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ABSTRACT 

 

 

SHREYASHI SHUKLA.  Daily load forecasting with hourly temperatures.  (Under the direction 

of DR. TAO HONG) 

 

Load forecasting at the daily resolution is generally performed by aggregating the predicted hourly 

load. Long-term daily load forecasting is essential for resource planning in the power system and 

price evaluation of energy contracts. Short-term daily load forecasting is required for balancing 

operation of the grid and trading strategies of the day-ahead energy market. Another relevance of 

daily load forecasting is the disaggregation of the monthly consumption data into daily load curves 

to determine the supplier obligation. Most of the published study on daily load forecasting is 

focused on daily peak load forecasting. While the other two modules of daily load, that are, the 

daily energy and daily minimum load have not been covered extensively. In this research, we have 

modeled hourly temperatures of a day to forecast daily load directly. The study delves into the 

hourly temperature data to find the best subsets that influence the daily load using the daily load 

series. This kind of study on multi-frequency series is unique.  The study also finds that the daily 

load is strongly influenced by human activity pattern and hence, temperatures of specific hours of 

a day are more significant than the highest or the lowest temperature of the day. The proposed 

model uses Multiple Linear Regression (MLR) technique to model the methodology on two real 

case studies. The study also employs two MLR based benchmark models; one is the hourly load 

forecasting model that frames the recency effect of temperatures using the big data approach. The 

aggregation of predicted hourly loads gives the daily load forecasts. The other benchmark is a direct 

daily load forecasting model that is based on Tao’s vanilla model using maximum and minimum 

temperatures of a day. Since daily load forecasting finds its application in long-term as well as 

short-term, the proposed model is evaluated for a year ahead, as well as, one day ahead forecasting.  

The research empirically demonstrates that the proposed model, using the groups of hourly 

temperatures and daily load series, performs reasonably well in comparison to benchmarks models 

in ex-post forecasting while in ex-ante forecasting the proposed methodology emerges out to be the 

most robust model. 
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1. INTRODUCTION 

 

This research proposes a robust daily load forecasting model based on Multiple Linear 

Regression (MLR) using hourly temperature series and daily load series. The performance of the 

proposed model is empirically investigated using real and simulated data. This chapter introduces 

the basic concepts of the forecasting approach employed here, the underlying idea that drives the 

proposition and the structure of the composition.  

  It is important to understand what is meant by the term load. Electricity is measured 

in terms of watts, typically in kilowatts (kW) or megawatts (MW). From the viewpoint of energy 

consumption, load can be termed as the amount of energy used up over time. If the load is measured 

as the demand per hour, it would be called Power (kW or MW), while for lower resolutions such 

as daily, monthly, etc., demand per hour would be added to give the load, which is then called 

energy, measured in kilowatt-hour(kWh) or megawatt-hour (MWh). In other words, for hourly 

data, power and energy would be same.  Another important term is the forecasting horizon. The 

forecasting horizon can be explained as the time in the future for which the load is to be forecasted. 

This can be a day or a week or several months or several years. Based on the forecasting horizon, 

the load forecasting can be grouped into very short term (VSTLF), short-term (STLF), medium 

term (MTLF) or the long-term load forecasting (LTLF). The cut-off horizons for these four 

categories are one day, two weeks, and three years respectively [1]. In this research, we have 

deployed two routes. One is the day ahead rolling forecasting, where we predict one step ahead 

load, that is, the next day load and this process is iterated for a year. So, the first day of the year is 

forecasted using the previous year’s data only, while the day two is forecasted with previous year’s 

data and the day one’s actual load and so on. This route would fall in the category of STLF. The 

second route is a year ahead forecasting where we predict one year of unknown electric load in a 

single iteration. By predicting one year ahead of electric load, this course categorizes the 
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forecasting horizon as MTLF. The other notion to be understood here is the frequency of the 

forecast which can be hourly, daily, weekly, etc. This basically represents the period between each 

forecast. In this research, the frequency of forecast is daily, that is the forecasted load is a predicted 

load for each day. In nutshell, this research is trying to predict load for a period of one year at daily 

frequency with two routes, one is a day ahead and another year ahead. The load forecasting at 

different levels of temporal scale, such as hourly, daily, monthly, is called hierarchical load 

forecasting. The conventional approaches to hierarchical load forecasting usually involve either a 

top-down method or a bottom-up method or a combination of both methods often referred to as the 

middle-out approach [44]. The top-down method involves forecasting the aggregated series such 

as monthly or daily load series, then disaggregating the forecasts based on the historical or forecast 

proportions. The bottom-up method involves forecasting each of the disaggregated series at the 

lowest level of the hierarchy and then using aggregation to obtain forecasts at higher levels of the 

hierarchy. This is how daily load forecasting is generally done in practice, by temporal aggregation 

of the forecasted hourly load. The middle-out method starts at an intermediate level of the hierarchy 

and then aggregation is used to obtain forecasts at higher levels and disaggregation is used to obtain 

forecasts at lower levels. 

The supply and demand of electricity load is quite distinctive. It is well known that the 

electricity cannot easily be stored in large quantities and must be produced the instant it is needed. 

The ongoing integration of the intermittent energy resources such as solar and wind to the grid 

brings its own challenges to the supply side. On the other hand, the demand is quite sensitive to 

various exogenous factors such as human lifestyles, weather variables, calendar variables, growth 

or recession of the economy, etc. This makes the role of an accurate load forecast very crucial for 

an effective operation of the power system.. The daily load forecasting with its three featuring 

modules of daily energy, daily peak, and daily minimum, is essential for scheduling and 

maintenance operations. Accurate daily load forecasting holds up an important purpose in 
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appropriate scheduling of generators by employing the medium-term load forecasts. Specifically, 

daily peak load forecasting is one of the basic operations of day-ahead generation scheduling. It 

ensures sufficient power resources to meet the demand, also preventing overloading and grid 

failure. Most of the vertically integrated utilities prepare Integrated Resource Plan for next 10-15 

years for meeting forecasted peak demand and energy demand. The daily minimum load 

forecasting gives the base load on a grid that is the minimum level of demand on an electrical grid. 

In day- ahead or spot market, energy pricing are very volatile. Many times generators and retailers 

get into long term base load contract and peak load contract. Time period of these contracts vary 

from a week to a quarter. The daily peak load and minimum load plays an important role here for 

price evaluation of these contracts.  The three modules together are very useful in constructing the 

daily load curve. With the new emerging changes in the grid, such as distributed energy resources 

(DER), demand response programs, etc., it is expected that a daily curve would experience many 

short steep ramps which make the task of ensuring grid reliability more daunting. Hence, it becomes 

very important to estimate the daily load curve in short-term as well as long-term. Many a time, 

utilities are facing with the challenge of handling missing or inaccurate data of hourly load history. 

In such cases, where we do not have the precise 24-hour load history, the accuracy of hourly 

prediction is compromised, leading to the wrong forecast of daily energy, daily peak load as well 

as daily minimum load. The daily load forecasting is also important for disaggregation of daily load 

series into hourly load series or sometimes, monthly load series into hourly load series. The daily 

load forecasts are useful in generating coherent forecasts by aggregating or disaggregating the load 

series. In this research, we propose a direct daily load forecasting methodology that could address 

the business problems mentioned above, by forecasting the three modules of daily load using hourly 

temperatures and daily load series. 

The hourly temperatures, with 24 data point a day, are quite an information for modeling 

the daily load as many of these data points may be redundant. As understood, with more variables 



4 
 

comes more trouble. Hence, to solve this issue, we would be investigating a simple dimension 

reduction technique by creating subsets of hourly temperatures. The study of the daily energy 

module finds the most likely hours of the day with maximum and minimum temperatures and ranks 

them. It then groups the top-ranked hourly temperatures to be used in the forecasting model. Hence, 

in this way, temperature of hours with the maximum likelihood of highest and lowest temperatures 

are captured in two separate groups and modeled for daily energy forecasting. The daily peak and 

daily minimum load study find a reduced area that is relevant for the forecasting and uses the hourly 

temperatures of this area as the predictor variables. The performances of the three modules of the 

proposed model are then evaluated against the two benchmark models. The first benchmark model 

fabricates the recency effect of hourly temperatures for forecasting the hourly load through a big 

data approach [13]. This benchmark model is rated quite high in accuracy as well as computation. 

The forecasted hourly loads are then temporally aggregated. The daily peak load and daily 

minimum load are pulled out from the maximum and minimum load points of the 24 hours 

predicted loads. The other benchmark is based on using the maximum and minimum temperature 

of the day as the predictor variables in the framework of Tao’s Vanilla model. The three models 

are first subjected to ex-post forecasting, using the real temperature data of forecasting period. 

Finally, the models are also experimented in the aspect of ex-ante forecasting, assuming we don’t 

know the predictor variables (temperature) with certainty. This is done by simulating noises in the 

temperature series of the forecasting year to assess the robustness of the three models. 

In this research, we have used two case studies based on data from, (i) the load forecasting 

track of the Global Energy Forecasting Competition 2012, and (ii) the eight load zones and 

aggregated ninth zone of ISO New England. Both are public data, which makes this work 

transparent and reproducible. 

     The rest of this paper is organized as follows. Chapter 2 reviews the literature work 

on the subject. Chapter 3 gives the background of the techniques and the datasets being used. 
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Chapter 4 then dives into the modeling of the proposed methodology. Chapter 5 describes the setup 

of the experiment on the two case studies and tabulating the results. Finally, chapter 6 discusses the 

forecasting results and concludes the paper. 
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2. LITERATURE REVIEW 
 

Several researchers have compiled extensive studies on electric load forecasting. These researches 

have wide range in terms of load forecasting techniques, methodologies, forecasting horizon and 

even forecasting frequency. In practice, daily load forecasting can be done in two ways, one is by 

aggregation of hourly forecasts, which is a very common way, and the other is forecasting the daily 

load directly. Hence, we would be dividing the review in two parts, a) hourly load forecasting, b) 

daily load forecasting.  

2.1 Hourly Load Forecasting 

The literature on hourly load forecasting is quite profuse with significant contributions from 

researchers. The following section reviews some notable papers in this rich pool of literature that 

are published in the field of load forecasting.  

In 1997, Khotanzad et al. [2] described an artificial neural-network (ANN) hourly short-

term electric load forecasting system that received wide acceptance by industry. The building block 

of the forecasting engines was multilayer feedforward ANN also known as a multilayer perceptron 

(MLP) network trained with the back-propagation algorithm. An adaptive scheme was developed 

that adjusted the trained weights of the MLP during on-line forecasting based on its most recent 

performance. 

Another very prominent work is by Ramu Ramanathan, Robert Engle, Clive W.J. Granger, 

Farshid Vahid-Araghi, Casey Brace [3] in 1997. The paper outlines the design and implementation 

of a short-run forecasting model of hourly system loads and an evaluation of the forecast 

performance. The model was applied to historical data for the Puget Sound Power and Light 

Company for winter only. The approach used was a multiple regression model, one for each hour 

of the day (with weekends modelled separately), with a dynamic error structure as well as adaptive 
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adjustments using exponential smoothing of forecast errors of each hour to correct for forecast 

errors of previous hours. 

In 2008, Hyndman [4] proposed a semi parametric model to forecast the half hourly 

electricity demand for up to seven days ahead for power systems. The additive models of calendar 

effect, temperature effect and lagged demand effect are used in regression framework to capture 

nonlinear and non-parametric relationship. The paper also proposes a modified bootstrap 

methodology for obtaining Forecasting distributions. The block bootstrapping of forecast residuals 

is to use to create simulated forecast errors. Block bootstrapping is used since there are correlations 

between the forecasting residuals from different half-hourly models, and growing variances also 

result from multi-step ahead forecasts iteratively derived.  

In 2009, Fan et al. [5] investigated the load diversity with respect to weather characteristic 

of a large geographical area in the Midwest U.S. to improve the hourly load forecast. The optimal 

partition/ combination of region which gives the minimum forecasting error at the aggregated level 

is found. A support vector regression (SVR) based forecasting model was employed for hourly load 

forecasting in each area. 

In 2010, Hong [6] reviewed different techniques used in load forecasting, various 

methodologies used for variable selection and modelling of short-term load forecasting. The author 

acknowledged that multiple linear regression (MLR) is a powerful statistical technique which had 

been underutilized. The author proposed a benchmark model based on MLR that was compared 

with different techniques and empirically proved to be relatively accurate and easy to produce. The 

proposed methodology is being used as a benchmark model in the field of research as well as 

industry. 

