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Abstract
We propose a broad class of so-called Cox–Aalen transformation models that
incorporate both multiplicative and additive covariate effects on the baseline
hazard function within a transformation. The proposed models provide a highly
flexible and versatile class of semiparametric models that include the transfor-
mationmodels and the Cox–Aalenmodel as special cases. Specifically, it extends
the transformation models by allowing potentially time-dependent covariates
to work additively on the baseline hazard and extends the Cox–Aalen model
through a predetermined transformation function. We propose an estimat-
ing equation approach and devise an expectation-solving (ES) algorithm that
involves fast and robust calculations. The resulting estimator is shown to be con-
sistent and asymptotically normal via modern empirical process techniques. The
ES algorithm yields a computationally simple method for estimating the vari-
ance of both parametric and nonparametric estimators. Finally, we demonstrate
the performance of our procedures through extensive simulation studies and
applications in two randomized, placebo-controlled human immunodeficiency
virus (HIV) prevention efficacy trials. The data example shows the utility of the
proposed Cox–Aalen transformation models in enhancing statistical power for
discovering covariate effects.

KEYWORDS
Cox–Aalen model, ES algorithm, estimating equations, time-dependent covariates, transfor-
mation models

1 INTRODUCTION

Censored failure time data are frequently encountered in
epidemiological and biomedical studies. In the literature,
the multiplicative and additive hazards models provide
two principal frameworks for analyzing such data. The
most popular multiplicative hazards model is the propor-
tional hazards model (Cox, 1972), where the covariates are
assumed to act multiplicatively on an unknown baseline
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hazard function. In contrast, the additive hazards models
furnish an additive effect between the covariates and the
baseline hazard function, enabling a direct reflection of the
risk increase or decrease (Aalen, 1980;Huffer&McKeague,
1991; Lin & Ying, 1994). Without prior domain knowl-
edge, it is hard to determine which approach is preferable
amongmultiplicative and additive hazardsmodels. In fact,
both models may often be used to complement each other
and provide more complete insights. Therefore, various
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multiplicative-additive hazards models have been pro-
posed to capture both multiplicative and additive effects
(Lin & Ying, 1995; Martinussen & Scheike, 2002). In par-
ticular, Scheike & Zhang (2002) suggested a Cox–Aalen
model by replacing the baseline hazard function in the
Cox model with Aalen’s additive model. The Cox–Aalen
model has been studied for various types of censored
data, for example, right-censored (Scheike & Zhang, 2002),
interval-censored (Boruvka & Cook, 2015), left-truncated
and right-censored (Shen & Weng, 2018), left-truncated
and mixed interval-censored (Shen & Weng, 2019), and
recurrent-event (Qu and Sun, 2019).
Transformation models have also received wide atten-

tion in survival analysis. Dabrowska and Doksum (1988)
introduced the class of linear transformation models,
which includes the proportional hazards and proportional
odds models (Bennett, 1983; Pettitt, 1982). Estimators for
this class ofmodels were proposed byDabrowska andDok-
sum (1988), Cheng et al. (1995), Fine et al. (1998), Chen
et al. (2002), among others. Zeng & Lin (2006) extended
the linear transformation models to allow time-dependent
covariates. Hereafter, we refer to this class of transforma-
tion models as Zeng and Lin’s model to avoid confusion.
There is rich literature investigating Zeng and Lin’s model.
Zeng & Lin (2006) proposed a nonparametric maximum
likelihood estimator (NPMLE) in the presence of right-
censored data. Zeng & Lin (2007) derived a system of
self-consistent equations for the jump sizes of the base-
line cumulative hazard function at exact failure times
through an expectation-maximization (EM) algorithm.
Chen (2009) showed that the self-consistent estimator
derived in Zeng & Lin (2007) is asymptotically equivalent
to a weighted Breslow-type estimator, which can be solved
by a computationally-efficient iterative reweighting algo-
rithm. Liu & Zeng (2013) investigated variable selection
procedures by minimizing a weighted negative partial log-
likelihood function plus an adaptive lasso penalty. More
recently, Zeng et al. (2016) and Zhou et al. (2021) stud-
ied the nonparametric maximum likelihood estimation of
Zeng and Lin’s model with interval-censored and partly
interval-censored data, respectively.
However, one limitation of Zeng and Lin’s model is

that all covariate effects are assumed to be multiplicative
within the transformation function. This assumption is
too restrictive in some applications. For example, in an
analysis of risk factors on mortality among patients with
myocardial infarction, Scheike and Zhang (2003) showed
that some covariates (e.g., ventricular fibrillation and con-
gestive heart failure) have additive effects, while others
(e.g., age and sex) have multiplicative effects. In addition,
they pointed out that naively treating all covariates as mul-
tiplicative led to incorrect results when predicting survival
probabilities. Another example is human immunodefi-

ciency virus (HIV) prevention efficacy trials, for which
HIV incidence varies across geographic regions and by
sex/gender; thus, the different regions/sex/gender sub-
groups have different baseline hazard functions (Corey
et al., 2021). Moreover, a Kaplan–Meier plot shows that
survival curves for different regions cross, potentially
suggesting an additive region effect. To the best of our
knowledge, no existing work considers a class of semi-
parametric transformation models in which the baseline
hazard function is allowed to depend on some potentially
time-varying covariates additively. Therefore, it is desirable
to provide a larger class of semiparametric transforma-
tionmodels that can accommodate bothmultiplicative and
additive covariate effects under one unified framework.
The EM algorithm is a powerful tool for performing

maximum likelihood estimation in the presence of latent
variables or missing data (Dempster et al., 1977). In par-
ticular, various EM-type algorithms have been proposed
to find NPMLE for semiparametric transformation mod-
els (Liu & Zeng, 2013; Zeng & Lin, 2007; Zeng et al., 2016;
Zhou et al., 2021). In analogy to EM, Elashoff and Ryan
(2004) proposed an expectation-solving (ES) algorithm
that handlesmissing data for general estimating equations,
greatly facilitating its application to a broader framework.
When the complete-data estimating equations correspond
to the score functions from the likelihood, theES algorithm
essentially reduces to the EM. The ES algorithm dra-
matically improves computational efficiency for solving
estimating equations involving frailty or latent variables.
For example, Johnson and Strawderman (2012) developed
a smoothing expectation and substitution algorithm for
the semiparametric accelerated failure time frailty model.
Henderson andRathouz (2018) considered an approximate
EM procedure for a longitudinal latent class model for
count data.
In this paper, we propose a broad class of so-called Cox–

Aalen transformation models that incorporate both multi-
plicative and additive covariate effects upon the baseline
hazard function within a transformation. The proposed
class of models is very flexible and contains Zeng and Lin’s
model and theCox–Aalenmodel as special cases.However,
the multiplicative–additive structure within the transfor-
mation and the need to estimate several nonparametric
functions simultaneously impose additional challenges for
model estimation. To alleviate such difficulties, we devise
an ES-type algorithm, which iterates between an E-step
wherein functions of complete data are replaced by their
expectations and an S-step where these expected values
are substituted into the complete-data estimating equa-
tions, which are then solved. More specifically, within
the S-step, the high-dimensional parameters are calcu-
lated explicitly, while the low-dimensional parameters are
updated via the Newton-Raphson method. Consequently,
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the proposed ES algorithm is fast and stable even under
a high-percentage censoring rate, as evidenced by our
simulation studies and real-data applications. Another
attraction of our approach is that we provide simple vari-
ance estimators for both parametric and nonparametric
estimates. Furthermore, the theoretical properties of the
proposed estimators are rigorously studied via modern
empirical process techniques.
The rest of the article is organized as follows. In Sec-

tion 2, we present the proposed Cox–Aalen transformation
models. In Section 3, we formally describe the estimation
procedure and establish the asymptotic properties of the
proposed estimators. In Section 4, simulation studies are
conducted to evaluate the finite-sample performance of the
proposed method. In Section 5, we apply our method to
two randomized HIV prevention efficacy trials. Section 6
concludes with a discussion.

