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ABSTRACT
Screening methods of High-Grade Serous Ovarian Cancer (HGSOC) lack specificity 

and sensitivity, partly due to benign tumors producing false-positive findings. We 
utilized a differential expression analysis pipeline on malignant tumor (MT) and normal 
epithelial (NE) samples, and also filtered the results to discriminate between MT and 
benign tumor (BT). We report that a panel of 26 dysregulated genes stratifies MT from 
both BT and NE. We further validated our findings by utilizing unsupervised clustering 
methods on two independent datasets. We show that the 26-genes panel completely 
distinguishes HGSOC from NE, and produces a more accurate classification between 
HGSOC and BT. Pathway analysis reveals that AKT3 is of particular significance, 
because of its high fold change and appearance in the majority of the dysregulated 
pathways. mRNA patterns of AKT3 suggest essential connections with tumor growth 
and metastasis, as well as a strong biomarker potential when used with 3 other 
genes (PTTG1, MND1, CENPF). Our results show that dysregulation of the 26-mRNA 
signature panel provides an evidence of malignancy and contribute to the design of a 
high specificity biomarker panel for detection of HGSOC, potentially in an early more 
curable stage. 

INTRODUCTION

Ovarian cancer is the leading cause of death 
among gynecological cancers and early diagnosis is 
one of the key challenges in reducing the mortality rate 
[1-3]. Early detection strategies of ovarian cancer lack 
required specificity and sensitivity, leading to diagnosis in 
advanced and more lethal stages in 75% of patients [4, 5]. 
For example, elevations of the biomarker Cancer Antigen 
125 (CA125) produce a relatively small true positive rate 
for early stage ovarian cancers, while the false positive 
rates are high for patients with benign tumors and non-
cancerous subjects [5, 6]. Major clinical trials -- Prostate, 
Lung, Colon, and Ovarian (PLCO) screening trials, and 
UK Collaborative Trial of Ovarian Cancer Screening 
(UKTOCS) – indicate that the current screening strategies 
do not contribute to the reduction of mortality rates [7, 

8]. Not surprisingly, the design and discovery of credible 
biomarker panels for detection of ovarian cancer has 
emerged as a formidable task.

To date, genome-scale comparative studies have 
considerably contributed to the discovery of new markers, 
therapeutic targets, cancer subtypes, and origins of ovarian 
cancer. [9-13]. The utilization of genomic scale analyses 
has also substantially benefited the characterization 
of malignant tumors [14, 15]. However, many of the 
genetic and pathological features associated with cancer 
also occur in benign tumors, including some of the 
hallmarks of cancer, such as evading growth suppressors 
and resisting cell death [14-16]. The molecular and 
pathological resemblance between malignant and non-
malignant tumors is a barrier in the design of cancer-
focused detection and treatment approaches [16]. Given 
these challenges, the identification of malignancy-specific 
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molecular signatures plays a critical role in the disease 
diagnosis and management.

This study focuses on identification of a molecular 
signature panel in High-Grade Serous Ovarian Cancer 
(HGSOC) which constitutes up to 80% of the cases of 
ovarian cancer [17]. We focus on the discovery of a small 
signature panel of mRNA markers that can differentiate 
between malignant and benign tumors. We hypothesize 
that comparative mRNA analysis of ovarian tissues 
would reveal critical signatures of malignancy and 
tumor progression in HGSOC. To probe our hypothesis, 
we investigated the gene expression profiles of distinct 
ovarian tissues by utilizing Laser Capture Microdissection 
(LCM) for high sample purity [18]. We analyzed the 
mRNA expression levels of normal ovarian epithelia 
(NE), benign ovarian tumors (BT), and HGSOC malignant 
tumors (MT). Analyses were performed to capture the 
differential expressions patterns, similar to Bowen et al. 
[9] who utilized a related design and identified ovarian 
surface epithelial markers in the cancer tumors. Our 
experimental design uniquely included BT samples 
which allowed for a more comprehensive molecular 
characterization of the different pathological states [16]. 
Our results identify a small signature mRNA panel of 
26 dysregulated genes that stratifies MT from both BT 
and NE. Validity of the identified panel was verified by 

using classification algorithms on two publicly available 
independent datasets (GSE9899 and GSE14407) [9, 12]. 
To determine the functional properties of the dysregulated 
genes in the active programs of HGSOC, we compared 
results from pathway enrichments and the mRNA 
dysregulation between MT and BT. 

RESULTS 

Differential mRNA expression analysis of normal 
epithelia versus malignant tumors:

Analysis of MT and NE samples (Table 1) detects 
216 significantly differentially expressed genes, 100 
of which are upregulated and 116 are downregulated 
(supplementary table). Table 2 details the 20 upregulated 
genes with greatest fold changes as well as the 20 
downregulated genes with greatest fold changes. The 
analysis detects dysregulation of genes previously 
associated with HGSOC – such as Paired box 8 (PAX8), 
Paternally expressed 3 (PEG3), Survivin (BIRC5), Meis 
homeobox 1 (MEIS1), and Homeobox C6 (HOXC6) - as 
well as unreported ones, such as Meiotic nuclear divisions 
1 (MND1), and Protein Kinase B, Gamma (AKT3), (Table 
2 and supplementary table) [19-21]. 