With the aim of improving the forecasting practices of the utility industry and bringing 

together state-of-the-art techniques for energy forecasting, a team led by Hong organized a world 
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level competition on load forecasting Global Energy Forecasting Competition in 2012. The 

competition asked the contestants to forecast and backcast the electricity hourly demand for 21 

zones, attracting the best pool of techniques and methodologies for hourly load forecasting. Hong, 

Pierre, and Fan [7]  summarized the methodologies and the results of winning teams The 

benchmark was created based on a MLR model as discussed by Hong (2010)[6]. Among the top 5, 

four winning teams also published their solutions in the International Journal of Forecasting (Ben 

Taieb & Hyndman, 2014[8]; Charlton & Singleton, 2014[9]; Lloyd, 2014[10]; Nedellec, Cugliari, 

& Goude, 2014)[11]. Ben Taieb & Hyndman used 24 different models for one day with each hour  

modeled by gradient boosting with univariate penalized regression splines. James Lloyd used three 

techniques a) gradient boosting machines b) Gaussian process regression and the c) benchmark 

solution (MLR). The final prediction was formed as the ensemble (weighted average) of predictions 

from these models. Charlton N., & Singleton, C. (2014) used MLR technique modelling various 

other features such as holiday effect, day of season and temperature smoothening. The authors also 

used local averaging on predicted load for better results. Nedellec et al. used three temporal multi 

scale models of three components. The long-term component models trend estimated by means of 

non-parametric smoothing. The medium-term component describing the sensitivity of the 

electricity demand to the temperature is modelled by using a generalized additive model. Finally, 

a short-term component models local behavior using a random forest model. 

Hong, Wang, White (2015) [12] probed into very basic practice of assigning a fixed 

number to the selection of weather station to a zone. In general, given a number of weather stations 

associated with a zone, the practice followed is to select best one or best three or all. This was also 

observed in the GEFCom2012, where the participants had used this approach of using a fixed 

number for selecting the best stations. The paper proposed a novel algorithm of seven steps with 

an idea of unconstrained approach for selection of weather stations. The paper empirically 
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demonstrated on GEFCom2012data track that using this approach improves the forecasting 

accuracy significantly. 

Wang, Liu, Hong, [13] coined the term ‘recency’ in the world of load forecasting. The 

recency effect is the effect of temperatures of preceding hours on the load. The paper uses 

GEFCom2012data to analyze the effect of recency on forecasting accuracy. The recency model 

considers the temperature at the hth hour lag and moving average of temperature for dth day. The 

value of d and h is evaluated by hit and evaluated by lowest forecast error. The analysis concluded 

that the forecast was 18% more accurate than the Tao’s Vanilla benchmark mode at all 20 zones 

(lower hierarchy) as well as the 21st zone (higher hierarchy).  

Keeping up the momentum created by GEFCom2012, the organizers recreated the 

competition platform in 2014 with a theme of Probabilistic Forecasting. In GEFCom2014, four 

different tracks were introduced - on forecasting the electric load, on electricity price, on wind and 

on solar power. Under the track of electricity load forecasting the participants were provided with 

data from 25 weather stations but no identification of their geographical locations. Throwing up 

the challenge of weather station selection this was similar to the setup of the hierarchical load 

forecasting track in GEFCom2012. Hong et al. (2016) [14] summarized what went into the 

organization of GEFCom2014 and gave overview of the problem, the dataset, and the methods 

followed by the winning teams.  

In 2016, Nowotarski et al. [15] demonstrated that combining sister forecasts outperforms 

the benchmark methods significantly through analysis of two case studies developed from public 

data Global Energy Forecasting Competition 2014 and ISO New England. This is the most 

extensive study on combining point load forecasts of sister forecasts that are obtained from the 

models constructed by different (but overlapping) subsets of variables sister models. 

In 2014, Hong and Wang [16] proposed a fuzzy interaction regression approach to STLF. 

The paper compares three models (two fuzzy regression models and one multiple linear regression 
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model) without interaction effects, the proposed approach shows superior performance over its 

counterparts. This paper also offers critical comments to a notable but questionable paper in this 

field. Oleg Valgaev et al. [17] used K-Nearest Neighbors model to forecast the load of low-voltage 

consumers using smart meter data provided by Irish Commission for Energy Regulation (ICER) 

for two different types of customers, residential and 418 Small and middle enterprises (SME)) LV 

end-customers instead of using standardized load profiles (SLPs) predefined for their general 

consumer group. 

Jain et al. [18] investigated sensor-based energy forecasting for multi-family residential 

buildings using support vector regression SVR. Sensor based energy forecasting feeds the smart 

meter readings to machine algorithm to infer the complex relationships between energy 

consumption and variables of influence such as temperature, time of day and occupancy. The 

authors tried to understand the behavior of on their forecasting accuracy of their model by varying 

the aggregation granularity of monitoring data across several temporal (i.e., daily, hourly, every 10 

min) and spatial (i.e., whole building, by floor, by unit). 

Sevlian Rajagopal, 2018[18] identify the effect of aggregation on load forecasting. 

Aggregation reduces the inherent variability in electricity consumption thus the higher aggregation 

levels are easier to predict. The authors explain this as ‘law of large numbers’ which smoothens the 

signal. They propose a scale law with respect to aggregation size that fits experimental data of low 

load regime.   

Lua et al. [19] investigate into the robustness of hourly load forecasting modes based on 

four different techniques – MLR, SVR, FIR, ANN in scenario of attach on data integrity. To 

simulate the data integrity attack the training data is distorted by adding the normally distributed or  

uniformly  distributed noise(p% )  to randomly selected data, where p is generated by a normal 

distribution N (or uniform distribution U) with mean μ and standard deviation σ .The paper 
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concluded that the support vector regression model is most robust, followed closely by the multiple 

linear regression model, while the fuzzy interaction regression model is the least robust of the four.  

To forecast the electric load, it is common practice to divide the data into classes and to 

use a different predictive model for each cluster for predicting hourly temperature. The authors [20] 

examines different clustering algorithms classify daily profiles and finally uses Principal 

Component Analysis (PCA) to classify daily profiles examining various features for improving the 

clustering. The study concluded that the Morning Slope (the difference in load at 10 AM and 6 

AM) is the best performing feature. 

Xie presented her submission to the probabilistic load forecasting track of the Global 

Energy Forecasting Competition 2014 (GEFCom2014) in [21]. The paper explains how the point 

forecast of hourly load is obtained using MLR technique and then residual forecasting is obtained 

to get using different technique namely unobserved component models (UCM), exponential 

smoothing models (ESM), three-layer feedforward artificial neural networks (ANN), and 

autoregressive integrated moving average models (ARIMA). This point forecast is then used to 

create forecast based on ten temperature-based scenarios for probabilistic load forecasting and then 

further refined by modeling and simulating the residuals from the forecast combination. 

Lui et al. [22] in 2017 proposed to use a set of sister forecasts in quantile regression framework to 

generate prediction intervals (PI) for probabilistic load forecasting. In the case study, using the 

data from the GEFCom2014 probabilistic load forecasting track, they showed that the proposed 

methodology can generate better PIs than the benchmark methods do, according to the pinball 

loss function and Winkler scores. 

2.2 Daily Load Forecasting 

The research on forecasting the daily load directly is not widely published. Since a problem 

encourages creative efforts to solve the problem, most of the work has been focused on peak load 
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forecasting, which has a larger application in power demand and supply system.  The area of 

forecasting daily energy and minimum load has not been explored so far. Nevertheless, the related 

notable works have been reviewed here. 

A very early work on Peak load forecasting is by Gillies and Bernholtz [23] in 1955 that 

uses the illumination and load relationship as the primary way of forecasting load for Southern 

Ontario System. The model predicts the load increment and trend separately. A yearly standard 

demand curve is made from historic demand on a day with standard illumination value and the load 

increment is obtained from appropriate peak load increment-illumination curve. The trend is 

obtained as the difference in the standard load on consecutive years. The two elements are summed 

to get the final forecast. 

One very significant work is by Alex D. Papalexopoulos &  Timothy C. Hesterberg [24] 

who have presented very a profound study of using Multiple linear regression for Peak load 

forecasting, discussing the issues such as heteroskedasticity  and addressing it by using weighted 

least square, proposing robust parameter estimation,  the use of "reverse errors-in-variables" 

techniques to mitigate the effects of potential errors in the explanatory variables: and distinction 

between time-independent daily peak load forecasts and the maximum of the hourly load forecasts 

in order to prevent peak forecasts from being negatively biased. As well mentioned in PLF review 

by Hong [1], this paper provides a solid background of MLR on load forecasting. 

In 1994, Takeshi Haida & Shoichi Muto [25] described a transformation technique in 

conjunction with the effect of season transition using a transformation technique that converts the 

temperature data into a function to model a regression based peak load forecasting. The model 

reflects both the latest load characteristic and the annual weather-load shape. Moreover, the 

coefficients represent two kinds of annual load growth, namely, base load growth and weather 

sensitive load growth.  
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Haida et al. (1998) [26] expanded this model by using historic data introducing two trend-

processing techniques designed to reduce errors. They studied methods which use data for past 

years for forecasting peak power loads for the same day and following day. One of these methods 

employs the load on the morning of the forecast day as a reference load, creating target variables 

with minimal trend behavior and using historical data. The other method applies the notion of 

transformation of explanatory variables in a regression model to explicitly calculate trend 

characteristics. 

Amjady in 2001 [27], proposed a ARIMA model with input feature based on multivariate 

regression approach for STLF, which incorporated the time series modeling (Box–Jenkins) with 

the knowledge of experienced human operators. The hourly load and daily peak of the Iran’s power 

network is predicted by using initial estimate of future peak load by an experienced operator as one 

of the input. The modified ARIMA method combines the operator’s estimation with the 

temperature and load data. From the mathematical point of view, this method employs the 

operator’s estimation as initial forecasting. Then it combines, this initial forecasting with 

temperature and load data in a multi-variable regression process to obtain a better forecasting. 

Moazzami et al.  [28] proposed a hybrid framework for day-ahead peak load forecasting 

using seasonal historical data of similar day peak load and weather condition for forecasting the 

day ahead peak load value. The similar day databases of every season were decomposed to low and 

high frequency components by using wavelet decomposition. Two different ANNs with genetic 

optimization training algorithm were used for each low and high frequency data base. 

In 2017, Negishi et al. [29] proposed a new methodology for forecasting daily peak to 

address the issue of collinearity among the explanatory variables by using the nonlinear correction 

T method which is one of the multivariate analysis techniques under Mahalanobis–Taguchi (MT) 

system. Signal to noise ratio (S/N ratio) is evaluated for each explanatory variable. Day-Ahead 
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Peak Demand Forecast was made using the data from Kansai Electric Power Co. demonstrating 

significant improvement in forecasting error. 

Chen et al. [30] proposed their modeling scheme based on SVR for the competition 

EUNITE 2001 which was the winning entry. The problem presented was predicting the daily peak 

load for next 31 days. The authors advocated that temperature not be considered approached the 

problem with SVR technique which can be used for time series prediction. The parameters for the 

SVR are determined through cross validation. 

In 2008, Cancelo et al. [31] outlined the load forecasting technique used by a Spanish 

Operater for forecasting daily load of next ten days and hourly load of next day. Multivariate Arima 

model is designed with trend seasonality special day, weekday as the subcomponents.  The daily 

model focuses on the relationship between consumption and maximum temperature which is 

modelled using Cooling Degree Days and Heating Degree Days with reference to a comfort zone. 

A fourth-order polynomial was fitted to give a tentative indication of its shape.  

In 2014, Chang [32] employed Electric daily peak load movement as a time series and 

introduced the elliptic-orbit model for analyzing daily peak load movement. One-week load series 

is represented in an elliptical-orbit model. Least square optimization is done to get the optimum 

orbital parameters. The model is compared with ARIMA time series model and found that the 

elliptic-orbit model yields satisfying results in the evaluation and forecasting tasks for the electric 

daily peak load movements of the Great Britain National Grid. 