2 SEMIPARAMETRIC COX–AALEN
TRANSFORMATIONMODELS

Let 𝑋(⋅) = (𝑋1(⋅), … , 𝑋𝑞(⋅))
⊤ and 𝑍(⋅) = (𝑍1(⋅), … , 𝑍𝑑(⋅))

⊤

denote 𝑞 × 1 and 𝑑 × 1 vectors of potentially time-varying
covariates, and 𝑇 denote the failure time of interest. We
propose a broad class of so-called Cox–Aalen transforma-
tion models such that the cumulative hazard function for
𝑇 conditional on 𝑋(⋅) and 𝑍(⋅) takes the form

Λ(𝑡 ∣ 𝑋(⋅), 𝑍(⋅)) = 𝐺

[
∫

𝑡

0

exp{𝛽⊤𝑍(𝑠)}𝑑Λ𝑋(𝑠)

]
, (1)

where 𝛽 is a 𝑑 × 1 vector of unknown regression coeffi-
cients, Λ𝑋(𝑠) = ∫ 𝑠

0
{𝑋⊤(𝑣)𝛼(𝑣)}𝑑𝑣 is an unknown increas-

ing function with 𝛼(𝑣) = (𝛼1(𝑣), … , 𝛼𝑞(𝑣))
⊤, and 𝐺(⋅) is

a pre-specified transformation function that is strictly
increasing and thrice continuously differentiable with
𝐺(0) = 0,𝐺′(0) > 0 and𝐺(∞) = ∞. In addition, let𝐴(𝑡) =
∫ 𝑡

0
𝛼(𝑠)𝑑𝑠 = (𝐴1(𝑡), … , 𝐴𝑞(𝑡))

⊤, where 𝐴𝑗(𝑡) = ∫ 𝑡

0
𝛼𝑗(𝑣)𝑑𝑣

for 𝑗 = 1,… , 𝑞. With 𝑋1(⋅) fixed at 1, 𝛼1(𝑡) can be inter-
preted as a reference level of the risk. Generally, it is not
meaningful to have 𝑋(⋅) equal or proportional to 𝑍(⋅).
For the choices of 𝐺, it is useful to consider the class of
frailty-induced transformations

𝐺(𝑥) = − log∫
∞

0

exp(−𝑥𝜉)𝑓(𝜉)𝑑𝜉, (2)

where 𝑓(𝜉) is a density function of a nonnegative ran-
dom variable 𝜉 with support [0,∞). The choice of the
gamma density with unit mean and variance 𝑟 for 𝑓(𝜉)
yields the logarithmic transformations 𝐺(𝑥) = 𝑟−1 log(1 +

𝑟𝑥) (𝑟 ≥ 0) with 𝑟 = 0 specifying 𝐺(𝑥) = 𝑥. The choice of

the positive stable distribution with parameter 0 < 𝜌 < 1

yields the class of Box–Cox transformations 𝐺(𝑥) = {(1 +

𝑥)𝜌 − 1}∕𝜌. Note that 𝐺(𝑥) = log(1 + 𝑥) is often consid-
ered to be a member of the above class with 𝜌 = 0. By
treating the latent variable 𝜉 asmissing, the frailty-induced
transformations are particularly useful in deriving EM-
type algorithms (Liu & Zeng, 2013; Zeng & Lin, 2007; Zeng
et al., 2016; Zhou et al., 2021). Some remarks regarding the
Cox–Aalen transformation models are as follows:

Remark 1. When 𝛼𝑗(𝑡) = 0 (𝑗 = 2,… , 𝑞) for any 𝑡, the right-
hand side of Equation (1) reduces to

𝐺

[
∫

𝑡

0

exp{𝛽⊤𝑍(𝑠)}𝑑𝐴1(𝑠)

]
. (3)

Hence, Zeng and Lin’s model is a special case of the
proposed model. Moreover, when 𝑍 is time-invariant,
Equation (3) further reduces to a class of linear trans-
formation models with the form log𝐴1(𝑇) = −𝛽⊤𝑍 +

log𝐺−1(− log 𝜖0), where 𝜖0 has a uniform distribution
(Chen et al., 2002). The choices 𝐺(𝑥) = 𝑥 and 𝐺(𝑥) =

log(1 + 𝑥) yield the proportional hazards model and pro-
portional odds model, respectively.

Remark 2. When 𝐺(𝑥) = 𝑥, according to Equation (1), the
cumulative hazard function on the left-hand side can be
written as

∫
𝑡

0

{
𝑋⊤(𝑠)𝛼(𝑠)

}
exp{𝛽⊤𝑍(𝑠)}𝑑𝑠. (4)

Thus, the conditional hazard function of 𝑇 is
𝑋⊤(𝑡)𝛼(𝑡) exp{𝛽⊤𝑍(𝑡)}. Therefore, the Cox–Aalen model is
a special case of the proposed models. In particular, when
𝑋2,… , 𝑋𝑞 represent levels in a set of factors, model (4)
further reduces to the stratified Cox model (Kalbfleisch &
Prentice, 2002, Section 4.4).

Remark 3. For 𝐺(𝑥) = log(1 + 𝑥), the odds of surviving
beyond time 𝑡 based on Equation (1) are

𝛾(𝑡 ∣ 𝑋, 𝑍) =
Pr(𝑇 > 𝑡 ∣ 𝑋, 𝑍)

Pr(𝑇 ≤ 𝑡 ∣ 𝑋, 𝑍)

=

{
∫

𝑡

0

exp{𝛽⊤𝑍(𝑠)}𝑑Λ𝑋(𝑠)

}−1

.

In the special case where 𝑍 are time-independent covari-
ates,

𝛾(𝑡 ∣ 𝑋, 𝑍) = 𝛾(𝑡 ∣ 𝑋, 𝑍0) exp{−𝛽
⊤(𝑍 − 𝑍0)},
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4 NING et al.

which is a stratified proportional odds model when 𝑋 is a
random variable indicating strata.

As illustrated above, our proposed class of semiparamet-
ricmodels is very flexible and containsmany popularmod-
els in survival analysis. To motivate our approach, we first
set up the observed data likelihood and derive the NPMLE
for a special case. Then, for more general situations, we
propose estimating the parameters 𝛽 and 𝐴(⋅) using esti-
mating equations along with an easily-implemented ES
algorithm. Finally, the asymptotic properties of the result-
ing estimators are derived via modern empirical process
theory (van der Vaart and Wellner, 1996).

3 METHODS

3.1 Notations

For the 𝑖th individual, let 𝑇𝑖 and 𝐶𝑖 be the failure time
and censoring time, respectively. Let 𝑇𝑖 = min(𝑇𝑖, 𝐶𝑖) be
the observed time and defineΔ𝑖 = 𝐼(𝑇𝑖 ≤ 𝐶𝑖). Thus,Δ𝑖 = 1

indicates that the exact failure time for the 𝑖th individual
was observed, while Δ𝑖 = 0 implies censoring. For a ran-
dom sample of 𝑛 participants, the observed data consist
of𝑖 = {Δ𝑖, 𝑇𝑖, 𝑋𝑖(𝑡), 𝑍𝑖(𝑡), 𝑡 ∈ [0, 𝜏]} for 𝑖 = 1, … , 𝑛, where
𝜏 denotes the duration of the study. Moreover, we define
𝑌𝑖(𝑡) = 𝐼(𝑇𝑖 ≥ 𝑡) and 𝑁𝑖(𝑡) = Δ𝑖𝐼(𝑇𝑖 ≤ 𝑡).

3.2 Nonparametric maximum
likelihood estimation

Assume that𝑇𝑖 and𝐶𝑖 are conditionally independent given
𝑋𝑖(⋅) and 𝑍𝑖(⋅). Under the proposed Cox–Aalen transfor-
mation model (1), the likelihood for the observed data
is

𝐿𝑛(𝛽, Λ𝑋) =

𝑛∏
𝑖=1

{(
Λ

′

𝑋𝑖
(𝑇𝑖) exp{𝛽

⊤𝑍𝑖(𝑇𝑖)}𝐺
′

[
∫

𝑇𝑖

0

exp{𝛽⊤𝑍𝑖(𝑠)}𝑑Λ𝑋𝑖
(𝑠)

])Δ𝑖

× exp

(
−𝐺

[
∫

𝑇𝑖

0

exp{𝛽⊤𝑍𝑖(𝑠)}𝑑Λ𝑋𝑖
(𝑠)

])}
, (5)

whereΛ′

𝑋(⋅) and𝐺
′
(⋅) are the derivatives ofΛ𝑋(⋅) and𝐺(⋅),

respectively. The likelihood (5) involves 𝛽 and 𝑞 infinite-
dimensional parameters 𝐴𝑗 (𝑗 = 1,… , 𝑞), and it may not
be concave in these parameters. Thus, the nonparametric
maximum likelihood techniques are usually employed to
restrict the parameter space.

To establish a simple and efficient estimation procedure,
we adopt the idea in Zeng & Lin (2007) by treating 𝜉 as a
latent variable in the class of frailty-induced transforma-
tions (2). Note that model (1) is equivalent to the survival
time 𝑇 with cumulative hazard function

Λ(𝑡 ∣ 𝑋(⋅), 𝑍(⋅), 𝜉) = 𝜉 ∫
𝑡

0

exp{𝛽⊤𝑍(𝑠)}𝑑Λ𝑋(𝑠), (6)

because

Pr(𝑇 > 𝑡 ∣ 𝑋(⋅), 𝑍(⋅))

= 𝐸[Pr{𝑇 > 𝑡 ∣ 𝑋(⋅), 𝑍(⋅), 𝜉} ∣ 𝑋(⋅), 𝑍(⋅)]

= 𝐸

(
exp

[
−𝜉 ∫

𝑡

0

exp
{
𝛽⊤𝑍(𝑠)

}
𝑑Λ𝑋(𝑠)

]|||𝑋(⋅), 𝑍(⋅)
)

= ∫
∞

0

exp

[
−𝜉 ∫

𝑡

0

exp
{
𝛽⊤𝑍(𝑠)

}
𝑑Λ𝑋(𝑠)

]
𝑓(𝜉)𝑑𝜉

= exp

(
−𝐺

[
∫

𝑡

0

exp{𝛽⊤𝑍(𝑠)}𝑑Λ𝑋(𝑠)

])
.

