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Abstract

Long term surveillance of vectors and arboviruses is an integral aspect of disease preven-

tion and control systems in countries affected by increasing risk. Yet, little effort has been

made to adjust space-time risk estimation by integrating disease case counts with vector

surveillance data, which may result in inaccurate risk projection when several vector species

are present, and when little is known about their likely role in local transmission. Here, we

integrate 13 years of dengue case surveillance and associated Aedes occurrence data

across 462 localities in 63 districts to estimate the risk of infection in the Republic of Pan-

ama. Our exploratory space-time modelling approach detected the presence of five clusters,

which varied by duration, relative risk, and spatial extent after incorporating vector species

as covariates. The Ae. aegypti model contained the highest number of districts with more

dengue cases than would be expected given baseline population levels, followed by the

model accounting for both Ae. aegypti and Ae. albopictus. This implies that arbovirus case

surveillance coupled with entomological surveillance can affect cluster detection and risk

estimation, potentially improving efforts to understand outbreak dynamics at national

scales.

Author summary

Dengue cases have increased in tropical regions worldwide owing to urbanization, globali-

zation, and climate change facilitating the spread of Aedes mosquito vectors. National sur-

veillance programs monitor trends in dengue fever and inform the public about

epidemiological scenarios where outbreak preventive actions are most needed. Yet, most

estimations of dengue risk so far derive only from disease case data, ignoring Aedes occur-

rence as a key aspect of dengue transmission dynamic. Here we illustrate how incorporating
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vector presence and absence as a model covariate can considerably alter the characteristics

of space-time cluster estimations of dengue cases.

Introduction

Dengue disease, a viral infection transmitted to humans by Aedes mosquitoes, is endemic to

128 countries, with 3.9 billion people considered at-risk globally [1]. Dengue disease cases

have increased dramatically worldwide throughout the previous several decades [2], likely a

result of urbanization [3], globalization [4], climate change [5], the breakdown of regional con-

trol programs [6], and the spread of the invasive Aedes albopictus [7]. As a result of both recent

and historical risk, many countries employ national surveillance programs to monitor trends

in dengue and inform local health authorities to the places and times where preventative prac-

tices are most required. However, despite the commonality of these programs and unforeseen

cost of cutting them [8], surveillance budgets are often limited [9,10], restricting the scope and

quality of the work. This is concerning in developing regions such as Central America, where

the burden of disease is high [1] and per capita public health expenditure is among the lowest

of any region of the world [11].

Surveillance of both diseases and vectors is an essential component of integrated disease

management programs that can be used to determine risk changes in space and time, thus pro-

viding the evidence for more targeted prevention and control interventions [12]. Nevertheless,

with few exceptions, it is rare for surveillance programs to concurrently monitor both arbovi-

rus cases and vector populations in the same locations and at regular intervals. Most projec-

tions of disease risk used to justify public health actions are derived purely from disease case

data, ignoring vector population dynamics, which is a key aspect of the vector transmission

model. This is particularly concerning when more than one vector species is present, and little

is known about their likely role in local transmission, which may result in inaccurate or incom-

plete risk projection or case clustering models.

The Republic of Panama has been monitoring dengue cases alongside vector presence

through the National Department of Epidemiology (NDE) since 1988, making it one of the

most long-standing surveillance programs of its kind in Latin America. Of the two known den-

gue mosquito vectors, Ae. aegypti is considered resident to Latin America and Panama since

the 19th century, and the primary source of transmission [12] while Ae. albopictus, considered

a secondary vector, has been spreading throughout the region ever since it got introduced in

Panama in 2004 [13,14]. Widespread extirpation of Ae. aegypti by a superior ecological com-

petitor like Ae. albopictus has occurred throughout the world in recent decades [15–17], with

unknown consequences on arbovirus transmission risk. Encompassing this period of growing

interspecific competition among two vector species, Panama’s surveillance system is particu-

larly unique and potentially useful to modelling dengue transmission risk while considering

Aedes species interaction. Attaining a better understanding of dengue outbreak dynamics over

time may improve the capacity of public health authorities to combat the spread of other arbo-

viruses, such as Zika Virus and Chikungunya Virus.