Carcedo and García [33], 2017 proposed to model trend component capturing the effect of 

exogenous factors such as demographic change, variations in economic activity, substitution effects 

between energy sources, adoption of more efficient technologies, etc. on long term daily peak load 

forecasting. The proposed methodology is based on multiple linear regression models with 

prediction in two parts. The first part of the model estimates the trend component giving the demand 
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at annual frequencies which is then broken down into daily frequencies consistent with annual 

demand by using the Boot-Feibes and Lisman (BFL) disaggregation method. The second part of 

the model includes calendar effect, temperature effect and the daylight effect. In [34], authors 

proposed to modify the temperature variable used in the forecasting model as a function of present 

and historical temperatures. To enhance the predicting power of the modified temperature, genetic-

algorithm (GA) is adopted to get the optimal parameters of the modification function for summer 

daily peak load forecasting. 

In nutshell, it can be inferred that most of the work on daily peak load is modelled as time 

series or based on the relationship of temperature with the peak load. It may be noted that most of 

the research works that have modelled temperature-peak load relationship have used maximum or 

minimum temperatures of the day as the main predictor variable.  

With this review, we found that while the research work is rich in the field of load 

forecasting at hourly resolution and daily peak load, the daily energy and minimum load forecasting 

have not been covered in a comprehensive way. It is imperative to mention here that the review of 

the work presented here are some noteworthy research work published in the domain of hourly and 

daily load forecasting. 
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3. BACKGROUND  

  

The research uses Multiple Linear Regression (MLR) as the modelling technique. The proposed 

approach uses hourly temperature and calendar variables for prediction of daily energy, daily peak 

load and daily minimum load based on linear regression analysis. In this chapter, the background 

of the following subjects are presented; (1) Multiple Linear Regression (2) Evaluation measures 

(3) Random Number generation using Normal or Uniform distribution (4) Dataset for case studies. 

3.1 Multiple Linear Regression 

Regression is a statistical technique that models the relationship between predictor 

variables and the response variable. The response variable is also called dependent variable and the 

predictor variables are called independent variables.  A model with a single regressor x1 that has a 

relationship with a response y, that is a straight line, is called simple linear regression. This simple 

linear regression model is 

𝑦 = 𝛽0 + 𝛽1   𝑥1 + ɛ                             (1), 

where the intercept β0 and the slope β1 are unknown constants and ε is a random error component. 

The errors are assumed to have mean zero and unknown variance σ2. A regression model that 

involves more than one regressor variable is called a multiple regression model. The multiple linear 

regression model with multiple regressors x1, x2, x3,.. xk is 

𝑦 = 𝛽0 + ∑ 𝛽𝑗  𝑥𝑗
𝑘
𝑗=1  +ɛ    (2) 

 

The linear regression (Eq.1) is a general model for fitting any relationship that is linear in the 

unknown parameters β. This includes the important class of polynomial regression models. In the 

polynomial regression models, the predictor variables can be transformed to reach the standard 

form of the General Linear Model. 
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3.2 Evaluation Measures 

The evaluation measure is crucial to determine the performance of a forecasting model. 

Often parameter estimation and the selection of model are based on the empirical evaluation 

measure. A simple way to measure the performance would be calculating the difference between 

the actual (yt) and forecasted values (ŷt). Using the difference in absolute form or squared form, we 

can have two scale dependent measures Mean Absolute Error, MAE and Root mean Squared Error 

(RMSE). 

         MAE = 1/n\ ∑ |𝑦𝑡 − ŷ𝑡|𝑛
𝑡=1                                      (3) 

RMSE = √1/𝑛 ∑ |(𝑦𝑡 − ŷ𝑡)|2𝑛
𝑡=1                                      (4) 

These scales dependent measures are good to compare two series with equal units. The MAE (also 

known as median regression) is quite interpretable and easy while RMSE is difficult to 

understand. Another popular accuracy measure is the Mean Absolute Percentage Error (MAPE) 

which can be calculated as  

MAPE = ∑ |𝑦𝑡 −  ŷ𝑡|/𝑦𝑡  × 100𝑛
𝑡=1                                     (5) 

The MAPE is often used in practice because of its very intuitive interpretation in terms of relative 

error. In real world applications, the MAPE is frequently used when the quantity to predict is 

known to remain way above zero. Hence, MAPE is commonly used in the domain of load 

forecasting. We would also be using MAPE as the main criterion for assessing forecast accuracy. 

3.3 Random Number generation for noise simulation 

Random number generation is the generation of a sequence of numbers based on 

probability density function. The normal distribution is a very common continuous probability 

distribution. It is a symmetric distribution where most of the observations cluster around the central 

peak and the probabilities for values further away from the mean taper off equally in both 
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directions. The general formula for the probability density function of the normal distribution, 

denoted N (µ, σ2), is  

f(x) =
𝑒

−
(𝑥−µ)2

2𝜎2

𝜎(2𝜋)1/2                                 (6), 

where µ is the location parameter of the distribution or the central tendency of the distribution. It 

basically defines the location of the peak for normal distributions. And σ is the standard deviation, 

the measure of variability. It defines the width of the normal distribution.  

Another common and simple distribution is the Uniform distribution. A uniform 

distribution, denoted U (a, b), is a distribution that has constant probability of 1/(b-a), where 

b=the maximum and a= the minimum value. Hence its probability density function is: 

          f(x)=1/(b−a)                                (7), 

where [a, b] is the interval of the continuous uniform distribution. 

3.4 Datasets for study and experiment 

A. GEFCom2012 data track 

The GEFCom2012 data track consists of the hourly temperature and load data of 4.5 years from 20 

different zones and the 21st zone summed these 20 zones from a US utility. These zones had 

different land use and hence had different load profiles. Z4 experienced a major outage, and Z9 is 

an industrial customer causing aberrant load curves. Hence, these two zones have been excluded 

from the study. We would be using data of the period 2004 to 2005 as training data, the data of 

period the period 2006 as validation, that would be used for variable selection and modelling. The 

data of year 2007 would be used as the test data, on which we compare all are experiment results. 

The weather station selection from 11 stations given for each zone is done following the 

unconstrained approach presented by Hong, Wang and White in [12]. 
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B. ISONE dataset  

This case study is the historic load and weather data of eight load zones served by ISO New England 

(ISONE). ISONE is the independent, not-for-profit company authorized by the Federal Energy 

Regulatory Commission (FERC) to perform grid operation. The ninth zone is the aggregation of 

the eight zones. The data used are from the period 2012 to 2014 as training data, 2015 as validation 

data and 2016 as testing data.  
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4. PROPOSED MODELS OF DAILY LOAD FORECASTING 

 

In this chapter we use descriptive analysis to delve into the data of the two case studies and come 

up with a robust model for daily load forecasting. The two datasets are analyzed separately to 

identify the relationship between the hourly temperatures and the daily load. Further, the study aims 

to find the best groups of hourly temperatures that predicts the daily load. We could also have used 

the highest temperature of the day and lowest temperature of the day, i.e., the two extreme points 

to determine characteristics of a daily curve. But we have tried to study how grouped hourly 

temperature influence daily load curve as compared to the two extreme points. Another approach 

could have been to use all 24 hours temperatures as the parameters to forecast the daily load. This 

would be a vast dimension of data to handle with high computation time and, not all components 

of this dimension would be relevant. Hence, it is required to get a subset of data points that conveys 

the relevant information concisely with an aim to find an optimum dimension of the data that would 

have an advantage in two ways (1) reduce the number of parameters, thus reducing the time and 

computation and (2) eliminate any extreme short-lived effect that sways away the daily temperature 

curve. With this scheme in mind, the following sections now studies the two datasets to model the 

three modules of the daily load forecasting separately. 

4.1 Daily Energy Model 

The daily energy model requires to explore the relationship of the hourly temperatures on 

the daily load. We would try to find the group of temperature hours that concisely conveys the 

relevant information. As it is observed, there are two seasonal blocks of temperature series: yearly, 

daily. The daily average temperature has a yearly seasonal pattern, while hourly temperature has 

daily pattern, as depicted in the figure 1. To understand the daily temperature curve across the year 

we need to de-season the daily temperature series. This is done by normalizing the hourly 

temperatures of day by scaling between 0 and 1, with 0 being the minimum temperature of the day 
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and 1 being the maximum temperature of the day. The normalized temperatures are then averaged 

across the months of the years.  

 

Figure 1: Yearly Temperature Curve & Daily Temperature Curve: GEFCom2012 

Since it is not known a priori which of these 24-hour temperature are relevant, we would start with 

selecting the top three for grouping hourly temperatures. Hence, the proposed model would use the 

groups of top three hours with maximum temperatures as parameter Tmax3 (grp), and the top three 

hours with minimum temperatures as the parameter Tmin3 (grp). To find out the candidate for these 

groups, the normalized hourly temperature has been represented in figure 2 and 3. 

 

Figure 2: Yearly Temperature Curve & Daily Temperature Curve: ISONE 
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Figure 3: Normalized Hourly Temperature across a day for ISONE dataset 

Having found the groups of hourly temperature, we would use the average of the three hourly 

temperatures of the groups in the linear regression framework to model the daily energy forecast. 

Table 1: Groups of Hourly temperature based on top three in each group 

 

 The benchmark model proposed by Hong [3], widely known as Tao’s Vanilla benchmark model 

is employed here. This model uses the ‘Trend’ that captures locally increasing (or decreasing) trend, 

3rd ordered polynomials of the temperature (T) along with its interaction with the calendar variables 

(Hour, Day, Month) to predict the hourly load. The Vanilla benchmark model, B1 can be written 

as: 

𝐿𝑜𝑎𝑑 = 𝛽0 + 𝛽1 𝑇𝑟𝑒𝑛𝑑 + 𝛽2 𝐷𝑎𝑦 +  𝛽3 𝐻𝑜𝑢𝑟 + 𝛽4 𝑀𝑜𝑛𝑡ℎ + 𝛽5 𝐻𝑜𝑢𝑟. 𝐷𝑎𝑦 + 𝛽6 𝑇 ∙ 𝑀𝑜𝑛𝑡ℎ +

𝛽7 𝑇2 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽8 𝑇
3 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽9 𝑇 ∙ 𝐻𝑜𝑢𝑟 + 𝛽10 𝑇2 ∙ 𝐻𝑜𝑢𝑟 + 𝛽11 𝑇3 ∙ 𝐻𝑜𝑢𝑟                      (8),  

where 

• Trend is a quantitative parameter, any increasing or decreasing linear trend,  

• Day is a class variable, representing 7 days of a week,  

• Hour is a class variable, representing 24 hours of a day, 

• Month is a class variable, representing 12 months of a year,  

• T is Current hour temperature.                                                 

 Case Study: GEFCom2012  Case Study: ISONE 

Tgmax Average (Hour 15, Hour16, Hour17) Average (Hour 15, Hour16, Hour17) 

Tgmin Average (Hour5, Hour6, Hour7) Average (Hour6, Hour7, Hour8) 
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We modify this model for daily load by getting rid of the qualitative parameter hour and using the 

average temperature of a day (Tavg) in place of hourly temperature, T. The model is then added 

with the 3rd ordered polynomials of Tgmax and Tgmin along with their interaction with month 

variable. This modified proposed model P1 can be written as: 

𝐿𝑜𝑎𝑑 = 𝛽0 + 𝛽1 𝑇𝑟𝑒𝑛𝑑 + 𝛽2 𝐷𝑎𝑦 + 𝛽3 𝑀𝑜𝑛𝑡ℎ + 𝛽4 𝑇𝑎𝑣𝑔 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽5 𝑇𝑎𝑣𝑔2 ∙ 𝑀𝑜𝑛𝑡ℎ +

𝛽6 𝑇𝑎𝑣𝑔3 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽7 𝑇𝑔𝑚𝑎𝑥 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽8  𝑇𝑔𝑚𝑎𝑥2 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽9 𝑇𝑔𝑚𝑎𝑥3  ∙ 𝑀𝑜𝑛𝑡ℎ +

𝛽10 𝑇𝑔𝑚𝑖𝑛 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽11  𝑇𝑔𝑚𝑖𝑛2 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽12 𝑇𝑔𝑚𝑖𝑛3 ∙ 𝑀𝑜𝑛𝑡ℎ,                                                (9) 

Further adding the best fit lagged variable of the three temperatures is evaluated by 

comparing the MAPE of the validation period for both the datasets. The evaluation of the validation 

period of GEFCom 2012 data track and ISONE dataset reveals that the addition of first lag of 

temperature (Tlag) to P1 yields the best results and same is the result for the ISONE datasets. 

