
HIERARCHICALLY STRUCTURED RECOMMENDER SYSTEM FOR
IMPROVING NPS

by

Jieyan Kuang

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Computing and Information Systems

Charlotte

2016

Approved by:

Dr. Zbigniew W. Ras

Dr. Wlodek Zadrozny

Dr. Jing Yang

Dr. Angelina Tzacheva

Dr. Joseph Whitmeyer

ii

c©2016
Jieyan Kuang

ALL RIGHTS RESERVED

iii

ABSTRACT

JIEYAN KUANG. Hierarchically structured recommender system for improving
NPS. (Under the direction of DR. ZBIGNIEW W. RAS)

Net Promoter System (NPS) is well known as an evaluation measure of the growth

engine of big companies in the business area. The ultimate goal of my research is

to build an action rules and meta-actions based recommender system for improving

NPS scores of 34 companies (clients) dealing with similar businesses in the US and

Canada. With the given original dataset, data preprocessing has been completed

to result in better data representation and quality. The recommender system is

built on top of a hierarchical clustering dendrogram which is generated by applying

agglomerative clustering algorithm to a matrix of distance mixing semantic similarity

and geographical distance by assigning weighted factors. To maximally expand the

dataset of a single client by merging it with datasets of other clients under certain

conditions, Hierarchically Agglomerative Method for Improving NPS (HAMIS) has

been developed and applied to all clients respectively.

To extract meta-actions from customers’ comments for triggering generated action

rules and achieving desirable effect, a new text mining based strategy has been de-

signed to accomplish tasks involving sentiment analysis, text summarization, feature

identification and most importantly meta-action generation. Compared to other rel-

evant works, our method has been proven to be more flexible and has achieved more

satisfying results. Considering the fact that commonness, differential benefit and

applicability exist when executing groups of meta-actions, a method for searching

iv

best groups of meta-actions has been designed to boost the performance of applying

meta-actions, which also improves the applicability and practicability of our system.

v

ACKNOWLEDGMENTS

There are a few people whom I would like to thank because I would not get this

far without their help.

Firstly, I would like to thank my advisor, Prof. Zbigniew W. Ras, who has the

greatest expertise and personality. I am not only grateful for his generous and patient

guidance in my research area, but also admire his exceptional personal attitude to

science, work and life. I learned a lot from him, his persistence and rigor as an

advisor, as well as kindness and solicitude as an elder. I will keep learning from him,

in professionality and personality, since he is the model that I should always look up

to.

I would like to thank all the other members in my dissertation committee, they are

Prof. Wlodek Zadrozny, Prof. Jing Yang, Prof. Angelina Tzacheva and Prof. Joseph

Whitmeyer. Without their support and help, I couldn’t defend my dissertation so

soon.

Also, thanks to my great project team members Prof. Whitmeyer and Hualiu Yang,

who provided helpful informations from the other angle of research during the whole

time and useful advices for my own work.

I thank my working partners Albert Daniel and Doug Fowler who sponsored my

research. I appreciate their trust in me and that they gave me this great opportunity

to work on industry project during my Ph.D study. They provided great assistances

to my work and also continuously inspired me from their angle of practical usefulness

of my research. I couldn’t get this work done without their help.

vi

Last but not the least, I want to express my appreciation to my family and my

friends. I thank my family and Ran for supporting me all the way, and my friends

who help me so much that words would fail to convey my thanks.

vii

TABLE OF CONTENTS

LIST OF FIGURES x

LIST OF TABLES xii

CHAPTER 1: INTRODUCTION 1

1.1. Introduction of the Project 1

1.2. Introduction of Recommender Systems 6

CHAPTER 2: DATA PREPROCESSING 10

2.1. Data Transformation 11

2.2. Feature Construction 13

2.3. Correlation-Based Feature Selection 14

CHAPTER 3: INITIAL CLASSIFICATION 19

3.1. Selection of Best Classification Algorithm 19

3.2. Improvement in Classification 26

3.2.1. Construction of Hierarchical Features 26

3.2.2. Normalization and Discretization 28

3.2.3. Addition of New Features 31

CHAPTER 4: INITIAL ACTION RULE MINING 37

4.1. Introduction of Action Rules 37

4.2. Analysis of Initial Action Rule Mining 40

CHAPTER 5: CLUSTERING CLIENTS SEMANTICALLY 50

5.1. Analysis of Individual Clients 50

5.2. Introduction of Semantic Similarity 53

viii

5.3. Construction of Semantic Similarity-Based Hierarchical
Dendrogram

55

CHAPTER 6: HIERARCHICAL AGGLOMERATIVE METHOD FOR
IMPROVING NPS

58

6.1. Background 58

6.2. Presentation of HAMIS 60

6.3. Experiments on HAMIS with Semantic Similarity-Based
Dendrogram

63

CHAPTER 7: FURTHER EXPANSION WITH GEOGRAPHICAL
DISTANCE

68

7.1. Definition of Geographical Distance Between Clients 71

7.2. Construction of Geographical Distance-Based Hierarchical
Dendrogram

75

7.3. Experiments on HAMIS with Geographical Distance-Based Den-
drogram

76

CHAPTER 8: MIXTURE DISTANCE-BASED HIERARCHICAL
CLUSTERING

80

CHAPTER 9: EXTRACTION OF META-ACTIONS 83

9.1. Introduction of Meta-Actions 84

9.2. The Process of Generating Meta-Actions 86

9.2.1. Identification of Opinion Sentences and the Orienta-
tion with Localization

87

9.2.2. Summarization of Opinion Sentence based on Depen-
dency Relationships

89

9.2.3. Identification of Feature Words in Opinion
Summarizations

91

9.2.4. Aggregation of Opinion Summarizations 92

ix

9.2.5. Generation of Personalized Meta-Actions 94

9.3. Experiments 95

CHAPTER 10: IN SEARCH FOR BEST META-ACTIONS TO BOOST
BUSINESS REVENUE

99

10.1.Background 100

10.2.Advanced Matrix: Transformation of Influence Matrix 102

10.3.Presentation of the Strategy 103

10.4.Experiments 108

CHAPTER 11: CONCLUSION 113

11.1.Initial Work for Data Analysis 114

11.2.Hierarchical Agglomerative Method for Improving NPS 115

11.3.Extraction of Meta-Actions and Performance Boost 115

11.4.Future Work 116

REFERENCES 118

x

LIST OF FIGURES

FIGURE 1: Categorization of Net Promoter Score (NPS) 2

FIGURE 2: Flexible query answering system 6

FIGURE 3: Feature correlations between PromoterStatus and other fea-
tures calculated from Equation 1.