Our overall aim is to examine the influence that concurrent dengue case surveillance and

Aedes species monitoring can have on cluster detection and relative risk estimation. Based on

previous studies incorporating covariates into spatiotemporal cancer cluster detection [18,19],

we hypothesize that the inclusion of vector surveillance data will alter the identification of den-

gue clusters in space-time. In so doing, we describe the results of 13 years of dengue and Aedes
surveillance data, including two competing vector species plus virus data originating from
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long-term cooperatively organized surveillance programs. We believe this is the first effort to

adjust for vector presence and absence in a vector-borne disease cluster detection model,

which we hope sheds light on the characteristics of space-time clusters and relative risk estima-

tion of dengue after Aedes species are used as model covariates.

Methods

Dengue data

We utilized dengue prevalence data collected by the National Department of Epidemiology

(NDE), housed within the Panamanian Ministry of Health (MINSA) [20]. Systematic national

surveillance of dengue cases in Panama have been continuous since 1988. Suspected cases are

defined by a patient with a fever and one or more of the following symptoms: headache, retro

orbital pain, myalgia, exanthema, rash, vomiting, malaise, leukopenia, and jaundice. A con-

firmed case is defined as a suspected case with a positive dengue test, conducted using either

viral isolation, reverse transcription polymerase chain reaction (RT-PCR), IgM enzyme-linked

immunosorbent assay platform (ELISA), or secondary IgG ELISA. RT-PCR was established as

the original standard by the National Reference Laboratory at the Gorgas Memorial Institutes

for Health Studies (ICGES) in 2003. Yet since 2009, MINSA established national decentraliza-

tion of serological confirmation of dengue using ELISA tests, which has improved efficiency

by allowing district health officials to confirm cases without needing to send samples to a single

central facility in Panama City. Data is recorded at the Corregimiento, or neighborhood, scale

as the number of confirmed cases in a given year at a given location. This is the lowest scale of

data granularity available, and thus, we do not have patient-level detail nor temporal detail at

smaller units than year.

Vector data

We utilized vector data from the Vector Control Department (VCD) at MINSA. Systematic

entomological surveillance has occurred in Panama since 2000 in order to establish Aedes
infestation rates, and thus, areas of potential dengue transmission risk. Surveys of both Ae.
aegypti and Ae. albopictus are performed annually at the Corregimiento-scale and consist of

solely larval surveillance. Each year, a random block of houses is chosen and all houses in the

block are searched for containers holding Aedes larvae. The larvae are collected and allowed to

mature to the fourth instar, at which point they are taxonomically identified to species based

on morphological keys [21]. The number of houses positive for Ae. aegypti, Ae. albopictus or

both are recorded in the raw datasets. However, because there is no record of the number of

houses in each block, we have transformed the data into a presence-absence format in each

Corregimiento rather than analyzing the number of positive houses.

Data analysis

We conducted our analyses on dengue and vector data from 2005–2017, encompassing the

period in Panama when both Ae. aegypti and Ae. albopictus have been interacting. Overall,

data was collapsed from the original Corregimiento scale to the district scale. This is due to

unreliable human population estimates at scales smaller than the district. Human population

data was gathered from the National Institute of Statistics and Census (INEC), which conducts

a national census every 10 years. Because the national census is only conducted every ten

years, we used the population levels from 2010 to calculate PR for data from 2005–2017. While

this is not ideal, and incurs inherent error in the year to year accuracy of the PR estimate, there

is no more frequent population estimate available. This is an unfortunately common situation,
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especially in Central America, where no country conducts national population assessments

more frequently than every 10 years.

For the spatial analyses, we utilize discrete Poisson space-time modelling STSS [22], which

systematically moves cylindrical search windows across the geographic and temporal space to

detect space-time clusters. Essentially, STSS determines if the observed disease cases in a par-

ticular region and time period exceed the expected cases under baseline conditions. In vector-

borne disease research, STSS have been used to examine outbreaks of dengue [23–25], chikun-

gunya [26], malaria [27,28], Chagas [29], and West Nile [30,31], for example. STSS have also

been used to examine the co-circulation of dengue and chikungunya in Colombia [32]. How-

ever, none of these prior studies have utilized vector surveillance data as a covariate.