Table 2: Performance of Model with different temperature lags in Average MAPE (%) of the 

respective zones 

  Models GEFCom2012 ISONE 

 

P1 4.60 3.36 

P1 + lag1(Tavg) 4.37 3.01 

P1 + lag1(Tavg)+lag2(Tavg) 4.49 3.06 

P1 + lag1(Tavg)+lag2(Tavg)+lag3(Tavg) 4.61 3.11 

 

So, the final model P2 found for both the datasets is: 

Load = 𝛽0 + 𝛽1 𝑇𝑟𝑒𝑛𝑑 + 𝛽2 𝐷𝑎𝑦 + 𝛽3 𝑀𝑜𝑛𝑡ℎ + 𝛽4  𝑇𝑎𝑣𝑔 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽5 𝑇𝑎𝑣𝑔2 ∙ 𝑀𝑜𝑛𝑡ℎ +

𝛽6 𝑇𝑎𝑣𝑔3 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽7  𝑇𝑔𝑚𝑎𝑥 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽8  𝑇𝑔𝑚𝑎𝑥2 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽9  𝑇𝑔𝑚𝑎𝑥3  ∙ 𝑀𝑜𝑛𝑡ℎ +

𝛽10  𝑇𝑔𝑚𝑖𝑛 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽11  𝑇𝑔𝑚𝑖𝑛2 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽12 𝑇𝑔𝑚𝑖𝑛3 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽13  𝑇𝑙𝑎𝑔 ∙ 𝑀𝑜𝑛𝑡ℎ +

𝛽14 𝑇𝑙𝑎𝑔2 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽15 𝑇𝑙𝑎𝑔3 ∙ 𝑀𝑜𝑛𝑡ℎ       (10)                                       
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Going beyond the the selection of top three, we also tried various grouping combintions 

(m,n) upto the groups of top five maximum(m=1,2,3,4,5) and top five minimum(n=1,2,3,4,5) 

hourly temperatures. As shown in the table 3,  the forecast accuracy merely changes with different 

combination of groupings. In both cases in can be noticed that the combination (m=1, n=1) gives 

comparable results with the combination (m=3, n=3), but this model would be quite vulnerable to 

any variations to these single data points. Hence, it is prudent to  go ahead with the combination 

(m=3, n=3),  as the idea here is find a robust model for daily energy forecasting.  

Table 3: Heat map showing the performance of Model P2 with different groups of (m,n) in 

Average MAPE (%)of the respective zones 

  GEFCom2012   ISONE 

  Minimum temperature groups(n)   Minimum temperature groups(n) 

  1 2 3 4 5   1 2 3 4 5 

M
ax

im
u
m

 

T
em

p
er

at
u
re

 g
ro

u
p
s 

(m
) 

1 4.36 4.36 4.36 4.36 4.36  1 3.00 3.02 3.02 3.01 3.00 

2 4.37 4.37 4.37 4.37 4.37  2 3.02 3.03 3.03 3.03 3.01 

3 4.39 4.37 4.37 4.38 4.37  3 3.00 3.02 3.01 3.02 3.02 

4 4.38 4.38 4.39 4.39 4.39  4 3.00 3.01 3.01 3.01 3.01 

5 4.40 4.41 4.41 4.41 4.41  5 3.00 3.01 3.00 3.01 3.01 

 

4.2 Peak Load Model 

The modelling of this module would require the analysis of the daily load pattern along 

with hourly temperature series. This would allow us to comprehend the hours with peak demand 

of the day.  The daily load profiles are analyzed by normalizing the hourly loads, scaling them 

between 0 and 1. The normalized loads are then averaged across the months of the years.  
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Figure 4: Daily Load Pattern generalized over years 2004-06 for GEFCOM dataset 

 

Figure 5: Daily Load Pattern generalized over years 2004-06 for ISONE dataset 

 

For the GEFCom2012 data track, the daily load curve of a day in summer looks like a half 

cross sectioned cylinder as in figure 5. The extended hours of peak load are well noticed between 

1800 hour and 2100 hour.  During winters, the load pattern has notably two peaks, one is during 

the hours of 0800 to 0900 hour, and another during the late evenings between 1900 hour and 2100 

hour. The summer peak hours extend for longer periods creating numerous hours of consistently 

high demand from midday to late evening. While in winter, a two-to-three-hour peak can be 

observed that typically occurs during evening or morning hours. Largely, it can be concluded from 

the figure 5 that, except for the month of February and March, the peak load is observed during late 

evenings. It should also be noted that the daily maximum temperatures lie between 1500 to 1700 

hours. Perhaps, it is mainly human energy consumption pattern in combination to the daily 

maximum temperatures of preceding hours that leads to the peak load in the late evening in most 

part of the year.   

 

Hour of a Day
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Figure 6: Month wise Normalized daily load pattern GEFCom2012 & ISONE datasets. This 

figure shows the long extended peak load hours during summers and two humps during the 

winter season. It also highlights the reduced space of 0600-2100 hours that has m maximum 

likelihood of observing peak load. 
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Figure 7: Normalized daily load pattern along with Normalized daily temperature curve marking 

the peak load hours and maximum and minimum temperature hours for GEFCom2012 dataset. 

 

However, during winters (particularly in month of February and March), the daily peak 

load is observed during the hours 0800 to 0900 and the daily minimum temperature are observed 

during 0600 to 0800 hours as in figure 5. Apparently, the typical low temperatures of early 

mornings contribute to the peak load in the winters. For the ISONE dataset, the daily peak load is 

largely observed during evening hours and the load curve has a long-extended hour of peak load in 

summers. In winters, the peak load is usually observed during an early winter evening with few 

distinct hours of peak. Comparing the two datasets, it is observed that the temperature variation 

during the day in ISONE zones is quite high as compared to GEFCom2012 dataset. This dramatic 

behavior of temperature curve may also be the reason for peak load in the evenings. Other factors 

that differentiates the ISONE load curves could be the higher latitude, overall lower temperature, 

and urban population percentage of the area covered in the zones. 

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

GEFCOM2012

Temperature LOAD
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Figure 8: Normalized daily load pattern along with Normalized daily temperature curve marking 

the peak load hours and maximum and minimum temperature hours for ISONE dataset. 

 

The study of both datasets reveals that the peak load is observed during the daytime hinting 

us to shrink the area of interest to the period between 0600 hour and 2100 hour. Hence, we would 

apply the dimension reduction technique to the average temperature of the day, using Tday, as the 

average of hourly temperatures between 0600 and 2100 hours in place of 24-hour average 

temperature. In addition, we would also capture the characteristic of the temperature curve of this 

reduced space by grouping the maximum hourly temperatures and minimum hourly temperatures 

within this reduced space. For this, we group the extended hours of late afternoon to evening to get 

TgPM, and the early morning hours are grouped to get TgAM as in table 5. 

Table 4: Groups of hourly temperatures based peak load analysis 

 Case Study: GEFCom2012  Case Study: ISONE 

Tday Average (Hour6-Hour21) Average (Hour6-Hour21) 

TgPM Average (Hour 15-Hour19) Average (Hour 15-Hour19) 

TgAM Average (Hour6-Hour8) Average (Hour6-Hour8) 

 

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

I SONE

Temperature Load
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From the descriptive analysis above, we can conclude that the peak load is influenced by a 

combination of human’s energy consumption behavior and weather factors of the hour. It is also 

understood that peak load is generally observed during the daytime.  

So, the daily peak model P3 found for both the datasets is: 

𝐿𝑜𝑎𝑑 = 𝛽0 + 𝛽1 𝑇𝑟𝑒𝑛𝑑 + 𝛽2 𝐷𝑎𝑦 + 𝛽3 𝑀𝑜𝑛𝑡ℎ + 𝛽4 𝑇𝑑𝑎𝑦 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽5 𝑇𝑑𝑎𝑦2 ∙ 𝑀𝑜𝑛𝑡ℎ +

𝛽6 𝑇𝑑𝑎𝑦3 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽7 𝑇𝑔𝑃𝑀 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽8  𝑇𝑔𝑃𝑀2 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽9 𝑇𝑔𝑃𝑀3  ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽10 𝑇𝑔𝐴𝑀 ∙

𝑀𝑜𝑛𝑡ℎ + 𝛽11  𝑇𝑔𝐴𝑀2 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽12 𝑇𝑔𝐴𝑀3 ∙ 𝑀𝑜𝑛𝑡ℎ         (11) 

4.3 Minimum Load Model 

This module of daily load aims to find the minimum load of a day. The daily load curve 

analysis of the daily load curve as done in the previous section (figure 5) reveals that that minimum 

load of the day is mostly observed between 0200-0400 hour for both the datasets, indifferent of the 

season or the average temperature of the day. Hence if its summer or winter, the minimum load is 

observed post-midnight hours before the dawn. 

For both datasets, the minimum temperature of the day is observed roughly during 0500 to 

0800 hours and the highest temperature is roughly observed during 1500 to 1700 hour. This implies 

that the daily minimum load has very low dependency on the temperature of the hour, but more on 

the human activities. During the hour 0200 to 0400 least human activities would be observed as 

people are most likely to sleep during these hours, resulting in the minimum load. 

Hence modelling the daily minimum load is slightly different from modelling the daily 

energy and daily peak loads. It is vital to capture the temperature of minimum load hours which is 

why the grouped temperatures of the hours 0200-0400 (TMdNt) would be used in this model. We 

also would also the use the previous day’s average temperature in the model as lag of Tday. It is 

interesting to note here that the average temperature of reduced space (0600 to 2100 hours) gives a 
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better result than using the 24-hours average. This is probably because it captures the human 

activity better. Besides, the grouped maximum temperatures hour of the day was the other 

parameter used in the model. 

Table 5: Groups of hourly temperatures based minimum load analysis 

 Case Study: GEFCom2012  Case Study: ISONE 

Tlgday Average (Hour6-Hour21) Average (Hour6-Hour21) 

TMdNt Average (Hour2- Hour4) Average (Hour2- Hour4) 

TgPM Average (Hour 15-Hour19) Average (Hour 15-Hour19) 

 

So, the daily minimum model P4 found for both the datasets is: 

𝐿𝑜𝑎𝑑 = 𝛽0 + 𝛽1 𝑇𝑟𝑒𝑛𝑑 + 𝛽2 𝐷𝑎𝑦 + 𝛽3 𝑀𝑜𝑛𝑡ℎ + 𝛽4 𝑇𝑙𝑔𝑑𝑎𝑦 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽5 𝑇𝑙𝑔𝑑𝑎𝑦2 ∙

𝑀𝑜𝑛𝑡ℎ + 𝛽6 𝑇𝑙𝑔𝑑𝑎𝑦3 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽7 𝑇𝑔𝑃𝑀 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽8  𝑇𝑔𝑃𝑀2 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽9 𝑇𝑔𝑃𝑀3  ∙

𝑀𝑜𝑛𝑡ℎ + 𝛽10 𝑇𝑔𝑀𝑑𝑁𝑡 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽11  𝑇𝑔𝑀𝑑𝑁𝑡2 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽12 𝑇𝑔𝑀𝑑𝑁𝑡3 ∙ 𝑀𝑜𝑛𝑡ℎ, 

                                                                                            (12) 
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5. EXPERIMENT 

 

In this section, we explain the two benchmark models adopted for the prediction of daily energy, 

one is a direct forecasting of daily load series built by extending the Tao’s Vanilla Model and the 

other is based on forecasting with temporal hierarchies. The second section of this chapter evaluates 

the proposed models with the benchmark models for ex post daily load forecasting. The third 

section assesses the ex-ante forecasting performances of the models using simulations. We would 

design a simulation study by introducing noise in the temperature data of forecasting period. We 

would then compare the results of the three models. 

5.1  Benchmark Models 

This section describes the two models that are established as the benchmark models for the daily 

load forecasting in this research. Both are based on linear regression framework.  

5.1.1 Direct Green Model 

One of the very instinctive inputs of modelling daily load directly is the average 

temperature of the day (Tavg), the maximum (Tmax) and minimum temperature of the day (Tmin). 

