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Abstract

Computational modeling of protein–DNA complex structures has important implica-

tions in biomedical applications such as structure-based, computer aided drug design.

A key step in developing methods for accurate modeling of protein–DNA complexes

is similarity assessment between models and their reference complex structures.

Existing methods primarily rely on distance-based metrics and generally do not con-

sider important functional features of the complexes, such as interface hydrogen

bonds that are critical to specific protein–DNA interactions. Here, we present a new

scoring function, ComparePD, which takes interface hydrogen bond energy and

strength into account besides the distance-based metrics for accurate similarity mea-

sure of protein–DNA complexes. ComparePD was tested on two datasets of compu-

tational models of protein–DNA complexes generated using docking (classified as

easy, intermediate, and difficult cases) and homology modeling methods. The results

were compared with PDDockQ, a modified version of DockQ tailored for protein–

DNA complexes, as well as the metrics employed by the community-wide experiment

CAPRI (Critical Assessment of PRedicted Interactions). We demonstrated that Com-

parePD provides an improved similarity measure over PDDockQ and the CAPRI clas-

sification method by considering both conformational similarity and functional

importance of the complex interface. ComparePD identified more meaningful models

as compared to PDDockQ for all the cases having different top models between

ComparePD and PDDockQ except for one intermediate docking case.
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1 | INTRODUCTION

Knowledge of protein–DNA complex structures is critical to under-

standing their roles in important biological processes such as regula-

tion of gene expression. The structures of most protein–DNA

complexes, however, remain unsolved due to technical challenges in

experimental methods.1–3 To address this issue, in silico prediction of

three-dimensional structures of protein–DNA complexes is consid-

ered a valuable alternative in applications such as structure-based,

computer aided drug discovery.4,5 Despite efforts by the research

community, computational modeling of complex macromolecular

interactions remains a challenging problem.6–11

A key step in the development and evaluation of computational

modeling methods is to assess the structural similarity between the
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predicted models and the experimentally solved reference structures.

For individual proteins, several similarity assessment metrics such as

RMSD (for root mean square deviation), TM-score (for template

modeling score), and GDT_TS (for global distance test total score),

have been developed for model comparison and have been used in

the biennial CASP (Critical Assessment of protein Structure Predic-

tion) competitions.12–14 For comparison of complex structures such as

protein–DNA complexes, similarity assessment is far more challenging

because it not only needs to compare the structural similarity of the

individual components, but more importantly, the similarity of the

interfaces between interacting components. The community wide

CAPRI (Critical Assessment of PRedicted Interactions) experiment

assesses the prediction performance by grouping complex models into

four discrete categories based on three distance-based metrics,

iRMSD (interface RMSD), lRMSD (ligand RMSD), and Fnat (the fraction

of the contacts in the native structure that is reproduced in the

model). Model qualities are classified as high, medium, acceptable

quality or incorrect based on different ranges of each of the three

metrics (Table S1).15

The CAPRI's initial quality assessment method has served well as

a standard protocol for evaluating protein–protein complexes at

CAPRI experiments. However it is not suitable for other types of

protein–ligand complexes including protein–peptide and protein–

DNA complexes. For example, protein–peptide complexes have a

smaller interface area than protein–protein complexes. As such, the

CAPRI organizers modified the distance cut-offs to accurately reflect

the smaller interface area of protein-peptide complexes.15–17 Another

problem lies in the intrinsic disadvantage of the RMSD-based metrics.

