) = O(ρm) for some 0 < ρ < 1.

(B6) E(εi|Xi, Zi) = 0, E(ε2i |Xi, Zi) = σ2, E|Xi|m < ∞ and E|yi|m < ∞ for all m > 0.

Remark 3: The conditions in B1 and B2 and Section 2.2.1 ensure identification of

the models. The second order differentiability of vector functions g(·) in B1 and kernel

function K(z) in B3 leads to that the order of bias term for nonparametric estimator

is Op(h
2). This assumption is standard for a nonparametric method. The assump-

tions in B4 indicate the oracle property in Theorem 4. An alternative condition for

bandwidth in Ichimura (1993) is nh8 → 0. However, the condition nh8 → 0 is still

satisfied with our condition h ∝ n−1/5 in B4. Assumptions in B5 are the common con-

ditions with week dependent data. Most financial models satisfy this conditions, such

as ARCH and GARCH models; see Cai (2002). For Assumption B6, it is not hard

to extend to the heteroscedasticity case, E(ε2i |Xi, Zi) = σ2(Xi, Zi), while Assumption

B6 requires the moment conditions of X and y so that the Chebyshev inequality can

be applied.

2.4.2 Asymptotic Properties

It follows from Theorem 1 in Xia and Li (1999) that

Q̂1(β, h) = S̃(β) + T (h) +R1(β, h) +R2(h),



23

where Q̂1(β, h) =
∑n

i=1(yi − ĝT (βTZi)Xi)
2, T (h) and R2(h) do not depend on β, and

R1(β, h) is an ignorable term. Furthermore,

S̃(β) = n[Ṽ
1/2
0 (β − β0)− n−1/2σε]T [Ṽ

1/2
0 (β − β0)− n−1/2σε] +R3 +R4(β),

where R3 does not depend on β and h, and R4(β) is an ignorable term.

Theorem 3: Let {(Xi, Zi, yi)} be a strictly stationary and strong mixing sequence.

Let an = max{P ′
λn
(βk) : βk ̸= 0}, and β̂ = argminβ∈BQ(β, ĝ). Under Assumptions

B1−B6 and if max{P ′′
λn
(βk) : βk ̸= 0} → 0, then the order of ∥ β̂−β0 ∥ is Op(n

−1/2+

an).

If the penalty function is SCAD function, an = 0 as sample size n → 0, and

∥ β̂ − β0 ∥= Op(n
−1/2).

Theorem 4 (Oracle Property). Let {(Xi, Zi, yi)} be a strictly stationary and

strong mixing sequence. Under Assumptions B1−B6, by assuming λn → 0 and

√
nλn → ∞ as n → ∞, then

(a) Sparsity:

β̂2 = 0.

(b) Asymptotic Normality:

√
n(β̂1 − β10) → N(0, σ2V −1

10 ),

where V10 = E
[(
Z − E

(
Z|βT

10Z
))

gTz
(
βT
10Z

)
X
] [(

Z − E
(
Z|βT

10Z
))

gTz
(
βT
10Z

)
X
]T
.

Theory 4 shows that our variable selection procedures of minimizing penalized

least squares objection function enjoy the oracle property.
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2.5 Practical Implementations

2.5.1 Selection for the Bandwidth and Tuning Parameters

To do the nonparametric estimation and variable selection simultaneously, we

should choose suitable regularization parameters, bandwidth h for nonparametric esti-

mator and λ’s for penalty terms. For simplicity, we just consider globally bandwidth

selection rather point-wise in this Chapter. There are several popular methods to

choose these two parameters, for example, plug-in bandwidth selector (Liang, and Li,

2009) for bandwidth selection, and K-fold cross validation (Breiman, 1995; Fan and

Li, 2001), generalized cross validation (Tibshirani, 1996; Fu, 1998; Fan and Li, 2001),

BIC (Liang and Li, 2009; Ma and Li, 2010; Liang et al., 2010) for tuning parameters,

and so on.

However, Wang, Li and Tsai (2007) showed that BIC can select and estimate

the true model consistently, where generalized cross validation cannot and it comes

with an over fitting effect in the resulting model. Further, Zhang, Li and Tsai (2010)

presented that the BIC-type selector identifies the true model consistently, and the

resulting estimator possesses the oracle property. In contrast, the AIC-type selector

tends to be less efficient and over fitting in the final model.

This motivates us to select the bandwidth h and tuning parameters λ’s simul-

taneously with BIC-type criterion. We define our BIC criterion as

BIC(h, λ) = log SSE(h, λ) + df(h, λ)log(n)/n,

where SSE(h, λ) is the sum of squared errors obtained from the penalized least squares

object function with parameters (h, λ), and df(h, λ) is the number of nonzero coeffi-

cients of β̂ conditional on parameters h and λ. However, it is still computationally

expensive to choose d-dimensional tuning parameters λ. Fan and Li (2004) suggested

to let tuning parameters λk be proportional to the corresponding standard deviation

of un-penalized estimator β̂k

(0)
e.g. λk = λ0σ̂(β̂k

(0)
), where σ̂(β̂k

(0)
) is the stan-
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dard deviation of un-penalized estimator β̂k

(0)
. Another difficulty is that we should

standardize all variables before doing variable selection. It will be complicated in

application if we want to find the coefficient of original variables. Adopted the idea

of Fan and Li (2004), we let λk = λ0σ̂(β̂k

(0)
) reduce the dimension of λ. In fact, this

method can overcome two difficulties above since σ̂(β̂k

(0)
) is the proportion of σ̂−1(zk)

if variables zk are orthogonal. The theoretical property of BIC(h, λ) and dimension

reduction with λk = λ0σ̂(β̂k

(0)
) need further research.

2.5.2 Computational Algorithms

Algorithms for Step 1

To select significant covariates and estimate the functional coefficients simultaneously,

we present algorithms as follows.

(1) Find an initial value β̂(0) such that ∥ β̂(0) − β0 ∥= Op(1/
√
n) and initial values

g
(0)
0 by the un-penalized object function algorithms in Fan, Yao and Cai (2003).

(2) Local quadratic approximation: For given β̂(0) and initial values g
(0)
0 , the object

function Q(g, β̂, h) can be locally approximated by (Wang and Xia, 2009)

Q(g, β̂, h) ≈
n∑

j=1

n∑
i=1

{yi − gT
(
β̂TZj

)
Xi}2w(β̂TZi)Kh

(
β̂TZi − β̂TZj

)
+n

p∑
k=1

P ′
λk

(
∥ g

(0)
0·k ∥

) ∥ g·k ∥2

∥ g
(0)
0·k ∥

=
n∑

j=1

{ n∑
i=1

[yi − gT
(
β̂TZj

)
Xi]

2w(β̂TZi)Kh

(
β̂TZi − β̂TZj

)
+n

p∑
k=1

P ′
λk

(
∥ g

(0)
0·k ∥

) g2k(β̂
TZj)

∥ g
(0)
0·k ∥

}
.
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Then, the minimizer of Q(g, β̂, h) is g(1) with j-th row given by

g(1)(β̂TZj) =

{ n∑
i=1

XiX
T
i w(β̂

TZi)Kh

(
β̂TZi − β̂TZj

)
+ nΣ(∥ g(0) ∥)

}−1

×
n∑

i=1

Xiyiw(β̂
TZi)Kh

(
β̂TZi − β̂TZj

)
,

where Σ(∥ g(0) ∥) = diag
(
P ′
λ1
(∥ g

(0)
·1 ∥)/ ∥ g

(0)
·1 ∥, · · · , P ′

λp
(∥ g

(0)
·p ∥)/ ∥ g

(0)
·p ∥

)
,

and w(β̂TZj) is the weight function of β̂TZj, which avoids the boundary effect.

We let w(β̂TZj) = 1 if β̂TZj is between 5% sample quantile and 95% sample

quantile of β̂TZ, otherwise w(β̂TZj) = 0.

(3) Repeat the above steps until the convergence is achieved.

Algorithms for Step 2

First, for computing the local constant estimator of functional coefficients with given

β, we need to find the minimizer of the penalized least squares object function,

ĝ = argmin
g∈G

Q(β, g)

= argmin
{1
2

n∑
i=1

(yi − ĝT (βTZi)Xi)
2w(βTZi) + n

d∑
k=1

Pλn(|βk|)
}
,

where w(βTZj) is the weight to avoid the boundary problem, ĝ = (ĝT (βTZ1), ĝ
T (βTZ2),

· · · , ĝT (βTZn))
T is an n × p matrix, and ĝT (βTZj) = (ĝ1(β

TZj), · · · , ĝp(βTZj))
T is

a p-dimensional functional coefficients vector. The penalized term is constant for a

given β. This leads to the local constant estimators of functional coefficients.

ĝT (βTZj) = argmin
{ n∑

i=1

(yi − ĝT (βTZj)Xi)
2Kh(β

TZi − βTZj)w(β
TZj)

}
,

which implies that

ĝT (βTZj) = {XTK(Zj)X}−1XTK(Zj)Y, (2.15)



27

where Y = (y1, · · · , yn)T , X is an n × p matrix, and K(Zj) is an n × n diagonal

matrix with Kh(β
TZi − βTZj)w(β

TZj) as its i-th diagonal element. Note that in our

simulations, we let w(βTZj) = 1 if βTZj is between 5% sample quantile and 95%

sample quantile of βTZ, otherwise w(βTZj) = 0.

Next is about the Newton-Raphson estimator of β with given ĝ(·). Following

the algorithm of local quadratic approximation in Fan and Li (2001), the penalty

term can be locally approximated by a quadratic function as

Pλ(|βk|) ≈ Pλ(|βk0|) +
1

2
{P ′

λ(|βk0|)/|βk0|}(β2
k − β2

k0).

Then, we only need to minimize

Q1(β, ĝ) =
1

2

n∑
i=1

(yi − ĝT (βTZi)Xi)
2w(βTZi) + n

p∑
k=1

1

2
{P ′

λ(|βk0|)/|βk0|}β2
k .

Given any initial value β0 that is close to the minimizer of Q1(β, g), the objective

function can be locally approximated by

Q1(β, ĝ) ≈ ℓ(β0, ĝ)+∇ℓ(β0, ĝ)
T (β−β0)+

1

2
(β−β0)

T∇2ℓ(β0, ĝ)(β−β0)+
1

2
nβTΣλ(β0)β,

where

ℓ(β0, ĝ) =
1

2

n∑
i=1

{yi − ĝT (βT
0 Zi)Xi}2w(βT

0 Zi),

∇ℓ(β0, ĝ) = −
n∑

i=1

{yi − ĝT (βT
0 Zi)Xi}{ˆ̇gT (βT

0 Zi)Xi}Ziw(β
T
0 Zi),

∇2ℓ(β0, ĝ) =
n∑

i=1

{ˆ̇gT (βT
0 Zi)Xi}2ZiZ

T
i w(β

T
0 Zi)

−
n∑

i=1

{yi − ĝT (βT
0 Zi)Xi}{ˆ̈gT (βT

0 Zi)Xi}ZiZ
T
i w(β

T
0 Zi),

and

Σλ(β0) = diag{P ′
λ(|β10|)/|β10|, · · · , P ′

λ(|βp0|)/|βp0|}.
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Here, ˆ̇g(·) and ˆ̈g(·) are the estimators of first and second derivative of g(·) respectively.

In the derivation, as suggested by Fan, Yao and Cai (2003), the derivative of the weight

of function w(·) is assumed to be 0. This leads to

β = β0 − {∇2ℓ(β0, ĝ) + nΣλ(β0)}−1{∇ℓ(β0, ĝ) + nΣλ(β0)β0}. (2.16)

The detailed algorithm is summarized as the following steps:

S1: Given an initial value β0, estimate ĝT (βT
0 Zj) for j = 1 · · ·n by (2.15).

