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ABSTRACT 
 
 

 JASON RUSSELL RINES.  An argument for the use of computer simulated models 
in philosophy. (Under the direction of DR. MARVIN CROY) 

 
 
 This thesis will attempt to show how computer simulated models can act as a tool 

for philosophers.  To accomplish this goal, this thesis will be broken down into six 

sections.  The first three sections will go into more detail regarding the nature of the term 

‘computer simulated model.’  They will discuss the history of computer simulated 

models, outline the process of constructing computer simulated models, and give context 

for the current use of computer simulated models in science.  These sections will rely 

heavily on the work of Eric Winsberg to give a proper understanding of the functions of 

computer simulated models.  The forth section will give a historical overview of different 

philosophical methods, including the dialectical method, Conceptual Analysis, and the 

work of Paul Churchland with Artificial Neural Networks.  This section will also attempt 

to show how these philosophical methods relate to computer simulated models.  The fifth 

section will discuss how American Pragmatism provides a positive framework for the 

utilization of computer simulated models by philosophers, specifically pulling from the 

works of Charles Peirce, William James, and John Dewey.  The sixth and final section 

will address the notion that computer simulated models are reliable without seeking truth 

and use that notion to tie together the argument that computer simulated models can serve 

as a tool for philosophers.   
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INTRODUCTION 
 

  
This thesis will attempt to show how computer simulated models can act as a tool 

for philosophers.  To accomplish this goal, this thesis will be broken down into six 

sections.  The first three sections will go into detail regarding the nature of the term 

‘computer simulated model.’  This will involve describing the process used to create 

these models, as well as some of their current uses. These sections will also show how 

these models are currently viewed as a reliable tool within the sciences.  Specifically, the 

work of Eric Winsberg will be used to show how and why computer simulated models 

act as reliable tools for exploring the world around us.  In describing computer simulated 

models as such, this thesis will address some of the concerns that philosophers have had 

about computer simulated models in regards to both their role in science and the prospect 

of using them for philosophy. The third section will also address some possible 

objections to the idea of philosophers using computer simulated models as a 

philosophical tool.  

The fourth section will attempt to show the parallels between the construction of 

computer simulated models and well established methods within philosophy.  This will 

be done by deconstructing two methods within philosophy and showing how the process 

and goals of these methods can be seen in the building and exploring of computer 

simulated models.  This section will explain the role of Conceptual Analysis in 

philosophy and the goals Conceptual Analysis attempts to achieve.  This will be done by 

considering the works of Bertrand Russell and Ludwig Wittgenstein and attempting to 

explain the setting in which Conceptual Analysis emerged and developed.  This will be 

followed up by an explanation of how the aims of Conceptual Analysis can be replicated 
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within the process of creating and using computer simulated models.  Next, the 

emergence of experimental philosophy will be explained.  Examples of philosophers such 

as Paul Churchland, who are already using computer simulated models within their 

experimental work, show how computer simulated models fit within the confines of 

philosophy.   

The fifth section will show how American Pragmatism provides a positive 

framework for the utilization of computer simulated models by philosophers.  Through a 

number of arguments, this examination will explore the core features of American 

Pragmatism and show how the application of computer simulated models by philosophers 

is consistent with the spirit of American Pragmatism as presented by Charles Peirce, 

William James, and John Dewey.  First, it will be argued that the pragmatic construction 

of truth is consistent with and supported by the knowledge produced by computer 

simulated models.  This argument will tie in with the notion that computer simulated 

models favor reliability over truth.  Subsequently, this section will emphasize how 

computer simulated models have the ability to be a practical tool that is capable of 

solving not only abstract problems but also concrete ones.  This idea stresses the 

importance for philosophers to be concerned with everyday problems and not just 

abstract ones.  The fifth section will conclude with the argument that computer simulated 

models can be used as a tool for reflection and will consider how the iterative nature of 

computer simulated models echoes Dewey’s emphasis of reflection within the process of 

inquiry. 

The last section will address the notion that computer simulated models are 

reliable without seeking truth.  This idea comes from Eric Winsberg but is supported 



3 
 

through the work of pragmatists such as Dewey.  As a whole, this thesis hopes to paint a 

detailed picture of the role computer simulated models can play as a tool for philosophers 

and argue that these models can be valuable to philosophers.  Most importantly, this 

thesis hopes to show how American Pragmatism gives support for the use of computer 

simulated models by philosophers.  

 It should be noted that this idea of merging computers, science, and philosophy 

has been attempted before.  Aaron Sloman wrote about this in detail in his book: The 

Computer Revolution in Philosophy.  In that text, Sloman attempts to show how 

computers can help to revolutionize philosophy.  Sloman also attempts to show the places 

where science and philosophy can overlap.1  Sloman covers many of the same topics that 

will be addressed in this thesis.  Sloman devotes a whole chapter to Conceptual 

Analysis.2 In it, he argues for a more applied approach within science3 and against 

computers simply being “number crunchers”.4 He believes that computers, science, and 

philosophy can all work together.  Where this paper differs from the work of Sloman is in 

the application of computers to philosophy.  Sloman argues for artificial intelligence (AI) 

to be the location where philosophy and computers overlap.  While he is not wrong, this 

thesis will focus on the use of computer simulated models, instead of AI, within 

philosophy.  As such, this thesis can be seen as a supportive argument, using new 

examples, for the integration of computer simulated models within philosophy.     

                                                 
1 Sloman, Aaron. The Computer Revolution in Philosophy: Philosophy, Science and  
Models of Mind. Hassocks: The Harvester Press, (1978):80-81 
2 Ibid: 84 
3 Ibid:16 
4 Ibid: 103 
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WHAT IS A COMPUTER SIMULATED MODEL? 
 
 

In order to explain how computer simulated models can act as a philosophical 

tool, it must first be explained what is meant by the term ‘computer simulated model.’  It 

should be clear that the use of the term ‘computer simulated models’ refers not only to 

the models themselves but also to the entire process by which a computer simulated 

model is created and used.  This includes any modification that might happen to the 

computer simulated model over time.  It is important to focus on computer simulated 

models as a process since their usefulness to philosophers exists within this process and 

does not stem solely from the creation or use of a computer simulated model.  It is also 

within this process that computer simulated models can be seen to have two connected 

yet separate processes.  The first process is the creation and building of a computer 

model; the second is the simulation and analysis of the data.  This distinction relies on the 

difference between simulation and modeling, as will be discussed later in this paper.  

While both of these steps are performed either by or on a computer, they represent 

different actions.  The importance lies in how they work together to create the end result: 

the computer simulated model. 

 Historically, computer simulation has been a method used to supplement the 

solution of difficult mathematical problems.  One of the earliest cases of computer 

simulation is the Monte Carlo method.  The Monte Carlo Method is a means of 

computing the volume of irregularly shaped figures and was developed during the 

Manhattan Project in the nineteen forties by Stanislaw Ulam and John von Neuman.  

Often, these figures cannot be calculated using traditional methods.  This calculation is 

completed by placing the figure inside of a cube of known volume and then trying to 
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computationally come up with a ratio between the volume of the figure and the cube.  

The computer randomly chooses points within the cube and determines whether that 

point exists as a part of the figure or not.  After repeating this action thousands of times, 

the computer can determine the ratio of the figure to the cube and therefore determine the 

volume of the figure.  It is important to point out here that computer simulation is not just 

a method of quickly solving mathematical equations.  Often, computer simulations are 

used to solve problems that have no traditional mathematic solution to them, such as in 

the Monte Carlo Method above.5 

 An important distinction must be made between a computer simulation and a 

numerical calculation.  If computer simulation is thought of as an advanced calculator, 

the real value of computer simulation is not fully realized.  As in the example above, 

computer simulations are able to solve mathematical problems in ways that are not 

possible using traditional analytical methods.  This is often due to the ability of 

computers to store large volumes of data at any single moment.  A computer is capable of 

keeping track of thousands of variables at any single moment.  Sloman makes this same 

point when he points out the common misconception that computers are simply a tool 

with which to complete numerical calculations.6  In the Monte Carlo example above, the 

computer is able to run the simple operation of determining if the point within the cube 

that it has selected is or is not a part of the desired figure being measured.  With each 

step, the computer simply registers either a success or failure, where a success is a point 

                                                 
5 Lenhard, Johannes, Kuppers, Gunter, and Terry Shinn. “Computer Simulation: Practice, Epistemology, 
and Social Dynamics.” In Simulation: Pragmatic Construction of Reality, edited by Johannes Lenhard, 
Gunter Kuppers, and Terry Shinn, 3-22. Dordrecht: Springer, (2006): 9 
6 Sloman, Aaron. The Computer Revolution in Philosophy: Philosophy, Science and  
Models of Mind. Hassocks: The Harvester Press, (1978): 103 
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that is within the figure and a failure is a point outside of the figure.  While this simple 

process is nothing spectacular, the computer is able to complete this simple operation 

thousands of times to determine an accurate ratio of success points to failure points and 

therefore determine the volume of the figure.   

 If we now ask ourselves what in this example is the computer simulation, we find 

that the act being simulated is the act of choosing a point within the cube and determining 

whether that point exists as a part of the figure or not.  To be clear, the computer is not 

simulating a purely mathematical calculation.  This sentiment is echoed by Küppers, 

Lenhard, and Shinn, who state that “computer simulations are not numerical solutions of 

a theoretical model; rather, they employ a generative mechanism to imitate the dynamic 

behavior of the underlying process”.7  The simulation aspect of computer simulated 

models considers the simulation of time and the processes that are affected by time.  The 

model aspect focuses on the representation of objects, as well as the dynamics of 

behavior that might exist between different objects within the model.   