17

FIGURE 4: Comparison of classification performances by J48 and
Random Forest

21

FIGURE 5: Comparison of performances by different classification
algorithms

25

FIGURE 6: Comparison of classification with day, month or season
features

27

FIGURE 7: Comparison of classification without/with normalization 29

FIGURE 8: Comparison of classification without/with discretization 31

FIGURE 9: Process of adding new features into dataset 34

FIGURE 10: Comparison of classification results from samplings with-
out/with new features

35

FIGURE 11: Distribution of decision values in nominal candidate features 42

FIGURE 12: Distribution of decision values in numerical candidate fea-
tures

44

FIGURE 13: Distribution of changes of state for nominal flexible at-
tributes in the retrieved set of action rules

45

FIGURE 14: Distribution of changes of state for numerical flexible at-
tributes in the retrieved set of action rules

47

FIGURE 15: NPS rating of individual clients comparing with overall NPS
rating

51

FIGURE 16: F-score of individual clients comparing with overall F-score 52

xi

FIGURE 17: Hierarchical clustering of 34 clients based on semantic
similarity

55

FIGURE 18: Example of running HAMIS on Client 2 with semantic
dendrogram

64

FIGURE 19: Comparison of sets of action rules generated from dataset
of Client 2 before/after HAMIS

66

FIGURE 20: Performance of HAMIS on 34 clients with semantic
dendrogram

67

FIGURE 21: Approximate locations of 34 clients and their NPS ratings 68

FIGURE 22: Approximate locations of shops for 34 clients 72

FIGURE 23: Hierarchical clustering of 34 clients based on geographical
distance

76

FIGURE 24: Example of running HAMIS on Client 5 with geographical
dendrogram

77

FIGURE 25: Comparison of performance of HAMIS on 34 clients with
semantic/geographical dendrogram

79

FIGURE 26: Hierarchical clustering of 34 clients based on mixture
distance

82

FIGURE 27: Experiment result with given example 110

FIGURE 28: Partial experiment result with a larger sampling 111

xii

LIST OF TABLES

TABLE 1: Comparison of scores for different classification algorithms 24

TABLE 2: NPS rating and F-score of relevant nodes in Figure 18 64

TABLE 3: Classification results from expanded Client 24 with different
clients

70

TABLE 4: NPS rating and F-score of relevant nodes in Figure 24 78

TABLE 5: Number of generalized clients with specified distance measures 79

TABLE 6: Meta-actions influence matrix for S 84

TABLE 7: Dependency templates for extracting sentence segments 90

TABLE 8: Feature classes and relevant seed words 93

TABLE 9: Feature classes, its subclasses and their seed words 94

TABLE 10: Feature classes, its subclasses and their meta-actions 96

TABLE 11: Experiment results of major steps 97

TABLE 12: Advanced matrix: action rules and their triggers (meta-
actions)

103

TABLE 13: Advanced matrix for the sample data 109

CHAPTER 1: INTRODUCTION

1.1 Introduction of the Project

Improving the performance of companies in the field of business is getting more

and more important nowadays with no doubt, and the Net Promoter Score (NPS) is

one of the most popular measures for such purpose. It is used to measure customers’

satisfaction and loyalty to a product or service provider [47], and it is built on a scale

1 to 10 where 1 means very unlikely to recommend the provider and 10 means highly

likely to recommend. Based on observations of customers’ referral and repurchase

behaviors along such scale, customers’ are divided into three logic levels: promoter,

passive and detractor, which present customers’ satisfaction, loyalty and likelihood of

recommending this provider in a descending order. Promoters are loyal enthusiasts

who are buying from a company and urge their friends to do so. Passives are satis-

fied but unenthusiastic customers who can be easily taken by the competitors, while

detractors are the least loyal customers who may urge their friends to avoid that com-

pany [45]. Customers are categorized into these three clusters based on their answers

to the questions in questionnaires. Figure 1 explains how these three categories are

computed.

Generally customers falling into interval 9-10 are seen as promoters, into 7-8 as

passives, and into 0-6 as detractors. The partition into these three categories is widely

2

Figure 1: Categorization of Net Promoter Score (NPS)

accepted by business organizations but still other discretization of NPS can be taken

into consideration especially when classifiers extracted from NPS datasets do not

have acceptable precision/recall for one of these three categories. The classical way

to evaluate the efficiency of a company’s growth engine is to compute NPS efficiency

rating which is defined as the percentage of customers who are promoters minus the

percentage which are detractors. Companies with the most efficient growth engines

such as Amazon, Costco, or Apple-iphone have NPS efficiency ratings between 50%

to 80%. But even these top companies still have much room for improvement.

For the consulting company locating at Charlotte which we are currently working

with, in order to collect information about customers’ satisfaction in using services,

customers are randomly selected to answer a phone questionnaire which is particularly

designed to collect relevant information. Usually, each questionnaire consists of three

categories of questions. The first and second groups of questions in the questionnaire

collect the basic information about the customers and their service requests, and the

third group, also the key part of the questionnaire, is about the customers’ feelings

on the service they got last time. Here are some examples of questions in these three

groups:

3

• Information about the customer

– name of the customer

– contact phone number of the customer

• Information about the service

– name of the client

– invoice amount

– type of equipment to be repaired

• Feeling about the service

– how many days were needed to finish the job

– was the job completed correctly

– are you satisfied with the job

– likelihood to refer to friends

All the responses from customers are stored in database, and each question is saved

as one feature in the dataset, so more questions are answered by customers, larger

dataset will be obtained for our analysis. But the reality is that we can’t expect

that customers will complete the entire questionnaire as we wish, so it is necessary to

figure out the most important questions to ask. The entire dataset involves 34 sites,

also called “clients”, which locate in different areas crossing the United States as well

as parts of Canada. Each client owns several shops which are geographically near

each other. Customers are asked the same set of questions from the first and second

4

group, even though they are served by different clients. For questions in the third

group, customers could be asked different sets of questions depending on the clients’

preferences. In this group, customers are asked to give positive or negative feedbacks

about certain aspects of provided service as mentioned in the sample questions. They

assign scores ranging from 1 to 10 to a majority of questions in the third group, and

the scores represent a customer’s satisfaction level in an ascending order, higher the

scores are, more pleased the customer is and more likely the customer would like

to recommend this client to friends. Meanwhile, comments are also welcomed from

customers when answering those questions. Based on the fact that clients could use

different sets of questions in third group, there are over 70 questions included in the

third group in the original dataset covering the questions used by all clients. Even

the number of features relating to the third group is very large, the feature named

PromoterScore turns out to be the most distinguished one, because it is defined as

the NPS. With regards to the value of PromoterScore ranging from 1 to 10, customers

can be divided into promoter, passive and detractor clusters as shown in Fig 1 and

feature PromoterStatus is created to store such results.

Overall, more than 25,000 customers who have been served by 34 clients were

randomly chosen to answer the questionnaires in 2011 and 2012. There are 42,493

records in our dataset and this number is growing rapidly. Some of customers have

been chosen multiple times during that period, while it doesn’t necessarily mean that

the customer who appeared only once in the dataset is no longer a customer. It

is possible that customer may request that no call to him is wanted for a certain

period of time in the future. Given the values stored in PromoterStatus, 99% of

5

records can be determined with the status while 1% missing values are due to the

uncertainty in PromoterScore. As a result, the overall NPS efficiency rating for our

entire dataset can be computed and it is equal to 0.76, as there are 34523 promoters

and 2172 detractors, and 34523/42493 - 2172/42493 = 0.76. Moreover, the NPS

efficiency rating can be computed for each client individually with the determined

PromoterStatus, so each client can be targeted independently for achieving better

performance.

