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ABSTRACT
JASON RUSSELL RINES. An argument for the useahputer simulated models
in philosophy. (Under the direction of DR. MARVINRDY)

This thesis will attempt to show how computer dated models can act as a tool
for philosophers. To accomplish this goal, thissik will be broken down into six
sections. The first three sections will go intoredetail regarding the nature of the term
‘computer simulated model.” They will discuss thistory of computer simulated
models, outline the process of constructing commaiteulated models, and give context
for the current use of computer simulated modekciance. These sections will rely
heavily on the work of Eric Winsberg to give a peopnderstanding of the functions of
computer simulated models. The forth section gnle a historical overview of different
philosophical methods, including the dialecticakinoel, Conceptual Analysis, and the
work of Paul Churchland with Artificial Neural Netrks. This section will also attempt
to show how these philosophical methods relat@toputer simulated models. The fifth
section will discuss how American Pragmatism presid positive framework for the
utilization of computer simulated models by philpkers, specifically pulling from the
works of Charles Peirce, William James, and Johwdye The sixth and final section
will address the notion that computer simulated et®dre reliable without seeking truth

and use that notion to tie together the argumexttdbmputer simulated models can serve

as a tool for philosophers.
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INTRODUCTION

This thesis will attempt to show how computer siatedl models can act as a tool
for philosophers. To accomplish this goal, thissik will be broken down into six
sections. The first three sections will go intéaidlaegarding the nature of the term
‘computer simulated model.” This will involve desxing the process used to create
these models, as well as some of their current U$ese sections will also show how
these models are currently viewed as a reliablewdbin the sciences. Specifically, the
work of Eric Winsberg will be used to show how amaly computer simulated models
act as reliable tools for exploring the world ardws. In describing computer simulated
models as such, this thesis will address someeotdincerns that philosophers have had
about computer simulated models in regards to tiin role in science and the prospect
of using them for philosophy. The third sectionlwiso address some possible
objections to the idea of philosophers using compsitnulated models as a
philosophical tool.

The fourth section will attempt to show the palalleetween the construction of
computer simulated models and well established oakstivithin philosophy. This will
be done by deconstructing two methods within ploidy and showing how the process
and goals of these methods can be seen in theriguddd exploring of computer
simulated models. This section will explain thierof Conceptual Analysis in
philosophy and the goals Conceptual Analysis attergpachieve. This will be done by
considering the works of Bertrand Russell and Lydwittgenstein and attempting to
explain the setting in which Conceptual Analysiseged and developed. This will be

followed up by an explanation of how the aims ohCeptual Analysis can be replicated



within the process of creating and using computaukted models. Next, the
emergence of experimental philosophy will be expgdi Examples of philosophers such
as Paul Churchland, who are already using comguterlated models within their
experimental work, show how computer simulated rsfiiewithin the confines of
philosophy.

The fifth section will show how American Pragmatipnovides a positive
framework for the utilization of computer simulateddels by philosophers. Through a
number of arguments, this examination will explibre core features of American
Pragmatism and show how the application of compiteulated models by philosophers
is consistent with the spirit of American Pragnmatiss presented by Charles Peirce,
William James, and John Dewey. First, it will bgueed that the pragmatic construction
of truth is consistent with and supported by thevidedge produced by computer
simulated models. This argument will tie in wittetnotion that computer simulated
models favor reliability over truth. Subsequenthis section will emphasize how
computer simulated models have the ability to peaatical tool that is capable of
solving not only abstract problems but also corcogtes. This idea stresses the
importance for philosophers to be concerned wittrglay problems and not just
abstract ones. The fifth section will concludehnthie argument that computer simulated
models can be used as a tool for reflection andoaiisider how the iterative nature of
computer simulated models echoes Dewey’s emphasiflection within the process of
inquiry.

The last section will address the notion that compsimulated models are

reliable without seeking truth. This idea comesrfrEric Winsberg but is supported



through the work of pragmatists such as Dewey.a Adole, this thesis hopes to paint a
detailed picture of the role computer simulated at®dan play as a tool for philosophers
and argue that these models can be valuable tosolphers. Most importantly, this
thesis hopes to show how American Pragmatism giupport for the use of computer
simulated models by philosophers.

It should be noted that this idea of merging cotepmy science, and philosophy
has been attempted before. Aaron Sloman wrotetdbisun detail in his bookThe
Computer Revolution in Philosophyn that text, Sloman attempts to show how
computers can help to revolutionize philosophyon&in also attempts to show the places
where science and philosophy can ovetlgploman covers many of the same topics that
will be addressed in this thesis. Sloman devotgbae chapter to Conceptual
Analysis? In it, he argues for a more applied approach wisltiencéand against
computers simply being “number crunchet$ie believes that computers, science, and
philosophy can all work together. Where this pap#ers from the work of Sloman is in
the application of computers to philosophy. Sloraegues for artificial intelligence (Al)
to be the location where philosophy and computeeslap. While he is not wrong, this
thesis will focus on the use of computer simulatextiels, instead of Al, within
philosophy. As such, this thesis can be seersapportive argument, using new

examples, for the integration of computer simulatextiels within philosophy.

1 Sloman, AaronThe Computer Revolution in Philosophy: Philosogience and
Models of MindHassocks: The Harvester Press, (1978):80-81

2 |bid: 84

3 lbid:16

4 lbid: 103



WHAT IS A COMPUTER SIMULATED MODEL?

In order to explain how computer simulated modals act as a philosophical
tool, it must first be explained what is meant bg term ‘computer simulated model.” It
should be clear that the use of the term ‘compmitaulated models’ refers not only to
the models themselves but also to the entire psdogsvhich a computer simulated
model is created and used. This includes any neatin that might happen to the
computer simulated model over time. It is impotrtanfocus on computer simulated
models as a process since their usefulness tospipit@rs exists within this process and
does not stem solely from the creation or useadfraputer simulated model. Itis also
within this process that computer simulated modafsbe seen to have two connected
yet separate processes. The first process ige¢lagian and building of a computer
model; the second is the simulation and analysteefiata. This distinction relies on the
difference between simulation and modeling, as beldiscussed later in this paper.
While both of these steps are performed eitherrlgnca computer, they represent
different actions. The importance lies in how theyk together to create the end result:
the computer simulated model.

Historically, computer simulation has been a mdthsed to supplement the
solution of difficult mathematical problems. Orfetloe earliest cases of computer
simulation is the Monte Carlo method. The Montel€®&ethod is a means of
computing the volume of irregularly shaped figuaes was developed during the
Manhattan Project in the nineteen forties by StanidJlam and John von Neuman.
Often, these figures cannot be calculated usirdititoaal methods. This calculation is

completed by placing the figure inside of a cub&raiwn volume and then trying to



computationally come up with a ratio between thieime of the figure and the cube.

The computer randomly chooses points within theecard determines whether that
point exists as a part of the figure or not. Aftgpeating this action thousands of times,
the computer can determine the ratio of the figarthe cube and therefore determine the
volume of the figure. It is important to point dwdre that computer simulation is not just
a method of quickly solving mathematical equatio@dten, computer simulations are
used to solve problems that have no traditionaheragtic solution to them, such as in
the Monte Carlo Method above.

An important distinction must be made betweenramder simulation and a
numerical calculation. If computer simulationh®tight of as an advanced calculator,
the real value of computer simulation is not fulyalized. As in the example above,
computer simulations are able to solve mathemaicdllems in ways that are not
possible using traditional analytical methods. sTikioften due to the ability of
computers to store large volumes of data at arglesimoment. A computer is capable of
keeping track of thousands of variables at anylsingpment. Sloman makes this same
point when he points out the common misconceptah ¢omputers are simply a tool
with which to complete numerical calculatidhdn the Monte Carlo example above, the
computer is able to run the simple operation oéeining if the point within the cube
that it has selected is or is not a part of thérdddigure being measured. With each

step, the computer simply registers either a sgcoefailure, where a success is a point

5 Lenhard, Johannes, Kuppers, Gunter, and TerrynSkiomputer Simulation: Practice, Epistemology,
and Social Dynamicsth Simulation: Pragmatic Construction of Realigdited by Johannes Lenhard,
Gunter Kuppers, and Terry Shinn, 3-22. Dordrechtirger, (2006): 9

6 Sloman, AaronThe Computer Revolution in Philosophy: Philososience and

Models of MindHassocks: The Harvester Press, (1978): 103



that is within the figure and a failure is a pamotside of the figure. While this simple
process is nothing spectacular, the computer &stabtomplete this simple operation
thousands of times to determine an accurate réBaaress points to failure points and
therefore determine the volume of the figure.

If we now ask ourselves what in this example esacbmputer simulation, we find
that the act being simulated is the act of chooaipgint within the cube and determining
whether that point exists as a part of the figuraas. To be clear, the computer is not
simulating a purely mathematical calculation. T¢estiment is echoed by Kippers,
Lenhard, and Shinn, who state that “computer sitiarla are not numerical solutions of
a theoretical model; rather, they employ a genegatiechanism to imitate the dynamic
behavior of the underlying processThe simulation aspect of computer simulated
models considers the simulation of time and thegsses that are affected by time. The
model aspect focuses on the representation of tsbjge well as the dynamics of
behavior that might exist between different objedthin the model.