As it was stated earlier, some computer models simply represent a mathematical 

relationship, while others represent actual objects in the world.  This thesis will focus on 

the latter case. Three types of this latter case include Cellular Automata, Agent-Based 

Models, and Neural Networks.  These three types do not rely on exact theoretical 

models.8  Cellular Automata is the oldest of these types. This model works by dividing a 

two dimensional space into a grid.  Each space on the grid should have eight neighbors or 

eight grid spaces surrounding it.  Each grid space can be programed to have different 

                                                 
7 Lenhard, Johannes, Kuppers, Gunter, and Terry Shinn. “Computer Simulation: Practice, Epistemology, 
and Social Dynamics.” In Simulation: Pragmatic Construction of Reality, edited by Johannes Lenhard, 
Gunter Kuppers, and Terry Shinn, 3-22. Dordrecht: Springer, (2006): 11 
8 Ibid 
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behaviors depending on the states of its neighbors (the eight grid spaces surrounding it).  

With each step or movement in time, each grid space acts according to its assigned 

behavior.  For example, say that there are two different behavior types, each with its own 

corresponding color.  The first behavior type will change its color if more than five of its 

neighbors are the same color as it is.  The second behavior type will change its color if 

less than two of its neighbors are the same color as it is.  With every step, each grid space 

calculates its behavior and acts accordingly.   

 Agent-Based Models (ABM) try to exhibit Meta or global level phenomenon 

through the interaction of smaller autonomous agents.  Unlike Cellular Automata, agent-

based models are not confined to a grid structure.  The agents in agent-based models can 

also be heterogeneous, with different classes of agents interacting in varying ways.  This 

is the key advantage of agent-based-models over template-based models, such as Cellular 

Automata.  Paul Humphreys describes this advantage well: “the fact that the agents are 

operating within an environment which is constantly changing, and the fact that an 

agent’s actions are reciprocally affected by the choices made by other agents”9- this is 

what makes agent-based models so useful.  ABMs are able to model complex systems, in 

which agents affect and are affected by not only other agents but also a simulated 

environment.  This ability makes agent-based models adept at modeling biological and 

social structures.10  These models are also inherently bottom-up, where the focus of the 

model is on the interaction of agents and the environment.  In this sense, no overarching 

                                                 
9 Humphreys, Paul. Extending Ourselves: Computational Science, Empiricism, and Scientific Method. New 
York: Oxford University Press, (2004): 130 
10 Lenhard, Johannes, Kuppers, Gunter, and Terry Shinn. “Computer Simulation: Practice, Epistemology, 
and Social Dynamics.” In Simulation: Pragmatic Construction of Reality, edited by Johannes Lenhard, 
Gunter Kuppers, and Terry Shinn, 3-22. Dordrecht: Springer, (2006): 12 
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structure is being assumed by the model.  This will often lead to emergent phenomena at 

the macro level that are the result of the interactions of the micro-level agents.  These 

phenomena cannot be predicted by simply analyzing the individual agents themselves.11  

Agent-based models lend themselves to the understanding of sufficient conditions for a 

given phenomenon.  They can find their use in understanding the underlying mechanisms 

of known phenomenon, such as the behavior of birds flocking or the racial segregation of 

neighborhoods.12  Normally, these mechanisms emerge from simple rules that are 

unrelated to the phenomenon itself. 

 Artificial Neural Networks are another example of a type of modeling that 

operates without the guidance of an overarching structure.  Artificial Neural Networks 

operate with layers of ‘neurons’ that are connected to one another through links.  All 

links have weights that are adjusted over time.  The links and their weights determine 

how one layer affects another layer.  One normally has an input layer of nodes on the 

bottom and an output layer on top.  Unlike previous examples, neural networks function 

by creating a testing set of input and output pairs.  The modeler will enter a set of input 

values for the network, and the system will adjust the weights that are attached to the 

links until the outputs of the network match the inputs given.  This, in a sense, calibrates 

the network.  Once this is done, one could ideally give the network a new input value, for 

which one might not have the corresponding output value, and the network will figure out 

what the output value should be.  In this way, the network learns the pattern that the 

                                                 
11 Humphreys, Paul. Extending Ourselves: Computational Science, Empiricism, and Scientific Method. 
New York: Oxford University Press, (2004): 130 
12 Macy, Michael W, and Robert Willer. “From Factors to Actors: Computational Sociology and Agent-
Based Modeling.” Annual Review of Sociology 28, no. 1 (2002): 143-166. 
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modeler is attempting to find.13  A more concrete example of this can be seen in neural 

networks that are used for facial recognition.  For these networks, the input layer would 

be the number of pixels for a facial image.  For this example, we will say that there are 64 

pixels in each picture.  The output layer might be the sex of the person in the picture.  

The input layer therefore has sixty four nodes or neurons, and the output layer will have 

two neurons (male and female).  These two layers would be connected through middle 

layers of neurons.  These middle layers can have a varying degree of nodes.  It should be 

noted that each node in the first layer will be connected to each node in the layer above it.  

The network will be calibrated by giving it faces of known sex.  For each iteration, one 

gives the network feedback.  If the network properly assigns the correct sex to the 

picture, the weights of the links will strengthen; if the network assigns the wrong sex, the 

weights will be reduced.  This happens over many iterations until the network is able to 

predict the correct sex at a high percentage rate (this percentage rate varies according to 

the needs of the modeler).  With the network now trained, one can give the network a 

new face that it has not seen before and it should be able to assign the correct sex.14  

Models like these have been used by philosophers such as Paul Churchland within 

Philosophy of Mind to explore how high level concepts might emerge from lower level 

neural activity.15 

 All three of these model types avoid the usage of explicit mathematical equations 

to find their solutions.  They also serve as examples of the differences between the 

                                                 
13 Lenhard, Johannes, Kuppers, Gunter, and Terry Shinn. “Computer Simulation: Practice, Epistemology, 
and Social Dynamics.” In Simulation: Pragmatic Construction of Reality, edited by Johannes Lenhard, 
Gunter Kuppers, and Terry Shinn, 3-22. Dordrecht: Springer, (2006): 12 
14 Churchland, Paul M. The Engine of Reason, the Seat of the Soul. Cambridge: The MIT Press, (1995): 52-
53 
15 I will go into more detail about Churchland and his mental models in a later section. 
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simulation aspect and modeling aspect.  While the two terms are often used 

interchangeably, this thesis will attempt to make a distinction between them.  While this 

is not a distinction shared by many, it serves a useful function.  In order to appreciate the 

usefulness of computer simulated models to philosophy, one must understand how the 

process of creating and using computer simulated models involves the separate but 

connected aspects of computer simulation and computer modeling.  The modeling side of 

computer simulated models includes the framework given to the model by the specific 

genre of computer simulated model it represents, such as the three types of models 

described above: Cellular Automata, Agent-Based Model, and Artificial Neural 

Networks.  The modeling portion also involves the initial conditions of the model, as well 

as any rules of interaction between the different elements within the model.  Artificial 

Neural Networks, in this regard, are limited in terms of the freedom the modeler has 

when it comes to varying any of these factors.  All Artificial Neural Networks have a 

structure consisting of rows of neurons that are interconnected by weighted links.  With 

Cellular Automata, the modeler has a few more freedoms, as the modeler can alter the 

rules by which the different grids interact with each other.  The modeler, however, is 

stuck with the framework of grids.  Agent-Based Models have the most freedoms in 

terms of the implementation of the model.  The modeler has the ability to create n-

number of agents, all with different rules for interaction, both with the environment and 

with other agents.                              

As stated before, computer simulation deals primarily with the element of time.  

For Cellular Automata, this means that what gets simulated is the interaction of each grid 

space at each discrete step.  The simulation reveals how each grid space reacts given the 
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state of its neighbors.  Through simulation, one can see how patterns emerge and how the 

different rules for each grid space unfold.  The simulation aspect of Agent-Based Models 

can reveal the occurrence of emergent phenomena.  It is also what allows for the different 

behaviors and interactions of the individual agents to be realized.  In Neural Networks, 

the simulation is both the calibration of the network through testing sets and the 

utilization of a trained network for the exploration of new instances.  Some Artificial 

Neural Networks combine this into one step by having recurrent training networks built 

into the simulation.  Simulation is also concerned with the data that is produced by the 

models.  For Artificial Neural Networks, the data that is produced is normally just the 

output from the network, while Cellular Automata and Agent-Based Models can produce 

far more data, such as the state of different variables that the agents might have or the 

aggregate of the different states within a Cellular Automata.   

A clearer example of this distinction can be seen in two more concrete examples. 

Considering the example of the Monte Carlo simulation, one can easily see the division 

between the modeling and simulating aspects. The model is the computer representation 

of the three dimensional shape of known volume and the three dimensional shape of 

unknown volume.  The simulation is the computer choosing a spot within the three 

dimensional shape of known volume and then testing to see if that spot is also within the 

shape of unknown volume.  The result of the simulation is a percentage that represents 

the volume of the shape of unknown volume to the volume of the shape of known 

volume.  Another example would be if one were to create a computer simulated model of 

the universe. The model element would involve the space within which the universe 

exists, the basic particles that exist within this universe, and the laws of physics to 
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determine how these particles will interact with each other.  The simulation portion 

would be time.  By running the simulation, it would reveal how all these particles interact 

over time.  As it can be seen here, both elements are important to the overall function of 

the computer simulated model.  Without the model, the simulation would have no rules to 

govern its behavior, and, without simulation, the model would not be able to produce any 

useful information.  This distinction is also useful during any type of analysis that might 

be required due to unexpected results. Knowing if one’s anomaly is part of the model or 

part of the simulation can help the modeler to better understand the nature of the anomaly 

and the phenomena being explored by the computer simulated model. 
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THE PROCESS OF COMPUTER SIMULATED MODELING 
 
 

 As was addressed in the previous section, it is important to think about computer 

simulated models as a process.  This process spans from the conception of the computer 

simulated model all the way through the analysis of the results or output produced 

through the simulation.  Embedded in this process is the value of computer simulated 

models to philosophers.  In the first section, the difference between modeling and 

simulation was introduced.  These two functions define the main division within the 

process of computer simulated modeling.  This section will continue working within that 

division: the first part will focus on modeling and all of the steps involved in that process 

and second will consider simulation and all the parts involved in it. Included in the 

section on simulation will be the analysis of any output data from a model. By expanding 

on the process of computer simulated models, one can start to see the benefits that 

computer simulated models can bring to philosophy. 