RMSD is highly sensitive to conformational changes since each posi-

tion is treated equally and the RMSD score can be misleading for

complexes with larger flexible loops.18–28 In addition, the classification

of models into four groups is rather broad and not sensitive to minor

critical differences in models. To overcome this issue, Basu and Wall-

ner developed a continuous scoring function, DockQ, for protein–

protein docking model similarity assessment with a score in the range

of 0–1 by combining the three individual scoring metrics with scaled

RMSD values.18 While DockQ produces a continuous score that can

be used for model ranking, a major limitation though is that the

parameters in DockQ were derived for assessing protein–protein

complex models and biologically relevant interface features of the

complexes such as hydrogen bonds (HBs) were not considered.18,20,29

Hydrogen bonds are weak interactions that are significantly more

prevalent in protein–DNA complexes than those in protein–protein

and protein–peptide complexes.30 More importantly, the hydrogen

bonds between protein sidechains and DNA bases are crucial for

protein–DNA binding specificity.31–33 We have previously demon-

strated that incorporating a hydrogen bond energy term in a scoring

function improves the prediction of transcription factor binding sites

and considering the number of hydrogen bonds in the models can

improve protein–DNA docking prediction.34–37 The existing complex

similarity assessment methods under-explore the role of interface

hydrogen bonds. While Marcu et al. recently suggested fnathb, the

number of conserved hydrogen bonds in models, for model

comparison with the native complex structures,38 there are two issues

for methods that rely only on the number of annotated hydrogen

bonds based on a single distance/angle or an energy cut-off. The first

is that hydrogen bonds of different strength are treated equally.39,40

Though this might work for complexes with mostly strong hydrogen

bonds such as protein–protein and protein–peptide complexes, it is

probably not suitable for protein–DNA complexes that have a unique,

almost equal distribution of weak and strong hydrogen bonds as we

demonstrated recently.30 Secondly, since hydrogen bonds are identi-

fied based on a single cutoff threshold, either an energy cutoff41 or a

combination of distance/angle cutoff,42 a small difference of hydro-

gen bond energy or distance/angle may result in different annota-

tions. For example, an energy threshold of �0.6 kcal/mol is generally

suggested for protein–DNA complexes by the author of FIRST.41

However, two hydrogen bonds with very similar energy, say �0.595

and �0.605 kcal/mol, respectively, would result in 0 and 1 hydrogen

bond, respectively.

In this study, we developed a novel continuous function, Compar-

ePD, to assess the similarity of protein–DNA complexes with a

weighted hydrogen bond energy-based term in combination with

other distance-based metrics, which considers both conformational

similarity and functional importance of the protein–DNA complex

interface. To the best of our knowledge, this is the first approach that

incorporates different strengths of hydrogen bonds into complex

model comparison and assessment. ComparePD showed much

improvement over PDDockQ, a modified version of DockQ tailored

for protein-DNA complexes.

2 | MATERIALS AND METHODS

2.1 | Datasets of protein–DNA complex models

Protein–DNA complex models were generated using two methods;

homology modeling and docking.43 The homology modeling dataset

comprises 75 models of 5 non-redundant homeodomain complexes,

which share less than 35% protein sequence identity (Table S2). Tem-

plates of high structural quality and varying sequence similarity rang-

ing between 35% and 70% were selected for each target complex and

five models per template were generated for each target. Since the

existing homology modeling methods do not model interfaces of

protein–DNA complex structures, structurally aligned homology

models of proteins to the native complex were combined with the

native DNA to generate the complex models as shown in Figure S1.

MODELLER was used for comparative protein structure modeling and

TM-align was used for structural alignment.44–46

HADDOCK-MARTINI based protein–DNA docking models were

obtained from the publicly available repository.43,47 The original data-

set comprises docking models of 43 complexes from the protein–

DNA docking benchmark generated using MARTINI force field and

ranked according to HADDOCK score.47,48 These complex models

were filtered using methods as described in our previous study.30 Fif-

teen complexes with internal missing residues were discarded. Two
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additional cases were removed because the hydrogen bond identifica-

tion program (see next section) failed to annotate hydrogen bonds in

the complexes. The filtering process resulted in a final dataset of

25 complexes. The top 20 models for each complex by the HAD-

DOCK score were selected for comparison. Bonvin et al. have classi-

fied the complexes in the benchmark based on the docking difficulty

as easy, intermediate and difficult cases.43,44 The dataset used in this

study comprises seven easy cases: 1by4, 1fok, 1hjc, 1h9t, 1mnn, 1rpe,

and 3cro; twelve intermediate cases: 1azp, 1a74, 1ddn, 1ea4, 1f4k,

1g9z, 1kc6, 1r4o, 1vas, 1z9c, 2fio, and 2irf; and six difficult cases:

1qrv, 1rva, 2oaa, 2fl3, 3bam, and 7mht.

2.2 | Hydrogen bond energy

REDUCE was used to add hydrogen atoms to structural files for

hydrogen bond calculations.49 While adding hydrogen atoms,

REDUCE also performs extensive optimization of the structures based

on their local geometry. FIRST (Floppy Inclusion and Rigid Substruc-

ture Topography) was used to calculate the hydrogen bond energy

using Equation (1).40,41

EHB ¼V0 5
d0
d

� �12

�6
d0
d

� �10
( )

F θ,ϕ,φð Þ ð1Þ

where d is the donor–acceptor distance. d0 (2.8 Å) and V0 (8 kcal/mol)

represent the equilibrium distance and well-depth, respectively.41 The

angle term is estimated by exploring the hybridization state of the

acceptor and donor atoms.41 The hydrogen bonds were classified into

three energy categories based on previous studies (Table 1).30,41,50,51

Weights of 0.5, 0.8, and 1.0 are arbitrarily assigned to reflect the

strength of hydrogen bonds due to the lack of sufficient number of

protein–DNA complexes for training.

