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Abstract

Machine learning (ML) is being widely adopted by organiza-

tions to assist in selecting personnel, commonly by scoring
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Papers in this article were submitted and

evaluated individually in the traditional

peer-review process by five independent

reviewers, including regular editorial board

members and a special board, judged tomake a

meaningful contribution after one ormore

rounds of revisions, accepted independently,

and then combined into this thematic article.

The co-editors of the special issue decided

study ordering, which determined authorship

ordering.

narrative information or by eliminating the inefficiencies

of human scoring. This combined article presents six such

efforts from operational selection systems in actual orga-

nizations. The findings show that ML can score narrative

information collected from candidates either in writing or

orally in response to assessment questions (called con-

structed response) as accurately and reliably as human

judges, but much more efficiently, making such responses

more feasible to include in personnel selection and often

improving validity with little or no adverse impact. More-

over, algorithmscangeneralize across assessmentquestions,

and algorithms can be created to predict multiple outcomes

simultaneously (e.g., productivity and turnover).MLhas even

been demonstrated to make job analysis more efficient by

determining knowledge and skill requirements based on job

descriptions. Collectively, the studies in this article illustrate

the likely major impact thatMLwill have on the practice and

science of personnel selection from this point forward.

KEYWORDS

artificial intelligence/big data/machine learning, selection-methods,
selection-validation

1 INTRODUCTION

Thepurpose of this combined article is to illustrate a range of current applications ofmachine learning (ML) to improve

measurement and prediction in personnel selection. The goals of the applications are to solve historical major prob-

lems in personnel selection, commonly either to score narrative data or to make selection more efficient in terms of

human rater effort or both. In order to present several relevant studies on the topic, only brief summaries are pre-

sented in this article. Interested readers should consult each study’s Online Supplement for additional information on

the study background, method, and supplemental analyses.

Study 1 usedML to address resource inefficiencies by examining an important potential obstaclewhen usingML to

score narrative responses to open-ended prompts, which is the extent towhich amodel can be used across alternative

prompts. If a unique algorithm had to be developed for each prompt, it would require more time and greater costs.

Using ML, they show that algorithms can generalize to scoring responses from novel prompts, especially in certain

conditions, which they call algorithmic construct generalizability. Study 2, Study 3, and Study 4 used ML to address

resource constraints in assessing constructed responses (written or oral). Assessment center (ACs) exercises that col-

lect unstructured narrative responses are highly desirable selection techniques due to typically good validity and low

adverse impact, but they can be costly to score. Study 2 compared several algorithms to show that ML can score such

responses with asmuch reliability and validity as humans or better.

A likely scenario for an organization considering ML is to add it to an existing assessment battery of traditional

tests to score open-ended questions that would be too costly to score manually. Study 3 shows how ML can com-

plement existing assessments by scoring open-ended questions as well as humans, but more efficiently while adding
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KOENIG ET AL. 3

slightly to validity with little increase in adverse impact. Similarly, Study 4 developed an algorithm for scoring an audio

constructed response simulation, which is becoming a much more common response format and costly to score by

human raters. They found thatML can score audio constructed responses to a simulation assessment muchmore effi-

ciently than humans with the same or greater reliability and even incremental validity. Study 5. addressed another

practical issue that arises in personnel selection but has previously been difficult to solve, which is the situation in

which the goal is to predict two different outcomes at the same time. Study 5 shows that ML algorithms can be

created to predict multiple outcomes simultaneously (e.g., productivity and turnover). Finally, another common his-

torical problem in personnel selection is the need to conduct job analyses to identify and justify the job requirements

(e.g., knowledge and skills). Job analysis is a laborious process that could perhaps be assisted by ML to increase effi-

ciency. Study 6 demonstrated that ML could be trained to extract knowledge and skill from job descriptions as well

as humans, which may not fully replace traditional job analyses but could certainly make it more efficient as one

component.

2 STUDY 1: ALGORITHMIC CONSTRUCT GENERALIZABILITY: SCORING NOVEL
OPEN-ENDED PROMPTS WITH DEEP LEARNING TRAINED ON ALTERNATIVE
PROMPTS1

The age of automation is underway. One aspect of automation that is impactful to organizational psychologists is the

automatic scoring of unstructured text. Historically, the analysis of textual data typeswas an extremely laborious task,

requiring hours of subject matter experts’ (SME) time to read and evaluate. Recent advances in natural language pro-

cessing (NLP) and deep learning have provided models that can accurately replicate the ratings produced by SMEs

and can do so quickly and efficiently. Extant literature on computer scoring of applicant data supports the reliabil-

ity and validity of these models and argues for their value in research (M. C. Campion et al., 2016; Sajjadiani et al.,

2019). Many questions remain, however, about how algorithms can be optimally built to satisfy existing psychometric

standards of generalizability. Exploring the generalizability of how to optimally train algorithms to performwell in new

scenarios andwith newpromptswould have substantial impact on our field. Currently, there are tremendous resource

costs associated with repeatedly training and testing newmodels when hiring procedures change (e.g., new interview

prompts to combat cheating or updated selection practices). During this process of updating algorithms for a new

prompt, a large number of responses to the novel prompt must first be obtained and then qualified raters must label

those responses. This creates a barrier to the continued use or application ofwell-performing algorithms to newprob-

lems or contexts. The purpose of this paper is to expand the current understanding of the generalizability of computer

scoring of unstructured text via deep learning algorithms in selection contexts addressing the gaps in the literature.

Specifically, this research focuses on the extent to which deep learning algorithms trained on a prompt can generalize

and accurately score a new set of responses generated by a different prompt. Additionally, the impact of the assess-

mentmedium, sample size, prompt similarity, number of prompts used in the training set, and focal prompt seeding on

generalizability are all investigated.

2.1 Algorithmic construct generalizability

A key attribute of any selection test or system is generalizability. When we think about the generalizability of a selec-

tion system, we are referring to the generation of accurate scores in spite of specific changes, such as the specific

prompts presented, the assessment medium, the rater, the directions, or the subjects (Crocker & Algina, 2008). In

modern personnel selection, new generalizability concerns arise when a deep learning algorithm is trained to score

open-ended responses on specific prompt(s), but new prompts are being introduced. Can an algorithm that has been

trained on a set of responses generalize to accurately score candidate responses to a new prompt that is tapping
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4 KOENIG ET AL.

into the same underlying construct?Will the introduction of a new or modified prompt require restarting the process

from scratch and if not, what are the factors that impact the performance of existing algorithms when trying to score

responses to novel selection prompts? If algorithmically scored assessments of unstructured candidate response are

to be used in selection, answers to these questions are paramount.

Unfortunately, traditional psychometric theory falls short in answering these questions. Currently, there is no guid-

ance for the aforementioned scenario which encapsulates a new form of generalizability called algorithmic construct

generalizability. This type of generalizability refers to the ability of a model (i.e., set of weights) trained on other item

responses to produce an accurate score on applicant responses generated from a novel item reflecting the same con-

struct in the same population of participants. We distinguish this concept from the more general term algorithmic

generalizability, the ability of a model to make accurate predictions on data not contained in the training dataset

(Rivlin, 2019), which is similar to the traditional definition of cross-validation that refers to generalization of accuracy

to a sample of new subjects (Hastie et al., 2017). Neither cross-validation nor algorithmic generalizability, however,

account for the application of amodel to a completely differentmeasurement of the underlying construct. Algorithmic

construct generalizability is also meaningfully different from parallel forms reliability. The primary concern in paral-

lel forms reliability is the consistency of the rank order of participants across the two forms. Algorithmic construct

generalizability, on the other hand, concerns a model’s ability to accurately predict SME labels rather than the consis-

tency of an individual’s score across the different prompts that attempt to measure the same construct. For example,

a participant could score differently across the two prompts, perhaps because the prompts sample different areas of

the content domain, but evidence of algorithmic construct generalizability could still be high if the model can accu-

rately reproduce the SME labeled score for the latent construct for the novel prompt. Thus, while parallel forms is a

type of reliability, algorithmic construct generalizability assesses a unique type of algorithmic validitywhere the train-

ing data is generated from prompts that are different from the test prompt. Given these gaps in extant psychometric

theory, the introduction and testing of algorithmic construct generalizability is necessary toboth extend rigorousmea-

surement standards to algorithmic contexts and provide guidelines for addressing a practical problem in personnel

selection.

2.2 Practical contribution of algorithmic construct generalizability in scoring
unstructured text

Computer scoring of text has been shown to approach or even equal the accuracy of human raters in scoring text

(M. C. Campion et al., 2016) enabling processing a larger number of applications with significant cost savings. M. C.

Campion et al. (2016) estimated potential savings of $210,000 annually for one organization when computer scor-

ing replaced human scoring. Algorithms can also be probed to understand their predictions despite common concerns

that algorithms are black boxes with unforeseen, harmful biases. A growing body of research suggests that computer

scoring can guard against human biases in personnel selection when we leverage existing tools that identify what is

driving the decision or classification within the algorithm and those biased features are removed from the training

data (Albritton & Tonidandel, 2020; Ribeiro et al., 2016; Tay et al., 2021). Given these advantages, practitioners con-

tinue to develop consulting firms and technology startups that rely on NLP, deep learning, and other ML approaches

to improve and automate personnel selection. At the same time, companies continue to evolve their interview and

AC prompts and often wish to apply new prompts or new scenarios. There is an ever-present need to consistently

retire selection prompts to avoid cheating or applicant knowledge of the prompt prior to interviewing. In the process

of creating new prompts, one must go through a series of steps to ensure an algorithm offers acceptable accuracy in

scoring responses to the new prompt such as: collecting a sufficiently large sample of applicant responses, labeling

those responses by human raters, training and testing a deep learning algorithm to accurately score the competency

being assessed, and provide additional evidence of validity or test any potential unfairness in the tool. This is an itera-

tive and time-consuming process that plagues practitioners and limits the adaptability of selection systems. The ability
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KOENIG ET AL. 5

to apply existing algorithms to novel prompts would alleviate the heavy costs associated with training a new algo-

rithm. Exploration of the generalizability of ML models in scoring applicant text data can further expand its use in

selection contexts, optimize algorithms to score previously unseen selection promptswith greater accuracy, and allow

companies tomore easily incorporate new prompts without replacing their existing algorithm.

2.3 Hypotheses

As the purpose of this paper is to investigate algorithmic construct generalizability in a selection context, a deep learn-

ing algorithmwill be trained on text responses fromprompts that are different from the ultimate prompt and responses

onewishes to score, while all being conceptually aligned to the same competency.

One factor thatmayaffect the generalizability of scoring algorithms is the assessmentmedium.Datawere gathered

frommultiple assessment systems that implemented two distinct assessment mediums for obtaining responses: a vir-

tual AC and a structured behaviorally based interview. In terms of algorithmic construct generalizability, predictions

of novel prompts should be more accurate when an algorithm is trained on data collected using the same assessment

medium as opposed to a different assessment medium. The impact of assessment medium, however, may not be the

same across all items. In terms of algorithmic performance,Mitchell (1997) notes that “In general, learning ismost reli-

able when the training examples follow a distribution similar to that of future test examples.” (p. 6). This means that

one would expect a greater degree of generalizability to the extent that the novel prompt produces responses that

are more similar to the responses that are used to train the algorithm. Thus, we propose the following two related

hypotheses:

Hypothesis 1: Predicted scores from deep learning algorithms on a novel prompt will correlate more highly with

SME labels when trained on text obtained using a similar assessment medium than a different assessment

medium (assessment center prompt vs. interview prompt).

Hypothesis 2: The influence of the assessment medium used for training will depend on item content similarity.

Predicted scores from deep learning algorithms will demonstrate higher correlations with SME labels when

the algorithms are trained on responses from prompts that produce responses that are more conceptually

similar as opposed to prompts that produce responses that aremore conceptually dissimilar.

The extant research on automated text analysis methods does not consider how the sample size of the dataset on

which the algorithmwas trainedmight influence computer scoring of novel unstructured text. Typically, if one is trying

to score a prompt, the more quality labeled data available from that prompt, the better one will be able to score that

prompt.What remains unknown is whether there is an improvement in scoring performance if additional labeled data

from a different prompt is available. Given the general trend thatmore training data is better, we propose the following:

Hypothesis 3: Predicted scores from deep learning algorithms will correlate more highly with SME labels when

the training data is larger (sample size) as opposed to smaller.

A unique boundary condition worthy of exploration is the impact of including a limited amount of focal prompt

information in the training data. We refer to this as seeding the training data. Practically speaking, obtaining a small

amount of labeled responsesmaybemore feasible. In addition, training data that ismore similar to the test data should

lead to better algorithmic performance (Mitchell, 1997). Thus, it is anticipated that seeding the training data would

increase the similarity between the training data and the test data, thereby improving algorithm performance.

Hypothesis 4: Predicted scores from deep learning algorithms will correlate more highly with SME labels when

the training data is seededwith responses from the target prompt.
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6 KOENIG ET AL.

Another feature that might impact its generalizability is the diversity of prompts that are used for training. This

combination of data sources mirrors what happens with algorithms using ensemble models (Dietterich, 2000). By

leveraging a diversity of models, the performance of the overall model actually improves. Similar to ensembles, when

training algorithms to generalize to novel prompts, a wider diversity of input would likely be beneficial.

Hypothesis 5:Awider variety of data (more prompts) will improve the ability of a deep learning algorithm to score

novel prompts.

2.4 Method

2.4.1 Sample and context

This study involved 7017 responses from over 6000 unique participants who were job applicants from more than 50

different organizations that participated in different selection batteries. As part of the selection batteries, respon-

dents participated in a Virtual Assessment Center experience (VAC) or structured behaviorally based interviews.

As part of the VAC selection battery, applicants were asked to respond to four different hypothetical situations

and describe the actions they would take given the situation. For the interview battery, behavioral interview ques-

tions that were part of an asynchronous video interview process were asked. For both the VAC and interview

processes, different prompts were used by different organizations. The VAC system consisted of candidates for an

entry level business consulting role and for a retail store management role. The interview candidates were from

several dozen companies applying for roles from branch manager and technical underwriter to delivery driver and

bookkeeper.

2.4.2 Measures

Sevenprompts across the twodifferent selection systemswere chosen for this study.Adescriptionof the fourprompts

utilized as part of the VAC process and the three prompts used as part of the interview process are available in the

online supplemental materials (Online Supplement Table A2). Both the VAC prompts and the interview prompts were

identified by a team of four Ph.D. Industrial-Organizational psychologists with multiple years of experience to be part

of a single higher order competency – Provides Exceptional Service. Each responsewas independently evaluated by two

trained SMEs on a 1–5 point behaviorally anchored rating scale. Consensus meetings were conducted on responses

that had greater than one-point rating discrepancies between raters. Experts resolved such discrepancies by review-

ing both competency definitions and the behaviorally anchored scale (BARs). Consensus would be reached once the

experts camewithin one point of each other. The focal dependent variable is the aggregated SME ratings.

2.4.3 Research design

The prompt used for testing is referred to as the focal prompt. To establish baseline performance, each open-ended

prompt was trained and evaluated individually on all the available labeled responses for that prompt (i.e., training

and testing occurred on the same focal prompt). Next, within medium generalizability was explored. For each focal

VAC prompt, an algorithm was trained on all of the available labeled responses for the other three VAC prompts, not

including the focal prompt, and then tested on the holdout focal prompt. This processwas repeated, treating eachVAC

prompt as the focal prompt. A similar strategywas used for each interview promptwhere an algorithmwas trained on

the other two interview prompts, holding out the focal prompt, and then tested on the focal prompt. Between medium
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KOENIG ET AL. 7

generalizability was evaluated by training an algorithm on all of the prompts from the medium that differed from the

focal prompt. Thus, if the focal prompt was a VAC prompt, the algorithmwas trained on all the interview prompts, and

if the focal prompt was an interview prompt, the algorithm was trained on all the VAC prompts. To further investi-

gate generalizability independent of medium, an algorithmwas trained on all prompts, excluding the focal prompt, and

tested the performance of that algorithm on the focal prompt.

Because the analyses above all included different numbers of prompts in the training set but used all of the avail-

able data, the size of the training set varied from condition to condition. Thus, the above analyses were repeated using

a constant sample size of 800 for the training set. Finally, with the sample size constraint in place, the impact of seeding

the training data with the focal prompt was investigated. For example, given thewithin or betweenmedium generaliz-

ability condition, the focal prompt was included with the other VAC or interview prompts in the training set, or when

all prompts were used, the focal prompt was included as part of the training set.

In summary, baseline performance along with within medium, between medium, and all prompt generalizability

wereall studied.All availabledatawasused inone setof conditions and training sample sizewas constrained in another

toprovidemore consistent comparisonsbetweenprompts. Finally, the impactof seeding focal prompt information into

the training set when sample size is constant was explored (seeOnline Supplement Table A3).

2.4.4 Content similarity

To identify any inherent characteristics of the various prompts that overlap and potentially contribute to algorithmic

construct generalizability, a qualitative review of the VAC and interview prompts was conducted. A team of two SMEs

independently reviewed the prompts as well as a sample of twenty text responses for each prompt and independently

provided ratings of paired prompts on their content similarity on a 4-point Likert-type scale (1 = Not similar at all;

2=Not similar; 3= Similar; 4=Very similar). Using these ratings and the aforementionedpatternswithin the ratings, the

research team generated a priori hypotheses based upon content similarity for the generalizability of models trained

using certain prompts compared to others (see H2a-c in the Online Supplement). These a priori hypotheses were pre-

registered throughOSF prior to analyzing the data (osf.io/n2jm8).

2.4.5 Deep learning architecture

A state-of-the-art approach to transformers, RoBERTa was utilized. Robustly Optimized BERT pretraining approach

(RoBERTa; Y. Liu et al., 2019) is an expansion upon the basic transformer architecture Bidirectional Encoder Repre-

sentations from Transformers (BERT, Devlin et al., 2019), using the same architecture but further optimized. RoBERTa

is pre-trained on a large body of texts from the internet (i.e., OPENWEBTEXT, Gokaslan & Cohen, 2019) and books

(i.e., BOOKCORPUS, Zhu et al., 2015). RoBERTa architecture provides a structure to attend to information across the

entirety of a document or response. Specifically, the embedding layer takes in the word embeddings or representa-

tions of the words produced by pre-trained RoBERTa along with a positional embedding, to locate the word/token

within the response, and a token type, which represents things like the beginning of a response or the separation of a

sentence within a response. This layer is passed to 12 hidden layers referred to as transformer blocks. These are iden-

tical and consist of a self-attentionmechanismwith a linear layer. Each of these layers has layer norming and a dropout

weight, which for the purposes of consistency of comparisons for this research was consistently set to .10. Previous

investigations by members of our research team have indicated that it tended to demonstrate the most consistent

results. The output of this 12th transformer block is then fed into a pooling layer, which was then fed into a custom

regression head to output a float between 1 and 5 to reflect the rating the SMEs provided for each competency. In

summation, this architecture contains roughly 124 million parameters. RoBERTa was implemented in Python using

 17446570, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/peps.12608, W

iley O
nline L

ibrary on [09/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 KOENIG ET AL.

the huggingface RoBERTa-base pretrained model (Wolf et al., 2019). It was then further trained on the downstream

task of predicting each competency for each experimental condition on AWS spot instances that utilized Nvidia Tesla

V100GPUs. These spot instances had an installed Docker container with all packages and code necessary to train and

evaluate the models. Since this transformer architecture was used, no form of text cleaning was done on the prompt

responses. Additionally, our models were trained using the standard RoBERTa cutoff of 512 tokens per response. A

minimal proportion of responses in our dataset exceeded a length of 512 tokens (Prompts 1–4: 0%, Prompt 5: 1%,

Prompt 6: 1.7%, Prompt 7: 2.4%).

2.4.6 Data configuration

For baseline conditions (i.e., models trained and tested on only responses from a single prompt), training and testing

utilized an 8-fold cross validation strategy. The data for each focal promptwas split into four folds and three data sets:

training, development, and test. These splitswere developed using stratified randomsampling on the label distribution

to hold label distributions constant across all folds. The training data set, used to train the algorithm, consisted of three

of the four folds. The final fold is split in half (half development and half testing). The development set was used for

early stopping and for this reason was not considered as a fully independent holdout set. The test set was completely

unseen by the model, even during model evaluation between epochs (to determine when optimization improvements

had ceased to improve), and the only one used for evaluation. In an effort to ensure all datawas part of the final unseen

test set, the 50/50 split of the final fold was run twice, which involved flipping the development and test sets each

time, thus creating an additional four-folds, and making it an eight-fold cross validation. The results of each of the

eight folds were then averaged to create a holistic picture of the algorithms ability to predict unseen responses from

the baseline prompt. For the generalizability conditions, because the data from these novel prompts only contained

development/test sets, we only needed a two-fold cross validation where half of the holdout was first used for devel-

opment and the other half was used for the test set and vice versa. As before, in all conditions where subsets of the

datawere selected, we used stratified random sampling to ensurewe had an equal amount of labels from each prompt

and that within the prompt the labels reflected the distribution of the population of labels for that prompt. This was

performed on all of the available data aswell as on a training sample thatwas capped at 800 for certain conditions. The

results of each of the two folds were also averaged like in the baseline condition.

As part of this research, we were interested in understanding the impact of including a subset of responses from

the focal prompt on algorithmic construct generalizability. We refer to this as the seeding conditions. For the seeding

conditions, the training sample was capped at 800 responses. The training sample was composed of an equal propor-

tion of the responses from prompts included in each model. For example, in the seeding condition where the model

contained all four VAC prompts, there were 200 prompt responses representing the four VAC prompts in the train-

ing sample. Likewise, the models in the seeding condition for interview prompts contained three prompts, so they

were each represented by 267 prompt responses. Like the prior conditions, responses were selected through a strat-

ified random sampling technique and all responses not included in the training process were split in half and included

first as the development set and then as the test set creating another two-fold cross validation methodology. Essen-

tially, the model is trained and evaluated with the holdouts being swapped (i.e., validation/test, switches to become

test/validation) and averaged, where each is evaluated as the true test set on separatemodel training instances.