Based on Equation (2), it can be shown that the likelihood
(5) is equivalent to

𝑛∏
𝑖=1

∫
𝜉𝑖

([
𝜉𝑖Λ

′

𝑋𝑖
(𝑇𝑖) exp{𝛽

⊤𝑍𝑖(𝑇𝑖)}
]Δ𝑖

exp

[
−𝜉𝑖 ∫

𝑇𝑖

0

exp{𝛽⊤𝑍𝑖(𝑠)}𝑑Λ𝑋𝑖 (𝑠)

]
𝑓(𝜉𝑖)

)
𝑑𝜉𝑖.

Now, we consider nonparametric maximum likelihood
estimation of 𝛽 and 𝐴(⋅). Let 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑚 < ∞

denote the uniquely observed event times among the
𝑛 observations. Assume that the estimator for 𝐴𝑗(𝑗 =

1,… , 𝑞) is a step function with jump size 𝑎𝑗𝑘 at 𝑡𝑘. By
the observation that 𝑑Λ𝑋(𝑡) = 𝑋⊤(𝑡)𝑑𝐴(𝑡), the estimator
for Λ𝑋 is a step function with jump size 𝑋⊤(𝑡𝑘)𝑎𝑘 at
𝑡𝑘, where 𝑎𝑘 = (𝑎1𝑘, … , 𝑎𝑞𝑘)

⊤ for 𝑘 = 1,… ,𝑚. Let 𝐶
𝑖
=

{Δ𝑖, 𝑇𝑖, 𝑋𝑖(𝑡), 𝑍𝑖(𝑡), 𝜉𝑖, 𝑡 ∈ [0, 𝜏]} be the complete data for
the 𝑖th participant. The complete-data log-likelihood func-
tion can be written as

𝑛∑
𝑖=1

{ 𝑚∑
𝑘=1

(
Δ𝑖𝐼(𝑇𝑖 = 𝑡𝑘)

[
log

{
𝜉𝑖
(
𝑋⊤
𝑖𝑘
𝑎𝑘

)}
+ 𝛽⊤𝑍𝑖𝑘

])
− 𝜉𝑖

∑
𝑡𝑘≤𝑇𝑖

exp(𝛽⊤𝑍𝑖𝑘)(𝑋
⊤
𝑖𝑘
𝑎𝑘) + log 𝑓(𝜉𝑖)

}
,

(7)

where 𝑍𝑖𝑘 = 𝑍𝑖(𝑡𝑘) and 𝑋𝑖𝑘 = 𝑋𝑖(𝑡𝑘).
To obtain the NPMLE of 𝛽 and 𝐴(⋅), we propose an EM-

type algorithm by treating 𝜉 as missing data. In the E-step,
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NING et al. 5

we evaluate the posterior mean of 𝜉𝑖 given the observed
data, denoted by 𝐸̂(𝜉𝑖). The detailed calculations are given
in the next section. In the M-step, we maximize the expec-
tation of Equation (7) conditional on the observed data.
More specifically, we set the derivatives of the conditional
expectation of Equation (7)with respect to𝑎𝑘 (𝑘 = 1,… ,𝑚)

and 𝛽 to zeros, respectively. Then, one can solve for the
estimates through the following equations:
𝑛∑
𝑖=1

{
Δ𝑖𝐼(𝑇𝑖 = 𝑡𝑘)

𝑋𝑖𝑘

𝑋⊤
𝑖𝑘
𝑎𝑘

− 𝐼(𝑇𝑖 ≥ 𝑡𝑘)𝐸̂(𝜉𝑖) exp(𝛽
⊤𝑍𝑖𝑘)𝑋𝑖𝑘

}
= 0, for 𝑘 = 1,… ,𝑚, (8)

𝑛∑
𝑖=1

𝑚∑
𝑘=1

{
Δ𝑖𝐼(𝑇𝑖 = 𝑡𝑘) − 𝐼(𝑇𝑖 ≥ 𝑡𝑘)𝐸̂(𝜉𝑖)(𝑋

⊤
𝑖𝑘
𝑎𝑘) exp(𝛽

⊤𝑍𝑖𝑘)
}

𝑍𝑖𝑘 = 0. (9)

The dimension of the unknown parameters (𝑎1, … , 𝑎𝑚, 𝛽)

depends on 𝑚, which could be a large number when 𝑛 is
large or the censoring rate is low. Therefore, Equations (8)
and (9) are a system of high-dimensional nonlinear equa-
tions that is notoriously difficult to solve due to the curse
of dimensionality. For a special case, that is, 𝑋 is a vec-
tor of design variables for categories, there exist explicit
formulae for calculating the high-dimensional parameters
𝑎𝑘 (𝑘 = 1,… ,𝑚). See Web Appendix A for details. How-
ever, such explicit formulae do not exist for more general
scenarios; hence, we consider an alternative estimat-
ing equation approach to overcome the aforementioned
computational difficulties.

3.3 Estimating equations

Following Elashoff and Ryan (2004), we develop an ES
algorithm for model (1) in this section. We begin by
constructing a system of complete-data estimating equa-
tions based on model (6), which is equivalent to the
proposed model (1) under the frailty-induced transfor-
mations (2). The connection between the proposed ES
algorithm and the EM algorithm is discussed at the
end of this section. Note that the intensity for 𝑁𝑖(𝑡) is
𝑌𝑖(𝑡)𝜉𝑖 exp{𝛽

⊤𝑍𝑖(𝑡)}𝑋
⊤
𝑖
(𝑡)𝛼(𝑡) if 𝜉𝑖 is known. Let

𝑀𝑖(𝑡) = 𝑁𝑖(𝑡) − ∫
𝑡

0

𝑌𝑖(𝑠)𝜉𝑖 exp{𝛽
⊤
0 𝑍𝑖(𝑠)}𝑋

⊤
𝑖
(𝑠)𝑑𝐴0(𝑠),

where (𝛽0, 𝐴0) are the true values of (𝛽, 𝐴). It is
clear that 𝐸{𝑋𝑖(𝑡)𝑑𝑀𝑖(𝑡)} = 0 for any 0 ≤ 𝑡 ≤ 𝜏 and
𝐸{∫ 𝜏

0
𝑍𝑖(𝑡)𝑑𝑀𝑖(𝑡)} = 0. By treating 𝜉𝑖 as missing,

we consider the following complete-data estimating
equations:

𝑛∑
𝑖=1

𝑋𝑖(𝑡)
[
𝑑𝑁𝑖(𝑡) − 𝑌𝑖(𝑡)𝜉𝑖 exp{𝛽

⊤𝑍𝑖(𝑡)}𝑋
⊤
𝑖
(𝑡)𝑑𝐴(𝑡)

]
= 0

(0 ≤ 𝑡 ≤ 𝜏), (10)

𝑛∑
𝑖=1

∫
𝜏

0

𝑍𝑖(𝑡)
[
𝑑𝑁𝑖(𝑡) − 𝑌𝑖(𝑡)𝜉𝑖 exp{𝛽

⊤𝑍𝑖(𝑡)}𝑋
⊤
𝑖
(𝑡)𝑑𝐴(𝑡)

]
= 0. (11)

By the previous arguments that the nonparametric estima-
tor for Λ𝑋 is a step function with jump size 𝑋⊤(𝑡𝑘)𝑎𝑘 at 𝑡𝑘
(𝑘 = 1,… ,𝑚), it follows that Equations (10) and (11) can be
written as

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑𝑛

𝑖=1

{
Δ𝑖𝐼(𝑇𝑖 = 𝑡1) − 𝐼(𝑇𝑖 ≥ 𝑡1)𝜉𝑖(𝑋

⊤
𝑖1𝑎1) exp(𝛽

⊤𝑍𝑖1)
}
𝑋𝑖1

= 0

…∑𝑛

𝑖=1

{
Δ𝑖𝐼(𝑇𝑖 = 𝑡𝑚) − 𝐼(𝑇𝑖 ≥ 𝑡𝑚)𝜉𝑖(𝑋

⊤
𝑖𝑚𝑎𝑚) exp(𝛽

⊤𝑍𝑖𝑚)
}

𝑋𝑖𝑚 = 0∑𝑛

𝑖=1

∑𝑚

𝑘=1

{
Δ𝑖𝐼(𝑇𝑖 = 𝑡𝑘) − 𝐼(𝑇𝑖 ≥ 𝑡𝑘)𝜉𝑖(𝑋

⊤
𝑖𝑘
𝑎𝑘)

exp(𝛽⊤𝑍𝑖𝑘)
}
𝑍𝑖𝑘 = 0.