2.3 | PDDockQ

DockQ is a previously developed similarity assessment score for

protein–protein complexes based on Fnat, iRMSD, and lRMSD.18 We

modified the parameters in DockQ for protein–DNA complexes to

reflect the differences between protein–protein complexes and

protein–DNA complexes with respect to different interface areas.30

RMSD values in DockQ were scaled using an inverse square scaling

method to account for two problems (Equation 2). First, a near-native

model has higher Fnat and lower RMSD values. Second, arbitrarily

large RMSD values can be misleading. Basu et al. have shown that the

inverse square scaling of iRMSD and lRMSD provides a more sensitive

discrimination between the qualities of protein–protein complex

models.18

jRMSDscaled ¼ 1

1þ jRMSD
dj

� �2
ð2Þ

where jRMSD is for iRMSD or lRMSD and dj represents the corre-

sponding scaling factors, di for iRMSD and dl for lRMSD, respectively.

The scaling factors in DockQ were optimized using grid search on a

large number of protein–protein complexes.18 We estimated di ≈ 1.04

and dl ≈ 2 by comparing the differences of average interface areas

between protein–protein and protein–DNA complexes as we used in

our previous study30 (see Appendix S1). PDDockQ is then defined as

follows (Equation 3).

PDDockQ¼ Fnatþ iRMSDscaledþ lRMSDscaled

3
ð3Þ

For Fnat calculation, a contact is defined between two heavy

atoms if they are separated by a distance of 4.5 Å or less and the

interface is defined as pairs of heavy atoms from the protein and

DNA within 10 Å of each other. iRMSD is calculated with Cβ atoms of

proteins and N1 (for bases C and T) or N9 (for bases A and G) atoms

of DNA of the interface. lRMSD is based on N1 (for bases C and T)

and N9 (for bases A and G) interface atoms of DNA.

2.4 | ComparePD: a continuous function for
assessing protein–DNA complex similarity

ComparePD is a linear continuous function for comparing protein–

DNA complex similarity by calculating the mean value of the distance-

based features, Fnat, the scaled iRMSD and lRMSD, and a novel

weighted hydrogen bond energy-based score, CompositeHBE

(Equation 4). There are two major considerations for assigning equal

weights to the four terms. One is for fair performance comparison

with the modified DockQ scoring function PDDockQ, which adopts

equal weights for the three distance-based metrics.18 The other is that

currently there are not sufficient data for training optimal weights.

ComparePD¼ Fnatþ iRMSDscaledþ lRMSDscaledþCompositeHBE

4
ð4Þ

CompositeHBE is a weighted hydrogen bond energy-based score

between a protein–DNA complex model and a reference complex.

The key part of this score is the calculation of FHBnat and FHBSPnat, for

the fraction of total hydrogen bonds and the fraction of the specific

(SP) sidechain-base hydrogen bonds reproduced in the models,

respectively (Figure 1 and Equation 5). The weight for each repro-

duced hydrogen bond in the model and native complex is determined

based on their HB energy as shown in Table 1. WHB is the ratio of

weights between the corresponding hydrogen bonds in the native

TABLE 1 Energy bins for each category of hydrogen bonds
energy (HBE) and their corresponding weights.

Category HBE range (kcal/mol) Weights

I �0.6 ≤ HBE < �0.1 0.5

II �1.5 ≤ HBE < �0.6 0.8

III HBE < �1.5 1
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(wn) and the model (wm) complexes, respectively (Figure 1). WHB

equals wn/wm if wm is larger than wn, otherwise it equals wm/wn to

ensure that the value of WHB falls between 0 and 1. FHBnat is the sum

of WHB for the reproduced hydrogen bonds across the interface of

the model normalized by the weighted sum of total number of hydro-

gen bonds CHB in each energy category (Table 1) in the reference

complex (Equation 5).

FHBnat ¼
P

WHB

P3
i¼1

Wi CHBð Þi
ð5Þ

FHBSPnat is calculated similarly for capturing the reproduced

sidechain-base hydrogen bonds in the models. Finally, a composite

score of FHBnat and FHBSPnat is calculated to reflect overall capture of

hydrogen bonds in the model when compared to the native complex

(Equation 6).