Extending the Tao’s Vanilla Model to forecast Daily energy forecasting model B2: 

𝐿𝑜𝑎𝑑 = 𝛽0 + 𝛽1 𝑇𝑟𝑒𝑛𝑑 + 𝛽2 𝐷𝑎𝑦 + 𝛽3 𝑀𝑜𝑛𝑡ℎ + 𝛽4 𝑇𝑎𝑣𝑔 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽5 𝑇𝑎𝑣𝑔2 ∙ 𝑀𝑜𝑛𝑡ℎ +

𝛽6 𝑇𝑎𝑣𝑔3 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽7 𝑇𝑚𝑎𝑥 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽8  𝑇𝑚𝑎𝑥2 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽9 𝑇𝑚𝑎𝑥3  ∙ 𝑀𝑜𝑛𝑡ℎ +

𝛽10 𝑇𝑚𝑖𝑛 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽11  𝑇𝑚𝑖𝑛2 ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽12 𝑇𝑚𝑖𝑛3 ∙ 𝑀𝑜𝑛𝑡ℎ,            (13) 

 As discussed in the earlier chapter, the Tao’s Vanilla benchmark model shapes the load-

temperature relationship with the 3rd order polynomial of temperature along with their interaction 

with calendar variables.  
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5.1.2 Recency Effect Model Temporal Aggregated (TA) 

This model is built on temporal aggregation and hierarchical forecasting. The hourly time 

series of the temperature and load is modeled with recency approach [13]. The term recency effect” 

represent the fact that the electricity demand is affected by the temperatures of the preceding hours. 

The approach uses lagged hourly temperatures (Tt−h, h = 1, 2, . . ., 72) and daily moving average 

temperatures of d days, where the daily moving average temperature of each dth day is 

T𝑡,𝑑 =
1

24
∑ T𝑡−ℎ

24𝑑
ℎ=24𝑑−23    , where d= 1, 2, . . .,7.   (14) 

 

Hence the modelling of this approach requires to find the best d-h pair on validation data. Then, 

Tao’s vanilla benchmark model can be extended to: 

𝐿𝑜𝑎𝑑 = 𝛽0 + 𝛽1  𝑇𝑟𝑒𝑛𝑑 + 𝛽2 𝑀𝑜𝑛𝑡ℎ + 𝛽3  𝐷𝑎𝑦 + 𝛽4 𝐻𝑜𝑢𝑟 + 𝛽5  𝐷𝑎𝑦 ∙ ℎ𝑜𝑢𝑟 + 𝑓(𝑇𝑡𝑡) +

∑ 𝑓(𝑇(𝑡,𝑑) +  ∑ 𝑓(T𝑡−ℎ)ℎ𝑑                                                      (15) 

 For the GEFCom2012 case study, the d-h pair for 21 zones has been adopted from the [13], while 

for the ISONE case study, the d-h pair has been found on the validation year 2015. For finding this, 

we used trial-and-error method, varying the number of days from 0 to 5, and the number of lags 

from 0 to 36. In total, there were 222 (6×37) possible ‘‘average-lag’’ (or d–h) pairs. The d-h pairs 

with best MAPE on validation year for 9 zones of ISONE dataset are in table 7. The hourly load 

forecast is then temporally aggregated to get the daily energy, the maximum and the minimum of 

the forecasted 24 hours load is the daily peak and the minimum load respectively. This approach 

also uses the hourly loads in the model which is contradictory to the approach of proposed model 

and direct Green model and, therefore, is expected to give a highly accurate prediction. The purpose 

of including this model in the study is to assess the accuracy of the proposed model in comparison 

to a competitively accurate and expensive model. This benchmark model has been referred to as 

Recency TA model in this research. 
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Table 6: Recency effects (in d–h pairs) for the ISONE zones 

ZONE d h 

1 NH 2 11 

2 VT 2 8 

3 WCMASSS 3 8 

4 ME 3 16 

5 NEMASS 1 19 

6 CT 2 11 

7 RI 1 13 

8 SEMASS 1 12 

9 ISONE 2 14 

 

5.2 Forecasting and Performance evaluation 

This section employs the proposed models to forecast the respective test years of the two datasets 

and compare them with the benchmark models. The first sub-section presents the year ahead daily 

load forecasting and the second sub-section presents the results of one day ahead daily load models 

forecasted on rolling basis for a year.  

5.2.1 Ex post One year ahead forecasting 

The subsection presents the results of year ahead forecasting of the three modules of daily load for 

all the three models. The results of the test year of the respective datasets are produced. 

5.2.1.1 Daily Energy 

For the GEFCom2012 dataset, the assessment for the three models is done on the test year 

2007.The proposed benchmark performs better than the direct Green model in most of the zones 

with an average MAPE of 4.96% for regular zones but is unable to outperform the Recency TA 

model which stands at an average of 4.71%. Some similar results can be observed for the ISONE 

dataset where the evaluation for three models is done on the test year 2016. The proposed model 

stands at an average MAPE of 3.08% outdoing the direct Green model while still trailing behind 

the recency TA model by 8.07%.  
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Table 7: One year ahead Ex Post Daily Energy Forecasting Results for the prediction year 

 Zones 
Direct 

Green 

Recency 

TA 

Proposed 

Model  
Zones 

Direct 

Green 

Recency 

TA 

Proposed 

Model 
R

E
G

U
L

A
R

 Z
O

N
E

S
 -

 G
E

F
C

o
m

2
0

1
2

  
1 5.18 4.33 4.86  NH 2.80 2.21 2.64 

2 4.71 4.27 4.74  VT 3.21 2.99 3.07 

3 4.71 4.27 4.74  WCMASSS 3.73 2.78 2.93 

5 8.60 9.06 8.89  ME 5.35 5.54 5.49 

6 4.63 4.23 4.74  NEMASS 3.53 2.98 3.33 

7 4.71 4.27 4.74  CT 3.1 2.52 2.76 

8 6.00 5.62 5.69  RI 3.18 2.37 2.76 

10 5.50 4.65 4.76  SEMASS 3.25 2.42 2.71 

11 7.20 5.88 6.08  ISONE 2.57 1.87 2.06 

12 5.01 4.21 4.57  Average 3.41 2.85 3.08 

13 5.23 4.9 5.07      
14 6.31 5.56 6.07      
15 4.89 4.64 5.09      
16 5.44 4.97 5.21      
17 3.47 3.06 3.31      
18 4.24 3.79 3.79      
19 4.80 4.48 4.51      
20 4.26 3.9 3.98      
21 3.81 3.42 3.48      

Average 5.19 4.71 4.96      

 

 

So, the recency TA model, which frames the lagging hour temperatures using hourly demand 

performs the best, yielding the most accurate daily energy forecast. But the proposed model 

outperforms the direct Green model signifying that grouping hours for capturing the maximum 

temperature and minimum temperatures of the day performs much better than considering the 

singular maximum and minimum temperature.   

5.2.1.2 Daily Peak Load 

The performance of the Daily peak module is presented in Table no. 9   for GEFCom2012 and 

ISONE datasets respectively. The results are quite analogous to the daily energy model. The 

proposed model stands at an average MAPE of 5.73% for GEFCom2012 data track, outdoing the 

direct Green model while still trailing behind the Recency TA model by 3.06%. For the ISONE 
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dataset, the proposed model stands at an average MAPE of 3.32% outdoing the Direct Green model 

but trailing behind the recency TA model by 5.73%. 

Table 8: One year ahead Ex Post Daily Peak Forecasting Results for the prediction year 

  Zones 
Direct 

Green 

Recency 

TA 

Proposed 

Model 
 

Zones 
Direct 

Green 

Recency 

TA 

Propose

d 

Model 

R
E

G
U

L
A

R
 Z

O
N

E
S

 -
 G

E
F

C
o

m
2

0
1

2
  

1 6.31 5.48 5.89  NH 3.4 2.9 3.03 

2 5.50 4.99 5.17  VT 2.62 3.13 2.63 

3 5.50 4.99 5.17  WCMAS

SS 

3.61 2.95 3.59 

5 9.37 7.84 9.32  ME 4.65 4.62 4.49 

6 5.37 4.82 5.08  NEMASS 4.25 3.81 3.99 

7 5.50 4.99 5.17  CT 3.25 2.79 3.22 

8 6.29 6.48 5.92  RI 3.63 2.76 3.29 

10 7.81 6.06 7.23  SEMASS 3.35 2.88 2.93 

11 7.59 7.25 7.15  ISONE 2.85 2.42 2.69 

12 5.74 5.07 5.58  Average 3.51 3.14 3.32 

13 6.11 5.25 5.99      
14 6.02 6.55 6.13      
15 5.37 5.68 5.41      
16 6.00 5.96 6.26      
17 3.92 4.01 4.14      
18 5.27 5.44 5.03      
19 5.46 5.76 5.51      
20 4.84 4.88 4.44      
21 4.41 4.09 4.31      

Average 5.91 5.56 5.73  

  
    

 

5.2.1.1 Daily Minimum 

The performance of the Daily minimum module is presented in Table no. 10   for 

GEFCom2012 and ISONE datasets respectively. The results are incongruent to the other two 

modules of daily load forecasting models. The proposed model stands at an average MAPE of 

6.00% for GEFCom2012 data track, outdoing the direct Green as well as recency TA model by 

14.8% & 3.4% respectively. Similarly, for ISONE dataset the proposed model outdoes both 

benchmark models by 24.88% and 13.98% on average respectively. 
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Table 9: One year ahead Ex Post Daily Minimum Forecasting Results for the prediction year 

 Zones 

Direct 

Green 

Recency 

TA 

Proposed 

Model  Zones 

Direct 

Green 

Recency 

TA 

Proposed 

Model 
R

E
G

U
L

A
R

 Z
O

N
E

S
 -

 G
E

F
C

o
m

2
0

1
2

  

1 6.89 5.96 6.25  NH 3.63 3.29 2.50 

2 5.78 4.95 5.00  VT 3.32 4.38 2.63 

3 5.78 4.95 5.00  WCMASS 4.67 4.74 3.30 

5 10.13 11.81 9.44  ME 7.48 6.91 7.54 

6 5.81 4.97 5.11  NEMASS 4.15 2.45 2.90 

7 5.78 4.95 5.00  CT 4.99 2.88 3.26 

8 7.83 6.44 6.82  RI 3.70 3.41 2.83 

10 7.01 5.84 5.42  SEMASS 3.56 3.82 2.37 

11 8.07 6.56 5.61  ISONE 3.59 2.25 1.99 

12 8.09 6.16 5.23  Average 4.34 3.79 3.26 

13 7.19 6.57 6.29      
14 10.89 9.26 8.64      
15 7.91 6.41 6.95      
16 8.2 6.92 6.41      
17 6.35 4.52 4.87      
18 6.96 5.45 5.42      
19 8.34 6.93 6.53      
20 6.14 4.68 5.41      
21 5.35 4.61 4.55      

Average 7.29 6.21 6.00      
 

5.2.2 Ex post one day ahead forecasting 

This section explores the performance of the three models for short term load forecasting. 

The idea here is to forecast the next day energy, peak load and minimum load on rolling basis for 

a year. This would mean that the previous years’ history would be used for forecasting the day one 

of the test year. For the day two, actual load data of the first day would be used along with the 

history of previous years and so on. Hence, the final one-year forecast would be compiled adding 

the day one by one. This methodology is employed on all the three models for all three modules 

and the performances are appraised.  
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5.2.2.1 Daily Energy 

The proposed model and Direct Green model is implemented for forecasting the total 

energy of the next day on rolling basis for a year. The recency model is implemented for each day 

of the year on rolling basis adding to the model the actual hourly loads of the previous day. The 

hourly forecast is then summed to get the energy of the day.  