 Most models are grounded in theory.16  This theory can be based on mathematical 

principles, such Newtonian physics, or can simply be forged from empirical data that has 

yet to be reduced to a mathematical relationship.  Weather forecasting fits into this 

second option.  While large amounts of empirical weather data exists, the systems that are 

in play are too complicated to be described with an elegant mathematical equation.  All 

models first start with a problem that is in need of solving.  The nature of this problem 

can help the modeler answer the first question of modeling: what genre of computer 

simulated models should be used?  As previously mentioned, there is a wide range of 

                                                 
16 Winsberg, Eric. Science in the Age of Computer Simulation. Chicago: The University of Chicago Press, 
(2010): 10-11  
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different computer simulated models, each with their own pros and cons.  Understanding 

the nature of the problem can help inform the modeler of what type of computer 

simulated model would be the best option.  For instance, Agent-Based Models are best 

suited for situations involving a heterogeneous set of agents.  Artificial Neural Networks 

are suited to emulate the process of learning.  The modeler must be aware of the 

limitations of each type of computer simulated model.  This being said, it is possible for a 

person to model a specific phenomenon with different types of models.  Take, for 

instance, a model of different tactics used in a prisoner’s dilemma.  The prisoner’s 

dilemma is described as a scenario where what is best for the individual is not best for the 

group.  The Stanford Encyclopedia of Philosophy describes it through a narrative:  

Tanya and Cinque have been arrested for robbing the Hibernia Savings Bank and 
placed in separate isolation cells. Both care much more about their personal 
freedom than about the welfare of their accomplice. A clever prosecutor makes 
the following offer to each. “You may choose to confess or remain silent. If you 
confess and your accomplice remains silent I will drop all charges against you and 
use your testimony to ensure that your accomplice does serious time. Likewise, if 
your accomplice confesses while you remain silent, they will go free while you do 
the time. If you both confess I get two convictions, but I'll see to it that you both 
get early parole. If you both remain silent, I'll have to settle for token sentences on 
firearms possession charges. If you wish to confess, you must leave a note with 
the jailer before my return tomorrow morning.17 
 

As it can be seen, the prisoners dilemma is an example of a collective action problem, 

where the choice to work together to benefit the group (confessing) is in conflict with 

what is best for them individually (remaining silent).18  There are many different 

formulations of this scenario, each with a different twist. The one this thesis will use is a 

twist on the original, where the prisoners complete multiple rounds and are aware of what 

                                                 
17 Kuhn, Steven, "Prisoner's Dilemma", The Stanford Encyclopedia of Philosophy (Fall 2014 Edition), 
Edward N. Zalta (ed.), www .plato.stanford.edu/archives/fall2014/entries/prisoner-dilemma. 
18 Encyclopedia Britannica Online, s. v. "collective action problem", accessed June 13, 2015, www 
.britannica.com/topic/collective-action-problem-1917157. 
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the other prisoner did in the last round.  This allows for each prisoner to adjust his/her 

strategy based on what he/she thinks the other prisoner will do.  Modeling this type of 

scenario has become a staple within computer simulated models.  As such, it has been 

addressed using all three genres of computer simulated models that have been discussed.  

The key is to pick the type of model that is best suited for the modeler’s needs.19 Once 

the modeler has settled on the type of model he/she is going to use, he/she can move on 

to the second step in modeling.   

 The second step is to build the model inside of the computer environment.  If one 

was to build an agent-based model of the prisoner’s dilemma, one would have to decide 

how he/she is going to implement the different strategies.  He/she would have to decide if 

he/she wanted the agent to be fixed to a specific strategy or if the agent might change 

strategies over time.  He/she would have to determine how he/she is going to allow the 

different agents to engage with one another.  Should the agents randomly interact with 

one another or should the modeler control the interactions in some way?  How should the 

simulation keep track of the engagements?  What variables should the modeler allow to 

be adjusted and which should the modeler keep constant? Which variables should even 

be considered? These types of question are just a few that must be addressed.  All of 

these questions carry with them epistemological weight.  How one chooses to implement 

these question has an effect on the end result and must be taken into consideration.  It 

should also be noted that, within this process, one also has to consider that all of these 

questions must be translated into code that the computer can understand.  This process 

                                                 
19 It should be mentioned that the use of the prisoner’s dilemma as an example is due only to the ease of 
description and is not a comment on the validity of the prisoner’s dilemma as an evaluation of human 
rationality or decision making.  The prisoner’s dilemma is an exercise in game theory and not an empirical 
study of actual prisoners.   
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forces the modeler to make explicit all of the assumptions that he/she has implemented 

into this model.  This can become tricky when trying to model behaviors that involve 

probability.   

For instance, say that, empirically, we know that, when people are put into a 

prisoner’s dilemma situation with multiple runs, twenty-five percent of people will adjust 

their strategy if they end up losing.20  Now, if one was trying to exhibit this behavior in a 

model, he/she must now choose how to implement this behavior.  One option would be to 

simply program twenty five percent of the agents to switch their strategy when they lose.  

Another option would be to give every agent a twenty five percent-chance of changing 

strategy when they lose.  Since one of the advantages of agent based models is that they 

function as a bottom up process, maybe the modeler might choose to not program in the 

exact empirical percentage into the model at all.  Maybe the modeler might choose to 

implement another strategy and see if the results match the empirically known statistics.  

This choice will often force the modeler to go back to the empirical data and consider 

which of these methods would best model the phenomena at hand. On the other hand, by 

running multiple computer simulated models, each with a different approach, the modeler 

might learn which method best fits the empirical data.  In this sense, the process of 

building the model forces the modeler back to he/she original data and requires further 

inquiry into the theory or phenomena in question.  In this way, the very processes of 

building the model can help to uncover more information about the nature of the 

phenomena being modeled. 

                                                 
20 This is a hypothetical statement used to give an example of the process of model building. 
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After the model has been built, the next step in the process is to allow for the 

simulation process to run within the model.  By running the simulation, one is putting 

into action all of the initial conditions along with all of the rules for interaction that were 

built into the model.  Depending on the type of model, the act of simulation can take 

many forms. This is best expressed by comparing the simulation of an Artificial Neural 

Network to that of an agent based model.  Most Artificial Neural Networks lack a 

graphical interface where the user can actually see the adjusting of weights during the 

simulation process.  Because of this, the simulation process is simply useful for the data 

that it produces.  With Artificial Neural Networks, the simulation process is involved 

with both the training of the network as well as the application of the network after it has 

been trained.  With an agent-based model, the simulation takes a much different form.  

Most agent-based modeling programs, such as SWARM and NetLogo, utilize a graphical 

user interface that allows the modeler to see the movements and interaction of all of the 

agents in real time.  Agent-based models can also produce large amounts of data that is 

normally exported into some type of database for further analysis. 

Another important element of simulation is feedback.  When simulating, it is 

normal for the program to run through the simulation multiple times before data is 

collected.  This is due to the dynamic nature of computer simulated models.  Each time 

the modeler runs the simulation, new data is produced.  Due to the fact that events like 

probability and randomness are in play, each run has the ability to generate new data.  

This data is normally aggregated together, and, with the use of statistical measures, some 

type of conclusion is reached.  With agent-based models it is normal for the modeler to 

intentionally vary the initial conditions in order to see how the changes affect the 
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outcome.  In the example of the prisoner’s dilemma, the modeler might change the 

starting strategies or the amount of agents with each strategy.  Changing these variables 

can have an effect on the outcome of the simulation.  This is one of the benefits of 

computer simulated models: they have the ability to be adjusted quickly and analyzed in a 

relatively short amount of time.  This also leads to the feedback loop that is key to the 

development of computer simulated models.  With all computer simulated models, there 

is no real end to the development.  Even after a model has been created and simulated, it 

is normal for the creator to go back and make changes either to the very structure of the 

model or to a single variable.  Artificial Neural Networks can actually be built in a 

natural feedback loop that allows for the model to continue to make changes even after 

the model has been trained.  This is the main reason to consider computer simulated 

models a process.  It is a process that has the ability to generate new inquiries and 

hypotheses.   

The continual reexamining and tweaking of computer simulated models is often 

the result of the fact that computer simulated models often generate more questions than 

answers.  Through the process of building and then testing a computer simulated model, 

the modeler might uncover behavior of a phenomena inside of the model that might not 

match the empirical data from the world, even if the modeler thought he/she had properly 

represented it within the computer simulated model.  This might cause the modeler to not 

only reexamine the code of the model to uncover any issues there but to also examine the 

phenomena in the world to see if he/she can find the cause of the discrepancy. This is 

similar to the way that new observations lead scientists to reconsider old theories.  The 

output from computer simulated models can cause the designer to go back and adjust 
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something or even to rethink the nature of his/her original question.  The computer 

simulated model is a tool to create new ideas or perspectives.  It is a rapid prototype 

device that can quickly be developed and deployed to generate new knowledge about a 

phenomena.  Its value comes both from its ability to be flexible and adapt itself to a 

multitude of purposes as well as its computational power to represent complex and 

dynamic systems that until now were seen as unsolvable.21     

                                                 
21 Lenhard, Johannes, Kuppers, Gunter, and Terry Shinn. “Computer Simulation: Practice, Epistemology, 
and Social Dynamics.” In Simulation: Pragmatic Construction of Reality, edited by Johannes Lenhard, 
Gunter Kuppers, and Terry Shinn, 3-22. Dordrecht: Springer, (2006): 18 
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THE EPISTOMOLGY OF COMPUTER SIMULATED MODELS 
 
 

Computer simulated models have found their home in a variety of disciplines, 

including economics, psychology, anthropology, biology, and chemistry.  They are used 

because they serve as a scientific tool that allows researchers to investigate theories in 

ways that traditional methods cannot.  Their widespread use in certain fields, specifically 

science, has led many philosophers of science to investigate their role, their inquiry being 

focused on the epistemology of computer simulated models as well as their relation to 

scientific theory and the process of experiment.   