2.4.7 Analyses

The correlation between the computer-generated score and the SME label was the primary mode of evaluation of

algorithmic construct generalizability under the various conditions described. An algorithm is considered accurate to

the extent that it can reproduce the label generated by a knowledgeable expert coder (Thompson et al., 2023), with
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KOENIG ET AL. 9

special interest to those algorithms that can meet a threshold of .60 and could thus be used in selection systems (M.

C. Campion et al., 2016). This value of .60 is also nearly identical to the average correlation across prompts between

two independent SME raters pre-consensus (r= .62). We first applied these standards to the correlation produced in

the baseline condition when an algorithm is both trained and tested on the same focal prompt, as is current practice

for training and testing models to score unstructured texts from selection prompts. Large deviations in algorithmic

performance from that baseline would be indicative of low algorithmic construct generalizability, whereas being

able to produce comparable levels of performance as the training set differs indicates high levels of generalizability.

Because of the large sample sizes, we do not examine whether any two correlations are statistically significantly

different. However, we do report the upper and lower bounds of the confidence interval to provide the reader some

indication of sampling variability.

2.5 Results

First, we wished to establish how well an existing deep learning algorithm could score text from novel prompts (com-

pared to when an algorithm is trained specifically on that prompt) and what factors impact this performance. Results

(see Table 1) indicate that across all prompts and all conditions, the correlation between SME and algorithmically pre-

dicted scores ranged from .75 to .04 (M= .42, SD= .20) when tested on a novel prompt. In terms of how closely these

correlations matched those produced at baseline, these correlations were very similar, only 7% different, to widely

divergent, up to 94% different. The deep learning algorithm does appear to accurately predict SME ratings of novel

prompts in some situations, but in other situations the algorithmic predictions are severely inaccurate. Subsequent

hypotheses explore potential reasons for these discrepancies.

Hypothesis 1 predicted scores from deep learning algorithms on a novel prompt will correlate more highly with

SME labels when trained on text obtained using a similar assessment medium than a different assessment medium

(AC prompt vs. interview prompt) and hypothesis 2 predicted that this effect would be impacted by similarity. Looking

at the condition where all available data was used for training (i.e., top section of Table 1), this hypothesis appears to

be supported for most, but not all, of the prompts. Predicted scores from prompts 1, 2, 4, 6, and 7 all correlate more

highly with SME labels when the deep learning algorithm is trained on responses from novel prompts collected via a

similar assessmentmedium compared towhen the algorithm is trained on responses from novel prompts collected via

a different assessmentmedium.Onaverage for these five focal prompts, the correlation betweenpredicted scores and

SME labelswas .29higher for deep learning algorithms trainedonnovel promptswithinmediumcompared tobetween

medium.

Based upon SME similarity coding of items, it was predicted that prompt 1 would have the highest level of prompt

generalizabilitywhen thealgorithm is trainedwithin assessmentmediumon the remainingVACprompts.As evidenced

in Table 1, prompt 1 did in fact have the largest correlationwith SME labels (.70 vs. .62, .14, and .62). In addition, based

upon SME ratings of content similarity, Prompt 3 showed the weakest content similarity to other VAC prompts, so it

was predicted that prompt 3would have the worst within assessment medium generalizability compared to the other

VACprompts. This exact patternwas foundwith Prompt 3 showing virtually no correlation (.14)with SME labelswhen

trained on other VAC prompts whereas the other VAC prompts showed relatively good within assessment medium

generalizabilitywith correlations ranging from .62 to .70. Finally, itwas predicted that prompt5, given thehigher levels

of content similarity to the VAC prompts as rated by SME, would benefit more from cross assessment medium train-

ing than the other interview prompts. The pattern of results from Table 1 is consistent with partial support for this

prediction. Prompt 5 displayed a large increase in the correlation with SME labels when moving from within assess-

mentmedium to between assessmentmedium (.04–.31)whereas the other two interview prompts showed a decrease

(.57–.49 & .57–.34). Though this pattern is consistent with our predictions, what was not anticipated a priori was

the extremely low level of correlation for prompt 5 within assessment medium (.04) and the fact that the between

assessment medium correlations for the other interview prompts would still be higher than Prompt 5 (.49 & .34 vs.
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10 KOENIG ET AL.

TABLE 1 Algorithmic performance indexed via the correlation between predicted scores and SME labels.

Correlationwith SME label on holdout

Condition

Focal

Prompt Baseline Withinmedium Betweenmedium All prompts

Ntrain =All Data; Unseeded 1 0.79** 0.70** (0.67, 0.73) 0.23 (0.17, 0.29) 0.70** (0.67, 0.73)

Ntrain =All Data; Unseeded 2 0.82** 0.62* (0.58, 0.66) 0.23 (0.17, 0.29) 0.55 (0.51, 0.59)

Ntrain =All Data; Unseeded 3 0.82** 0.14 (0.08, 0.20) 0.50 (0.45, 0.55) 0.32 (0.26, 0.38)

Ntrain =All Data; Unseeded 4 0.77** 0.62* (0.58, 0.66) 0.32 (0.26, 0.38) 0.60* (0.55, 0.64)

Ntrain =All Data; Unseeded 5 0.68* 0.04 (−.01, 0.09) 0.31 (0.26, 0.36) 0.06 (0.01, 0.11)

Ntrain =All Data; Unseeded 6 0.74** 0.57 (0.53, 0.61) 0.49 (0.44, 0.54) 0.50 (0.45, 0.54)

Ntrain =All Data; Unseeded 7 0.63* 0.57 (0.53, 0.61) 0.34 (0.28, 0.39) 0.50 (0.45, 0.55)

Mean= 0.75 0.47 0.35 0.46

0.07 0.24 0.10 0.20

Ntrain = 800; Unseeded 1 0.79** 0.68* (0.66, 0.73) 0.18 (0.64, 0.72) 0.66* (0.65, 0.72)

Ntrain = 800; Unseeded 2 0.82** 0.58 (0.65, 0.72) 0.42 (0.61, 0.69) 0.64* (0.70, 0.76)

Ntrain = 800; Unseeded 3 0.82** 0.35 (0.68, 0.75) 0.27 (0.72, 0.78) 0.35 (0.49, 0.59)

Ntrain = 800; Unseeded 4 0.77** 0.63* (0.55, 0.65) 0.32 (0.48, 0.59) 0.54 (0.58, 0.67)

Ntrain = 800; Unseeded 5 0.68* 0.16 (0.57, 0.65) 0.37 (0.58, 0.65) 0.38 (0.50, 0.58)

Ntrain = 800; Unseeded 6 0.74** 0.51 (0.56, 0.65) 0.27 (0.58, 0.66) 0.56 (0.61, 0.69)

Ntrain = 800; Unseeded 7 0.63* 0.53 (0.54, 0.64) 0.29 (0.52, 0.61) 0.49 (0.48, 0.58)

Mean= 0.75 0.49 0.30 0.52

0.07 0.17 0.07 0.11

Ntrain = 800; Seeded 1 0.79** 0.70** (0.65, 0.71) 0.68* (0.12, 0.24) 0.69* (0.62, 0.69)

Ntrain = 800; Seeded 2 0.82** 0.69* (0.54, 0.62) 0.65* (0.37, 0.47) 0.73** (0.60, 0.68)

Ntrain = 800; Seeded 3 0.82** 0.72** (0.29, 0.40) 0.75** (0.21, 0.33) 0.54 (0.29, 0.40)

Ntrain = 800; Seeded 4 0.77** 0.60* (0.59, 0.67) 0.54 (0.26, 0.38) 0.63* (0.49, 0.59)

Ntrain = 800; Seeded 5 0.68* 0.61* (0.11, 0.21) 0.62* (0.32, 0.42) 0.54 (0.33, 0.43)

Ntrain = 800; Seeded 6 0.74** 0.61* (0.46, 0.55) 0.62* (0.21, 0.33) 0.65* (0.52, 0.60)

Ntrain = 800; Seeded 7 0.63* 0.59 (0.48, 0.57) 0.57 (0.23, 0.35) 0.53 (0.44, 0.54)

Mean= 0.75 0.65 0.63 0.62

0.07 0.05 0.06 0.07

Note: The results for the Baseline conditon used all of the available data and are repeated in each section of the table for ease
of compasison. 95% Confindence intervals are dislayed in parentheses. Bolded correlations exceed .50 indicative of nearing

practical use standards; * indicates a correlation geater than .60, the target standard for practical use (Campion et al.,
2016) ; ** indicates a correlation greater than .70, a lower-bound threshold for use in high-stakes testing (Campion
et al., 2016).

.31). In general, predictions generated from items collectedusing the sameassessmentmediumcorrelatedmorehighly

with SME ratings than items from different assessment mediums, supporting Hypothesis 1. Moreover, when variation

between itemsexisted, this variationwaspredictable apriori basedupon itemsimilarity ratings fromSMEs, supporting

Hypothesis 2.

Hypothesis 3 predicted that scores generated from deep learning algorithms on a novel prompt will corre-

late more highly with SME labels when the sample size of the training data is larger as opposed to smaller. To
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KOENIG ET AL. 11

evaluate this hypothesis, we can compare the correlations at the top of Table 1 when the algorithm was trained on

all of the data to the section right below thatwhere the algorithmwas trained on a restricted sample of 800 responses.

On average, the reduction in sample size had only a minor impact on the correlation between SME labels and pre-

dicted scores. Surprisingly, the correlations to SME labels seemed to increase somewhat with the smaller sample sizes

when the original correlations using all of the data were low and underperforming. Otherwise, reducing sample size

generally led to a small decrease in the observed correlation. Given this small impact, Hypothesis 3was not supported.

Hypothesis 4 predicted that scores from deep learning algorithms, when applied to a novel prompt, will correlate

more highly with SME labels when the training data is seeded with information from the target prompt. To evaluate

this hypothesis, one can compare the results from themiddle section of Table 1when the training set does not contain

any data from the focal prompt to the lower section of Table 1 that seeds the training data with information from the

focal prompt. Two consistent patterns regarding the impact of seeding emerge from this comparison. First, when the

SME label for a focal prompt can be reliably predicted from a set of novel prompts (i.e., the correlation between SME

labels and predicted scores is high), the seeding of the training data with responses from the focal prompt has a mod-

est positive impact on the correlation with SME labels. However, seeding appears to be quite impactful at improving

the performance of deep learning algorithms that are underperforming when just training on unseeded responses

solely. For example, algorithms for Prompts 3 & 5, when trained on unseeded prompts from the same assessment

medium, produced predicted scores that correlated only .35 and .16 with SME labels. In contrast, by seeding with

some responses from the focal prompt, those correlations increased to .72 and .61. A similar pattern is exhibited

across all of the promptswhen the algorithm is trained across assessmentmediums. The between assessmentmedium

correlation between predicted scores and SME labels across all prompts averaged .30 (SD= .07). Those same correla-

tions averaged .63 (SD= .06) when focal prompt responses were seeded into the training data. These results support

hypothesis 4.

Our final hypothesis stated that a wider variety of data (more prompts) would impact the ability of a deep learning

algorithm to score novel prompts. The column “All Prompts” in Table 1 contains results that speak to this hypothesis.

In general, the addition of more prompts does not seem to improve algorithmic predictions. The average correlation

observed when training an algorithm on all prompts tended to be about the same as the correlation when training an

algorithm on just within assessment medium prompts. This was true across all three conditions of training data: train-

ing on all data, training on 800 responses and not seeding the training data, and training on 800 responses and seeding

the training data. An improvement in the correlation was found when compared to the between assessment medium

condition, but this improvement is likely due to assessment medium and not due to just having additional prompts.

Based on these results, we conclude that adding more novel prompts to the training data will not aid in improved

algorithmic predictions unless those prompts are more closely related to the focal prompt in some way (e.g., same

assessment medium, more similarity).

2.6 Discussion

This paper examines the ability of a deep learning algorithm to score a novel selection prompt when the algorithm

is trained on the responses from entirely different prompts, while still being conceptually linked via a competency

framework. Using candidate responses from real selection systems, results indicate that algorithms trained on one

set of prompts can generalize to new, never-before-seen selection prompts under certain conditions. Overall, algo-

rithmic construct generalizability was higher when the responses to the novel prompts were collected using the same

assessment medium as the responses used in the training data. These findings are similar to past research on ACs

that consistently demonstrated additional variance in scores that was explained by exercise effects, rather than broad

dimensions within exercises (Connelly et al., 2008; Hoffman et al., 2011). Additionally, algorithmic construct general-

izability was higher for similar prompts (as rated by SMEs), even when those prompts were not rated as highly similar

pairs. In fact, it was quite rare that prompt pairs in our study were rated as similar.
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12 KOENIG ET AL.

Seeding the training data with information from the novel prompt was an important feature for enhancing

algorithmic construct generalizability, especially in instanceswhen the algorithmwas performing poorly at replicating

the SME labels in the focal prompt. Interestingly, the two prompts that performed worst with respect to within

assessment medium generalization without seeding, prompts 3 and 5, showed impressive performance gains under

the same conditions when seeded with some data. However, these same two prompts once again showed the largest

decrement in performance when training on all of the prompts even when seeding. The poorer performance of

the algorithm in the seeded-all prompts condition was probably due to the decrease in the amount of available

information being seeded into the training set from the focal prompt, further illustrating the importance of seeding.

Restricting the size of the training data to only 800 responses did not seem to impact algorithmic construct gener-

alizability. The inconsequential addition of data to the training samples of models implies that algorithms might also

reach a point of theoretical saturation (Tracy, 2013) where additional data is no longer improving the algorithmic con-

struct generalizability or performance of a model. The use of limited data in language models has also been explored

previously through few-shot learners (Brown et al., 2020). Few-shot learners learn using smaller training sets, also

known as support sets, to identify similarities and differences in observations. Even with these smaller support sets,

few-shot learners are shown to performalmost aswell as standard, fine-tunedmodels (Brownet al., 2020).Our results

are similar. We also believe that our use of a modern transfer learning architecture like RoBERTa is also at play here.

In other work (Thompson et al., 2023), when training and testing languagemodels on the same prompt, we found that

the correlation between an algorithm’s score and an SME’s label on a training sample size of 800 was nearly .84. But

reducing that training sample size to only 200 reduced the correlation to only .80. However, reducing sample size did

impact the accuracy of less modern algorithmic approaches like LSTM. Although our approach here was different as it

relied on training on a different prompt, we were using a similar RoBERTa architecture, which may explain why sam-

ple size had only a minimal effect. Similarly, adding additional prompts to the training data set had a minimal effect

over and above the performance seen with a more limited set of prompts. A larger pool of more diverse prompts and

responses would convey information to the deep learning algorithm allowing for enhanced predictions, but this was

not supported by the data. This suggests that a limited number of prompts may be sufficient to achieve saturation.

2.6.1 Practical implications

The main practical application of these results includes (a) facilitating the addition of new content to an AI scored

systems and (b) reducing computational size of AI systems in production. The creation and addition of new content

(prompts) to be scored automatically by AI systems is a key practical concern. Previously, each new prompt would

require new candidate responses to be gathered, rated by SMEs, and then for a newmodel to be trained on this data.

Results indicate that within a competency, if the assessment medium of a prompt (e.g., interview) is held constant,

there is a good possibility that the model will successfully generalize to the new prompt. Practically speaking, addi-

tional assessment content (new prompts) can be added to preexisting systems without the need to gather additional

data or start from scratch in training a newmodel. Our results indicate that the probability of such generalizability to

new content will be increased by having additional similarities in prompts and can be insured with exposure to a small

sample of “seeded data” or labeled response data from the new prompt and updating the model. Thus, when adding

new AI scored opened-ended prompts to create parallel tests, fluctuate stems, add a new context, etc., practitioners

are urged to consider the content similarity and if content diverges significantly, or the system is used for high-stakes

employee selection, to “seed” theirmodelwith a fewnovel responses. This greatly reduces the effort and time required

to update, improve, and evolve these AI systems.

Secondly, if each prompt requires a diverse model to be in production, the scalability of the AI scored systems is

hindered. For example, a trained algorithm’s size can be 1 GB, and when hosted in memory, engineering and finan-

cial considerations arise. By hosting an ever-growing number of new models that are created for new prompts, the

engineering and financial burden of running computers necessary to host thesemodels constantly inmemory to score

candidates 24-h a day quickly increases. The present research indicates that lumping together several prompts in the
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KOENIG ET AL. 13

training of an algorithm did not hinder prediction on a singular prompt in that training. From this, there seems to be

little downside in putting the training data together and thus reducing the total number ofmodels needed to be hosted

in production.

3 STUDY 2: COMPARING THREE ML ALGORITHMS FOR SCORING AC TEXT DATA2

This study aimed to demonstrate the use ofML for scoring performance in onlineACs (International Task Force, 2009),

specifically applying NLP to a large database of operational AC responses. Online ACs contain a wealth of available

data to review for each candidate, and it serves as a prime context to apply ML. There are considerable benefits to

automating AC scoring, given the time and cost associated with assessor evaluations and report writing. However,

there is little known published research where ML has been applied to automatically score operational ACs, and it is

unclear whether automatedMLmethods can achieve adequate evidence of validity to support their use. In this study

we test the validity ofML-derived AC scores, and in the process offer several contributions to the research literature.

First, this study serves as one of the first documented applications ofML andNLP to onlineACswhere participants’

responses are text-based. Although some research has examined the validity of scoring simulations or interviewswith

ML, these are based on small samples or simulated, non-operational contexts (e.g., Hickman et al., 2021; Nguyen et al.,

2014). Second, the choice of NLP algorithm is likely to impact the validity of derived model scores. In the organiza-

tional sciences, most research has used the “bag of words” (BOW) framework (e.g., M. C. Campion et al., 2016; Speer,

2018), which although simplistic and sufficient for certain NLP tasks, does not adequately capture the complexity of

language. In this study we apply a multi-layered transformer neural network architecture (Devlin et al., 2019; M. Liu,

2019; Min et al., 2021; Vaswani et al., 2017; Zaheer et al., 2020), which better encapsulates the contextual sequence

andmeaning of words.We compare transformer-based scores to traditional BOWscoring, aswell as amore rationally

driven NLP approach that combines deductive, top-down winnowing of text along with empirical ML (Speer, 2020).

Third, we examined the validity of ML-scored ACs using a wealth of validation data that included correlations with

assessor ratings, general stability of scores, and criterion-related validity (i.e., correlation with supervisor-rated job

performance).

In sum, our study is among the first to automatically score large, operational, and multidimensional AC data using

NLP, doing so acrossmultipleNLPmethods andby examining the psychometric properties of scores in numerousways.

3.1 Applying ML to automate ACs

ACs have a long history of use, and a review of ACs can be found in the online supplementary materials. Here, we

focus on the advantages of automating ACs. For one, automating candidate evaluation reduces total AC costs that

occurs from using numerous human assessors. Two, ML scores are standardized and may capture nuances or com-

plexity in the data that humans are less likely to consistently integrate into their judgments. There is high cognitive

loadwhenmaking AC judgments. Assessors have to constantly observe behavior, note the relevant behaviors for each

dimension, andmentally appraise newbehaviors being displayed, to eventually adjudicate participants’ proficiency for

each dimension (Jansen, 2012). This process is cognitively demanding and not easy on even the best of assessors. In

contrast,ML scoreswill consistently consider all presented information, be trained to identifywhich information is rel-

evant, and consistently integrate and combine information across AC respondents to arrive to judgments. Thus, there

are potential benefits to automating AC scoring usingML.

3.2 Different approaches to automatically score text using ML

The goal of the ML task in this study was to train an algorithm to use candidate text inputs from the AC to reproduce

human assessor ratings of AC dimensions.We examined three different scoring strategies. These are discussed briefly
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14 KOENIG ET AL.

here, but more detailed discussion can be found in the online supplementary materials (Online Supplement B). Each

of the three strategies is a supervisedML algorithm, such that anML algorithm is trained to recreate an existing target

score (i.e., SME ratings of AC candidates).

3.2.1 Supervised scoring with bag of words

Themost usedNLPmethodwithin the organizational sciences is theBOWtechnique. BOWignores the order ofwords

in a document and instead splits text into vectors of words or word phrases, such that the analysis then takes place on

whether and/or how often such word phrases occur. Once operationalized as a series of word vectors, these vectors

can be used as predictor input features into anML algorithm to predict target scores. For example, a BOWdocument

term matrix can be used to predict AC assessor ratings using ML methods such as gradient boosted trees, which per-

forms well in ML tasks (e.g., Chen & Guestrin, 2016). For this study, we label these as “Supervised BOW” scores, or

SBOW.

3.2.2 Supervised scoring using transformers

To better reflect the complexity of written language, contemporary NLP often uses neural network architectures

that better encapsulate the contextual sequence of words. Since 2017, neural network transformer architectures

(Vaswani et al., 2017) have emerged as the dominant NLP architecture in the computer sciences (Min et al., 2021).

Transformermodels handle sequential text inputwith contextual embeddings and specialized attention algorithms via

deep neural networks. Thesemodels are composed of dense,multi-layered neural networks, with the layers capable of

capturing meaning in language. These perform better than previously popular NLP architectures such as long-short-

term-models and have achieved widespread use for numerous NLP tasks (Min et al., 2021). In the case of predicting

human AC ratings, a top neural network layer can be stacked above the language layers, which was done in this study.