CompositeHBE ¼w1CHBFHBnatþw2CHBSPFHBSPnat

w1CHBþw2CHBSP
ð6Þ

where CHB and CHBSP represent the total number of interface hydro-

gen bonds and sidechain-base hydrogen bonds in the native complex

respectively, w1 = 0.3 and w2 = 1 � w1 = 0.7. w1 is estimated by

comparing the average number of the sidechain-base hydrogen bonds

to all interface hydrogen bonds in a pooled non-redundant dataset of

highly specific (HS) and multi-specific (MS) protein–DNA complexes.32

The distributions of the ratios in the HS and MS individual datasets

are also similar as shown in Figure S2. Higher weight is assigned to

sidechain-base hydrogen bonds because of their important role in

protein–DNA binding specificity. The sum of the weighted FHBnat and

FHBSPnat is normalized by the weighted total number of interface

hydrogen bonds and sidechain-base hydrogen bonds in the native

complex.

2.5 | Statistical tests

To compare the reproduced number of hydrogen bonds between the

top models from ComparePD and PDDockQ, Wilcoxon rank sum test

for independent samples and Wilcoxon signed rank test for paired

samples were employed to assess if there are significant differences

between the ComparePD and PDDockQ top model selections.

3 | RESULTS

In complex structure similarity assessment, one important question is

how to determine one complex model is better than the other. Similar

to protein structure comparison methods, it is hard to define “better”
in similarity measures without considering the context. Different scor-

ing functions, such as RMSD, TM-score, and GDT_TS, have been

developed for protein structure comparison with a specific focus or

for different application purposes. Each scoring function has its pros

and cons. For example, while RMSD values can indicate the overall

similarity or difference between two structures, TM-score was devel-

oped for detecting core structure similarity at fold level, which RMSD

sometimes fails to reveal due to the large RMSD from the flexible

regions.12,52 In terms of protein–DNA complex structure comparison,

while the distance-based approaches, including iRMSD, lRMSD, and

Fnat, can indicate the similarity of interface conformation and contacts

between the two complexes but they do not fully capture the func-

tionally important features on the interface, such as hydrogen bonds.

This is because distance-based metrics treat each position at the

interface equally regardless of the functional importance. Since we

know that hydrogen bonds play a significant role in the binding speci-

ficity of protein–DNA complexes, in addition to looking for a smaller

interface conformational difference, a near-native model should also

capture the hydrogen bond interactions in terms of both the number

of hydrogen bonds and the strength for useful downstream applica-

tions. Therefore, if two models, model A and model B, selected by

two different scoring functions, have similar distance measures, but

model A better captures the hydrogen bonds in the reference struc-

ture, we consider model A is a better model. In this section, we per-

formed detailed analyses by considering both the distance-based

similarity and hydrogen bond conservation to determine which

method, PDDockQ or ComparePD, picks a better model for each case

in the docking and homology modeling datasets.

3.1 | Overview of the docking and homology
protein–DNA complex models

The docking models from HADDOCK protein–DNA docking bench-

mark were first evaluated and categorized according to the CAPRI cri-

teria. The best model category for most of the cases is medium (76%)

and a few cases have only acceptable quality models (24%)

(Figure 2A, Table S3). In terms of docking difficulty, all of the easy

cases, 58.3% of intermediate cases and 83.3% of difficult cases have

N

A

A

C

P C F
F

w w w

w w

w
w

w w w

F IGURE 1 A flowchart for calculating FHBnat and FHBSPnat based
on weighted hydrogen bond energy. The box with dashed line
represents calculation for each captured native hydrogen bond in the
model.
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best models in the medium quality while 41.7% of intermediate cases

and 16.7% of difficult cases have top models in the acceptable cate-

gory (Table S3). There are no cases with any models in the high or

incorrect category (Figure 2A). For homology protein–DNA complex

models, one of the five case, 9antB, has high quality models, three

cases have a number of medium quality models (1zq3P, 3sjmA, and

1pufB) and one case (2me6A) only has acceptable quality models

(Figure 2B, Table S3).

ComparePD identifies the same top model as PDDockQ in 48%

of the docking cases (Figure 3A). Figure S3 shows three such exam-

ples for one easy (3cro), one intermediate (1z9c), and one difficult

(7mht) case. In 3cro, even though both methods identify model 6 as

the top model, ComparePD helps improve confidence in selection by

clearly distinguishing model 6 from other models with similar

PDDockQ values to model 6 (Figure S3A). As for homology protein-

DNA complex models, ComparePD picks the same top model as

PDDockQ in two (40%) cases (Figure 3B). The two scoring metrics

agree on the selection of the top models in 1zq3P and 2me6A

(Figure S4). The top model in 1zq3P by both scores is the third model

generated using 4rduA as a template that has 45% sequence identity

with the target (Figure S4A). For 2me6A, the top model is the third

model generated using 1fjlA as a template that has 40% sequence

identity with the target protein sequence (Figure S4B). The two scores

have similar trends for all the 20 models indicating stronger agree-

ment between them.