As it was stated earlier, some computer modelsigingpresent a mathematical
relationship, while others represent actual objectee world. This thesis will focus on
the latter case. Three types of this latter caslede Cellular Automata, Agent-Based
Models, and Neural Networks. These three typesadeely on exact theoretical
models® Cellular Automata is the oldest of these typdss Thodel works by dividing a
two dimensional space into a grid. Each spacéemgtid should have eight neighbors or

eight grid spaces surrounding it. Each grid sgacebe programed to have different

" Lenhard, Johannes, Kuppers, Gunter, and TerrynShomputer Simulation: Practice, Epistemology,
and Social Dynamicsfth Simulation: Pragmatic Construction of Realigdited by Johannes Lenhard,
Gunter Kuppers, and Terry Shinn, 3-22. Dordrechtir§er, (2006): 11

8 lbid



behaviors depending on the states of its neighftloeseight grid spaces surrounding it).
With each step or movement in time, each grid spateaccording to its assigned
behavior. For example, say that there are twedifit behavior types, each with its own
corresponding color. The first behavior type whinge its color if more than five of its
neighbors are the same color as it is. The sebehdvior type will change its color if
less than two of its neighbors are the same caldria. With every step, each grid space
calculates its behavior and acts accordingly.

Agent-Based Models (ABM) try to exhibit Meta oogkl level phenomenon
through the interaction of smaller autonomous agebinlike Cellular Automata, agent-
based models are not confined to a grid structlifee agents in agent-based models can
also be heterogeneous, with different classesafitagnteracting in varying ways. This
is the key advantage of agent-based-models overlddeabased models, such as Cellular
Automata. Paul Humphreys describes this advamatje“the fact that the agents are
operating within an environment which is constaetianging, and the fact that an
agent’s actions are reciprocally affected by theicds made by other agerftsthis is
what makes agent-based models so useful. ABMaldesto model complex systems, in
which agents affect and are affected by not orthgioagents but also a simulated
environment. This ability makes agent-based moaldtpt at modeling biological and
social structure¥’ These models are also inherently bottom-up, wtreréocus of the

model is on the interaction of agents and the enment. In this sense, no overarching

% Humphreys, PauExtending Ourselves: Computational Science, Emipiricand Scientific Methodlew
York: Oxford University Press, (2004): 130

10| enhard, Johannes, Kuppers, Gunter, and TerrynStomputer Simulation: Practice, Epistemology,
and Social Dynamics.” In Simulation: Pragmatic Comstion of Reality edited by Johannes Lenhard,
Gunter Kuppers, and Terry Shinn, 3-22. Dordrechtir§er, (2006): 12



structure is being assumed by the model. Thisoftéin lead to emergent phenomena at
the macro level that are the result of the intépastof the micro-level agents. These
phenomena cannot be predicted by simply analyfiagndividual agents themselvés.
Agent-based models lend themselves to the undeistanf sufficient conditions for a
given phenomenon. They can find their use in wtdading the underlying mechanisms
of known phenomenon, such as the behavior of Ifiod&ing or the racial segregation of
neighborhood$? Normally, these mechanisms emerge from simpksrtiat are
unrelated to the phenomenon itself.

Artificial Neural Networks are another exampleadfype of modeling that
operates without the guidance of an overarchingsire. Artificial Neural Networks
operate with layers of ‘neurons’ that are connetteshe another through links. All
links have weights that are adjusted over timee [litks and their weights determine
how one layer affects another layer. One nornfaly an input layer of nodes on the
bottom and an output layer on top. Unlike previewsamples, neural networks function
by creating a testing set of input and output paiise modeler will enter a set of input
values for the network, and the system will adfbstweights that are attached to the
links until the outputs of the network match thputs given. This, in a sense, calibrates
the network. Once this is done, one could idegil the network a new input value, for
which one might not have the corresponding outpilue; and the network will figure out

what the output value should be. In this way,rteevork learns the pattern that the

1 Humphreys, PauExtending Ourselves: Computational Science, Emipiricand Scientific Method
New York: Oxford University Press, (2004): 130

12 Macy, Michael W, and Robert Willer. “From FactoosActors: Computational Sociology and Agent-
Based Modeling.” Annual Review of Sociology 28, aq2002): 143-166.



modeler is attempting to fink. A more concrete example of this can be seentinahe
networks that are used for facial recognition. fhase networks, the input layer would
be the number of pixels for a facial image. Fas #xample, we will say that there are 64
pixels in each picture. The output layer mightlie sex of the person in the picture.
The input layer therefore has sixty four nodesearrons, and the output layer will have
two neurons (male and female). These two layerddvoe connected through middle
layers of neurons. These middle layers can haxyang degree of nodes. It should be
noted that each node in the first layer will beroested to each node in the layer above it.
The network will be calibrated by giving it facelskmown sex. For each iteration, one
gives the network feedback. If the network propeadsigns the correct sex to the
picture, the weights of the links will strengthdrithe network assigns the wrong sex, the
weights will be reduced. This happens over maenaiions until the network is able to
predict the correct sex at a high percentage tiaite jercentage rate varies according to
the needs of the modeler). With the network n@intd, one can give the network a
new face that it has not seen before and it shiogilable to assign the correct $éx.
Models like these have been used by philosophets &1 Paul Churchland within
Philosophy of Mind to explore how high level contsemight emerge from lower level
neural activity:®

All three of these model types avoid the usagexpficit mathematical equations

to find their solutions. They also serve as exaspif the differences between the

13 Lenhard, Johannes, Kuppers, Gunter, and TerrynSk@omputer Simulation: Practice, Epistemology,
and Social Dynamics.” I8imulation: Pragmatic Construction of Reajigdited by Johannes Lenhard,
Gunter Kuppers, and Terry Shinn, 3-22. Dordrechtir§er, (2006): 12

4 Churchland, Paul MThe Engine of Reason, the Seat of the.Stambridge: The MIT Press, (1995): 52-
53

15 | will go into more detail about Churchland and hiental models in a later section.
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simulation aspect and modeling aspect. Whileweterms are often used
interchangeably, this thesis will attempt to maldéstinction between them. While this
is not a distinction shared by many, it servesedulgunction. In order to appreciate the
usefulness of computer simulated models to philbgpopne must understand how the
process of creating and using computer simulatediefsanvolves the separate but
connected aspects of computer simulation and ca@npubtdeling. The modeling side of
computer simulated models includes the frameworkrgio the model by the specific
genre of computer simulated model it represents) a8 the three types of models
described above: Cellular Automata, Agent-Based élaahd Artificial Neural
Networks. The modeling portion also involves thi#al conditions of the model, as well
as any rules of interaction between the differéamtnents within the model. Atrtificial
Neural Networks, in this regard, are limited imterof the freedom the modeler has
when it comes to varying any of these factors. Atificial Neural Networks have a
structure consisting of rows of neurons that ateraonnected by weighted links. With
Cellular Automata, the modeler has a few more foees] as the modeler can alter the
rules by which the different grids interact wittcbabther. The modeler, however, is
stuck with the framework of grids. Agent-Based Mischave the most freedoms in
terms of the implementation of the model. The nterdeas the ability to create n-
number of agents, all with different rules for iatetion, both with the environment and
with other agents.

As stated before, computer simulation deals priypavith the element of time.
For Cellular Automata, this means that what getsiated is the interaction of each grid

space at each discrete step. The simulation rebeal each grid space reacts given the
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state of its neighbors. Through simulation, one £2e how patterns emerge and how the
different rules for each grid space unfold. Thaidation aspect of Agent-Based Models
can reveal the occurrence of emergent phenomemaalso what allows for the different
behaviors and interactions of the individual ageéntse realized. In Neural Networks,
the simulation is both the calibration of the natkvithrough testing sets and the
utilization of a trained network for the exploratiof new instances. Some Artificial
Neural Networks combine this into one step by hgveturrent training networks built
into the simulation. Simulation is also concermath the data that is produced by the
models. For Artificial Neural Networks, the datet is produced is normally just the
output from the network, while Cellular Automatadahgent-Based Models can produce
far more data, such as the state of different begathat the agents might have or the
aggregate of the different states within a Cell@datomata.

A clearer example of this distinction can be seetwio more concrete examples.
Considering the example of the Monte Carlo simalgtone can easily see the division
between the modeling and simulating aspects. Thi#ems the computer representation
of the three dimensional shape of known volumethadhree dimensional shape of
unknown volume. The simulation is the computeragiiog a spot within the three
dimensional shape of known volume and then testirsge if that spot is also within the
shape of unknown volume. The result of the sinnuhais a percentage that represents
the volume of the shape of unknown volume to tHeme of the shape of known
volume. Another example would be if one were wate a computer simulated model of
the universe. The model element would involve thece within which the universe

exists, the basic particles that exist within tmgverse, and the laws of physics to
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determine how these particles will interact witlcleather. The simulation portion

would be time. By running the simulation, it woutlieal how all these particles interact
over time. As it can be seen here, both elemestgrgortant to the overall function of
the computer simulated model. Without the modw,dimulation would have no rules to
govern its behavior, and, without simulation, thedel would not be able to produce any
useful information. This distinction is also udeduring any type of analysis that might
be required due to unexpected results. Knowing& ®anomaly is part of the model or
part of the simulation can help the modeler todyaihderstand the nature of the anomaly

and the phenomena being explored by the computeraied model.
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THE PROCESS OF COMPUTER SIMULATED MODELING

As was addressed in the previous section, it pomant to think about computer
simulated models as a process. This process §pamshe conception of the computer
simulated model all the way through the analysighefresults or output produced
through the simulation. Embedded in this procedke value of computer simulated
models to philosophers. In the first section,dlference between modeling and
simulation was introduced. These two functionsndethe main division within the
process of computer simulated modeling. This eaaitiill continue working within that
division: the first part will focus on modeling aatl of the steps involved in that process
and second will consider simulation and all thegparvolved in it. Included in the
section on simulation will be the analysis of anyput data from a model. By expanding
on the process of computer simulated models, oneteat to see the benefits that
computer simulated models can bring to philosophy.