The cylinders are centered on the centroids of the Panamanian districts while the base of a

cylinder is defined as the spatial scan, and the height of a cylinder represents the temporal

scan. The number of observed and expected dengue cases are computed for each cylinder.

Conceptually, a vast number of cylinders of various space-time dimensions are generated until

an upper bound is reached, while each cylinder is a potential cluster. For this study, the maxi-

mum spatial scan was set to 25% of the total population in Panama, while the maximum tem-

poral scan was set to 4 years. A Poisson-based likelihood ratio is calculated for each cylinder,

which is proportional to ðn=mÞn½ðN � nÞ=ðN � mÞ�N� n[33]. For the parameters, μ is the

expected number of dengue cases in a cylinder, and n is the total observed dengue cases in the

cylinder. The expected number of dengue cases is computed by multiplying the fraction of

population that lives within the cylinder (p) by the total number of cases in Panama (C)
divided by the total population (P), that is: E[c] = p�C/P - The cylinder with the highest likeli-

hood ratio is the most likely space-time cluster. To evaluate the statistical significance of the

candidate space-time clusters, 999 Monte Carlo simulations are performed under the null

hypothesis that there are no significant clusters. Subsequently, we report secondary space-time

clusters with a p-value less than 0.05. It must be noted that the cylindrical shape of the clusters

does not represent the true shape of the clusters. While it is possible to use irregular search

windows [34–36], cluster borders in the model outputs are not perfectly in line with the bor-

ders of the risk in reality.

For this study, we ran four STSS models: (1) dengue cases only; (2) dengue cases controlled

for the presence and absence of Ae. aegypti and/or Ae. albopictus (i.e. absence of both species,

Ae. aegypti presence, Ae. albopictus presence, and presence of both species); (3) dengue cases

controlled for Ae. aegypti presence/absence only; and (4) dengue cases controlled for Ae. albo-
pictus presence/absence only. For the covariate adjusted models, the expected number of den-

gue cases is defined the same way for the non-adjusted model, but includes covariate category

i. That is: E[c] =
P

ipi�
Ci
Pi
: In other words, the adjusted STSS searchers for clusters “above and

beyond that which is expected due to these covariates” [37]. For each model, we also report the

relative risk of prevalence in each district that belongs to a space-time cluster, which is defined

as ðc=eÞ=½ðC � cÞ=ðC � eÞ�, where c is the total observed dengue cases in a particular district; e
is the expected cases in a district; and C is the total observed dengue cases in the country of

Panama. Clusters with a relative risk> 1 indicates that there were more observed dengue cases

than expected under baseline conditions. We created all maps in ArcGIS [38].

Results

From 2005–2017, there were a total of 49,910 cases of dengue in Panama (Fig 1), with 2009

and 2014 being the most severe at 6,941 and 7,423 cases respectively. These two years repre-

sented 28% of the total dengue cases during the 13-year period. The spatial distribution of

the total number of dengue cases and the crude rate per 10,000 people per district is shown
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in Fig 2A and 2B, respectively. The district with the largest number of dengue cases between

2005–2017 was San Miguelito (13,109 cases), which is situated in Metropolitan Panama

City. The highest rate of dengue per 10,000 people during this same time frame in Panama

was shared among major urban centers across the country, including again the districts of

San Miguelito (416.13), Arraijan (310.0), and Chepo (294.76) in the Province of Panama

plus Aguadulce (384.45), Santiago (338.21), Nata (269.69), Guarare (277.42) in central

Fig 1. Dengue cases in Panama by year from 2005–2017, with trendline (red).

https://doi.org/10.1371/journal.pntd.0007266.g001

Fig 2. Dengue cases per district from 2005–2017 (A); and crude rate of dengue per 10,000 from 2005–2017 people per

district (B).

https://doi.org/10.1371/journal.pntd.0007266.g002
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Panama, and Bocas del Toro (758.59) and Changuinola (298.74) in northwestern Panama

(Fig 2A and 2B). Additionally, surveillance of each vector species indicated prolonged

endemic presence of Ae. aegypti alongside increasing presence of Ae. albopictus from just

one district in 2005 to 53 in 2016 (Fig 3).