3.2.3 Supervised scoring using theory-driven bag of words

Achallengewith thepreviously describedmethods is that they aredifficult to interpret. As such,we sought to compare

those two empirical methods with a third method that is more deductively driven, called contextualized BOW (Speer,

2020). Instead of using all text within theML process, contextualized BOW first filters each respondent’s text to only

those sentences that have a higher probability of being relevant to the focal construct. In this study we curated text

by only keeping sentences which included a word that was theoretically linked to the targeted AC dimension(s). Once

complete, a document termmatrix is formed andusedwithin a largerMLmodel to recreate targetAC ratings. This pro-

vides a clearer understanding of the model inputs. A downside, beyond not accounting for the complexity of language

like a transformer model does, is that with less text being used, contextualized BOW ultimately uses less information

when estimating AC competencies.We label this method as CBOW.

3.3 Current study and research questions

The purpose of this study was to compare the performance of theML-derived AC scores in an operational context. In

line with the unitarian view of validity (APA, 2018), we examined the psychometric properties of scores in numerous

ways. Research questions are listed below.
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KOENIG ET AL. 15

Research Question 1. What is the correlation between ML scores (SBOW, CBOW, and transformer

scores) and aligned assessor scores?

Research Question 2.What is the general stability for assessor scores and how does this compare to the

stability forML scores (SBOW, CBOW, and transformer scores)?

Research Question 3.Howdoes the pattern of inter-correlations differ between assessor scores andML

scores (SBOW, CBOW, and transformer scores)?

Research Question 4.What is the correlation between AC scores and job performance ratings for ML-

generated scores (SBOW, CBOW, and transformer scores) and for aligned assessor scores?

3.4 Method

3.4.1 Participants and data

We analyzed three archival data sets (primary, criterion, and test-retest) from a United States (US) assessment and

development company. Each participant was part of only one data set. That is, the data sets were completely indepen-

dent. The primary data set included 3152 applicant and incumbent frontline managers from different companies, all

assessed in English.We split the data into a training set (for training and tuning theML algorithms;N= 2522) and test

set (for creating independentML scores and comparing to the human assessor scores;N= 630).

The test-retest data set was composed of 164 participants: 50 applicants-applicants (i.e., applying for different

companies at Time 1 and Time 2) and 114 applicants-incumbents. TheACwas used for selection or development. Indi-

viduals who were tested at Time 1 for selection purposes took the AC before they joined the company. The average

Time1-Time2 testing lag was 27.48 months (SD = 20.02; 5th – 95th percentile = 8–60 months). This is a lengthy time

gap, likely resulting in true change in AC dimension scores and a lower expected correlation between administrations.

For this reason, and also because the raters who assessed candidates differed from Time 1 to Time 2, the correlation

between Time 1 and Time 2 scores is best labeled as general stability rather than a test-retest correlation.

The criterion data setwas collected in 2010 and included 157 incumbents from fourUS companies—three inmanu-

facturing andone inmedical research. These companieswere involved in various projectswith the consulting company

and hadmatched AC-performance data.

3.5 Measures

3.5.1 Assessment center

The AC simulates the work of a manager and was delivered in a virtual desktop environment. AC participants viewed

emails, videos, and company materials and then responded via email responses. Thus, the only data analyzed in this

project included written email responses. These responses were scored according to three AC dimensions: Coaching,

Influencing, and Customer Focus, where each dimension was represented by exercises measuring the different

content domains. For example, Coaching contained three exercises focused on coaching an irritated and continuously

late employee, coaching a very bright and careless employee, and writing a career development plan. Notably, each

exercise was designed to assess only one dimension. Note that we only received data for two dimensions (Coaching

and Influence) for the general stability and criterion datasets.
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16 KOENIG ET AL.

Human assessors independently rated each exercise on multiple behavior indicators, which were then summed to

create exercise scores and ranged from 0 to 16 points, where the higher the score the greater the skill demonstrated

in the exercise. However, each exercise had different maximum scores because they contained different number of

behavioral indicators. Different assessors rated each exercise, and assessors also varied across candidates.

The rating scale was: −1 (counterproductive behavior), 0 (behavior not observed), 1 (behavior observed), and 2

(excellent behavior)3. Assessors had examples for what constitutes a prototypic behavior for each of the scale points.

Therewas no pre or post consensusmeeting. To derive each exercise score, assessor ratingswithin each exercisewere

summed. Assessors regularly undergo calibration trainings, and company studies show that the average inter-rater

reliability (ICC 1, 2) for the individual exercise scores is .67 (i.e., this is the average of the ICCs (1, 2) calculated for each

exercise score), and that the single rater reliability averages .51 (ICC1, 1). It should be noted that in practice scores are

aggregated across exercises before reporting, and hence the composite reliability for dimensions (aggregated across

exercises) is higher. For the individual ratings of behavioral indicators (where there are numerous within exercise),

company studies have found that the average inter-rater agreement ranges from 75% to 85%.

3.5.2 Job performance ratings

Supervisors of AC candidates rated candidate job performance using amulti-dimensional performance appraisal form

completed for research purposes. The rating process occurred in the same range of four months as the AC testing.

Scores were aggregated into an overall performance composite. See online supplementarymaterials for more details.

3.5.3 NLP scores of AC responses

Algorithmswere developed to recreate the human assessor scores. The algorithmswere trained on the primary train-

ing sample. For all data sets (primary training, primary test, general stability, criterion),weused the samepreprocessing

and applied the same vectorization as developed in the training data set for that respective exercise.

3.5.4 Developing supervised bag of words scores

SBOW scores were created by training a gradient boosted machine (XGBoost) to translate full document termmatri-

ces into assessor ratings4. We first transformed the raw text to a full document term matrix by removing generic

stopwords, lemmatizing words with Python’s spaCy library (https://spacy.io/api/lemmatizer), lowercasing all words,

converting negative qualifying words to a common format (i.e., n’t, never, and cannot became negative_word), strip-

ping remaining punctuation, removing words appearing in less than 1% of texts, and removing white space. Some

additional cleaning was performed to remove trailing non-ASCII characters. Then,within the training dataset we used

a 10-fold randomized grid search to find the optimal XGBoost hyper-parameters5; the test set was not used for

hyper-parameter tuning and kept completely independent.

3.5.5 Contextualized bag of words scores

Contextualized BOW is similar to SBOW in that XGBoost was applied to a document termmatrix.What differs is that

for CBOW theML algorithm is applied to a curated document termmatrix based on text more likely to be relevant to

the targeted AC dimension. To help identify the most relevant text to each of the three AC dimensions, we followed

Speer’s (2020) method to generate theme dictionaries for each AC dimension. However, we used a key innovation in
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KOENIG ET AL. 17

generating an extended list of the theme vocabulary words. Specifically, we followed Li et al.’s (2021) method of using

theword2vecNLPalgorithm to generate an expanded themedictionary by supplying a few seedwords (i.e., words that

are highly relevant) for each dimension, and then identifying theoretically similar words that were used in text. More

information on this analytical process and data transformations can be found in the online supplemental materials.

After generating the theme dictionaries, for each AC dimensionwe then filtered the AC candidate text to only sen-

tences that contained one of the theme words. These sentences have a higher probability of being relevant to the

targeted dimension. This curated text was then transformed into a document term matrix based on the procedures

outlined by Speer (2020), and then XGBoost was performed to train models to reproduce the exercise-dimension

scores. This latter process was identical to that performed for the general SBOW scoring.

3.5.6 Transformer scores

Transformer models with transfer learning have become the dominant paradigm for most NLP tasks (for a review see

Min et al., 2021), and they apply well to longer texts such as those used here. Our AC texts represent open-ended,

loosely structured, long responses (average lengthof 100 to200 tokens) to semi-specific exercise questions (e.g., “How

areyougoing tomaintainX’s commitment to changing their behavior?”, “HowtogainY’s confidence inprojectZ.”). They

also have parallelly running dependencies of words/themes (discussing the importance of the behavioral problem, dis-

cussing the impact on colleagues). Due to problems of long-short termmodels (LSTM) and related models losing their

attention over longer texts (cf. P. Liu et al., 2015; Xu et al., 2016), transformers are particularly well-suited for these

data. Given the widespread adoption of deep neural network transformers, and given the nature of this AC’s text, we

used transformers for this research, andmore specifically—the popular BERT (Devlin et al., 2019).

We applied a deep, pre-trained BERT language model and customized it by updating the upper neural network

layers to account for language idiosyncrasies particular to this AC. The pre-trained BERT architecture includes an

embedding layer and 12 hidden layers, and we stacked a custom top layer used to predict AC exercise scores. We

allowed parameter updates to the upper layer parameters of the pretrained languagemodel, in line with best practice

transfer learning. Thiswas performedusing thePythonprogramming language and theHuggingFace (Wolf et al., 2019,

https://huggingface.co/)6 pretrained BERT-base model with the PyTorch library. We found the best performance for

models trained on batch sizes of 16, learning rate of .00005, and 3 epochs. Thus, we trained all BERTmodelswith these

hyperparameters. Tables with the results of the hyperparameter tuning are provided in the supplementarymaterials.

3.6 Results

Results are presented here in the primary paper and also in the online supplementary materials. The latter contain

descriptive statistics on the full (i.e., train and test) data set (Online Supplement Table B1), score intercorrelations

within eachML algorithm (Online Supplement Table B2), intercorrelations between assessor andML algorithm scores

(Online Supplement Table B3), correlations between text lengths and all assessor and ML scores (Online Supplement

B4), results from the BERT hyperparameter tuning experiments (Online Supplement Table B5), and age and gen-

der group differences for all assessor and ML scores (Online Supplement Table B6). The supplement also contains

information pertaining to important features and model tuning decisions. Here, we focus on the primary research

questions.

3.6.1 Convergence between ML scores and assessor ratings

Table 2 presents correlations between ML scores and assessor scores within the independent test set. Results

are provided for individual exercises and also for each AC dimension, which aggregated exercise scores and are
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18 KOENIG ET AL.

TABLE 2 ML algorithms scoring results.

Dimension Exercise

Supervised BOW Contextualized BOW Transformer

corr M SD corr M SD corr M SD

Coaching .67 12.24 2.70 .65 12.19 2.54 .71 12.93 3.22

Exercise 1 .54 5.58 1.35 .49 5.51 1.35 .62 5.93 1.56

Exercise 2 .64 4.89 1.58 .61 4.90 1.46 .64 5.13 1.79

Exercise 3 .51 1.77 .48 .43 1.78 .55 .55 1.88 .73

Influence .62 9.22 2.35 .62 9.20 2.29 .67 9.88 3.01

Exercise 4 .51 3.99 1.19 .54 3.98 1.11 .58 4.29 1.42

Exercise 5 .67 2.04 1.01 .65 2.04 .99 .73 2.22 1.29

Exercise 6 .48 3.19 1.03 .46 3.18 1.03 .57 3.37 1.31

Customer Focus .65 6.19 1.37 .58 6.25 1.41 .68 6.40 1.82

Exercise 7 .54 2.95 .87 .48 3.00 .83 .60 3.13 1.08

Exercise 8 .57 3.24 .80 .52 3.25 .94 .64 3.26 1.12

Average Dimension Score .65 9.22 2.14 .62 9.21 2.08 .69 9.74 2.68

Average Exercise Score .56 3.46 1.04 .52 3.46 1.03 .62 3.65 1.29

Note. All correlations are p < .01. N= 630 selected at random from the calibration data set (N= 3152). The dimension scores

were a sum of all exercises that measured that dimension.

therefore more reliable. As seen, scores from each NLP scoring method exhibited large correlations with aligned

assessor dimension scores (SBOW = .65, CBOW = .62, transformer = .69). However, transformer scores exhibited

more favorable convergencewith assessor scores, with an average correlation of .69, and this value being significantly

larger than SBOW (Steiger z = 2.30, p < .05) and CBOW (Steiger z = 3.53, p < .01). The average transformer corre-

lation of .69 is in line with typical AC reliability coefficients when correlating scores from two raters (Lievens, 2009).

This is also very similar to other applied NLP tasks in the organizational sciences. For example, M. C. Campion et al.

(2016) found an average convergence of .64 for individual competencies when scoring achievement records. When

compared to the reliability of a single AC assessor for a single exercise within this study (ICC 1,1= .51), the observed

correlation between transformer scores and aligned exercise scores (r= .62) provides further support for the psycho-

metric properties of the transformer scores. This correlation is higher than the reliability for a single human rater, and

if the reliability of human raters were higher in this AC, it is likely the trained transformer scores would have achieved

even higher levels of convergence, given the attenuating effect of unreliability. Overall, the NLP algorithms exhibited

acceptable correlations with assessor scores.

We also extracted the most important features driving the SBOW and CBOW scores. Appendix A in the online

supplementarymaterials presents the25most importantN-gramsdriving thepredictions for theeight exercises. After

a brief content review performed by the same raters who generated the seed words for the three AC dimensions, the

consensus was that both algorithms were driven by similar language, although it seemed that the CBOW list included

more contextualization to the exercise stimulus andmore psychologically meaningful words.

3.6.2 Inter-correlations

Tables B2 and B3 in the online supplementary materials provide the inter-correlations between the exercise scores

produced by the three ML algorithms and the assessor scores. Assessor and NLP scores exhibited similar patterns

of inter-correlations, with slightly higher correlations between exercise scores for the NLP algorithms. The aver-

age monotrait heteromethod (correlation between exercise scores within dimension, for example, exercises 1–3
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KOENIG ET AL. 19

TABLE 3 General stability of theML scores.

ACDimension

ScoringMethod Coaching Influence

Assessor Scores .34 .30

Supervised BOWScores .60 .46

Contextualized BOWScores .57 .47

Transformer Scores .69 .54

AverageML Score .62 .49

Note. All correlations are p< .01.N= 164. AC= assessment center.

for the Coaching dimension) and discriminant correlations (i.e., between exercise scores representing different AC

dimensions) were .23 and .23 for assessor ratings, whereas they were .33 and .31 for NLP scores. Thus, the asses-

sor scores and the NLP scores exhibited minimal differences between monotrait heteromethod and discriminant

correlations. The NLP scores simply reproduced this assessor pattern, though with slightly higher intercorrelations

overall.

3.6.3 General stability of scores

Table 3 presents the correlations between Time 1 and Time 2 administrations for the assessor scores and ML dimen-

sion scores. As expected, given that respondent skillsmay naturally change and therewas a long delay between testing

administrations (∼27 months), these correlations were low. The average correlation for assessor scores was just .32.

Interestingly, we found that all ML algorithms outperformed the assessor scores in terms of stability correlations

(Steiger z= 4.13, p < .01). On average, the NLP scores had a stability correlation of .56, with transformer scores once

again displaying larger correlations (r= .62).

3.6.4 Criterion-related validity

Table4presents the validity coefficients for the assessor scores and the threeMLalgorithmic scores in their prediction

of job performance ratings. As seen, assessor scores had a moderate validity of .16 for Coaching and .19 for Influ-

ence. Validity coefficients for the ML scores were higher, averaging .26 for Coaching and .23 for Influence7. Validity

coefficients were generally similar for the three NLPmethods.

We ran separate multiple regressions to establish the incremental validity of ML-scores over the assessors scores

in the criterion data set. In each regression model the assessor scores were included as the first predictor and the

ML-generated scores (SBOW, CBOW, or transformer respectively) as the second predictor, and overall performance

was the criterion variable. Results of the regressions are also presented in Table 3. As seen, the NLP scores exhib-

ited stronger regression weights and explained unique variance in all comparisons but two. The best performing NLP

model—transformer—explained unique variance in all cases.

3.6.5 Response length

We found that the lengths of thewritten responseswere strongly correlatedwith the AC exercise scores. The average

correlation across all exercises was .50 with assessor scores, which reflects the need for candidates to thoroughly

address all exercise requirements to perform adequately. This is consistent with past findings that essay length
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KOENIG ET AL. 21

strongly correlates (in the .60s—.70s) with essay scores from various university entrance exams (Kobrin et al., 2011).

It should be acknowledged that response lengthwasmore strongly correlatedwith theNLP scores thanwith assessor

scores. For example, the BERT scores correlated on average .74with response length. Thus, NLP-based scoring seems

to favor texts that are longer, and which more thoroughly address all the demands of the exercises. Overall given the

complexity of solving the interpersonal and business challenges posed to participants in the AC stimulus, we believe

that response length reflects not just verbosity but dimension-relevant content and skill by candidates.

3.7 Discussion

This research explored the viability of automatically scoring AC data usingML.Working with a large, operational, and

text-rich AC dataset, we compared the psychometric properties of the derived ML scores to human assessor ratings

and found several noteworthy results.

First, transformer scores exhibited superior psychometric evidence than the other NLP methods. Although the

BOW-based methods exhibited generally favorable psychometric evidence, even small improvements in validity are

meaningful in high-stakes setting. If researchers andpractitioners are considering applyingNLP to automatically score

ACs, we therefore suggest they consider using transformermodels, given the superiority of transformer scores in this

study, their widespread use in other NLP tasks (e.g., Min et al., 2021), and the ability to apply transformer models on

smaller datasets via transfer learning (Wolf et al., 2019).

Likewise, it is worth considering why SBOW outperformed CBOW. We wouldn’t expect CBOW to outperform

SBOW in terms of convergent correlations because SBOW has larger document term matrices. By not filtering text,

SBOWcanuse all of anAC candidates’ text in reproducing human judgments, andmodernMLalgorithms like XGBoost

will naturally identify the word phrases that should receive the most weight. In comparison, CBOW may have been

harmed by excluding text that potentially could have been useful. This could have occurred if there was any impreci-

sion when identifying dictionary words that filtered text, and it is also possible that some of the surrounding text that

was removed via CBOWwas in fact relevant to the construct at hand. Either way, BERT more effectively handles the

goal of CBOW, which is to provide a more sophisticated representation of text when trying to predict ground truth

scores.

Second, the transformer scores exhibited strong convergence with human assessor scores (.69), higher general

stability than assessor scores, and explained unique variance in job performance ratings above and beyond assessor

scores. The strong convergence is particularly favorable and is similar or higher than other efforts in the organiza-

tional sciences to automatically score text-based assessments using NLP (e.g., M. C. Campion et al., 2016; Hickman

et al., 2021). It is also in line with inter-rater reliability of human-to-human AC ratings (Lievens, 2009). The value of

.69 suggests that NLP and assessor scores share overlap, and given this, companies may benefit from leveraging NLP

scoring into their AC assessment process. Thismight be especially useful whenmultiple human assessors rate eachAC

candidate, and the NLP scorer might then replace one of the humans as amethod to save costs.

However, beyond the simple cost savings to usingNLP to automatically scoreAC responses, the results suggest that

the derived NLP scores captured consistent and meaningful variance. There are likely several reasons for this. Most

notably, humans are prone to inconsistencywhenevaluating targets;with a great deal of informationpresentedduring

the AC, it is cognitively challenging for humans to thoroughly consider all information and weight it consistently for

every AC candidate (cf. Zedeck, 1986). On the other hand, the NLP algorithm evaluates and then scores all text for all

candidates in the exact sameway. This likely contributed toNLP scores that correlated higherwith human ratings than

human ratings correlated with each other. NLP scores will not differ based on assessor mood or inattention. Although

automated algorithms will likely have deficiencies in judgment and may not outperform human assessors in all cases,

the resulting standardization ofML algorithms is a major benefit.
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22 KOENIG ET AL.

3.7.1 Limitations

There are several limitations to this research. First, validity is a unitarian concept (Binning & Barrett, 1989), and the

ML scores exhibited evidence of validity according to multiple sources (convergence with assessor scores, reliability,

correlations with job performance ratings). Nonetheless, some of the results do raise questions about the variance

being captured by the ML algorithm. It was notable that the ML scores exhibited higher reliability estimates and

higher criterion-related validity than the assessor scores. It is unclear exactly what language style the NLP algorithms

detected that accounted for consistency (i.e., correlations of scores over time) and substantive prediction of future

job performance. It is unclear whether the gains in validity were due to capturing some unique, substantive language

factor or whether the gains were primarily because of the standardization ofML-based scoring. This is a foundational

question for the use ofML for scoring ACs and one that further research should address.

The sample sizes for the general stability sample and the criterion-related validity sample were also both small.

Although this is one of the first studies to test the operational validity of NLP-scored ACs, larger samples would

lend more confidence in findings. Additionally, there were issues with the reliability estimates, in that the time

between AC administrations was very large and different assessors rated the same candidates between testing times.

Future research would ideally examine the test-retest reliability of AC scores using a shorter interval between test

administrations and holding the assessors constant across the AC candidates.

Finally, it may be worthwhile to investigate the necessary sample sizes required to train ML scores from AC

responses. Our training dataset was rather large, and many companies may not possess large enough databases to

train reliable ML models. Future research should investigate just how large the training data needs to be to obtain

acceptable psychometric properties for the derivedML scores.

3.7.2 Additional implications

In conclusion, we discuss some implications about the interpretability of the ML scores (and particularly the

Transformer scores) and howML scoring can be practically used in ACs.

BERT takes into consideration the context of text and howwords/topics/themes relate to one another. From a high

level, transformer AC scores capture AC candidate mastery of the exercise as a whole and the quality of candidate

reasoning when responding to it. Although transformers are likely to produce scores with superior psychometrics (in

comparison to BOW-basedmethods), one of the downsides to transformer models is a lack of transparency in what is

ultimately causing scores to be high or low. With BOW, researchers can at least examine how specific word phrases

relate to the target scores andapplymethods such as partial dependencyplots to examinehowchanges inwordphrase

usage influencemodel predictions. There is no easyway to do thiswith BERT solutions. That said, if hiringmanagers or

otherHRprofessionalswished tobetter understandwhat drives scoring, providing themwith examples of texts scored

very low and very high by themodel may be insightful in gaining an understanding. There probably isn’t a one-size-fits

all approach in this regard, but inspection of several narratives and their subsequent NLP scores could inform end-

users of what’s driving scoring. Nonetheless, the diminished interpretability of transformer scoring has its drawbacks,

and organizations, may be willing to sacrifice the modest gains in validity of using a more complex ML algorithm for

the easier interpretation afforded by other methods. Additionally, we find it important to reiterate that the inputs to

the transformer models are themselves work-related.WithML solutions, it is important to control what variables are

ultimately included as predictor features, therefore ensuring thatML scoring is not allowingwork-irrelevant variables

to impact derived scores.