 The relationship between scientific theory and scientific modeling is not as 

straightforward as one might think.  While scientific models do find their grounding in 

scientific theory, it is not always the case that a model is derived directly from the theory.  

Winsberg states that “theory is at best guiding, rather than determining the choice of 

model.”22  He goes on to state three elements that are involved in the process of model 

creation: theory, physical intuition, and the considerations that are led from the 

limitations of computation.23  So, while theory plays an important role in the creation of a 

scientific model, it is not the lone consideration.  This led to one conception of the 

epistemology of computer simulated models: Verification and Validation. 

 Verification is the process of determining if the output of the computer simulated 

model approximates the solution to the original question that was being modeled.  

Validation is the process of determining if the model is a proper representation of the real 

world system being modeled.  As Winsberg argues, “In validation you have to determine 

                                                 
22 Winsberg, Eric. Science in the Age of Computer Simulation. Chicago: The University of Chicago Press, 
(2010): 16 
23 Ibid  
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whether you have chosen the right model […] in verification you have to determine 

whether you have found good solutions to that model”.24 

 While verification and validation do provide a process for testing models against 

some type of empirical truth, there is some debate over whether actual computer 

simulated models in use really follow this model.  This conception of computer simulated 

models attempts to place the results of the models against an empirical truth.  Many 

models, however, serve a purpose that separates them from this type of framework.  

Winsberg proposes that, instead of utilizing the verification and validation epistemology, 

one should instead look to the epistemology of scientific experiments.  Specifically, he 

believes that one can learn a good bit from how scientists come to view their experiments 

as rational.  While there is no exhaustive list of the steps taken by scientists to find their 

experiments rational, simulationists do know that, over time and through the process of 

applying their experimental results to scientific problems, scientists do learn the best 

practices by which to evaluate their experiments.   

It should also be stated that a rational belief in an experiment does not mean that 

the experiment guarantees the truth of the knowledge produced.25 For those who would 

argue that simulations and experiments differ in their epistemological weight, specifically 

that experiments have a higher epistemological weight than simulations, this argument is 

highly determined by the context of the simulation.  Emily Parke has argued that, in 

many ways, the privilege given to experiments over simulations is due to the inference 

that being more materially similar to the target phenomena leads to a better understanding 

of the phenomena.  She argues that this inference might not be as sound as it first appears 

                                                 
24 Ibid: 19 
25 Ibid: 20 
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and that in certain contexts simulations can have equal epistemological value to 

experiments.26  

Michael Weisberg’s notion of model construal might also help to better 

understand the relationship between a model and how it is to be interpreted. The 

construal of a model involves what Weisberg calls assignment and fidelity.  Assignments 

are “explicit specifications of how parts of real or imagined target systems are to be 

mapped onto parts of the model”.27 Fidelity is “how similar the model must be to the 

world in order to be considered an adequate representation”.28 By articulating these two 

parts of a model, the researcher is able to express the bounds by which the model can be 

seen as useful.  Fidelity, in particular, is useful for this discussion since it focuses on the 

tolerances that a model has.  If a researcher states that this model needs to be within ten 

percent of the actual values, then one has a sort of benchmark by which to judge the 

model.29    

 By not attaching the success of a model to its ability to produce Truth, one allows 

for models to serve a more pragmatic role.  It is in this vein that Winsberg argues that “A 

central conclusion that I would like to draw from what follows is that these strategies are 

best understood as being aimed at providing grounds for belief that a simulation provides 

reliable information about the real-world system being simulated.”30  This idea that 

computer simulated models are reliable is one that is essential to understanding the true 

value and purpose of computer simulated models.  Winsberg defines reliability of models 

                                                 
26 Parke, Emily C. “Experiments, Simulations, and Epistemic Privilege.” Philosophy of  
Science 81, no. 4 (2014): 516-536. 
27 Weisberg, Michael. Simulation and similarity: Using Models to Understand the World. Oxford 
University Press, (2012): 40 
28 Ibid: 41 
29 Ibid 
30 Ibid 
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by saying “I characterize reliability (for modeling principles) in terms of being able to 

produce results that fit well into the web of our previously accepted data, our 

observations, the results of our paper-and-pencil analyses, and our physical intuitions, 

and to make successful predictions or produce engineering accomplishments”.31 This is 

the definition that this thesis will continue to refer to when describing a model as reliable. 

 In order to sanction a model as reliable, one must devise a way to test its 

reliability.  This process involves both testing the reliability of the machines that are 

running the computer simulated model as well as testing the model itself.  To test the 

accuracy of the machines, it is normal for the computer simulated model to be run on 

multiple computers, often with different components. This process is part of what Ryan 

Muldoon calls Robustness.  The robustness of a computer simulated model comes from 

its ability to be confirmed through a community of users.  Much like scientific 

experiments, which often must be verified by multiple labs to be considered confirmed, 

computer simulated models go through a similar process by being tested on different 

computers running different operating systems and using different components.32  

Another process normally done is called benchmarking.  The process of benchmarking 

involves testing the outcomes of a computer simulated models against known data from 

the phenomena that is being modeled. Benchmarking a computer simulated model is 

similar to the process of calibrating a scientific tool.33 The process normally tests the 

results of the model against already known data.  While this data can come from a variety 

                                                 
31 Winsberg, Eric. Science in the Age of Computer Simulation. Chicago: The University of Chicago Press, 
(2010): 133 
32 Muldoon, Ryan. "Robust simulations." Philosophy of Science 74, no. 5 (2007): 873-883. 
33 Winsberg, Eric. Science in the Age of Computer Simulation. Chicago: The University of Chicago Press, 
(2010): 22 
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of places, the most useful data comes from empirical observations.  For many computer 

simulated models, this is easily accomplished; that being said, an advantage that 

computer simulated models have over traditional experiments comes from their ability to 

produce data when empirical data is not easily obtained.  For example, if one was to 

model how much damage a hurricane would cause if it hit a city, most would rather not 

allow a hurricane to hit a city in order to gather this data.  This is often because the very 

motivation for figuring out what might happen is to prevent as much damage as possible.   

To benchmark a computer simulated model of a hurricane hitting a city, one 

might first try and simulate the results of a hurricane that had already happened.  

Therefore, one would build a computer simulated model of a city that has been hit by a 

hurricane in the past as well as one of the hurricane that hit it.  One would then run the 

simulation of the hurricane hitting the city and see if the known effects occur.  If, after 

multiple runs, the computer simulated model is producing the effects expected from the 

simulation, it can then be said that the computer simulated model is reliably producing 

the phenomena.  Of course, one would want to attempt this process multiple times with as 

many known examples as possible. If the computer simulated model properly exhibits all 

of the known events then one can say one has created a reliable computer simulated 

model of hurricanes hitting cities.  With this model, one could now attempt to model a 

situation that has not happened, for instance a category 5 hurricane hitting New York 

City.  With this model, one could generate predictions of the amount of damage and 

maybe even more specifically what type of damage would be done.  This information 

could then be used to design a plan to prevent as much damage as possible.  In this 
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example, one can see how the computer simulated model is never disconnected from its 

practical purposes. 

 Benchmarking is normally the first step within the process of creating a reliable 

computer simulated model.  Benchmarking can help one make sure that his/her model is 

properly representing the system in question.  In science, though, nothing can be more 

supportive in the sanctioning of a model than its ability to properly predict future events.  

A good example of this is the discovery of the planet Neptune. The model in question 

here is the model of Newtonian physics, so it is a bit different than computer simulated 

models, though the similarity in the power of prediction holds true for both.  In the case 

of Neptune, its discovery was first spurred on by irregularities in the orbit of Uranus.  

With only seven planets accounted for, Uranus was not following the correct orbit 

determined by gravitational forces.  It was from this irregularity that it was predicted that 

another object must exist outside of the orbit of Uranus that was disturbing its orbit.  

Once the math was worked out and the scientists applied their new hypothesis to the 

known data, they were able to both predict where in space this object should be as well as 

an approximation of its mass.  Sure enough, when they went to look for Neptune, it was 

exactly where it was expect to be.  This ability to predict help build confidence in 

Newtonian physics as a reliable model by which to understand the universe.   

 It is important to see that computer simulated models are rarely in a state of being 

finished or complete.  As stated earlier, computer simulated models are a process that is 

connected to a greater process: science or the process of human inquiry in general.  As 

such, progress that is made in one area of inquiry can often have a positive effect on other 

areas.  A historical example of this would be the influence of the Copernican model of 
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the solar system on Bohr’s model of the atom.  It is easy to see how the representations 

from one area can help support a breakthrough in another area.  This type of ‘borrowing’ 

can be seen in computer simulated models as well.  There are many examples of a model 

being repurposed for another task.  Humphrey’s gives us some examples: 

Percolation theory (of which Ising models are a particular example) can be 
applied to phenomena as varied as the spread of fungal infections in orchards, the 
spread of forest fires, the synchronization of firefly flashing, and ferromagnetism. 
Agent-Based models are being applied to systems as varied as financial markets 
and biological systems developing under evolutionary pressures.34 
 

As can be seen, computer simulated models are dynamic in their very nature.  Even 

within a single instance of a model, it might be revised hundreds of times to either 

account for new empirical data or to have new uses added to it.  At a more discrete level, 

it is common practice to utilize a segment of code from a model that is accomplishing a 

specific aim.  For instance, in an agent-based model that is attempting to model the 

spread of AIDs, there might be a segment of code that accomplishes the act of finding a 

partner. It would be possible that another scientist looking at molecular bonding might 

utilize that same code segment, since the basic phenomena of finding a partner is similar 

enough to be accomplished by the same segment of code.  In this way, it is hard to really 

measure the value of a computer simulated model, since even its discrete parts might find 

value outside of its original scope. 