S2: Estimate ˆ̇g(·) and ˆ̈g(·) by local cubic estimator.

S3: Estimate new β by (2.16) and replace β0 with its standardized form of the new

β, which has unite norm and positive first component.

S4: Repeat Step 1 - Step 3 until β converges.

Remark 4: ˆ̇g(·) and ˆ̈g(·) can be estimated by local cubic estimator. An alternative

standardization method is to let the first coefficient of Z be one. However, we do not

adopt this method since we are not sure the first coefficient of Z is zero or not.

2.6 Monte Carlo Simulation Studies

2.6.1 Simulation of the Variable Selection for Covariates

We study the performance of the variable selection for the covariates with func-

tional coefficients. The program is implemented with R software. In our simulations,

the optimal bandwidth and the tuning parameter λn are chosen by BIC criterion

described in Section 2.5.1. The Epanechnikov kernel K(x) = 0.75(1− x2)(|x| ≤ 1) is

used, and we let the value of a in SCAD be 3.7, as suggested in Fan and Li (2001).

In this following example, the data generating process is

yi = (Z1i + Z2i) + (Z1i + Z2i)
2X1i + σεi, 1 ≤ i ≤ n,
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and our working model is

yi = g0(β
TZi)+g1(β

TZi)X1i+g2(β
TZi)X2i+g3(β

TZi)X3i+g4(β
TZi)X4i+ei, 1 ≤ i ≤ n,

where εi is generated from standard normal distribution, Z = (Z1, Z2)
T , Z1 = Φ(Z∗

1),

Z2 = Φ(Z∗
2), and Φ(·) is the cumulated standard normal distribution function. The six

dimensional vector (Z∗
1 , Z

∗
2 , X1, X2, X3, X4)

T is generated from vector auto-regression

process (
Z∗

i

Xi

)
= A

(
Z∗

i−1

Xi−1

)
+ ξi,

where Z∗ = (Z∗
1 , Z

∗
2)

T , X = (X1, X2, X3, X4)
T , A is a 6× 6 matrix with the diagonal

elements being 0.15 and all others being 0.05. The initial values (Z∗
1 , X1)

T and each

component of the random vector term ξi are generated from identically independently

standard normal distribution. We consider three sample sizes as n = 100, n = 200

and n = 400 and we repeat the simulation 300 for each sample. Also, we consider both

cases of σ = 3 and σ = 6. For each replication, we first find the un-penalized estimator

β̂ and ĝ(·) as our initial estimators. Similar to Fan and Li (2001), the average number

of correct and incorrect shrinkage to zero are reported in Table 2.1, in which “Correct”

represents the average number of three zero coefficients correctly shrinkage to 0,

and “Incorrect” stands for the average number of two no-zero functional coefficients

erroneously set to 0.

Table 2.1 reports the simulation results of SCAD variable selection for the

covariates. It can be also seen that “Correct” and “Incorrect” numbers perform

better with large sample size and smaller noise and it performs as good as oracle

estimator if the sample size n = 400 and σ = 3. In a sum, this simulation shows that

the proposed variable selection procedures perform fairly well in the finite sample

cases.
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Table 2.1: Simulation results for the covariates with functional coefficients

Average number of 0 coefficients
σ = 3 σ = 6

Correcta Incorrect Correct Incorrect
N=100
SCAD 2.7 0.1 1.82 0.3
Oracle 3 0 3 0
N=200
SCAD 2.91 0 2.27 0.2
Oracle 3 0 3 0
N=400
SCAD 3 0 2.69 0.03
Oracle 3 0 3 0

aThe “Correct” represents the average number of three zero coefficients correctly shrinkage to
0; the “Incorrect” represents the average number of two no-zero coefficients erroneously set to 0.

2.6.2 Simulation of the Variable Selection for the Local Variables

To examine the performance of the variable selection for the local variables

with parametric coefficients, similar to Tibshirani (1996) and Fan and Li (2001), our

data generating process is given below

yi = ui + u2
i Xi + σεi,

where ui = ZT
i β, β = (3, 1.5, 0, 0, 2, 0, 0, 0)T , εi is generated from standard normal

distribution. Furthermore, the nine dimensional vector (ZT
i , Xi)

T is generated from

vector auto-regression process(
Zi

Xi

)
= A∗

(
Zi−1

Xi−1

)
+ ei,

where A∗ is a 9 × 9 matrix with the diagonal elements being 0.15 and all others

being 0.05. The initial values (ZT
1 , X1)

T and each elements of the random vector ei

are generated from identically independently distributed (i.i.d) normal with mean 0

and standard deviation 1. We consider three sample sizes as n = 100, n = 200 and
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n = 400 and we repeat the simulation 300 for each sample. We also consider both

cases of σ = 7.5 and σ = 15.

In the simulation, the optimal bandwidth and the tuning parameter λn are

chosen by BIC criterion described in Section 2.5.1. The Epanechnikov kernel K(x) =

0.75(1− x2)(|x| ≤ 1) is used. The average number of correct and incorrect shrinkage

to zero are reported in Table 2.2.

Table 2.2: Simulation results for the local variables with parametric coefficients

Average number of 0 coefficients
σ = 7.5 σ = 15

Correcta Incorrect Correct Incorrect
N=100
SCAD 4.84 0.05 3.51 0.25
Oracle 5 0 5 0
N=200
SCAD 5 0 4.21 0.10
Oracle 5 0 5 0
N=400
SCAD 5 0 4.87 0.01
Oracle 5 0 5 0

aThe“Correct” represents the average number of five zero coefficients correctly shrinkage to 0;
the “Incorrect” represents the average number of two no-zero coefficients incorrectly shrinkage to
0.

Table 2.2 shows that the simulation results of SCAD variable selection for

the local variables with parametric coefficients. It can also be seen that “Correct”

and “Incorrect” numbers perform better with large sample size and smaller noise.

Specifically, it performs as good as oracle estimator if the sample size n ≥ 200 and σ =

7.5. In a sum, this simulation shows that the proposed variable selection procedures

perform fairly well in the finite sample cases.

Remark 5: The difficulty is that, if the sample size is small and the initial value

is far away from the true value, the iteration procedure may not convergence to the

true value, even divergence. This phenomena is similar to Fan, Yao and Cai (2003).
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They suggested that we may detect whether an estimated β̂ is likely to be the global

minimum by using multiple initial values. To our best knowledge if the sample size

is larger, it will be easy to converge.

2.7 Empirical Studies

2.7.1 Functional Index Coefficient Autoregressive Models

Linear time series models such as linear autoregressive moving average models

(Box and Jenkins, 1970) were well developed in last century. However, it may not

capture some nonlinear features. Many nonlinear time series models have been pro-

posed. The early work includes the bilinear models (Granger and Andersen, 1978;

Subba Rao and Gabr, 1984; Liu and Brockwell, 1988), the threshold autoregressive

(TAR) models (Tong, 1978), the smooth transition AR (STAR) models (Chan and

Tong 1986; Teräsvirta, 1994), Markov switching models (Hamilton, 1989), and so on.

One of the extensions is functional coefficient autoregressive (FAR) model, which is

proposed by Chen and Tsay (1993). The coefficients in FAR models are unknown

vector functional form and depend on lagged terms and the FAR models satisfy

rt = g1(r
∗
t−1)rt−1 + · · ·+ gp(r

∗
t−1)rt−p + εt,

where r∗t−1 = (rt−i1 , rt−i2 , · · · , rt−id)
T for j = 1, · · · , d, gi(·)’s are unknown functions in

Rd for 1 ≤ i ≤ p, {εt} is a noise term with mean 0 and variance σ2, and E(εt|Ft−1) = 0

with Ft−1 being an σ−algebra generated by the past information set It−1.

In fact, the above FAR model covers several traditional varying coefficient

models, such as the threshold autoregressive (TAR) models in Tong (1983, 1990),

the smooth transition AR (STAR) models in Chan and Tong (1986) and Teräsvirta

(1994), and the exponential autoregressive (EXPAR) models of Haggan and Ozaki

(1981).

Due to the curse of dimensionality, Chen and Tsay (1993) just considered
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one single threshold variable case r∗t−1 = rt−k, and they proposed an arranged local

regression to estimate the functional coefficient β’s with an iterative algorithm. In

fact, their method is similar to the local constant estimator as pointed out by Cai, Fan

and Yao (2000). For the efficient estimation of FAR model, we refer to the papers by

Cai, Fan and Yao (2000), Cai, Fan and Li (2000), Fan and Zhang (1999) and Huang

and Shen (2004).

To overcome the curse of dimensionality and incorporate more variables in the

functional coefficients β’s, we assume that r∗t−1 is a linear combination of rt−ij ’s, e.g.

r∗t−1 = βT r, where r = (rt−1, · · · , rt−d)
T . The FAR models can be reduced to a special

case of functional index coefficient models of Fan, Yao and Cai (2003). We name it

as functional index coefficient autoregressive models (FIAR) as

rt = g1(β
T r)rt−1 + · · ·+ gp(β

T r)rt−p + εt.

For the above model, Fan, Yao and Cai (2003) provided algorithms to estimate local

parameters β and functional coefficients g(·), and they proposed a combination of the

t-statistic and the Akaike information criterion (AIC) to select significant variables of

r. They deleted the least significant variables in a given model according to t-value,

and selected the best model according to the AIC. However, as mentioned in Fan and

Li (2001), this stepwise deletion procedure may suffer stochastic errors inherited in

the multiple stages. Meanwhile, there is no theory on this variable selection procedure

and the authors did not mention how to select the regressors rt−j.

In this section, we use two step variable selection procedures to select sig-

nificant variables and to estimate unknown coefficients simultaneously. Firstly, we

do variable selection on the regressors based on penalized local maximum likelihood

and then we do variable selection on the local variables based on penalized global

maximum likelihood.

Our data consists of daily, weekly and monthly returns on the Dow Jones
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Industrial Average, NASDAQ Composite and S&P 500 INDEX. The Dow Jones

Industrial Average is from October 1, 1928 to November 30, 2011, the NASDAQ

Composite is from February 5, 1971 to November 30, 2011 and the S&P 500 INDEX

is from January 3, 1980 to November 30, 2011. All the data are downloaded from the

web site http://www.finance.yahoo.com.

Table 2.3 shows the description of returns for one day horizon, one week hori-

zon and one month horizon. All horizons show the negative skewness. For one day

and one week horizons, they appear to have high kurtosis which is higher than 3.

The Box-Pierce test shows that the autocorrelations of one month horizon of NAS-

DAQ and S&P 500 are zero. However, others are none zero. We also present the

autocorrelations of one period lagged terms for these indexes with three horizons.

To explore the performance of functional index coefficient autoregressive mod-

els, we simply assume our working model as listed below

rt = g1(zt)rt−1 + g2(zt)rt−2 + g3(zt)rt−3 + g4(zt)rt−4 + g5(zt)rt−5 + g6(zt)rt−6 + εt,

where zt = β1rt−1+β2rt−2+β3rt−3 and we assume β2
1 +β2

2 +β2
3 = 1 in order to satisfy

the identification assumption. When two step estimations and variable selections are

employed in our above model, the estimated coefficients of local variables and the

norms of co-variates are reported in Table 2.4.

In the local variables part, It is interesting that one day lagged return does

not have any effects for one day return of three index. And two day lagged return

and three day lagged return perform the same with similar parameter coefficients.