Second, we would like to provide some guidance on how this automated scoring approach might differ across dif-

ferent AC designs. Within this study, each exercise was designed to assess only one dimension. When ACs exercises

measure more than one dimension though, the transformer scoring approach used here could still be applied in a sim-

ilar manner. Assuming the SME ratings are reliable and accurately reflect the targeted constructs, numerous BERT
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KOENIG ET AL. 23

models could be formedwithin each exercise, or one for each dimension in that exercise. Likewise, it would be possible

to train a sharedBERT languagemodel using all ACexercise text and applymultiple dimension-specific output heads to

predict each of the exercise dimension scores. That said, it is worth noting that the quality of the derived scores would

depend upon the quality of SME ratings. There is a long and contentious history surrounding the construct validity of

AC ratings (e.g., Lievens, 2009). In brief and in relation to this point, it is common for different dimensions to exhibit

large correlations with one another within exercise. Thus, any ML-based score would likely recreate this trend, and it

would therefore be important to ensure that the quality of SME judgments is acceptable before embarking upon any

ML-based scoring.

4 STUDY 3: USING ARTIFICIAL INTELLIGENCE TO MAKE BETTER PRE-HIRE
ASSESSMENTS8

The modern hiring process is being transformed by the rapid integration of deep learning and artificial intelligence

(AI). The impetus behind this paradigm shift lies in the potential of deep learning’s analytical prowess to enhance the

efficiency and efficacy of hiring decisions. The promise of leveraging open-ended applicant text data collected dur-

ing pre-hire assessments is particularly enticing to hiring managers as a tool for further optimizing hiring outcomes.

Although interest in this type of data is not new (for example, see the literature on constructed response tests from

the early 2000s; Arthur Jr et al., 2002; Edwards &Arthur Jr, 2007), having human raters score thousands of responses

is an expensive and time-consuming process (M. C. Campion et al., 2016). These costs have previously limited the

practical viability of utilizing open-ended data in large-scale hiring contexts. However, recent developments in the

Computer-Assisted Text Analysis (CATA) literature (E. D. Campion & Campion, 2020) suggest that computers may be

able to produce ratings similar to human ratings (M. C. Campion et al., 2016; Hartwell et al., 2022) and may even help

predict employee performance and turnover (Sajjadiani et al., 2019).

The excitement surrounding this new technology is palpable, but its widespread adoption has led to AI implemen-

tations in hiring contexts advancing faster in some cases than the corresponding research. Unfortunately, concerns

over test security have confined some of themost significant advancements in AI selection techniques to isolated and

secretive development silos, which limits their broader visibility and impact. To fix this, we need amore open dialogue

regarding the challenges and opportunities of using AI in staffing contexts among researchers and practitioners. In

the present paper, we contribute to this conversation by detailing the development, implementation, and evaluation

of a real-world application of deep learning as a supplement to an existing test battery. By presenting an in-depth look

at the methods, procedures, and challenges of using deep learning in practice, we hope this research can serve as a

realistic illustration of how organizations are applying these tools in the wild.

In particular, our efforts were organized around two broad research goals. First, deep learning’s viability in hiring

contexts is largely contingent on the model’s ability to reliably reproduce scores provided by human raters (Hartwell

et al., 2022). Therefore, building on recent work byM. C. Campion et al. (2016), we sought to evaluate whether a deep

learning model could consistently approximate human evaluations of candidate responses in a large-scale selection

context using an assessment designed explicitly for this purpose.

Research question 5: Can ratings of applicant responses to open-ended questions produced by a deep

learningmodel approximate scores provided by human raters?

Second, the ultimate goal was to use these ratings to improve hiring decisions. Therefore, we sought to evaluate

the performance of deep learning ratings of applicant open-ended text responses designed to supplement an existing

selection battery. Specifically, we were interested in examining (a) the predictive validity of model ratings and (b) the

potential for adverse impact associated with including deep learning ratings in the selection battery.
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24 KOENIG ET AL.

Research question6:What is thepredictive validity of deep learning ratings of applicant open-ended text

responses?

Research question 7: To what extent do deep learning ratings of open-ended applicant responses in a

selection battery contribute to the risk of adverse impact?

4.1 Methods

4.1.1 Setting and sample

This paper describes a recent implementation of deep learning technology to supplement an existing selection system.

This system described here was designed to evaluate and select candidates for managerial positions and has been in

use since 2020. The analyses we present here describe data from over 11,000 real-world applicants. In addition, we

present analyses associatedwith a subsample of 260 supervisory ratings collected as part of a predictive validity study.

4.1.2 Selection assessment context

The manager assessment described here is an unproctored online assessment selection battery designed to simulate

the dailywork of amanager in the partner organization. An external consulting firmdeveloped customized content for

each assessment based on a thorough job analysis of the managerial role.9 The assessment begins with a realistic job

preview, which presents candidates with a broad overview of themanagerial position. Candidates are then allowed to

navigate the assessment at their own pace and in the order they choose—adesign choice intended to simulate the high

autonomy of the role. The assessment includes five distinct measures (i.e., Situational Judgment, Written Responses,

Problem Solving, Biodata, and Personality). Overall scores for the various assessment sections are weighted using a

scheme designed to maximize prediction while minimizing group differences. This selection system is designed to be

compensatory, meaning good performance on one assessment can offset poor performance on another. Performance

on the deep learning live scoring composite described below informed approximately 10% of the applicant’s overall

assessment score.

After completing the assessment, candidates are given a banded score of 1, 2, or 3 based on candidate performance

on theassessment relative toother applicants. Scoring is normedso that approximately a thirdof all candidates fall into

each of the three bands. Hiringmanagers are given access to each candidate’s score in the formof banded competency

ratings and summaries of their respective strengths andweaknesses for use inmaking hiring decisions.Developmental

feedback reports are also generated for each candidate based on their assessment responses.

4.1.3 Open-ended prompts

During the assessment, three open-ended prompts are given to all applicants describing real-world scenarios a new

Managerwill encounter. The first question presents a scenario inwhich competition amongmanagers is causing inter-

nal communication issues. The candidate is asked to describe, using 25 characters or more, how they would address

these concerns and why they believe their ideas will be effective. The mean response length (in total words) to Ques-

tion 1was 77.21 (SD=47.33,max=653). The second question presents concerns regarding trends in the employment

lifecycle (e.g., hiring, retention, or training) and asks candidates how they would address these trends and why they

believe their ideas will be effective. The mean response length (in total words) to Question 2 was 86.40 (SD = 53.21,

max = 662). The third question deals with employee motivation and asks candidates to provide some words to help

inspire their team. Themean response length (in total words) to Question 3was 101.37 (SD= 50.99, max= 734).10
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4.1.4 Competency development and human ratings

With the free response items in hand, our next task was training a group of human raters to evaluate a subsam-

ple of candidate responses. A multi-step process was used to determine the scoring scales for each competency the

human evaluators were asked to rate. First, SMEs from the organization reviewed the questions along with candi-

date responses and provided insight intowhat differentiated good responses from bad responses. Based on this input,

we developed themes (i.e., competencies) for each question and confirmed these themes with organizational SMEs

in a follow-up session. A scoring rubric was created for each theme, scales for each item were established, and SMEs

further confirmed their content relevance. Online Supplement C provides details on the scale-point development pro-

cess and the specific benchmarks human raters used to evaluate each competency. Aftermultiple calibration sessions,

trained raters evaluated 500–1,000 candidate responses on each theme.11

4.1.5 Deep learning integration

To enable comparisons between human raters and the deep learning algorithm, candidate answers to the open-ended

promptswere also scoredusing adeep learning algorithm trainedon the samesampleof applicant responses. Thedeep

learningmodel data comprised raw text providedby the applicants in response to theopen-endedprompts. Thesedata

werepreprocessed to remove specific namedentities. Locations, people, andorganizationswere replacedwith generic

tokens to avoid potential biases associated with particular entities from these categories using the open-source soft-

ware spaCy (Honnibal et al., 2020). For instance, the nameof a person (e.g., Tammy)would be replacedwith [PERS], and

the name of a real-world organization would be replaced with [ORG]).12 Once approximately 1000 candidates com-

pleted the assessment, the deep learningmodel was taskedwith reproducing subject-matter-expert ratings of various

job-relevant competencies for the open-ended items. These items were originally research-only, meaning data was

collected but not scored, with formal scoring to be implemented later.

The model described here was trained on an AWS spot instance with Python and PyTorch using an Nvidia V100

16GB GPU. In this implementation of deep learning, we used the RoBERTa architecture (Y. Liu et al., 2019), which is

itself a specific implementation of the transformer architecture developed by Vaswani et al. (2017) coupled with a

custommulti-task regression head (described below). One advantage of the transformer architecture is that it allows

the model to look at the entirety of a body of text while focusing the attention mechanism on important words and

ignoring irrelevant words. For instance, the word “bank” could refer either to a financial institution or the edge of a

river. The attentionmechanism tells themodel to focus on otherwords in the sentence like “loan” or “river” and ignore

words like “I,” “the,” or “went” to establish which bank the sentence is referring to from the context of the surrounding

words.

The highest-level building block in deep learning is called a layer, which receives information from themodel, trans-

forms it, outputs it, and passes the new values as inputs to the next layer. In this context, multi-task learning refers to

a neural network process whereby a model shares the unique predictions of hidden layers between tasks while also

using several task-specific output layers (Ruder, 2017). Consistentwith the RoBERTa architecture’s specifications, our

language model consists of an embedding layer, 12 transformer encoding layers that convert inputs from prior layers

into more simplistic representations, and a fully connected layer linked to all previous nodes within the neural net-

work’s hidden layers. The text input into the model is split into individual words/numbers/punctuations or subwords

(i.e., tokenized) before passing this input to the embedding layer. The embedding layer converts each token to a vec-

tor representation, and these embeddings are passed through the encoders and fully connected layers to produce

RoBERTa’s characteristic 768-dimensional representation of the text. The custom multi-task regression head takes

the languagemodel’s data inputs and processes them through a dropout layer and two fully connected layers to make

ten predictions.

 17446570, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/peps.12608, W

iley O
nline L

ibrary on [09/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



26 KOENIG ET AL.

One challenge we faced when implementing the multi-task regression head was that our dataset did not always

have all possible labels for each set of responses. We solved this problem by dividing the data into ten different

datasets corresponding to each label and dropping the test responses that did not have the label in the correspond-

ing dataset. However, this meant that the language model for each label would only get exposed to the text subset

that contained the corresponding label. These transformer models can be cost prohibitive if they are in constantly in

memory in a production environment. As such, we determined that it made the most sense to develop onemodel that

accurately makes ten predictions rather than ten models that each accurately makes one. To do this, we used a Mean

Square Error associatedwithmodel predictions that set the new error gradient to zero formissing labels when passed

backward through themodelwhile still adjusting the languagemodel according to thebackpropagatederror. This solu-

tion enabled us to overcome the problem of sparse training data by using and putting into production one model that

canmake predictions on ten different competencies across three unique responses.13

To maximize model generalizability, we implemented a k-fold cross-validation strategy. K-fold cross-validation

involves slicing the data into “k-folds,” each representing an even cut of available data. For example, in a dataset with

a sample size of 1000 and a five-fold cross-validation, 800 responses and labels would be used to train the algorithm,

and 200 responses would be withheld for model evaluation. This process would be repeated with each set of 200

responses used as the holdout set, while the remaining 800 would be used as the training set. This results in five dis-

tinct models within each fold, making separate predictions on each holdout set within the folds. The predictions made

on those holdout sets are aggregated across the entire data set to evaluate the performance of the algorithmic scoring

methods.14 The k-foldmethodology described here allowedus to testmultiple hyperparameters15 without overfitting

the data. We used an early stopping methodology during k-folds and our final model training. Therefore, the number

of epochs was not included as a specific hyperparameter.

4.1.6 Competency retention decisions and development of live scoring composite

Our final task was evaluating each competency’s performance individually to help us decide which competencies (if

any) should factor into the applicants’ overall assessment score during live scoring. Two criteria were used to make

this decision. First was the competency’s response base rate. A low base response rate for a competency meant that

the candidates were not articulating a behavior frequently enough in response to the question prompt to facilitate

reliable evaluation. Attempting to score competencies with low base rates could lead to interpretational issues within

the broader selection context. On this criteria, our analyses revealed that text content relevant to the Future Planning

and Follow-Up competencies was provided by less than 10% of candidates. As a result, these two competencies were

omitted from live scoring.

The second retention criterion was the observed convergence between the deep learning model and SME rat-

ings. As shown in Table 5, the Encourage/Motivate and Teamwork competencies produced correlations between the

deep learning ratings and the human raters below the .60 target threshold described by M. C. Campion et al. (2016).

Therefore, they were marked for removal (more details on these analyses can be found in the RQ1 results section

below).

This left us with six competencies that met our inclusion criteria; three for Question 1, two for Question 2, and

only one for Question 3 (Appreciation/Recognition). Given constraints on applicant time and the organization’s desire

for shorter assessments, retained items needed to be robust enough to justify their inclusion. Due to the poor perfor-

mance of two of the three competencies associatedwithQuestion 3, this itemwas removed (alongwith the otherwise

successful Appreciation/Recognition competency). Thus, scores for the following five competencieswere retained for

subsequent analyses:

Influence and communication–Theability toenactpoweroverothers andencourageopenconversations

among teammembers
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Collaboration – The ability to work with a team to create solutions, share strategies, and build morale

Embracing competition – The ability to encourage healthy competition and reframe competition in a

positive and constructive manner

Foster internal talent – The ability to foster deep applicant pools of internal talent

Creative recruitment – The ability to generate novel ideas for recruiting new applicants

Of these five competencies, the partner organization selected two—Collaboration and Foster Internal Talent—for

the live scoring of applicant data based on (a) the strength of their relationships with job performance and (b) their

minimal contribution to adverse impact relative to the other competencies. As such, a live scoring composite was cre-

atedby averaging the standardized ratings of the two competencies for each applicant. Performanceon this composite

informed approximately 10% of the applicant’s overall assessment score.16

4.2 Results

4.2.1 Descriptive statistics

Means, standard deviations, and intercorrelations among the five deep learning competency scores are displayed in

Table 6. The average absolute intercorrelation among the deep learning competency scores was .17, suggesting that

each construct was reasonably independent. This value was slightly higher than the average absolute intercorrelation

among the SME-rated competency scores of .11, which is typical for deep learning implementations.

4.2.2 Research question 5: Convergence between deep learning ratings and human
ratings

As noted above, our first overarching research question was whether deep learning could be used in a large-scale

selection context to quickly and reliably approximate human evaluations of candidate responses. As shown in Table 5,

the deep learning model ratings correlated with human ratings at a rate greater than M. C. Campion et al.’s (2016)

target threshold of .60 for two of the three questions and eight of the ten competencies; in some cases as high as .92.

These findings support the notion that deep learning can be used to supplement or potentially even replace human

evaluations of applicant open-ended text responses within the hiring process.

Further evidence of this convergence is presented in Table 6. Specifically, we found that the general pattern of

intercorrelations among the deep learning competencies was similar to that of the human ratings. For instance,

competencies with high intercorrelations in the human ratings (e.g., Creative recruitment) also showed higher inter-

correlations for the deep learning ratings. Conversely, competencieswith lower intercorrelations in the human ratings

(e.g., Foster internal talent) also showed lower intercorrelations in the deep learning ratings. In fact, the only statisti-

cally significant negative intercorrelation among the human ratings (the correlation between Fostering internal talent

and Creative recruitment) was also negative for the deep learning ratings. This general convergence in the direction

and magnitude of intercorrelations offers further support for the model’s ability to replicate the structure of human

ratings.

Finally, we conducted exploratory analyses examining the convergent and discriminant validity of the deep learn-

ing model ratings and other assessment content. These analyses served two purposes. First, they facilitated a better

understanding of the broader psychological constructs represented within the deep learning model’s evaluations of

the applicant’s responses to open-ended prompts. As shown in Table 7, the largest deep learning correlations with

other assessment content were with the problem-solving simulation scores. This relationship suggests there is a
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TABLE 7 Subgroup differences in deeplearning (DL) competency scores and the impact of deep learning
assessments on groupmean differences in cumulative assessment z-scores and hiring ratios.

Effect sizes (d-scores) for majority group (top) vs. subgroup (bottom) comparisons on DL competencies

Gender W−B W−H W−A

Males= 7,513 White= 6,886 White= 6,886 White= 6,886

Females= 3,670 Black= 1,846 Hispanic= 1,452 Asian= 351

Influence and Communicate −.07 .37 .17 .27

Collaboration .00 .11 .15 .27

Embracing Competition .20 .18 .19 .33

Foster Internal Talent .16 .00 −.05 −.08

Creative Recruitment −.04 .35 .32 .38

Live Scoring Composite .10 .08 .07 .15

Groupmean (standard deviations) differences in cumulative assessment z−score w/ and w/o DL competencies

Group Full assessment Deep learning removed Deep learning replaced

Females (n= 3,670) vs.

males

−.09 (1.07) −.08 (1.07) −.10 (1.07)

White (n= 6,866) vs. others .06 (.97) .06 (.97) .08 (.95)

Black (n= 1,846) vs. others −.14 (1.02) −.13 (1.02) −.17 (1.02)

Hispanic (n= 1,452) vs.

others

.00 (1.03) .02 (1.03) .00 (1.02)

Asian (n= 351) vs. others −.19 (1.22) −.17 (1.23) −.20 (1.21)

Estimated hiring ratios relative to with and without DL competencies

Group and cut score Full assessment Deep learning removed Deep learning replaced

Females (n= 3,670) vs. males

20% cut score .93 .95 .92

50% cut score .91 .93 .91

80% cut score .93 .94 .90

Black (n= 1,846) vs. white

20% cut score .93 .94 .92

50% cut score .85 .86 .81

80% cut score .75 .76 .67

Hispanic (n= 1,452) vs. white

20% cut score .96 .97 .95

50% cut score .97 .98 .94

80% cut score 1.02 1.07 .95

Asian (n= 351) vs. white

20% cut score .90 .92 .89

50% cut score .91 .93 .91

80% cut score .92 1.00 .91

Note.The firstmodel (i.e., full assessment) presents values associatedwith the full live assessment, including the deep learning

competencies. The second model (i.e., deep learning removed) presents values where the deep learning score weighting is

reduced to 0 and allocated equally among the remaining assessments. The third model (i.e., deep learning replaced) presents

values where the deep learning score weighting is reallocated to cognitive assessments.
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32 KOENIG ET AL.

clear cognitive element to what is being measured by the deep learning model. The situational judgment simulation

also evidenced correlations as high as .20 with some of the deep learning competencies. This finding also makes

some conceptual sense as both the situational judgment simulation and open-ended responses assess some form of

interpersonal skill.

Second, these analyses provided another opportunity to explore similarities and differences between the model

and human ratings regarding how they related to other assessment content. Here again, Table 7 supports a general

pattern of convergence among the correlations produced by the model and human raters with other assessment con-

tent. In summary, our analyses corroborate assertions by M. C. Campion et al. (2016) that algorithmic evaluations of

open-ended content can be used to approximate scores assigned by human raters.

4.2.3 Research question 6: Criterion-related validity

To examine the criterion-related validity of deep learning scores (ResearchQuestion 6), we collected 260 supervisory

ratings as part of an initial predictive validation study. The criteria used in this study comprised 24 items measur-

ing job-relevant competencies, two single-item ratings, and two control items asking whether the supervisor knew

the manager’s performance and whether they were confident in the accuracy of their ratings, which were used to

ensure their supervisors had enough information to make these evaluations. The competencies were measured with

two items each and aggregated into anOverall Rating Score (α= .96).

As shown in Table 6, our analyses suggest that correlations between the deep learning competency scores and

supervisor evaluations of subsequent manager performance were small, albeit non-zero, and positive in most cases.

Specifically, small, positive correlations between the deep learning competency scores and performance criteria were

observed for the Collaboration, Embracing Competition, and Foster Internal Talent ratings. Slightly larger relation-

ships also emerged between the Live Scoring Composite and the various performance criteria ratings. In contrast, the

Influence andCommunication andCreative Recruitment deep learning competency scores produced a less consistent

pattern of relationships with performance criteria with a mix of positive and negative effects. Incremental predictive

validities for competency scores were similarly modest, particularly when evaluated next to the situational judgment

and problem-solving assessment, with which several competencies shared conceptual similarities. Furthermore, it is

important to note that none of the correlations between competency scores and supervisor evaluations achieved sta-

tistical significance. Hence, regarding Research Question 6, only some of the observed correlations some support to

the criterion-related validity of deep learning competency ratings. However, even the largest of these relationships

tended to be pretty small (r= .07 uncorrected and r= .11 corrected).

Nevertheless, it is important to understand that small effects alone do not necessarily rule out the potential prac-

tical utility of using these scores to make hiring decisions. In hiring contexts of this magnitude, even small increases

in predictive capabilities can make a big difference in organizational outcomes. For instance, as shown in Online Sup-

plement Table C3, we found that the proportion of applicants rated by their managers as “Above Average” on each of

the performance criteria was consistently higher (3.5%–12.1%) among employees with live scoring composite ratings

in the top 50% of applicants compared to employees with live scoring composite ratings in the bottom 50% of appli-

cants. From the organization’s perspective, this potential increase in employee performance was enough to justify the

decision to include these open-ended items as a supplement to themore comprehensive hiring system.