3.2 | Comparison of the different top models
selected by ComparePD and PDDockQ

There are a total of 16 cases (13 docking cases and 3 homology

modeling cases) that have different top models between ComparePD

and PDDockQ (Figure 3). ComparePD selects a different top model

from PDDockQ in 52% of docked protein–DNA complexes, 28.6% of

easy, 75% of intermediate and 33.3% of difficult cases (Figure 3A). In

three of the five homology modeling cases (9antB, 1pufB, and 3sjmA),

ComparePD and PDDockQ pick different top models. We compared

the number of interface hydrogen bonds, including all hydrogen bonds

(Figure 4A) and the sidechain-base interface hydrogen bonds

(Figure 4C) that are reproduced in the top models selected by Com-

parePD and PDDockQ, respectively. Independent Wilcoxon rank sum

tests show that the top models from ComparePD capture significantly

more total hydrogen bonds (p-value = .022, Figure 4A) and sidechain-

base hydrogen bonds (p-value = .038, Figure 4C) than those from the

top PDDockQ models. We also performed paired Wilcoxon signed

rank tests, which reveal that the differences of the number of hydro-

gen bonds reproduced between the top models selected by Compar-

ePD and PDDockQ, respectively for each complex are also

significantly different for all hydrogen bonds (p-value = .0016,

Figure 4A) and the sidechain-base hydrogen bonds (p-value = .0103,

Figure 4C).

(A) (B)

F IGURE 2 CAPRI-based classification of (A) all the docking models classified as easy, intermediate and difficult cases; and (B) all homology
models.

(A) (B)

Same
Different

P

F IGURE 3 Comparison of scoring methods for the selection of
top models in (A) docking dataset with easy, intermediate and difficult
cases; and (B) homology modeling dataset.
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To further evaluate the performances between ComparePD and

PDDockQ, we compared the number of hydrogen bonds that are

reproduced in the models and are in the same hydrogen bond energy

category as those in the reference complexes (Figure 4B for total

hydrogen bonds and Figure 4D for sidechain-base hydrogen bonds).

Both Wilcoxon rank sum tests and signed rank tests show that the

top ComparePD models pick up more hydrogen bonds in the same

energy category as the reference structures than the top PDDockQ

models. Overall, the top docking models selected by ComparePD are

better than PDDockQ in 100% of easy cases and difficult cases, and

88.9% of intermediate cases because they capture more hydrogen

bonds in the reference complex interface while having similar or com-

parable distance-based measures (Table 2).

Below we describe detailed analyses of three docking examples,

1mnn, 1ea4, and 1rva for easy, intermediate and difficult cases,

respectively (Figure 5), and one homology modeling case 9antB

(Figure 6) by comparing the distance-based metrics, the number of

hydrogen bonds and hydrogen bond energy between the top models

selected by ComparePD and PDDockQ, respectively.

1mnn: Complex 1mnn is an easy docking case in the protein–

DNA docking benchmark. ComparePD selects model 9 as the top

model whereas PDDockQ considers model 2 as the most similar to

the native complex (Figure 5A). Model 9 and model 2 have similar

distance-based metrics, which results in similar PDDockQ scores for

these two models. However, model 9 has a much higher ComparePD

score than model 2 as it reproduces seven interface hydrogen bonds

that appear in the native complex interface, whereas model 2 selected

by PDDockQ captures no hydrogen bonds (Figures 5A and 7). More-

over, four of the seven hydrogen bonds (ARG277-G4, ARG79-G25

and the two hydrogen bonds between ARG65-G23 pairs) in model

9 also have similar hydrogen bond energy and are placed in the same

hydrogen bond energy category as those on the native interface. The

combination of the distance-based data and the hydrogen bond

energy-based analysis clearly demonstrates that model 9 is better

than model 2.