However, only one week lagged return contributes for one week return of DOW and

S&P 500, and three week lagged return does not have any contribution. Specially,

one week lagged return and two week lagged return have the same coefficients for one

week return of NASDAQ. And only two month lagged return has significant effect

for one month return of DOW, and only month lagged return has significant effect
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Table 2.4: Coefficients for local variables and covariates
local variables covariatesa

X1 X2 X3 X1 X2 X3 X4 X5 X6
One day horizon

DOW 0 0.51 -0.86 2.11 1.29 2.31 3.04 1.16 1.56
NASDAQ 0 0.57 -0.82 0 0 0 2.22 0 0
S&P 500 0 0.63 -0.77 1.83 2.81 1.96 3.44 2.32 1.71

One week horizon
DOW 1 0 0 5.96 0 0 0 0 0
NASDAQ 0.71 0.70 0 1.29 1.41 1.95 2.40 2.48 2.16
S&P 500 1 0 0 6.06 0 0 0 0 0

One month horizon
DOW 0 1 0 3.29 2.66 2.20 2.05 2.75 2.05
NASDAQ 1 0 0 5.01 0 0 0 0 0
S&P 500 0.6 0 0.79 1.56 1.10 2.02 1.19 2.53 1.35
a we calculate the norm of the functional coefficient for covariates.

for one month return of NASDAQ. In the covariates part, only lagged one covariate

(X1) has significant effect on one week horizon of DOW and S&P 500, meanwhile,

on the one month horizon of NASDAQ. And only lagged four covariate (X4) is an

factor for one day horizon of NASDAQ. All lagged covariates (X1 ∼ X6) contribute

in other cases. We plot none zero coefficients for DOW, NASDAQ and S&P 500 with

one day, one week and one month horizons respectively, see Figure 2.2∼ Figure 2.10.

2.7.2 Functional Index Coefficient Models for the Stock Return Predictability

In the last section, we consider a regression model for the stock return with its

lagged terms, which is in the framework of functional index coefficient autoregressive

models. In this section, we focus on a regression model of the stock return with its

lagged terms and other lagged financial variables. This leads to another interesting

topic - the so called predictability for the stock return in the finance literature. It is

very important in empirical finance since it is the center issue to the asset allocation

for practitioners in finance markets.

In the 1980’s and 1990’s, people usually employed a classical linear models to
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study the predictability for the stock return. They used different financial variables,

such as the the default spread, the term spread, the one-month bill rate, the dividend-

price ratio, the earnings-price ratio, the book-to-market ratio and so on (Rozeff, 1984;

Chen, Ross and Ross, 1986; Campbell, 1987; Campbell and Shiller, 1988a, 1988b;

Fama and French, 1988, 1989; Cochrane, 1991; Hodrick, 1992; Goetzmann and Jorion,

1993; Kothari and Shanken, 1997; Pontiff and Schallm 1998; among others). Most of

them found some evidence that the stock return can be predictable.

However, there arise some interesting questions and inconsistent results. The

first one is that the predictability for stock returns varies with different return hori-

zons. The regression in Fama and French (1988) indicated that the dividend yields

typically explain less than 5% of the variance of stock return with short-horizon,

either monthly or quarterly returns, whereas the dividend yields can explain more

than 25% of the variance of stock return with long-horizon, such as two to four year

returns. Another one is the inconsistent results of in-sample predictability and out-

sample predictability. Some papers (Bossaerts and Hillion, 1999; Campbell, 2007;

Goyal and Welch, 2003, 2008; Butler, Grullon, and Weston, 2005) showed the evi-

dence of in sample predictability, however they found that there is little out of sample

forecasting power in the stock return models.

Hence, the question of whether the stock is predictable is still controversial

right now in the finance literature. During the resent years, many data-analytic

techniques have been developed, and the researchers have tied to explain the above

new phenomena and to answer this question in two directions.

The first one is to incorporate the effect of persistency, non-stationary or unit

root. When the predictor variable is persistent or a unit root process, conventional

t-test for the predictability of stock returns may be failed and spurious regression

may arise (Ferson, Sarkissian and Simin, 2003; Boudoukh, Richardson and Whitelaw,

2008). It will produce “significant” results even when there is no relationship between
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stock return and predictable variables. It is because that persistence or unit root will

lead to biased estimator and the t-test does not converge to the true t-distribution

even the sample size is large in the prediction models. During the recent years, several

papers (Ferson, Sarkissian, and Simin, 2003; Valkanov, 2003; Lewellen, 2004; Torous,

Valkanov and Yan, 2004; Hjalmarsson, 2004; Campbell and Yogo, 2006; Jansson and

Moreira, 2006; Polk, Thompson, and Vuolteenaho, 2006; Ang and Bekaert, 2007;

Cochrane, 2007; Boudoukh, Richardson and Whitelaw, 2008, Cai and Wang, 2011a)

focused on estimation and inference with persistent variables in the stock return

prediction models.

Another direction is to consider non-constant coefficients. Some empirical

studies provided the strong evidence that there may exist time varying parameters.

For example, Bossaerts and Hillion (1999) mentioned that, the poor external validity

of the prediction models indicates the parameters of the best prediction model change

over time. Some papers proposed different approaches to identify structural breaks

or parameter instability (Viceira, 1997; Pesaran and Timmermann, 2002; Campbell

and Yogo, 2006; Paye and Timmermann, 2006; Ang and Bekaert, 2007; Lettau and

Van, 2008; Pettenuzzo and Timmermann, 2011; Ang and Timmermann, 2011, Cai

and Wang, 2011b). For example, Paye and Timmermann (2006) examined evidence

of instability in models of ex post predictable components in stock returns. They

considered structural breaks in the coefficients and different state variables in their

models such as the lagged dividend yield, short interest rate, term spread and de-

fault premium. Ang and Bekaert (2007) did a test for time variation in coefficients

by splitting their entire sample into different sub-periods. Pettenuzzo and Timmer-

mann (2011) studied the effect of rare and large structural break. Comparing to the

instantly changed break, Dangl and Halling (2009) allowed gradual changes of coef-

ficients and considered the gradually varying coefficients of coefficients with random

walk process. They found a strong relationship between out-of-sample predictability
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and the business cycle.

However, as mentioned in Granger (2005), “It is likely that there will be struc-

tural breaks in the present framework, but such breaks are difficult to forecast, which

is the basic element of their nature”.

To select significant variables for predicting stock returns, Bossaerts and Hillion

(1999) implemented several selection criteria, which include R2, AIC, BIC, FiC, PIC,

PLS and PLS-MDC, to verify the predictability of stock return. They confirmed the

presence of in sample predictability in the international stock market and no out of

sample forecasting power. Dangl and Halling (2009) estimated the 2k − 1 dynamic

linear models, which result from all possible combinations of predictive variables,

and they used a Bayesian model selection criterion to select these variables. One of

difficulties is that the selection procedures would be complicated if the number of pre-

dictors k is large. Another one is that there is no theory on this work. As mentioned

in Fan and Li (2001), this stepwise deletion procedure may suffer stochastic errors

inherited in the multiple stages.

In fact, some empirical studies in literatures have revealed that the coefficients

of predictors may depend on some financial variables. For example, Fama and French

(1989) showed that the slopes for the default spread and the dividend yield increase

from high-grade to low-grade bonds and from bonds to stocks. This finding indicates

that the coefficients may depend on some variables. In this section, we consider the

predictability for the stock return with the functional index coefficient models (Fan,

Yao and Cai, 2003). To avoid the curse of dimensionality, it specifies an index form

in the functional coefficient part, which is a linear combination of multiple financial

variables,

rt = gT (βTZt−1)Xt−1 + εt,

where r is the stock return, Xt = (X1t, X2t, . . . Xpt)
T is a p× 1 dimensional vector of

financial variables and Z is a d×1 dimensional vector of financial variables. β ∈ Rd are
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d−dimensional unknown parameters and g(·) = (g1(·) . . . gp(·))T are p−dimensional

unknown functional coefficients. We assume that ∥ β ∥= 1 and the first element of β

is positive for identification.

If p=2 and the only one regressor is market return, the above model reduces to

the case studied by Cai and Ren (2011). They considered a nonparametric estimate of

time-varying beta and alpha in the conditional capital asset pricing model (CAPM),

and they developed a procedure that can estimate and select the local variables si-

multaneously with smoothly clipped absolute deviation penalty. However, they did

not provide any theory for their variable selection procedures.

The attractive point of varying-coefficient model is that, the coefficients of

regressors are functional form of other variables rather than constant in ordinary

linear models. It can capture many financial features in the predictability for the

stock return models. First, this model can capture parameter instability with the

coefficients that are allowed to change with other economic variables. And it is

easy to do forecasting compare to other structure break models. Second, it can

incorporate some nonlinear relationship between stock return and financial predictors.

For example, let gT (βTZt−1) = βTZt−1, then the above model reduces to bilinear

model (Granger and Andersen, 1978) and the model in Ferson and Harvey (1999).

In this empirical study, we consider the predictability for stock index returns.

The dependent variables include monthly returns on the Dow Jones Industrial Aver-

age, NASDAQ Composite and S&P 500 INDEX, and the covariates and local vari-

ables include “BamAa”, the spread between Moody’s Baa corporate bond yield and

Moody’s Aaa corporate bond yield, “Bam3m”, the spread between Moody’s Baa cor-

porate bond yield and a three-month Treasury bill, “term1year”, the term spread

between the one year and three-month Treasury yields, and “term10year”, the term

spread between the ten year and three-month Treasury yields. To match the predic-

tors, we let the lagged data as our local variables. Dow Jones Industrial Average and
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S&P 500 INDEX are from July 1, 1953 to November 1, 2011, NASDAQ Composite is

from February 5, 1971, and local variables are from June 1, 1953 to October 1, 2011.

The sample size of NASDAQ Composite is 489 and all others are 702.

From the descriptive statistics in Table 2.5, we can find that all the index

returns DOW, NASDAQ and S&P 500 are skewed and their Kurtosis are less then 3.

This phenomenon coincides with statement that the returns are usually not normally

distributed. We also check the stationarity of these seven variables. We reject the

hypothesis that these variables are unit root respectively by using the augmented

Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root test. The assumption of

stationarity is automatically satisfied.

To study the performance of functional index coefficient for the stock return

predicability, we simply assume two working models are set up as below

Model 1: rt = g1(zt)z1,t−1+g2(zt)z2,t−1+g3(zt)z3,t−1+g4(zt)z4,t−1+εt,

and

Model 2: rt = g1(z)rt−1+g2(zt)rt−2+g3(zt)rt−3+g4(zt)rt−4+g5(zt)rt−5+g6(zt)rt−6+εt,

where zt = β1z1,t−1+β2z2,t−1+β3z3,t−1+β4z4,t−1 and we assume β2
1 +β2

2 +β2
3 +β2

4 = 1

in order to satisfy the identification assumption.

In Model 1, we simply assume that the local variables and covariates are the

same, which include “BamAa”, “Bam3m”, “term1year” and “term10year”. However,

we let the covariates be six lagged terms of stock index returns in the model 2. We

do estimation and variable selection simultaneously on the above two models by two

step estimation procedures. The estimated coefficients of local variables and the

norms of covariates are reported in Tables 2.6 and 2.7. An interesting finding is that,

all the coefficients of covariates in Model 1 are zero. This implies that the stock

index DOW, NASDAQ and S&P 500 are not predictable with these four variables
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“BamAa”, “Bam3m”, “term1year” and “term10year” in the framework of functional

index coefficients.

In Model 2, we find all the functional index coefficients are non-zero if the co-

variates are lagged returns. As demonstrated in Table 2.7, “Bam3m” and “term10year”

are significant local variables with the monthly data of DOW and NASDAQ, and

“Bam3m”, “term1year” and “term10year” are important predictors for the data of

S&P 500. It is interesting that the local variable “BamAa” is not significant in pre-

diction of three stock indexes index DOW, NASDAQ and S&P 500 with one month

horizon. Meanwhile, the plots for the functional coefficients show non-linearity. Detail

can be found in the Figures 2.11, 2.12 and 2.13.