The results of our space-time modelling detected the presence of five clusters in each of the

four models, varying by cluster center and duration (Figs 4–7 and Table 1). Incorporating

covariates into the models had considerable effects on the duration, relative risk (RR), and spa-

tial extent of clusters (Table 2). The model adjusting for the presence of Ae. aegypti encom-

passed the greatest spatial range and highest number of districts with a RR> 1, while the

model adjusting for the presence of Ae. albopictus encompassed the smallest spatial range and

the lowest number of districts with a RR> 1. The duration of the space-time clusters is notably

different when adding the vector surveillance data to the model, however, the one exception is

cluster 1 for each model (most likely cluster). For example, the duration of cluster 2 was 2015–

2017 for the no covariate and Ae. aegypti model; while the Ae. albopictus and Aedes (both)

model reported a duration of only 1 year, which occurred six years earlier (2009). Further-

more, cluster 2 was found in different geographic locations for the Aedes (both) and Ae. albo-
pictus models. This variation in duration of the clusters between the four models is a result of

adjusting for the presence of Aedes during the 13-year study period. In other words, the start,

end, and duration of the clusters is substantially affected by the presence of one or more Aedes
species. The relative risk may be higher if Aedes was found in a district during the entire dura-

tion of a space-time cluster. During the 13 years of our study period combined with the 63 dis-

tricts containing data (13 � 63 = 819), Ae. aegypti was present 690 times, Ae. albopictus was

present 245 times, while both Aedes species were found in a district 224 times. As a result, the

difference in species presence during the study period partly explains why the clusters for the

Ae. albopictus model contained 19 less districts than the Ae. aegypti model, and 10 less districts

that the model adjusting for both species.

Fig 3. Number of districts containing each Aedes species from 2005–2017.

https://doi.org/10.1371/journal.pntd.0007266.g003
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Fig 4. Space-time clusters of dengue disease without adjusting for Aedes presence and absence in Panama (A);

Relative risk (RR) for districts belonging to a significant space-time cluster (B).

https://doi.org/10.1371/journal.pntd.0007266.g004

Fig 5. Space-time clusters of dengue disease that adjusts for both Aedes species presence and absence in Panama (A);

Relative risk (RR) for districts belonging to a significant space-time cluster (B).

https://doi.org/10.1371/journal.pntd.0007266.g005
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Fig 7. Space-time clusters of dengue disease that adjusts for Ae. aegypti presence and absence in Panama (A); Relative

risk (RR) for districts belonging to a significant space-time cluster (B).

https://doi.org/10.1371/journal.pntd.0007266.g007

Fig 6. Space-time clusters of dengue disease that adjusts for Ae. albopictus presence and absence in Panama (A);

Relative risk (RR) for districts belonging to a significant space-time cluster (B).

https://doi.org/10.1371/journal.pntd.0007266.g006
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Discussion

Overall, our results highlight the extreme heterogeneity of dengue is Panama. We find that

clusters and risk vary widely across both time and space, with adjacent districts and years

experiencing vastly different rates of transmission. While this may complicate response pro-

grams that operate under assumptions of spatially and temporally homogenous risk, it high-

lights the need for comprehensive risk projection studies which can identify particularly

regions that most require attention. Additionally, our results specifically highlight the changes

incurred by adding vector data into systematic dengue risk projections. In the model where

Ae. aegypti presence and absence was accounted for, more than double the number of districts

were contained in clusters than the model where Ae. albopictus presence and absence was

accounted for. The Ae. aegypti model also contained the highest number of districts with a rel-

ative risk> 1, indicating more dengue cases than would be expected given baseline population

levels. As an invasive species that has systematically replaced Ae. aegypti throughout numerous

Table 1. Space-time dengue disease clusters.