Most models are grounded in thedtyThis theory can be based on mathematical
principles, such Newtonian physics, or can sim@ydrged from empirical data that has
yet to be reduced to a mathematical relationsi¥eather forecasting fits into this
second option. While large amounts of empiricahter data exists, the systems that are
in play are too complicated to be described witlel@gant mathematical equation. All
models first start with a problem that is in neédaving. The nature of this problem
can help the modeler answer the first questionadeting: what genre of computer

simulated models should be used? As previousltiored, there is a wide range of

6 Winsberg, EricScience in the Age of Computer Simulati©hicago: The University of Chicago Press,
(2010): 10-11
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different computer simulated models, each withrtbein pros and cons. Understanding
the nature of the problem can help inform the mexdef what type of computer
simulated model would be the best option. Forains¢, Agent-Based Models are best
suited for situations involving a heterogeneouso$eents. Artificial Neural Networks
are suited to emulate the process of learning. mbeeler must be aware of the
limitations of each type of computer simulated modehis being said, it is possible for a
person to model a specific phenomenon with diffetgmes of models. Take, for
instance, a model of different tactics used inisgmer’s dilemma. The prisoner’s
dilemma is described as a scenario where whatsisftyethe individual is not best for the
group. The Stanford Encyclopedia of Philosoptescribes it through a narrative:
Tanya and Cinque have been arrested for robbinglitbernia Savings Bank and
placed in separate isolation cells. Both care mmole about their personal
freedom than about the welfare of their accomplcelever prosecutor makes
the following offer to each. “You may choose to fass or remain silent. If you
confess and your accomplice remains silent | witipdall charges against you and
use your testimony to ensure that your accomploes derious time. Likewise, if
your accomplice confesses while you remain siléaty will go free while you do
the time. If you both confess I get two convictipbst I'll see to it that you both
get early parole. If you both remain silent, Idve to settle for token sentences on
firearms possession charges. If you wish to confess must leave a note with
the jailer before my return tomorrow mornihg.
As it can be seen, the prisoners dilemma is an pkaai a collective action problem,
where the choice to work together to benefit treugr(confessing) is in conflict with
what is best for them individually (remaining silel¥ There are many different

formulations of this scenario, each with a différevist. The one this thesis will use is a

twist on the original, where the prisoners compiatdtiple rounds and are aware of what

17 Kuhn, Steven, "Prisoner's Dilemma&he Stanford Encyclopedia of PhilosogRgll 2014 Edition),
Edward N. Zalta (ed.), www .plato.stanford.edu/areb/fall2014/entries/prisoner-dilemma.

18 Encyclopedia Britannica Onlines. v. "collective action problem”, accessed JUBe2015, www
.britannica.com/topic/collective-action-problem-¥a57.
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the other prisoner did in the last round. Thiswali for each prisoner to adjust his/her
strategy based on what he/she thinks the othesrgrswill do. Modeling this type of
scenario has become a staple within computer steditaodels. As such, it has been
addressed using all three genres of computer siatifaodels that have been discussed.
The key is to pick the type of model that is bestes for the modeler's needsOnce

the modeler has settled on the type of model hegspeing to use, he/she can move on
to the second step in modeling.

The second step is to build the model inside efabmputer environment. If one
was to build an agent-based model of the prisom#esnma, one would have to decide
how he/she is going to implement the differenttegees. He/she would have to decide if
he/she wanted the agent to be fixed to a spec¢reg)y or if the agent might change
strategies over time. He/she would have to deterrhow he/she is going to allow the
different agents to engage with one another. $hitnd agents randomly interact with
one another or should the modeler control the attesns in some way? How should the
simulation keep track of the engagements? Whadhas should the modeler allow to
be adjusted and which should the modeler keep aot¥siVhich variables should even
be considered? These types of question are j@st #hiat must be addressed. All of
these questions carry with them epistemologicagtitei How one chooses to implement
these question has an effect on the end resultnaistl be taken into consideration. It
should also be noted that, within this process,als@ has to consider that all of these

guestions must be translated into code that thgatencan understand. This process

191t should be mentioned that the use of the prissrmlemma as an example is due only to the efse o
description and is not a comment on the validityhef prisoner’s dilemma as an evaluation of human
rationality or decision making. The prisoner'sediima is an exercise in game theory and not an Emlpir
study of actual prisoners.
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forces the modeler to make explicit all of the aggtions that he/she has implemented
into this model. This can become tricky when tgyin model behaviors that involve
probability.

For instance, say that, empirically, we know tikndten people are put into a
prisoner’s dilemma situation with multiple runs gty-five percent of people will adjust
their strategy if they end up losiAg.Now, if one was trying to exhibit this behaviara
model, he/she must now choose how to implemenb#tavior. One option would be to
simply program twenty five percent of the agentsvidtch their strategy when they lose.
Another option would be to give every agent a twdivie percent-chance of changing
strategy when they lose. Since one of the advastafjagent based models is that they
function as a bottom up process, maybe the modatgrt choose to not program in the
exact empirical percentage into the model atldihybe the modeler might choose to
implement another strategy and see if the resudtsimthe empirically known statistics.
This choice will often force the modeler to go béackhe empirical data and consider
which of these methods would best model the phenamaghand. On the other hand, by
running multiple computer simulated models, eadh aidifferent approach, the modeler
might learn which method best fits the empiricaledan this sense, the process of
building the model forces the modeler back to reetstiginal data and requires further
inquiry into the theory or phenomena in questitmthis way, the very processes of
building the model can help to uncover more infaroraabout the nature of the

phenomena being modeled.

20 This is a hypothetical statement used to givexamg@le of the process of model building.
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After the model has been built, the next step engiocess is to allow for the
simulation process to run within the model. Bymung the simulation, one is putting
into action all of the initial conditions along Wwigll of the rules for interaction that were
built into the model. Depending on the type of elothe act of simulation can take
many forms. This is best expressed by comparingithalation of an Artificial Neural
Network to that of an agent based model. Mostfigidl Neural Networks lack a
graphical interface where the user can actuallylseadjusting of weights during the
simulation process. Because of this, the simuigbimcess is simply useful for the data
that it produces. With Artificial Neural Networkihie simulation process is involved
with both the training of the network as well as #pplication of the network after it has
been trained. With an agent-based model, the atioaltakes a much different form.
Most agent-based modeling programs, such as SWARIM\&tLogo, utilize a graphical
user interface that allows the modeler to see theements and interaction of all of the
agents in real time. Agent-based models can atstupe large amounts of data that is
normally exported into some type of database fahér analysis.

Another important element of simulation is feedba¥hen simulating, it is
normal for the program to run through the simulatioultiple times before data is
collected. This is due to the dynamic nature ehpoter simulated models. Each time
the modeler runs the simulation, new data is predud®ue to the fact that events like
probability and randomness are in play, each r@tia ability to generate new data.
This data is normally aggregated together, andy thi¢ use of statistical measures, some
type of conclusion is reached. With agent-basedetsat is normal for the modeler to

intentionally vary the initial conditions in ord&r see how the changes affect the
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outcome. In the example of the prisoner’s dilemtha,modeler might change the
starting strategies or the amount of agents with strategy. Changing these variables
can have an effect on the outcome of the simulatidms is one of the benefits of
computer simulated models: they have the abilityd@djusted quickly and analyzed in a
relatively short amount of time. This also leanl$ite feedback loop that is key to the
development of computer simulated models. Witltathputer simulated models, there
is no real end to the development. Even after dainloas been created and simulated, it
is normal for the creator to go back and make cesmgther to the very structure of the
model or to a single variable. Artificial Neuraktworks can actually be built in a
natural feedback loop that allows for the modeddatinue to make changes even after
the model has been trained. This is the main resoonsider computer simulated
models a process. It is a process that has thigyabigenerate new inquiries and
hypotheses.

The continual reexamining and tweaking of compsigulated models is often
the result of the fact that computer simulated ned#&en generate more questions than
answers. Through the process of building and testing a computer simulated model,
the modeler might uncover behavior of a phenomesidé of the model that might not
match the empirical data from the world, even & thodeler thought he/she had properly
represented it within the computer simulated modélis might cause the modeler to not
only reexamine the code of the model to uncoverissyes there but to also examine the
phenomena in the world to see if he/she can fiecctuse of the discrepancy. This is
similar to the way that new observations lead sigento reconsider old theories. The

output from computer simulated models can causeéBgner to go back and adjust
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something or even to rethink the nature of hisiteginal question. The computer
simulated model is a tool to create new ideas mp@etives. It is a rapid prototype
device that can quickly be developed and deplogegeherate new knowledge about a
phenomena. Its value comes both from its abititipe flexible and adapt itself to a
multitude of purposes as well as its computatigaaver to represent complex and

dynamic systems that until now were seen as unsieya

2! Lenhard, Johannes, Kuppers, Gunter, and TerrynShtomputer Simulation: Practice, Epistemology,
and Social Dynamics.” IBimulation: Pragmatic Construction of Realigdited by Johannes Lenhard,
Gunter Kuppers, and Terry Shinn, 3-22. Dordrechtir§er, (2006): 18
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THE EPISTOMOLGY OF COMPUTER SIMULATED MODELS

Computer simulated models have found their honeevariety of disciplines,
including economics, psychology, anthropology, &gy, and chemistry. They are used
because they serve as a scientific tool that all@ssarchers to investigate theories in
ways that traditional methods cannot. Their widead use in certain fields, specifically
science, has led many philosophers of sciencevestigate their role, their inquiry being
focused on the epistemology of computer simulatedets as well as their relation to
scientific theory and the process of experiment.