2.8 Conclusion

Variable selection technology and its algorithms are well developed in the

last decade. Variable selection for semiparametric models have become more and

more popular in the recent years. In this Chapter, we consider variable selection

in functional index coefficient models under strong mixing context. Our variable

selection procedures include two steps. First, we select significant covariates with

functional coefficients, and then do variable selection for local significant variables

with parametric coefficients. Simulations show that our two steps procedures perform

good. The predictability in stock returns are always interesting and hot topics. In

the empirical studies, we consider two financial examples, which include functional

index coefficient autoregressive models and functional index coefficient models for the

stock return predictability.

The persistence and instabilities of predictive variables, and the nonlinearities

of the time series models are hot and hard topics for the stock return predictability.

For the further research, we may do variable selection for the time series prediction

models with persistent variables. Meanwhile, a “good” prediction model may work

for some data and some period. We can investigate some time varying non-linear
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models, such as selecting predictive periods with variable selection procedures.
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Figure 2.2: Non-zero functional coefficients for FIAR with daily DOW data
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Figure 2.3: Non-zero functional coefficients for FIAR with daily NASDAQ data
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Figure 2.4: Non-zero functional coefficients for FIAR with daily SP data
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Figure 2.5: Non-zero functional coefficients for FIAR with weekly DOW data
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Figure 2.6: Non-zero functional coefficients for FIAR with weekly NASDAQ data
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Figure 2.7: Non-zero functional coefficients for FIAR with weekly SP data
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Figure 2.8: Non-zero functional coefficients for FIAR with monthly DOW data
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Figure 2.9: Non-zero functional coefficients for FIAR with monthly NASDAQ data
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Figure 2.10: Non-zero functional coefficients for FIAR with monthly SP data
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Figure 2.11: Non-zero functional coefficient for prediction with monthly DOW data
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Figure 2.12: Non-zero functional coefficient for prediction with monthly NASDAQ
data
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Figure 2.13: Non-zero functional coefficient for prediction with monthly SP data



CHAPTER 3: EFFICIENT LOCAL AADT ESTIMATION VIA SCAD VARIABLE
SELECTION BASED ON REGRESSION MODELS

3.1 Introduction

It is well known that the Annual Average Daily Traffic (AADT) information

is very important to the VMT (Vehicle Miles of Travel) calculation, thus it is very

important for the decision making, planning, air quality analysis, etc., including acci-

dent analysis, design and operation analysis of highway facilities, energy consumption,

vehicle emissions estimate, air quality analysis, traffic impact assessing, budget es-

timate, and revenue allocation. AADT and VMT data are required by the Federal

Highway Administration (FHWA of USA). The traffic volumes at most of the inter-

state highways, US and NC routes are collected on an annual basis, and most of the

secondary road traffic volumes are collected on a biennial cycle with approximately

half being counted each year. However, for most of the local loads, they are lack of

detail information and even without any measures due to the cost. Even though the

large amount AADT and VMT are on the high functional class roads, the majority

percentage of roads is local area roads and rural minor collectors. For example, the

document of “North Carolina Highway and Road Mileage Reports 2007” reports that

72% of the statewide road mileage is local area roads (NCDOT, 2010). Thus, the lo-

cal AADT also makes certain percentage contribution to the total VMT. Therefore,

how to estimate the local AADT is a tough and urgent issue for accurate AADT and

VMT in state-wide and nation-wide due to lack of observation counters to provide

measurements.

Regression analysis may be one of the most popular methods to estimate
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AADT. There are many papers on choosing different variables that contribute to

AADT. Mohammad et al. (1998) incorporated relevant demographic variables for

county roads into a traffic prediction model. Xia et al. (1999) found roadway char-

acteristics such as the number of lanes, functional classification and area type which

are contributing predictors to the AADT estimation of non-state roads in urbanized

areas in Florida. Zhao and Chung (2001) well developed and compared four multi-

ple linear regression models using geographic information system technology. Four

groups of independent variables are considered, including roadway characteristics,

socioeconomic characteristics, expressway accessibility, and accessibility to regional

employment centers. Zhao and Park (2004) allowed model parameters to be esti-

mated locally by geographically weighted regression (GWR) methods. They argued

that the GWR models were comparable with ordinary least square models. Kingan

and Westhuis (2006) suggested robust regression methods for AADT forecasting.

Some other information may be incorporated to estimate AADT. Jiang, Mc-

Cord and Goel (2006) proposed to utilize weighted information of both imaged-based

and ground-based traffic data. Eom, Park, Heo and Hunstiger (2006) took into ac-

count both spatial trend (mean) and spatial correlation using the spatial regression

model. In recent years, many new methods and algorithms are proposed, such as K-

nearest neighbor algorithm (Li and Fricker, 2008), co-clustering based collaborative

filtering (Wu and Zhang, 2009), support vector machine (Manoel, Jeong, Jeong and

Han, 2009), and neural networks (Sharma, Lingras, Xu and Liu, 1999; William and

Xu, 2000; Sharma, Lingras, Xu and Kilburn, 2001). To see the performance of some

popular methods and algorithms, we refer to the comparison papers (Fricker, Xu and

Li, 2008; Sharma, Lingras, Liu and Xu, 2000).

After we collect the large amount of explanatory variables, one critical step is to

keep significant variables and exclude the non-significant variables in the final model.

As mentioned in Zhao and Chung (2001), although most variables were statistically
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significant, few added enough explanatory power to be practical and useful. So it

is very important to find a criterion to maximize the explanatory power. Thus it is

fundamental important to do the variable selection in AADT estimation effectively

for the efficiency of estimation and accuracy of prediction. However, there is little

literature about the detail of variable selection in the AADT estimation. They may

select significant variables by t-test, and F-test, or select the best model according

the Akaike information criterion (Akaike, 1973) and Bayesian information criterion

(Schwarz, 1978). As mentioned in Fan and Li (2001), this stepwise deletion procedures

may suffer stochastic errors inherited in the multiple stages, and there is no theory

on the validity of these multiple selecting steps. Modern various shrinkage methods

are more and more popular recently years, which include LASSO (Tibshirani, 1996;

Knight and Fu, 2000 ), the bridge regression (Fu, 1998), SCAD (Fan and Li, 2001),

the one-step sparse estimator (Zou and Li, 2007). Here we refer to the SCAD (Fan

and Li, 2001), since it has oracle property, namely, the resulting procedures perform

as well as if the subset of significant variables were known in advance.

In this paper, we focus on the local AADT estimation with effective SCAD

variable selection based on regression models. Initially, four groups of 19 variables

are collected, which include satellite information and the topological structure of

roads. Then, we develop a variable selection procedure by the smoothly clipped abso-

lute deviation penalty (SCAD) procedure, which can simultaneously select significant

variables and estimate unknown regression coefficients. Thus, it avoids multiple se-

lecting steps, and guarantees efficiency with theoretical support (Fan and Li, 2001).

Further, the algorithm and tuning parameters are explicitly studied. The proposed

method shows the validity of our selection procedure. The method further improves

the local AADT estimation by incorporating satellite information. It outperforms

some other regression method if it is applied to local AADT estimation.

The remainder of this paper is organized as follows. In section 3.2, four groups
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of variables are collected. Model estimation and variable selection procedures are set

up in section 3.3. Section 3.4 compares the suggested method with one previous

method. Finally, the conclusion is in section 3.5.

3.2 Groups of Variables

Here we present four groups of variables that we have collected as listed as A

through D in the followings. They include driving behavior of individuals, character-

istics of the roads, information from satellite and socioeconomic variables.

A. General driving behavior

We assume that (i) the supply of each household from its location is evenly

distributed in its community area; (ii) individuals who drive out usually find a short

and quick way in a local road to a high class road, US/NC or interstate route, and

(iii) individuals who drive in a local community usually take a short and quick way

from a high class road, US/NC or interstate route to a destination. Thus we can get

the contribution of households to each section of roads by a weighted shortest path

algorithm. We take the length of road as distance, and the inverse of number of lanes

as a weight. We define this contribution as the loading factor.

B. Characteristics of the roads

We take the following variables for characteristics of the roads.

Number of lanes: if a road has different numbers of lanes, we can define the

average number of lanes as the number of lanes of this road.

Road length: if a road is longer, most probably, it would be the “main road”

in the local roads, and more cars and trucks would pass by.

X axis and Y axis: we define east-west to be the x axis and north-south to be

the y axis.

Local road connectivity: number of other local roads which connect to the

studied road.

High road connectivity: number of high level roads (such as secondary road,



57

NC road, US road, and so on) which connect to the studied road.

Collector: we define the nearest collector as a variable for the studied road.

It is based on a fact that if the AADT of a collector is high, then the AADT of the

nearby road of this collector should be large as usually.

C. Information from satellite

We notice that the traffic information from satellite may be available, such as

sampled in Google maps. Thus, we introduce the following variables further.

Cars on the road: number of cars on the studied road. It can be obtained from

satellite photos based on digital image processing.

Cars intensity: cars on the road/length of the road, i.e., intensity of cars on

the road, calculated as cars on the road divided by the length of the road.

D. Socioeconomic variables

For different zip code areas, we consider the variables of population, population

density, housing units, land area (square mile), water area (square mile), median

of income, percentage of unemployed, and percentage of people who are below the

poverty line.

We may consider other variables such as dummy variables of rural or urban

area as predictors if we consider the state-wide AADT estimation because it includes

rural areas and urban areas.

3.3 Linear Regression Models and Variable Selection

We define Y = (y1, y2, · · · , yn) as a dependent variable-vector,X = (X1, X2, · · · , Xn)

as an n × d design matrix, where Xk is d dimensional covariates with the first com-

ponent as 1. The loss function of linear regression models can be expressed as

L(β) =
n∑

i=1

(yi −XT
i β)

2 (3.1)

To shrink the coefficients of non-significant variables to 0, we add smoothly
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clipped absolute deviation penalty (SCAD) to the above loss function L(β).

Min L(β) + n
d∑

k=1

Pλk,a(|βk|) (3.2)

where the first-order derivative P ′
λk,a

(|βk|) of the continuous differentiable function

Pλk,a(|βk|) is defined as

P ′
λk,a

(|βk|) = λkI(βk ≤ λk) +
(aλk − βk)+

(a− 1)
I(βk > λk) for some a > 2 and |βk| > 0

(3.3)

(aλ − βk)+ takes its positive value if it is positive, otherwise 0, and λk, k =

1, · · · , d, are tuning parameters. We select a = 3.7 as suggested in Fan and Li (2001).

Notice that this choice gives pretty good practical performance for various variable

selection problems. For the algorithm, we can calculate β̂ iteratively by

β(1) = [XTX + n
∑
λ

(β(0))]−1XTY (3.4)

and

∑
λ

(β(0)) = diag{
P ′
λ1,a

(|β(0)
1 |)

|β(0)
1 |

, · · · ,
P ′
λd,a

(|β(0)
d |)

|β(0)
d |

} (3.5)

There are three popular methods to estimate tuning parameters λk: (i) leav-

ing one out cross-validation, (ii) generalized cross-validation, and (iii) fivefold cross-

validation. For computation simplicity, we follow fivefold cross-validation (Fan and

Li, 2001), and choose λk as follows. Denote the full dataset of X and Y by T , and

the training set and the test set by T − T q and T q for q = 1, 2, · · · , 5, respectively.

For each q, we find the estimator β̂(−q)(λ1, λ2, · · · , λd) from the training set T − T q.