To realize the ultimate goal of adopting proper actions to improve the performance

of every single client, in another word, improve its NPS rating with the given dataset,

Flexible Query Answering System (FQAS) is designed to accept queries from a client

regarding how to serve customers better and giving actionable suggestions to resolve

such queries. Hierarchically structured recommender systems are built with leaves of

the tree representing personalized recommender systems. Each personalized recom-

mender system is responsible for providing valuable action rules for its corresponding

client. To make the quality of retrieved action rules as high as possible, Hierarchical

Agglomerative Method for Improving NPS (HAMIS) is proposed to maximally ex-

tend the dataset representing each client by using data from some neighboring clients

who have better NPS. It has been shown that the action rules generated from the

extended dataset are more useful than from original dataset as they provide more

options to clients, and have higher confidence.

In Figure 2, we show the main procedures of FQAS. As it shows, once a query

from a client concerning the improvement of NPS ratings is submitted to FQAS, its

corresponding recommender system will attempt to return action rules by following

6

Figure 2: Flexible query answering system

HAMIS. If action rules are not returned to clients, Query Adapter in FQAS would

take over and a relaxed query is submitted to the recommender system. At the end,

action rules with their triggers will be returned to targeted clients and tested for its

effectiveness.

1.2 Introduction of Recommender Systems

Recommender Systems have become a popular research area since the mid-1990s [22]

[46] and they are used as the main engine for achieving our goal. Recommender

systems were initially structured to give proper recommendations depending on cus-

tomers’ ratings in business area, based on the rapid development of e-commerce and

on-line information, providing customers with advices about what to look, even pur-

chase gains increasingly attention for bringing greater profits in reality. Typically

speaking, recommender systems consist of three types: collaborative type, content-

based and hybrid type. And they are formed along with development of machine

learning techniques.

As the most well known type of recommender systems, collaborative or social fil-

7

tering recommender systems collect rating history from customers to form a general

pattern on customers’ habits and preferences, and recommend the items rated by

other customers who have similar habits and preferences. The Ringo music recom-

mender system [51] recommends music to users by get hints from other users having

the similar preferences. However, the collaborative recommender systems rely on the

amount of data collected from customers so bad, more ratings certain customers have

made, better similarity estimation can be inspected between them. As a result, new

customers won’t get any good match until the system has learned their patterns quite

well. Meanwhile, not only new customers, those customers who have different tastes

could result in few recommendations due to matches can barely be found, so the

social filtering system is extend to demographic filtering system which includes more

demographic segment information, such as gender, location, education, etc. [38].

Content-based recommender systems are built on top of the classifiers derived from

machine learning techniques and they solely focus on giving recommendations that

are similar to the items in customers history records. Considering the issues of data

size in collaborative systems, applying appropriate classifiers, like k-nearest neighbor

classifiers, can resolve this problem to some extent in content-based system. Although

content-based recommender systems are not as sensitive to size of initial dataset as

collaborative systems are, they are still limited by the scope of recommendations,

because the suggestions are given within the knowledge hidden in customer’s his-

tory ratings, new customers won’t get much benefit as there is little information in

their history. Even for those who are not new customers, they will not get new, or

surprisingly good recommendations but similar options as the customers have seen.

8

Actually, customers should be kept from not only those things that are too far away

from what they have seen before, but also those items that are particularly simi-

lar to something they have already seen, which could cause some negative emotions

in customers about the recommender systems. Daily Learner [6] has overcome this

difficulty.

Regarding the advantages and drawbacks of collaborative type and content-based

type, hybrid recommender systems are designed to combine these two types for avoid-

ing the limitations in previous two types. And a hybrid recommender system can be

implemented by combining separated collaborative and content-based recommender

systems, adding content-based characteristics to collaborative models or reversely, or

constructing a single recommender model [1]. In terms of the first method, the final

recommender system can either select one individual system which provides better

recommendations under given circumstances, like Daily Learner returns results with

high confidence from either type of systems, or combine the results from both types

of systems by linear combination [11] or voting scheme [38]. At the same time, rec-

ommender system [2] and the “collaborative via content” in [38] are hybrid systems

which are built though including characteristics of content-based systems into collab-

orative models. By this way, the profiles about customers no longer just concentrate

on customers’ ratings, but also the features of items that customers rated to, which

are content-based profiles. While other tools are on the foundation of content-based

recommender systems with collaborative characteristics built in, for example, [52] cre-

ated a collaborative view of customers where customers are described using semantic

term vectors and it achieved good performance. But in recent years, more and more

9

efforts are put on building one single recommender by merging the characteristics

from both types together, and many different approaches have been used, such as

mixed rule-based classifiers in [3], a unified vector of user characteristics in [48], and

knowledge based techniques in [9].

The improvement of recommender systems for providing better recommendations

in more fields is urgent indeed, as much more business companies encourage such

recommendations for attracting their customers. Researchers in this area still declare

that the current methods used in recommender systems are in need of extension in

a few aspects which includes comprehensive understanding of customers and items,

extension of techniques and more [1] [10]. This project can be seen as another promis-

ing attempt of extending recommender systems with hierarchically structured model

driven by action rules and meta-actions.

CHAPTER 2: DATA PREPROCESSING

Given the initial dataset, additional preprocessing procedures need to be performed

on it to get a high quality dataset for mining. Values in dataset are collected from

customers and manually entered into the database, it is imaginable that some in-

consistency in format or simple errors could happen when typing these values. For

example, there are instances written in Spanish instead of English, although they

mean the same thing, still they are recognized as different values by machines. Such

errors could lead to unreliable results. Besides these human made mistakes or incon-

sistency, the main attention has been put on data transformation, feature construction

and feature selection in the following parts, which concern more about the essence

of data [17]. Data transformation focuses on transforming the data from a complex

format into a more convenient representation, either in symbolic, categorical or nu-

merical, which lessens great burden for future work. Next, new features are created

with extended information from original features, and this process can be referred

as feature construction. Last but not least, feature selection is responsible for elim-

ination of noise, redundant and irrelevant features and preservation of those highly

correlated and essential instances, which is realized by computing correlation between

features. Meanwhile, the process of feature selection can be used to evaluate the re-

sults from previous two steps. The product of data preprocessing will be a dataset

that is clean, well-organized, and ready for further work [26].

11

2.1 Data Transformation

There are various types of data stored in given dataset, from categorical to nu-

merical, date time to serial, etc. In the area of data mining, it is inconvenient for

algorithms to deal with features in such a complex format, and it could be extremely

time consuming and ineffective under such circumstances. At the same time, the

information delivered by these features can’t be ignored before further digging, so

transforming them into a usual format that is easy for machines to manage is one

of the most common ways to address this issue. Instead of applying some other

complicated algorithms to process transformation, methods that are most fitting in

current circumstances are more preferred. Examples of results from transformation

are illustrated below.