The relationship between scientific theory an@sttiic modeling is not as
straightforward as one might think. While scientihodels do find their grounding in
scientific theory, it is not always the case that@del is derived directly from the theory.
Winsberg states that “theory is at best guidinthaathan determining the choice of
model.””> He goes on to state three elements that areviedaoh the process of model
creation: theory, physical intuition, and the cdesations that are led from the
limitations of computatiod® So, while theory plays an important role in theation of a
scientific model, it is not the lone consideratiorhis led to one conception of the
epistemology of computer simulated models: Vertf@aand Validation.

Verification is the process of determining if thatput of the computer simulated
model approximates the solution to the originalsgioa that was being modeled.
Validation is the process of determining if the ralboid a proper representation of the real

world system being modeled. As Winsberg arguesyaélidation you have to determine

22 Winsberg, EricScience in the Age of Computer Simulati@hicago: The University of Chicago Press,
(2010): 16
23 | bid
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whether you have chosen the right model [...] infiGation you have to determine
whether you have found good solutions to that niotfel

While verification and validation do provide a pess for testing models against
some type of empirical truth, there is some deba&z whether actual computer
simulated models in use really follow this mod&his conception of computer simulated
models attempts to place the results of the maatgsst an empirical truth. Many
models, however, serve a purpose that separatesftom this type of framework.
Winsberg proposes that, instead of utilizing thefication and validation epistemology,
one should instead look to the epistemology ofrdifie experiments. Specifically, he
believes that one can learn a good bit from hoergi§ts come to view their experiments
as rational. While there is no exhaustive listhaf steps taken by scientists to find their
experiments rational, simulationists do know tlagr time and through the process of
applying their experimental results to scientiffolplems, scientists do learn the best
practices by which to evaluate their experiments.

It should also be stated that a rational beliefnrexperiment does not mean that
the experiment guarantees the truth of the knovegutgduced?® For those who would
argue that simulations and experiments differ @irtepistemological weight, specifically
that experiments have a higher epistemological leltgan simulations, this argument is
highly determined by the context of the simulati&mily Parke has argued that, in
many ways, the privilege given to experiments @maulations is due to the inference
that being more materially similar to the targe¢pbmena leads to a better understanding

of the phenomena. She argues that this inferemngiet mot be as sound as it first appears

24 1bid: 19
25 bid: 20
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and that in certain contexts simulations can haumkepistemological value to
experimentg®

Michael Weisberg's notion of model construal migtgo help to better
understand the relationship between a model anditievo be interpreted. The
construal of a model involves what Weisberg calsgnment and fidelity. Assignments
are “explicit specifications of how parts of realimagined target systems are to be
mapped onto parts of the modél"Fidelity is “how similar the model must be to the
world in order to be considered an adequate reptatsen”?® By articulating these two
parts of a model, the researcher is able to expinessounds by which the model can be
seen as useful. Fidelity, in particular, is usédulthis discussion since it focuses on the
tolerances that a model has. If a researcheisstadé this model needs to be within ten
percent of the actual values, then one has a sberehmark by which to judge the
model?®

By not attaching the success of a model to itbtylbo produce Truth, one allows
for models to serve a more pragmatic role. lhithis vein that Winsberg argues that “A
central conclusion that | would like to draw fronhat follows is that these strategies are
best understood as being aimed at providing grotordselief that a simulation provides
reliable information about the real-world systenmigesimulated.?’ This idea that
computer simulated models are reliable is oneithassential to understanding the true

value and purpose of computer simulated modelsisidérg defines reliability of models

26 parke, Emily C. “Experiments, Simulations, anddginic Privilege.’Philosophy of
Science 81no. 4 (2014): 516-536.

2T Weisberg, MichaelSimulation and similarity: Using Models to Undenstithe World Oxford
University Press, (2012): 40
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by saying “I characterize reliability (for modelipginciples) in terms of being able to
produce results that fit well into the web of oueydously accepted data, our
observations, the results of our paper-and-penailyges, and our physical intuitions,
and to make successful predictions or produce eegimg accomplishment$®.This is
the definition that this thesis will continue tdeeto when describing a model as reliable.
In order to sanction a model as reliable, one rdasgise a way to test its
reliability. This process involves both testing tieliability of the machines that are
running the computer simulated model as well asigshe model itself. To test the
accuracy of the machines, it is normal for the cotapsimulated model to be run on
multiple computers, often with different componendiBis process is part of what Ryan
Muldoon calls Robustness. The robustness of a atenpimulated model comes from
its ability to be confirmed through a communityusters. Much like scientific
experiments, which often must be verified by migtiiabs to be considered confirmed,
computer simulated models go through a similar @sedy being tested on different
computers running different operating systems aidgudifferent components.
Another process normally done is called benchmgrkifhe process of benchmarking
involves testing the outcomes of a computer sinedlabodels against known data from
the phenomena that is being modeled. Benchmarkaogrgouter simulated model is
similar to the process of calibrating a scientifiol.33 The process normally tests the

results of the model against already known datil&/this data can come from a variety

31 Winsberg, EricScience in the Age of Computer Simulati©hicago: The University of Chicago Press,
(2010): 133

32 Muldoon, Ryan. "Robust simulatiafi$?hilosophy of Science 740. 5 (2007): 873-883.

33 Winsberg, EricScience in the Age of Computer Simulati@hicago: The University of Chicago Press,
(2010): 22
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of places, the most useful data comes from empioieservations. For many computer
simulated models, this is easily accomplished; bieettg said, an advantage that
computer simulated models have over traditionakerments comes from their ability to
produce data when empirical data is not easilyiobta For example, if one was to
model how much damage a hurricane would causéif & city, most would rather not
allow a hurricane to hit a city in order to gatti@s data. This is often because the very
motivation for figuring out what might happen ispgevent as much damage as possible.
To benchmark a computer simulated model of a hamgditting a city, one
might first try and simulate the results of a heairie that had already happened.
Therefore, one would build a computer simulated ehodl a city that has been hit by a
hurricane in the past as well as one of the huradhat hit it. One would then run the
simulation of the hurricane hitting the city an@ sethe known effects occur. If, after
multiple runs, the computer simulated model is padag the effects expected from the
simulation, it can then be said that the computeukated model is reliably producing
the phenomena. Of course, one would want to attédmgoprocess multiple times with as
many known examples as possible. If the computeulsiied model properly exhibits all
of the known events then one can say one has draatdiable computer simulated
model of hurricanes hitting cities. With this mgd®e could now attempt to model a
situation that has not happened, for instanceegoay 5 hurricane hitting New York
City. With this model, one could generate prediasi of the amount of damage and
maybe even more specifically what type of damagelevbe done. This information

could then be used to design a plan to preventua$ mlamage as possible. In this
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example, one can see how the computer simulate@ln®dever disconnected from its
practical purposes.

Benchmarking is normally the first step within f®cess of creating a reliable
computer simulated model. Benchmarking can heprake sure that his/her model is
properly representing the system in question.ciense, though, nothing can be more
supportive in the sanctioning of a model than liitity to properly predict future events.
A good example of this is the discovery of the plaNeptune. The model in question
here is the model of Newtonian physics, so itlstaifferent than computer simulated
models, though the similarity in the power of patidin holds true for both. In the case
of Neptune, its discovery was first spurred onrbggularities in the orbit of Uranus.
With only seven planets accounted for, Uranus vesigatiowing the correct orbit
determined by gravitational forces. It was frons thregularity that it was predicted that
another object must exist outside of the orbit cdirilis that was disturbing its orbit.
Once the math was worked out and the scientistiéegiiheir new hypothesis to the
known data, they were able to both predict whersgparce this object should be as well as
an approximation of its mass. Sure enough, wheynwent to look for Neptune, it was
exactly where it was expect to be. This abilityptedict help build confidence in
Newtonian physics as a reliable model by whichrtdarstand the universe.

It is important to see that computer simulated et®dre rarely in a state of being
finished or complete. As stated earlier, compsieulated models are a process that is
connected to a greater process: science or thegsa@t human inquiry in general. As
such, progress that is made in one area of ingainyoften have a positive effect on other

areas. A historical example of this would be tifeuence of the Copernican model of
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the solar system on Bohr’s model of the atoms #asy to see how the representations
from one area can help support a breakthroughathanarea. This type of ‘borrowing’
can be seen in computer simulated models as Whkre are many examples of a model
being repurposed for another task. Humphrey’'sggigesome examples:

Percolation theory (of which Ising models are dipalar example) can be

applied to phenomena as varied as the spread géfumfections in orchards, the

spread of forest fires, the synchronization offfirélashing, and ferromagnetism.