 In this discussion, of the epistemology of computer simulated models, it is 

important to understand that this perspective comes from the pragmatic notion that views 

science as a process.  This process is not guided towards the revealing of absolute truth 

but instead is focused on the ability to reliably solve problems that humans encounter.  In 

                                                 
34 Humphreys, Paul. Extending Ourselves: Computational Science, Empiricism, and  
Scientific Method. New York: Oxford University Press, (2004): 70 
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this view of science, it is not the abstract or theoretical issues that move science but the 

practical ones.  Theoretically, Copernicus’s view of the solar system was much harder to 

support than Ptolemy’s.  The fact that Copernicus had to explain how it was possible for 

the earth to be spinning and yet have humans not experience this motion was almost 

impossible to explain without a robust theory of momentum and more importantly 

gravity.  As such, it was not until Kepler and later Newton that the idea of a central sun 

and orbiting earth was theoretically explainable.  That being said, Copernicus’ theory was 

widely accepted long before the theoretical explanation was found.35  What this example 

shows is that it is not absolute truth that guides science but its ability to solve practical 

problems.  It is in this pragmatic structure that computer simulated models are developed. 

 The importance of taking a pragmatic perspective of science is due to a number of 

reasons that will be addressed formally in a later section; however, one specific reason 

that should be addressed now is the deemphasizing of computational power within 

computer simulated models.  While increases in the computational power of computers 

has aided in are ability to solve problems that were previously unsolvable, the ability to 

compute complex problems is only one facet of computer simulated models.  The 

concern with placing too much weight on the computational ability of computers (and 

therefore computer simulated models) is that one might abuse the ability to solve 

complex mathematical equations instead of searching for a different or maybe more 

robust yet simpler theory that would not require the same amount of computational 

power.  Humphreys brings up this concern through the envisioning of what would have 

happened if Kepler had access to the computational power we have today.  The fear is 

                                                 
35 Kuhn, Thomas S. The Copernican revolution: Planetary astronomy in the development of western 
thought. Vol. 16. Harvard University Press, (1957): 261 
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that instead of searching for an elegant solution to the issue at hand, Kepler could have 

simply entered Tycho’s data into a computer simulated model and found a model for the 

orbit of the planets while staying within the paradigm of epicycles used by both the 

Copernican and Ptolemaic models.36  Just because computers have the power to solve 

complex problems does not mean that relying on these complex solutions as the basis of a 

scientific theory is a good idea.  There has always been weight put behind the elegance of 

a theory.  Occam’s razor states that, when deciding between two theories, if all else is 

equal, the theory with the fewest required assumptions should be given more credence.  

In a similar vein, a theory that does not require the computational power of a computer to 

resolve its complexities should be given more weight than a theory that must rely on a 

computer.  This is why computer simulated models that are not simply computational or 

mathematical but instead focus on the application of complex adaptive systems, such as 

Artificial Neural Networks and Agent-Based Models, are preferred. 

 While this thesis is focused on computer simulated models as a tool for 

philosophers and this section has focused on computer simulated models in regards to 

their effect on science, their usefulness is something that can transcend these two 

disciplines.  If one takes the perspective that allows for science and philosophy to both be 

seen as different human enterprises of inquiry, both with the similar aim of addressing the 

concerns and ambitions of humans, then one can start to see how the acceptance and 

usefulness of computer simulated models in science might apply to their ability to be 

useful for philosophers.  Some possible arguments against this point could include: 

science and computer simulated models are reductionist and philosophy has aimed at a 

                                                 
36 Humphreys, Paul. Extending Ourselves: Computational Science, Empiricism, and  
Scientific Method. New York: Oxford University Press, (2004): 134 
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more holistic perspective; computer simulated models could only be used in specific 

areas of philosophy, such as philosophy of science and philosophy of mind; and the time 

it would take to train a philosopher to learn how to use computer simulated models would 

be prohibitive. 

 In regards to the first of these arguments against computer simulated models in 

philosophy, it can be agreed that, at times, science has been reductionist.  In physics, for 

instance, there is a race to find the smallest particles in hopes that, by understanding the 

building blocks of the universe, we can explain the phenomena that we experience.  In 

the same regard, computer simulated models can also exhibit reductionist tendencies.  

Agent-Based Models are often built through the modeling of the smallest agents in order 

to explain meta-level phenomena.  The fear that some philosophers might have with this 

approach is that it can lead to the ignoring of important meta-level phenomena.  For 

instance, we know that emotions are caused by electro-chemical processes in the brain.  It 

can be argued that, by understanding these processes, we can better understand human 

emotions.  The issue is that we already have useful knowledge of emotions through 

psychology and the qualitative studies of behavior.  We should not throw out this 

knowledge just because a study of the biochemical reactions is more fundamental. 

 While the fear of reductionism is valid and should not be ignored, it is false to 

claim that computer simulated models are innately reductionist.  One of the benefits of 

computer simulated models is their ability to model emergent properties.  With computer 

simulated models, modelers have the opportunity to study both the elemental and the 

meta-level interaction of the systems chosen.  With computer simulated models, the goal 

has always been to understand systems as a whole and to not focus simply on the least 
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common denominator.  It is for this reason that computer simulated models can aid 

philosophers.  They are some of the first scientific tools that are able to model and 

represent the complex types of phenomena in which philosophers have always been 

interested. 

 To respond to the argument that computer simulated models are only applicable in 

certain fields of philosophy, such as philosophy of science and philosophy of mind, 

Agent-based models have been used in many fields, including sociology and 

anthropology.  There have been political models built using computer simulated models 

to study voter behavior and segregation.  The example of the prisoner’s dilemma has 

been used in cellular automata to investigate ethical decision making and choices.  Just 

because the majority of models built have been done so for scientific purposes does not 

mean that the platform is limited to science.  The real need is to get these tools into the 

hands of non-scientists and see what they can come up with.  This leads into the last 

argument. 

 Many people might argue that the learning curve to understanding how to 

program and then use computer simulated models is quite high.  This step learning curve 

might discourage philosophers from picking up these new tools and applying them to 

their work.  Most philosophers spend decades learning how to hone their craft in the 

traditional methods that are taught within philosophy.  Many do not have the time to learn 

how to program and use these new computer simulated models.  The response to this line 

of thinking is that, while computer simulated models are new and unorthodox to many 

philosophers, the learning curve is neither more nor less steep than the learning curve for 

more traditional philosophical methods.  With programs like NetLogo, Matlab, and 
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Swarm, which focus on being simple to use and learn and are full of detailed tutorials, the 

barrier to entry is slowing coming down.  More importantly, as this thesis has articulated, 

the process of learning how to model itself can be as useful as the final product.  This 

thesis is not aimed at replacing any traditional philosophical methods but instead 

augmenting said methods.  By using mixed methods and utilizing the benefits of 

computer simulated models while retaining the traditional methods, philosophers have 

more options in regards to how they approach philosophical problems.      

The next section will go into more detail concerning exactly how computer 

simulated models relate to methods with which philosophers are already familiar.  The 

key point to remember is that computer simulated models are a process that exists within 

the larger process of human inquiry a place where both philosophy and science reside. 
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PAST AND CURRENT PHILOSOPHICAL METHODS 
 
 

 In order to properly articulate how computer simulated models can aid 

philosophers, it is important to understand what philosophers have attempted to 

accomplish.  By taking a look at the methods of past philosophers, as well as an example 

of a current philosopher who is already using computer simulated models as a part of his 

philosophical method, one might have a better understanding of what philosophers aim to 

achieve.  In analyzing philosophical methods, the focus will be on the aim of the method 

as well as the method itself.  

The first method to look at is that of Plato within the Socratic dialogues.  

Specifically at the Euthyphro, to uncover what Socrates attempts to accomplish within 

that text.  In the Euthyphro, Socrates asks the question: what is Piety?  Socrates 

approaches Euthyphro, a priest, in hopes of uncovering what Piety is.  This is being 

spurred on by the fact that Socrates is being charged with being impious.  In order to 

argue against this claim, Socrates hopes that in finding out the meaning of Piety he might 

be better able to address the charge against him.  The Dialectical Method is applied 

through a dialogue where specific questions are asked in hope of revealing a robust 

definition or concept.  In the example of the Euthyphro, the aim is to uncover what it 

means to be pious. With each exchange, the implicit contradictions that existed within 

Euthyphro’s understanding of Piety become explicit. During the dialogue, Euthyphro 

gives multiple definitions for what is pious and with each new definition Socrates finds it 

to be inadequate or inconsistent with the previous understandings that Euthyphro had 

given.  It should be noted Socrates found them inadequate because none of the definitions 

gave him what he is looking for: An understanding of Piety that can be applied to 
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different actions to categorize them as either pious or impious.  While the analysis of the 

concept of Piety might seem theoretical in nature for Socrates, this was, in fact, a quite 

practical endeavor.  In the Euthyphro, Socrates is preparing to clear his name by showing 

that the actions he performed do not fit within the concept of impiety.  The Dialectical 

Method’s aim is to reveal the inadequacies and inconsistencies of the concepts that one 

holds.  Through this one becomes more aware of what is not known or more specifically 

why one does not know what one thought one might know. 