4.2.4 Research question 7: Adverse impact

Another practically important consideration in high-stakes selection contexts is the risk of adverse impact associated

with using the tool to help make hiring decisions. Given the clear cognitive element of model scores discussed above,

we were particularly interested in the possibility of subgroup differences associated with the deep learning model

ratings.
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KOENIG ET AL. 33

Table 7 presents analyses using a large sample of over 11,000 real-world candidates who reported demographic

information that (a) documents subgroup differences (in d-scores) for the five deep learning competencies individually

and (b) explores the consequences of including (and omitting) deep learning scores on overall groupmean assessment

scores and hiring ratios.

As shown in Table 7, small gender differences emerged in the various deep learning competency scores. In some

cases, these differences slightly favoredwomen (e.g., Influence andCommunication&CreativeRecruitment), whereas

others slightly favored men (Embracing Competition and Foster Internal Talent). Small racial differences favoring

White candidates were reported as well, with d-scores that fell within ranges typically associated with other proce-

dures thought to have low adverse impact, such as structured interviews and biodata inventories (Ployhart & Holtz,

2008).Moreover, the risk of adverse impact associatedwith deep learning scoreswas not greater than that associated

with other assessments already being used. In this assessment context, adverse impact is monitored quarterly, and

the weights of scores are adjusted if the risk of adverse impact is identified. Given the relatively small contribution of

the deep learning competencies to group differences and adverse impact documented in Table 7, we concluded that

the potential risk of hiring discrimination associated with using the deep learning competencies as part of the overall

scoring composite wasminimal.

4.3 Discussion

This paper contributes to research on using deep learning in hiring contexts by describing and evaluating the develop-

ment of a modern implementation of a deep learning model within a real-world hiring process specifically designed to

automate the evaluation of open-ended applicant responses as a supplement to an existing test battery. In this section,

we present the key lessonswe learned from this implementation and discuss the implications of our findings for future

researchers and practitioners working in themachine-learning space.

One of the most exciting implications of the present study is the pronounced support we found for M. C. Campion

et al.’s (2016) claims that computer scoring algorithms can reliably reproducehumanevaluationof applicant responses

to open-ended prompts. This is no small feat, as human language and communication contain a level of complexity and

nuance traditionally thought to be beyond the reach of AI. Encouragingly, our data contribute to a growing body of

research (e.g., Hartwell et al., 2022),making a strong case that the algorithms can accomplish this taskwhile producing

only minimal adverse impact risk.

Using AI rather than human raters can help practitioners overcome barriers to using open-ended text responses

in pre-hire assessments by reducing the time needed to collect, process, and score applicant data. As M. C. Campion

et al. (2016) noted, these savings can be substantial. For instance, in the present effort, it took approximately 250

human hours across three raters to score just 500 applicants, not counting the time raters spent in scale orientation

and training. It would take the same trained human evaluators three and a half months working around the clock to

score the data collected by this organization in just a single month. Even with access to a large team of human raters,

substantial delays in hiring decisionswould be inevitable, resulting in the loss of qualified applicants (Ryan et al., 2000).

In contrast, the deep learning model produces its ratings nearly instantly, producing human-like competency ratings

without the time and resources required of human evaluators.

Establishing a link between human and deep learning evaluations also helps address another charge commonly

leveledagainst deep learning: themodel’s interpretability.Our findingsdemonstrate thatRoBERTacanevaluatewords

and phrases in open-ended text much like a human would. Establishing this linkage allows deep learning to be used

for decisionswhere human ratings are already accepted (seeMondragon, in press). Furthermore, the algorithm allows

specificwords andphrases used in evaluation tobe identified andexplored. As such, explaining themodel’s functioning

to executives, candidates, and potentially even litigants is more straightforward than in other implementations where

model criteria aremore ambiguous.

 17446570, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/peps.12608, W

iley O
nline L

ibrary on [09/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



34 KOENIG ET AL.

Nevertheless, this enthusiasm should be tempered by our finding that model scores underperformed in predict-

ing supervisor evaluations of future job performance. Unfortunately, our data did not facilitate an examination of the

predictive validity of human ratings with job performance. As a result, we cannot say for certain whether these small

effects were a result of the deep learning model itself or limitations of the underlying human evaluations upon which

the model was trained. Future research should attempt to validate human and deep learning rating side by side using

sufficiently powered predictive validity studies to facilitate richer comparisons of the predictive nuances associated

with human versus deep learning ratings.

It is also possible that the characteristics of theopen-response items themselveswere limiting thepredictive poten-

tial of the deep-learning ratings. For instance, competencies associated with Question 3 generally performed worse

than those associated with Questions 1 and 2, which could result from greater subjectivity in prompted responses

associated with this item. In the past, organizations have not been incentivized to invest in developing highly reliable

and construct valid evaluations of open-ended text due to concerns over cost. By removing these barriers, deep learn-

ing can open up a renewed interest in research on best practices for constructing and validating open-ended questions

for use in pre-hire assessments.

Our data also revealed a pattern of strong, positive correlations betweenword count and competency scores. One

possible interpretation of this finding is that the deep learningmodel over-valuedwordy responses. Althoughpossible,

an applicant’s ability and willingness to provide thoughtful and detailed descriptions may also speak to their general

quality as a candidate. Indeed, the nature of open-ended response scoring necessarily places some responsibility to

offer enough information to draw favorable conclusions about the candidate. This is especially true for the Influ-

ence and Communication competency, where response length was strongly correlated with response performance.

A supervisor who responds to questions with only a few words is unlikely to communicate well with their subordi-

nates, which aligns with our finding that this competency had the strongest correlation with word count for both the

deep learning (r = .61) and human ratings (r = .53). Nevertheless, if other deep learning competencies produced cor-

relations this closely related to word count, we would likely want to re-examine the items’ construction. In summary,

our position is that correlation with response length can certainly be a nuisance factor when evaluating open-ended

responses. However, there is also a case to be made that substantive information in these relationships can benefit

hiring decisions.

Moving forward, we hope that deep learning’s ability to reproduce and ultimately scale human evaluations helps

spark a renewed scientific focus on best practices for gathering and scoring valid and reliable assessments of applicant

responses to open-ended prompts. In the meantime, it is important to emphasize that as a method, deep learning

should remain conceptually separate from the constructs the model is designed to evaluate (Arthur & Villado, 2008).

Positive relationships between model ratings and other assessment content might allow deep learning to substitute

for a longer assessment that taps the same underlying constructs (e.g., the Problem-Solving Assessment). Until then,

our results suggest that deep learning should only be used as a supplement to, not a replacement for, a well-validated

assessment.

5 STUDY 4: DEVELOPING AND VALIDATING AUTOMATED SCORING FOR AN
AUDIO CONSTRUCTED RESPONSE SIMULATION17

Simulations are widely used in personnel selection to measure knowledge, skills, abilities, and other characteristics

(KSAOs). Meta-analyses demonstrate simulation criterion-related validity across a range of fidelity, from low (e.g., sit-

uational judgement tests, or SJTs; McDaniel et al., 2007) to high (e.g., ACs; Arthur Jr et al., 2003). Research suggests

that higher validity is associated with increased response fidelity, such that constructed audio responses yield higher

validity than constructedwritten ormultiple-choice responses (Funke & Schuler, 1998). However, scaling constructed

response tohigh-volumepersonnel selection settingshashistorically beencost-prohibitivegiven its relianceonhuman

scoring. Though recent technological advances show promise for automated, computer-based scoring of written con-

structed responses (e.g., M. C. Campion et al., 2016), no published research to date has assessed the feasibility of
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KOENIG ET AL. 35

TABLE 8 Human interrater reliability results (full data set, including train, test, and validation) and convergence
between computer and human scores (validation data sets).

KSAO

Human

ICC(1) Human ICC(2,k)

Computer Rwith

Human Labels

(Test)

Computer Rwith

Human Labels

(Validation)

Active Listening .28 .94 .75 .74

Assertive Communication .21 .91 .68 .66

Oral Communication .27 .94 .73 .70

Cooperation & Coordination .25 .93 .77 .71

Interpersonal Adaptability .29 .94 .73 .68

Social Influence .29 .94 .76 .67

DecisionMaking .27 .94 .78 .74

Average of KSAOs .82 .76

Note.N= 1709 for Human ICC.N= 512 for Computer Rwith Human Labels (Test and Validation Data).

automated scoring of audio-based constructed responses in a personnel selection context (see [author name[s] to be

added, this issue, for an exception). Our study addresses this gap by evaluating whether automatic speech recognition

(ASR) andNLP-based computer scoring can replicateKSAO-basedhuman scoring of audio responses, the predictionof

job performance using computer scores, and the sub-group differences for computer scores across key demographic

characteristics (i.e., gender and race/ethnicity).

We took aKSAO-oriented approach to developNLPmodels as opposed to a “black box” approachwhereNLPmod-

els are trained to directly predict job performance. We believe this approach offers stronger job relatedness, model

explainability, and legal defensibility. We use findings and learnings from this research to identify areas in need of

future research and to address practical scaling constraints.

In this study, we developed a simulation to measure interpersonal and decision-making skills (see skills in Table 8)

because they are critical KSAOs across professional roles, are not measured well without more resource intensive

procedures (e.g., interviews), and can be effectively evaluated via simulations (e.g., Clevenger et al., 2001). Incum-

bents were instructed to record audio responses to job-relevant situational judgment prompts, allowing for the direct

expression of targeted KSAObehaviors. As audio-based response formats are also found in one-way behavioral inter-

views and ACs, the methods and results described in our study may be applicable to these assessment methods.

Audio-based response formats provide several important advantages despite the greater complexity (e.g., scaling con-

straints, transcription errors, etc.) relative to written responses. Audio responses offer improved response fidelity,

potentially contributing to stronger validity (Funke & Schuler, 1998), are associated with lower subgroup differences

than written constructed responses, presumably due to the lower cognitive demands (Lievens et al., 2019), and can

be more effectively delivered via mobile devices. Mobile engagement may improve accessibility to demographic seg-

ments such as younger applicants, women, Hispanics, and African Americans (Arthur et al., 2014). Finally, audio-based

constructed responses could result in shorter assessment time18, which is expected to positively impact candidates’

assessment experience.

5.1 Method and results

5.1.1 Sample and data collection

We used a concurrent validation approach to score and validate the simulation. We recruited a diverse sample of

incumbents across different roles and demographic backgrounds. The sample was composed of interns and recently

graduated incumbents hired into US-based professional roles (e.g., software engineers, research scientists, product
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36 KOENIG ET AL.

managers) at a large multinational technology company. Of the 9940 incumbents invited, 3174 (32% response rate)

completed the simulation (26% female; 67%Asian, 23%White, 3%Hispanic, 3%TwoorMoreRaces, 2%AfricanAmer-

ican). Range restriction on the KSAOs measures were expected as participants were recently hired using a battery

of validated assessments as well as structured interviews. The majority of participants indicated they spent most of

their life residing in the United States (57%), followed by China (18%), India (16%), and Canada (6%). The participants

voluntarily participated in the research and were assured confidentiality. Participants were instructed to respond as

if they were applying for a role similar to their current one and to record their audio responses in English. Partici-

pants who completed the study were awarded with an electronic icon on their internal company profile indicating

their contribution to assessment research.

Stimuli and behaviorally anchored rating scales. The stimuli were drafted by four SMEs using detailed job analysis

data, KSAOdefinitions, and related literature. All SMEswere Ph.D.’s in industrial-organizational (I-O) psychologywith

at least three years of post-graduation assessment development and validation experience. SMEs also drafted repre-

sentative descriptions of good and poor responses to each scenario, which were used to create behaviorally anchored

rating scales (BARS). A separate set of six SMEswith similar backgrounds and expertise reviewed the stimuli andBARS

to confirm their job relatedness and ability to prompt targeted KSAO behaviors. The content development process

resulted in a simulation with five interconnected, job-relevant scenarios, where each scenario elicits behaviors rel-

evant to one or more of the targeted KSAOs. The scenarios provide a realistic, day-in-the-life experience where test

takers interactwith colleagues across diverse roles, backgrounds, expertise, and behavioral styles to collaborate, solve

problems, and work toward team goals. The Online Supplement: Stimuli Construction provides greater details on the

stimuli construction process, twomodified sample items, and content validation results.

Participants were told to record a 1–2 min response (maximum = 5 min) to each of the five scenarios. The record-

ing length was set based on I-O SME judgement and supported by MTurk pilot research where the average recorded

response was 34 s (SD = 31 s). Participants were allowed up to three attempts to respond to each scenario. The last

response recordedwas scored (average recording length= 43 s, SD= 28 s)19.

5.1.2 Criterion measures

Managers were asked to complete a job performance survey of study participants. Managers were provided with

background information, performance rating guidance, and tips on how to avoid rating biases (e.g., recency effects).

Managers were asked to indicate their level of confidence in their rating accuracy. We removed cases where man-

agers reported low confidence.Overall job performancewasmeasured using four questionswith a 5-point Likert-type

scale (1 = Strongly Disagree; 5 = Strongly Agree; Cronbach’s alpha = .94); a modified sample item is “[Name] demon-

strates the required technical skills for the role.” We also included domain-specific job performance dimensions

tapping into KSAOs that are more closely associated with the KSAOs targeted in the simulation (see Funke & Schuler,

1998). We used eleven questions focused on interpersonal and decision-making competencies with a six-point scale

(1 =Well Below Average; 6 = Best I’ve Ever Seen; Cronbach’s alpha = .92); a modified sample item is “[Name] makes

objective and well-informed decisions.” All the job performance survey items were developed by the organization’s

I-O psychologists, validated against other performance criteria (e.g., objective indicators of performance, time-to-

promotion, annual review ratings), and used in prior validation studies. We aggregated the scores to form overall and

domain-specific job performance scores.

5.1.3 Human scoring

Human SMEs scored audio responses on the targeted KSAOs and we used these human scores to train NLP scoring

models. We recruited 40 I-O psychologists to serve as SME raters. We use the term “human scores” to refer to the
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KOENIG ET AL. 37

ratings provided by the human SMEs. SMEs in this study completed at least one year of I-O psychology graduate train-

ing, and completed a graduate course in psychometric assessment or had at least five years of professional experience

in the individual and/or leadership assessment domain. SMEs attended a3-hour training session covering details about

the research project, the rating task, and how to avoid rater biases (e.g., central tendency). SMEs then went through

a 4-week calibration process where each week they completed ratings of audio responses, calibrated their ratings as

a group, and compared those to “true” benchmark scores provided by three of the organization’s internal assessment

experts20.

For the scoring task, the SMEs listened to the entire set of responses from each participant (each set = five

responses to the five scenarios) before providing KSAO scores. A maximum of six randomly selected SMEs (out of the

overall pool of 40 SMEs) rated each participant’s responses according to the BARS. We estimated ICC(1), which rep-

resents interrater reliability if a single SMEwas randomly selected from the group of SMEs. In addition, we estimated

ICC(2, k) to understand the interrater reliabilitywhen usingmeans froma sample of SMEs drawn froma larger popula-

tion.As seen inTable8, ICC(1) ranged from .21 to .29 for Interpersonal Skillsandwas .27 forDecision-Making Skills. ICC(2,

k) ranged from .91 to .94 for Interpersonal Skills and was .94 forDecision-Making Skills. These results suggest high levels

of interrater reliability and are similar to those found in research based onwritten constructed responses (M. C. Cam-

pion et al., 2016). Table D1 in the Online Supplement includes detailed descriptive statistics and interrater reliability

results for human scores. We restricted our sample to cases that were scored by at least five SMEs (N = 1709) based

onmeasures of reliability.21 KSAO scores were calculated by taking themean of the individual human SME scores.

5.1.4 Automated scoring

The automated scoring process consists of two parts. First, we used Amazon Transcribe ASR product to transcribe

recorded audio responses to text. Second, we trained BERTNLPmodels to generate computer scores to replicate the

(mean) human scores of the KSAOs.

We used transcribed text as input for model training as opposed to audio because research has shown that speech

audio contains acoustic features that are strongly associated with demographic status (e.g., gender; Buyukyilmaz &

Cibikdiken, 2016). Though human raters labeled responses by listening to respondent audio, raters received explicit

training on how to minimize potential bias caused by demographic signals that may be present in audio files. By using

text as the input for scoring, the model is unable to directly model the impact of accent, pitch, or other demographic

signals. If audio signals were used as direct input features to ML scoring models, the models may learn superficial

patterns of correlation between audio features and scores that may increase algorithmic sub-group differences.

As transcription accuracy can impact subsequent NLP model prediction accuracy, we empirically evaluated ASR

performance using the Word Error Rate (WER) between expert human transcriptions and the ASR model output.22

LowerWER scores indicatemore accurate transcriptions.We used an expert human transcription service tomanually

transcribe 1200 mins of audio responses from a stratified random sample of 467 participants. Expert human tran-

scribers also labeled each audio file for accent origin and strength and flagged potential issues with background noise,

audio quality, or volume.

After ASR model adjustments (for additional details, see the Online Supplement: Automatic Speech Recognition

Modelling), the ASR model showed less than .25 WER (a common accuracy benchmark; Peng et al., 2020) for each

demographic group, an averageWER of .15 for all participants, and less than a .10 difference across demographic sub-

groups (See Table D2 in the Online Supplement). Females had a lower WER than males (.11 vs. .16). We also found

some small differences with respect to human transcribers’ attribution of accent location where theWERwas .11 for

American-accentedEnglish, .21 forChinese-accentedEnglish, and .18 for Indian-accentedEnglish. Taken together, our

results suggest that the ASR model achieved viable accuracy levels within demographic groups and small differences

across demographic groups.
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38 KOENIG ET AL.

Using the automatic transcriptions as the model input, we then trained NLP models to generate computer scores

to replicate average human scores of the KSAOs. We used BERT as the base NLP model because it is the foundation

for many state-of-the-art NLP task benchmarks (Devlin et al., 2019)23. As each participant’s audio input consists of

five responses, we used all five transcripts as inputs to theNLPmodel. TheNLPmodel then predicted the seven KSAO

scores simultaneously. For additional details on the NLP model architecture and training procedure, see the Online

Supplement D (NLPModel Development).

A train (N = 1196; 70%), test (N = 256; 15%), and validation (N = 256; 15%) data set was built using a stratified

randomsampling approach. The training setwasused to train theNLPmodel, the test setwasused to select thehighest

performingNLPmodels, and the validation setwas used to evaluate the performance of the selectedmodels. The data

set splits ensure an NLPmodel is likely to generalize to unseen data not included inmodel training.

To improve performance and lower sub-group differences, we used an ensemble of the top two performing NLP

models. Model ensembles are a common technique in ML whereby the combination of model predictions shows bet-

ter performance than any of the individual models alone (Caruana et al., 2004). The first model in the ensemble was

trained using Demographic Parity Loss (DPL) to reduce potential subgroup differences (Agarwal et al., 2019), while

the secondmodel did not use this training adjustment. DPL adds a constraint during training to bias themodel toward

KSAO predictions that are not correlated with demographic status (additional details in Online Supplement: NLP

Model Experiment). Our results showed that including DPL slightly reduced subgroup differences in ethnicity with

minimal effects on NLP model accuracy (average computer-human score correlation loss = .04; see Table D8 in the

Online Supplement: NLP Model Experiment). These results appear to be somewhat inconsistent with research sug-

gesting that fairness-aware adjustments, like DPL, must create some amount of prediction bias or degradation (see

study 1 in Zhang et al. 2023; this issue). For our research, we suspect that the observation of minimal accuracy loss

may be due to the elimination of construct-irrelevant biases present for some raters, the relatively small sample sizes

for most minority groups, and/or the relatively small subgroup differences in the human KSAO scores used for model

training. Table D1 in theOnline Supplement presents themodel score descriptive statistics.

5.1.5 Validity of the NLP model

We compared computer and human scores in the test and validation data sets to evaluate the convergent and dis-

criminant validity of the NLP model. Table D3 in the Online Supplement present the detailed results on R, R2, Mean

Absolute Error (MAE; average absolute difference between the computer and human scores), and MSE24. Higher R

and R2, as well as lower MAE and MSE, indicate higher model accuracy. For interpersonal skills, R ranged from .66 to

.74, R2 ranged from .40 to .55, MAE ranged from .31 to .35, and MSE ranged from .14 to .20. For decision-making

skills, R was .74, R2 was .54, MAE was .33, and MSE was .17. These results suggest high levels model of convergence

with human KSAO scores. The human and computer score correlations a comparable to M. C. Campion et al. (2016)

results. Further, computer scores correlated with human scores better than individual human scores correlated with

each other (ICC1s were below .3, Table 8), which was possible in part because the reliability of the mean of the raters

was very high (ICC2swere above .9, Table 8).

We observed strong collinearity in the human KSAO scores, and computer scoring exacerbated this problem (see

Table D5 in the Online Supplement). We suspect this may be an accurate reflection of the collinearity of these KSAOs

in the workplace and could be driven by the fact that the simulation scenarios were designed to tap into multiple

KSAOs simultaneously. However, “oral communication” seems to be distinct from the other constructs in both human

and computer scoring and exhibited stronger convergent and discriminant validity both within and between scoring

methods. Based on an anonymous reviewer’s suggestion, we explored deriving underlying factors representing the

KSAOs and using factor scores for NLP modeling (see Online Supplement: Factor-based NLP Model). Although the

factor-basedNLPmodel reduced collinearity in the computerKSAOscores, it resulted inoverallworse convergent and
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KOENIG ET AL. 39

TABLE 9 Correlations between human scores, computer scores, and job performance (test and validation data
sets).