Agent-Based models are being applied to systeraarged as financial markets

and biological systems developing under evolutipmaessured?
As can be seen, computer simulated models are dgnarmeir very nature. Even
within a single instance of a model, it might beised hundreds of times to either
account for new empirical data or to have new asleled to it. At a more discrete level,
it is common practice to utilize a segment of ctdden a model that is accomplishing a
specific aim. For instance, in an agent-based htbdeis attempting to model the
spread of AIDs, there might be a segment of codeabcomplishes the act of finding a
partner. It would be possible that another scietdsking at molecular bonding might
utilize that same code segment, since the basiegohena of finding a partner is similar
enough to be accomplished by the same segmentlef da this way, it is hard to really
measure the value of a computer simulated modelesven its discrete parts might find
value outside of its original scope.

In this discussion, of the epistemology of compstmulated models, it is
important to understand that this perspective cdinoes the pragmatic notion that views

science as a process. This process is not guideatds the revealing of absolute truth

but instead is focused on the ability to relialywe problems that humans encounter. In

34 Humphreys, PauExtending Ourselves: Computational Science, Emipiricand
Scientific MethodNew York: Oxford University Press, (2004): 70
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this view of science, it is not the abstract ootle¢ical issues that move science but the
practical ones. Theoretically, Copernicus’s vidwhe solar system was much harder to
support than Ptolemy’s. The fact that Copernic to explain how it was possible for
the earth to be spinning and yet have humans nereence this motion was almost
impossible to explain without a robust theory ofmemtum and more importantly
gravity. As such, it was not until Kepler and faiewton that the idea of a central sun
and orbiting earth was theoretically explainabléat being said, Copernicus’ theory was
widely accepted long before the theoretical exgianavas found® What this example
shows is that it is not absolute truth that gustgence but its ability to solve practical
problems. Itis in this pragmatic structure thainputer simulated models are developed.
The importance of taking a pragmatic perspecthai@nce is due to a number of
reasons that will be addressed formally in a lsgetion; however, one specific reason
that should be addressed now is the deemphasizicangputational power within
computer simulated models. While increases irctmeputational power of computers
has aided in are ability to solve problems thatengeviously unsolvable, the ability to
compute complex problems is only one facet of caempsimulated models. The
concern with placing too much weight on the comorial ability of computers (and
therefore computer simulated models) is that orghtrabuse the ability to solve
complex mathematical equations instead of seardbing different or maybe more
robust yet simpler theory that would not require same amount of computational
power. Humphreys brings up this concern throughettivisioning of what would have

happened if Kepler had access to the computatmmaér we have today. The fear is

35 Kuhn, Thomas SThe Copernican revolution: Planetary astronomylia tievelopment of western
thought Vol. 16. Harvard University Press, (1957): 261
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that instead of searching for an elegant solutioimé issue at hand, Kepler could have
simply entered Tycho’s data into a computer sinegdlahodel and found a model for the
orbit of the planets while staying within the pagsd of epicycles used by both the
Copernican and Ptolemaic mod#&sJust because computers have the power to solve
complex problems does not mean that relying onetbesmplex solutions as the basis of a
scientific theory is a good idea. There has alwagen weight put behind the elegance of
a theory. Occam’s razor states that, when decidétgyeen two theories, if all else is
equal, the theory with the fewest required assuwmptshould be given more credence.

In a similar vein, a theory that does not requues ¢computational power of a computer to
resolve its complexities should be given more weighn a theory that must rely on a
computer. This is why computer simulated modeds$ #ine not simply computational or
mathematical but instead focus on the applicatiaomplex adaptive systems, such as
Artificial Neural Networks and Agent-Based Modedse preferred.

While this thesis is focused on computer simulatediels as a tool for
philosophers and this section has focused on campirmulated models in regards to
their effect on science, their usefulness is somegtthat can transcend these two
disciplines. If one takes the perspective thatved for science and philosophy to both be
seen as different human enterprises of inquiryi oth the similar aim of addressing the
concerns and ambitions of humans, then one cartstsee how the acceptance and
usefulness of computer simulated models in sciemgat apply to their ability to be
useful for philosophers. Some possible argumegamat this point could include:

science and computer simulated models are redusttimnd philosophy has aimed at a

36 Humphreys, PauExtending Ourselves: Computational Science, Emipiricand
Scientific MethodNew York: Oxford University Press, (2004): 134
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more holistic perspective; computer simulated medelld only be used in specific
areas of philosophy, such as philosophy of sciamcephilosophy of mind; and the time
it would take to train a philosopher to learn h@wse computer simulated models would
be prohibitive.

In regards to the first of these arguments agamstputer simulated models in
philosophy, it can be agreed that, at times, seidras been reductionist. In physics, for
instance, there is a race to find the smallestgbastin hopes that, by understanding the
building blocks of the universe, we can explainghenomena that we experience. In
the same regard, computer simulated models carealsbit reductionist tendencies.
Agent-Based Models are often built through the nindeof the smallest agents in order
to explain meta-level phenomena. The fear thaespihilosophers might have with this
approach is that it can lead to the ignoring ofom@nt meta-level phenomena. For
instance, we know that emotions are caused byrelebemical processes in the brain. It
can be argued that, by understanding these pra;assean better understand human
emotions. The issue is that we already have ukefuvledge of emotions through
psychology and the qualitative studies of behavidde should not throw out this
knowledge just because a study of the biochemézadtions is more fundamental.

While the fear of reductionism is valid and shootd be ignored, it is false to
claim that computer simulated models are innatetijctionist. One of the benefits of
computer simulated models is their ability to moelelergent properties. With computer
simulated models, modelers have the opportunisfudy both the elemental and the
meta-level interaction of the systems chosen. \&btlhputer simulated models, the goal

has always been to understand systems as a witbte aot focus simply on the least
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common denominator. It is for this reason that gotar simulated models can aid
philosophers. They are some of the first scientdpls that are able to model and
represent the complex types of phenomena in whidbgophers have always been
interested.

To respond to the argument that computer simulaiedels are only applicable in
certain fields of philosophy, such as philosophg@énce and philosophy of mind,
Agent-based models have been used in many figldsiding sociology and
anthropology. There have been political model#t iging computer simulated models
to study voter behavior and segregation. The el@ofthe prisoner’s dilemma has
been used in cellular automata to investigate atldecision making and choices. Just
because the majority of models built have been dorfer scientific purposes does not
mean that the platform is limited to science. Téw need is to get these tools into the
hands of non-scientists and see what they can apméth. This leads into the last
argument.

Many people might argue that the learning curverntderstanding how to
program and then use computer simulated modelsits gigh. This step learning curve
might discourage philosophers from picking up these tools and applying them to
their work. Most philosophers spend decades legrnow to hone their craft in the
traditional methods that are taught within phildsgp Many do not have the time to learn
how to program and use these new computer simutatetls. The response to this line
of thinking is that, while computer simulated madate new and unorthodox to many
philosophers, the learning curve is neither moneless steep than the learning curve for

more traditional philosophical methods. With piags like NetLogo, Matlab, and
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Swarm, which focus on being simple to use and leathare full of detailed tutorials, the
barrier to entry is slowing coming down. More imamtly, as this thesis has articulated,
the process of learning how to model itself cambeseful as the final product. This
thesis is not aimed at replacing any traditionalgslophical methods but instead
augmenting said methods. By using mixed methoduéhzing the benefits of
computer simulated models while retaining the tradal methods, philosophers have
more options in regards to how they approach pbdbcal problems.

The next section will go into more detail conceghéexactly how computer
simulated models relate to methods with which gufmhers are already familiar. The
key point to remember is that computer simulatede@lsare a process that exists within

the larger process of human inquiry a place whetk philosophy and science reside.
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PAST AND CURRENT PHILOSOPHICAL METHODS

In order to properly articulate how computer siateti models can aid
philosophers, it is important to understand whalogbphers have attempted to
accomplish. By taking a look at the methods ot pagdosophers, as well as an example
of a current philosopher who is already using ca@psimulated models as a part of his
philosophical method, one might have a better wtdading of what philosophers aim to
achieve. In analyzing philosophical methods, teu$ will be on the aim of the method
as well as the method itself.