 Moving forward in time to the twentieth century, one of the dominate methods in 

philosophy is Conceptual Analysis.  The basic idea of Conceptual Analysis is to break 

down and analyze the language one uses in hopes of creating a better understanding of 

the meaning of the words one says.  This basic premise has been applied in a multitudes 

of ways by different philosophers throughout the twentieth century.  As mentioned earlier 

in this thesis, Sloman brings up Conceptual Analysis as one of the areas that can see 

overlap of science, philosophy, and computers.37  Sloman argues that, “Every science will 

have at its frontiers concepts which are to some extent in need of analysis and possibly 

improvement”.38   

One of the first philosophers to discuss the method of Conceptual Analysis was 

Bertrand Russell.  Russell is one of the philosophers who argues for an Ideal Language.  

What Russell wanted was a language built for the purpose of logic and philosophy that 

would remove the philosophical defects that can be found in ordinary language.39  The 

                                                 
37 Sloman, Aaron. The Computer Revolution in Philosophy: Philosophy, Science and  
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38 Ibid: 99-100 
39 Black, Max. “Russell’s Philosophy of Language.” In The Linguistic Turn, edited by  
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philosophical defects being ambiguities and contradictions within ordinary language.  

This is normally accomplished through the translation of ordinary language.  The aim 

being that through translation from ordinary language to an ideal language we can reveal 

the true meaning of the statement.  This translation can also reveal any contradictions or 

metaphysical dilemmas that might have existed in the ordinary language.40  Russell’s 

Ideal Language is also atomistic in its nature.  The aim is to break down language to its 

smallest parts in order to better understand the whole.  Similar to the Dialectic Method, 

the aim of Russell’s Conceptual Analysis is to uncover the meaning of the concepts that 

one uses.  The difference is that the Dialectic Method works through dialogue and asking 

questions while Conceptual Analysis deals with breaking down language and sentences. 

 Russell’s Conceptual Analysis focused on the creation of an ideal language.  

Other philosophers have argued against the need for an ideal language and instead feel 

that ordinary language is robust enough to be analyzed on its own.  One of these 

philosophers is Wittgenstein.  While early in his life Wittgenstein did argue for an ideal 

language… later in his life Wittgenstein changed his position.  Wittgenstein introduces 

the idea of a language game in his work titled Philosophical Investigations.  The 

language game shows how ordinary language is able to avoid the pitfalls that Russell 

believed existed within it.  Wittgenstein states that if one thinks about all of the activities 

that one calls games: what do they all have in common?  He believes the answer is not 

something specific to all of them but they do share similarities across the board.  He 

refers to this phenomena as family resemblance.41  For Wittgenstein, all games share a 

                                                 
40 Ibid  
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family resemblance.  While they are all different they do share some characteristics in 

common with one another.  It is in this state of similarities that our language exists.  

Games like language have rules and we learn these rules in order to properly play the 

game.  While all games have rules they do not all share the same rules.  Part of 

understanding the game is to understand the rules.  It is in cases where the rules are 

misinterpreted that confusion exists.  This is the same for language.  It is not the structure 

of ordinary language that causes confusion but lack of understanding of the specific 

“language game” that causes confusion.  Wittgenstein believes there are a number of 

different “language games” that exist.  Wittgenstein articulates this point by stating:  

But how many kinds of sentence are there? Say assertion, question, and 
command?—there are countless kinds: countless different kinds of use of what we 
call "symbols", "words", "sentences". And this multiplicity is not something 
fixed, given once for all; but new types of language, new language-games, as we 
may say, come into existence, and others become obsolete and get forgotten. (We 
can get a rough picture of this from the changes in mathematics.) Here the term 
"language-game" is meant to bring into prominence the fact that the speaking of 
language is part of an activity, or of a form of life.42 
  

It is through these language games that ordinary language is able to have its meaning.  By 

understanding the language game at work, one can then understand the meaning of an 

utterance.  This removes the need to create an ideal language.  While the focus is no 

longer on the creation of an ideal language, the focus remains on the ability to extract 

meaning from a sentence.  In language games the meaning of a word is relative to the 

language game that it is associated with.  One is no longer attached to the idea that a 

single word or concept must have a single meaning.43 

                                                 
42 Ibid: 14-15 
43 Ibid: 41-42 
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 Up to this point all of the methods that have been discussed center around the 

need to uncover the true meaning of a concept.  While they do this in different ways, each 

is attempting to uncover a truth about the world.  This is something that these method do 

not have in common with computer simulated models. Computer simulated models 

attempt to capture a reliable understanding of the world but not the absolute 

understanding.  They do, however, have in common the goal of uncovering hidden 

meaning and understanding.  In the process of programming a computer simulated model, 

the programmer must articulate the phenomena in a way that the computer can recognize.  

Computers function through the use of symbolic representations.  Most programming 

languages extensively use expressions such as ‘if and only if’, ‘or’, ‘and’, ‘while’, etc. 

These are all acceptable ways of expressing a relationship to a computer.  This type of 

language, it could be argued, is a form of ideal language.  Computer languages cannot 

handle ambiguity.  Not only is the language of computer simulated models similar in 

form to the type of ideal language Russell was after, but the process of converting ideas 

into code can have the same revealing nature.  Often times, when a programmer is forced 

to represent a phenomena in code, it forces the programmer to be aware of all 

assumptions and deviations from the ideal that must be made.  As stated earlier, often 

times a computer simulated model is only partially reliant on the underlying theory.  

Assumptions or approximations must be made for practical purposes. 

 The metaphysical assumptions of the philosophical methods that were discussed 

differ from the metaphysical assumptions of computer simulated models.  While that is 

true for the examples that were given, not all philosophers believe that Conceptual 
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Analysis must lead to an understanding of anything real.  Rorty believed that the work of 

Davidson helped to free the analysis of language from this metaphysical bond.  

The term “experience” as used by philosophers Kant and Dewey, was, like 
Locke’s term “idea,” ambiguous between “sense-impression” and “belief.” The 
term “sentence,” used by philosophers in the Fregean tradition, lacks this 
ambiguity. Once the philosophy of language was freed from what Quine and 
Davidson call “the dogmas of empiricism” with which Russell, Carnap, and Ayer 
(though not Frege) had entangled it, sentences were no longer thought of as 
expressions of experience nor as representations of extra-experiential reality. 
Rather, they were thought of as strings of marks and noises used by human beings 
in the development and pursuit of social sciences—practices which enabled 
people to achieve their ends, ends which do not include “representing reality as it 
is in itself”.44 
 

Rorty’s understanding of language now fits nicely with the epistemology that is 

consistent with what computer simulated models aim to do.  Both Conceptual Analysis 

and computer simulated models are aimed at providing humans with a better understand 

of the world, not so to uncover any Truth, but to help achieve specific and practical goals. 

 While most philosophers have not applied computer simulated models to their 

philosophical method, there are some who have.  Paul Churchland has applied Artificial 

Neural Networks to further his philosophical claims about the nature of the human mind.  

Churchland uses Artificial Neural Networks, which are one type of Computer Simulated 

Models.  Artificial Neural Networks attempt to model the functional behavior of our own 

neurons.   

Neurons function by having both inputs and outputs.  Our brain is estimated to 

have around 100 billion neurons and 100 trillion synaptic connections.45  The neuron has 

three main components: the dendrites, which receive the electrical signals from other 

                                                 
44 Rorty, Richard M. “Twenty-five Years After.” In The Linguistic Turn, edited by Richard  
M. Rorty, 371-374. Chicago: The University of Chicago Press, 1992. 
45 Churchland, Paul M. The Engine of Reason, the Seat of the Soul. Cambridge: The MIT  
Press, (1995):  
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neurons; the cell body; and the axon, which is what connects the output of the neuron to 

the inputs of other neurons.  When the neuron receives stimulus through its dendrites, it 

sums up this signal and then sends out a corresponding stimulus through the axon to other 

neurons.  This creates a chain reaction which one experiences as cognitive activity.  

Artificial Neural Networks attempt to mimic this behavior.  They also have inputs and 

outputs and are interconnected.  The connections between nodes have weights attached to 

them.  This represents the activation levels that neurons exhibit.  Churchland’s argument 

is: By developing a system that can functionally mimic the brain, one is better able to 

understand how it is that the brain can form concepts, morals, memories, and any other 

cognitive phenomena.  It should be note that this is a bottom-up approach to cognition.  

Churchland believes that all human cognition can be explained through the bottom-up 

process of network formation.46  This idea is at odds with Chomsky’s Nativism.  The 

Nativist perspective holds that many human functions are top-down in nature and exist 

from birth.   

 For Churchland, Artificial Neural Networks are simply a tool that allows one to 

see how the brain works at an elementary level.  The Artificial Neural Networks provide 

a model to work with and build from.  Many of the claims that Churchland makes cannot 

be currently performed with actual human minds it also serves a practical purpose.  So 

when Churchland is able to see the emergence of concepts from the output of the 

Artificial Neural Networks he is able to state that perhaps the human mind creates 

categories in a similar way. The functional relationship between the Artificial Neural 

Network and our actual brain allows for a two way street of influence.  Not only can we 

                                                 
46 Ibid 
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apply what is learned from Artificial Neural Networks to our own minds but we can also 

take theories that we have about how the brain works and test them through the Artificial 

Neural Networks. 

 One example of a philosophical debate about the nature of the mind that can be 

investigated using Artificial Neural Networks is the argument over Nativism versus 

Empiricism.   This argument revolves around what concepts, if any, people are born with.  

A Nativist would argue that one is born with the most basic concepts and from there are 

able to learn more about the world.  An Empiricist believes that one is born with simply 

the ability to learn and from there is able to acquire all of the required skills.  This debate 

is commonly used to discuss the nature of human language.   