The first example involves features stored in form of date time, and it includes

features like DateInterviewed, InvoiceDate and WorkOrderCloseDate. Since such

features are in form of ’mm-dd-yy’, sometimes ’yy-mm-dd’. However, regarding the

nature of date time, days are countable and the number of days from the starting

date to another certain date is another way to represent it by giving the length of

time in a form of number of days. Thus, all the three features are transformed into

numerical type which can be easily processed and still keeps the essence of date. In

details, It is notified that the time frame in given dataset is from 2011 to 2012, so the

starting date is set to be ’12-31-2010’ and the original data are replaced by numeric

values calculated by counting the number of days from initial date. For instance, if a

stored value is ’01-28-2011’, then the transformed value will become 28 as ’01-28-2011’

12

minus ’12-31-2010’ equals to 28, meaning there are 28 days from the initial date to

’01-28-2011’. By calculating the day differences as described, all the features stored

in form of date time have been converted to numerical type which is more convenient

for other measures, like standardization and discretization, etc.

Another representative example of transformation is phone numbers stored in fea-

ture ContactPhone. As we all know the phone number should be ten digits long, but

the representation of phone numbers varies from case to case. In a great majority of in-

stances, it is shown as ’xxx-xxx-xxxx’, however, there are quite a lot of other instances

recording phone number as numeric values directly without the hyphen, or including

brackets like ’(xxx)-xxx-xxxx’, which cause a headache in transformation. Obviously,

it is necessary to define a unified format to solve it like how date time is resolved.

However, unifying all the phone numbers to numeric values doesn’t make meaningful

sense given the fact that numeric value fails in delivering the hidden knowledge in

original format. It is a common sense that the first three digits of phone number are

referred as area codes which indicate the customers locations approximately. Imagin-

ing that applying discretization in phone numbers which is in form of numeric values,

it ends with meaningless results like interval [123456789, 234567890] which doesn’t

make any sense. While regarding the area codes from phone numbers, customers

from the same area could be identified. Accordingly, numeric type is not suitable

for features involving phone numbers, but with respects to the location information

hidden in values of phone numbers, the first three digits of phone number are quite

useful and they should be stored as categorical values by adding letters CP (Contact

Phone) in front of them. As a result, data associated with phone numbers in such a

13

messed format are converted to categorical type with area codes labeled by symbolic

letters. What’s more, the location information inferred from the newly transformed

feature is inspiring for constructing more features that might be potentially useful.

2.2 Feature Construction

Besides transforming features to a better format, constructing new features that

present the extended information derived from the original features also addresses

the problem of feature interaction and could provide better discriminative ability

for building classifiers. Unlike data transformation, feature construction plays more

effects on extracting the actual usage of features.

The first construction is inspired by the example of transformed ContactPhone.

As described in the last section, the location information hidden in the area codes is

very useful to identify customers’ state location, as well as the the feature Zip which

stores customers’ zip codes in the form of numeric values. Using numerical values

to represent zip codes causes the same problem as using numerical values for phone

numbers. The first two or three zip codes can be used to estimate customers’ state

location, which is even better than using phone numbers for that purpose. Addition-

ally, the majority of values in the features that are supposed to indicate customers’

state location are missing, which urges the necessity of retrieving customers’ location

information from other forms like zip codes and phone numbers. Thus, a new feature

is built by filling missing values for state information from zip codes first and phone

number second.

Another example involves the feature named UpdateContactName which contains

14

customers’ newly updated contact names. In contrast to the massive names stored

in it, the fact that whether a customer changed his/her contact name or not matters

more to us, and the pattern of customers’ behavior is more crucial for discriminating

instances. Via consulting with our data consultants, it is agreed that the empty cells

in UpdateContactName are seen as non-updated cases, as well as when same values

happen to ContactName and UpdateContactName. Otherwise, the instances are

seen as updated cases. In the new feature concerning if contact name is updated or

not, “Yes” is assigned to the instances being updated cases while “No” is assigned to

the ones belonging to non-updated.

2.3 Correlation-Based Feature Selection

In our dataset, each question in the questionnaire is treated as a feature. As

mentioned in the introduction, there are over 70 features in the third group. In

addition to the features in the first two groups, there will be over one hundred features

in total in our dataset. At the same time, some of the features in the third group

contain no value or several meaningless notes. Apparently, such features are useless for

further data mining. Besides that, the existences of some other features could make no

or little contribution to data mining tasks. Keeping those features in dataset not only

makes the future work more difficult and inefficient, but also can result in poor results

or even wrong conclusions. Therefore, constructing a representative set of features

from original dataset by getting rid of noisy, redundant and irrelevant attributes

without losing any valuable information is a first priority. Generally, feature selection

consists of estimation of attribute utility and other evaluation with specific learning

15

methods, such as computation of correlation [20] [25] [59].

In terms of estimation of attribute utility, basically two aspects are included.

Firstly, there are some features in the third group that are completely empty or

contain no valuable information, those features should be removed from dataset di-

rectly because they provide nothing and the knowledge in dataset is not affected by

their removal. Secondly, consultation with our data consultants provides the detailed

interpretation of each feature, and the general process of collecting answers from cus-

tomers. It turns out that some features in the third group are about other field of

business that clients works on which are handled in a different way, and those features

are not compatible to others and should be analyzed independently. Thus they are re-

moved out from current dataset. Still, understanding all features literally is necessary

but insufficient, as the knowledge hidden in the dataset is more important. Before

continuing the following strategies of feature selection, those numerical features in

the third group are temporarily kept out as advised, which is not only due to its large

dimension, but also led by the consideration in their potential utility. As we believe

that those features are supposed to be very useful in generating action sets and they

present customers’ answers in a more elaborate way by assigning ten ratings, it is

necessary to analyze them solely with another specially designed strategy. So the

following processes are focusing on the features from the first and second group, as

well as four nominal features from the third group.

In statistics, correlation refers the relationship between any two random variables.

By computing the correlation between features, knowledge on the dependence of pairs

of features that are unknown outwardly are unveiled. Correlation measure is defined

16

as:

correlation(X, Y) =

∑n
i=1{(X(i)− X

′
)× (Y (i)− Y

′
)}

(n− 1)× S(x)× S(Y)
(1)

Suppose the correlation between attributes X and Y is what about to be computed

and there are n instances in the dataset. X
′

and Y
′

are the means of X and Y

respectively, and S(X) and S(Y) is standard deviation of X and Y respectively.The

correlation is computed as summation from 1 to n of the product (X(i)−X ′)×(Y (i)−

Y ′) and then dividing this summation by the product (n−1)×S(X)×S(Y) where n is

the total number of examples and i is the increment variable of summation. But there

still could be other definitions as well. Given this equation definition of correlation in

Equation(1), the dependence between any pairs of features could be calculated [49].

For every pair of features, the generated correlation is a number between -1 and

+1 that measures the degree of association between those two features. A positive

correlation implies a positive relationship between two features, so features with large

values tend to be closely associated with features with large values. Reversely, a

negative correlation implies a negative relationship between features, which means

features with large values tend to be associated with features with small values.

Correlation based Feature Selection (CFS) is an algorithm that couples this evaluation

formula with an appropriate correlation measure and a heuristic search strategy [19].

It is able to quickly identify irrelevant, redundant and noisy features and keep relevant

features as long as they are not strongly correlated with other features.

It’s already known the NPS status (promoter, passive and detractor) stored in

PromoterStatus in dataset is the key criterion to evaluate customers’ satisfaction.