(12)

Write 𝜃 = (𝑎⊤1 , … , 𝑎⊤𝑚, 𝛽
⊤)⊤. We propose to estimate 𝜃

through an ES-type algorithm by treating 𝜉𝑖 as missing.
The ES algorithm iterates between an E-step, wherein
the functions of the complete data are replaced by their
expectations, and an S-step where these expected values
are substituted into the complete-data estimating equa-
tions (12), which are then solved. After specifying initial
values of the unknown parameters 𝜃, say 𝜃(0), the pro-
posed ES algorithm iterates between the following two
steps until convergence.
E-step. Evaluate the posterior means 𝐸̂(𝜉𝑖). When Δ𝑖 =

1, the posterior density of 𝜉𝑖 given the observed data (Δ𝑖 =
1, 𝑇𝑖, 𝑋𝑖, 𝑍𝑖) is proportional to 𝜉𝑖 exp(−𝜉𝑖𝑆𝑖1)𝑓(𝜉𝑖), where
𝑆𝑖1 = Δ𝑖

∑
𝑡𝑘≤𝑇𝑖 (𝑋

⊤
𝑖𝑘
𝑎𝑘) exp(𝛽

⊤𝑍𝑖𝑘). Hence, we obtain

𝐸̂(𝜉𝑖) = 𝐺
′
(𝑆𝑖1) −

𝐺
′′
(𝑆𝑖1)

𝐺′(𝑆𝑖1)
,

by taking the derivative twice of the equation
exp{−𝐺(𝑥)} = ∫ ∞

0
exp(−𝑥𝜉)𝑓(𝜉)𝑑𝜉, where 𝐺′(⋅)

and 𝐺′′(⋅) are the first and second derivatives of
𝐺(⋅), respectively. When Δ𝑖 = 0, the posterior den-
sity of 𝜉𝑖 given the observed data (Δ𝑖 = 0, 𝐶𝑖, 𝑋𝑖, 𝑍𝑖)

is proportional to exp(−𝜉𝑖𝑆𝑖2)𝑓(𝜉𝑖), where 𝑆𝑖2 =

(1 − Δ𝑖)
∑

𝑡𝑘≤𝐶𝑖 (𝑋
⊤
𝑖𝑘
𝑎𝑘) exp(𝛽

⊤𝑍𝑖𝑘). One can obtain
𝐸̂(𝜉𝑖) = 𝐺′(𝑆𝑖2). Therefore, the E-step can be summarized
as
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6 NING et al.

𝐸̂(𝜉𝑖) = Δ𝑖

{
𝐺′(𝑆𝑖1) −

𝐺′′(𝑆𝑖1)

𝐺′(𝑆𝑖1)

}
+ (1 − Δ𝑖)𝐺

′(𝑆𝑖2).

S-step. After replacing 𝜉 by 𝐸̂(𝜉𝑖), we solve Equation (12)
for 𝜃. To this end, we propose the following nonlinear
Gauss–Seidel method (Ortega & Rheinboldt, 1970; Ortega,
1972).
Step 1. Fix 𝛽, update 𝑎𝑘 (𝑘 = 1,… ,𝑚) by solving

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑𝑛

𝑖=1

{
Δ𝑖𝐼(𝑇𝑖 = 𝑡1) − 𝐼(𝑇𝑖 ≥ 𝑡1)𝐸̂(𝜉𝑖)(𝑋

⊤
𝑖1𝑎1) exp(𝛽

⊤𝑍𝑖1)
}

𝑋𝑖1 = 0

…∑𝑛

𝑖=1

{
Δ𝑖𝐼(𝑇𝑖 = 𝑡𝑚) − 𝐼(𝑇𝑖 ≥ 𝑡𝑚)𝐸̂(𝜉𝑖)(𝑋

⊤
𝑖𝑚𝑎𝑚)

exp(𝛽⊤𝑍𝑖𝑚)
}
𝑋𝑖𝑚 = 0.

(13)

Note that for fixed 𝛽, Equation (13) is a system of linear
equations with respect to 𝑎𝑘 (𝑘 = 1,… ,𝑚) and updating 𝑎𝑘
is independent of updating 𝑎𝑗 for 𝑘 ≠ 𝑗 (𝑘, 𝑗 = 1,… ,𝑚). In
particular, we have explicit formulae for updating 𝑎𝑘 (𝑘 =
1,… ,𝑚), that is,

𝑎𝑘 =
{ 𝑛∑

𝑖=1

𝐼(𝑇𝑖 ≥ 𝑡𝑘)𝐸̂(𝜉𝑖) exp(𝛽
⊤𝑍𝑖𝑘)𝑋𝑖𝑘𝑋

⊤
𝑖𝑘

}−1

{ 𝑛∑
𝑖=1

Δ𝑖𝐼(𝑇𝑖 = 𝑡𝑘)𝑋𝑖𝑘

}
, (14)

for 𝑘 = 1,… ,𝑚.
Step 2. Fix 𝑎1, … , 𝑎𝑚, we update 𝛽 by solving the

following equation using the Newton-Raphson method:

𝑛∑
𝑖=1

𝑚∑
𝑘=1

{
Δ𝑖𝐼(𝑇𝑖 = 𝑡𝑘) − 𝐼(𝑇𝑖 ≥ 𝑡𝑘)𝐸̂(𝜉𝑖)(𝑋

⊤
𝑖𝑘
𝑎𝑘) exp(𝛽

⊤𝑍𝑖𝑘)
}

𝑍𝑖𝑘 = 0.

Note that within the S-step, we iterate between Steps 1
and 2 until convergence. The S-step is declared convergent
when the sum of the absolute differences of the estimates
at two successive iterations is less than a small positive
number, say 10−3.
We iterate between the E- and S-steps until convergence

and denote the final estimates by 𝜃̂ = (𝑎̂⊤1 , … , 𝑎̂⊤𝑚, 𝛽
⊤)⊤.

A natural estimator of 𝐴(𝑡) is 𝐴̂(𝑡) =
∑

𝑡𝑘≤𝑡 𝑎̂𝑘 for 0 ≤ 𝑡 ≤
𝜏. Moreover, recall that 𝐴(𝑡) = ∫ 𝑡

0
𝛼(𝑠)𝑑𝑠, hence we can

estimate 𝛼(𝑡), 0 ≤ 𝑡 ≤ 𝜏 via a kernel estimator

𝛼̂(𝑡) =

𝑚∑
𝑘=1

ℎ−1𝐾

(
𝑡 − 𝑡𝑘
ℎ

)
𝑎̂𝑘,

where 𝐾(𝑥) is the kernel function and ℎ is the bandwidth.
Throughout this paper, we choose the Epanechnikov
kernel function, that is, 𝐾(𝑥) = 3

4
max{1 − 𝑥2, 0}.

The proposed ES algorithm has several desirable fea-
tures. First, a closed-form formula for computing 𝐸̂(𝜉𝑖) is
obtained in the E-step. Second, it avoids solving a large
system of nonlinear equations in the S-step because the
high-dimensional parameters 𝑎𝑘 (𝑘 = 1,… ,𝑚) are cal-
culated explicitly, while the low-dimensional parameter
𝛽 is updated via the Newton-Raphson method. Accord-
ingly, the proposed ES algorithm performs stably and
satisfactorily without calculating the inverse of any high-
dimensional matrices. Third, when 𝑋 is a vector of design
variables for categories, the corresponding ES algorithm
coincides with the EM algorithm proposed in Section 3.2
by observing that for fixed 𝛽, Equations (8) and (13) share
the same solution in terms of𝑎𝑘 (𝑘 = 1,… ,𝑚). This implies
that the proposed ES estimator is also efficient under this
special case. See Web Appendix B for detailed justifica-
tions. Similarly, it can be shown that the ES algorithm
coincides with the EM algorithm when 𝑋 ≡ 1, that is, 𝑞 =
1. Finally, we remark that Equation (13) can be consid-
ered as a weighted version of Equation (8), where each
participant 𝑖 is assigned weight 𝑋⊤

𝑖𝑘
𝑎𝑘.

3.4 Variance estimator

In this section, we provide easy-to-compute variance esti-
mators for both the parametric estimates 𝛽 and the non-
parametric estimates 𝐴̂(𝑡), 𝛼̂(𝑡). Note that 𝐸̂(𝜉𝑖) is a func-
tion of the observed data𝑖 and the unknownparameter 𝜃:
𝐸̂(𝜉𝑖) = 𝑔(𝑖 , 𝜃). With  the collection of 𝑖 (𝑖 = 1, … , 𝑛),
the proposed ES estimator is intrinsically equivalent to
solving the following observed-data estimating equation:
𝑈(, 𝜃) = 0, where 𝑈(, 𝜃) = (𝑈𝑎1 , … ,𝑈𝑎𝑚 ,𝑈𝛽),

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑈𝑎1
=
∑𝑛

𝑖=1

{
Δ𝑖𝐼(𝑇𝑖 = 𝑡1) − 𝐼(𝑇𝑖 ≥ 𝑡1)𝑔(𝑖 , 𝜃)(𝑋

⊤
𝑖1𝑎1)

exp(𝛽⊤𝑍𝑖1)
}
𝑋𝑖1

…

𝑈𝑎𝑚
=
∑𝑛

𝑖=1

{
Δ𝑖𝐼(𝑇𝑖 = 𝑡𝑚) − 𝐼(𝑇𝑖 ≥ 𝑡𝑚)𝑔(𝑖 , 𝜃)(𝑋

⊤
𝑖𝑚𝑎𝑚)

exp(𝛽⊤𝑍𝑖𝑚)
}
𝑋𝑖𝑚

𝑈𝛽 =
∑𝑛

𝑖=1

∑𝑚

𝑘=1

{
Δ𝑖𝐼(𝑇𝑖 = 𝑡𝑘) − 𝐼(𝑇𝑖 ≥ 𝑡𝑘)𝑔(𝑖 , 𝜃)

(𝑋⊤
𝑖𝑘
𝑎𝑘) exp(𝛽

⊤𝑍𝑖𝑘)
}
𝑍𝑖𝑘.