 Churchland considers himself an Empiricist and believes that Artificial Neural 

Networks can give an example of how humans can learn without needing innate concepts 

or abilities.  Up until this point all of the Artificial Neural Networks that have been 

discussed use a training set and backpropagation in order to learn. This method is 

inadequate for explaining how humans can learn without innate abilities. Churchland 

agrees with this but believes that another type of training, called Hebbian learning, might 

be the answer.  Churchland states: 

In biological creatures the process of experience-dependent long-term adjustment 
of the brain’s synaptic connections is defiantly not governed by the supervised 
back-propagation-of-errors technique widely used to train up our computer-
modeled artificial networks.  That brute force artificial technique requires that the 
‘correct behavior’ for a mature network be known in advance of any learning 
activity, in order that subsequent synaptic changes can be steered by the explicit 
goal of reducing the degree of error that separates the student network’s actual 
behavior from the optimal behavior that this supervised technique seeks, stepwise, 
to impose upon it.  But biological creatures have no such advance access to “the 
right answers,” and they have no means of applying such information, to each 
synapse one-by-one, in any case.  Synaptic change in biological creatures is 
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apparently driven, instead by a process called Hebbian learning, in honor of the 
psychologist Donald O. Hebb, who first described the process.47 
 

The Hebbian process is achieved by strengthening the synaptic connection between 

neurons that tend to fire together.  Churchland uses the example of “ Roughly, whichever 

subset of synapses happen to ‘sing' together, when and if they do sing, subsequently have 

their individual ‘voices’ made permanently louder”.48  Here the neurons that sing together 

are the ones that fire together. 

 With Hebbian learning it is possible to build Artificial Neural Networks that are 

able to learn without the need of outside training.  Churchland creates an example of an 

Artificial Neural Network trained using a Hebbian learning method that is able to predict 

the next instance in a sequence. This means the network has learned to identify simple 

patterns through a Hebbian process.  While this is not conclusive evidence for 

Empiricism, this type of work can help support an Empiricist claim that it is possible for 

the mind to learn basic rules and concepts that might otherwise be thought of as native 

through a process similar to the Hebbian networks.  As such this serves as an example of 

how computer simulated models can aid in philosophical issues.                  

 While Churchland serves as a great example of a philosopher using computer 

simulated models he claims to be a scientific realist.  Churchland seems, at first, to serve 

as a counter-example for the case that will be made about pragmatism being a useful 

foundation for computer-simulated models within philosophy. If we look closer, 

however, at the works of Churchland, we can find that he can actually help to show the 

importance of pragmatism to computer simulated models. 

                                                 
47 Churchland, Paul M. Plato’s Camera. Cambridge: The MIT Press, (2012): 157 
48 Ibid: 158 
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 Churchland’s argument for scientific realism over pragmatism stems from his 

belief that “If, on the other hand, we choose to define “truth” or “representational virtue” 

directly in terms of pragmatic success - as in “the true is what works”-we deny ourselves 

all access to an evidently rich domain of potential explanations”.49 What Churchland 

believes is lost is the ability to understand “the world of things-in-themselves”.50 His 

dismissal of pragmatism hangs on his belief that we actually do conceptualize reality. 

 The method by which humans are able to represent reality is through the 

convergence of what Churchland calls our “High Dimensional Mental Maps”.51  

Churchland describes this process: 

First, and pro tem, we can take the integrity of our current maps for granted, and 
then seek to understand and evaluate the cognitive strategies, tactics, and maps of 
other creatures like ourselves, both biological and artificial. Second, and lifting 
the pro tem assumptions just mentioned, we can play our several native cognitive 
maps off against one another in their areas of mutual overlap, progressively 
modifying each map in response to the need to maintain consistency and 
consilience across the form of our scientific theories, maps that get fleetingly 
indexed by measuring instruments above and beyond the humble biological 
senses bequeathed to us by the human genome. These theories can also be 
evaluated for representational accuracy, both by unfolding quality of the 
pragmatic world-navigation that they make possible, and by the straightforward 
comparison of several distinct but overlapping maps with one another, in pursuit 
of mutual criticism, modification, and potential unification.52 
 

Churchland is saying that, by comparing one’s overlapping cognitive maps, one 

somehow converges on reality.  An objection to that point is that one’s mental maps are 

still cognitive in nature.  While different people’s maps might overlap with one another 

the overlap is still cognitive in nature.  Churchland still has yet to show that our cognitive 

                                                 
49 Ibid: 134 
50 This is referring to the Kantian notion of a “thing in itself” 
51 Mental maps are akin to our cognitive concepts.  Churchland argued that neural networks can cause a 
bottom up process that results in the emergence of concepts.  He refers to this process as the creation of 
mental maps. 
52 Ibid: 137-138 
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maps represent or “map on” to real objects.  With that important detail missing, his claim 

looks to be pragmatic.  Churchland himself states “Its cartographical metaphors 

withstanding, the reader will recognize in this inescapable lesson the familiar 

Pragmatist’s criterion for the evaluation of our cognitive commitments”.53  

         All philosophical methods have the aim of better understanding the world 

around us.  Whether it is understanding the meaning of a concept like Piety, or 

understanding the meaning of a sentence, or understanding the workings of our minds, all 

philosophical methods hope to aid in our understanding of the world.  Computer 

simulated models have been built to continue this endeavor.  Some believe that our better 

understanding comes from actually uncovering some underlying truth about the world.  If 

however, we do not go down the path of realism, but instead focus our efforts on the 

reliability of our ideas and not the Truth of them, computer simulated models might 

prove to be a useful companion to philosophers.    

  

                                                 
53 Ibid: 128 
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PRAGMATISM AS A FRAMEWORK FOR PHILOSOPHY AND SCIENCE 
 
 

 In order to see the value of computer simulated models to philosophers, it helps 

that one holds certain views on truth and the role of science.  These views are best 

articulated by pragmatists such as William James, Charles Peirce, and John Dewey.  

James helped to define pragmatism as a method and developed a robust understanding of 

truth that was dynamic and temporal.54 James, however, does not go into detail about the 

application of science and its methods to be everyday lives.  It is Dewey who better 

articulates how science comes to affect our lives and how we use science as a tool to 

better our lives. 

 William James was the first to really outline in detail what pragmatism meant.  He 

gave credit to Charles Peirce as the first to introduce pragmatism to philosophy.  James 

continually cites Peirce and it is clear that much of James’ interpretation of pragmatism is 

due to his understanding of Peirce.  That said, it was James who defined what it meant to 

solve a problem pragmatically.  The key for James was that we must interpret the 

practical consequences of metaphysical problems.55  James states that “it is astonishing to 

see how many philosophical disputes collapse into insignificance the moment you subject 

them to this simple test of tracing a concrete consequence.  There can be no difference 

anywhere that doesn’t make a difference elsewhere.”  He goes on to comment that the 

aim of philosophy is to identify how practical consequences affect the lives of ordinary 

people.56 

                                                 
54 James, Williams. Pragmatism. Los Angeles: Indo-European Publishing, (2010): 20 
55 Ibid: 22 
56 Ibid: 23 
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 For James, science can now play an important role in explaining the phenomena 

that exists around us.  A scientific realist might argue that eventually one might resolve 

the metaphysical questions that one has about the world.  The goal would be to uncover 

some absolute reality.  This idea is absurd to James. He thought that, with science, one 

would no longer search for some absolute reality but instead simply attempt to 

understand the world as it exists today.  James believes scientific theories are 

instruments, not answers.  They are tools that aid in our progress forward toward better 

understandings.57 

 James not only gives a new method with which to approach philosophy, but he 

also redefines truth in pragmatic terms.  James says, “True ideas are those that we can 

assimilate, validate, corroborate and verify.  False ideas are those that we cannot… the 

truth of an idea is not a stagnant property inherent in it. Truth happens to an idea.  It 

becomes true, is made true by events. Its verity is in fact an event, a process: the process 

namely of its verifying itself, its verification. Its validity is the process of its 

validation”.58  This conception of truth is one that is better equipped to deal with the 

dynamic nature of the world we live in and more specifically the dynamic nature that 

computer simulated models fit into.  James’ construction of truth also goes one step 

further.  James makes the claim that what is useful is true and what is true is useful.59  

 James uses the terms verification and validation in reference to the process that 

truth finds itself within.  It should be noted that those same terms are used to test 

computer simulated models.  As mentioned in an earlier section, Verification for 

                                                 
57 Ibid  
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computer simulated models refers to how the model represents the world it is modeling 

and Validation refers to the mathematical foundation the model is built upon.  James 

holds a different meaning for these terms.  A meaning that actually might be more useful 

within the modeling community than the one we currently use.  For James: truth, 

verification, and validity are intertwined with one another.  James states, “True is the 

name for whatever idea starts the verification-process, useful is the name for its 

completed function in experience”.60  From this perspective, it can be seen that 

verification is the process that leads from an idea to its eventual point of becoming useful.  

Here verification is not simply a test for correspondence between two representations but 

is a process that has at its end the aim of creating a useful understanding.  This is what 

computer simulated models accomplish when they are verified. A verified model should 

be seen as a useful tool for understanding whatever phenomena it was built to explore.  

Validity for James is simply the process of verifying an idea.  It does not attach itself to 

the analytical understanding used within the modeling community, of having proper 

mathematical equations, but is again involved in the process of truth. 

 Detaching validity and validation from absolutes enables them to become more in 

line with the function of computer simulated models. Computer simulated models are 

processes themselves and do not aim to come to an absolute understanding of the world 

but instead simply aim to help mankind solve specific problems.  If one views computer 

simulated models as tools or instruments that aid in solving problems then their true value 

can be realized.  This is an idea that is best articulated by John Dewey.  In fact, in many 

ways, it is Dewey’s interpretation of pragmatism that allows for the best understanding of 
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the role computer simulated models can play in the aiding of both science and 

philosophy. 