Figure 1: The expression patterns of AKT3, CENPF, MND1, and PTTG1 distinguish between normal ovarian epithelia, 
benign tumors, and malignant tumors. The expression data are obtained using microarray signals from LCM samples. The graph 
displays the differentially expressed genes with fold change magnitude more than 3. Further confirmation is displayed in Figure 2.
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Dysregulated mRNA expressions between benign 
and malignant tumors:

At the initial step of the analysis pipeline, 216 
dysregulated genes were found between MT and NE. The 
dysregulated genes were then tested in another specific 
comparison pipeline. Of the 216 dysregulated genes 26 
were detected as differentially expressed between MT and 
BT (Table 3). Among the 26 genes, AKT3, Human Securin 
encoding gene (PTTG1), Centromere protein F (CENPF), 
and MND1 exhibit fold change magnitudes of greater 
than 3 (Figure 1, Table 3). In MT vs. NE setting, AKT3 
is downregulated by 4.68 folds (p-value < 2.99 E-04), and 
PTTG1, CENPF, and MND1 are all upregulated by 28.8 
fold (p-value < 1.96 E-06), 5.9 fold (p-value < 2.1 E-04), 
and 3.9 fold (p-value < 1.29 E-04), respectively. In MT vs. 

BT setting, the mRNA dysregulation of these four genes 
(AKT3, PTTG1, CENPF, and MND1) yield a similar 
statistically significant pattern (Table 3). 

Cross-examination of expression of the set of four 
genes provides additional evidence for their dysregulation 
in HGSOC. Two independent and publicly available 
datasets by Tothill et al. (GSE9899) and Bowen et al. 
(GSE14407) (Figure 2) [9, 12] were utilized. In malignant 
tumors compared to Low Malignant Potential (LMP) 
tumors in GSE9899 dataset, AKT3 is downregulated 
by 2.1 folds (p-value < 0.0012); PTTG1, MND1, and 
CENPF are upregulated with 5.9 (p-value < 2.83 E-19), 
4.12 (p-value 9.9 E-11), and 3.17 folds (p-value < 1.67E-
08), respectively. The dysregulation patterns persist in 
LCM-collected normal epithelia and malignant epithelial 
ovarian tissues (from GSE14407). AKT3 is downregulated 
by 5.7 folds (p-value < 4.11 E-06); PTTG1, MND1, and 

Table 1: Sample information used in the study
Sample ID** Tissue Type Primary Pathology Stage*
I Benign tumor tissue Serous Cyst ---
II Benign tumor tissue Serous Cystadenofibroma ---
III Benign tumor tissue Serous Cyst ---
IV Benign tumor tissue Serous Cystadenofibroma ---
V Benign tumor tissue Serous Cyst ---
VI Benign tumor tissue Serous Cyst ---
VII Malignant tumor tissue Serous Carcinoma II
VIII Malignant tumor tissue Serous Carcinoma IIIc
IX Malignant tumor tissue Serous Carcinoma IIIc
X Malignant tumor tissue Serous Carcinoma IIIc
XI Malignant tumor tissue Serous Carcinoma NA^
XII Malignant tumor tissue Serous Carcinoma IIIc
XIII Malignant tumor tissue Serous Carcinoma IIIc
XIV Malignant tumor tissue Serous Carcinoma IIIc
XV Normal ovarian epithelia Non-tumorous ---
XVI Normal ovarian epithelia Malignant Serous Carcinoma II
XVII Normal ovarian epithelia Serous Cystadenofibroma ---
XVIII Normal ovarian epithelia Simple Serous Cyst ---
XIX Normal ovarian epithelia Metastatic Serous Carcinoma IIIc
XX Normal ovarian epithelia Metastatic Serous Carcinoma IIIc
XXI Normal ovarian epithelia Serous Cystadenofibroma ---
XXII Normal ovarian epithelia Metastatic Serous Carcinoma ---
XXIII Normal ovarian epithelia Metastatic Serous Carcinoma ---
XXIV Normal ovarian epithelia Metastatic Serous Carcinoma IIIc

* Indicates the stage of the patients at the time of sample collection according to The International Federation of Gynecology 
and Obstetrics. 

^ NA indicates unavailability of information regarding sample.  

** Data from this study is accessible through NCBI’s Gene Expression Omnibus through dataset GSE 29156.



Genes & Cancer787www.impactjournals.com/Genes&Cancer

CENPF are upregulated with 4.2 (p-value < 3.52 E-05), 
1.86 (p-value < 0.008), and 5.78 folds (p-value < 1.87 
E-09), respectively. Although the experimental design and 
samples are different in each study, the displayed results 
validate the findings. The test datasets contain control 
samples from normal and benign ovarian tissues, and 
provide a suitable sample composition for validating our 
findings.

Enrichment analysis results of the 26 differentially 

expressed genes between MT and BT detects the terms 
cell cycle, regulation of mitotic cell cycle phase transition, 
regulation of cell cycle phase transition, E2F cell cycle 
related transcription factors, and G2/M checkpoint in 
hallmarks. Common biological knowledge assumes that 
the malignant cells exhibit attributes indicating invasion 
and rapid cell growth compared to benign cells. PTTG1, 
CENPF, BIRC5, Enhancer of zeste homolog 2 (EZH2), 
Rac GTPase activating protein 1 (RACGAP1), and cell 

Table 2:Top 20 downregulated and upregulated genes in MT compared to NE.