(15)

Note that 𝑈𝑎1, … ,𝑈𝑎𝑚 ,𝑈𝛽 also depend on the observed
data  and the unknown parameter 𝜃. Here, we compress
the notation when there is no confusion. From Equa-
tion (15), one can easily note that𝑈(, 𝜃) can be expressed
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NING et al. 7

as the sum of independent terms:

𝑈(, 𝜃) =
𝑛∑
𝑖=1

𝑈𝑖(𝑖 , 𝜃).

Let 𝐷(, 𝜃) be the derivative of 𝑈(, 𝜃) with respect to 𝜃.
The covariance matrix of 𝜃̂ is consistently estimated by

𝐷(, 𝜃)−1{ 𝑛∑
𝑖=1

𝑈𝑖(𝑖 , 𝜃)𝑈
⊤
𝑖
(𝑖 , 𝜃)

}
{𝐷(, 𝜃)−1}⊤|||𝜃=𝜃̂.

(16)
Therefore, the variance–covariancematrix of 𝛽 can be con-
sistently estimated by the 𝑑 × 𝑑 lower right-hand corner of
Equation (16). The variance covariance matrix of 𝑎̂𝑘 (𝑘 =
1,… ,𝑚) can be consistently estimated by the (𝑞𝑚) × (𝑞𝑚)

upper left-hand corner of Equation (16).
In addition, recall that 𝐴̂(𝑡) =

∑
𝑡𝑘≤𝑡 𝑎̂𝑘 and 𝛼̂(𝑡) =∑𝑚

𝑘=1
ℎ−1𝐾(

𝑡−𝑡𝑘

ℎ
)𝑎̂𝑘 for 0 ≤ 𝑡 ≤ 𝜏, such that the variance

for 𝐴̂(𝑡) and 𝛼̂(𝑡) are

Var
{
𝐴̂(𝑡)

}
=

∑
𝑡𝑘≤𝑡

∑
𝑡𝑗≤𝑡

Cov(𝑎̂𝑘, 𝑎̂𝑗),

Var
{
𝛼̂(𝑡)

}
=

𝑚∑
𝑘=1

𝑚∑
𝑗=1

ℎ−2𝐾

(
𝑡 − 𝑡𝑘
ℎ

)
𝐾

(
𝑡 − 𝑡𝑗

ℎ

)
Cov(𝑎̂𝑘, 𝑎̂𝑗).

Variance estimators are obtained by replacing Cov(𝑎̂𝑘, 𝑎̂𝑗)
by Ĉov(𝑎̂𝑘, 𝑎̂𝑗) in the above expressions.

3.5 Asymptotic properties

In this subsection, we present the asymptotic
properties of the proposed ES estimator. Let
𝜙(𝑡) = 𝐺′(𝑡), 𝜓(𝑡) = 𝐺′′(𝑡)∕𝐺′(𝑡) and 𝜌(𝑡; 𝛽, 𝐴) =

∫ 𝑡

0
𝑌(𝑠) exp{𝛽⊤𝑍(𝑠)}𝑋⊤(𝑠)𝑑𝐴(𝑠). Hence, the pos-

terior mean of 𝜉 can be written as 𝑔(𝜏; 𝛽, 𝐴) =

𝜙(𝜌(𝜏; 𝛽, 𝐴)) − Δ𝜓(𝜌(𝜏; 𝛽, 𝐴)).
Let 𝑃 denote the true probabilitymeasure andℙ𝑛 denote

the empirical measure. In addition, let 𝜃 = (𝛽,𝐴) be the
parameters of interest and 𝜃0 = (𝛽0, 𝐴0) be the true values
of the parameters. Then, the proposed ES estimator 𝜃̂ =
(𝛽, 𝐴̂) is a Z-estimator solving the following observed-data
estimating equation

ℙ𝑛Φ(𝛽,𝐴)(𝑡) ≡ ℙ𝑛

(
Φ1(𝛽, 𝐴)

Φ2(𝛽, 𝐴)(𝑡)

)
= 0,

for 0 ≤ 𝑡 ≤ 𝜏, where

Φ1(𝛽, 𝐴) = ∫
𝜏

0

[
𝑍(𝑡)𝑑𝑁(𝑡) − 𝑌(𝑡) exp{𝛽⊤𝑍(𝑡)}

𝑔(𝜏; 𝛽, 𝐴)𝑍(𝑡)𝑋⊤(𝑡)𝑑𝐴(𝑡)
]
,

Φ2(𝛽, 𝐴)(𝑡) = 𝑋(𝑡)𝑑𝑁(𝑡) − 𝑌(𝑡) exp{𝛽⊤𝑍(𝑡)}

𝑔(𝜏; 𝛽, 𝐴)𝑋(𝑡)𝑋⊤(𝑡)𝑑𝐴(𝑡).

Let ℎ be a function in 𝐵𝑉1[0, 𝜏], where 𝐵𝑉1[0, 𝜏] denotes
the set of functions with total variation bounded by 1 on
[0, 𝜏]. Define

Φ2(𝛽, 𝐴)[ℎ] = ∫
𝜏

0

ℎ(𝑡)
[
𝑋(𝑡)𝑑𝑁(𝑡) − 𝑌(𝑡) exp{𝛽⊤𝑍(𝑡)}

𝑔(𝜏; 𝛽, 𝐴)𝑋(𝑡)𝑋⊤(𝑡)𝑑𝐴(𝑡)
]
.

Similar to Gao et al. (2017) and van der Vaart and Well-
ner (1996, Section 3.3.1), the proposed ES estimator (𝛽, 𝐴̂)
is equivalent to the root of the estimating equation:

ℙ𝑛Φ(𝛽,𝐴)[ℎ] ≡ ℙ𝑛

(
Φ1(𝛽, 𝐴)

Φ2(𝛽, 𝐴)[ℎ]

)
= 0,

for all ℎ ∈ 𝐵𝑉1[0, 𝜏].
Write 𝚿(𝜃) = 𝑃Φ(𝛽,𝐴)[ℎ] and 𝚿𝑛(𝜃) = ℙ𝑛Φ(𝛽,𝐴)[ℎ].

Note that 𝚿(𝜃) and 𝚿𝑛(𝜃) are actually ℎ-dependent. Rig-
orously speaking, we should write𝚿(𝜃)[ℎ] = 𝑃Φ(𝛽,𝐴)[ℎ]

and𝚿𝑛(𝜃)[ℎ] = ℙ𝑛Φ(𝛽,𝐴)[ℎ], but in the rest of the paper,
we suppress the letter ℎ when there is no confusion.
The proposed ES estimator is a Z-estimator that satis-
fies 𝚿𝑛(𝜃̂) = 0. To establish the asymptotic properties, we
assume the following regularity conditions:
Condition 1. With probability one, 𝑋(⋅) and 𝑍(⋅) have

bounded total variation in [0, 𝜏].
Condition 2. Let  be a compact set of 𝑑 and 𝐵𝑉[0, 𝜏]

be the class of functions with bounded total variation
over [0, 𝜏]. The true parameter (𝛽0, 𝐴0) belongs to  ×

𝐵𝑉𝑞[0, 𝜏] with 𝛽0 an interior point of  and 𝐴0(𝑡) =

(𝐴01(𝑡), … , 𝐴0𝑞(𝑡))
⊤ is continuous over [0, 𝜏] with 𝐴0(0) =

0. Here, 𝐵𝑉𝑞[0, 𝜏] denotes the product space 𝐵𝑉[0, 𝜏] ×
⋯ × 𝐵𝑉[0, 𝜏].
Condition 3. With probability one, there exists a posi-

tive constant 𝜀 such that 𝑃(𝑌(𝜏) = 1 ∣ 𝑋(⋅), 𝑍(⋅)) > 𝜀 and
𝑃𝑁2(𝜏) < ∞. If there exists a vector 𝛾 and a determin-
istic function 𝛾0(𝑡) such that 𝛾0(𝑡) + 𝛾⊤𝑋(𝑡) = 0 with
probability one, then 𝛾0(𝑡) = 0 and 𝛾 = 0 for any 𝑡 ∈ [0, 𝜏].
Condition 4. The transformation function 𝐺 is thrice

continuously differentiable on [0,∞) with 𝐺(0) = 0,
𝐺′(𝑥) > 0 and 𝐺(∞) = ∞.
Condition 5. Let 𝚿̇𝜃0 be the Fréchet derivative of 𝚿(𝜃)

with respect to 𝜃 at 𝜃 = 𝜃0. See Web Appendix C for
detailed expressions of 𝚿̇𝜃0 . We assume that 𝚿̇𝜃0 is an
invertible map.