17

Figure 3: Feature correlations between PromoterStatus and other features calculated
from Equation 1.

As the most distinguishing feature in dataset, its correlation with other features in

the dataset matters more to us. If some features are more highly correlated with

PromoterStatus, then these features are more preferred and the correlation between

PromoterStatus and all the other features are shown in Figure 3. From the figure,

some features are found significantly highly correlated with PromoterStatus, like

GoodJob, ReadMe and Dispute. However, the features in dataset should be less

correlated with each other but with high correlation with PromoterStatus, so some

features are excluded which is due to redundancy. At the end, weighting by cor-

18

relation, the final determined set of features in our dataset includes: ClientName,

SurveyType, Division, ChannelType, InvoiceAmount, Make, CIC code, PWC

code, Opportunity, Dispute, ReadMe, GoodJob, DateInterviewedNum, InvoiceDateNum,

WorkOrderCloseDateNum, UpdatedContactNameOrNot and PromoterStatus.

CHAPTER 3: INITIAL CLASSIFICATION

After the entire dataset is preprocessed, the dataset is clean, well formated and

ready for further analysis. As a primary factor for building the system, constructing

the best classifiers will guarantee mining high quality action rules. Additionally, the

results of performing classification on the dataset provide a glance at the consistency

of knowledge hidden in dataset. Better classification results are achieved, more con-

sistent knowledge is stored in our dataset. However, it turns out the classifiers built

from current dataset are still too poor to meet our satisfaction, which could be led by

lack of sufficient information associated with the decision attribute. Thus, the process

of expending the dataset by adding more helpful features is used to resolve the issue

of poor classification result. At the end, the best extension of current dataset will be

formed and the best classifier will be built.

3.1 Selection of Best Classification Algorithm

To build the classifiers in a convenient way, WEKA is selected to be the main

tool, because of its effective, comprehensiveness and ease in using. WEKA is one

of the most popular tools in the field of data mining and machine learning and it is

implemented by the machine learning group from University of Waikato. Its widely

acceptance and usage are basically due to its collection of various well-known machine

learning algorithms which can be directly applied with its GUI or called from Java

20

code. Besides containing main algorithms, WEKA is a powerful software that has

multiple modules covering data preprocessing, classification, clustering, visualization

and so on. For the classification algorithms, there are a lot of well known algorithms

available in it [35] [55] [4], such as J48 (DecisionTree), Random Forest, Nearest

Neighbor (KNN) and Naive Bayes, etc. However, one limitation of using WEKA

here is the size of dataset that it can successfully process. Especially when build-

ing classifiers using tree structured algorithms, the system couldn’t end properly due

to the burdensome computation with oversize datasets. Actually this shortage in

WEKA has become a common issue nowadays and its implementers even include an-

other module to create samplings for handling the cases of large datasets. Thus, it is

believed that random samplings are enough for our purpose and 10 samplings are gen-

erated from the entire dataset for the following tasks. Each sampling contains 1,200

instances and all of them will be processed using available classification algorithms

in WEKA by Java codes. To evaluate the performance of each algorithm, confusion

matrix is used and it is computed by averaging the 10 confusion matrices from 10

random samplings covering 34 clients. Confusion matrix summarizes the results of

classifying instances into decision classes promoter, passive and detractor visually,

more instances are assigned to correct classes, more accurately this classification is

processed by certain algorithm, better this algorithm performs.

Before discussing the tests on various algorithms, a representative example of com-

paring classification results by J48 and Random Forest is demonstrated in Fig-

ure 4. They are comparable because if J48 is seen as on decision tree model, then

RandomForest is an ensemble classifier using many decision tree models. Decision

21

Figure 4: Comparison of classification performances by J48 and Random Forest

Tree is a widely known classification algorithm because it is easy to interpret the

rules once the tree is created and the process is quite fast [33]. By consisting of mul-

tiple decision tree models, Random Forest is less prone to overfitting which solves

the drawback of decision tree, and its proximity measure is used to fill in missing

data and calculate outliers. But it is expected that it will take more time to finish

the work [8] [54]. The top table is the average confusion matrix and relevant figures

including Recall, Precision, Accuracy and Total time from J48, while the bottom

one is from RandomForest. Recall can be understood as the accuracy of instances

actually classified correctly in each class in decisive attribute and Precision is the

accuracy of instances hypothetically classified correctly in each class in decisive at-

tribute. Accuracy is the fraction of instances that are classified correctly regardless

of classes in decision attribute, and Total time is the length of time this algorithm

takes to finish the classification with 10 random samplings.

22

In the confusion matrix which is labeled by blue, the number in each row indicates

the number of instances that are actually promoters, passives or detractors, and the

number in each column shows the number of instances that are assigned or predicted

as promoters, passives and detractors respectively by algorithms. It is known that all

the correctly predicted instances are located in the diagonal of confusion matrix, so

greater numbers in its diagonal, greater number of instances are classified accurately,

higher the accuracy will be. As the table shows, there are approximately 500 promot-

ers and passives and 200 detractors in each random sampling, and the classification

on Detractor is disappointing with both algorithms, while the accuracy on Passive

is much better, 72.3% with J48 and nearly 50% with Random Forest. The poor

prediction on Detractor implies that the descriptions of detractors are blurred to

passives, even promoters by these algorithms, but they are labeled as detractors by

following customers’ responses, so it encourages more curiosity on why it happened

and how to clearly distinguish the detractors from passives and promoters in our

dataset, which is useful to identify movements for improving detractors. To compare

the performance of these two algorithms shown in Figure 4, the main factors being

considered are the accuracy of classification and length of time it takes, which assure

the classification results is both effective and efficient without wasting resources. For

example, the Recall of passives by J48 is 72.3%, the highest figure in both tables,

while that of promoters by Random Forest is higher, which is 51.2% compared to

30.7% in table of J48. Thus, both of them are good at something while bad at other

areas, Accuracy accesses the overall performance on correctness, so it is selected as

one of the main criterion. Although Random Forest wins in Accuracy by 0.07%, it

23

is totally held back by its time consuming issue as shown in the figure, 67 seconds

comparing with 4 seconds by J48. As costing too much time is one of the last things

we want, it is not desirable or affordable in case with larger dataset, and the difference

between the accuracy performed by them is too minor to take count of, J48 wins the

competition against Random Forest in this comparison.

After all the most representative algorithms have been applied to the same 10

random samplings, all the relevant figures are analyzed and compared in the same

way as introduced in the example of J48 and Random Forest above. Generally, the

classification algorithms can be arranged into different categories, such as rule-based,

tree-based and probabilistic-based. And the most representative one in each category

is chosen to compare their performance and they are listed below [35].

PART Use rules to classify the data in test dataset.

RBF (Radial Basis Function) It utilizes normalized Gaussian radial basis function

network and the advantage is that it finds the input to output map using local

approximators.

BayesNet It can be seen as a Naive Bayes classifier where class has parents and

each attribute has no class as its sole parent.

NaiveBayes Statistical classifiers based on Bayes’ theorem, they predict the proba-

bility that a record belongs to a particular class.