1ea4: Figure 5B shows the comparison of different scores for an

intermediate case 1ea4. Model 9 is the top model according to the

ComparePD score whereas model 12 is the top model based on

F IGURE 4 Comparison of
the number of reproduced
hydrogen bonds in the top
models based on ComparePD
and PDDockQ scores. (A) The
number of total interface
hydrogen bonds; (B) the number
of total interface hydrogen
bonds in the model that are in

the same hydrogen bond energy
category as those in the
reference structure; (C) the
number of total interface
sidechain-base hydrogen bonds;
(D) the number of total interface
sidechain-base hydrogen bonds
in the model that are in the
same hydrogen bond energy
category as those in the
reference structure. p-Values
from the Wilcoxon rank sum
tests between ComparePD and
PDDockQ and from Wilcoxon
signed rank tests for the paired
differences are shown.

TABLE 2 Comparison of the protein–DNA docking models by ComparePD and PDDockQ.

Category
The same top model from
ComparePD and PDDockQ ComparePD is better than PDDockQ

PDDockQ is better or
comparable to ComparePD

Easy 1fok, 1h9t, 1hjc, 1rpe, 3cro 1by4, 1mnn

Intermediate 1r4o, 1z9c, 2irf 1a74, 1azp, 1ddn, 1ea4, 1g9z, 1kc6, 1vas, 2fio 1f4k

Difficult 2fl3, 2oaa, 3bam, 7mht 1qrv, 1rva
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PDDockQ. Model 12 has very similar iRMSD and slightly better Fnat

and lRMSD, and therefore has a slightly better PDDockQ score than

model 9. However, model 9 retains 11 out of 12 (91.7%) native

interface hydrogen bonds whereas model 12 only captures 5 (41.6%)

native hydrogen bonds (Figure S5). The first five rows show hydrogen

bonds captured in the model selected by ComparePD but not in

F IGURE 5 Comparison of
docking models scored by
ComparePD and PDDockQ along
with their individual Fnat, scaled
iRMSD and lRMSD scores for
(A) an easy case 1mnn, (B) an
intermediate case 1ea4; and (C) a
difficult case 1rva. Top three
models from ComparePD and

PDDockQ are highlighted, and
the corresponding ranks are
reported as (ComparePD,
PDDockQ) for each complex.
iRMSD and lRMSD are scaled
values.
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PDDockQ. There are two hydrogen bonds between SER29-T37, only

one of them is captured by model 12 whereas both are found in

model 9. The energy categories of 9 out of 11 reproduced hydrogen

bonds in model 9 do not change. In model 12, however, only 3 out of

5 captured hydrogen bonds stays in the same energy category. Model

9 captures 75% (9 out of 12) of the native complex interface in the

same hydrogen bond energy category while model 12 only gets 25%

(3 out of 12). Taken together, model 9 is a better complex model than

model 12.

1rva: 1rva is an example of difficult docking cases in the HAD-

DOCK protein–DNA docking benchmark. The top selection by Com-

parePD is model 9 whereas the top PDDockQ choice is Model

14 (Figure 5C). Model 14 and model 9 are the top two models by

PDDockQ scores with highly similar PDDockQ scores. Therefore, it is

very difficult to distinguish between the two models based on

PDDockQ scores alone. Both models have similar iRMSD and Fnat.

Model 14 actually has a better lRMSD than model 9. However, when

hydrogen bond energy is taken into account, model 9 clearly has a

better ComparePD score than model 14. Figure S6 shows a compari-

son of hydrogen bonds and their energies in both models and the

native complex structure. Model 9 captures 8 out of 9 (88.9%) native

interface hydrogen bonds whereas model 14 only has 2 of them

(22.2%). Seven native hydrogen bonds, TYR338-C21, ASN312-C9,

ASN184-G16, GLY183-G16, GLY427-G4, ASN67-T23, and

SER111-T6 are captured in model 9 but not in model 14. The energy

category of these hydrogen bonds except for GLY427-G4 is also con-

served in model 9. One strong native hydrogen bond, TYR338-T22, is

reproduced in both models in the same energy category in both

models. Hydrogen bond between LYS118 and A5 only appears in

model 14. Overall, model 9 is considered a better model because it

reproduces more hydrogen bonds with the same strength (Figure S6)

while the distance-based scores are indistinguishable (Figure 5C).

9antB: 9antB is a homology modeling case. Both ComparePD and

PDDockQ pick one of the high quality models as classified by CAPRI.