Downregulated Genes Upregulated Genes

Gene Symbol - Description Ref Seq P-value 
^ FC^^ Gene Symbol - Description Ref Seq   P-value^ FC^^

*DCN – decorin NM_133506 2.29E-05 -13.8 PTTG1 - pituitary tumor-trans-
forming 1 ENST00000352433 1.96E-06 28.8

C7 - complement component 7 NM_000587 2.78E-04 -10.0 MAL2 - mal, T-cell differentia-
tion protein 2 NM_052886 4.12E-08 26.5

EFEMP1 - EGF containing 
fibulin-like extracellular NM_001039348 9.18E-07 -9.09 CP - ceruloplasmin NM_000096 6.64E-06 17.4

*THBS1-thrombospondin 1 ENST00000260356 9.84E-05 -8.93 ESRP1 -  epithelial splicing 
regulatory protein 1 NM_017697 3.47E-06 14.6

PEG3 - paternally expressed 3 NM_006210 4.34E-04 -8.11 LPAR3 - lysophosphatidic acid 
receptor 3 NM_012152 6.50E-07 12.2

MGP - matrix Gla protein NM_001190839 3.94E-05 -5.68 CD24 - CD24 molecule NM_013230 2.27E-06 10.3

CDH11- cadherin 11 ENST00000268603 2.24E-04 -5.67 VAMP8 – vesicle associated 
membrane protein 8 NM_003761 3.41E-05 9.8

*AKT3 - protein kinase B, 
gamma NM_005465 2.99E-04 -4.68 MECOM -  MDS1 and EVI1 

complex locus NM_001105077 2.61E-06 8.69

ANTXR1 – anthrax toxin 
receptor NM_032208 7.10E-06 -4.64 RPL39L - ribosomal protein 

L39-like ENST00000296277 0.000168 7.11

OLFML1 - olfactomedin-like 1 ENST00000530135 4.79E-06 -4.39 WFDC2 - WAP four-disulfide 
core domain 2 ENST00000342873 4.99E-06 7.11

ANTXR2 – anthrax toxin 
receptor 2 ENST00000403729 1.48E-05 -4.09 SLC38A1 - solute carrier family 

38, member 1 NM_030674 2.13E-05 6.41

CALD1- caldesmon 1 NM_033138 7.66E-06 -4.08 SPINT2 -  serine peptidase 
inhibitor, Kunitz type, 2 NM_021102 3.68E-06 6.36

NEXN - nexilin (F actin bind-
ing protein) NM_144573 3.55E-04 -4.07 CLDN4 -  claudin 4 ENST00000435050 8.17E-09 6.13

PTGIS - prostaglandin I2 (pros-
tacyclin) synthase NM_000961 6.21E-04 -3.88 CENPF- centromere protein F NM_016343 0.000209 5.90

PLS3 - plastin 3 NM_005032 6.44E-04 -3.85 DPY30 - dpy-30 homolog NM_032574 0.000260 5.79

RHOBTB3 - Rho-related BTB 
domain containing 3 NM_014899 4.78E-04 -3.76 XPR1 - xenotropic and poly-

tropic retrovirus NM_004736 1.61E-05 5.76

SDC2 - syndecan 2 NM_002998 1.23E-04 -3.68 EPCAM - epithelial cell adhe-
sion molecule NM_002354 3.34E-05 5.65

CCDC80 - coiled-coil domain 
containing 80 ENST00000206423 1.16E-04 -3.61 BIRC5 - Survivin AF077350 0.000429 5.61

SULF2 - sulfatase 2 ENST00000359930 1.42E-04 -3.61 SCNN1A - sodium channel, 
non-voltage-gated 1 NM_001038 7.50E-05 5.48

TRPC1 - transient receptor 
potential cation channel NM_001251845 3.53E-05 -3.60 DSP -  desmoplakin ENST00000379802 0.000238 5.41

COL14A1 - ollagen, type XIV, 
alpha 1 NM_021110 3.11E-05 -3.55 MEIS1 - Meis homeobox 1 NM_002398 5.20E-05 5.20

^ P-values are calculated based on ANOVA method and all of the p-value were subjected to multiple hypothesis testing criteria 
(FDR<0.05). 

^^ Fold Change of Malignant versus Normal

* Genes are also present in the dysregulation network displayed in Figure 6.
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division cycle 7 homolog (CDC7) are associated with 
G2M checkpoint (p-value < 3.16 E-6). Similarly, BIRC5, 
EZH2, RACGAP1, PTTG1, and protein kinase, DNA-
activated, catalytic polypeptide (PRKDC) are associated 
with E2F transcription factor cell cycle-related targets 
(p-value < 1.06 E-4). 

A panel of 26 dysregulated genes distinguishes 
HGSOC tumors from normal and benign ovarian 
samples: 

The two datasets (GSE14407 and GSE9899) were 
used to investigate the utility of the 26 dysregulated 
genes (Table 3) as a mRNA panel to stratify malignant 

Table 3: List of the genes differentially expressed between MT compared to both BT and NE.