KNN (K-Nearest Neighbor) It is based on learning by analogy. The training samples

are described by n dimensional numeric attributes and each sample represents

24

a point in an n-dimensional space.

RandomForest It is a extension version of decision tree model, and it solves the

overfitting problem in decision tree model with much more time taken.

J48 It is a decision tree model and it is built by recursively splitting the training

dataset based on a optimal criteria until all records belonging to each of the par-

titions bear the same class label. These trees are built relatively fast, obtaining

similar or often better accuracy.

To identify the best classifiers for the samples representing the entire dataset, the

key factors, Accuracy and TimeTaken, are collected by performing each one of the

representative algorithms and are shown in Figure 5. In the chart, blue bars represent

the length of time each algorithm has taken to finish the work, and orange bars show

the accuracy of classifiers performed on samplings. In terms of accuracy, it is quite

clear that Random Forest gives the best prediction, but the length of time it has

taken is the longest, which is 67 seconds and remarkably longer than all the other

algorithms. While NaiveBayes has been the most efficient one as it has taken only

3 seconds to finish, but the low accuracy fails making it become our best option. J48

seems to balance both time and accuracy in a good way.

Table 1: Comparison of scores for different classification algorithms

PART RBF BayesNet Naive
Bayes

KNN Random
Forest

J48

Accuracy 2 3 4 1 5 7 6
Time Taken 2 4 6 7 3 1 5
Total Score 4 7 10 8 8 8 11

Regarding the fact that none of them wins in both criterion, we have to select

25

Figure 5: Comparison of performances by different classification algorithms

the one that performs well in both aspects without significant disadvantages to build

the best classifiers. The Table 1 is created to offer a clear view of selecting the best

algorithm by assigning scores to each one of them. The scores are given with respects

to the rank of each algorithm in aspect of Accuracy and TimeTaken, higher certain

algorithm ranks in one criteria, higher score will be assigned to it [33]. So the highest

score in each criteria is 7 and it should be given to the one with highest accuracy

or shortest time. Accordingly, the lowest score 1 is assigned to the one with lowest

accuracy or longest time. Based on Figure 5, it is obvious that Random Forest gets

7 in Accuracy and so should Naive Bayes for the criteria of time consumed. And

it is quite ironic that both of them are assigned with the lowest score in the other

criteria, so the total score for Random Forest and Naive Bayes are both 8. It

turns out J48 achieves the highest total score in contrast to all the other algorithms,

which is within our expectation because of its balanced performance in both aspects.

Therefore, J48 is determined to be the best classification algorithm and it will be

26

used for the classification work in this thesis.

3.2 Improvement in Classification

From the initial classification result produced by J48, even it produces the best

performance among all the other algorithms, the confusion matrix and accuracy are

still too lousy to get well prepared for the following analysis work. So improving the

classification result becomes a vital role in the whole process and several methods

that are best fitting in our situation are deployed as illustrated in details below.

3.2.1 Construction of Hierarchical Features

In previous chapter, we already know that the features involving date time have

been transformed into numeric features which indicates the number of days from the

starting date, and those features can be referred as day features. By looking into the

nature of date time values, it is easy to realize the hierarchy hidden in the values of

day features which can be defined as day, month and season in an ascending order

of hierarchical level, the higher its hierarchical level is, more general the description

of certain pattern hidden in the dataset will be, consequently better classification

result can be expected. Therefore, new hierarchical features involving date time are

constructed as month features and season features in the same 10 samplings and

both of them will be tested with J48 in WEKA respectively.

Instead of including factor TimeTaken which is unnecessary in current circum-

stance, F-score is used as the main factor for evaluating the performance with differ-

ent forms of features. F-score is another measure of a classification’s accuracy and

here the F-score is a weighted average of Precision and Recall, so higher F-score

27

Figure 6: Comparison of classification with day, month or season features

is more desirable in our experiments. Similar as what has been done with tests on

different algorithms, classifications on samplings with day, month or season features

have been completed solely, and average confusion matrices and relevant figures from

each test are presented in Figure 6 in a top down order. The first table is generated

from initial dataset with only day features which is same as the one shown in previous

section. The second table is generated from dataset with month features, and the

accuracy is 0.4268, while the F-score is 0.353, which is the lowest among them and

28

didn’t match our expectation. The last table is from the samplings with season fea-

tures alone. As it shows, despite the prediction in detractor it is not improved quite

much, the accuracy is slightly raised with 0.0042 comparing to the first table. And

the F-score, 0.391, is much higher than any of the other two forms. Theoretically,

the better form of features results in better classification results, in another word, in

better F-score. Hence, it is quite obvious that season is the best form for date time,

as it produces the highest value in both accuracy and F-score.

3.2.2 Normalization and Discretization

In the area of training dataset, normalization and discretization are two popular

data processing approaches and they will be applied to the samplings for checking

if they help improve classification result or not. In terms of normalization, it is a

process of transforming numerical values which are currently in different scales into

a common scale [50]. And it is carried out like this:

1. Mean absolute deviation Sf

Sf = 1
n
∗ (|X1f −Mf |+ |X2f −Mf |+ ...+ |Xnf −Mf |)

2. Normalization measurement

Zif =
(Xif−mf)

Sf

In the formula above, let’s assume Xif is a ith value of a feature f , and Mf is the

mean value of feature f . So the first formula tells us how to compute the standard

deviation Sf for certain feature f and use Sf to compute every normalized value Zif .

Given this process of normalizing numeric attributes, classifications on samplings

29

before and after normalization have been accomplished and the average confusion

matrices and other figures are shown in Figure 7. In the figure, the table on the top

is from samplings without normalization and the bottom one is from samplings with

normalization. It is obvious that the accuracy and F-score in the bottom table is

slightly higher than the top one, which is 0.4352 and 0.3928 respectively. Thus, we

can conclude that normalization is helpful for classification and it should be applied

whenever it is needed.

Figure 7: Comparison of classification without/with normalization

The second attempt in this part is performing discretization. Theoretically speak-

ing, the process of discretization is to cut off the values of features (usually continuous

features) into several discrete intervals which can form more distinctive descriptions

in information system [14]. In our circumstances, Rough Set Exploration System

30

(RSES) is more preferred to perform discretization than WEKA. The supervised

discretization algorithm implemented in WEKA is Multiple Interval Discretization

Algorithm which cuts the values by following the Minimum Description Length Prin-

ciple (MDLP) [34]. But it only accepts fixed number of intervals for all numerical

features, which leads to the inflexibility of deciding the best cut for specific attributes

with regards to its own distribution of values. Additionally, it only handles the nu-

merical attributes. In contrast to WEKA, discretization using RSES is more dynamic

and comprehensive. By more dynamic, it means RSES permits discoveries of cuts

for each attribute independently; by more comprehensive, it means RSES covers all

the attributes, including both numerical and symbolic. The process of discretization

converts the original table into a simplified one with less complexity but same rich-

ness of semantic information. The known strategy of decision algorithm generation

is also based on MDLP, but the methods used in RSES are broader and the existing

methods can be distinguished via criteria of local and global [5]. Simply speaking,

local method produces partitions that are applied to localized regions of object space,

while global method deals with all attributes and each attribute value set is parti-

tioned into intervals independent of the other attributes [14]. Apparently, RSES is

more proper under this circumstance, and same 10 random samplings are applied

using RSES to check the performance of discretization on classifying the dataset.