KSAO

Overall Job

Performance

(H)

Overall Job

Performance

(C)

Domain-

Specific Job

Performance

(H)

Domain-

Specific Job

Performance

(C)

Active Listening .07 (.20) .08 (.19) .08 (.14) .11 (.17)

Assertive Communication .12* (.16) .14* (.25) .12* (.10) .18** (.24)

Cooperation &Coordination .14* (.29) .08 (.19) .15* (.25) .11 (.17)

Social Influence .10 (.23) .08 (.19) .10 (.17) .11 (.17)

Interpersonal Adaptability .10 (.19) .12* (.23) .11 (.14) .15* (.21)

Oral Communication .16** (.26) .17** (.25) .17** (.23) .21*** (.25)

DecisionMaking .10 (.21) .10 (.21) .11 (.16) .13* (.19)

Overall Score (Average of KSAOs) .13* (.25) .12* (.23) .14*(.20) .15*(.21)

Response Length (Word Count) −.01 (.01) −.01 (.01) .02(.01) .02(.01)

Note. H: Human Scores. C: Computer Scores. N = 290. Range restriction and unreliability corrected correlations in

parentheses.*p< .05. **p< .01. ***p< .001 (2-tailed test).

criterion-related validities as well as subgroup differences. Therefore, we decided to retain the original KSAO-based

NLPmodel.

Criterion-related validity was examined using correlations between computer scores and manager rated job per-

formance in the test and validation data sets (Table 9 and Table D5 in the Online Supplement). The correlations with

overall job performance ranged from .08 to .17 for interpersonal skills, was .10 for decision-making skills, and was .12

for an overall computer score computed by averaging the KSAO scores. The correlations with domain-specific perfor-

mance ranged from .11 to .21 for interpersonal skills,was .13 for decision-making skills, and was .15 an overall computer

score. Given the incumbent sample had gone through rigorous selection processes, we estimated the correlations cor-

recting for range restriction (Case 3 in Thorndike, 1949) as well as criterion unreliability (using interrater reliability

of .52; Viswesvaran et al., 1996). In the test and validation data sets, the corrected correlations with overall job per-

formance ranged from .19 to .25 for interpersonal skills, was .21 for decision-making skills, and was .23 for an overall

computer score. The correlations with domain-specific performance ranged from .17 to .25 for interpersonal skills, was

.19 for decision-making skills, and was .21 for an overall computer score.

We conducted hierarchical regression analyses to estimate the incremental validity of the computer scored sim-

ulation above and beyond the existing selection assessments using the test and validation data sets. Results show

the computer scored simulation explained and additional 2.8% of variance (R2 from .024 to .052, p = .05, N = 13525).

While the absolute effect size is small, the relative gain from the baseline suggests the practical value of including the

simulation.

5.1.6 Subgroup differences in human and computer scores

Table 10 shows our subgroup analysis of human and computer scores. As seen, there are small to medium size differ-

ences between race/ethnic groups and small differences for males-females. Specifically, Black-White results showed

no substantive differences for either human or computer scores (Cohen’s d = .09 and .04, respectively), Hispanic-

White results showed small human and computer score differences (Cohen’s d = .24 and .16, respectively, in favor

of Hispanic), and the differences were at parity for Two or More Races-White for both human and computer scores

(Cohen’s d = -.01 and .00, respectively). We did find medium Asian-White differences for both human and computer
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40 KOENIG ET AL.

TABLE 10 Subgroup differences in human and computer scores (full data set, including train, test, and validation).

N
Human Score

Mean

Computer Score

Mean

Human Score

Cohen’s d

Computer Score

Cohen’s d

Race White (Reference) 356 3.40 3.42 – –

Asian 1047 3.20 3.24 −.43 −.50

Black/African American 29 3.45 3.44 .09 .04

Hispanic/Latino 52 3.52 3.48 .24 .16

Two orMore Races 43 3.40 3.42 -.02 -.00

Gender Male (Reference) 1138 3.23 3.26 – –

Female 401 3.40 3.40 .37 .36

scores (Cohen’s d = -.43 and -.50, respectively). Given 61% of the Asian sample reported spending most of their life

living outside English speaking countries (vs. 2% for White), we tested and found that the Asian-White differences

can be partially explained by language and/or cultural differences: Asians from non-English speaking countries had

lower scores than Whites (Cohen’s d = -.56 and -.68 for human and computer scores, respectively), whereas Asians

from English speaking countries showed small differences fromWhites (Cohen’s d= -.20 and -.20 for human and com-

puter scores, respectively). Females had higher scores than males for both human and computer scores (.37 and .36,

respectively). Given the observed subgroup differences, we testedwhether the computer was “biased” viamoderated

regressions (Cleary, 1968). Results showedno significant intercept or slopedifferencesbetweenmajority andminority

subgroups, suggesting no predictive bias26.

5.2 Discussion

We assessed the effectiveness of ML and NLP for automatically transcribing and scoring audio-based constructed

responses to a simulation. We found that computer scores trained to replicate human scoring on KSAOs predicted

job performance, provided incremental predictive validity, showed similar subgroup (i.e., gender and race/ethnicity)

differences to human scores and no predictive bias. We highlight practical implications and directions for future

research.

First, we showed that ASR achieves viable accuracy levels across demographic groups (race, gender, and country of

origin). This suggests that ASR can be used to scale assessments based on audio responses (e.g., one-way behavioral

interviews, ACs) in high-volume personnel selection contexts. That said, 1.5%–3% of the responses in our sample suf-

fered from severe audio issues (e.g., high background noise, poor audio quality, and low volume), posing challenges in

bothhuman scoring andASR.Wewere able to discover lowquality audio using confidence scores producedby theASR

system; such metrics could be helpful in production to monitor audio quality in real time and introduce interventions

that would allow candidates to take corrective actions while taking the assessment.

Second, our uncorrected criterion validity was lower than desired. Our estimates after range restriction and cri-

terion unreliability corrections should more accurately reflect the relationships between the simulation and job

performance. However, another potential explanation is that we focused on fairly narrow and specific KSAOs (i.e.,

interpersonal and decision-making skills) in this simulation, and that broadening the KSAO coverage of the simulation

may increase observed validitywith job performance. Finally, while the absolute effect size is small, the relative gain in

prediction suggests this simulationmay still offer practical value in large-scale applications.

We recognize that there are several practical challenges, such as the initial investment in human scoring and the

expansion of NLPmodel development across different stimuli, thatmight hinder an organization’s ability to scale such

assessment solutions. Future research should focus on improving human scoring quality while controlling cost (e.g.,
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KOENIG ET AL. 41

reduce the number of raters), as well as exploring stimuli-agnostic NLP models (i.e., models that can automatically

score KSAOs based on varying simulation content), to help scale automated scoring of audio constructed response

assessments (see study 1).

6 STUDY 5: PRACTICAL ML ALGORITHMS FOR SELECTION ASSESSMENT
SCORING: A USE CASE REPORT ON MULTI-OUTCOME PREDICTION27

ML techniques have drawn substantial attention from both organizational researchers and practitioners given their

great promise in different aspects (e.g., increasing prediction). The approaches organizational practitioners take are

slightly different from researchers. One difference is that researchers often invest a large amount of time and effort to

maximize the predictability ofMLmodels in predicting one outcome variable (e.g., Sajjadiani et al., 2019; Speer, 2018),

whereas practitioners may prefer one model that achieves acceptable performance in predicting multiple outcomes

and requires a reasonable level of computation power and development time. In this study, we provide an example of

an organization’s application of ML techniques to achieve multiple goals. These three goals are listed in the order of

importance: (1) to develop aML-based scoring algorithm that leverages pre-employment assessment data to enhance

the predictability of turnover of the job candidates and their in-role performance (i.e., work productivity and quality)

after/if they are hired; (2) to improve the generalizability of the assessment scoring so that it can predictmultiple busi-

ness outcomes (e.g., worker turnover, productivity, quality) simultaneously and across diverse candidate samples (in

terms of countries of origin); and (3) to achieve better assessment efficiency by selecting items that contribute bet-

ter to the prediction, thereby shortening the assessment length for future candidates. We also conducted an adverse

impact analysis on theML scoring approach and compare the results to those from the previous non-MLmethod.

6.1 Methods

6.1.1 Data overview

The organization is an international e-commerce company headquartered in China. The selection procedure concerns

warehouse job placements for order fulfillment workers globally (with a projected impact of over 50,000 individu-

als yearly). The job candidates and incumbents for the position are from both Eastern and Western countries (e.g.,

China, Indonesia, theUnited States, Australia). The scoring algorithmdevelopedwas to be implemented on the refined

assessment system to yield a predicted overall performance score for each candidate, and candidates scoring higher

than the 50th percentile (i.e., a selection ratio typical ofwarehouse positions alike, according to the organization)were

to be selected into the jobs.

The current application was built based on assessment data from 86,253 warehouse workers globally (63% male;

around 60% frommainland China, around another 30% from Southeast Asia, and the rest fromNorth America, Ocea-

nia, and the European Union) who had taken the assessment as applicants in 2018 or 2019 (with the system operating

in their residing country’s official or common language). Following a prospective validation design, these workers’ job

performance for threemonths after starting the jobwas also acquired (including objectivework productivity and quality,

as well as the turnover record at the end of their first month28).

The pre-employment assessment included two major components: a high-fidelity task simulation and a series of

work history items. For the simulation, each candidate was assigned and evaluated by three separate modules (order

fulfillment, cargo loading, and inventory stocking).Within eachmodule, therewere separate tasks of various complex-

ity levels.All simulationswere conducted inanaugmented reality spacewhere candidatesperformthe tasksmimicking

the actual work. All captured information from the simulation was recorded and digitally transcribed as simulation

performance markers. These performance markers (see more detailed descriptions below) were then used as

predictors in the scoringmodel development.
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42 KOENIG ET AL.

For the order fulfillment module, candidates went through a few tasks of fulfilling orders (each involving multiple

products) by following the order details provided (which can be repeatedly reviewed; an example detail given is the

number of units for each product). Counts for each product filled, the number of times order details were reviewed,

time taken from checking order details to action (averaged across checks), and total time spent on each task were

recorded.

For the cargo loading module, another set of tasks was involved. In each task, candidates were presented with a

handful of packaged objects (only dimensional information was available) in disarray and limited cargo space to move

the packages around to fit into the cargo space. The counts of moves made were recorded for each task (the difficulty

of each task was determined by the optimal number of moves).

For the inventory stocking module, several tasks were involved (each with multiple products). For each task, candi-

dates were provided with various products where product descriptions, weights, and categories are known, as well as

a shelf space with some known products in place and various spots open. Instructional rules such as howmuchweight

each shelf level can hold, what specific categories of products can or cannot be placed together, and general rules of

what categories shouldonly beplacedona certain shelf levelwere givenandavailable for repeated reviewing. For each

task, the final location of each product, total moves taken to and between shelf spots, total time taken to complete the

task, and the total number of times rules were reviewedwere recorded.

The second component of the pre-employment assessment was the work history items. These were biodata-like

Likert-type self-report questions about the candidates’ past work experiences, covering perspectives such as comfort

level with technology, past job natures, past turnovers, past manual labor experiences, and past performance ratings.

Responses to these questions were also used as predictors in model development.

Key job outcomes were also included in the data: turnover (objective binary responses for turnover within one

month of hire), overall productivity (a continuous variable based on units processed per unit time), and overall qual-

ity (a continuous variable based on defects per unit opportunity). Note that productivity and quality outcomes were

calculated as scores adjusted for the specific expectations of the person (e.g., a discount for workers that are less

tenured29).

Due to datamanagement difficulties in organizing and integrating records acrossmultiple regions and databases, a

high degree of missingness in outcome variables was present: roughly 50%–70% on turnover, productivity, or quality.

Such a level of missingness, though shocking to most researchers, is representative of the messiness of worker pop-

ulation data management within the organization. It was therefore decided for the current project that models were

built separately for each outcome prediction first and then stacked together using subjectiveweights (i.e., determined

by the organization) to yield an overall predictive score. This way, the model development process was based on the

maximized sample for each outcome, using all available data containing values for the target outcome variables.

6.1.2 Development

All analyses were conducted using R version 3.6.3 (R Core Team, 2020) within the caret package environment (version

6.0-86; Kuhn, 2008).

6.1.3 Assessment shortening

Both content reviewing and predictor selection by Lasso regression were used for assessment shortening. For con-

tent reviewing, redundancies among assessment items were examined (for future item deletion to aid the goal of

test shortening); several work history items (rated on Likert scales) were removed due to a high level of content

similarity (e.g., different wordings of intention to leave). Additionally, Lasso regression would automatically select the

best-performing predictors duringmodel building.
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KOENIG ET AL. 43

6.1.4 Data preprocessing

For each outcome-focused data subset, a 9:1 split was applied to create a training set and a testing set (i.e., 90% of

the data was used to train and fine-tune the models, and 10% of the data was treated as a hold-out sample to exam-

ine model true performance). For the turnover-focused data, the split was set to be stratified (i.e., the training and

testing sets have practically equal class distributions). All preprocessing was evaluated based on the training set and

then applied to the testing set (N_turnover_train = 16,646, N_turnover_test = 2,073; N_productivity_train = 32,258,

N_productivity_test= 3,584; N_quality_train= 28,578, N_quality_test= 3,173). Descriptive statistics along with data

visualizations informed a sequence of preprocessing decisions (as suggested by Kumar, 2018): (1) all missing data on

the predictorswere imputed using themedian (as opposed to themean, for its robustness against outlier influences)—

for the company’s scalability considerations, we did not adoptmore complex imputationmethods30; (2) all categorical

predictors were dummy-coded; (3) all predictors with zero or near-zero variances (i.e., when more than 95% of the

values in a given variable are identical) were removed, as they would not provide enough information in differentiat-

ing outcomes—about 20% of predictors (after dummy coding) were removed, most of which were the locationmakers

of positions practically no one had placed products on; (4) in each pair of predictors correlating above .95 with each

other, the onewith the largest average correlationwith all other predictorswas removed, as theywould not contribute

to incremental gains in predicting outcomes—about a dozen of predictors removed, most of which were markers that

can be approximated by some other markers; (5) for all skewed numeric variables, we applied Yeo-Johnson transfor-

mation (i.e., a power transform that is natural log-based but accommodates zero and negative values; Yeo & Johnson,

2000); (6) to deal with multicollinearity (i.e., linearly dependent variables), we removed all linear combinations among

the predictors (i.e., remove the predictor if it is equal to the sum of scalar multiples of other predictors), as they would

contribute to spurious results in linear models—a handful of predictors were removed; and (7) due to the fact that

turnover had a class imbalance issue (i.e., where turnover happened in less than 25%of cases, whichmay result in sub-

optimal class prediction performance), a mixed over- and under-sampling technique (Chawla et al., 2002) was applied

to the data to yield a balanced training set. Note that all predictors were also standardized before being entered into

themodels. The sequence of preprocessing steps resulted in a training set of 130 predictors for furthermodel building

(including the number of simulation actions, simulation reaction time, simulation task time, scaled simulation scores,

dummy-coded simulation task object locations, and scaled work history ratings).

6.1.5 Outcome examination

We examined whether the three outcome variables (i.e., turnover, productivity, and quality) can be more effectively

reflected through linkages or combinations (i.e., linear combinations, item correlations, composites, etc.). Results indi-

cated that turnover is negatively correlated with productivity or quality (r = -.14) and that productivity and quality

are not significantly correlated. Creating combinations of outcomes was, therefore, not justifiable and would not

likely yield sufficient modeling advantages, further supporting our decision to build models separately to maximize

prediction for each outcome.

6.1.6 Classification algorithms

Wetested the following classificationmodels to predictwhether individualwarehouseworker turnoverwould happen

(i.e., binary outcome): (1) logistic regression classifier (i.e., the “glm”method in caret) and its regularized version (Lasso;

i.e., “glmnet”), which predicts the probability of turnover occurrence by fitting data to a logit function; (2) support

vector machine (SVM) linear classifier (i.e., “svmLinear”), which finds the line that splits data between the two differ-

ently classified groups such that the distances from the closest point in each of the two groups will be farthest away;
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44 KOENIG ET AL.

(3) Random Forest classifier (i.e., “rf”), which ensembles decision trees and chooses the classification having the most

“votes” from individual decision trees; and (4) boosted classifier, which ensembles learning algorithms that combine

the prediction of several base estimators in order to improve robustness over a single estimator—specifically, we

examined eXtreme Gradient Boosting (XGBoost) algorithms (i.e., “xgbTree”) as they have been consistently shown to

be themost robust boostingmethod (Chen &Guestrin, 2016; Gómez-Ríos et al., 2017).

6.1.7 Regression algorithms

We tested the following regression models to predict productivity and quality (as they are continuous): (1) lin-

ear regression and its regularized version (Lasso), which expresses a linear relationship between the predictors

and the outcome; (2) SVM linear regressor, which is an extension from SVM linear classification with analogous

interpretations; (3) Random Forest regressor, which is an extension from Random Forest classification with anal-

ogous interpretations; and (4) boosted regressor, which is analogous to boosted classification but for continuous

outcomes—we focused on the XGBoost algorithms.

6.1.8 Algorithm stacking

For simultaneous prediction of both turnover and performance outcomes, we examined various manual weighting

combinations for the three outcomes and stacked together the separate classification and regression prediction

models to create overall assessment scores31.

Classification model evaluations. In the context of binary turnover classifications, we used the Receiver Operating

Curve (ROC) metric for model evaluation. ROC shows the tradeoff between sensitivity (i.e., the proportion of cor-

rectly identified positive cases; “true positives”) and one-minus-specificity (i.e., the proportion of incorrectly identified

negative cases; “false positives”). Given that it is a more comprehensive metric that takes into consideration the bal-

ance between different components contributing to accuracy, we used ROC (and specifically the area under the curve,

AUC) as ourmainmetric when selecting the final deployment model.

6.1.9 Regression model evaluations

In the context of regressionmodels (i.e., for productivity and quality predictions), we tracked the following twometrics

to evaluate the model(s): (1) coefficient of determination (R2), which provides a measure of how well the observed

outcomes are replicated by the model—a bigger R2 reflects more variance explained in the outcomes and indicates

better model performance; and (2) Root Mean Squared Error (RMSE), which displays the plausible magnitude of the

error term—a smaller RMSE indicates better model performance.

6.1.10 Generalization

AsMLmodels getmore complex, they tend to overfit the data by capturing noise and capitalizing on chance. To ensure

the model indeed captures the relationship(s) that are representative and generalizable, we used the following tech-

niques to prevent overfitting and ensure model generalizability: (1) regularization, which aims to avoid model-data

overfitting through coefficient shrinkage (i.e., the model is only as complex as it needs to be)—specifically, we adopted

the Lasso regularization method as it could simultaneously facilitate our purpose of test shortening through vari-

able selection; and (2) 10-fold cross-validation, which is a method that iteratively splits the training data into ten
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KOENIG ET AL. 45

representative folds to train themodels on nine folds and validate themodel on the other fold—this prevents reliance

on a single training set and helps producemore unbiased results.

6.2 Results

6.2.1 Classification model results for turnover prediction

In Table 11(a), we report the test set AUCs and what model hyperparameters were involved. The area under the

ROC curve indicated that all models yielded similar chance-level predictive validity (with Lasso and XGBoost models

only slightly outperforming the others). Determined by the comparable predictive performance, and considering the

assessment simplification capabilities and the complexity of potential future modifications of the algorithm in terms

of model runtime and tuning difficulties (i.e., the Lassomodel could facilitate variable selection andwould require less

time to re-run and less effort to re-tune when the algorithm needs updating upon receiving new data), we deemed

Lasso regularized logistic regression to be the best prediction model for the turnover outcome. Note that the AUCs

for all classification models were barely exceeding .50, indicating that the sensitivity and specificity of the turnover

prediction were both substandard (i.e., not strongly differentiating between true and false positives).

6.2.2 Regression model results for productivity prediction

We present in Table 11(b) the following test set information—the R2, RMSEs, what model hyperparameters were

involved, and the correlation between the predicted productivity and the true productivity. Linear regression, linear

regressionwith Lasso regularization, and linear SVM all yielded improved predictive results (compared to the existing

baseline effects, i.e., non-ML rational scoring). The R-squared and RMSE indicated that the linear methods yielded the

highest predictive performance, and the correlations between predicted and observed values are equally the highest.

Considering the tradeoffs between recovered correlation, model parsimony, and next-step ensemble complexity (i.e.,

no difference in R-squared, RMSEs, and correlations, linear regression models being more explainable and defensible

than SVMmodels, and the final models for the other two outcomes being Lasso regressionmodels), we deemed Lasso

regularized linear regression to be themost appropriate predictionmodel for the productivity outcome.

6.2.3 Regression model results for quality prediction

We present in Table 11(c) the test set R-squared, RMSEs, what model tuning was performed, and the correlation

between the predicted quality and the true quality. The R-squared indicated that Lasso predicted comparatively to

the OLS regression, Random Forest, and linear SVM methods, and RMSEs indicated that Lasso yielded the smallest

error and highest predictive correlation. Determined by the highest correlation between predicted quality and true

quality, and considering the potential difficulty (e.g., model runtime, parameter tuning) in futuremodel refinement, we

deemed Lasso regularized linear regression to be the best predictionmodel for the quality outcome.

6.2.4 Final model considerations

A final set of models was ensembled based on the chosen algorithms above. We adopted the Lasso regularized logis-

tic/linear regression as the prediction model for each outcome separately, and assigned different sets of weights for

combining theoutcomes toyield a final assessment score for each individual undereachweightingoption32. Themodel

results associated with different weighting options are shown in Table 12.
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46 KOENIG ET AL.

TABLE 11 Results for predicting turnover, productivity, and quality based on testing sets.