The first method to look at is that of Plato withime Socratic dialogues.
Specifically at the Euthyphro, to uncover what &t&s attempts to accomplish within
that text. In the Euthyphro, Socrates asks thstgpre what is Piety? Socrates
approaches Euthyphro, a priest, in hopes of unauyevhat Piety is. This is being
spurred on by the fact that Socrates is being @hvgth being impious. In order to
argue against this claim, Socrates hopes thahdinfg out the meaning of Piety he might
be better able to address the charge against hima.Dialectical Method is applied
through a dialogue where specific questions arecagskhope of revealing a robust
definition or concept. In the example of the Eytno, the aim is to uncover what it
means to be pious. With each exchange, the implcitradictions that existed within
Euthyphro’s understanding of Piety become explizitring the dialogue, Euthyphro
gives multiple definitions for what is pious andhveach new definition Socrates finds it
to be inadequate or inconsistent with the previmgerstandings that Euthyphro had
given. It should be noted Socrates found themegadte because none of the definitions

gave him what he is looking for: An understandifid@ty that can be applied to
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different actions to categorize them as either pimuimpious. While the analysis of the
concept of Piety might seem theoretical in natoreSlocrates, this was, in fact, a quite
practical endeavor. In the Euthyphro, Socratgsaparing to clear his name by showing
that the actions he performed do not fit within te@cept of impiety. The Dialectical
Method’s aim is to reveal the inadequacies andrissbencies of the concepts that one
holds. Through this one becomes more aware of ighadt known or more specifically
why one does not know what one thought one mightkn

Moving forward in time to the twentieth centuryyeof the dominate methods in
philosophy is Conceptual Analysis. The basic ide@onceptual Analysis is to break
down and analyze the language one uses in hopeeaifng a better understanding of
the meaning of the words one says. This basicigeehas been applied in a multitudes
of ways by different philosophers throughout thertieth century. As mentioned earlier
in this thesis, Sloman brings up Conceptual Analgsione of the areas that can see
overlap of science, philosophy, and computérSloman argues that, “Every science will
have at its frontiers concepts which are to sontengxn need of analysis and possibly
improvement’8

One of the first philosophers to discuss the metsfddonceptual Analysis was
Bertrand Russell. Russell is one of the philosepkdo argues for an Ideal Language.
What Russell wanted was a language built for tirpqme of logic and philosophy that

would remove the philosophical defects that cafobed in ordinary languag®. The

37 Sloman, AaronThe Computer Revolution in Philosophy: Philoso@gience and
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philosophical defects being ambiguities and comt¢tamhs within ordinary language.
This is normally accomplished through the transtatf ordinary language. The aim
being that through translation from ordinary langgi#éo an ideal language we can reveal
the true meaning of the statement. This transiatam also reveal any contradictions or
metaphysical dilemmas that might have existedénaifdinary languag®. Russell’'s
Ideal Language is also atomistic in its naturee @l is to break down language to its
smallest parts in order to better understand th@evhSimilar to the Dialectic Method,
the aim of Russell's Conceptual Analysis is to werdhe meaning of the concepts that
one uses. The difference is that the Dialectichddtworks through dialogue and asking
guestions while Conceptual Analysis deals with kirepdown language and sentences.
Russell’'s Conceptual Analysis focused on the meatf an ideal language.
Other philosophers have argued against the neahfmteal language and instead feel
that ordinary language is robust enough to be aedlyn its own. One of these
philosophers is Wittgenstein. While early in hie Wittgenstein did argue for an ideal
language... later in his life Wittgenstein changesigosition. Wittgenstein introduces
the idea of a language game in his work tiRalosophical InvestigationsThe
language game shows how ordinary language is alaledid the pitfalls that Russell
believed existed within it. Wittgenstein stateatti one thinks about all of the activities
that one calls games: what do they all have in contmHe believes the answer is not
something specific to all of them but they do shaneilarities across the board. He

refers to this phenomena as family resembldhdeor Wittgenstein, all games share a
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family resemblance. While they are all differdméyt do share some characteristics in
common with one another. It is in this state afikrities that our language exists.
Games like language have rules and we learn tlus®in order to properly play the
game. While all games have rules they do nothaliesthe same rules. Part of
understanding the game is to understand the riilés.in cases where the rules are
misinterpreted that confusion exists. This isgame for language. It is not the structure
of ordinary language that causes confusion but ¢deknderstanding of the specific
“language game” that causes confusion. Wittgendielieves there are a number of
different “language games” that exist. Wittgenstaiticulates this point by stating:

But how many kinds of sentence are there? Saytassegjuestion, and
command?—there are countless kinds: countlesgeliffé&inds of use of what we

call "symbols", "words", "sentences". And this nqlitity is not something
fixed, given once for all; but new types of langeagew language-games, as we
may say, come into existence, and others beconwatbsand get forgotten. (We
can get a rough picture of this from the changesathematics.) Here the term
"language-game" is meant to bring into promineheefact that the speaking of
language is part of an activity, or of a form &é i
It is through these language games that ordinanguage is able to have its meaning. By
understanding the language game at work, one esmuihderstand the meaning of an
utterance. This removes the need to create ahladgpage. While the focus is no
longer on the creation of an ideal language, tbadaemains on the ability to extract
meaning from a sentence. In language games theimgeaf a word is relative to the

language game that it is associated with. One ismger attached to the idea that a

single word or concept must have a single meafting.
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Up to this point all of the methods that have béscussed center around the
need to uncover the true meaning of a concept.léMmey do this in different ways, each
is attempting to uncover a truth about the woflthis is something that these method do
not have in common with computer simulated mod@snputer simulated models
attempt to capture a reliable understanding ofstbed but not the absolute
understanding. They do, however, have in commergtal of uncovering hidden
meaning and understanding. In the process of anagning a computer simulated model,
the programmer must articulate the phenomena iayathat the computer can recognize.
Computers function through the use of symbolicesentations. Most programming
languages extensively use expressions such asdibaly if’, ‘or’, ‘and’, ‘while’, etc.
These are all acceptable ways of expressing aaesiip to a computer. This type of
language, it could be argued, is a form of ideagjleage. Computer languages cannot
handle ambiguity. Not only is the language of catepsimulated models similar in
form to the type of ideal language Russell was glftet the process of converting ideas
into code can have the same revealing nature.n@ftees, when a programmer is forced
to represent a phenomena in code, it forces thgramomer to be aware of all
assumptions and deviations from the ideal that lneshade. As stated earlier, often
times a computer simulated model is only partie¢ghjant on the underlying theory.
Assumptions or approximations must be made fortjmaqurposes.

The metaphysical assumptions of the philosopmezthods that were discussed
differ from the metaphysical assumptions of compsimulated models. While that is

true for the examples that were given, not allggobhers believe that Conceptual
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Analysis must lead to an understanding of anytihgad. Rorty believed that the work of
Davidson helped to free the analysis of language fihis metaphysical bond.
The term “experience” as used by philosophers lKadtDewey, was, like
Locke’s term “idea,” ambiguous between “sense-irsgi@n” and “belief.” The
term “sentence,” used by philosophers in the Fregeslition, lacks this
ambiguity. Once the philosophy of language wasdfifeem what Quine and
Davidson call “the dogmas of empiricism” with whiBtussell, Carnap, and Ayer
(though not Frege) had entangled it, sentences meetenger thought of as
expressions of experience nor as representatiomstia-experiential reality.
Rather, they were thought of as strings of marksranses used by human beings
in the development and pursuit of social sciencesetices which enabled
people to achieve their ends, ends which do ndtdiec‘representing reality as it
is in itself” 44
Rorty’s understanding of language now fits nicelthwihe epistemology that is
consistent with what computer simulated modelstainho. Both Conceptual Analysis
and computer simulated models are aimed at prayidirmans with a better understand
of the world, not so to uncover any Truth, but édphachieve specific and practical goals.
While most philosophers have not applied compsitaulated models to their
philosophical method, there are some who havel ®awrchland has applied Artificial
Neural Networks to further his philosophical claiai®ut the nature of the human mind.
Churchland uses Artificial Neural Networks, whiale @ane type of Computer Simulated
Models. Artificial Neural Networks attempt to madee functional behavior of our own
neurons.
Neurons function by having both inputs and outp@sir brain is estimated to

have around 100 billion neurons and 100 trillionagtic connection®. The neuron has

three main components: the dendrites, which redbieelectrical signals from other

44 Rorty, Richard M. “Twenty-five Years After.” Ifihe Linguistic Turpedited by Richard
M. Rorty, 371-374. Chicago: The University of ClgoaPress, 1992.

45 Churchland, Paul MThe Engine of Reason, the Seat of the.S2amnbridge: The MIT
Press, (1995):
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neurons; the cell body; and the axon, which is weahects the output of the neuron to
the inputs of other neurons. When the neuron vesestimulus through its dendrites, it
sums up this signal and then sends out a corregppatimulus through the axon to other
neurons. This creates a chain reaction which @perences as cognitive activity.
Artificial Neural Networks attempt to mimic this l&vior. They also have inputs and
outputs and are interconnected. The connectiomgelea@ nodes have weights attached to
them. This represents the activation levels tearons exhibit. Churchland’s argument
is: By developing a system that can functionallynigithe brain, one is better able to
understand how it is that the brain can form cots;aporals, memories, and any other
cognitive phenomena. It should be note that thas bottom-up approach to cognition.
Churchland believes that all human cognition caexXygained through the bottom-up
process of network formatidfi. This idea is at odds with Chomsky’s Nativism.eTh
Nativist perspective holds that many human funciare top-down in nature and exist
from birth.

For Churchland, Artificial Neural Networks are gilya tool that allows one to
see how the brain works at an elementary levek Aitificial Neural Networks provide
a model to work with and build from. Many of tHaims that Churchland makes cannot
be currently performed with actual human minddsbaerves a practical purpose. So
when Churchland is able to see the emergence ckptsifrom the output of the
Artificial Neural Networks he is able to state tiparhaps the human mind creates
categories in a similar way. The functional relasibip between the Artificial Neural

Network and our actual brain allows for a two wagst of influence. Not only can we

4% 1bid
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apply what is learned from Artificial Neural Netvksrto our own minds but we can also
take theories that we have about how the brain svarkl test them through the Artificial
Neural Networks.

One example of a philosophical debate about the@af the mind that can be
investigated using Artificial Neural Networks isetArgument over Nativism versus
Empiricism. This argument revolves around whatcepts, if any, people are born with.
A Nativist would argue that one is born with thesnbasic concepts and from there are
able to learn more about the world. An Empiribislieves that one is born with simply
the ability to learn and from there is able to axall of the required skills. This debate
is commonly used to discuss the nature of humagulage.