Then we find tuning parameters λk to minimize
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CV (λ1, λ2, · · · , λd) =
5∑

q=1

∑
(yi,Xi)∈T q

[yi −XT
i β̂

(−q)(λ1, λ2, · · · , λd)]
2 (3.6)

But if the dimension d is large, the minimization of equation (3.6) is still

difficult. Follow the idea from Zou (2006) who used adaptive weights for penalizing

different coefficient by assigning λk = λ/|β̂k(OLS)|γ, where γ > 0, β̂(OLS) is the

ordinary least square estimator of the equation (3.1). Thus, we let λk = λ/|β̂k(OLS)|

to decrease the dimension d of λk to dimension 1 of λ.

The data we studied is 243 cases in Mecklenburg County of North Carolina

in 2007. We collected 19 explanatory variables as explained in section 3.2. All cases

are in the kind of local functional class roads. The statistical software we use is R.

Firstly, we do regression of the AADT on the above variables respectively, and then

find that some of the variables are significant. The contribution (R2) of significant

variables to the AADT is listed in table 3.1. From table 3.1, we can see that variables

of the cars, cars intensity and lanes have large contributions to the AADT, from 0.41

to 0.52. Y axis has moderate contributions to the AADT, as 0.12. The road length,

local/high road connectivity, collector and median income have some contributions

to AADT. It is noticed that the y-axis is significant. It may be due to the fact that

people who live in the south of Charlotte (Mecklenburg County) are richer than in

the north, which makes a higher AADT in the south community.

Secondly, we standardize dependent variable Y and covariates Xk by zi =

(xi − x̄)/σ̂, where x̄ is the mean of x and σ̂ is the standard deviation of x. Then

we estimate β̂ iteratively by equation (3.4). The tuning parameters are chosen by
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Table 3.1: The contribution of significant variables to AADT
Variables R2

Loading factor 0.07
Road length 0.09
Local road connectivity 0.08
High road connectivity 0.09
Cars 0.52
Cars intensity 0.46
Lanes 0.41
Collector 0.03
Y axis 0.12
Median income 0.08

equation (3.6) and λk = λ/|β̂k(OLS)|. Then we can get the following linear model.

s AADT = 0.2959 ∗ s Cars+ 0.3217 ∗ s Lanes+ 0.1200 ∗ s Housingunits

+0.2765 ∗ s Income+ 0.2648 ∗ s Belowpovline

+0.2729 ∗ s Carintensity + ε

Table 3.2 below presents the non-zero coefficients from above model. The

standard errors are computed by bootstrap with replacement. We can see that only

six variables including cars, lanes, housingunits, income, belowpovline and car inten-

sity have significant impact on the local AADT, due to the Multi-Colinearity. The

adjusted R-square of the model is 0.65. That is to say, the covariates can explain

about 65% of the total variation. If we don’t consider satellite information, i.e., to

exclude cars intensity and cars in model (3.2), the covariates only explain about 48%

of the total variation.

3.4 Comparison

In Zhao and Chung’s paper (2001) four regression models are presented. In

their paper, model 1 includes the road functional class as a variable, and can explain

82% of the total variation in the high functional class roads. If this model is just
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Table 3.2: Regression result of the linear model
Coefficients Estimate Std. Errora

s Cars 0.2959 0.0936
s Lanes 0.3217 0.0552
s housingunits 0.1200 0.0485
s income 0.2765 0.0698
s belowpovline 0.2648 0.0776
s Carsintensity 0.2729 0.1011

aStd. Errors are computed by bootstrap with replacement

applied to local functional class roads, it is equivalent to do regression on variables

of LANE, REACCESS, DIRECTAC and BUFFEMP. But it is hard to implement

directly, because it is not easy to measure the above last three variables in local

areas. In their paper, the ratio of partial R2 of the last three variables to the one

of the first variable LANE is about 0.25. If we assume this ratio remains the same

in the local functional class roads, we could get the estimated R2 = 0.5 for these

four variables if it is applied to local functional class roads, since variable LANE can

explain 41% of the total variation.

In our presented method, we randomly choose 200 cases from 243 cases as the

predictor data, and the remaining 43 cases as the prediction data. The prediction

error is defined as

Prediction Error =
|predicted value− true value|

true value
(3.7)

In the above formula, we let the predicted value be 0 if it is negative. By

doing this procedure until the preset accuracy is reached by the L1 norm of the

output difference between the current step and the last step, or until the total iteration

number reaches a preset limit, say 500 or 1000 times, we can get the median prediction

error for different percentiles. Table 3.3 shows a comparison for two different methods

with the percentile of prediction error in 30%, 50%, 80% and 90% respectively.
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Table 3.3: Percentile of prediction error for two different methods
Percentile 30% 50% 80% 90%
Prediction Error (this paper) 0.20 0.37 0.98 2.5
Prediction Error (Zhao and Chung, 2001)a 0.32 0.45 1.41 2.74

athe prediction procedure does not include three covariates REACCESS, DIRECTAC and BUF-
FEMP.

From the above Table 3.3, with the method we proposed in the local AADT

estimation, the half of the prediction error is below 0.37, and about 80% of the

prediction error is below 0.98. From the above, we observer the better results of

our method in the prediction error comparing to the model 1 if three covariates

REACCESS, DIRECTAC and BUFFEMP are not included.

3.5 Conclusion

For the local AADT estimation, we present the smoothly clipped absolute

deviation penalty (SCAD) procedure to the regression method. The SCAD can si-

multaneously select significant variables and estimate unknown regression coefficients

at one step. The advantage of the presented method is to avoid multiple selecting

steps, and guarantee efficiency with theoretical support.

We consider four groups of 19 variables including statistical general driving

behavior, characteristics of the roads, information from satellite and socioeconomic

variables. The incorporated satellite information has a great improvement in our

model, and makes R-square to go up from 0.48 to 0.65. According to the R-square

and the prediction error, if to estimate AADT in the local functional class roads, our

method presents the better results. In addition, prediction error is also reasonable

although the AADT in local function roads may vary sharply. The further work can

be to extend our variable selection procedure to high functional roads and to develop

other new algorithms.



CHAPTER 4: NONPARAMETRIC APPROACH TO CALCULATE SEASONAL
FACTORS FOR AADT ESTIMATION

4.1 Introduction

Seasonal factors are very important to the estimation of AADT which is useful

to decision making, planning, air quality analysis, etc. They are used to transfer the

measured traffic volume data of one or two days at the portable traffic monitoring

sites to the AADT. The factors are usually calculated based on the traffic information

of permanent traffic monitoring sites.

The Federal Highway Administration (FHWA) recommends three factor group-

ing methods, i.e., the cluster analysis, the geographic/functional assignment of roads

to groups, and same road factor application (FHWA, 2001). The early work (Sharma

and Werner, 1981; Sharma, 1983; Weinblatt, 1996; Wright et al., 1997) shows that

this seasonal adjustment is needed to reduce the significant temporal bias introduced

by short duration traffic counts. But as mentioned in the traffic monitoring guide

(FHWA, 2001) and a research report in Florida (Zhao, Li and Chow, 2004), there are

some problems with this method, such as the difficulties to define groups of roads,

to assign groups, and to select a representative sample of roads from which to collect

data for calculating the mean values used as factors. In fact, it strongly depends on

the judgment of engineers in practice.

By assuming that all roads within a group behave similarly, FHWA suggested

that the mean value of randomly selected sample is used as the “best” measure of

how all roads in the group behave (FHWA, 2001). In the literature (Davis, 1997;

Mohammad et al, 1998; Xia et al, 1999; Zhao and Chung, 2001; Zhao and Park,
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2004; Kingan and Westhuis, 2006), regression techniques and their various extensions

may be one of the popular tools to estimate AADT. The detail can be found in the

review of Zhao and Park (2004). Some authors also adopted regression methods to

analyze the relationship between the seasonal factors and some covariates. Faghri and

Hua (1995) concluded that variables representing the physical and functional char-

acteristics or their combinations are statistically significant, and they can provide

better results than cluster analysis, whereas Zhao, Li and Chow (2004) incorporated

roadway functional classification, land use, and other relevant factors into data col-

lection and processing, and argued that it was possible to reduce the data collection

effort while improving the accuracy of seasonal factor estimations. In the meanwhile,

some other methods are developed to seasonal classification and seasonal factor as-

signment. For example, Faghri and Hua (1995) applied neural networks to roadway

seasonal classification, and Li, Zhao and Chow (2006) proposed a data-driven proce-

dure for assigning a seasonal factor category to a given portable count site. By using

a fuzzy decision tree, they considered the similarities between the characteristics of

permanent count sites in the seasonal factor group and portable count site. Finally,

Bassan (2009) presented a practical statistic methodology of state-wide traffic pattern

grouping, in which he combined roadways with similar traffic characteristics such as

volume, seasonal variation and land use in Delaware.

Although the progress has been made, there are still many difficulties in the

process, e.g., seasonal groups are only constructed based on monthly seasonal factors.

As mentioned in Zhao, Li and Chow (2004), it is the traffic monitoring spatial sample

location that is the key for the season factor estimation in urban areas. Furthermore,

they advocated that there are needs to develop new modelling techniques such as non-

linear regression models since the current regression models for estimating monthly

seasonal factors on rural roads have relatively low R squares.

In this paper, to calculate the seasonal factors, we propose a nonlinear regres-
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sion model based on the nonparametric method by introducing the distance kernel

and by using the local weights. The factors utilize the similarity of seasonal variability

and traffic characteristics at the count sites in a nearby area. They are decomposed

into monthly factors and weekly factors. Then, we introduce a nonlinear distance

weighting kernel to estimate the weekly factors. It puts more weight on the obser-

vation points which are much closer to the interested point, and puts less weight on

the far away observation points. Thus, it makes the seasonal factor estimation more

reasonable and accurate to follow the fact. Moreover, the proposed approach can be

extended to grouping cases if prior information of grouping is available.

The remainder of this paper is organized as follows. Section 4.2 presents

some assumptions and the tests for the assumptions. In section 4.3, we derive the

estimation of the seasonal factors including monthly factors and weekly factors by

using the nonparametric method. Section 4.4 depicts a theoretical analysis and test

for our proposed location effect. Section 4.5 provides a real example to demonstrate

our method using the distance kernel with the traffic data observed in the Mecklenburg

County of North Carolina. In addition, the results are further compared to the method

without the distance kernel. Finally, conclusions are given in Section 4.6.

4.2 Assumptions and Their Validation

4.2.1 Assumptions

To establish and derive the seasonal factor, we present the following assump-

tions:

A1: There definitely exist monthly effects.

A2: Monthly factors and weekly factors are not linearly interactive.

A3: The weekly factors in a local neighbourhood are similar.

Assumption A1 is commonly used in other methods, which does also reflect a

fact. Assumption A2 is weaker than the independence between the monthly factors
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and weekly factors. This no linearly interaction is observed and tested below. We do

the tests for both Assumptions A1 and A2. Assumption A3 means that the weekly

factors are similar in the local area. In fact this assumption is reasonable because the

traffic has its pattern in the local area.

4.2.2 Tests

In the literature, many papers have addressed how to calculate seasonal factors,

and how to apply it when estimating AADT. They usually impose Assumptions A1

and A2 without test or verification. Here we test these presented assumptions by Two-

Way ANOVA. The null hypotheses that there exist no monthly effects on the average

and no linear interactive effect between monthly factors and weekly factors will be

tested. The computational aspect involves computing F-statistic for the hypothesis.

In Section 4.4, we analyze the variance of the seasonal factors as listed in Table

4.1. We can observe from the results in Table 4.1 that the monthly effects do exist,

and indeed, there is no linear interaction term between the monthly factors and the

weekly factors. This shows that the above assumptions are valid.