Upregulated Genes Downregulated Genes

Gene Symbol - Description Ref Seq P-value 
^ FC^^ Gene Symbol - Description Ref Seq P-val-

ue^ FC^^

CDC7 - cell division cycle 7 
homolog NM_001134420 6.58E-05 2.64

BNIP3L- BCL2/ adenovirus 
E1B 19kDa interacting protein 
3-like

ENST00000380629 0.00250 -2.18

PTTG1 - pituitary tumor-
transforming 1 ENST00000352433 9.69E-05 16.9 DKK3 - dickkopf 3 homolog AF400439 0.00320 -1.52

FDPS - farnesyl diphosphate 
synthase NM_001135821 9.90E-05 2.51 *AKT3 – Protein Kinase B, 

gamma NM_005465 0.00565 -3.50

*RAB11FIP4 - RAB11 family 
interacting protein 4 NM_032932 0.000201 1.42

PITRM1 - pitrilysin metallopep-
tidase 1 NM_001242307 0.000391 2.36

NAA40 - N(alpha)-acetyltrans-
ferase 40 ENST00000377793 0.000585 1.74

*BCL11A - B-cell CLL/lym-
phoma 11A NM_022893 0.000656 1.72

PUS7 - pseudouridylate syn-
thase 7 homolog ENST00000356362 0.000889 1.84

BIRC5 - Survivin AF077350 0.000925 1.93

TFB2M - transcription factor 
B2, mitochondrial ENST00000366514 0.00110 2.23

PCGF1 - polycomb group ring 
finger 1 ENST00000233630 0.00136 2.05

EZH2 - Enhancer of zeste 
homolog 2 NM_001203247 0.00173 2.53

CENPF – Centromere protein 
F NM_016343 0.00181 5.01

RACGAP1- Rac GTPase acti-
vating protein 1 NM_013277 0.00185 2.69

MND1 - Meiotic nuclear divi-
sions 1 NR_045605 0.0020 3.20

UBAP2L - ubiquitin associated 
protein 2-like NM_014847 0.0021 2.58

HJURP - Holliday junction 
recognition protein NM_018410 0.00307 2.01

LRRTM1 - LRRN4 C-terminal 
like ENST00000433224 0.00385 1.70

MRPS18A-mitochondrial ribo-
somal protein S18A NM_018135 0.00394 2.29

PRKDC - protein kinase, DNA-
activated, catalytic polypeptide NM_006904 0.00447 2.24

POGK -  pogo transposable ele-
ment with KRAB domain ENST00000367875 0.00479 1.74

TMEM206 -transmembrane 
protein 206 ENST00000261455 0.00527 1.40

CDK16 -  cyclin-dependent 
kinase 16 NM_006201 0.00556 2.26

* Genes are also present in the dysregulation network displayed in Figure 6.
  Bold indicates fold change more than 3;  FC^^ indicates fold change of Malignant versus Benign
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samples from benign and normal samples. Unsupervised 
hierarchical clustering of the mRNA panel on GSE9899 
shows that LMP samples are clustered close together and 
separated from malignant samples (Figure 3A). Using a 
similar procedure on GSE14407 shows a clear distinction 
between the normal epithelial samples and malignant 
samples (Figure 3B). 

Principal Component Analysis (PCA), followed by 
k-means clustering, was used to further assess the utility 
of the mRNA panel. PCA of GSE14407 samples shows 
that the use of the 26-genes mRNA panel is sufficient to 

stratify normal epithelial tissues from HGSOC (Table 4). 
The unsupervised k-means clustering separates the tissue 
types into two distinct groups with no overlap between 
their 95% confidence ellipses, when only using the two 
first principal components (Figure 4). In contrast, a similar 
procedure fails to distinguish between the tissue types 
when the mRNA signature panel is not used for PCA; and 
finds an overlap between the 95% confidence ellipses. 
When using the mRNA panel, the first two principal 
components explain more than 59.6% of the variance in 
the data, up from 48.9% when using all the genes for PCA. 

Figure 2: Evaluation of AKT3, CENPF, PTTG1, and MND1 differential expression using two independent datasets. 
A) Box plots are based on Tothill’s data using 264 microarray samples of ovarian tumors with low potential malignant (LMP) samples and 
cancer tumors [12]. The lighter-shade boxplots represent the mRNA expression levels in LMP. Darker-shade boxplots represent the mRNA 
expression levels in malignant tumors.  B) Box plots are based on Bowen’s data with 12 LCM ovarian epithelia samples and 12 cancer 
tissues [9]. The lighter-shade boxplots represent the mRNA expression levels in normal ovarian epithelial tissues and the darker-shade 
boxplots represent mRNA expression levels in cancer tumors. Additional information on microarray analysis on both datasets can be found 
in supplementary material. 
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PCA followed by k-means clustering on GSE9899 
dataset shows that using the dysregulated mRNA panel 
produces a stronger classification compared to when 
using all genes (Figure 5). k-means clustering classifies 
LMP samples into the same group and associates a larger 
fraction of the malignant tumors to another group when 
using the 26-genes mRNA panel as a base. In contrast, 

using all genes’ transcripts fails to discriminate between 
the two groups and distributes the tissue types in both 
of the clusters (Table 4). Also, using the mRNA panel 
increases the variance in data explained by PCA. The first 
two principal components explain 35.9% of the variance 
when using the 26-panel, up from 11.1% when using no 
panel (Figure 5). 