Remark 4. Conditions 1 and 2 state the boundedness
of the covariates and the compactness of the Euclidean
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8 NING et al.

parameter space, which are conventional conditions used
in most regression analyses. Condition 3 ensures the exis-
tence and uniqueness of the jump sizes in Equation (14).
Condition 4 ensures that the transformation function 𝐺

is strictly increasing on [0,∞). Condition 5 is a classical
condition for Z-estimators.

Theorem 1. Under Conditions 1 − 5, the proposed ES
estimator (𝛽, 𝐴̂) is strongly consistent to (𝛽0, 𝐴0).

Theorem 2. Under Conditions 1 − 5,
√
𝑛(𝛽 − 𝛽0, 𝐴̂ − 𝐴0)

converges weakly to a zero-mean Gaussian process in the
metric space𝑑 × lin

𝑞
(𝐵𝑉1[0, 𝜏]).

Here, we let lin(𝐵𝑉1[0, 𝜏]) be the closed linear span for
linear functionals of 𝐵𝑉1[0, 𝜏]. For each 𝑗 (𝑗 = 1,… , 𝑞),
𝐴𝑗 is contained in the Banach space lin(𝐵𝑉1[0, 𝜏]),
where 𝐴𝑗[ℎ] = ∫ ℎ(𝑡)𝑑𝐴𝑗(𝑡) for ℎ ∈ 𝐵𝑉1[0, 𝜏]. Thus,
𝐴 = (𝐴1, … ,𝐴𝑞)

⊤ is contained in the Banach space

lin
𝑞
(𝐵𝑉1[0, 𝜏]). Here, lin

𝑞
(𝐵𝑉1[0, 𝜏]) stands for the

product space lin(𝐵𝑉1[0, 𝜏]) ×⋯ × lin(𝐵𝑉1[0, 𝜏]).
Detailed proofs of the above theorems are presented
in Web Appendix C.

4 SIMULATION STUDIES

We carried out extensive simulation studies to evaluate
the finite-sample performance of the proposed estimation
and inference procedures. Suppose that the failure time
𝑇 follows the Cox–Aalen transformation model with the
cumulative hazard function

Λ(𝑡 ∣ 𝑋(⋅), 𝑍(⋅)) = 𝐺

[
∫

𝑡

0

exp{𝛽1𝑍1(𝑠) + 𝛽2𝑍2}𝑑Λ𝑋(𝑠)

]
.

Here, 𝑍1(𝑡) = 𝐵1𝐼(𝑡 ≤ 𝑉) + 𝐵2𝐼(𝑡 > 𝑉) is a time-
dependent covariate, where 𝐵1 and 𝐵2 are independent
Ber(0.5), 𝑉 ∼ Unif(0, 3), and 𝑍2 ∼ Unif(0, 1) is a time-
independent covariate. We set 𝛽1 = 0.5, 𝛽2 = −0.5,
and consider four different configurations for
Λ𝑋(𝑠) = ∫ 𝑠

0
𝑋⊤(𝑣)𝑑𝐴(𝑣), 𝐴(𝑡) = (𝐴1(𝑡), … , 𝐴𝑞(𝑡))

⊤:
Scenario 1. 𝑋 = (1, 𝑋2)

⊤ with 𝑋2 ∼ Ber(0.4), 𝐴1(𝑡) =

log(1 + 𝑡∕4) and 𝐴2(𝑡) = 0.1𝑡.
Scenario 2. 𝑋 = (1, 𝑋2)

⊤ with 𝑋2 ∼ Unif(0, 1), 𝐴1(𝑡) =

log(1 + 𝑡∕4) and 𝐴2(𝑡) = 0.1𝑡.
Scenario 3. 𝑋(𝑡) = (1, 𝑋2(𝑡))

⊤ with 𝑋2(𝑡) = 𝐵3 + 𝐵4𝑡,
where 𝐵3 ∼ Unif(1, 2) and 𝐵4 ∼ Unif(0.1, 0.5), 𝐴1(𝑡) =

log(1 + 𝑡∕4) and 𝐴2(𝑡) = 0.1𝑡.
Scenario 4. Let 𝐷 be a categorical variable that

takes values in {1, 2, 3} with equal probability. 𝑋 =

(1, 𝑋2, 𝑋3)
⊤, where𝑋2 = 𝐼(𝐷 = 2), 𝑋3 = 𝐼(𝐷 = 3),𝐴1(𝑡) =

log(1 + 𝑡∕4), 𝐴2(𝑡) = 0.1𝑡 and 𝐴3(𝑡) = 0.05𝑡.
For the transformation functions, we consider the

class of logarithmic transformations 𝐺(𝑥) = 𝑟−1 log(1 +

𝑟𝑥) with 𝑟 = 0, 0.5 and 1, where 𝑟 = 0 specifies the Cox–
Aalen model. For all setups, we let 𝜏 = 1 be the duration
of the study. For each study participant, we generate
one censoring time 𝐶 ∼ exponential(0.5). We set Δ = 1 if
𝑇 ≤ min(𝐶, 𝜏), and 0 otherwise. This process yields about
75% − 85% right-censored observations for 𝑟 = 0, 0.5, and
1. For each dataset, we applied the proposed ES algorithm
by setting the initial value of 𝛽 to 0 and the initial value
of 𝑎𝑘 to be (1∕𝑚, 0, … , 0) for each 𝑘 = 1,… ,𝑚. We also
tried other initial values, yielding almost identical results.
We set 𝑛 = 200, 500, or 800, and all simulation results are
based on 1000 replicates.
Table 1 summarizes the results for estimation of 𝛽1 and

𝛽2 for all scenarios. Despite the high censoring percentage,
from Table 1, one can see that the proposed procedures
perform well in several ways: (i) the estimators are vir-
tually unbiased; (ii) the estimated standard error is fairly
close to the empirical standard error; (iii) the empirical
coverage probability of 95% confidence intervals are all
close to the nominal 95% level; (iv) when the sample size
increases, the bias, and the variability of the parameter
estimator, decreases. Thus, our proposed estimation pro-
cedures are reliable for various Cox–Aalen transformation
models.
Figure 1 shows the estimation results for the cumula-

tive regression functions 𝐴(⋅) in Scenario 1. The proposed
estimators are again virtually unbiased and the estimated
curves are able to capture the shapes of the true cumula-
tive regression functions very well; the estimated standard
errors are close to the empirical standard errors; and the
confidence intervals have reasonably accurate coverage
probabilities. To save space, estimation results for 𝛼(⋅) via
the kernel smoothing approach with bandwidth ℎ = 0.1

are provided in Web Appendix D for Scenario 1. In addi-
tion, estimation results for 𝐴(⋅) and 𝛼(⋅) under Scenarios
2 and 4 are also presented in Web Appendix D. These
results further confirm the satisfactory performance of our
proposed method in various numerical settings. We also
conducted simulation studies to investigate the robustness
of the proposed estimator under themisspecification of the
𝐺 function. The setups were the same as Scenario 3, and
simulation results are displayed in Web Appendix D. The
results suggested that the misspecification of the transfor-
mation function led to biased estimates and lower coverage
probabilities than the nominal levels.
Moreover, we demonstrate the superiority of our pro-

posed model over Zeng and Lin’s model in one simulation
example. Specifically, we generated the data from our
proposed Cox–Aalen transformation model, where one
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NING et al. 9

TABLE 1 Simulation results for estimation of the regression parameters under Scenarios 1 to 4.