4.3 Seasonal Factors Estimation

Under Assumption A1 and A2, we can calculate seasonal factors as follows,

which is similar to the method in FHWA (2001)

Fmw = Fm · Fw (4.1)

where Fmw is the seasonal factor for the m-th month and the w-th week; Fm is the

monthly factor for the m-th month; Fw is the weekly factor for the w-th day in a

week. Therefore, if we can get the estimation of the monthly factors and the weekly

factors, then it will be easy to obtain the seasonal factors for the m-th month and

w-th week by (4.1).

Our goal is to estimate the seasonal factors for our interesting point (x0, y0),
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where we do not have a permanent counter, by the available measurement data at

the points (xi, yi), i = 1, · · · , n, near the interesting point.

4.3.1 Weekly factors estimation

Here we propose a new approach that is a consistent estimation of weekly

factor under some mild assumptions, e.g., the conditional mean is smooth enough,

and the residuals are independently identically distributed. Under Assumption A3,

our nonparametric regression model can be written as:

Fw(xi, yi) = gw(xi, yi) + uw(xi, yi), i = 1, · · · , n, (4.2)

where Fw(xi, yi) is the weekly factor for the w-th day in a week, and can be calculated

by

Fw(xi, yi) = V OLw̄(xi, yi)/V OLw(xi, yi), (4.3)

in which V OLw̄(xi, yi) is the average traffic volume of observation (xi, yi) for a week,

V OLw(xi, yi) is the traffic volume of observation (xi, yi) for the w-th day in a week,

gw(xi, yi) is the estimator of Fw(xi, yi), uw(xi, yi) is the residual term, and (xi, yi) is

the observed location coordinates.

Note that if prior information is available, our proposed nonparametric regres-

sion model also can be extended to grouping cases as follows:

Fw(xi, yi) = gw(xi, yi) + uw(xi, yi), i ∈ {groupj}, (4.4)

i.e., we just do nonparametric regression within group j. Further if more

variables are available, we can generalize the nonparametric model (4.2) to semi-

parametric model (Hardle, Liang and Gao, 2000) as

Fw(xi, yi) = gw(xi, yi) + z′iβ + uw(xi, yi), i = 1, · · · , n (4.5)

where zi is the vector of other variables and β is the coefficient vector of zi.
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For simplicity, we just consider model (4.2) in this paper. There are many

nonlinear or nonparametric methods that can be used to estimate gw(xi, yi), such as

spline, series method, two-dimensional kernel method, and so on. For large sample

size, the results of different methods are similar. Here we propose to use distance di

as covariate since x and y have the same measure,

di =
√

((xi − x0)2 + (yi − y0)2) (4.6)

where (x0, y0) is the interesting point, and (xi, yi) is the available point with the

measurement data for estimation of the seasonal factors as mentioned above.

There are some merits for this suggested method. Firstly, it eases the so-

called “curse of dimensionality” (Bellman 1961) if the sample size is not large enough.

Secondly, it can overcome the difficulty of choosing two bandwidths simultaneously

if a two-dimensional kernel is used. The third is that, if we use two-dimensional data

directly, then we always assume that our interested point is in a range of both x and

y. If a one-dimensional di is used, we just need the condition as our interest point is

in the range of either x or y. Denote Kh(di) as the kernel, where

Kh(d) = K(d/h)/h (4.7)

and h is the bandwidth. By adopting from the method of Nadaraya (1965) and

Watson (1964), we obtain the estimator of Fw(x0, y0), given by

ĝw(x0, y0) =
n∑

i=1

wiFw(xi, yi) (4.8)

wi = K(di/h)/
n∑

j=1

K(dj/h) (4.9)

where wi is the weight attached to Fw(xi, yi), and n is the sample size. It is clear that

the weights are nonnegative, and the sum is to one. For the bandwidth selection,
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we can use plug-in method or cross-validation method (Jones and Sheather, 1991).

We also can use local linear method (Cleveland, 1979). For simplicity, we use local

constant method (Nadaraya, 1965; Watson, 1964) here. For kernel selection, we

choose the commonly used Epanechnikov kernel. In fact, the grouping method is

similar to the uniform kernel method.

The formula of Epanechnikov kernel is listed below, and the plots of Epanech-

nikov and uniform kernels are shown in Figure 4.1.

K(u) = (3/4)(1− u2)I|u|≤1 (4.10)

When we implement this method in the statistical software, we find that

some of interested points are on the boundary of covariate d. To overcome the

boundary problem, we use the reflection method proposed in Schuster (1985) and

Hall and Wehrly (1991). The reflection method is to construct the synthetic data

{Fw(xi, yi), di}, where the original data are {Fw(xi, yi), di}, and the “reflected” data

are {Fw(xi, yi),−di}. Also, some of the interested points are far away from the bound-

ary. To solve this problem, we can use fixed proportion (for example, 30%) of data

which are the most close to the interest point to estimate the weekly factors.

4.3.2 Monthly factors estimation

In many cases, monthly factor is more sensitive than weekly factor, since the

weather conditions contribute a lot to the volume changes. If we have sufficient large

amount of traffic monthly data, the monthly factors with location parameter (xi, yi)

can be estimated by regression model:

Fm(xi, yi) = gm(xi, yi) + um(xi, yi), i = 1, · · · , n (4.11)

where Fm(xi, yi) is the monthly factor for the m-th month in a year, and can be cal-

culated by V OLm̄(xi, yi)/V OLm(xi, yi), in which V OLm̄(xi, yi) is the average traffic
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volume of observation (xi, yi) for a year, V OLm(xi, yi) is the traffic volume of observa-

tion (xi, yi) for the m-th month in a year, and gm(xi, yi) is the estimator of Fm(xi, yi);

um(xi, yi) is the measurement error term.

Then we obtain the estimator of gm(x0, y0) by

ĝm(x0, y0) =
n∑

i=1

wiFm(xi, yi) (4.12)

where the weight wi is defined by equation (4.9).

The above monthly factors estimation procedures are based on a large sample

size. However, the sample size for monthly factors is usually small. Furthermore, it

is usual to see that some of the data may be missed or even not fully available. Thus,

we do the followings:

(i) first to compute the factor of an average day of a week for each month;

(ii) then to compute an annual average value from those monthly averages; and

(iii) finally to compute a single annual average daily value.

This process effectively removes most biases that result from missing days of

data, especially when those missing days are unequally distributed across the days of

the week or months. Therefore, we have

AADT =
1

12

12∑
m=1

MADTm (4.13)

and

MADTm =
1

7

7∑
w=1

(
1

Dmw

Dmw∑
d=1

V OLmwd) (4.14)

where V OLmwd is the d-th daily traffic volume of the w-th day in a week of the

m-th month, Dmw is the number of the w-th day in the m-th month. For example,

Dmw = D35 = 4, it means that there are four Fridays in March in view of the 5th

day of a week as Friday and the 3rd month as March; and MADTm is the monthly
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average daily traffic. It is noticed that the formulas (4.13) and (4.14) without the

distance kernel are similar to those in Wang and Teng (2004).

Then, an average monthly factor Fm is defined for each month as

Fm = AADT/MADTm, m = 1, · · · , 12. (4.15)

and the seasonal factor estimator can be calculated by

F̂mw = F̂m · · · F̂w = ĝm · · · ĝw (4.16)

If two consecutive daily counting numbers are collected, we can estimate

AADT by

ˆAADT (x0, y0) = 1/2[F̂m,w(x0, y0)V OLm,w(x0, y0) + F̂m,w+1(x0, y0)V OLm,w+1(x0, y0)]

(4.17)

where V OLm,w(x0, y0) is the traffic volume in the w-th day of the m-th month at

point (x0, y0).

4.4 Test for Location Effect

An important problem arises here, i.e., does nonlinear location effect exist, or

not? Or is it sufficient to estimate seasonal effect without considering location effect?

To answer these questions, we can construct the hypothesis testing formulated as

H0 : gw(xi, yi) = µ versus H1 : gw(xi, yi) ̸= µ (4.18)

where µ is the true mean of the weekly factors, which is unknown.

We notice that the so-called generalized likelihood ratio test (GLR test), pro-

posed by Cai, Fan and Yao (2000) and studied by Fan, Zhang and Zhang (2001), can

be applied here for testing the hypothesis given in (4.18). To test the hypothesis of
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(4.18), we denote µ̂ as the simple average estimator of µ in (4.18), i.e.,

µ̂ =
1

n

n∑
i=1

Fw(xi, yi) (4.19)

and ĝw(xi, yi) as the nonparametric estimator of gw(xi, yi) in equation (4.8) by intro-

ducing the distance kernel. Further, we define

RSS0 =
n∑

i=1

(Fw(xi, yi)− µ̂)2 (4.20)

which is the sum of squared errors (SSE) under the null hypothesis and

RSS1 =
n∑

i=1

(Fw(xi, yi)− ĝw(xi, yi))
2 (4.21)

which is the SSE under alternative. Then, the GLR test statistics is defined as

λn = (n/2)log(RSS0/RSS1). (4.22)

The null distribution of the GLR statistic can be estimated by using the fol-

lowing wild bootstrap method as proposed in Cai, Fan and Yao (2000):

(1) Estimate µ̂ by (19) and ĝw(xi, yi) by (4.8). Compute the GLR statistic λn in

(4.22) and residuals ei of Fw from the estimate ĝw at (xi, yi) from our model.

(2) Resample e∗i from the above ei set with replacement, and calculate F ∗
w(xi, yi) =

µ̂+ e∗i .

(3) Construct new sample F ∗
w(xi, yi) and obtain the GLR statistic λ∗

n.

(4) Repeat Steps 2 and 3 B times (for example, B=1000), and get B values of the

statistic λ∗
n.

(5) Find the p-value which is the percentage of B values greater than λn.

If the p-value in step (5) is less than α (for example, α = 0.05), we reject the

null hypothesis H0, and conclude that location effect exists in weekly factors. The

test result is presented in the next example section.

Similarly, we can test location effect in monthly factors Fm if data are available.
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4.5 Example

The data we use in the first test is 133 cases of the permanent count sites and

359 cases for 7 days of Mecklenburg County, North Carolina from 2002 to 2007. The

total effective sample size is 3444. We do a linear regression of the weekly volume on

the year, month, week and their linear interaction term. The ANOVA analysis of the

results is listed in Table 4.1.

Table 4.1: Analysis of the Variance
instrument variables

DF MSE F value Pr(>F)
year 5 3.72e+09 15.80 2.20e-15***
months 11 1.46e+10 62.22 <2.2e-16***
week 6 5.25e+10 22.33 <2.2e-16***
month: week 66 1.11e+08 0.47 1
year: week 30 2.58e+07 0.11 1
year: month 53 3.66e+09 15.55 <2.2e-16***
year: month:week 318 2.69e+07 0.11 1
Residuals 2954 6.95e+08
*** 0.001. DF: Degree of freedom, and MSE: Mean Squares Error.

From analysis of the variance given in Table 4.1, we can see that there definitely

exist yearly, monthly and weekly effects in the weekly volumes. Assumption A2 holds

since the interaction term between monthly and weekly factors is not significant.

And it is interesting to observe that the interaction term between yearly and monthly

factors is significant. It may be from the fact that the weather is different among

years. Based on Assumption A2 and the above equations (4.13) - (4.17) in Section

4.3, we can calculate the average monthly factors as listed below.

Table 4.2: Average monthly seasonal factors for North Carolina
Month 1 2 3 4 5 6
factor 1.0882 1.0246 0.9906 0.9808 0.9713 0.9770

Month 7 8 9 10 11 12
factor 1.0071 0.9808 0.9843 0.9758 1.0045 1.0316

From the average monthly seasonal factors listed in Table 4.2, we can see that
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the factors in Month 1, 2, 7, 11 and 12 are larger than 1, and the others are less than

1. It implies that people may go out more in these months because more holidays are

in January, February, November and December, and people may take more vocations

in the summer time such as July.