Table 10: One day ahead Ex Post Daily Energy Forecasting Results for the prediction year 

 
Zones 

Direct 

Green 

Recency 

TA 

Proposed 

Model  
Zones 

Direct 

Green 

Recency 

TA 

Proposed 

Model 

R
E

G
U

L
A

R
 Z

O
N

E
S

 -
 G

E
F

C
o
m

2
0
1
2
  

1 4.86 4.10 4.60  NH 2.29 1.95 2.14 
2 4.18 3.81 4.13  VT 3.04 2.84 2.93 
3 4.18 3.81 4.13  WCMASSS 3.27 2.33 2.53 
5 6.53 6.29 6.27  ME 3.36 3.24 3.30 
6 4.19 3.80 4.13  NEMASS 2.95 2.49 2.69 
7 4.18 3.81 4.13  CT 2.68 2.08 2.29 
8 4.96 4.72 4.79  RI 2.82 2.10 2.30 

10 4.34 3.80 4.04  SEMASS 2.90 2.24 2.36 
11 4.68 4.21 4.35  ISONE 2.25 1.65 1.83 
12 4.54 3.83 4.13  Average 2.84 2.33 2.49 
13 4.65 4.16 4.34      
14 5.70 4.97 5.34      
15 4.56 4.23 4.60      
16 5.28 4.66 4.83      
17 3.20 2.83 3.00      
18 4.04 3.51 3.55      
19 4.50 3.97 4.03      
20 3.55 3.24 3.35      
21 3.53 3.00 3.21      

Average 4.51 4.04 4.26      
 

The results are congruous to the results of the year ahead forecasting as in section 5.2.1.1 although 

the accuracy of all three models are much better than their respective year ahead forecast. This is 

obvious as one step ahead forecasting utilizes the information of the actual load of previous step 

for training the model. The recency TA model fares best among the three outperforming the 

proposed model by 5.4% and 6.9% for GEFCOM 2012 and ISONE datasets respectively. 
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5.2.2.2 Daily Peak Load 

The performance of three models on One day-ahead daily peak module is quite similar to 

One year ahead daily peak module. The recency model outperforms the three models standing at 

an average MAPE of 4.84% and 2.81% for GEFCom 2012 and ISONE datasets which is better by 

5.6% and 4.6% from proposed model in the respective zone. 

Table 11: One day ahead Ex Post Daily Peak Load Forecasting Results for the prediction year 

 
Zones 

Direct 

Green 

Recency 

TA 

Proposed 

Model  
Zones 

Direct 

Green 

Recency 

TA 

Proposed 

Model 

R
E

G
U

L
A

R
 Z

O
N

E
S

 -
 G

E
F

C
o
m

2
0
1
2
  

1 6.06 4.92 5.84  NH 2.67 2.80 2.66 

2 4.86 4.38 4.70  VT 2.50 3.12 2.56 

3 4.86 4.38 4.70  WCMASSS 3.16 2.75 3.13 

5 7.35 6.30 7.27  ME 3.15 3.00 3.16 

6 4.90 4.30 4.70  NEMASS 3.60 3.43 3.61 

7 4.86 4.38 4.70  CT 2.79 2.53 2.83 

8 5.74 5.10 5.38  RI 3.36 2.63 3.13 

10 5.34 5.03 5.18  SEMASS 3.14 2.81 2.90 

11 5.42 4.94 5.62  ISONE 2.55 2.24 2.50 

12 5.04 4.42 5.20  Average 2.99 2.81 2.94 

13 5.44 5.02 5.28      
14 5.59 6.25 5.66      
15 5.00 5.57 4.96      
16 5.78 5.31 5.89      
17 3.78 3.67 3.95      
18 5.04 4.62 4.94      
19 5.07 5.55 5.24      
20 4.20 4.27 4.00      
21 3.90 3.46 3.79      

Average 5.17 4.84 5.11      
 

5.2.2.3 Daily Minimum Load 

The results of the daily minimum model are in contrary to the other two modules. The 

proposed model outperforms the recency TA model too. This was expected since, as discussed 

before, the minimum load is less influenced by the temperature of the hour or the preceding hours 

but rather than the hours with least human activities. Hence the proposed model performs better by 
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1% and 16% over the recency TA model on GEFCom2012 data track and ISONE dataset 

respectively. 

Table 12: One day ahead Ex Post Daily Min. Load Forecasting Results for the prediction year 

 
Zones 

Direct 

Green 

Recency 

TA 

Proposed 

Model  
Zones 

Direct 

Green 

Recency 

TA 

Proposed 

Model 

R
E

G
U

L
A

R
 Z

O
N

E
S

 -
 G

E
F

C
o

m
2

0
1

2
  

1 6.79 6.06 5.70  NH 3.12 2.62 2.24 

2 5.36 4.62 4.60  VT 3.17 4.00 2.52 

3 5.36 4.62 4.60  WCMASSS 4.16 3.78 2.76 

5 9.39 8.10 8.09  ME 4.55 3.94 4.46 

6 5.45 4.63 4.62  NEMASS 3.67 2.33 2.54 

7 5.36 4.62 4.60  CT 4.19 2.66 2.58 

8 6.74 5.79 6.05  RI 3.50 2.91 2.44 

10 6.73 4.83 4.98  SEMASS 3.49 3.56 2.13 

11 7.00 5.90 4.82  ISONE 3.24 2.16 1.72 

12 7.34 5.81 4.99  Average 3.68 3.10 2.60 

13 6.73 5.66 5.84      
14 9.66 8.10 7.96      
15 7.14 5.95 6.34      
16 7.78 6.27 6.27      
17 5.68 4.27 4.50      
18 6.72 5.64 5.35      
19 7.82 5.94 6.05      
20 5.04 4.11 4.32      
21 5.25 4.09 4.18      

Average 6.70 5.53 5.47      

 

5.3 Ex-ante Load Forecasting 

Since the weather variables are hard to be predicted for a forecasting horizon of a year and even 

sometimes a day, hence an ex-ante forecasting is studied for the three models. This section uses 

monte-carlo simulation technique [19] to add noise to the temperature series of the forecasting 

period. Thus, the hourly temperature T, modifies to T`, where T`= T+T*p%, where p is the 

percentage number randomly generated from the Uniform or Normal distribution. For uniform 

distribution the interval parameter U(a, b) has been set from (0,0) to (-10 to10), thus making 11 

scenarios. For the normal distributed noises, N (µ, σ), the parameters mean (µ) and standard 

deviation (σ) are varied from 0 to 5 and 1 to 9 (with an increment of 2 at each level) respectively 
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thus making 30 scenarios. This basically conjures up some situations for ex-ante forecasting of the 

daily load. The performance of the proposed model is evaluated for the three modules of daily load 

forecasting and compared them with two benchmark models. 

5.3.1 One year ahead forecasting 

For one year ahead forecasting, the noises are generated and added to all the hourly temperatures 

of the prediction year. Then the models are tested for 11 scenarios of uniformly distributed 

anomalies and 30 scenarios of normally distributed anomalies. For Uniformly distributed 

anomalies, the average MAPE (%) of all the respective zones of each dataset is presented for all 

three models. But for the normal distributed anomalies, average MAPE (%) of each dataset for the 

best two models, that are, recency model and proposed model, are presented. 

5.3.1.1 Daily Energy 

In this section, the performance of proposed model is evaluated for the ex-ante daily load 

forecasting of daily energy module. It can be inferred from the table no.14 and 15 that with high 

level of uniformly distributed anomalies and normally distributed anomalies, the proposed model 

performs better than the Recency TA model. In case of uniformly distributed, this level is U (-5, 5) 

and U (-9, 9) for GEFCom2012 and ISONE dataset respectively. 

While for normally distributed anomalies, the noise p% with N (µ, σ2)>N (2,72) is the cut 

off found when the proposed model outperforms the recency model for ISONE zone. It can be 

observed that for GEFCom2012 dataset, the noise p% with σ2>3 is the cut off, but we could not 

find the cutoff of µ within the level of noise induced, but can be extrapolated at N (6, 32) level. 
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Table 13: Sensitivity analysis of the models on uniformly distributed anomalies in temperature 

data. This table shows the results in MAPE (%) for all three models with color formatted cells. 

  GEFCom2012  ISONE 

U(a, b) 
 Direct 

Green 

Recency 

TA 
Proposed  Direct 

Green 

Recency 

TA 
Proposed 

  (0,0)  5.19 4.71 4.96  3.41 2.85 3.08 

(-1,1)  5.20 4.73 4.96  3.41 2.86 3.07 

(-2,2)  5.22 4.77 4.98  3.42 2.87 3.07 

(-3,3)  5.27 4.85 5.00  3.45 2.89 3.07 

(-4,4)  5.33 4.95 5.04  3.49 2.92 3.07 

(-5,5)  5.42 5.08 5.08  3.55 2.96 3.08 

(-6,6)  5.54 5.22 5.14  3.63 3.00 3.10 

(-7,7)  5.68 5.39 5.20  3.74 3.06 3.12 

(-8,8)  5.84 5.57 5.28  3.86 3.12 3.15 

(-9,9)  6.03 5.78 5.36  4.02 3.19 3.18 

(-10,10)  6.25 6.00 5.44  4.19 3.26 3.21 

 

Table 14: Sensitivity analysis of the models in case of normally distributed anomalies in 

temperature data for GEFCom2012 dataset. This table shows the MAPE (%) with bold fonts 

indicating the better MAPE (%) of the two. 

 

Table 15: Sensitivity analysis of the models in case of normally distributed anomalies in 

temperature data for ISONE dataset. This table shows the MAPE (%) with bold fonts indicating 

the better MAPE (%) of the two. 

  

 
RECENCY TA MODEL  

µ       σ 1 3 5 7 9 

0 4.77 5.11 5.68 6.44 7.40 
1 5.04 5.37 5.97 6.76 7.76 
2 5.62 5.92 6.49 7.29 8.29 
3 6.47 6.71 7.24 8.00 8.99 
4 7.49 7.70 8.16 8.88 9.82 
5 8.65 8.81 9.22 9.87 10.78 

 
PROPOSED MODEL 

µ       σ 1 3 5 7 9 

0 5.00 5.15 5.39 5.73 6.14 
1 5.27 5.42 5.65 5.97 6.38 
2 5.85 5.98 6.18 6.48 6.86 
3 6.66 6.76 6.94 7.20 7.55 
4 7.65 7.73 7.87 8.11 8.43 
5 8.77 8.83 8.95 9.16 9.46 

 
RECENCY TA MODEL  

µ       σ 1 3 5 7 9 

0 2.88 3.00 3.21 3.49 3.84 
1 3.05 3.17 3.38 3.68 4.06 
2 3.43 3.53 3.73 4.02 4.39 
3 3.93 4.01 4.19 4.47 4.84 
4 4.53 4.60 4.76 5.02 5.38 
5 5.19 5.26 5.42 5.66 6.00 

 
PROPOSED MODEL 

µ       σ 1 3 5 7 9 

0 3.09 3.16 3.28 3.44 3.65 
1 3.29 3.35 3.46 3.62 3.82 
2 3.68 3.74 3.83 3.97 4.15 
3 4.21 4.25 4.34 4.47 4.64 
4 4.84 4.87 4.95 5.07 5.23 
5 5.54 5.57 5.65 5.76 5.91 
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It may be noted that for normally distributed anomalies, the best two performing models are 

Recency TA model and the proposed model across all noise levels and hence for the sake of simple 

presentation, the results of Direct Green model have not been included in table 14 and table 15. 

5.3.1.2 Daily Peak Load 

The daily peak module has similar results as the daily energy for uniformly distributed anomalies. 

The cut off level when the proposed model outperforms the recency model is U (-4, 4) here. For 

normally distributed anomalies above level of N (5, 02), the proposed model performs the best in 

case of GEFCom2012 dataset. In case of ISONE dataset, proposed model outperforms Recency 

Model above the noise level of N (1, 12). It may be noted that for normally distributed anomalies, 

the best two performing models are Recency TA model and the proposed model across all noise 

levels and hence for the sake of simple presentation, the results of direct Green model are not 

included in table 17 and table 18. 

Table 16: Sensitivity analysis of the models on uniformly distributed anomalies in temperature 

data. This table shows the results in MAPE (%) for all three models with color formatted cells. 

  GEFCom2012  ISONE 

U(a, b) 
 Direct 

Green 

Recency 

TA 
Proposed  Direct 

Green 

Recency 

TA 
Proposed 

  (0,0)  5.91 5.56 5.73  3.51 3.14 3.32 

(-1,1)  5.93 5.57 5.74  3.52 3.16 3.32 

(-2,2)  5.96 5.64 5.77  3.54 3.21 3.32 

(-3,3)  6.02 5.78 5.81  3.57 3.29 3.33 

(-4,4)  6.15 5.99 5.88  3.63 3.40 3.34 

(-5,5)  6.32 6.28 5.96  3.70 3.54 3.36 

(-6,6)  6.56 6.64 6.06  3.80 3.71 3.39 

(-7,7)  6.85 7.08 6.17  3.91 3.91 3.43 

(-8,8)  7.18 7.59 6.28  4.05 4.14 3.46 

(-9,9)  7.55 8.19 6.41  4.23 4.38 3.51 

(-10,10)  7.96 8.86 6.54  4.42 4.66 3.55 
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Table 17: Sensitivity analysis of the models in case of normally distributed anomalies in 

temperature data for GEFCom2012 dataset. This table shows the MAPE (%) with bold fonts 

indicating the better MAPE (%) of the two. 