Figure 3: Hierarchical clustering of the 26-genes signature panel and the independent datasets. A) When applied to 
GSE9899 dataset by Tothill et al., LMP samples are clustered closely. B) Hierarchical clustering clearly distinguishes between normal 
epithelia and cancer tissues. Further assessment of the gene panel using k-means algorithm is displayed in Figures 4 and 5.
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Pathways and Interactions analysis:

Pathway enrichment analysis using the 26-genes 
signature panel (Table 3) identified 10 KEGG annotated 
human pathways. The results show dysregulation of 
critical cellular mechanisms and signaling pathways. 
The dysregulated pathways include endocytosis, focal 
adhesion, MAPK signaling, PI3K-AKT signaling, and 
RAS signaling (Table 5). P-values of enrichment analysis 
are calculated using chi-squared test. The analysis was 
carried through Partek Software Package and KEGG 
pathway database. The overlaps of the identified pathways 
are summarized as a network of dysregulation, with 
some additional interactions included from STRING 

database. Figure 6 displays the network and illustrates 
how each module participates in the enriched pathways 
and biological functions. Connections of elements 
are either direct molecular interactions or mediated 
interactions. Some of the dysregulated genes are shared 
between multiple pathways. For instance, Caveolins 
(CAV1, CAV2) are shared between endocytosis and focal 
adhesion. AKT3, CAV1, CAV2, Platelet Derived Growth 
Factor Receptor A (PDGFRA), and PDGFRB are shared 
between four pathways. Those include focal adhesion 
MAPK, PI3K-AKT, and RAS signaling (Figure 6). 

This analysis demonstrates that AKT3 and PDGFRA 
appear as the central elements in terms of the position in 
the network, overlaps between the dysregulated pathways, 
and the fold change magnitude. The results show mRNA 

Figure 4: Unsupervised classification of HGSOC and normal epithelial samples. Use of the 26-gene dysregulation panel (Table 
3) improves the unsupervised classification of an independent sample set from GSE14407 data. The plot shows the projection of the samples 
into the first two principal components. A) Two clusters distinctly represent the two tissue types and the groups are completely separated when 
only the 26-gene dysregulation panel is used. Cluster 1 represents 100% normal samples and cluster 2 represents 100% malignant samples.  
B) The use of all genes for PCA and k-means cannot stratify between the samples, and the clusters represent mixed tissue types. In particular, 
each cluster is composed of 50% malignant and 50% normal samples (Table 4). Overlap of the confidence ellipses indicates that using 
PCA is not sufficient to distinguish between the two tissue types. The data-point shapes indicate the cluster memberships designated using 
k-means algorithm for the unsupervised clustering.  The ellipses represent the 2-dimentional 95% confidence interval for each tissue type. 
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downregulation of PDGFRA in MT. Lower mRNA 
expression of AKT3 are observable in MT compared to 
BT and NE (Table 2 and Table 3). AKT3 is involved in 
8 of the 10 identified pathways – Dopaminergic synapse, 
Rap1 signaling, Focal adhesion, MAPK, Melanoma, 
Proteoglycans in cancer, PI3K-AKT, and Ras signaling 
(Table 5). PDGFRA is associated with 7 of the pathways 
(supplementary material). Two of the dysregulated genes 
in MT compared to BT, AKT3 and BCL11, are also 
involved in the extracted network.

DISCUSSION

We conducted a comparative analysis of mRNA 
expression using laser capture micro-dissected ovarian 
tissues from NE, BT, and MT. Differential expression 
analysis identifies dysregulated genes that stratify MT 
from both NE and BT (Tables 2 and 3). The set of four 
genes AKT3, PTTG1, CENPF, and MND1 are the most 
significant, based on fold changes, among the dysregulated 
genes in MT compared to BT and NE (Figure 1). To verify 
this observation, we utilized two independent publicly 
available datasets (GSE14407 and GSE9899) (Figure 2). 
Cross-examination results show statistically significant 