But a detailed examination of hydrogen bonds and the distance-based

scores in each of these models indicate that ComparePD selects a bet-

ter overall model than the model selected by PDDockQ (Figures 6 and

S7). ComparePD ranks homology model 1 generated using template

4rduA (sequence identity 42%) as the top model, whereas PDDockQ

selects model 5 generated using template 1jggA (sequence identity

52%) as the top model (Figure 6). The top model selected by Compar-

ePD captures 7 of the 8 native interface hydrogen bonds. Five of

these hydrogen bonds are also in the same hydrogen bond energy cat-

egories (5/8 = 62.5%), including four strong hydrogen bonds:

ARG55-C406, ARG33-A404, ARG7-T518, and ASN53-A520. The two

hydrogen bonds whose energy category changes in the model

selected by ComparePD (GLN8-A519 and ARG55-C406) are of high

energy, weaker hydrogen bonds in the native complex. Sidechain con-

formations of residues involved in hydrogen bonding are similar

between the top ComparePD model and the native complex structure,

resulting in similar hydrogen bond energy. The top model from

PDDockQ captures only 5 of 8 hydrogen bonds. Four of the hydrogen

bonds (ARG33-A404, ARG45-T521, and two hydrogen bonds in

ASN53-520) are of low energies. And only one of these four hydrogen

bonds, ARG45-T521, has the same hydrogen bond energy category as

that in the native complex (1/8 = 12.5%). Even though the Fnat and

iRMSD values of the top PDDockQ model (0.631 and 0.878 Å) are

slightly better than the top ComparePD model (0.591 and 0.959 Å),

poor recovery of hydrogen bonds energy (62.5% vs. 12.5% capture of

hydrogen bonds in the same energy category) results in lower overall

score for the top PDDockQ model. We also note that in complex

model generation using homology techniques, there is some weak

correlation between sequence identity (between the target sequence

and the homology template sequence) and the PDDockQ or Compar-

ePD score indicating that the templates of higher sequence identity in

homology modeling can result in better complex models (Figure S8).

Similar detailed structural analysis for other cases shows similar

results that the top models selected by ComparePD have captured

more hydrogen bonds in terms of both the number of hydrogen bonds

and the conservation of energy categories despite having similar

F IGURE 6 Comparison of
homology models scored by
ComparePD and PDDockQ along
with their individual Fnat, scaled
iRMSD, and lRMSD scores for
9antB. iRMSD represents scaled
values.
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F IGURE 7 Detailed analysis of the interface hydrogen bonds and their energy in the native complex 1mnn and the top models selected by
ComparePD and PDDockQ, respectively.
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distance-based scores to the top models selected by PDDockQ. One

exception is 1f4k where PDDockQ identified a comparable or slightly

better top model than that from ComparePD in terms of hydrogen

bonds and other distance related metrics (Table 2, Figures S9–S10).

The top models identified by PDDockQ and ComparePD have similar

Fnat and RMSDs and differ only by one hydrogen bond (Figure S10).

A detailed comparative structural analysis of hydrogen bonds in the

top models and native complexes reveals that the conformations from

the two selections are very close to each other. Even though the num-

ber of hydrogen bonds in the PDDockQ selection is more than that in

the ComparePD selection (3 to 2), the energy conservation of the for-

mer is worse. The top model selected by ComparePD for 1f4k, model

14, captures two hydrogen bonds and more importantly, both are in

the same hydrogen bond energy category as those in the reference

complex (Figure S10). While the top model selected by PDDockQ,

model 5, captures one more hydrogen bond than model 14, it only has

one of them in the same hydrogen bond energy range when com-

pared to the hydrogen bonds on the native complex interface. There-

fore, the top models selected by ComparePD and PDDockQ are

comparable since there is no clear indication that one is better than

the other.

4 | DISCUSSION

Computational methods for predicting protein–DNA complex struc-

tures not only can fill the sequence-structure gap, they can also help

time-sensitive applications such as computer aided structure-based

drug design. Complex structure modeling, a very challenging task,

requires accurate capture of interface features and reliable assess-

ment of the model quality. Unlike protein structure prediction where

new models and the corresponding methods can be assessed by

scores such as TM-score, GDT_TS, and RMSD score, no standard cri-

teria exist for comparing protein–DNA complexes.12,53,54

We present here ComparePD, a novel scoring function to assess

the similarity of protein–DNA complex structures by incorporating

hydrogen bond energy. Hydrogen bonds are important to the binding

specificity between protein and DNA. Recent studies indicated that

incorporating biologically relevant measures in the development of in

silico structure prediction of complexes can help improve perfor-

mance.55 We demonstrated that a combination of conventional inter-

face features Fnat, iRMSD and lRMSD with the hydrogen bond energy

in ComparePD captures both structural similarity and some functional

similarity and therefore better describes the similarity of protein–

DNA complex models. Our approach by comparing the hydrogen

bond energy or strength overcomes the limitations of simply compar-

ing the number of reproduced hydrogen bonds in model interface.