Model ROC Hyperparameter

Logistic regression .50 none

Lasso regularized logistic

regression

.51 alpha= 1, lambda= .1

XGBoost .51 nrounds= 100, max_depth= 6, eta= .3,

gamma= 0, colsample_bytree= 1,

min_child_weight= 1, subsample= 1

Random Forest .50 mtry= 2, ntree= 500, min.node.size= 5

SVM (linear) -C= 1 [no convergencea]

(a) Turnovermodel results (N= 2073).

Model R-squared RMSE Hyperparameter

Correlation between

predicted and observed

values

Linear regression .03 32.03 none .17

Linear regressionwith Lasso

regularization

.03 32.03 alpha= 1, lambda= .1 .17

XGBoost .02 32.78 nrounds= 100, max_depth= 6, eta= .3,

gamma= 0, colsample_bytree= 1,

min_child_weight= 1, subsample= 1

.13

Random Forest .02 32.22 mtry= 2, ntree= 500,min.node.size= 5 .14

SVM (linear) .03 32.14 C= 1 .17

(b) Productivitymodel results (N= 3584).

Model R-squared RMSE Hyperparameter

Correlation between

predicted and observed

values

Linear regression .01 68.96 none .10

Linear regressionwith Lasso

regularization

.01 68.89 alpha= 1, lambda= .1 .11

XGBoost .00 71.22 nrounds= 100, max_depth= 6, eta= .3,

gamma= 0, colsample_bytree= 1,

min_child_weight= 1, subsample= 1

.05

Random Forest .01 68.99 mtry= 2, ntree= 500,min.node.size= 5 .10

SVM (linear) .01 71.57 C= 1 .10

(c) Quality model results

(N= 3,173).

Note. In regularized regression/classification, “alpha” is a mixing percentage for combining regularization penalty methods, 1

means the regularization is full Lasso, and “lambda” is the regularization parameter. In XGBoost, “nrounds” is boosting iter-

ations, “max_depth” is maximum tree depth, “eta” is shrinkage, “gamma” is minimum loss reduction, “colsample_bytree” is

subsample ratio of columns, “min_child_weight” is the minimum sum of instance weight, and “subsample” is subsample per-

centage. In RandomForest, “mtry” is randomly selected predictors, “ntree” is the number of trees to build, and “min.node.size”

is the minimal number of samples within the terminal nodes. In SVM, “C” is cost. For more details on the algorithms, please

refer to the SupplementaryMaterials.
aWe recognize that our approach here is suboptimal because we did not delve into potential solutions (e.g., increase the

iteration numbers, and add penalizations).
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KOENIG ET AL. 47

TABLE 12 Correlations between predicted outcome scores and actual outcomes.

Turnover-Productivity-Quality weighting r with Turnover r with Productivity r withQuality

Non-ML rational scoring as the baseline −.02 .08 .03

1, 0, 0 −.09 −.03 −.01

0, 1, 0 −.03 .16 .10

0, 0, 1 −.01 .08 .16

9, .5, .5 −.10 .00 .01

8, 1, 1 −.09 .03 .04

7, 2, 1 −.08 .09 .06

6, 3, 1 −.06 .12 .07

5, 3, 2 −.06 .13 .08

4, 3, 3 −.05 .14 .10

1/3, 1/3, 1/3 −.04 .15 .10

Note. N= 86,253. The “weighting”method is manual. The “baseline” refers to the originally implemented (non-ML)model, and

the baseline correlations are between the respective rational criterion scores and the actual criteria. Rows below the baseline

are correlations between the respective weighted blends of ML-predicted outcome scores and the actual criteria. Baseline

scoring is based on composite scoring (i.e., rational scoring as determined by the organization) following traditional non-ML

approaches.

As the organization’s priority outcome to predict in its warehouse worker population is turnover, the final model

should improve turnover predictionwhilemaintaining or increasing prediction performance for productivity and qual-

ity. Theweighting option of seven-part predicted turnoverwith two-part predicted production and one-part predicted

quality was, therefore, considered for overall scoring. This model enhanced and maximized overall model prediction

compared to the rational scoring baseline (i.e., performance from the previously in-use scoring, as shown in the first

row of Table 12). The decision of choosing this weighting option over others depended on the organization’s decision

to greatly emphasize turnover prediction.

6.2.5 Comparison with the baseline in validity

Compared to the previously in-use prediction baseline (i.e., the correlations between assessment score and job out-

comes), our ensembledML predictive algorithm shows significant improvements in both outcome prediction and test

efficiency (i.e., achieving incremental correlation gain, using fewer items in the assessment). Compared to the baseline

approach, our model yielded validity coefficients (measured in Pearson’s r, with the point-biserial form for turnover

between actual turnover and the predicted scores) that improved on turnover (-.08 for ourmodel vs. -.02 for the base-

line), largely maintained on productivity (.09 for our model vs. .08 for the baseline), and increased on quality (.06 for

our model vs. .03 for the baseline).

6.2.6 Comparison with the baseline in utility

The estimated size of the order fulfillment personnel globally for the organization is around .2 million. Our model

results regarding turnover imply that implementing this new ML algorithm may potentially translate into a net cost

saving of over two million U.S. dollars annually (assuming an onboarding and training cost of $4,129 per employee

[SHRM Research, 2016])33. In addition, the improved predictions for productivity and quality could translate into
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48 KOENIG ET AL.

TABLE 13 Adverse impact analysis results.

Turnover-Productivity-Quality weighting SR_female/SR_male Cohen’s d based on predicted scores

Non-ML baseline .99 .01

7, 2, 1 .98 .24

Note. N= 86,253. SR= selection ratio.

roughly a total of .1 million unit productivity increase and close to one million unit defect decrease. This magnitude

of projected utility is considered worthy of the resources put into the model development and the foreseen cost of

implementing the new scoring algorithms.

6.2.7 Adverse impact examination

We conducted an adverse impact analysis to examine whether the ML-based selection system has any effects on

adverse impact as compared to the previous non-ML approach. We examined the four-fifth rule and calculated

Cohen’s d (see Table 13 for results and comparisons with the baselinemethod, i.e., non-ML rational scoring). The four-

fifths rule indicates evidence of adverse impact if the selection ratio of theminority group is less than four-fifths of the

selection ratio of the dominant or majority group. Cohen’s d quantifies the effect size of the difference between pre-

dicted scores of the dominant or majority group and those of the minority group. Our adverse impact analysis results

suggested that the four-fifth rule was not violated, and Cohen’s d effect sizes showed that the gender differences in

predicted scores were small34. Therefore, we conclude that adopting anML approach has no effect on adverse impact

as compared to the previous non-ML approach.

6.2.8 Model maintenance considerations

In addition, because the foundation of our prediction models is Lasso regressions, which are essentially variations

of logistic or linear regressions and relatively simple-in-nature, intuitive, and easy-to-explain, the model has high

explainability and can facilitate identifying key variables driving the predictions. With Lasso regression, further vari-

able examinations can be easily done to provide information on both the direction and magnitude of the relationship

between each predictor and the outcome. Continuous model improvement requires re-training based on new data

and examining predictor weights yielded by the model, which is easier to implement with Lasso regression models

compared to otherMLmethods.

6.3 Discussion

Through this organizational application of developing ML scoring algorithms for the selection assessment, we hope

to inform future ML assessment scoring. Firstly, we believe placing all the emphasis on the validity coefficients of ML

algorithms during their development and implementation is not sufficient. It is equally important, if not more impor-

tant, to be able to provide justifications and explanations for the results of the model, rather than just improving its

performancemetrics. Secondly, it is important to take into account multiple business outcomes when developing pre-

dictive models, rather than concentrating on just one. By maximizing and leveraging various criteria, it is possible to

achieve higher overall model efficiency and broader business impact. And thirdly, when evaluating the performance of

amodel, it is crucial to compare it with existing methods in terms of the utility of implementing the newmodel, as well

as its adverse impact ratios and effect size benchmarks.
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KOENIG ET AL. 49

Wealsoparticularlywould like tonote that because the Lasso solutionwasdeemed satisfactory in the early stageof

model development for this project, we did not explore fine-tuning for other algorithms further and went largely with

software default options. Proper hyperparameter tuning may result in other algorithms emerging as the best model.

For demonstration and to warn readers that models should ideally be tested with hyperparameter tuning, we have

performed supplementary hyperparameter tuning on the models. For instance, after fine-tuning, the most significant

improvement in performance was observed in the XGBoost and Random Forest models. For productivity prediction,

the correlation coefficient (r) increased from .13 to .18 for the XGBoost model and from .14 to .16 for the Random

Forest model. For quality prediction, the r improved from .05 to .10 for the XGBoost model35.

Additionally, andperhapsmore importantly, our results showed thatMLcan increase assessment predictability, but

the improvement might not be very large in the magnitude changes of the validity coefficients—the reason could be

that ML might only contribute marginally when the data is highly structured and following the traditional survey or

assessment format (i.e., where ML’s advantage of discovering underlying patterns may not be capitalized, as the data

already has rather clear patterns). Furthermore, to beginwith, the validity coefficients from the baselinemethodwere

not of large magnitudes, which may be reflecting several deeper issues: (1) that the selection assessment itself is of

little validity, or (2) that the measures for both the predictors and outcomes are of low quality (e.g., biodata itemsmay

be fakable andbiased, and the simulationsmayonly provide a partial—andpotentially not so differentiating—coverage

of job-relevant behaviors or characteristics), and (3) thatmoreworkmayneed tobedoneon improving the assessment

itself, all of which may be the reason for the observed low predictive validity. Nevertheless, caution should be placed

on concluding whether a small effect is meaningful to organizations, as a small effect may translate into amuch bigger

impact and utility when the application is scaled up.

7 STUDY 6: NATURALISTIC EXTRACTION OF KNOWLEDGE, SKILLS, ABILITIES AND
OTHER CHARACTERISTICS USING NLP WITH HUMAN-LEVEL PROFICIENCY36

A vital part of the hiring process is the identification of KSAOs required to complete a job. It is completed prior to

the development of recruiting and personnel selection systems (Sanchez & Levine, 2010). KSAOs are also useful for

outlining evaluation criteria during employee evaluations and for defining objectives during training and development

(Gael, 1988). As such, determining high-quality KSAOs that cover the responsibilities of the job is critical.

However, identifying KSAOs requires a great deal of manual labor and expertise. A job analysis is generally

performed by a trained industrial psychologist or a supervisor for the job. It can require creation of task lists,

interviews/questionnaires, or examinations of existing job descriptions in order to understand the duties of the job

(Drauden, 1988; McCormick et al., 1972). Once the duties are defined, it remains challenging to determine valuable

KSAOs for the job, as they are not always straightforward to infer and can require creative thinking to discover what

skills would be helpful for completing those duties (Goffin & Woycheshin, 2006). As companies grow, the process

becomesmore demanding, requiring KSAO ratings to be produced andmaintained for sometimes thousands of jobs.

In this work, we present an approach for automatically identifying KSAOs from existing job descriptions, with the

goal of alleviating the time spent by professionals on performing the task. Often these job descriptions are easier to

collect because they define concrete duties performed, while the KSAOs that would be helpful in completing those

duties are more difficult to obtain (Goffin & Woycheshin, 2006). Using state-of-the-art NLP techniques, a model can

be trained to takean input jobdescription andpredict theKSAOs that aremost relevant to the job.Wecollect adataset

of position descriptions and have annotators choose appropriate KSAOs for each position.We thenmake use of BERT

(Devlin et al., 2019), a state-of-the-art NLP model, to understand the text in the job description and automatically

predict KSAOs. Results show that our model achieves a prediction accuracy similar to that of humans.We discuss our

findings and the challenges faced in this work.

Identifying KSAOs automatically with NLP, as presented in this work, can have a substantial positive impact on

the job analysis process. We envision an AI system that can take in any document pertaining to a job detailing tasks
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50 KOENIG ET AL.

performed in that job – a job description, performance evaluations, or resumes from existing employees – and give

suggestions of KSAOs that are relevant to that job. Further, the system can make it easier to maintain KSAO lists, as

the KSAOs can be automatically refreshed whenever a job description is modified (Putka et al., 2023). Though it will

not replace traditional job analyses, this can greatly reduce the burden on professionals when creating KSAO ratings.

7.1 Theory

Hickman et al., 2020 explore methodological concerns surrounding corpus construction and vocabulary inclusion-

exclusion criteria within the pre-processing phase of NLP. Specific areas of concern are considered regarding how to

address measurement validity whenmapping research hypotheses onto applicable methods within NLP.

Recent work has also focused on the application of NLP techniques within personnel selection, recruiting, and

job analysis problem domains. Work by M. C. Campion et al., 2016 achieved construct validity within grading appli-

cant accomplishment essays based on the emulation of existing human rating data. Their work also considers the

ramifications for AI in impacting workplace diversity.

Other work explores the applicability of ML as a secondary technique for uncovering trends within large or nat-

uralistically curated data sets. Banks et al., 2019 consider the application of generative statistical models towards

identifying thematic clusters within Fortune 1000 firms’ job listings and other applicant-facing language content. A

general observation (see Liem et al., 2018, for example) is that commercial recruiting forms and applicant tracking

systems have widely been using ML methods for a number of years. However, organizational researchers have been

hesitant to apply these methods (J König et al., 2020) due to a divergence in how the respective fields focus on relia-

bility and validity of model data. Previous studies have even shown that human raters often have high variance when

rating KSAOs of positions (Van Iddekinge et al., 2005).

Putka et al. (2023), concurrently with this work, applied NLP techniques to the KSAO rating task. They collected a

corpus of 963 O*NET jobs to train a sparse partial least squares (SPLS) regression model, and they demonstrated the

validity of their machine-generated predictions by showing strong correlation and agreement with SME ratings. Their

work used more classical methods (SPLS with lemmatization and stopwords/rare words removed), while this work

uses more recent NLPmethods (BERT) on Army civilian job descriptions.

Our work follows a recent focus on work analysis field methods that useMLmethods to extract KSAO labels from

task lists (Goffin &Woycheshin, 2006). We borrow the relaxed focus on construct validity featured in M. C. Campion

et al. (2016), where the focus is on reconstructing human-produced data from performing a similar task that the AI

algorithm is asked to perform. Rather than adopting the typical hypothesis-testing paradigm, we instead perform an

exploratory study into the ability of NLPmodels to identify KSAOs from text descriptions.

7.2 Method

Collecting labeled data is a vital step in training AI models. First, we describe how we collected job descriptions and

annotated them with their corresponding KSAOs. We then describe our method for training and evaluating a model

for predicting KSAOs from job descriptions.

7.2.1 Data and sample

Job descriptions were obtained by scraping the U.S. Army FASCLASS website. The website contains over 200k job

listings for Army civilian positions across the U.S. The listings are externally-facing position descriptions detailing the

major duties, responsibilities, and supervisory relationships of a position37.We filter this dataset to includeonlywhite-
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KOENIG ET AL. 51

collar jobs based on the classification provided by the U.S. Office of PersonnelManagement.38 Specifically, we include

only jobs with an occupational series number between 0000 and 2299. The types of jobs are highly diverse, includ-

ing finance, human resources, nursing, engineering, physics, and more. An average of five job descriptions from each

of the 23 occupational groups were selected to be annotated, resulting in a corpus of 124 job descriptions. Figure

F1 in the Online Supplement presents the number of annotated jobs in each occupational group. FASCLASS data

adheres to the United States Office of Personnel Management’s diversity and inclusion policies which ensure job list-

ing data, to the largest extent possible, work towards diverse and inclusive workforce selection outcomes. Only the

“Position Duties” section of each Army job descriptionwas extracted. The FASCLASSwebsite states “Generally, major

duties are those that occupy a significant portion of the employee’s time. They should be only those duties currently

assigned, observable, identified with the position purpose and organization, and expected to continue or recur on a

regular basis.” This corresponds to the “Duties and Tasks” section found in most job descriptions (Morgeson et al.,

2019).

A KSAO ontology was selected from prior work by the US Army Talent Management group (KSBs; knowledge,

skills, and behaviors—see Saling & Do, 2020) that reflected the requirements of Army officer positions. This ontology,

described next, is extremely useful for outlining the degree of similarity betweenArmyofficer jobs and those involving

leadership, management, technical, and administrative responsibilities (Borman, 1987; Dexter, 2020). Use of a com-

mon framework to describe Army jobs and civilian positions can serve as the basis for establishing the generalizability

of findings generated using an Army ontology to a set of non-military job descriptions. It can highlight areas of overlap

such as managerial responsibilities and job content (Dexter, 2020), though the evidence of generalizability will still be

limited.

KSBs are defined hierarchically into domains, talents, and measurable KSBs. At the top level are seven domains –

Cognitive, Communication, Disposition, Interpersonal, Leadership&Management, Expertise&Personal Competence,

and Physical. Each domain contains several talents, and each talent contains several KSBs. Defining KSAOs hierarchi-

cally simplifies the process for annotators by allowing them to quickly find theKSAOs theywant by filtering by domain

and talent. The domains, talents, and KSAOs are shown in Tables F2 - F8 of theOnline Supplement.

Rather than having an annotator choose several KSAOs for an entire job description, we instead split up a job

description into sentences and have annotators identify KSAOs for each sentence. Thismakes the taskmore tractable

for annotators by breaking up a long job description into smaller pieces. It also has the advantage of obtaining more

examples with which to train themodel. See the online supplement for more details.

We create a web interface for annotators to choose KSAOs that apply to a job description (see Figure F4 in the

Online Supplement). The annotator is shown a job description split up by sentences. All sentences for the job descrip-

tion are shown together on the same web page, to ensure the annotators have sufficient context to understand each

sentence. For each sentence, the annotator must (1) choose whether that sentence is a valid sentence containing

KSAOs and (2) choose any number of domains, talents, and KSAOs that are present in the sentence.

A total of fifteen annotators contributed to the dataset, including 10 experts (individuals with prior job analysis

experience) and five laypeople (individuals with no prior experience conducting job analyses). Wemake use of lay rat-

ings because experts can be hard to find, and their time is more expensive. Laypeople, on the other hand, are cheaper

and more accessible, and they can still provide valuable training data for AI models. Thus, we use both lay and expert

ratings for training, but only use expert ratings for evaluation and reliability calculation.

A total of 5815 sentenceswere annotated taken from124 jobs, including six jobs that were shared among all anno-

tators and used a basis for measuring inter-rater reliability and model accuracy. Figure F1 in the Online Supplement

shows the frequency of each job type. A job has on average 47 sentences, with sentences having an average of 24

words. Table F1 in the Online Supplement shows how often each KSAO was chosen by annotators. KSAOs related

to expertise, program management, and communication were most prevalent in the data. Research data are not

shared.
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52 KOENIG ET AL.

7.2.2 Measures

Inter-rater reliability. Six jobs were selected to be shared between all annotators in order to measure inter-rater reli-

ability. We used an Intraclass Correlation Coefficient (ICC) (Shrout & Fleiss, 1979) to compare the selected KSAOs of

each job from each annotator. The final ICC score is themean over the 10 expert annotators.

Evaluation of NLP model. We use several measures to evaluate how well our NLP model extracts KSAOs from

job descriptions. We measure the correctness of machine predictions and human predictions on the six shared jobs.

At a high level, a machine prediction is considered correct if it matches the human-annotated predictions. A human

prediction is considered correct if it matches the predictionsmade by the other humans.

The measures for evaluating the effectiveness of the NLP model are as follows. Accuracy is defined as the per-

centage of machine predictions that matched the human predictions. In this work, we use a modified version of top-k

accuracy, which makes use of the fact that our NLP model ranks the most likely KSAOs in order. Top-k accuracy is a

commonmetric for classification, but it does not handle a sentence havingmultiple classes (i.e., KSAOs). Ourmodified

top-k accuracy is defined as the percentage of sentences where at least one of the top k KSAOs chosen by the NLP

model are found in the annotator-selected KSAOs. Using top-k accuracy gives the model credit even if its first choice

was incorrect as long as its second or third choice was correct.We use top-1, top-3, and top-5 accuracy. Because eval-

uation is performed at the sentence-level, each human rater only chose at most five KSAOs for each sentence, even

though they were allowed to choose any number of KSAOs. Therefore, using top-5 accuracy should be a sufficient

metric for evaluating sentences from job descriptions.

Label ranking average precision (LRAP) measures what percent of the higher ranking KSAOs chosen by the model

are correct. Finally, F1 score is a metric measuring the balance between precision and recall, where precision is

the ratio of true positives to model-predicted positives, and recall is the ratio of true negatives to model-predicted

negatives.

The samemeasures are computed for humans. Each annotator’s predictions are compared to all of the other anno-

tators’ predictions to obtain top-k accuracies, LRAP, and F1 scores for each annotator. Then the scores are averaged

over the annotators to give a single human score for each measure. A machine score that is equal to or greater than

the human score shows the NLPmodel can predict KSAOs as well or better than humans.

7.2.3 Training BERT to predict KSAOs

In this section, we describe our model for identifying skills from a job description. We frame this problem as a multi-

label classification problem, in which an input text can be assigned multiple correct labels. Consider the following

sentence, “Serves as an expert consultant to provide advice and guidance to officials, managers and other scientists

and engineers within and outside the division covering a broad range of scientific or engineering activities.” This

sentencemay havemultiple valid labels: “WorkingWith The Public,” “Verbal Communication,” etc.

We utilize the BERT architecture (Devlin et al., 2019) to perform the multi-label classification. BERT is a deep

learning model using the Transformer architecture (Vaswani et al., 2017) for understanding natural language. It uses

a mechanism called “attention” to create semantic representations of words in a piece of text by having each word

“attend to” or look at each other word in the sentence when creating its own representation. This allows the model to

better understand the context in which eachword is used.