   Dewey used the term Instrumentalism to refer to his philosophy. 

Instrumentalism involves putting ideas to work and using them like instruments to solve 

genuine problems.61  One of the areas that Dewey focused on was the act of inquiry.  

Dewey constructed a view of inquiry that began with the encountering of a practical 

problem, a perplexing situation, or general conflict and leads to the resolution of said 

problem.  Inquiry was focused on addressing indeterminate situations and making them 

determinate.62  Inquiry is also a process that seems to never end.  This sentiment is drawn 

from Peirce’s doctrine of Fallibilism. Fallibilism is “that all beliefs, no matter how certain 

they may seem, are subject to revision as a consequence of the results of further 

inquiry”.63  It can be said that all three pragmatists: Peirce, Dewey, and James; share in 

the idea that inquiry is a process that exists in time.  It is a process that is ongoing and 

focuses specifically on the issues that affect people in the moment.  While inquiry spans 

across all time in discrete moments, it is grounded in the endeavors of humans for that 

moment.64 This idea fits nicely with computer simulated models since they too are caught 

within a process with no predetermined end.  A computer simulated model has the ability 

to be modified over time and adapted to either new empirical information found or even 

                                                 
61 Hahn, Lewis E. “Dewey’s Philosophy and Philosophic Method.” In Guide to the Works   
of John Dewey, edited by Jo Ann Boydston, 15-60. Carbondale: Southern Illinois  
University Press, (1970): 22 
62 Dewey, John. Logic: The Theory of Inquiry. New York: Saerchinger Press, 2007.  
63 Peirce, Charles Sanders. "How to make our ideas clear." The Nature of Truth: Classic and Contemporary 
Perspectives (2001): 193-209.). 
64 Hahn, Lewis E. “Dewey’s Philosophy and Philosophic Method.” In Guide to the Works of John Dewey, 
edited by Jo Ann Boydston, 15-60. Carbondale: Southern Illinois University Press, (1970): 85 
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to an entirely new application. It is able to adapt to the constant change that inquiry, as 

pragmatically constructed, brings.   

Dewey claimed the aims of philosophy were to “render ordinary life-experiences 

and their predicaments more significant and luminous to us and make our dealings with 

them more fruitful”.65  Not only does Dewey expand on the process of inquiry but he 

redefines the aim of philosophy and science and places them more in touch with the aims 

of ordinary people.  In regard to science, Dewey sees the activity of science not as acts 

done by any one individual scientist but as the acts done by a community of scientists.  

The key being that the scientific method works because it can be repeated and tested 

multiple time by multiple scientists, and only when a consensus is reached can it be said 

that we have knowledge.  This conception of the scientific method works nicely with 

computer simulated models since they are designed to be run and rerun.  They work by 

aggregating data over multiple runs.  They also are designed to be easily picked up by 

other scientist and tested themselves.  Just as Dewey argues that knowledge is only 

reached through a consensus of people, the value of computer simulated models comes 

from a similar consensus that is reached over time, as the model justifies itself through 

the production of useful data.  This also refers back to the notion of robust models.  As 

Muldoon argues, the robustness of a computer simulated model is gain through the 

widespread use of them within a community.66  Dewey also comments on the distinction 

between pure and applied sciences. 

The pure sciences are often thought of as being higher or more prestigious.  A 

realist might even claim that they aim to understand reality at its core.  Applied sciences, 

                                                 
65 Dewey, John. Experience and Nature. New York: Dover Publications, Inc., (1958): 7 
66 Muldoon, Ryan. "Robust simulations." Philosophy of Science 74, no. 5 (2007): 883 
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such as engineering or medicine, deal with the immediate problems of a practical nature.  

They deal with solving the problems of humanity and not uncovering the workings of the 

universe.  It has been known that applied sciences often deal with terms such as “best 

practices”. They deal with tolerances and approximations that intentionally shy away 

from absolutely precise understandings.  That is not to say that they don’t care about 

precision but instead that they care more about the practical implications then the 

theoretical implications.  For example, a civil engineer building a bridge might 

intentionally build the bridge to withstand a load higher than it will ever encounter.  This 

is because the risk of the bridge collapsing is greater in value than whatever cost savings 

they could gain from using less material.  While some people would say that engineering 

is less of a science than physics, Dewey argues the opposite. 

What is sometimes termed “applied” science, may then be more truly science than 
what is conventionally called pure science. For it is directly concerned with not 
just instrumentalities, but instrumentalities at work in effecting modifications of 
existence in behalf of conclusions that are reflectively preferred. Thus conceived 
the characteristic subject-matter of knowledge consists of fulfilling objects, which 
as fulfillments are connected with a history to which they give character. Thus 
conceived, knowledge exists in engineering, medicine and the social arts more 
adequately than it does in mathematics and physics. Thus conceived, history and 
anthropology are scientific in a sense in which bodies of information that stop 
short with general formulae are not.67 
 

This point is key because computer simulated models are traditionally seen as an applied 

method of science.  Sloman would also support this claim as he said: “the pure scientist 

needs to behave like an engineer: designing and testing working theories.  The more 

complex the process studies, the closer the two must become. Pure and applied science 

merge. And philosophers need to join in”.68 By taking Dewey’s point to heart, we see 

                                                 
67 Dewey, John. Experience and Nature. New York: Dover Publications, Inc., (1958): 161-162 
68 Sloman, Aaron. The Computer Revolution in Philosophy: Philosophy, Science and  
Models of Mind. Hassocks: The Harvester Press, (1978): 16 
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that, in many ways, the applied methods are more valuable to man than the theoretical 

methods.  Computer simulated model’s value to philosophy is best realized by defining 

science and the role of philosophy as Dewey does.  By taking an Instrumentalist approach 

to computer simulated models, we can clearly see how interpreting them as practical tools 

is more beneficial than trying to interpret them as truth-seeking representations.  A point 

that is further supported by Winsberg’s claim that simulations seek reliability without 

seeking truth.  
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CONCLUDING THOUGHTS: INSTRUMENTALISM AS RELIABILITY WITHOUT 
TRUTH 

 
 

As mentioned at the end of the last section, the thought that computer simulated 

models seek reliability, and not truth, helps to show their true value.69  When combined 

with a pragmatic framework, understanding computer simulated models as reliable tools 

describes their usefulness to both scientists and philosophers.  For Winsberg, this notion 

of reliability without truth is the key to understanding the place of computer simulated 

models within the scope of inquiry.  He states, “Despite their mixed ancestries, many of 

these simulations are trusted in making predictions and building representations of 

phenomena, and they are often successfully used in engineering applications”.70  This 

echoes what Dewey thought should be the aim of science: to be able to produce useful 

predictions and to aid in concrete understandings of the world. 

 Winsberg believes that computer simulated models gain this reliability through 

the process of model-building itself.  “I have argued that the credibility of a simulation 

model must come not only from the credentials supplied to it by its theoretical ancestors, 

but also from the antecedently established credentials of the model-building techniques 

employed in its construction”.71 The credibility of a model is not judged alone but in 

connection to all other models and the technique of model building itself.  This again 

recalls Dewey in “the method of science requires, then, the establishment of a continuum 

of inquiry, and a continuum of inquiry which is adequate to the purpose of a community 

of inquiries… The objectivity of those results depends upon the fact that the method used 
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are public and can be repeated.”72  Again, the idea that a method is found to be useful 

through the process of producing reliable understandings is something supported both by 

Dewey and Winsberg. 

The bridge between these two philosophers can be seen through the comments of 

Arthur Fine.  Fine’s defense of Instrumentalism over Realism helps to bridge the gap 

between the Instrumentalism of Dewey and the interpretation of computer simulations in 

science by Winsberg. Fine states:  

Instrumentalism takes reliability as its fundamental concept and differs from 
realism only in this: Where the realist goes for truth in the sense of a 
correspondence with reality, the instrumentalist goes for general reliability… 
Where the realist says that science does (or should) aim at the truth, the 
instrumentalist says that science does (or should) aim at reliability… The realist 
cannot win this game since whatever points to the truth, realist style, will also 
point to reliability.73 
 

This echoes the same point that was made about Churchland in a previous section.  When 

Churchland refuses to accept the pragmatic element of his theory and instead sticks to 

realism, Churchland does himself a disservice, since the same claims can be made 

pragmatically without having to bind yourself to the commitments that realism requires. 

This leads to the finishing thoughts of this thesis. The aim of this thesis has been 

to explain and describe the process of computer simulated models and then to show how 

they are capable of being used as aids to philosophers.  Firstly, by defining the term 

computer simulated model as a process that involves two distinct yet connected steps of 

modeling and simulating, we gain a better understanding of the many uses that computer 
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simulated models have already accomplished within the discipline of science.  Once it is 

seen how computer simulated models have aided in the progress of science over time, we 

can see the validity of them as tools of inquiry.  Secondly, by relating those to traditional 

methods of philosophy, such as Conceptual Analysis, we can start to see how computer 

simulated methods are able to accomplish the goals that philosophers have often set out 

to accomplish: namely, to gain a better understanding of the meaning that exists within 

the numerous phenomena that exists around us.  Lastly, the usefulness of computer 

simulated models is aided even more by adopting a pragmatic perspective of philosophy.  

By adopting a pragmatic understanding of both philosophy and science, we can see how 

these seemingly separate methods actually overlap by both being methods aimed at the 

human endeavor of general inquiry.  Pragmatism also allows us to accept that computer 

simulated models do not aim to uncover any absolute truth about the world, but instead 

aim to provide reliable understandings and predictions for the concrete and daily 

problems that plague the lives of people. 
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