Cluster Center of Cluster Duration (years) p-value Observed Cases Expected Cases Relative Risk Districts Cluster Population

No covariates

1 Balboa 2013–2015 p<0.01 5,846 1,270.83 5.1 5 368,341

2 Santa Maria 2015–2017 p<0.01 2,013 482.25 4.3 3 139,778

3 Colon 2009 p<0.01 1,402 237.54 6 1 206,553

4 Changuinola 2005–2007 p<0.01 1,734 394.85 4.5 2 114,445

5 Capira 2014 p<0.01 1,914 721.3 2.7 9 627,220

Adjusting for Aedes presence & absence

1 Balboa 2013–2015 p<0.01 5,846 1,670.20 3.8 5 368,341

2 Baru 2009 p<0.01 2,019 408.4 5.1 11 492,942

3 Colon 2009 p<0.01 1,402 188.2 7.4 1 206,553

4 Calobre 2015–2017 p<0.01 2,120 511.5 4.1 4 162,315

5 Arraijan 2005–2006 p<0.01 1,923 608 3.2 1 220,779

Adjusting for Ae. albopictus presence & absence

1 Balboa 2013–2015 p<0.01 5,846 1,636.70 3.9 5 368,341

2 Colon 2009 p<0.01 1,402 178.4 8 1 206,553

3 Changuinola 2005–2007 p<0.01 1,734 296.5 6 2 114,445

4 Santa Maria 2015–2017 p<0.01 2,013 445 4.6 3 139,778

5 Arraijan 2005–2006 p<0.01 1,923 591.4 3.3 1 220,779

Adjusting for Ae. aegypti presence & absence

1 Balboa 2013–2015 p<0.01 5,846 1,318.90 4.9 5 368,341

2 Colobre 2015–2017 p<0.01 2,019 544.6 4 4 162,315

3 Colon 2009 p<0.01 1,402 247.2 5.8 1 206,553

4 Baru 2009 p<0.01 2,120 535.3 3.9 11 492,942

5 Capira 2014 p<0.01 1,923 745.9 3.1 10 652,859

https://doi.org/10.1371/journal.pntd.0007266.t001

Table 2. Characteristics of each space-time model.

Model Total number of districts RR 0–1 (# of districts) RR > 1 (# of districts) Highest RR Most observed cases

No covariates 20 9 11 Bocas Del Toro (5.2) San Miguelito (13,109)

Both Aedes species 22 12 10 Santiago (2.9) San Miguelito (13,109)

Only Ae. albopictus 12 4 8 Bocas del Toro (6.2) San Miguelito (13,109)

Only Ae. aegypti 31 17 14 San Miguelito (3.3) San Miguelito (13,109)

https://doi.org/10.1371/journal.pntd.0007266.t002
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regions in its endemic range [15], Ae. albopictus has been spreading throughout Panama for

the previous 13 years [13,14]. Globally, while Ae. albopictus has been implicated in several

small outbreaks [39], the majority of dengue serotypes are thought to be transmitted by Ae.
aegypti, due to its preference for both urbanized habitat [17,40] and human hosts [41,42].

Overall, based on our findings, we suggest that efforts be undertaken to further understand

how the incorporation of vector surveillance data can affect risk projections, especially given

the ubiquity of exploratory space-time scan statistics studies in the literature that did not utilize

covariate surveillance data [26,43,44]. SATSCAN results can be useful in assessing risk when

data granularity is low, as is often the case in developing regions with low-resource surveillance

programs. Overall, these results can direct efforts to attain finer scale data in regions where

general risk is deemed the greatest, at which point more confirmatory models can be applied,

validating the role of certain covariates in space-time risk estimation. Balboa, for example, was

identified as a cluster in all four models and had a steady presence of Ae. aegypti throughout

the sample period as well as increasing presence of Ae. albopictus since 2006. This district is

semi-urban with approximately 2400 people spread across 400km2 area. Another district, San

Miguelito in metropolitan Panama City, contained the most observed cases during our study

period, despite being only 49.9km2. This district can be characterized by high density housing

and residents of relatively low socioeconomic status, which has previously been linked to

increased vector-borne disease risk [45–48]. The staggering number of cases should be a cause

for concern, yet its small geographic area may facilitate public health interventions such as vec-

tor control and community education. Overall, now that the identification of high risk districts

at the national scale has been completed and informed by vector presence, the subsequent step

of illustrating the comparative characteristics of each district relative to dengue transmission

risk can be undertaken. Understanding what caused Balboa and San Miguelito to experience

such high relative risk, for example, is the next task necessary for adjusting public health inter-

ventions to effectively address the needs and conditions of each district.