 

Table 18: Sensitivity analysis of the models in case of normally distributed anomalies in 

temperature data for ISONE dataset. This table shows the MAPE (%) with bold fonts indicating 

the better MAPE (%) of the two. 

 

 

5.3.1.3 Daily Minimum Load 

For this module, the results show that the proposed model outperforms the two models at all 

level noises for uniformly distributed anomalies. For Normally distributed anomalies, the higher 

level above N(1,02), worsens the performance of the proposed model in case of GEFCom2012 data 

track, while for ISONE, the proposed model remains the best stake. It may be noted that for 

normally distributed anomalies, the best two performing models are Recency TA model and the 

proposed model across all noise levels and hence for the sake of simple presentation, the results of 

direct Green model have not been included in table 20 and table 21. 

 

 
RECENCY MODEL TA 

µ       σ 1 3 5 7 9 

0 5.61 6.27 7.91 10.54 14.11 
1 5.71 6.63 8.50 11.32 15.04 
2 6.13 7.26 9.33 12.29 16.15 
3 6.88 8.14 10.36 13.43 17.41 
4 7.87 9.24 11.56 14.75 18.84 
5 9.07 10.51 12.93 16.21 20.40 

 
PROPOSED MODEL 

µ       σ 1% 3% 5% 7% 9% 

0 5.77 5.96 6.28 6.74 7.32 
1 5.85 6.03 6.36 6.81 7.40 
2 6.23 6.40 6.70 7.13 7.69 
3 6.88 7.03 7.30 7.69 8.22 
4 7.72 7.86 8.11 8.47 8.96 
5 8.72 8.84 9.07 9.41 9.88 

 
RECENCY MODEL TA 

µ       σ 1 3 5 7 9 

0 3.20 3.51 4.15 5.10 6.34 
1 3.40 3.82 4.55 5.58 6.91 
2 3.83 4.29 5.08 6.18 7.56 
3 4.40 4.89 5.72 6.87 8.30 
4 5.08 5.58 6.44 7.62 9.11 
5 5.83 6.34 7.23 8.45 9.97 

 
PROPOSED MODEL 

µ       σ 1 3 5 7 9 

0 3.32 3.40 3.54 3.74 3.97 
1 3.42 3.49 3.63 3.83 4.06 
2 3.72 3.77 3.89 4.06 4.28 
3 4.17 4.20 4.29 4.42 4.61 
4 4.71 4.73 4.79 4.91 5.06 
5 5.32 5.33 5.38 5.47 5.61 
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Table 19: Sensitivity analysis of the models on uniformly distributed anomalies in temperature 

data. This table shows the results in MAPE (%) for all three models with color formatted cells. 

  GEFCom2012  ISONE 

U(a, b) 
 Direct 

Green 

Recency 

TA 
Proposed  Direct 

Green 

Recency 

TA 
Proposed 

  (0,0)  7.29 6.21 5.98  4.34 3.79 3.26 

(-1,1)  7.32 6.24 5.97  4.34 3.81 3.26 

(-2,2)  7.38 6.32 5.97  4.37 3.84 3.26 

(-3,3)  7.52 6.47 5.99  4.43 3.91 3.28 

(-4,4)  7.70 6.68 6.02  4.54 3.99 3.30 

(-5,5)  7.94 6.97 6.06  4.67 4.10 3.33 

(-6,6)  8.21 7.33 6.11  4.85 4.22 3.36 

(-7,7)  8.53 7.74 6.16  5.06 4.36 3.39 

(-8,8)  8.89 8.23 6.23  5.30 4.50 3.43 

(-9,9)  9.28 8.79 6.30  5.56 4.66 3.48 

(-10,10)  9.70 9.44 6.38  5.85 4.83 3.53 

 

Table 20: Sensitivity analysis of the models in case of normally distributed anomalies in 

temperature data for GEFCom2012 dataset. This table shows the MAPE (%) with bold fonts 

indicating the better MAPE (%) of the two. 

 

Table 21: Sensitivity analysis of the models in case of normally distributed anomalies in 

temperature data for ISONE dataset. This table shows the MAPE (%) with bold fonts indicating 

the better MAPE (%) of the two. 

 

 
RECENCY MODEL TA 

µ       σ 1 3 5 7 9 

0 6.05 6.87 8.54 11.17 15.01 
1 6.26 7.03 8.68 11.33 15.23 
2 6.71 7.41 8.98 11.61 15.59 
3 7.36 8.00 9.46 12.03 16.05 
4 8.20 8.74 10.10 12.60 16.63 
5 9.18 9.63 10.87 13.31 17.33 

 
PROPOSED MODEL 

µ       σ 1 3 5 7 9 

0 6.00 6.14 6.39 6.73 7.14 
1 6.26 6.43 6.71 7.07 7.50 
2 6.80 6.98 7.25 7.61 8.05 
3 7.54 7.73 8.00 8.35 8.79 
4 8.49 8.67 8.94 9.29 9.73 
5 9.60 9.78 10.04 10.39 10.82 

 
RECENCY TA MODEL 

µ       σ 1 3 5 7 9 

0 3.85 4.15 4.63 5.23 5.97 
1 3.87 4.15 4.61 5.22 5.97 
2 4.04 4.28 4.71 5.30 6.05 
3 4.36 4.54 4.92 5.47 6.18 
4 4.81 4.93 5.23 5.72 6.40 
5 5.36 5.42 5.64 6.06 6.69 

 
PROPOSED MODEL 

µ       σ 1 3 5 7 9 

0 3.27 3.36 3.51 3.72 3.96 
1 3.39 3.50 3.67 3.88 4.12 
2 3.66 3.77 3.94 4.15 4.39 
3 4.07 4.17 4.32 4.52 4.76 
4 4.56 4.66 4.80 4.99 5.21 
5 5.14 5.23 5.36 5.54 5.75 
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5.3.2 One day ahead forecasting 

For one year ahead forecasting, the noises are generated and added only to the 24-hourly 

temperatures of the day ahead. This process is iterated for each day of the prediction year. Then the 

models are evaluated for 11 scenarios of uniformly distributed anomalies and 30 scenarios of 

normally distributed anomalies. For Uniformly distributed anomalies, the average MAPE (%) of 

all the respective zones of each dataset is presented for all three models. But for the normal 

distributed anomalies, average MAPE (%) of each dataset for the best two models, that are, recency 

model and proposed model, are presented This is done for the sake of simple presentation of data. 

5.3.2.1 Daily Energy 

The study of the table no. 22 suggests that the proposed model performs best at noise level of U (-

7, 7) and U (-8, 8) for GEFCom2012 and ISONE dataset respectively. While for normally 

distributed anomalies with σ > 7 for GEFCom2012 data track, the performance of proposed 

model has been found better. For ISONE dataset, the cut off is the noise level above N (3,72). For 

GEFCom2012 dataset, noise level with σ2>5, we found the proposed model outperforms. The 

cutoff of noise level of µ we can be extrapolated at N (6, 32) when proposed model outperforms. 

This is similar to the year ahead ex-ante forecasting.  

Table 22: Sensitivity analysis of the models in case of normally distributed anomalies in 

temperature data for GEFCom2012 dataset. This table shows the MAPE (%) with bold fonts 

indicating the better MAPE (%) of the two. 

 

 
RECENCY MODEL TA 

µ       σ 1 3 5 7 9 

0 4.11 4.46 5.05 5.85 6.83 
1 4.46 4.80 5.40 6.20 7.21 
2 5.14 5.44 6.00 6.79 7.78 
3 6.07 6.32 6.82 7.54 8.39 
4 7.16 7.37 7.66 8.46 9.35 
5 8.25 8.54 8.91 9.37 10.33 

 
PROPOSED MODEL 

µ       σ 1 3 5 7 9 

0 4.30 4.48 4.77 5.17 5.66 
1 4.65 4.81 5.08 5.45 5.92 
2 5.33 5.46 5.68 6.01 6.45 
3 6.26 6.35 6.53 6.81 7.20 
4 7.36 7.41 7.54 7.79 8.14 
5 8.56 8.59 8.69 8.90 9.21 
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Table 23: Sensitivity analysis of the models in case of normally distributed anomalies in 

temperature data for ISONE dataset. This table shows the MAPE (%) with bold fonts indicating 

the better MAPE (%) of the two. 

 

Table 24: Sensitivity analysis of the models on uniformly distributed anomalies in temperature 

data. This table shows the results in MAPE (%) for all three models with color formatted cells. 

  GEFCom2012  ISONE 

U(a, b) 
 Direct 

Green 

Recency 

TA 
Proposed  Direct 

Green 

Recency 

TA 
Proposed 

  (0,0)  4.51 4.04 4.26  2.84 2.33 2.49 

(-1,1)  4.52 4.06 4.26  2.85 2.33 2.48 

(-2,2)  4.56 4.11 4.28  2.86 2.34 2.48 

(-3,3)  4.61 4.19 4.30  2.89 2.36 2.49 

(-4,4)  4.69 4.31 4.34  2.93 2.40 2.50 

(-5,5)  4.78 4.44 4.38  2.99 2.44 2.51 

(-6,6)  4.89 4.60 4.44  3.06 2.49 2.53 

(-7,7)  5.03 4.78 4.50  3.14 2.55 2.56 

(-8,8)  5.11 4.97 4.57  3.23 2.62 2.59 

(-9,9)  5.29 5.18 4.65  3.34 2.69 2.62 

(-10,10)  5.50 5.42 4.73  3.47 2.77 2.66 

 

 It may be noted that for normally distributed anomalies, the best two performing models are 

Recency TA model and the proposed model across all noise levels and hence for the sake of simple 

presentation, the results of direct green model are not included in Table no 23 and 24. 

 

 

 

 
RECENCY MODEL TA 

µ       σ 1 3 5 7 9 

0 2.34 2.46 2.67 2.96 3.31 
1 2.46 2.59 2.80 3.11 3.48 
2 2.80 2.91 3.11 3.41 3.78 
3 3.29 3.37 3.55 3.83 4.21 
4 3.86 3.93 4.10 4.36 4.72 
5 4.49 4.56 4.72 4.97 5.31 

 
PROPOSED MODEL 

µ       σ 1 3 5 7 9 

0 2.96 3.04 3.19 3.39 3.63 
1 2.99 3.08 3.23 3.44 3.69 
2 3.24 3.30 3.43 3.62 3.85 
3 3.64 3.67 3.76 3.92 4.13 
4 4.14 4.15 4.21 4.33 4.51 
5 4.72 4.72 4.75 4.84 4.99 
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5.3.2.2 Daily Peak Load 

The analysis of this module suggests that when uniformly distributed anomalies are introduced, 

the cutoff for proposed model surpassing the recency TA model is around U (-3,3) level for both 

datasets. For normally distributed anomalies, ISONE dataset has the cutoff of noise level above N 

(0, 12). For GEFCom2012, it can be inferred that at anomalies with σ2>12 level the proposed model 

outperforms the recency model. The cut off level when performance of the proposed model outdoes 

the recency model can be extrapolated at N (6, 12). 

Table 25: Sensitivity analysis of the models in case of normally distributed anomalies in 

temperature data for GEFCom2012 dataset. This table shows the MAPE (%) with bold fonts 

indicating the better MAPE (%) of the two. 

 

Table 26: Sensitivity analysis of the models in case of normally distributed anomalies in 

temperature data for ISONE dataset. This table shows the MAPE (%) with bold fonts indicating 

the better MAPE (%) of the two. 