The Figure 4.2 shows three dimensional weekly predicted factors of Sunday

and Monday. For example, in 2006, the traffic volume in the 1-st day of the 7-th

month (Sunday of July) at a location point (1477167, 556127), which locates on Old

Concord Road in Charlotte of NC, is 7,805. The traffic volume in the 2-nd day of

the 7-th month (Monday of July) at the same location is 10,024. From Table 4.2,

we can see that the estimated monthly factor ĝ7(x, y) is 1.007088. With the weekly

factor estimation procedure we present above, the estimated weekly factor ĝ1(x, y)

and ĝ2(x, y) are 1.273243 and 0.9650776, respectively. Then we can get the estimated

AADT 9,875 at the point (1477167, 556127) by (4.17) as follows:

(78051.273243 + 100240.9650776)1.0071/2 = 9875

Table 4.3 presents the weekly factors estimation at the location (1477167, 556127)

by the method with distance kernel and without distance kernel. This table does show

the difference between our presented method and the previous methods in the litera-

ture. To check whether there exist location effects or not in the weekly factor of North

Carolina, we do test as described in Section 4.4. By using bootstrap 1000 times, the

critical value is 12.41 under α = 0.05. It leads to λn = 242.72 which greater than

12.41. Also we can calculate the mean square error MSE0 = RSS0/(n − 1) in null

model andMSE1 = RSS1/(n−1) in our model. It can be found thatMSE1 = 0.0191

which is much smaller than MSE0 = 0.0537. We can conclude that there definitely

exists location effect. It shows that our new method to introduce the distance kernel

is reasonable and necessary.
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Table 4.3: Weekly factors estimation at the location (1477167, 556127) with group-
ing and nonparametric method.

Week Sun Mon Tue Wed Thu Fri Sat
Method without Kernel 1.179 1.017 1.025 1.013 0.968 0.854 1.071
Method with Kernel 1.273 0.965 0.945 0.921 0.942 0.866 1.142

4.6 Conclusions

In this paper, we present a new method to calculate the seasonal factors for

estimating the AADT and the VMT by introducing the distance kernel as (4.6) -

(4.9). The proposed method decomposes the seasonal factors into monthly factors and

weekly factor by assuming these two factors are not linear interactive. The method

we proposed is a data-driving approach method to calculate the weekly factors based

on the similarity of seasonal variability and traffic characteristics at the short-term

count sites and permanent count sites. Two assumptions are verified by the tests in

the example.

The detail estimation formulas of the seasonal factors are clearly presented.

Comparing to the seasonal factors derived by other methods, our method would

be convenient to be implemented in computer. Furthermore, if we have more data

on different categories of roads on the continuous dates, we may extend the above

nonparametric model to a semi-parametric model by adding the covariates of the

characteristics of roads.
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APPENDIX A: PROOF OF LEMMA AND THEOREM

Proof of Lemma 2: By triangle inequality n−1
∑n

i=1 ∥ ĝ
(
β̂TZi

)
− g0

(
βT
0 Zi

)
∥2≤

n−1
∑n

i=1 ∥ ĝ
(
β̂TZi

)
− g0

(
β̂TZi

)
∥2 +n−1

∑n
i=1 ∥ g0

(
β̂TZi

)
− g0

(
βT
0 Zi

)
∥2. By

continuous mapping theorem, the order of the second term on the right hand side

is Op(n
−1). Only we should show n−1

∑n
i=1 ∥ ĝ

(
β̂TZi

)
− g0

(
β̂TZi

)
∥2= Op(n

−4/5).

Follow the proof in Wang and Xia (2009), let u = ujk ∈ Rn×p be an arbitrary n × p

matrix with rows ui· and columns u·k

u = (u1·, u2·, · · · , un·)
T = (u·1, u·2, · · · , u·p)

For any small ε > 0, if we can show that there is a large constant C such that

p{infn−1∥u∥2=C Q(G0 + (nh)−1/2u, β̂) > Q(G0, β̂)} > 1− ε

then the proof is finished.

D ≡ n−1h{Q(G0 + (nh)−1/2u, β̂)−Q(G0, β̂)}

= n−1h{
n∑

j=1

n∑
i=1

[
yi − gT0 (β̂

TZj)Xi − (nh)−1/2uT
j·Xi

]2
kh

(
β̂TZi − β̂TZj

)
−

n∑
j=1

n∑
i=1

[
yi − gT0 (β̂

TZj)Xi

]2
kh

(
β̂TZi − β̂TZj

)
}

+h

p∑
k=1

[
Pλk

(
∥ g0·k + (nh)−1/2u·k ∥

)
− Pλk

(∥ g0·k ∥)
]

≥ n−1

n∑
j=1

[
uT
j·Σ̂(β̂

TZj)uj· − 2uT
j·êj

]
+h

p0∑
k=1

[
Pλk

(
∥ g0·k + (nh)−1/2u·k ∥

)
− Pλk

(∥ g0·k ∥)
]
,

where Σ̂(β̂TZj) = n−1
∑n

i=1 XiX
T
i kh(β̂

TZi − β̂TZj) and êj = n−1/2h1/2
∑n

i=1[XiX
T
i

(g0(β
T
0 Zi) − g0(β̂

TZi)) + XiX
T
i (g0(β̂

TZi) − g0(β̂
TZj)) + Xiεi]kh(β̂

TZi − β̂TZj). Let

λ̂min
j be the smallest eigenvalue of Σ̂(β̂TZj),λ̂min = min{λ̂min

j , j = 1, · · · , n} and ê =

(ê1, · · · , ên)T = Rn×p. Then, D ≥ n−1
∑n

j=1(∥ uj· ∥2 λ̂min
j − 2 ∥ uj· ∥∥ êj ∥) −
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n−1/2h1/2
∑p0

k=1 P
′
λk
(∥ g0·k ∥) ∥ u·k ∥ where the first term on the right hand side is

followed by Cauchy-Schwarz inequality and the second term is followed by Taylor

expansion and Cauchy-Schwarz inequality.

D ≥ λ̂minn
−1

n∑
j=1

∥ uj· ∥2 −2(n−1 ∥ u ∥2)1/2(n−1 ∥ ê ∥2)1/2 − n−1/2h1/2αn

d0∑
k=1

∥ u·k ∥

≥ λ̂minn
−1 ∥ u ∥2 −2(n−1 ∥ u ∥2)1/2(n−1 ∥ ê ∥2)1/2 − h1/2αn(n

−1

d0∑
k=1

∥ u·k ∥)1/2

= λ̂minC − 2
√
C(n−1 ∥ ê ∥2)1/2 − h1/2αn

√
C.

As we will show below

n−1 ∥ ê ∥2= Op(1) and λ̂min →P λmin
0 as n → ∞

where λmin
0 = infz∈[0,1] λmin(f(β̂Z)Ω(β̂Z)), λmin(·) denotes the minimal eigenvalues of

an arbitrary positive definite matrix. By Assumption A2, A4 and (2.13), λmin
0 > 0

and h1/2αn → 0. For a sufficient large C, D > 0. Q.E.D

To show n−1 ∥ ê ∥2= O(1)

n−1 ∥ ê ∥2→P E ∥ êj ∥2

And

Ej ∥ êj ∥2≤ n−1hEj ∥
n∑

i=1

[XiX
T
i (g0(β̂

TZi)− g0(β̂
TZj))]kh(β̂

TZi − β̂TZj) ∥2

+n−1hEj ∥
n∑

i=1

[Xiεikh(β̂
TZi − β̂TZj) ∥2

+n−1hEj ∥
n∑

i=1

[XiX
T
i (g0(β

T
0 Zi)− g0(β̂

TZi))]kh(β̂
TZi − β̂TZj) ∥2

≡ A+B + C

where the expectation is with respect to zj. By (2.13) in Section 2.3.2 and continuous
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mapping theorem, C = Op(h), one has

A = n−1hEj{
∑
i ̸=s ̸=j

[(g0(β̂
TZi)− g0(β̂

TZj))
TXiX

T
i XsX

T
s (g0(β̂

TZs)− g0(β̂
TZj))

kh(β̂
TZi − β̂TZj)kh(β̂

TZs − β̂TZj)]}+ n−1hEj

∑
(i=s)̸=j

{· · · }

≡ A1 + A2

A1 = nhE{(g0(β̂TZi)− g0(β̂
TZj))

TXiX
T
i XsX

T
s (g0(β̂

TZs)− g0(β̂
TZj))

kh(β̂
TZi − β̂TZj)kh(β̂

TZs − β̂TZj)}+Rm

= nhE{(g0(β̂TZi)− g0(β̂
TZj))

TΩ(βTZi, β
TZs, β

TZj)(g0(β̂
TZs)− g0(β̂

TZj))

kh(β̂
TZi − β̂TZj)kh(β̂

TZs − β̂TZj)}+Rm

= nhE{(g0(zi)− g0(zj))
TΩ(zi, zs, zj)(g0(zs)− g0(zj))kh(zi − zj)kh(zs − zj)}

+Rm

= nh

∫
E{(g0(zi)− g0(zj))

TΩ(zi, zs, zj)(g0(zs)− g0(zj))kh(zi − zj)kh(zs − zj)

|zj}f(zj)dzj +Rm

= A11 +Rm

Let zi = zj + uh and zs = zj + vh

A11 = nh

∫
{
∫ ∫

(ġ0(zj)uh+
1

2
C1u

2h2)TΩ(zj + uh, zj + vh, zj)(ġ0(zj)vh

+
1

2
C2v

2h2)k(u)k(v)f((zj + uh, zj + vh)|zj)dudv}f(zj)dzj

= nh

∫
A12(zj)f(zj)dzj

A12(zj) =

∫ ∫
(ġ0(zj)uh+

1

2
C1u

2h2)T [Ω(zj, zj, zj) + Ω1(zj, zj, zj)uh+ Ω2(zj, zj,

zj)vh+ op(u
2h2) + op(v

2h2)](ġ0(zj)vh+
1

2
C2v

2h2)[f((zj, zj)|zj) + f1((

zj, zj)|zj)uh+ f2((zj, zj)|zj)vh+ op(u
2h2) + op(v

2h2)]k(u)k(v)dudv

= C(Zj)h
4

∫
u2v2k(u)k(v)dudv + op(h

4).
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Then, A1 = Op(nh
5) = Op(1). Also,

A2 = n−1hEj{
∑
i ̸=j

[(g0(β̂
TZi)− g0(β̂

TZj))
TXiX

T
i XiX

T
i (g0(β̂

TZi)− g0(β̂
TZj))

k2
h(β̂

T
0 Zi − β̂T

0 Zj)]}

= hE{(g0(β̂TZi)− g0(β̂
TZj))

TXiX
T
i XiX

T
i (g0(β̂

TZi)− g0(β̂
TZj))

k2
h(β̂

T
0 Zi − β̂T

0 Zj)}+Rm

= hE{(g0(zi)− g0(zj))
TΩ(zi, zj)(g0(zi)− g0(zj))k

2
h(zi − zj)}+Rm

= h

∫
E{(g0(zi)− g0(zj))

TΩ(zi, zj)(g0(zi)− g0(zj))k
2
h(zi − zj)|zj}f(zj)dzj

+Rm

= h

∫
A21f(zj)dzj +Rm,

where

A21(zj) =

∫
(g0(zi)− g0(zj))

TΩ(zi, zj)(g0(zi)− g0(zj))k
2
h(zi − zj)f(zi|zj)dzi

Let zi = zj + uh

A21(zj) =
1

h

∫
(ġ0(zj)uh+ Cu2h2)TΩ(zj + uh, zj)(ġ0(zj)uh+ Cu2h2)k2(u)

f(zj + uh|zj)du

= C(zi)h

∫
u2k2(u)du+Rm.
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Then, A2 = Op(h
2) = op(1). Hence, A = Op(1) and

B = n−1hEj{(
n∑

i=1

Xiεikh(zi − zj))
T (

n∑
s=1

Xsεskh(zs − zj))}

= n−1hEj{(
∑

(i̸=s)̸=j

XT
i Xsεiεskh(zi − zj)kh(zs − zj)}

+2n−1hEj{(
∑

(i=j) ̸=s

XT
i Xsεiεskh(zi − zj)kh(zs − zj)}

+n−1hEj{
∑

(i=s)̸=j

XT
i Xsεiεskh(zi − zj)kh(zs − zj)}

+n−1hEj{
∑
i=s=j

XT
i Xsεiεskh(zi − zj)kh(zs − zj)}

= B1 +B3 +B2 +B4,

where

B1 = nh{E[XT
i Xsεiεskh(zi − zj)kh(zs − zj)] +Op(h

4)}+Rm

= nh{E[XT
i Xskh(zi − zj)kh(zs − zj)E(εiεs|Xi, Xs, zi, zs)]}+Rm

= Op(1)

B2 = hE[XT
i Xiε

2
i k

2
h(zi − zj))] +Rm

= hE[XT
i Xik

2
h(zi − zj)E(ε2i |Xi, zi, zj)] +Rm

= hσ2E[XT
i Xik

2
h(zi − zj)] +Rm

= hσ2E[Ω(zi, zj)k
2
h(zi − zj)] +Rm

= hσ2E{E[Ω(zi, zj)k
2
h(zi − zj)|zj]}+Rm.