Despite the longevity of our data and thoroughness of the surveillance efforts, there are

clear considerations and limitations of our work which we would like to see addressed in

future studies. First, we recognize that there is no way to statistically compare the outputs of

the four models. This exploratory analysis was meant to illustrate that vector surveillance data

can impact the location and duration of detected clusters, yet ranking the four models by pre-

dictive power is not possible with the statistical methods employed. Second, we recognize the

spatial uncertainty by using districts for the analysis and our study is subject to the modifiable

areal unit problem (MAUP) [44], however, this is an exploratory study that seeks to guide tar-

geted interventions. Finer-level data can identify the locations (e.g. towns, blocks, homes)

within each district that are experiencing the greatest burden of dengue, yet since such fine

scale surveys cannot realistically be employed at the national-scale, studies such as ours can

indicate where to direct future surveillance efforts. Third, it is possible that the reported cases

of dengue in certain districts are travel cases (seeking treatment in a district different than

actual residence), and while adjusting for the presence of Aedes can shed light on the districts

where an individual is more likely to get infected with dengue, we cannot confirm that every

patient was specifically infected in Panama. The lack of population data for more than one

year across such a lengthy period is another limitation of this work. While the frequency of a

census in Panama is on par with much of Latin America, this greatly impacts our ability to

determine accurate prevalence rates year to year. Since linear interpolation is often inaccurate

for non-linear trends like population growth rate, we would like to see more frequent popula-

tion assessments conducted in regions where dengue is an ongoing risk, and while we under-

stand that resources may not easily allow for this, the role of national census efforts in public

health is often under-appreciated. An additional limitation originates with the vector
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surveillance methods employed. Values are reported as the number of houses containing lar-

vae of each respective species. No information is given on the number of houses surveyed, and

thus we were forced to transform the data into presence and absence. Had the total number of

surveyed houses been reported, we would have been able to compute each district’s infestation

rate, which would have provided a scaled and more nuanced covariate in the model. Lastly, no

data was available on short-term cross immunity and long-term serotype specific immunity,

which may have incurred bias in the model parameter estimations.

Overall, it is key to recognize that adding vector surveillance data as a covariate changes the

location, duration, and relative risk of dengue case clusters. As methods such as SaTScan are

often used in mapping areas for public health intervention, we suggest that future efforts to uti-

lize these tools in spatial vector epidemiology are conducted with an awareness that outputs

can change when vector data is utilized as a covariate. Maps of clusters created without vector

surveillance data may be missing key information that alters the distribution of the clusters in

space-time, thus creating possible situations where public health efforts may not be planned in

the areas which require it most. Although unadjusted cluster analysis is a valuable and com-

monly utilized tool for public health officials to identify high risk areas of vector-borne disease,

our study illustrates the role that incorporating relevant covariates can play in altering the

model output. While this has been demonstrated in cancer cluster studies [48,49], this is the

first use of covariates in space-time cluster detection modelling of neglected tropical disease.

With this comes potential to expand into other classes of covariates. For example, in addition

to vector surveillance data, we support the incorporation of additional covariates such as vec-

tor genetic background, climate, vegetation, and land cover to dengue cluster models. Host

population characteristics, such as housing density, relative isolation, and connectivity may

also influence dengue risk in space-time scan statistic models. In general, the dengue transmis-

sion model contains numerous variables that we would have been interested in incorporating,

had adequate data been available. Still, we demonstrate that vector surveillance clearly provides

valuable information in the determination of virus case clusters, and thus should be conducted

alongside virus surveillance so that it may be included in modelling efforts.
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