𝜷𝟏 = 𝟎.𝟓 𝜷𝟐 = −𝟎.𝟓

𝒓 𝒏 Bias SE SEE CP Bias SE SEE CP
Scenario 1

0 200 0.003 0.350 0.340 0.950 −0.014 0.587 0.574 0.947
500 0.007 0.212 0.212 0.952 −0.005 0.354 0.359 0.956
800 −0.003 0.172 0.167 0.948 −0.001 0.279 0.285 0.951

0.5 200 −0.001 0.380 0.369 0.949 −0.014 0.639 0.630 0.950
500 0.007 0.227 0.230 0.961 −0.002 0.388 0.395 0.957
800 −0.004 0.185 0.181 0.951 −0.001 0.302 0.313 0.951

1 200 −0.002 0.402 0.402 0.956 −0.020 0.690 0.699 0.957
500 0.008 0.246 0.252 0.957 0.002 0.415 0.437 0.968
800 −0.005 0.198 0.198 0.946 −0.003 0.323 0.347 0.957

Scenario 2
0 200 0.004 0.337 0.334 0.954 −0.002 0.574 0.563 0.942

500 0.006 0.208 0.209 0.962 −0.004 0.348 0.353 0.960
800 −0.002 0.169 0.164 0.945 −0.006 0.275 0.280 0.949

0.5 200 −0.002 0.363 0.362 0.951 −0.014 0.624 0.620 0.948
500 0.007 0.223 0.227 0.954 −0.000 0.384 0.389 0.963
800 −0.003 0.184 0.179 0.946 −0.003 0.300 0.308 0.948

1 200 −0.005 0.389 0.396 0.957 −0.019 0.672 0.690 0.958
500 0.007 0.240 0.248 0.957 0.002 0.412 0.432 0.965
800 −0.004 0.197 0.195 0.944 −0.005 0.325 0.342 0.961

Scenario 3
0 200 0.005 0.288 0.287 0.958 −0.009 0.494 0.486 0.947

500 0.002 0.180 0.180 0.949 −0.004 0.305 0.305 0.953
800 −0.001 0.146 0.141 0.949 −0.009 0.245 0.241 0.950

0.5 200 0.001 0.319 0.321 0.954 −0.009 0.552 0.555 0.953
500 0.001 0.198 0.202 0.956 −0.004 0.348 0.348 0.953
800 −0.001 0.160 0.159 0.947 −0.009 0.276 0.276 0.942

1 200 0.010 0.343 0.365 0.964 −0.002 0.624 0.647 0.962
500 −0.002 0.216 0.229 0.959 −0.002 0.380 0.403 0.963
800 −0.006 0.175 0.180 0.963 −0.003 0.305 0.318 0.960

Scenario 4
0 200 0.010 0.339 0.334 0.951 −0.011 0.572 0.562 0.938

500 0.005 0.211 0.209 0.948 −0.003 0.348 0.353 0.958
800 −0.000 0.169 0.164 0.948 −0.000 0.280 0.279 0.948

0.5 200 0.007 0.366 0.362 0.946 −0.014 0.615 0.619 0.947
500 0.003 0.228 0.227 0.950 −0.005 0.378 0.389 0.968
800 0.001 0.183 0.179 0.950 −0.001 0.308 0.307 0.949

1 200 0.002 0.389 0.396 0.951 −0.008 0.657 0.690 0.960
500 0.002 0.244 0.248 0.957 −0.002 0.412 0.433 0.967
800 0.001 0.195 0.196 0.956 0.000 0.330 0.341 0.954

Note: Bias, bias of the parameter estimator; SE, empirical standard error of the parameter estimator; SEE, mean of the standard error estimator; CP, empirical
coverage percentage of the 95% confidence interval.
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10 NING et al.
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F IGURE 1 Estimation results for (a)
𝐴1(𝑡) = log(1 + 𝑡∕4) and (b) 𝐴2(𝑡) = 0.1𝑡 in
Scenario 1, under the logarithmic
transformation 𝐺(𝑥) = 𝑟−1 log(1 + 𝑟𝑥) with
𝑟 = 0. The dashed and solid lines are for
datasets with 𝑛 = 500 and 𝑛 = 800,
respectively. Bias, SE, SEE, and CP stand,
respectively, for the bias, empirical standard
error, mean of the standard error estimator,
and empirical coverage probability of the 95%
confidence interval.

covariate has a multiplicative effect, and the other has an
additive effect. If we falsely assume that both covariates
have multiplicative effects and fit Zeng and Lin’s model,
wewill obtain biased estimates of the survival function and
cumulative hazard. Thus, our proposed model can better
capture complex hazard functions. See Web Appendix D
for details.

5 AN HIV PREVENTION STUDY
EXAMPLE

In this section, we apply the proposed model and methods
to two harmonized randomized trials, HIV Vaccine Tri-
als Network (HVTN) 704/HIV Prevention Trials Network
(HPTN) 085 and HVTN 703/HPTN 081 (Corey et al., 2021),
designed to determine whether a broadly neutralizing
monoclonal antibody (bnAb) can prevent the acquisi-
tion of human immunodeficiency virus type 1 (HIV). The
HVTN704/HPTN085 trial enrolled 2687menwhohave sex
with men and transgender persons in the Americas and
Europe, and HVTN 703/HPTN 081 enrolled 1924 females

in sub-Saharan Africa. For each trial, HIV uninfected par-
ticipants were randomly assigned in 1:1:1 ratio to receive
infusions of a bnAb (VRC01) at a dose of 10 mg/kg of body
weight (low-dose group), VRC01 at 30 mg/kg (high-dose
group) or saline placebo, administered at 8-week intervals
for 10 total infusions. The primary efficacy endpoint was
diagnosis of HIV infection by the week 80 trial visit, and
HIV testing was conducted at each 4-week trial visit start-
ing at week 0. For participants acquiring HIV infection,
the diagnosis date was determined by the adjudicated diag-
nosis date based on validated assays (Corey et al., 2021).
Participant follow-up is right-censored by theminimum of
their last negative HIV sample collection date and 𝜏 = 85.9

weeks (Corey et al., 2021). Therefore, the observed data
consist of exact and right-censored observations.
Among the 4, 559 HIV negative participants from both

trials, 1, 401 are in theU.S. and Switzerland, 1, 249 in Brazil
and Peru, 1, 009 in South Africa, and 900 in other sub-
Saharan African countries (Switzerland was pooled with
the U.S. given few participants in Switzerland). We ana-
lyze the two trials pooled together, which is valid given
the harmonized protocols such that essentially the study
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F IGURE 2 Kaplan–Meier plot for four regions in the full
cohort. Here, “USAS”, “BP”, “SA,” and “Other SSA” represent USA
and Switzerland, Brazil and Peru, South Africa, and other
sub-Saharan African countries, respectively.

is one trial in two distinct study populations. There were
a total of 174 HIV infection diagnosis endpoints in the
two trials pooled, including 60 out of 1, 520 participants
in the low-dose group, 47 out of 1, 520 in the high-dose
group, and 67 out of 1519 in the placebo group. The num-
bers of HIV infection diagnosis endpoints by region are
reported in Web Appendix E. Participants were catego-
rized by age (in years old) into four groups, [17, 20],
[21, 30], [31, 40], and [41, 52], with 540, 2651, 1102, and 266
participants, respectively.
Figure 2 reveals that the risk of HIV infection diagno-

sis in different regions crosses over. Therefore, without
imposing proportional hazards for different regions, we
consider the following Cox–Aalen transformation model
to assess the association between treatment assignment,
age, and regionwith the time since the first infusion toHIV
infection diagnosis:

Λ(𝑡 ∣ 𝑋, 𝑍) = 𝐺
{
∫

𝑡

0

exp(𝛽⊤𝑍)𝑑Λ𝑋(𝑠)
}
,

where 𝛽 is the unknown regression coefficients
and Λ𝑋(𝑠) = ∫ 𝑠

0
{𝑋⊤𝛼(𝑣)}𝑑𝑣 = 𝑋⊤𝐴(𝑠) with 𝐴(𝑠) =

(𝐴1(𝑠), … ,𝐴4(𝑠))
⊤. Here, 𝑍 = (𝑍1, 𝑍2, 𝑍3, 𝑍4, 𝑍5)

⊤, where
𝑍1 and 𝑍2 are indicators of being assigned to the low-dose
and high-dose groups, respectively, with the placebo
group as the reference group; 𝑍3, 𝑍4, 𝑍5 are indicators of
the age groups [21, 30], [31, 40], and [41, 52], respectively,
with [17, 20] as the reference age group. In addition,
let 𝑋 = (1, 𝑋2, 𝑋3, 𝑋4)

⊤, where 𝑋2, 𝑋3, 𝑋4 are indicators
of participants from Brazil and Peru, South Africa, and
other sub-Saharan African countries, respectively. The
participants from USA and Switzerland are considered as
the reference group.
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F IGURE 3 Estimated baseline cumulative hazard function for
four regions under the logarithmic transformation
𝐺(𝑥) = 𝑟−1 log(1 + 𝑟𝑥) with 𝑟 = 0. Here, “USAS”, “BP”, “SA” and
“Other SSA” represent USA and Switzerland, Brazil and Peru, South
Africa, and other sub-Saharan African countries, respectively.