Churchland considers himself an Empiricist andelvel that Artificial Neural
Networks can give an example of how humans cam éhout needing innate concepts
or abilities. Up until this point all of the Aritial Neural Networks that have been
discussed use a training set and backpropagatiorder to learn. This method is
inadequate for explaining how humans can learnauitinnate abilities. Churchland
agrees with this but believes that another typeeamfing, called Hebbian learning, might
be the answer. Churchland states:

In biological creatures the process of experierggeddent long-term adjustment

of the brain’s synaptic connections is defiantly governed by the supervised

back-propagation-of-errors technique widely usettdm up our computer-
modeled artificial networks. That brute forcefasial technique requires that the

‘correct behavior’ for a mature network be knowratvance of any learning

activity, in order that subsequent synaptic chamgesbe steered by the explicit

goal of reducing the degree of error that sepatatestudent network’s actual
behavior from the optimal behavior that this supssd technique seeks, stepwise,
to impose upon it. But biological creatures hawesuch advance access to “the

right answers,” and they have no means of applgudh information, to each
synapse one-by-one, in any case. Synaptic changelbgical creatures is
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apparently driven, instead by a process cdfletibian learningin honor of the
psychologist Donald O. Hebb, who first describeal hoces$’

The Hebbian process is achieved by strengthenmgythaptic connection between
neurons that tend to fire together. Churchland tise example of “ Roughly, whichever
subset of synapses happen to ‘singetherwhen and if they do sing, subsequently have
their individual ‘voices’ made permanently loudé#”Here the neurons that sing together
are the ones that fire together.

With Hebbian learning it is possible to build Aidial Neural Networks that are
able to learn without the need of outside traini@purchland creates an example of an
Artificial Neural Network trained using a Hebbiagalning method that is able to predict
the next instance in a sequence. This means thwriebhas learned to identify simple
patterns through a Hebbian process. While thi®isconclusive evidence for
Empiricism, this type of work can help support angricist claim that it is possible for
the mind to learn basic rules and concepts thahndtherwise be thought of as native
through a process similar to the Hebbian netwos such this serves as an example of
how computer simulated models can aid in philostgdhssues.

While Churchland serves as a great example oflag@ipher using computer
simulated models he claims to be a scientific sealChurchland seems, at first, to serve
as a counter-example for the case that will be nabdet pragmatism being a useful
foundation for computer-simulated models withinlpsophy. If we look closer,
however, at the works of Churchland, we can firat tie can actually help to show the

importance of pragmatism to computer simulated rsode

47 Churchland, Paul MPlato’s CameraCambridge: The MIT Press, (2012): 157
48 |bid: 158



41

Churchland’s argument for scientific realism opesgmatism stems from his
belief that “If, on the other hand, we chooseléine“truth” or “representational virtue”
directly in terms of pragmatic success - as in fthe is what works”-we deny ourselves
all access to an evidently rich domain of potergigdlanations™? What Churchland
believes is lost is the ability to understand “tharld of things-in-themselves® His
dismissal of pragmatism hangs on his belief thatwetaally do conceptualize reality.

The method by which humans are able to represality is through the
convergence of what Churchland calls our “High Disienal Mental Maps®!
Churchland describes this process:

First, andpro tem we can take the integrity of our current mapsgi@nted, and

then seek to understand and evaluate the cogsitigegies, tactics, and maps of

other creatures like ourselves, both biological artiicial. Second, and lifting
the pro temassumptions just mentioned, we can play our skmat&ve cognitive
maps off against one another in their areas of alwverlap, progressively
modifying each map in response to the need to @aigcbnsistency and
consilience across the form of our scientific the®rmaps that get fleetingly
indexed by measuring instruments above and beywtdumble biological
senses bequeathed to us by the human genome.thkeses can also be
evaluated for representational accuracy, both bgldimg quality of the
pragmatic world-navigation that they make possiate] by the straightforward
comparison of several distinct but overlapping majk one another, in pursuit
of mutual criticism, modification, and potentialification.5?

Churchland is saying that, by comparing one’s @apming cognitive maps, one

somehow converges on reality. An objection to gmant is that one’s mental maps are

still cognitive in nature. While different peoptemaps might overlap with one another

the overlap is still cognitive in nature. Churafdsstill has yet to show that our cognitive

4 |bid: 134

50 This is referring to the Kantian notion of a “tgim itself”

51 Mental maps are akin to our cognitive conceptlurchland argued that neural networks can cause a
bottom up process that results in the emergencerafepts. He refers to this process as the creatio
mental maps.
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maps represent or “map on” to real objects. Widt tmportant detail missing, his claim
looks to be pragmatic. Churchland himself statesscartographical metaphors
withstanding, the reader will recognize in thissogpable lesson the familiar
Pragmatist’s criterion for the evaluation of ougniive commitments®3

All philosophical methods have the ainbefter understanding the world
around us. Whether it is understanding the meawiirgconcept like Piety, or
understanding the meaning of a sentence, or urahelisig the workings of our minds, all
philosophical methods hope to aid in our understandf the world. Computer
simulated models have been built to continue thaeavor. Some believe that our better
understanding comes from actually uncovering sonuedying truth about the world. If
however, we do not go down the path of realism,mstead focus our efforts on the
reliability of our ideas and not the Truth of thesomputer simulated models might

prove to be a useful companion to philosophers.

53 |bid: 128



43

PRAGMATISM AS A FRAMEWORK FOR PHILOSOPHY AND SCIENE

In order to see the value of computer simulatedetfsoto philosophers, it helps
that one holds certain views on truth and the oblecience. These views are best
articulated by pragmatists such as William Jamésriés Peirce, and John Dewey.
James helped to define pragmatism as a methodeassdiogped a robust understanding of
truth that was dynamic and tempotallames, however, does not go into detail about the
application of science and its methods to be ewwryides. It is Dewey who better
articulates how science comes to affect our livesfgow we use science as a tool to
better our lives.

William James was the first to really outline ietdil what pragmatism meant. He
gave credit to Charles Peirce as the first to thioe pragmatism to philosophy. James
continually cites Peirce and it is clear that matdames’ interpretation of pragmatism is
due to his understanding of Peirce. That sawdag James who defined what it meant to
solve a problem pragmatically. The key for Jamas that we must interpret the
practical consequences of metaphysical probfmkames states that “it is astonishing to
see how many philosophical disputes collapse mgggnificance the moment you subject
them to this simple test of tracing a concrete eqnence. There can be no difference
anywhere that doesn’t make a difference elsewhdtde’goes on to comment that the
aim of philosophy is to identify how practical cegsiences affect the lives of ordinary

people3®

54 James, WilliamsPragmatism Los Angeles: Indo-European Publishing, (2010): 20
%5 |bid: 22
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For James, science can now play an importantima&plaining the phenomena
that exists around us. A scientific realist mighgue that eventually one might resolve
the metaphysical questions that one has about d¢hie wThe goal would be to uncover
some absolute reality. This idea is absurd to §aie thought that, with science, one
would no longer search for some absolute realityiistead simply attempt to
understand the world as it exists today. Jameeuss scientific theories are
instruments, not answers. They are tools thainagair progress forward toward better
understanding¥’

James not only gives a new method with which f@ragch philosophy, but he
also redefines truth in pragmatic terms. James, sdyue ideas are those that we can
assimilate, validate, corroborate and verify. €adeas are those that we cannot... the
truth of an idea is not a stagnant property inhigreit. Truth happens to an idea. It
becomes true, is made true by events. Its verityfact an event, a process: the process
namely of its verifying itself, its verificationtd validity is the process of its
validation”® This conception of truth is one that is bettaripged to deal with the
dynamic nature of the world we live in and morecsipelly the dynamic nature that
computer simulated models fit into. James’ cortsiton of truth also goes one step
further. James makes the claim that what is usetulie and what is true is useffll.

James uses the terms verification and validahaefierence to the process that
truth finds itself within. It should be noted tliabse same terms are used to test

computer simulated models. As mentioned in anegaéction, Verification for

> 1bid
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computer simulated models refers to how the magfgiasents the world it is modeling
and Validation refers to the mathematical foundattee model is built upon. James
holds a different meaning for these terms. A meguthat actually might be more useful
within the modeling community than the one we coitlieuse. For James: truth,
verification, and validity are intertwined with oa@other. James states, “True is the
name for whatever idea starts the verification-pssc useful is the name for its
completed function in experienc®.From this perspective, it can be seen that
verification is the process that leads from an ieiés eventual point of becoming useful.
Here verification is not simply a test for corresgence between two representations but
is a process that has at its end the aim of cigatunseful understanding. This is what
computer simulated models accomplish when theyerniéed. A verified model should
be seen as a useful tool for understanding whawenomena it was built to explore.
Validity for James is simply the process of verikyian idea. It does not attach itself to
the analytical understanding used within the maodetiommunity, of having proper
mathematical equations, but is again involved englocess of truth.

Detaching validity and validation from absolutesieles them to become more in
line with the function of computer simulated mod€&smputer simulated models are
processes themselves and do not aim to come tbhsatuge understanding of the world
but instead simply aim to help mankind solve spegifoblems. If one views computer
simulated models as tools or instruments thatragblving problems then their true value
can be realized. This is an idea that is bestidaiied by John Dewey. In fact, in many

ways, it is Dewey’s interpretation of pragmatisratthllows for the best understanding of
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the role computer simulated models can play ireideng of both science and
philosophy.