Figure 5: Unsupervised classification of HGSOC and LMP samples. The use of the 26-gene dysregulation panel (Table 3) improves 
the classification of an independent sample set from GSE9899 data. The samples are projected into the first two principal components.  
A) By using the 26-gene signature panel, unsupervised clustering stratifies LMP samples into the same group while the other group 
consists only of malignant samples (Table 4). In particular, LMP samples are allocated only to the cluster 2. Also, the clusters 1 and 2 
represent approximately 72% and 28% of the malignant samples, respectively. In this case, the two principal components explain 35.9% 
of the variance in the data B) The use of all genes for PCA and k-means cannot stratify between the samples, and the clusters represents 
mixed tissue types as the confidence ellipsoids majorly overlap (Table 4). In particular, LMP samples are allocated to both clusters. Also, 
the clusters 1 and 2 represent approximately 38% and 62% of the malignant samples, respectively. In this case, the amount of data variance 
explained by the first two principal components drops to 11.1% . Data-point shapes indicate the cluster memberships designated using 
k-means algorithm.  The ellipses represent the 2-dimentional 95% confidence interval for each tissue type. 
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evidence of consistent dysregulations of four genes 
(Figure 2). The distinguishing expression patterns of these 
genes, between the different pathological states, suggest 
potential roles as indicators of HGSOC malignancy. 
Prior studies support the roles of some of these genes in 
ovarian cancer. PTTG1 is a therapeutic target in ovarian 
cancer and is associated with functions including DNA 
repair, angiogenesis, and cell development [22, 23]. 
CENPF expression has been associated with cell cycle 
progression, and malignancy through FOXM1 [20, 24]. 
To our knowledge, AKT3 downregulation and MND1 
upregulation have not been previously reported in human 
HGSOC. 

While dysregulations of the set of fours genes are 
significant between MT vs BT and NE, there are also 
some detectable dysregulation between BT and NE 
(Figures 1 and 2B). As the dysregulations indicate the 
tumor presence, their intensity can determine whether 
the tumors are malignant or not. Moderate dysregulation 
of BT as compared to NE is supported by the fact that 
benign tumors exhibit functional similarities with 
malignant tumors, including evading growth suppression 
and resisting cell death [14, 16]. However, malignant 
tumors are expected to exhibit more extreme dysfunctions 
as well as other unique characteristics such as metastasis 
[14]. In our study, enrichment analysis results of the 26 

dysregulated signature gene panel (MT vs BT and NE) 
identified G2M checkpoint and E2F transcription factor 
cell cycle-related targets, which are related with P53 
activities [25, 26]. These results are supported by the 
reports of HGSOC displaying P53 mutations in more than 
70% of cases [1, 27], compared to dramatically lower rates 
in low malignant potential tumors [28]. 

The classification results display the utility of the 
26-gene signature panel to distinguish between MT and 
both BT and NE when the signals are combined (Figure 
4 and 5, Table 4). PCA combines mRNA signals and 
represent the microarray samples in a lower dimensional 
space, which allows for an interpretable feature selection. 
k-means clustering shows that the 26-genes panel stratify 
the PCA-projected samples, based on their respective 
tissue types (Figures 4A and 5A). In a similar procedure, 
without filtering the input mRNA signals, the classification 
algorithm loses its stratification power (Table 4). This 
observation indicates that the comparative analysis of 
LCM samples generates a focused and meaningful outline 
of the genetic dysregulations necessary for identification 
of HGSOC. As HGSOC is known to encompass a diverse 
genetic profile, the results show how the use of mRNA 
panel boosts the classification quality and addresses the 
issue of genetic heterogeneity. This also indicates that 
the signature mRNA panel can contribute to the design 

Figure 6: Overlap of enriched pathways from MT vs. NE differential expression. Multiple pathways either directly or indirectly 
regulate AKT3, which is also dysregulated in BT as compared to MT (Table 3). In addition, the receptors and growth factor affect a majority 
of enriched pathways. Orange nodes represent downregulated transcripts, and the green nodes represent upregulated transcripts. STRING-
DB dataset was used to include additional Protein-Protein Interactions (supplementary material).



Genes & Cancer794www.impactjournals.com/Genes&Cancer

of future collective biomarkers as alternative to single-
molecule biomarkers. 

Pathway enrichment analysis identifies functional 
associations of the dysregulated genes, and shows major 
overlaps among the ten enriched KEGG pathways 
(Table 5, Figure 6). In particular, AKT3 appears in 8 and 
PDGFRA appears in 7 of the 10 pathways. PDGFRA is 
connected to AKT3 activity and regulations in participates 
in cancer related mechanisms [29]. PDGFRA alteration is 
associated with ovarian cancer but not frequently mutated 
[30, 31]. This suggests that the interconnections between 
AKT3 and PDGFRA are potential for future studies. The 
extracted network of pathway overlaps shows associations 
of HGSOC dysregulation with several critical cancer 
mechanisms, including cell survival, cell motility, and 
tumor growth. Additional evidence from the literature 
indicates that endocytosis and focal adhesion components 
of this network are involved in Epithelial-Mesenchymal 
Transition (EMT), and cell motility [32-34].

Based on the dysregulation patterns and functional 
associations, our results indicate that AKT3 is a potential 
central marker of tumor presence and malignancy. AKT3 
is one of the 3 major protein kinase B isoforms, and 
exhibits high levels of homology to the other members 
of the AKT family (AKT1 and AKT2), particularly in the 
highly conserved phosphorylation sites [35]. AKTs are 
frequently dysregulated in ovarian cancer, and participate 
in various cancer associated activities, including 
proliferation, migration, survival, and apoptosis [35-41]. 
While AKT3 is relatively understudied compared to the 
other members of AKT family, its downregulation is to 
some extent contrary to the early literature [39, 42, 43]. 
Earlier studies reported upregulation of AKT molecules 
in breast, prostate, and ovarian cancers [35, 39, 42, 43]. 
However, our results show that AKT3 is downregulated, 
which is also supported by more recent studies. Phung et 
al. showed that AKT3 inhibits growth in vascular tumors 
and displays declined expression [40]. Grottke et al. also 
showed that AKT3 downregulation results in elevated 
migration and metastasis in breast cancer [44]. Based on 
validation in independent public datasets (GSE9899 and 
GSE14407), we conclude that AKT3 downregulation in 
HGSOC implies opposing patterns compared to reports of 
AKT1 and AKT2 [20]. In addition, we identify AKT3 as a 
potential central marker of tumor malignancy, as its levels 
in BT are slightly lower than in NE, and significantly 