 

 

 

 

 

 

 
RECENCY TA MODEL  

µ       σ 1 3 5 7 9 

0 4.93 5.75 7.59 10.29 13.82 
1 5.09 6.17 8.19 11.04 14.72 
2 5.62 6.88 9.02 12.00 15.81 
3 6.46 7.82 10.05 13.14 16.66 
4 7.53 8.95 10.94 14.45 18.49 
5 8.67 10.25 12.65 15.56 20.05 

 
PROPOSED MODEL 

µ       σ 1 3 5 7 9 

0 5.15 5.38 5.75 6.24 6.83 
1 5.35 5.55 5.90 6.37 6.94 
2 5.87 6.06 6.36 6.78 7.31 
3 6.66 6.82 7.08 7.44 7.93 
4 7.62 7.75 7.99 8.31 8.75 
5 8.71 8.82 9.02 9.32 9.73 

 
RECENCY TA MODEL 

µ       σ 1 3 5 7 9 

0 2.85 3.14 3.74 4.62 5.79 
1 3.02 3.40 4.10 5.07 6.33 
2 3.39 3.83 4.60 5.62 6.95 
3 3.92 4.39 5.18 6.27 7.64 
4 4.55 5.04 5.86 6.98 8.39 
5 5.27 5.76 6.60 7.76 9.21 

 
PROPOSED MODEL 

µ       σ 1 3 5 7 9 

0 2.96 3.04 3.19 3.39 3.63 
1 2.99 3.08 3.23 3.44 3.69 
2 3.24 3.30 3.43 3.62 3.85 
3 3.64 3.67 3.76 3.92 4.13 
4 4.14 4.15 4.21 4.33 4.51 
5 4.72 4.72 4.75 4.84 4.99 
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Table 27: Sensitivity analysis of the models on uniformly distributed anomalies in temperature 

data. This table shows the results in MAPE (%) for all three models with color formatted cells. 

  GEFCom2012  ISONE 

U(a, b) 
 Direct 

Green 

Recency 

TA 
Proposed  Direct 

Green 

Recency 

TA 
Proposed 

  (0,0)  5.17 4.84 5.11  2.99 2.81 2.94 

(-1,1)  5.22 4.86 5.11  3.00 2.83 2.94 

(-2,2)  5.30 4.95 5.12  3.01 2.87 2.95 

(-3,3)  5.42 5.12 5.17  3.04 2.94 2.96 

(-4,4)  5.59 5.38 5.22  3.09 3.05 2.97 

(-5,5)  5.80 5.72 5.30  3.16 3.18 3.00 

(-6,6)  6.07 6.13 5.38  3.25 3.33 3.02 

(-7,7)  6.38 6.63 5.48  3.35 3.51 3.05 

(-8,8)  6.73 7.19 5.60  3.48 3.72 3.09 

(-9,9)  7.11 7.83 5.72  3.63 3.94 3.13 

(-10,10)  7.52 8.54 5.85  3.80 4.18 3.17 

 

5.3.2.3 Daily Minimum Load 

Similar to year ahead ex-ante forecasting the results of this module imply that the proposed 

model outperforms the two models at all level noises for uniformly distributed Anomalies. For 

Normally distributed anomalies, the higher level above N (1, 42), worsens the performance of the 

proposed model in case of GEFCom2012 data track, while for ISONE, the proposed model remains 

the best at all level of noise taken up in the study.  

Table 28: Sensitivity analysis of the models in case of normally distributed anomalies in 

temperature data for GEFCom2012 dataset. This table shows the MAPE (%) with bold fonts 

indicating the better MAPE (%) of the two. 

 

 

 
RECENCY TA MODEL 

µ       σ 1 3 5 7 9 

0 5.60 6.37 8.09 10.72 14.50 
1 5.85 6.59 8.25 10.91 14.76 
2 6.34 7.02 8.59 11.25 15.15 
3 7.05 7.63 9.10 11.71 15.46 
4 7.93 8.40 9.52 12.29 16.27 
5 8.82 9.31 10.52 12.70 17.00 

 
PROPOSED MODEL 

µ       σ 1 3 5 7 9 

0 5.49 5.65 5.93 6.29 6.73 
1 5.81 5.99 6.27 6.64 7.08 
2 6.40 6.58 6.85 7.21 7.65 
3 7.21 7.38 7.65 7.99 8.41 
4 8.20 8.37 8.62 8.94 9.35 
5 9.34 9.51 9.74 10.05 10.44 
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It may be noted that for normally distributed anomalies, the best two performing models are 

Recency TA model and the proposed model across all noise levels and hence for the sake of simple 

presentation, the results of direct Green model are not included in Table no 28 and 29. 

Table 29: Sensitivity analysis of the models in case of normally distributed anomalies in 

temperature data for ISONE dataset. This table shows the MAPE (%) with bold fonts indicating 

the better MAPE (%) of the two. 

 

Table 30: Sensitivity analysis of the models on uniformly distributed anomalies in temperature 

data. This table shows the results in MAPE (%) for all three models with color formatted cells. 

  GEFCom2012  ISONE 

U(a, b) 
 Direct 

Green 

Recency 

TA 
Proposed  Direct 

Green 

Recency 

TA 
Proposed 

  (0,0)  6.70 5.53 5.47  3.68 3.10 2.60 

(-1,1)  6.70 5.55 5.46  3.68 3.12 2.60 

(-2,2)  6.73 5.60 5.46  3.72 3.16 2.61 

(-3,3)  6.82 5.73 5.48  3.79 3.23 2.62 

(-4,4)  6.97 5.94 5.51  3.90 3.32 2.65 

(-5,5)  7.18 6.22 5.55  4.03 3.43 2.68 

(-6,6)  7.44 6.58 5.60  4.20 3.55 2.71 

(-7,7)  7.76 7.01 5.65  4.40 3.69 2.75 

(-8,8)  8.11 7.52 5.72  4.61 3.84 2.79 

(-9,9)  8.51 8.08 5.79  4.85 3.99 2.84 

(-10,10)  8.95 8.71 5.87  5.11 4.16 2.89 

 

 

 

 

 

 
RECENCY TA MODEL 

µ       σ 1 3 5 7 9 

0 3.16 3.45 3.90 4.48 5.17 
1 3.13 3.41 3.86 4.43 5.12 
2 3.28 3.50 3.91 4.47 5.14 
3 3.58 3.75 4.10 4.61 5.25 
4 4.02 4.12 4.39 4.85 5.45 
5 4.56 4.60 4.79 5.17 5.73 

 
PROPOSED MODEL 

µ       σ 1 3 5 7 9 

0 2.61 2.70 2.86 3.08 3.33 
1 2.69 2.80 2.98 3.20 3.46 
2 2.95 3.06 3.23 3.44 3.70 
3 3.34 3.44 3.60 3.79 4.03 
4 3.83 3.92 4.06 4.25 4.47 
5 4.39 4.48 4.61 4.78 5.00 
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6. CONCLUSION 

 

Daily load forecasting is an important aspect for a reliable and profitable operation of modern 

power utilities. The utilities value it for resource planning and decision making in the energy 

market. The study in this research involves modeling the hourly temperatures to forecast the three 

modules of daily load forecast: Daily Energy, Daily Peak Load, and Daily Minimum Load. This 

study was also motivated by a real business problem of developing daily load curves in case of 

missing hourly load data or converting monthly load consumption into daily load curves. So, this 

research uses daily series of historic daily energy, daily peak load and the daily minimum load for 

modeling of the respective modules. This kind of multi-frequency study is unique in the field of 

load forecasting. Most of the earlier research in the field of load forecasting at the daily resolution 

is focused on daily peak load.  Typically, these researches have used the maximum temperature of 

the day as the key parameter for modeling. In this research, we explored the twenty-four dimensions 

of the daily temperature, found the relevant subsets of the hourly temperatures for daily load 

forecasting. The proposed model for daily energy module was generated from a detailed study of 

hourly temperatures and finding the best subset of hourly temperatures for capturing maximum 

temperature hours and minimum temperature hours. The proposed model for daily peak module 

uses the reduced space of daytime to get the average temperature, grouped maximum, and 

minimum temperatures. The proposed model for daily minimum module uses the grouped 

temperature of minimum load hours along with the average temperature of reduced space and 

grouped maximum temperature. Hence, the optimum groups of hourly temperatures relevant to the 

daily load are captured. Most of the time, this group carries the maximum or the minimum 

temperature of the day, but the group also has the temperature of peer hours. Hence the group 

negates any false impact of the extreme values of the daily temperature curve. 
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To evaluate the performance of the proposed models, two benchmark models have been 

employed. One is a direct daily load forecasting model based on Tao’s Vanilla model using 

maximum, minimum and average temperature of the day, which we have referred to as the direct 

Green Model. The other is based on temporal aggregation of the hourly load forecasts. The hourly 

load forecasting employed in this benchmark models the recency effect of hourly temperature as 

proposed in [13] using hourly temperature as well as hourly load. This model has proven superiority 

over the benchmark model by a 12% to 15% on average for the GEFCom2012 dataset and is also 

high in computational requirement. Hence, this model is a high-end benchmark , that we call here 

Receny TA, is used here to understand how far off is the performance of the proposed model that 

uses daily load series instead of hourly load series. 

To conduct this experiment, two real-world datasets have been used which are available 

publicly. One is the data track used in the GEFCom2012 competition and the other dataset is the 

load and weather history of nine zones of ISO, New England. By analyzing the performance of 

these three models for the three modules of the daily load forecast, it is shown that the adopted 

model performs much better than the Direct Green model for all three modules. But when compared 

to the Recency TA model for daily energy module, the proposed model lags by approximately 5.4% 

and 7.5% on GEFCom2012 and ISONE dataset respectively. For daily peak module, the proposed 

model lags by 4.3% and 5.2%. But for the daily minimum load, the proposed model outperforms 

the recency TA model by 2.2% and 15.1% for GEFCOM2012 and ISONE dataset respectively. 

This is quite understandable as recency model works on capturing the fundamental relationship 

between the load and the temperatures of preceding hours, while the minimum load is more driven 

by hours with minimum human activities. Hence, the minimum load is observed neither in the 

coolest temperature hours in summers nor in the highest temperature hours in winters, rather it is 

observed during the hours with least human activities which are the post-midnight hours before the 

dawn. 
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In real business, ultimately the ex-ante forecast is what matters. The information on 

weather data are unforeseen and hence liable to vary from what presumed. Hence, it is imperative 

to evaluate the models in case of any variation in the values of the regressors, that is, the 

temperature. To conduct this study, we added noise that follows a normal or uniform distribution 

into the temperature series of the forecasting year. The ex-ante forecast study revealed that the 

proposed model is a more reliable model in case of a high level of uncertainty in the temperature 

data. For the summary purpose, we can say that for daily energy module, any variation (p%) in 

temperature data above U(-5,5) or  N(5,32 ) level results in proposed model outperforming the 

recency model, while this level is U(-8,) or  N(4,72 ) for ISONE data. For daily peak load module, 

even at a low level of variations of around U(-4,4) or  N(3,32 ), the proposed model outdoes the 

recency model for GEFCom2012 dataset, while for ISONE the level is even lower at U(-4,4) or  

N(0,12 ). Also the proposed model performs very consistent across all zones for daily peak load 

forecasting. For daily minimum load, the proposed model for the GEFCom2012 dataset is 

outperformed at a high level of N (1, 42) of noise while for ISONE the proposed model remains the 

most resilient of the three at all level of noises under the study.  

The subsets of the hourly temperatures have been obtained from a profound analysis of the 

temperature curve and load curve of each dataset. The group of hours can vary from one dataset to 

other. One of the most important findings of this study is that the temperatures of specific hours are 

more influential than the critical temperatures of the day such as the highest and lowest temperature 

of the day. With most of the earlier research using maximum or the minimum temperature of the 

day for daily load forecasting, it is distinctive to use hour-based temperatures. Besides, the proposed 

methodology of grouping the relevant hourly temperatures also emerges out to be a resilient as well 

a practical and interpretable methodology of predicting the three modules of daily load as 

demonstrated empirically. 
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Taking this study further, this methodology can be deployed and assessed in hierarchical load 

forecasting for obtaining hourly or monthly load series by way of disaggregating and aggregating 

and reconciling the independent load series. Also, on the side of improving the proposed 

methodology, the twenty-hour dimension can be subjected to various dimension reduction 

technique such as Principal Component Analysis (PCA) to get the best dimension of daily 

temperatures for daily load forecasting. It would also be interesting to explore other technique of 

dimension reduction for this purpose. 
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