Dewey used the term Instrumentalism to refdrisgohilosophy.
Instrumentalism involves putting ideas to work aisthg them like instruments to solve
genuine problem%. One of the areas that Dewey focused on was thef awquiry.
Dewey constructed a view of inquiry that began wlith encountering of a practical
problem, a perplexing situation, or general cohflicd leads to the resolution of said
problem. Inquiry was focused on addressing ind@tete situations and making them
determinaté? Inquiry is also a process that seems to never &hi sentiment is drawn
from Peirce’s doctrine of Fallibilism. Fallibilisms “that all beliefs, no matter how certain
they may seem, are subject to revision as a coesequof the results of further
inquiry”.83 It can be said that all three pragmatists: Peleavey, and James; share in
the idea that inquiry is a process that existemet It is a process that is ongoing and
focuses specifically on the issues that affect [@empthe moment. While inquiry spans
across all time in discrete moments, it is groundettie endeavors of humans for that
moment®* This idea fits nicely with computer simulated misdgince they too are caught
within a process with no predetermined end. A cat@psimulated model has the ability

to be modified over time and adapted to either apwirical information found or even

61 Hahn, Lewis E. “Dewey’s Philosophy and Philosop¥iethod.” InGuide to the Works

of John Deweyedited by Jo Ann Boydston, 15-60. Carbondaletisza lllinois

University Press, (1970): 22

62 Dewey, JohnLogic: The Theory of InquiryNew York: Saerchinger Press, 2007.

63 Peirce, Charles Sanders. "How to make our idess .tThe Nature of Truth: Classic and Contemporary
Perspective$2001): 193-209.).

64 Hahn, Lewis E. “Dewey’s Philosophy and Philosop¥iethod.” InGuide to the Works of John Dewey
edited by Jo Ann Boydston, 15-60. Carbondale: SautHlinois University Press, (1970): 85
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to an entirely new application. It is able to ad@pthe constant change that inquiry, as
pragmatically constructed, brings.

Dewey claimed the aims of philosophy were to “reratdinary life-experiences
and their predicaments more significant and luméntouus and make our dealings with
them more fruitful”®®> Not only does Dewey expand on the process ofiipduut he
redefines the aim of philosophy and science ancegléhem more in touch with the aims
of ordinary people. In regard to science, Dewesghe activity of science not as acts
done by any one individual scientist but as the done by a community of scientists.
The key being that the scientific method works leedt can be repeated and tested
multiple time by multiple scientists, and only wheegonsensus is reached can it be said
that we have knowledge. This conception of thergdic method works nicely with
computer simulated models since they are designbkd tun and rerun. They work by
aggregating data over multiple runs. They alsadasgned to be easily picked up by
other scientist and tested themselves. Just agyargues that knowledge is only
reached through a consensus of people, the valcengbuter simulated models comes
from a similar consensus that is reached over taa¢he model justifies itself through
the production of useful data. This also referskita the notion of robust models. As
Muldoon argues, the robustness of a computer stedil@model is gain through the
widespread use of them within a commufiftyDewey also comments on the distinction
between pure and applied sciences.

The pure sciences are often thought of as beirfgehigr more prestigious. A

realist might even claim that they aim to underdteeality at its core. Applied sciences,

65 Dewey, JohnExperience and Naturé&ew York: Dover Publications, Inc., (1958): 7
56 Muldoon, Ryan. "Robust simulation$?hilosophy of Science4, no. 5 (2007): 883
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such as engineering or medicine, deal with the ithate problems of a practical nature.
They deal with solving the problems of humanity aotl uncovering the workings of the
universe. It has been known that applied scienftes deal with terms such as “best
practices”. They deal with tolerances and approkiona that intentionally shy away
from absolutely precise understandings. That idmeay that they don’t care about
precision but instead that they care more abouptaetical implications then the
theoretical implications. For example, a civil evegr building a bridge might
intentionally build the bridge to withstand a Idadher than it will ever encounter. This
is because the risk of the bridge collapsing igigein value than whatever cost savings
they could gain from using less material. Whilenegeople would say that engineering
is less of a science than physics, Dewey arguesppesite.
What is sometimes termed “applied” science, mag titeemore truly science than
what is conventionally called pure science. Fas directly concerned with not
just instrumentalities, but instrumentalities atrkvim effecting modifications of
existence in behalf of conclusions that are reftet preferred. Thus conceived
the characteristic subject-matter of knowledge =te®f fulfilling objects, which
as fulfillments are connected with a history to evhthey give character. Thus
conceived, knowledge exists in engineering, medieind the social arts more
adequately than it does in mathematics and phyBiass conceived, history and
anthropology are scientific in a sense in whichibs@f information that stop
short with general formulae are rfét.
This point is key because computer simulated maatelsraditionally seen as an applied
method of science. Sloman would also supportdiaisn as he said: “the pure scientist
needs to behave like an engineer: designing atidgesorking theories. The more

complex the process studies, the closer the twad beeome. Pure and applied science

merge. And philosophers need to join #4'By taking Dewey'’s point to heart, we see

57 Dewey, JohnExperience and Naturé&New York: Dover Publications, Inc., (1958): 16621
68 Sloman, AaronThe Computer Revolution in Philosophy: Philoso@gience and
Models of MindHassocks: The Harvester Press, (1978): 16
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that, in many ways, the applied methods are mdreatée to man than the theoretical
methods. Computer simulated model’s value to gbihdy is best realized by defining
science and the role of philosophy as Dewey d&gstaking an Instrumentalist approach
to computer simulated models, we can clearly seeihterpreting them as practical tools
is more beneficial than trying to interpret thentragh-seeking representations. A point
that is further supported by Winsberg's claim tsiatulations seek reliability without

seeking truth.
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CONCLUDING THOUGHTS: INSTRUMENTALISM AS RELIABILITYWITHOUT
TRUTH

As mentioned at the end of the last section, thadht that computer simulated
models seek reliability, and not truth, helps towhheir true valu€? When combined
with a pragmatic framework, understanding compsitaulated models as reliable tools
describes their usefulness to both scientists aildgophers. For Winsberg, this notion
of reliability without truth is the key to understding the place of computer simulated
models within the scope of inquiry. He states, Spite their mixed ancestries, many of
these simulations are trusted in making predictanns building representations of
phenomena, and they are often successfully usedgimeering applicationg®. This
echoes what Dewey thought should be the aim ohseigo be able to produce useful
predictions and to aid in concrete understandirigiseoworld.

Winsberg believes that computer simulated modais tis reliability through
the process of model-building itself. “l have aduhat the credibility of a simulation
model must come not only from the credentials sedpb it by its theoretical ancestors,
but also from the antecedently established crealsraf the model-building techniques
employed in its constructiorf®. The credibility of a model is not judged alone tyut
connection to all other models and the techniquaadel building itself. This again
recalls Dewey in “the method of science requiresnt the establishment of a continuum
of inquiry, and a continuum of inquiry which is agte to the purpose of a community

of inquiries... The objectivity of those results dege upon the fact that the method used

89 Winsberg, EricScience in the Age of Computer Simulati©hicago: The University of
Chicago Press, (2010): 132
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are public and can be repeatédl.Again, the idea that a method is found to beulsef
through the process of producing reliable undedstags is something supported both by
Dewey and Winsberg.

The bridge between these two philosophers candretheough the comments of
Arthur Fine. Fine’s defense of Instrumentalismro®ealism helps to bridge the gap
between the Instrumentalism of Dewey and the inégion of computer simulations in
science by Winsberg. Fine states:

Instrumentalism takes reliability as its fundaméntancept and differs from

realism only in this: Where the realist goes fathrin the sense of a

correspondence with reality, the instrumentaligtggfor general reliability...

Where the realist says that science does (or shautdat the truth, the

instrumentalist says that science does (or shaitd)at reliability... The realist

cannot win this game since whatever points tortih trealist style, will also
point to reliability’3
This echoes the same point that was made aboutRlhod in a previous section. When
Churchland refuses to accept the pragmatic eleofdns theory and instead sticks to
realism, Churchland does himself a disservice esthe same claims can be made
pragmatically without having to bind yourself tetbommitments that realism requires.

This leads to the finishing thoughts of this the$ise aim of this thesis has been
to explain and describe the process of computenlaied models and then to show how
they are capable of being used as aids to philessphFirstly, by defining the term

computer simulated model as a process that invalveslistinct yet connected steps of

modeling and simulating, we gain a better undedstenof the many uses that computer

72 Hahn, Lewis E. “Dewey’s Philosophy and Philos@pMiethod.” InGuide to the Works
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simulated models have already accomplished witrerdiscipline of science. Once itis
seen how computer simulated models have aidecipribgress of science over time, we
can see the validity of them as tools of inquiBecondly, by relating those to traditional
methods of philosophy, such as Conceptual Analysescan start to see how computer
simulated methods are able to accomplish the gbatghilosophers have often set out
to accomplish: namely, to gain a better understapdf the meaning that exists within
the numerous phenomena that exists around uslyl s usefulness of computer
simulated models is aided even more by adopting@npatic perspective of philosophy.
By adopting a pragmatic understanding of both oijitny and science, we can see how
these seemingly separate methods actually oveyl&yoth being methods aimed at the
human endeavor of general inquiry. Pragmatismalsas us to accept that computer
simulated models do not aim to uncover any absafute about the world, but instead
aim to provide reliable understandings and prealifor the concrete and daily

problems that plague the lives of people.
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