We conducted the analysis using the class of logarith-
mic transformations 𝐺(𝑥) = 𝑟−1 log(1 + 𝑟𝑥), with 𝑟 values
ranging from 0 to 3 with an increment of 0.1. The 𝑟 value
thatmaximizes the log-likelihood function evaluated at the
final parameter estimates was selected. The log-likelihood
is maximized at 𝑟 = 0, though the values do not change
greatly for different values of 𝑟 due to a high censoring
rate (about 96.2%); this phenomenon is verified in our
simulation studies (see Web Appendix E for details).
The lower panel of Table 2 shows the regression param-

eter estimates for the selected transformation function
(𝑟 = 0). High-dose VRC01 significantly lowers the risk of
HIV infection diagnosis, while low-dose VRC01 does not.
The model fit also shows a significant association between
older age and a lower risk of HIV infection diagnosis.
Figure 3 displays the estimated baseline cumulative hazard
function Λ̂(𝑡 ∣ 𝑋, 𝑍 = 0) for the four different regions. The
risk of HIV infection diagnosis is the highest in Brazil and
Peru and lowest in the U.S. and Switzerland. The estimates
for South Africa and other sub-Saharan African countries
cross; in particular, South Africa has a lower risk at early
times after the first infusion but a higher risk at later times.
In addition, Figure 3 shows that the HIV infection diagno-
sis hazards are not proportional across geographic regions.
Figure 4 plots the estimates of conditional survival func-
tions at sixteen different combinations of covariates: four
age groups crossed with four regions. This figure further
confirms our findings above. In Web Appendix E, we also
report the analysis results under other values of 𝑟 and
observe the same patterns.
The four other panels of Table 2 (upper panels) show

results from Zeng and Lin’s model fit to each of the four
geographic regions separately; thismethodwas not applied
to the full cohort (pooled) data because it cannot flexi-
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12 NING et al.

TABLE 2 Regression analysis results for the HIV trials from Zeng and Lin’s model fit to each of the four geographic regions separately
and the proposed Cox–Aalen transformation model based on the full cohort data with the logarithmic transformation 𝐺(𝑥) = 𝑟−1 log(1 + 𝑟𝑥)

with 𝑟 = 0.

USA/Switzerland Brazil/Peru
Covariates Est SE 𝒑-Value Est SE 𝒑-Value
Low-dose −0.107 0.484 0.825 −0.167 0.276 0.545
High-dose −0.437 0.524 0.404 −0.279 0.283 0.325
21–30 −0.454 0.630 0.472 −0.525 0.262 0.045
31–40 −2.709 1.141 0.018 −1.283 0.396 0.001
41–52 −1.152 0.903 0.202 −16.859 1.668 <0.001

South Africa Other SSA
Covariates Est SE 𝒑-Value Est SE 𝒑-Value
Low-dose −0.025 0.354 0.943 −0.080 0.400 0.842
High-dose −0.392 0.392 0.317 −0.509 0.449 0.258
21–30 −0.187 0.380 0.623 −0.480 0.498 0.335
31–40 −0.954 0.601 0.112 −0.719 0.586 0.220
41–52 −13.867 2.366 <0.001 −13.871 2.626 <0.001

The proposed model
Covariates Est SE p-value
Low-dose −0.108 0.178 0.542
High-dose −0.363 0.190 0.056
21–30 −0.429 0.187 0.022
31–40 −1.219 0.274 <0.001
41–52 −1.989 0.721 0.006

Note: Est and SE stand for the estimates of the regression parameters and the estimated standard errors, respectively. “Other SSA” is for other sub-Saharan
African countries. “USA/Switzerland”, “Brazil/Peru”, “South Africa”, and “Other SSA” correspond to the estimation results by fitting Zeng and Lin’s model to
each geographic region. “The Proposed Model” corresponds to the estimation results when fitting the proposed Cox–Aalen transformation models to the full
cohort data.

bly model the differences in baseline cumulative hazards
and the diagnostics support lack of fit. In these results, the
p-values for the effect of high-dose VRC01 markedly
increase, and the coefficient estimates for the age group
[41, 52] are unstable because there are very few HIV infec-
tion diagnosis endpoints in this age group in the three
regions Brazil and Peru, South Africa, and other sub-
Saharan African countries. Therefore, the results from
the Cox–Aalen transformation modeling—which could
be based on the full cohort data through flexible speci-
fications of the baseline cumulative hazard functions—
provide new insights with improved precision and power
beyond insights achieved from the application of Zeng and
Lin’s model.

6 DISCUSSION

In this paper, we proposed a class of semiparametric Cox–
Aalen transformation models that includes Zeng and Lin’s
model (Zeng & Lin, 2006; Zeng et al., 2016) and the Cox–
Aalen model (Scheike & Zhang, 2002) as special cases. By
considering the class of frailty-induced transformations,

we successfully developed a fast and stable ES algorithm
to estimate the parametric andnonparametric components
of the proposed model along with easy-to-compute vari-
ance estimators. In addition, the asymptotic properties of
our proposed estimators are rigorously studied. Elashoff
and Ryan (2004) pointed out that an ES algorithm can be
regarded as a block Newton–Gauss–Seidel algorithm (see
Ortega 1972, p. 146). Following Ortega (1972, p. 147), an ES
algorithm converges locally to the solution, 𝜃̂, of 𝑈(𝜃) = 0

if the Jacobian matrix 𝐷 = 𝜕𝑈∕𝜕𝜃 is nonsingular at 𝜃 = 𝜃̂

and the largest eigenvalue of𝐷−1(𝜃̂) is less than 1. For gen-
eral estimating equations, the two conditions above are
difficult to verify in advance, especially for the second con-
dition. Nevertheless, the matrix 𝐷 is needed to calculate
the variance of 𝜃̂ in Equation (16), and hence one can check
the required conditions numerically.
In real-data applications, we ascertain whether a covari-

ate has a multiplicative or additive effect based on the
following criteria. First, we may employ the underlying
biological, physical meaning, or other domain knowl-
edge for decision-making. Second, initial data exploration
can be performed for each covariate, such as drawing
the Kaplan–Meier (KM) plot. If the KM curves cross,
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F IGURE 4 Estimated survival functions by considering different combinations of covariates under the proposed model with the
transformation 𝐺(𝑥) = 𝑟−1 log(1 + 𝑟𝑥) with 𝑟 = 0. Here, “Age1,” “Age2,” “Age3,” and “Age4” stand for the age groups, [17, 20], [21, 30],
[31, 40], and [41, 52], respectively. “USAS,” “BP,” “SA,” and “Other SSA” represent USA and Switzerland, Brazil and Peru, South Africa, and
other sub-Saharan African countries, respectively.

this covariate should be modeled additively. Third, sim-
ilar to Qu and Sun (2019), and Yu et al. (2019), we
may employ some Akaike’s Information Criteria (AIC) or
Bayesian Information Criteria (BIC)-based procedures. In
particular, all possible combinations of covariate effects
will be examined. However, it is easy to see that this is
inefficient when there are many covariates. In addition,
Scheike and Zhang (2003) proposed supremum tests to
determine themultiplicative and additive parts of the Cox–
Aalen model. It is worthwhile to investigate if similar
testing procedures can be constructed for our proposed
model.More theoretical and numerical studies are needed,
which we leave for future work.

Indeed, the outlined procedures for determining the
covariates for the multiplicative or additive components
are valid for a given class of the Cox–Aalen transformation
model. In practice, when the KM curves corresponding to
different values or groups of values of a certain covariate,
say 𝑋, cross, the effects of this covariate are not necessar-
ily additive. In addition to the possibility that the effect
of 𝑋 is additive, there are a number of ways that the pro-
portionality can fail, for example, 𝑋 not as a part of 𝑍
under the Cox–Aalen transformation model. For exam-
ple, the effect of 𝑋 could be time-varying as in the Cox
model with time-varying regression coefficients studied
by Cai and Sun (2003). In another scenario, the contribu-
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14 NING et al.

tions from the additive components and the multiplicative
components of the model may not be in the multiplica-
tive form. In addition to choosing the right covariates for
the multiplicative and additive components of the model,
mis-specifying the transformation function can result in
erroneous inferences.
Assessing the adequacy of the proposed model is

crucial because model misspecification affects the valid-
ity of inference and prediction accuracy. For Zeng and
Lin’s model, Chen et al. (2012) considered appropri-
ate time-dependent residuals and constructed various
graphical and numerical procedures for model assess-
ment. In our analysis of the HIV prevention trial data,
we use the log-likelihood to select the transformation
function, even though the log-likelihood surface is rel-
atively flat. Similar to Chen et al. (2012), we suggest
constructing the cumulative sums of residuals over
the argument of the transformation function, that is,
𝑊(𝑥, 𝑡) = 𝑛−1∕2

∑𝑛

𝑖=1
∫ 𝑡

0
𝐼(∫ 𝑢

0
𝑌𝑖(𝑠)e𝛽

⊤𝑍𝑖(𝑠)𝑋⊤
𝑖
(𝑠)𝑑𝐴̂(𝑠) ≤

𝑥)𝑑𝑀𝑖(𝑢; 𝛽, 𝐴̂) to check the transformation form, where
𝑀𝑖(𝑡; 𝛽, 𝐴) = 𝑁𝑖(𝑡) − 𝐺{∫ 𝑡

0
𝑌𝑖(𝑠)e𝛽

⊤𝑍𝑖(𝑠)𝑋⊤
𝑖
(𝑠)𝑑𝐴(𝑠)}. A

thorough theoretical and numerical investigation of
model misspecification is still needed for the proposed
model. We are currently pursuing this direction.
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