In Figure 8, average confusion matrix and relevant figures collected from classifi-

cations on samplings with discretization performed are shown in the bottom table.

The new factor Coverage is listed in it which indicates the percentage of instances

that have been inspected by the classifiers in each decision class. For example, in the

31

Figure 8: Comparison of classification without/with discretization

confusion matrix generated from dataset without discretization, if looking at the row

for promoter, there are 8.7+8.4+2.28 = 19.38 instances that are recognized by the

system, which occupy only 39.2% of the total number of instances and is a very low

coverage. It is easy to observe that the accuracy, F-score and all the other figures

in the bottom table are extremely high and over twice than without discretization,

which is far beyond our expectation but still makes sense. So discretization plays

such exceptionally positive roles in classification.

3.2.3 Addition of New Features

Besides transforming the values in dataset as the normalization and discretization

have covered, extending current dataset dimensionally is another potential option for

improving classification result. The idea of well-known strategy MDLP is to keep

32

the minimum descriptions of objects but preserve the same information as contained

in a more complex description. On the contrary, here what has been suggested is

increasing the dimension of dataset by reasonably adding some more features in a

way that they gets the classification maximally improved. This idea is built on the

believe that adding more features potentially relating to decision attribute could fill

more valuable information into dataset, consequently the description of each decision

class could be formed less ambiguously and then classification could be improved [13].

But the problem of which attribute to add is our first concern.

As described in the first chapter, features in the first two groups store the basic

information about clients and customers, there is not much space to enlarge in these

groups because such information is not changeable, it is useless to put much attention

on them. However, the space for adding features from the third group is still adequate,

as only four nominal features from third category are included in current dataset, and

it is time to consider adding some new from the rest of numerical features which are

potentially valuable. These numerical features demonstrate customers’ response in

a rating scale from 1 to 10, 10 means the customers is extremely happy about this

service and 1 means he/she is not pleased, even angry with what has been done, higher

the score is, more satisfied the customer is. As mentioned, there are over 70 numerical

features in the third category covering questions asked by all the clients, but some of

them are applicable to several clients while some are used by all clients. At the same

time, some features are relevant with other businesses that clients are dealing with in

a different way, which is not proper for our purpose. Thus, the numeric features that

are used by all clients and are related to the business area we focus at are defined

33

as common features, and 9 common features are selected to be the candidates for

being added into dataset after consulting with data experts.

The purpose of adding new features into current dataset is to improve its classi-

fication result, so a feature should be kept as long as the main factor, F-score, is

improved, at least not damaged after classifying the dataset with such feature. The

strategy of testing the qualification of all the 9 features is to apply J48 in WEKA

to samplings from the entire dataset with one new feature added a time and check

the generated F-score, if F-score is improved, at least not damaged, then this added

feature should stay in the dataset and the newly expended dataset will be used for the

following rounds; otherwise, this feature shouldn’t be added and the dataset without

this feature will be used for the next round. This procedure will repeatedly executed

until all the candidates are checked and the resulting dataset will be extended in di-

mensions maximally with the best classifiers. In this case, sequence of adding features

doesn’t affect the final result since every one of them probably will be tested along

with other features after all.

To present the procedure of applying the extending strategy in details, a line chart is

created and shown in Figure 9. In the figure, the lines show the changes of F-score and

accuracy from classifications on samplings in blue and red respectively whenever a new

feature is added into the dataset by following the order from left to right at the hori-

zontal axis. On the bottom of the chart, a table contains exact values of F-score and

accuracy from the classification on samplings with corresponding feature in each col-

umn. By monitoring the trend of blue or red line, it is easy to perceive that their values

are quite close to each other all the way up with red line representing accuracy been a

34

Figure 9: Process of adding new features into dataset

little bit higher than blue line, and generally they are going up while staying steadily

for a few moments during the whole process. The sharpest raise for both lines happens

to the extension with OverallSatisfaction which leads to F-score dramatically grow-

ing by nearly 78%, from 0.391 to 0.6936. Obviously, OverallSatisfaction should be

kept in dataset. After that, the lines go flatly for a while, which indicates F-score and

accuracy increase gradually, even stay at the same when dataset is extended with fea-

tures including Likelihoodtobearepeatcustomer, TechnicianArriveWhenPromised,

RepairCompletedWhenPromised andRepairCompletedCorrectly. Still they stay in

dataset because none of them makes F-score or accuracy drop. Then another represen-

tative raise in chart appears with addition of DealerCommunication, accuracy and

F-score are improved gently by 1.2% which is relatively remarkable compared with

the increment by other features. Later adding FinalInvoiceMatchedExpectation

also increases the F-score slightly, while the extension with left features added makes

the classification results stay the same. In the end, it is not surprising that all the 9

35

features are successfully added into the dataset, even though some of them don’t im-

prove the classification result at all, they don’t damage the classification. Generating

same classification results could result from the possibility that similar patterns of

semantic knowledge hidden in data that have been already discovered by classifiers,

including those features also provides a great variety of information for evaluating

customers’ feeling.

Figure 10: Comparison of classification results from samplings without/with new
features

Comparing the classification results on samplings before and after these features

are added into our dataset as shown in Figure 10 is sufficient to evaluate the quality

of enlarged dataset. In the figure, the table on the top is from the dataset without

any new features and the table on the bottom is from the finalized dataset with all

new features added. The first thing that attracts us is the extraordinary progress in

36

classifying detractors, instead of none of detractors are classified correctly in the initial

case, over half of them are seen properly with more valuable information provided.

The accuracy of classification on the finalized dataset is 0.7068, which is 62.68% higher

than the data before extension. Meanwhile, F-score from finalized dataset is 80%

greater than the initial one. Apparently, performing the extension with new features

in previous dataset is fruitful regarding the significant improvement in classification.

CHAPTER 4: INITIAL ACTION RULE MINING

4.1 Introduction of Action Rules

Action rules mining is a critical method in the area of data mining and it was firstly

proposed by Ras and Wieczorkowska in [42] and investigated further in [21], [36],

[44], [39]. Action rule suggests what is the smallest set of necessary actions needed

for switching from current state to another within the states of decision attribute.

Decision attribute is a distinguished attribute [42] while rest of the attributes are

partitioned into stable and flexible categories. So in our domain, decision attribute is

the attribute which Promoter, Passive and Detractor are referring to. As the name

implies, values of flexible attributes can be changed, then attributes which tell the

answers to questions in third categories are seen as flexible attributes. In early papers,

action rules have been constructed from two classification rules [(ω ∧ α) → φ] and

[(ω∧β)→ ψ], where ω is a stable part for both rules [41] [60]. Action rule was defined

as the term [(ω)∧(α→ β)]⇒ (φ→ ψ), where ω is the description of clients for whom

the rule can be applied, (α → β) shows what changes in values of flexible attributes

are required, and (φ→ ψ) gives the expected effect of the action. Let us assume that

φ means detractors and ψ means promoters. Then, the discovered knowledge shows

how values of flexible attributes need to be changed under the situation required by

stable attributes so the customers classified as detractors will become promoters. In

38

this section we introduce the classical strategy of constructing action rules from action

sets.