The BERTmodel has been pre-trained on large amounts of text fromWikipedia and books to learn a general under-

standing of English text. This was done by training it to do a simple “fill-in-the-blank” task. One or more words in each

sentence aremaskedout, and themodelmust learn topredict themaskedword. This simple training task,when trained

onbillions ofwords of text, results in amodel that has a goodunderstanding of general language.While this basemodel

on its own is not veryuseful, it canbe fine-tuned todomore specializedNLP tasks, such asdetectingoffensive language

or predicting the emotion in a news article.
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KOENIG ET AL. 53

In this work, we follow previous work by fine-tuning BERT to perform classification on our job description dataset.

More specifically, we add a neural network layer of randomly-initialized weights to the end of the network containing

199 outputs corresponding to the KSAOs. A sigmoid activation function is applied to each of the outputs which gives

a probability for each output, representing how likely the input sentence contains each KSAO. The final prediction is

obtained by selecting the KSAOswith the highest probability scores.

One problem experienced in earlier versions of the model was that it would often predict only the most common

KSAOs in the trainingdata. To solve theproblemweemploy twostrategies. (1)Weusedadata augmentation technique

similar to MLSMOTE (Charte et al., 2015) to generate more sentences containing the low-frequency KSAOs during

training. (2) We add a module that increases the scores given to low-frequency KSAOs during evaluation using the

KSAO’s IRPL score. See the online supplement for details.

In addition, we compare the BERT-based models with more classical NLP approaches to determine whether more

recent AI techniques can learn to better identify KSAOs than older techniques. Naive-Bayes (Hand & Yu, 2001) is

a probabilistic learning method that uses the presence or absence of words to predict the class of an input text.

Logistic regression using bag-of-words representations (BoW-LR) treats each input text as an unordered collection

of words and then trains a logistic regression classifier on those representations. We also test logistic regression

on term frequency-inverse document frequency representations (TFIDF-LR), which takes into account the relative

importance of each word in a document. Finally, we test Latent Dirichlet Allocation (LDA), which can be found in the

online supplement.

To evaluate themodels, we perform leave-one-out cross-validation. One of six job descriptions used for evaluation

is left out of the training data, while a NLPmodel is trained on the remaining data. Then the model is evaluated on the

one job that was left out. This is repeated for all six job descriptions. The evaluation scores over the six runs are then

averaged to get the final score. We experiment with the original BERT architecture and DistilBERT (Sanh et al., 2019)

– a smaller and faster version of BERT that retains most of the language understanding capabilities of the original. For

both models, we train both cased (i.e. takes text capitalization into account) and uncased (i.e. does not take capital-

ization into account) models to determine the effect of capitalization on the ability of NLP models to extract KSAOs.

Implementation details are described in theOnline Supplement.

7.3 Results

7.3.1 Inter-rater reliability for collected data

Results show that the inter-rater reliability scores for choosing KSBs (ICC= .822) was good, while ICC for rater selec-

tion of talents was slightly lower, but still moderate (ICC = .616), and ICC for selection of domain by raters was also

good (ICC = .878). These rater agreement levels, while relatively high, were undoubtedly affected by several factors.

Therewere a large number ofKSBs to choose from,whichmakes itmore likely at baseline for annotators to pick differ-

ently. Furthermore, because many of the KSAOs are extremely similar (e.g. “Even-Tempered” vs. “Emotional Control”,

and “Attentiveness” vs. “Focus”, etc.), annotators are likely to have the same broad notion about a sentence but still

choose different KSAOs. Such issues (large number of labels, label ambiguity, and annotator quality) are common in

ML research and applications, and often lead to noisy datasets used for training and evaluation ofmodels. Importantly,

though, ML models can be robust to noisy data (Rolnick et al., 2017), and can often still extract meaningful patterns

from the data and achieve reasonable performance.

7.3.2 Evaluating the effectiveness of our proposed model

Table 14 shows the classification scores for each NLP model, along with annotator scores. All BERT-based models

achieve top-1 accuracies above 48%, meaning the top KSAO choice for the model is a correct one according to the
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54 KOENIG ET AL.

TABLE 14 Classification scores for classical NLPmodels, BERT basedNLPmodels, and human raters on shared
jobs.

Model Top-1 Acc Top-3 Acc Top-5 Acc LRAP F-1 Prec Rec

Naïve-Bayes 55.01 78.46 88.06 .4991 6.12 8.02 4.95

BoW-LR 35.82 68.23 80.60 .4260 22.78 31.20 17.94

TFIDF-LR 40.30 72.07 83.58 .4402 24.38 31.08 20.06

BERT-uncased 48.94 73.83 82.77 .4314 24.34 27.32 21.94

BERT-cased 51.06 77.66 87.87 .4550 26.74 27.64 25.90

DistilBERT-uncased 48.94 73.62 82.55 .4445 24.89 25.89 23.97

DistilBERT-cased 50.43 75.96 84.26 .4463 25.56 25.65 25.47

Human 48.74 69.36 71.49 .3309 16.02 45.34 9.87

human-selected KSAOs. The best model – BERT-cased – obtained 51% top-1 accuracy. This is higher than the average

human top-1 accuracy of 49%. The top-3 accuracy, top-5 accuracy, LRAP, and F1 scores for the models are all higher

than the corresponding human scores. Thus, theNLPmodels can outperformhumans for the task of extracting KSAOs

from job descriptions.

The results present a curious effect – the model can achieve higher scores than the data it was trained on. This is

possible because the model was trained to recognize patterns within the overall group of raters. It can read a piece

of text and predict which KSAOs would likely be chosen by most of the raters. In essence, the model knows how to

best predict the majority opinion. Each individual rater, however, is not as adept at predicting the majority opinion,

as evidenced by the low inter-rater agreement. This does not mean that the model only sees the ratings with optimal

agreement – in fact, the model does get trained on all of the ratings. Rather, it likely learns that it can be correct more

often when it emulates the human ratings with high agreement, so in a sense, it learns to “ignore” outlier ratings.

However, it should be known that the quality of the ratings is still very important and is often summarized in AI

literature as “garbage in, garbage out.” An AI model produces outputs that are only as good as the data that is used to

train it. In our case, the AI is getting accuracy scores that are higher than each individual rater, but it’s really producing

outputs that are only as good as themajority opinion between all the raters.

The precision, recall, and F1 scores for the BERTmodels are between 21%and 28%,whichmay seem low.However,

the scores are reasonable given the task being performed. As stated previously in the inter-rater reliability results sec-

tion, there are a large number ofKSAOs to choose from (199),whichmakes it very difficult for anAI (or human rater) to

choose aKSAO thatmatcheswhat the human raters chose. Further, because someof theKSAOs are similar inmeaning

to each other, the AI often chooses an KSAO that was incorrect, but still likely a reasonable choice qualitatively. See

Table F10 of theOnline Supplement for examples.

The uncasedmodels receive significantly lower scores than the casedmodels. This shows that taking capitalization

into account can be helpful for this task.We hypothesize that casedmodels are able to detect organization names (e.g.

USAAC), and this can better inform themodels that certainKSAOs aremore likely (e.g. Improves theOrganization). Of

the BERT-basedmodels, BERT-cased achieves the highest scores.

We believe themodels can detect patterns in the creative thinking done in humans by recognizing that certain key-

words or phrases in the job description often lead to certain KSAOs. For example: for the following sentence “Ensures

coordination with USAASCG8 for funding,” raters had chosen (among others) the KSAO “Interpersonal Tact.” It takes

creativity and higher-level thinking for a human to understand that coordination with another organization (USAASC

G8) over timewill necessitate having good interpersonal relationship skills to reliably obtain funding. BERT-cased pre-

dicted (among others) the KSAO “Interpersonal Relationship Building” for the sentence, which is very similar to the

one chosen by raters. The model successfully detected the keyphrase pattern “coordination with [organization] for

[goods]” to require interpersonal relationship KSAOs, and thus correctly predicted the KSAO.
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KOENIG ET AL. 55

F IGURE 1 Confusionmatrix for the BERT-casedmodel withMLSMOTE.

Note. It shows themost common errors associatedwith themodel. The rows in thematrix represent the true number of

sentences belonging to each KSAO, while columns represent the number of sentences predicted by themodel for each KSAO.

Naive Bayes has higher accuracy and LRAP than BERT-based models but lower F-1 score. We explain the cause

in the Error Analysis below. BoW-LR receives scores that are lower than the BERT-based models. TFIDF-LR achieves

scores similar to some of the BERT-based models, but they are lower than the best model BERT-cased. Thus, classical

methods based on TFIDF can reasonably be used for identifying KSAOs. Thesemethods train faster and are simpler to

implement. To get the best accuracy, however, BERT-cased should be used. For results on all 124 jobs, see Table F9 in

theOnline Supplement.

7.3.3 Error analysis

Figure 1 shows the most common errors associated with BERT-cased as a confusion matrix. The rows in the matrix

represent the true number of sentences belonging to each KSAO, while columns represent the number of sentences

predicted by themodel for eachKSAO. The values that lie on the diagonal represent correct predictions (e.g., 21 of the

sentences that had the true label of “Sound Judgement”were correctly predicted by themodel as “Sound Judgement”).
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56 KOENIG ET AL.

Values not on the diagonal represent errors (e.g., 1 of the sentences that had the true label of “Sound Judgement” was

incorrectly predicted by themodel as “Problem Solver”).

We introduced strategies including MLSMOTE to prevent the model from choosing the most common KSAOs too

frequently. Qualitatively, these changes caused the model to give more varied answers that still would be reasonable.

For example: for the sentence mentioned above “Ensures coordination with USAASC G8 for funding,” the model pre-

viously predicted only “Resource Management,” “Coordination,” and “Working In Multidisciplinary Contexts” – three

very common KSAOs. After the changes, the model predicted “Interpersonal Relationship Building”, “Coordination,”

“Motivating Others”, “Project Manager,” and “Resource Management,” which contains less common KSAOs that are

still relevant.

For further validation that themodel predicts KSAOswith greater variety, compare the confusionmatrix to that in

Figure F2 of theOnline Supplement, showing the errorswhen not usingMLSMOTE. It is clear thatwithoutMLSMOTE,

the model was over-predicting certain common KSAOs such as “Monitoring,” “Specialized Expertise,” and “Resource

Management.” Rather, the opposite effect seems to be apparent in the model with MLSMOTE. The common KSAOs

are often incorrectly predicted as a different KSAO. We would argue that this is a more desirable consequence than

over-predicting themost commonKSAOs. AnAI system that only suggests the same fewKSAOs is not as useful as one

that suggests more varied, but still relevant KSAOs.

Naive Bayes has higher accuracy and LRAP than BERT-based models but lower F-1 score. We believe Naive Bayes

is better at ranking KSAOs by simply choosing the most common KSAOs in the training set. While we alleviated the

problem using techniques such as MLSMOTE, Naive Bayes was not as affected by the techniques as the BERT-based

models. We can see from the Naive Bayes’ confusion matrix in the Figure F3 of the Online Supplement that the prob-

lem remains. Most of the errors are concentrated in the common KSAO columns like “Monitoring.” We believe this is

because Naive Bayes cannot generalize as well as BERT to words and phrases it has not seen before in training. This

causes it to resort to picking the most likely KSAOs based on the class priors. This behavior is not desirable in an AI

recommendation system since a professional will likely already know if themost common KSAOs are relevant or not.

7.4 Discussion

7.4.1 Practical implications

The purpose of this study is to investigate the possibility of using NLPmodels to extract KSAOs from text descriptions

and whether models could be as proficient as humans at the task. Our results appear to show that NLP models can

indeed perform the task as well as humans. This is a surprising finding considering the dataset’s noisy labels and its

relatively small size. Deep learningmodels such as BERT performbestwith thousands tomillions of training examples,

and ourmodelswere trained on the lower end of that spectrum (5815 examples). This shows that practitionersmay be

able to train their ownmodels to accurately extract KSAOswith relatively little manual effort to collect training data.

These models are not limited to analyzing job descriptions. They may also be used to extract KSAOs from other

forms of unstructured text or spoken language. For example, interviews of current employees or supervisors about job

duties could be transcribed into text using advances in speech recognition. The text could then be analyzed using NLP

models to extract KSAOs. Similarly, KSAOs can be identified from open-response questions in surveys. This would be

valuable for human resources officers in performing job analyses with less effort.

Our approach can be used as part of a selection process as well. Applicant resumes could be screened for KSAOs

and a score could be calculated based on howwell the KSAOs in the resumematch the KSAOs found in the desired job

description. Sajjadiani et al., 2019 use a similar approach; however, only the job titles were used to determine KSAOs,

while the benefit of our approach is the ability to glean the employee competencies from expository text. A possi-

ble criticism of our method is that KSAOs needed for a job may be more easily obtained by drawing directly from a

database such as O*NET.While this is true for job descriptions, the KSAOs present in an applicant’s resume are not as
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KOENIG ET AL. 57

easy to collect, instead requiringmanual effort to analyze each resume. AnNLPmodel, on the other hand, can be used

to automate this process.

There is a well-demonstrated relationship between KSAOs and job performance (Ployhart & Bliese, 2006) How-

ever, this relationship is significantlymediatedby individual factors suchas adaptability (Tucker et al., 2009). Extracting

KSAOs fromnaturalistic sources of occupational text (e.g., performance evaluations, self-reported incumbent descrip-

tions) may allow organizations to help explain the variance in job performance across employees and therefore better

understand their antecedents of success.

7.4.2 Limitations

A limitation of our approach is that we identify KSAOs on a sentence-level basis, while many professionals in real-

world organizations identify KSAOs holistically at the job level.While ourmethod of breaking up job descriptions into

sentences may not completely match the process in organizations, we still believe our method results in KSAOs that

will be relevant to the job. As an example,OPM’s job analysis process is to choose competencies based on the job tasks,

then to link those competencies to specific tasks to verify that there is a clear relationship between the tasks that are

part of the job and the competencies required to complete those tasks (Office of PersonnelManagement, 2003).While

not exactly the same as our process, it validates our method of splitting up the job. Each KSAO should be associated

with a specific task, similar to how raters labelled the data in our work. If KSAOs are needed for the job as a whole,

the KSAOs that were associated with the most sentences can be chosen. A limitation of this process is that it may

miss high-level KSAOs associatedwith a job that a humanwould have chosen. For this reason, we believe an AI system

based on our work should be used to recommend KSAOs to humans, rather than the AI system completing the task

alone.
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ENDNOTES
1Study 1 authored by Koenig, N., Tonidandel, S., Thompson, I., Albritton, B., & Koohifar, F.
2Study 2 authored by Yankov, G., & Speer, A.
3The limited range of the assessor ratings might also be yielding limited variance and attenuating our final results although

the exercise scores which wemodelled were sums of the assessor ratings.
4We explored otherMLmodels beyond XGBoost. However, the best accuracywas achievedwith XGBoost, and this seems to

be commonwithmost tabularML tasks (Nielsen, 2016).
5We selected five parameters critical for a simple, yet robust implementation of the XGBoost algorithm for the needs and

shape of our text data: learning rate (four rates linearly spaced between .1 and .6), maximum depth (a random number

between 1 and 10), minimal child weight (a random number between 1 and 10), number of estimators (300, 350, 400, and

450), and regularization alpha (0, 0.1, 0.5, 0.75). We ran the RandomizedSearchCVmethod from the sklearn Python library

to find the optimal hyper-parameters values.
6Trainingwas performedon a6-core LinuxUBUNTUvirtualmachinewith 56GBmemory and1GPU. FollowingDevlin et al.’s

(2019) guidelines, we experimented (Online Table 5) tuning the following hyperparameters: batch size (8, 16, and 24), epoch

(3 vs. 4), and learning rate (3e-5, 5e-5, and 1e-4).
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7Note these were observed correlations and therefore attenuated as a function of range restriction and criterion unrelia-

bility. We did not have adequate data to correct for range restriction. If we corrected for criterion-unreliability using the

Viswesvaran et al. (1996) .52 estimate, the average AC dimension validity coefficient for assessors was .24, and it was .34

for NLP scores.
8Study 3 authored by Hardy, J., Gibson, C., Koenig, N., & Frost, C.
9The job analysis beganwith a reviewof existing jobdescriptions followedby in-depth interviewswith subjectmatter experts

(SMEs), visionary interviews, focus groups, and a job analysis questionnaire. Information uncovered during this processwas

foundational in the design of all selection assessments, including the open-ended prompts underlying the deep learning

integration.
10The RoBERTa architecture max token length of 512. During implementation, only 4-5 cases (0.04%) exceeded this limit. As

such, we did not feel it was necessary to exploremethods for increasing themax token length in this case.
11 Inter-rater reliabilities at the competency level are provided in Table 5.
12The use of the transformer architecture (described below) meant that beyond this pre-scrubbing of the data, no additional

data cleaning (e.g., stemming, n-grams, removal of stop-words, etc.) was required.
13Support for the viability of this modeling strategy can be found in a recent paper by de la Vega de Leon et al. (2018), which

shows that deep neural networks trained with moderate sparsity can maintain a reasonable performance compared to

dense labels with less than 20%performance degradationwith losses inmodel accuracy that are on parwith othermethods

of multi-tasking prediction.
14A predefined data partition was obtained using a stratified sampling approach. In other words, within the k-folds and our

finalmodel training data, applicant responseswere always represented in one set or the other, creating an equal distribution

of responses in each subset. This approach to structuring thedata helpsminimize contaminating covariation associatedwith

similarities in writing styles and halo effects containedwithin each response set.
15Learning Rates Tested: 5e-06, 1e-05,2e-06,1e-06; Dropout Rates Tested: 0.05, 0.08, 0.10, 0.15.
16We acknowledge that the decision to include only two competencies raises construct deficiency concerns. However, the

purpose of the deep learning assessment scores was only to supplement information within an existing validated assess-

ment, not to replace it. As such, the partner organization determined that maximizing the added predictive value of

assessment scores was more important thanmaximizing coverage of the construct because many of these constructs were

alreadywell representedwithin the broader assessment. Nevertheless, we recognize that readers wouldwant amore com-

plete understanding of the model’s performance independent of this decision. As a result, we provide results for the live

scoring composite along with each of the five individual competency ratings to enable a more thorough evaluation of the

model’s potential performance.
17Study 4 authored by Liu, M., McNeney, D., Capman, J. F., Lowery, S. B., Kitching,M., Nimbkar, A., & Boyce, A. S.
18Based on a prior MTurk pilot study we conducted, audio constructed format resulted in a 13% time reduction compared to

written constructed format, while controlling for the assessment content.
19We offered three recording attempts to promote a positive candidate experience and to buffer potential technical

difficulties getting in the way of recording the audio responses.
20To develop benchmark scores, we trained three internal I-O psychologists with more than five years of experience working

in the assessment domain. The I-O psychologists independently provided ratings on the audio responses andmet as a group

to derive consensus on the ratings.
21We evaluated reliability based on different numbers of raters (k= 3, 4, 5, or 6) and found that ICC(2, k) dropped by .083 or
morewhen using fewer than five raters.

22WER estimates the difference between machine and human (true) transcription; a high WER indicates a larger number of

word substitutions, deletions, or insertions in the automatic transcript as compared to human-transcribed text for the same

audio clip (WER= (Substitutions+ Insertions+Deletions) / Number ofWords Spoken).
23Open source code for BERT can be found on: https://huggingface.co/docs/transformers/model_doc/bert
24Unless otherwise specified, all correlation coefficients are uncorrected.
25The sample size of 135 for the incremental validity analysis is smaller than the full test and validation data set size because

the study participants took different assessments for different roles in the organization, so we selected the job with the

largest N in our sample and used that subsample for this particular analysis. Results are uncorrected for range restriction

and criterion unreliability.
26Note that the moderated regression analyses were conducted on the test and validation datasets, with small sample sizes

and statistical power for detecting a small effect (Asian:N= 238, power= .41; Black:N= 70, power= .14; Hispanic:N= 76,

power= .15; Two orMore Races:N= 69, power= .14).
27Study 5 authored by Sun, T., Guo, F., Min, H., & Zhang, B.
28The organization, unfortunately, does not have information on the turnover types. We hereby recognize this as a limita-

tion in this study and application, and advocate organizations to collect and examine turnover details, as they may provide

valuable information for predicting turnover behaviors.
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29Per suggestion by the reviewing team, we also explored more of the relationship between productivity and quality, and we

found that there seems to be a curvilinear relationship between them: there is an overall small positive association between

productivity and quality, but people with extremely high productivity would show lower quality.
30We recognize that this is a limited way of imputing for missingness. Our adoption of this substandard pre-processing

approachwasmotivated by the organization’s concern about computation time.
31We also providedmore algorithm details in Online Supplement E.
32An alternative (and potentially more ideal) weighting approach may be to adopt empirical weighting to combine algorithm

scores using generalized linear models done on an independent sample separated from the training sample(s).
33Though the number here is not specific to the organization andmay not apply to theAsia-focused context, the SHRMstatis-

tics were believed to be applicable to all HR contexts around theworld, as themethodology for the SHRM study stated that

the datawere collected from itsmembers all over theworld (i.e., more than 275,000members in over 160 countries) though

with a response rate of only 6%.
34This is a larger effect size observed than the traditional non-ML approach. We think it might be possible that this is due

to the new inclusion of the work history items (and not the ML method), as biodata measures have been criticized due to

their potential to elicit adverse impacts. We have examined the gender differences on biodata items and reported in the

SupplementaryMaterials the predicted score gender differences in terms of the item-level Cohen’s d’s. No items stood out

as potentially problematic (i.e., beyonda “small” degree) as judgedby thebenchmarks providedbyCohen (1988),while some

displayed similar effect sizes as the overall ML-based gender differences.
35Updatedmodel performancewith hyperparameter tuning details can be found in Online Supplement Table E2.
36Study 6 authored by Lebanoff, L., Phillips, H., & Newton, C.
37https://acpol2.army.mil/ako/fasclass/search_fs/search_fasclass.asp
38https://www.opm.gov/policy-data-oversight/classification-qualifications/classifying-general-schedule-positions/

occupationalhandbook.pdf
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