further decreased in MT compared to BT (Figure 2). 
Nakatani et al. reported that AKT3 enzyme activity levels 
correlate with its upregulated mRNA levels in breast 
cancer and prostate cancer [39]. This finding, along with 
our results, suggests that AKT3 mRNA downregulation 
could reduce its protein phosphorylation activity and 
potentially can be used to establish a strong HGSOC 
biomarker. In addition, AKT3 downregulations might 
contribute to tumor growth, metastasis, and cell migration 
in HGSOC [40, 44]. We conclude that further study of 
AKT3 activities in ovarian cancer will lead to new insights 
of the signaling activities, especially those related to the 
PI3K-AKT pathway. 

The results presented in this article display how the 
comparative investigation of mRNAs provides signatures 
for identifying HGSOC relative to both normal epithelia 
and benign tumors. Coupled with pathway analysis, we 
determine functional dysregulations associated with these 
signatures. The activities of the dysregulated genes and 
their causal relationships need to be further investigated 
using other molecular aspects such as protein assays, 
DNA methylation, and phosphorylation. The significant 
changes in mRNA levels of the 26-gene signature panel 
indicate their potential as biomarkers for HGSOC, due to 
their specificity to malignant tissues. We showed how the 
dysregulated genes could be used as molecular signatures 
to stratify HGSOC (Figure 2). These molecular signatures 
can potentially be used to enhance early detection for 
HGSOC and ultimately contribute to managing mortality 
rates.

MATERIALS AND METHODS

Our initial in-house data set consists of 24 cell 
specific samples processed through LCM, 10 normal 
epithelial tissues (NE), 8 malignant tumor tissues (MT), 
and 6 benign tumor tissues (BT) (Table 1). In addition, we 
utilized two related and independently collected datasets 
for verification of results in larger datasets, GSE14407 
and GSE9899. GSE14407 consists of 12 normal ovarian 
epithelial tissues and 12 ovarian malignant tumor tissues. 
GSE9899 includes 18 low malignant potential samples 
and 246 HGSOC samples. Our in-house data is publicly 
available through NCBI Gene Expression Omnibus 
using reference code GSE 29156. Non-tumorous ovarian 
epithelial tissues, and tumor tissues from benign and 

Table 4: Unsupervised k-means clustering of the two independent datasets, GSE9899 and GSE14407, using a 
2-dimensional PCA projection of the dysregulated 26-gene panel.

PCA Dysregulated Genes PCA All Genes
Cluster 1 Cluster 2 Cluster 1 Cluster 2

Bowen et al.
GSE14407

Normal 12 0 4 8

Cancer 0 12 4 8

Tothill et al.
GSE9899

LMP 0 18 8 10
Cancer 179 67 93 153
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malignant serous carcinoma samples were analyzed with 
GeneChip Affymetrix Human Exon 1.0 ST arrays. Gene 
expressions were subsequently subjected to multiple 
statistical procedures for production of accurate and 
quality results. 

Tissue collection

Ovarian specimens were obtained, under IRB 
approved guidelines at Carolinas Medical Center (CMC), 
during surgery for ovarian cancer or other gynecologic 
conditions. The samples were classified as normal ovary, 
benign tumors, or malignant tumors. Malignant tissues 
were from patients with serous carcinoma at stage II or III, 
grade 3 according to pathological diagnosis assigned by 
pathologists at CMC using the World Health Organization 
criteria for ovarian tumors (Table 1). Tissue samples were 
placed in a standard sized cryomold (Sakura Finetek 
USA, Inc., Torrance, CA), covered with Optimal Cutting 
Temperature (OCT) compound (Sakura Finetek USA, Inc., 
Torrance, CA), frozen and stored at -80°C [19].

Laser Capture Microdissection (LCM)

OCT embedded samples were serially sectioned into 
8μm sections and prepared for LCM using the HistoGene 
LCM Frozen Section Staining kit (Applied Biosystems, 
Life Technologies, Co., Carlsbad, CA) according to the 
manufacturer’s protocols. The stained sections were 
immediately micro-dissected by an Arcturus® PixCell® 
IIe LCM (Molecular Devices, LLC, Sunnyvale, CA). 
Normal epithelium and tumor cells were separately 
collected from appropriate sections. RNA quality was 
determined using the residual slide materials [19]. 

cDNA Synthesis and Amplification

Single primer isothermal amplified (SPIA) 
complimentary DNA (cDNA) was generated and amplified 
using the Whole Transcriptome WT-Ovation Pico RNA 
Amplification System Kit (NuGEN Technologies Inc., 
San Carlos, CA), and was used for microarray sample 
preparation.