This is important because protein–DNA complexes are intrinsically

dynamic and interface hydrogen bonds have similar distributions

between strong and weak ones.56–58 ComparePD treats native hydro-

gen bonds of varying strengths differently by assigning higher weights

to stronger hydrogen bonds and lower weights to weaker ones. Unlike

the cutoff-based identification of hydrogen bonds, which would result

in a gain or a miss for a small hydrogen bond energy difference, our

approach takes account of the dynamic nature into consideration

without penalizing small shifts in hydrogen bond energy. On the other

hand, a large change in hydrogen bond energy compared to the native

hydrogen bond will score relatively lower. While the use of hydrogen

bond numbers for similarity assessment of complexes has previously

been suggested, to the best of our knowledge, this is the first time a

similarity assessment method based on different hydrogen bond

energy ranges has been explored to compare protein–DNA

complexes.

The key element in our new scoring function is CompositeHBE,

which is calculated by the weighted combination of FHBnat and

FHBSPnat with the latter having a higher weight due to its importance

in specific protein–DNA binding (Equation 6). FHBnat and FHBSPnat are

normalized by the weighted sum of total hydrogen bonds CHB or

CHBSP in each energy category for two considerations (Equation 5).

One considers the strength of hydrogen bonds in contributions.

Another consideration is that the three categories have different

ranges, from the narrow ranges (weak hydrogen bonds) to larger

ranges (strong hydrogen bonds). Therefore reproducing the weak

hydrogen bonds in the same category between the model and the ref-

erence structure is more difficult or challenging than the stronger

ones that have a bigger range and better chance to be in the same cat-

egory. The value distributions of FHBNat and FHBSPNat in top models

selected by ComparePD are shown in Figure S11.

The performance of ComparePD for comparison of models gener-

ated using two different computational methods, homology modeling

and docking, has been demonstrated. ComparePD has consistently

identified a better model than existing metrics for models generated

from both approaches indicating its general capability in assessing

complex model similarity. The benefit of the combination of the

distance-based and hydrogen bond energy-based metrics is that it

captures both the overall interface structural similarity as well as the

important functional feature. The relationship between ComparePD

and PDDockQ can be analogized to the difference between RMSD

score and TM-score for protein structure comparison. While both

RMSD and TM-score provide overall similarity scores for two protein

structures, TM-score is more useful to identify two structures with

fold level similarity by weighting more for the core similarity. Compar-

ePD is designed to score the conformational similarity as well as func-

tionally important interface features, the hydrogen bonds between

protein and DNA.

Our results show that the improved performance of ComparePD

over PDDockQ is better for the intermediate docking cases than

those in the easy and difficult sets (Table 2). This is not surprising. As

shown in Figure 2, there are more cases with lower quality top models

in the intermediate set (41.7%) than those in the easy (0%) and diffi-

cult (16.7%) sets. In most cases that have higher quality, near native

models, PDDockQ is able to identify the same best model as Compar-

ePD because PDDockQ may capture these reproduced hydrogen

bonds implicitly with the distance-based metrics. However, for lower

quality models, adding hydrogen bond information can help identify

the near native models (Figure 3).
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Because ComparePD is a continuous scoring function that has

better performance, it can facilitate the development of new methods

for modeling and evaluating protein–DNA complex models, and can

be applied to machine learning based methods for assessing the qual-

ity of protein–DNA complexes. There is a potential that the perfor-

mance of ComparePD can be further improved. For example, due to

the limited availability of data, it is not practical to perform weight

training and optimization for the four metrics in ComparePD. When

larger datasets become available in the future, the weights can be

optimized to further improve the accuracy. In addition, it has been

demonstrated that π–π and cation–π interactions play important roles

in protein–DNA interactions.32,34,37,59–63 Not only can π–π interac-

tions contribute to the binding affinity and complex stability, they also

play a role in conferring specific protein–DNA recognition. We previ-

ously demonstrated that considering protein–DNA π–π interactions

explicitly helps improve structure-based prediction of transcription

factor binding sites.34 A recent study also suggested the implication of

incorporating π–π interactions in the development of scoring func-

tions for docking.63 As for assessing the interface similarity, on the

one hand, considering the conservation of π–π interactions in the

models when comparing their interface similarity to the native com-

plex may help. On the other hand, adding it as an additional term may

also introduce noise since the number of such interactions in protein–

DNA complexes is relatively small. Nevertheless it should be explored

in future studies.
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