Let zi = zj + uh. Then, we have

E[Ω(zi, zj)k
2
h(zi − zj)|zj] =

1

h2

∫
Ω(zi, zj)k

2(
zi − zj

h
)fzi|zj(zi|zj)dzi

=
1

h

∫
Ω(zj + uh, zj)k

2(u)fzi|zj(zj + uh|zj)du

= C(zj)Op(1/h)

∫
k2(u)du,
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then, B2 = Op(1) and

B3 = 2n−1hEj{
∑
s̸=j

XT
j Xsεjεskh(0)kh(zs − zj)}

= 2h{Ej[X
T
j Xsεjεskh(0)kh(zs − zj)]}+Rm

= 2h{Ej[X
T
j XsE(εjεs|zs − zj)kh(0)kh(zs − zj)]}+Rm

= Op(h
3)

= op(1)

B4 = n−1hE[XT
j Xjε

2
jk

2
h(0)]

= n−1hE[XT
j XjE(ε2j |Xj)k

2
h(0)]

= n−1hσ2k2
h(0)E[XT

j Xj)]

= Op(n
−1)

= op(1).

Hence B = Op(1). Q.E.D

Proof of Lemma 3: Assume ∥ ĝ.k ∦= 0, then

∂Q(G, β̂, h)

∂g.k
= J1 + J2 = 0

∥ J1 ∥=∥ J2 ∥

where

J2 = nP ′
λk
(∥ g.k ∥) g.k

∥g.k∥
,

J1 = (J11, J12, · · · , J1n)T

and J1j = −2
∑n

i=1Xik

(
yi − ĝT (β̂TZj)Xi

)
kh(β̂

TZi − β̂TZj)

Similar to the proof of (A.7) in Wang and Xia (2009), we can derive that

∥ J1 ∥= Op(nh
−1/2) and we know ∥ J2 ∥= nP ′

λk
(∥ g.k ∥) =

P ′
λk

(∥g.k∥)
λn

·
√
hλn · nh−1/2.

Since
P ′
λk

(∥g.k∥)
λn

> 0 and
√
hλn → 0, then P (∥ J2 ∥<∥ J1 ∥) → 1 as n → ∞. It
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contradicts with the assumption, hence, ∥ ĝ.k ∥= 0 as n → ∞. Q.E.D.

Proof of Theorem 2: (a) From lemma above ∥ ĝ.k ∥= 0, then ĝk(β̂
TZj) = 0 for

j = 1, · · · , n k = p0 + 1 · · · , p. Then ∥ ĝb(β̂
TZj) ∥= 0 j = 1, · · · , n.

(b)From part(a) we know that ∥ ĝb(β̂
TZj) ∥= 0. We can find there exists a Ĝa

that is the minimizer of Q((Ga, 0), β̂, h). Take the first derivative of Q((Ga, 0), β̂, h)

with respective to the ĝa(β̂
TZj) we can get the normal equation.

n∑
i=1

Xia

(
yi − ĝTa (β̂

TZj)Xia

)
kh(β̂

TZi − β̂TZj) + nΠ = 0

where Π is a a-dimensional vector with its k-th component given by

Pk = P ′
λk
(∥ ĝ.k ∥)

ĝk(β̂
TZj)

∥ ĝ.k ∥

As we know thatP ′
λk
(∥ ĝ.k ∥) = 0 when ∥ ĝ.k ∥≠ 0 and n is large, then Π = 0 follows

when n is large.

n∑
i=1

Xia

(
yi − ĝTa (β̂

TZj)Xia

)
kh(β̂

TZi − β̂TZj) = 0

ĝa(β̂
TZj) = [

n∑
i=1

XiaX
T
iakh(β̂

TZi − β̂TZj)]
−1

n∑
i=1

Xiayikh(β̂
TZi − β̂TZj)

ĝa(β̂
TZj)− g0a(β

T
0 Zj) = {ĝa(β̂TZj)− g0a(β̂

TZj)}+ {g0a(β̂TZj)− g0a(β
T
0 Zj)}

The first term in the right hand side is the order of Op(n
−2/5) and the second

term in the right hand side is the order of Op(n
−1/2). Thus the asymptotic property

of the ĝa(β̂
TZj) − g0a(β

T
0 Zj) is the same as that of ĝa(β̂

TZj) − g0a(β̂
TZj). Li and

Jeffrey (2007) presented the asymptotic distribution of the first term under i.i.d case.

Similar to the local linear estimator of varing coefficient model under strong mixing

case in Cai, Fan and Yao (2000), they showed that the asymptotic distribution of the
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local linear estimators are identical to the independent data case. It is not hard to

show the same result by local constant method under strong mixing condition. By

the assumption Z ∈ A′
z and similar argument in Wand and Xia (2009), it suffices to

approximate the entire coefficient curve g0(β̂
TZ)by {ĝ(β̂TZj)|β̂TZj ∈ [a, b]}. Q.E.D.

Proof of Theorem 3: Let δn = n−1/2 + an, t = (t1, · · · td)T . For any small ε > 0, if

we can show there exists a large constant C,such that

P{ inf
∥t∥=C

Q(β0 + δnt, ĝ) > Q(β0, ĝ)} > 1− ε,

then

∥ β̂ − β0 ∥= Op(δn)

. Define:

Dn = Q(β0 + δnt, ĝ)−Q(β0, ĝ)

≥ 1

2

n∑
i=1

(yi − ĝT (βT
0 Zi + δnt

TZi)Xi)
2 − 1

2

n∑
i=1

(yi − ĝT (βT
0 Zi)Xi)

2

+n

d0∑
k=1

Pλn(|β10k + δntk|)− n

d0∑
k=1

Pλn(|β10k|) ( by β20 = 0)

n

d0∑
k=1

Pλn(|β10k + δntk|)− n

d0∑
k=1

Pλn(|β10k|)

= n

d0∑
k=1

[
δnP

′
λn
(|β10k|)sgn(β10k)tk +

1

2
δ2nP

′′
λn
(|β10k|)t2k

]
+ op(nδ

2
n)

≤
√

d0nδnan ∥ t ∥ +
1

2
nδ2nmax1≤k≤d0{P ′′

λn
(|β10k|)} ∥ t ∥2 +op(nδ

2
n)

≤ nδ2n
√

d0C +Op(nδ
2
n) as n → ∞ and max1≤k≤d0{P ′′

λn
(|β10k|)} → 0
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1

2

n∑
i=1

(yi − ĝT (βT
0 Zi + δnt

TZi)Xi)
2 − 1

2

n∑
i=1

(yi − ĝT (βT
0 Zi)Xi)

2

=
1

2
n[Ṽ

1/2
0 δnt− n−1/2σε]T [Ṽ

1/2
0 δnt− n−1/2σε]− 1

2
n[n−1/2σε]T [n−1/2σε]

+R1(β0 + δnt, h)−R1(β0, h) + op(1) (by Theorem 2)

=
1

2
nδ2nt

T Ṽ0t− n1/2δnt
T Ṽ

1/2
0 σε+R1(β0 + δnt, h)−R1(β0, h) + op(1)

=
1

2
nδ2nt

T Ṽ0t− δnt
TVn +R1(β0 + δnt, h)−R1(β0, h) + op(1)

Since R1 are negligible terms as n → ∞ and 1√
n
Vn = Op(1). then −δnt

TVn =

C ·Op(δn
√
n) = C ·Op(δ

2
nn). By choosing a sufficient large C, then the term 1

2
nδ2nt

T Ṽ0t

will dominate others. Hence Dn ≥ 0 holds. Q.E.D

Proof of Theorem 4: Let β̂1 − β10 = Op

(
n−1/2

)
, we want to show(

β̂1, 0
)T

= argmin
(βT

1 ,βT
2 )

T
∈B
Q
((

βT
1 , β

T
2

)T
, ĝ
)
.

Only we should show for some constant C and k = q0 + 1, · · · q:

∂Q
((

βT
1 , β

T
2

)T
, ĝ
)

∂βk

> 0 for 0 < βk < Cn−1/2

< 0 for −Cn−1/2 < βk < 0

Note
∂Ŝ (β, h)

∂βk

=
∂S̃ (β)

∂βk

+ op (1)

= eTk
∂S̃ (β)

∂β
+ op (1)

= 2neTk Ṽ0 (β − β0)− 2n1/2σeTk Ṽ
1/2
0 ε+ op (1)

= 2neTk Ṽ0 (β − β0)− 2eTk Vn + op (1)

where ek is a d dimensional vector with k-th element is one and all others are zero.

And We know β − β0 = Op (1/
√
n) and Vn = Op (

√
n), then

∂Ŝ (β, h)

∂βk

= Op

(√
n
)
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∂Q
((

βT
1 , β

T
2

)T
, ĝ
)

∂βk

=
1

2

∂Ŝ (β, h)

∂βk

+ nP ′
λn

(|βk|) sgn (βk)

= nλn

[
Op

(
1√
nλn

)
+

P ′
λn

(|βk|)
λn

sgn (βk)

]
Since

√
nλn → ∞ and lim infn→∞,βk→0+

P ′
λn

(|βk|)
λn

> 0, the sign of ∂Q
∂βk

is determined by

the sign of βk

(2) From part(1) we know that

∂Q
((

βT
1 , β

T
2

)T
, ĝ
)

∂β
|
β=(β̂10 )

= 0

1

2

∂Ŝ
((

β̂1, 0
)
, h

)
∂β1

+ n

d0∑
k=1

P ′
λn

(|βk|) sgn (βk) = 0

Note as n → ∞ and λn → 0,P ′
λn

(|βk|) = 0 for k = 1, · · · , d0.

1

2

∂Ŝ
((

β̂1, 0
)
, h

)
∂β1

= 0

nṼ10

(
β̂1 − β10

)
− n1/2σṼ

1/2
10 ε1 + op (1) = 0

√
nṼ10

(
β̂1 − β10

)
− σṼ

1/2
10 ε1 + op

(
1√
n

)
= 0

√
n
(
β̂1 − β10

)
→D N

(
0, σ2Ṽ −1

10

)

Q.E.D.