Exon Microarray and Sample Hybridization

3 μg of SPIA amplified cDNA was used to do the 
sense–strand cDNA (ST-cDNA) conversion using the WT-
Ovation Exon Module (NuGEN Technologies Inc., San 
Carlos, CA). 5 μg ST-cDNA was fragmented and labeled 
with FL-Ovation cDNA Biotin Module V2 kit (NuGEN 
Technologies Inc., San Carlos, CA) and hybridized using 
Affymetrix Human Exon 1.0 ST arrays (Affymetrix, Inc., 
Santa Clara, CA). Microarray hybridization and scanning 
was performed using GeneChip Hybridization Oven 640, 
GeneChip Fluidics Station 450, and GeneChip Scanner 
3000 7G with Autoloader respectively (Affymetrix, Inc., 
Santa Clara, CA) [19]. 

Statistical Analysis

The samples were analyzed using Partek® Genomics 
Suite® (Partek Inc., St. Louis, MO). Microarray transcripts 
were normalized using GCRMA method. Exons were 
summarized to genes expressions using winsorized mean 
(below 10.0% and above 90.0%) and Tukey’s biweight 
one-step. Differential expression p-values were calculated 
using Analysis of Variance (ANOVA). Unannotated genes 
were removed and transcripts passed as significant if their 
False Discovery Rate (FDR) criteria was less than 0.05 
(FDR<0.05) (Table 2). 

Differentially expressed genes between MT and NE 

Table 5: Pathway Enrichment Analysis of differentially expressed genes comparing NE and MT
Pathway Name P-value Percentage of pathway genes 

dysregulated 
Number of dysregulated genes 
in pathway

Proteoglycans in cancer 4.13E-07 5.38 12

Focal adhesion 1.98E-05 4.93 10

Dopaminergic synapse 9.97E-05 5.47 7

PI3K-Akt signaling pathway 0.00013 3.83 13

Rap1 signaling pathway 0.00034 4.32 9

MAPK signaling pathway 0.00065 3.91 10

Ras signaling pathway 0.00084 4.04 9

Amphetamine addiction 0.0014 6.06 4

Vitamin B6 metabolism 0.0016 16.7 1

Endocytosis 0.0018 4.00 8

Melanoma 0.0024 5.71 4
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were analyzed to determine differentially expressed genes 
between BT and MT (FDR < 0.05) (Table 3).

Validation and confirmation of results

We used two publicly available datasets to verify 
the results. First, we utilized an experimentally similar 
datasets from Bowen and colleagues which includes 12 
normal ovarian epithelial tissues and 12 ovarian tumor 
tissues each separated using LCM [9]. The samples were 
obtained through NCBI GEO portal from GSE14407 
dataset. Second, we used whole tissue samples by Tothill 
and colleagues (GSE9899); with samples limited to Low 
Malignant Potential (LMP) and ovarian serous carcinoma 
malignant tumors [12]. The samples of GSE9899 that 
we used included 18 LMBs and 246 malignant tumors. 
We used hierarchical clustering algorithm using average 
linkage and Euclidian distance to cluster the samples from 
GSE14407 and GSE9899. The hierarchical clustering 
procedure was done using Partek® Genomics Suite®. We 
used Principal Component Analysis (PCA) to evaluate 
the utility of dysregulated genes between MT and BT 
compared to all gene transcripts in distinguishing between 
the sample types (Figures 4 and 5). For each test dataset, 
we separately applied PCA to all annotated genes and the 
panel of dysregulated genes. PCA was calculated based 
on the covariance matrix of gene expressions and the 
data points were shifted to the mean of zero. For further 
evaluation, we used k-means algorithm for unsupervised 
clustering of samples into two groups after applying PCA. 
For each dataset, the results of k-means were calculated 
based on whether PCA was done on the dysregulated 
genes between MT and BT or not. PCA results were 
projected on the first two principle components. Cross 
validation of results were done using R statistical analysis 
package [45]. Moreover, the statistical significance of the 
dysregulated gene between MT and BT with fold change 
magnitude more than 3 were evaluated in the test datasets 
(Figure 2). 

Enrichment Analysis

Differentially expressed genes in NE vs MT 
were further analyzed to investigate the underlying 
functional dysregulations. Overrepresentation analysis 
of KEGG annotated pathways was performed using 
Partek® Genomics Suite®. Enrichment score of each 
pathway was calculated based on Chi-squared test of 
differentially expressed gene in pathway, relative to the 
total number of the annotated genes of pathway (Table 5). 
P-values of Chi-squared test were subjected to multiple 
hypothesis testing criteria (FDR < 0.05). Additional 
interactions were included by manual examination of 
the Protein-Protein Interactions (PPI) network of Homo 
Sapiens. PPIs were obtained using STRING-DB online 

database [46]. The interactions were included if they 
had medium or higher confidence based on data input 
of STRING-DB criteria [46]. Gene Ontology (GO) 
enrichments and related annotated enrichments were 
investigated based on MSigDB database by Broad 
Institute [47]. We used the same statistical criteria (FDR < 
0.05) as the cut off for reporting enriched terms. 

Abbreviations

BT: Benign Tumors, NE: Normal Epithelia, MT: 
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Analysis.
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