By an information system [37] we mean a triple S = (X,A, V), where:

1. X is a nonempty, finite set of objects

2. A is a nonempty, finite set of attributes, i.e.

a : U −→ Va is a function (can be partial function) for any a ∈ A, where Va is

called the domain of a

3. V =
⋃
{Va : a ∈ A}.

For example, Table 1 shows an information system S with a set of objects X =

{x1, x2, x3, x4, x5, x6, x7, x8}, set of attributes A = {a, b, c, d}, and the set of their

values V = {a1, a2, b1, b2, c1, c2, d1, d2}.

Table 1 : Information System S

a b c d

x1 a1 b1 c1 d1

x2 a2 b1 c1 d1

x3 a2 b2 c1 d2

x4 a2 b2 c2 d2

x5 a2 b1 c1 d1

x6 a2 b2 c1 d2

x7 a2 b1 c2 d2

x8 a1 b2 c2 d1

39

Additionally, we assume that A = ASt ∪ AFl, where attributes in ASt are called

stable and attributes in AFl are called flexible. “Customer name” is an example of a

stable attribute. “Interest rate” for each customer account is an example of a flexible

attribute.

Let S = (X,A, V) is an information system, where V =
⋃
{Va : a ∈ A}.

By an atomic action set we mean a singleton set containing an expression (a, a1 →

a2) called atomic action, where a is an attribute and a1, a2 ∈ Va. If a1 = a2, then a is

called stable on a1. Instead of (a, a1 → a1), we usually write (a, a1) for any a1 ∈ Va.

By Action Sets we mean a smallest collection of sets such that:

1. If t is an atomic action set, then t is an action set.

2. If t1, t2 are action sets, then t1 ∪ t2 is a candidate action set.

3. If t is a candidate action set and for any two atomic actions (a, a1 → a2),

(b, b1 → b2) contained in t we have a 6= b, then t is an action set.

By the domain of an action set t, denoted by Dom(t), we mean the set of all

attribute names listed in t.

By an action rule we mean any expression r = [t1 ⇒ t2], where t1 and t2 are action

sets. Additionally, we assume that Dom(t2)∪Dom(t1) ⊆ A and Dom(t2)∩Dom(t1) =

∅. The domain of action rule r is defined as Dom(t1) ∪Dom(t2).

Now, we give an example of an action rule assuming that our information system S

is represented by Table 1, a, c are stable and b, d are flexible attributes. Expressions

40

(a, a2), (b, b1 → b2), (c, c2), (d, d1 → d2) are examples of atomic actions. Expression

(b, b1 → b2) means that the value of attribute b is changed from b1 to b2. Expression

(c, c2) means that the value c2 of attribute c remains unchanged. Expression r =

[{(a, a2), (b, b1 → b2)} ⇒ {(d, d1 → d2)}] is an example of an action rule. The rule

says that if value a2 remains unchanged and value b will change from b1 to b2, then it

is expected that the value d will change its value from d1 to d2.

4.2 Analysis of Initial Action Rule Mining

To achieve the ultimate goal of building efficient recommender system which can

provide actionable suggestions for improving a client’s performance, in another word,

improving its NPS efficiency rating, extracting action rules is one of the most oper-

ative methods and it has been applied to various areas like medical area and sound

processing area. The first step of extracting action rules from the dataset is to com-

plete the initialization of mining program by setting up all the variables. The process

of initialization consists of selection of stable attributes, flexible attributes and de-

cision attribute, determination of favorable state and unfavorable state in decision

attribute, and definition of confidence and support for resulting rules [58] [43].

There is no argument of choosing PromoterStatus as the decision attribute, be-

cause it directly connects to NPS rating and it dominates the status of customers’

response in the entire dataset. Among the three levels in PromoterStatus, promoter

represents the highest level of customers’ satisfaction, which is the most ideal state

for targeting; detractor is the worse response from customers and it is the least likable

scenario; while passive is a state representing customers’ moderate attitude. In order

41

to match our ultimate goal and obtain the rules for giving the most distinct difference

between the most desirable and undesirable state, the favorable and unfavorable state

are set to be promoter and detractor, so the program will focus on extracting action

sets that aim to improve PromoterStatus from detractor to promoter. Given the

fact that classification result retrieved previously from samplings is not good enough

for generating action rules with high quality, confidence and support should not be

set too high to meet. Based on our general experience, confidence is set to 85%. In

terms of choosing stable attributes, all the features associating the general informa-

tion about clients and customers can be considered, which are already listed in the

first and second categories of questionnaires. However, selecting too many features is

quite unnecessary and time-consuming. Since the final recommender system should

be client-oriented, all the generated action rules should target specific clients, resul-

tantly ClientName is preferred in set of stable attributes. Similarly, among so many

available features, the ones giving information that most interests clients and clients

would like to tell apart should be selected in the set of stable features. Via consulting

with our data experts, Division and SurveyType win this competition, as Division

tells the specific department involved and SurveyType tells the type of service: field

trips or in-shop, which matters quite a lot because the handling ways for them differ

in a great number of places. By indicating the survey type for each service, clients

can tell the actual practicability of certain action rules, instead of adopting them with

no clue about if they are applicable.

Unlike the selection of stable attributes, choosing flexible attribute is more complex.

Basically, the candidates for being flexible attributes can be divided into two groups

42

with regards to their types, as well as their distribution. One group consists of

nominal attributes including Opportunity, GoodJob, Dispute and ReadMe, whose

values contains only “Y es” and “No”. The other group includes all the 9 numerical

features which are just added. Usually, damaging the extraction of action rules could

occur if improper features are used in flexible category, and having a glance of the

distribution of these features associating with decision attribute in both groups could

reveal some clues concerning which one is a better choice.

Figure 11: Distribution of decision values in nominal candidate features

The distribution of decision attribute values in nominal candidate attributes is pre-

sented in Figure 11. In the bar chart, blue, red and green bars represent promoter,

passive and detractor in decision attribute respectively, and the length of the bars

stands for the numbers of instances which are promoters, passives or detractors con-

taining specific description (“Y es” or “No”) in corresponding features. This chart is

43

created to show how the values of decision attribute are distributed in those nominal

features which only have two values, and it is easily inspected that blue bars repre-

senting promoters stand extraordinarily high in all the features with “No” marked.

If looking into the details for Opportunity solely, it was found that a great majority

of instances which occupies nearly 99% in total are labeled with “No” while “Y es”

barely can be seen. Among those instances with “No” in Opportunity, there are

82% of them (34094 out of 41578) that surprisingly pointed to promoter in decision

attribute, which is telling a theory that most of the customers offering highly positive

chances of promoting business actually don’t think there will be a optimistic future

between them and the clients. And the same scenario happens to GoodJob as well.

However, this theory disobeys the original purpose of defining these features based on

our common knowledge, Opportunity indeed shows customers willingness of coming

back to the same client in the future if they do have needs, and “No” is supposed to

result in the negative prospective in PromoterStatus since it rejects the chance of

promoting clients, so is “No” in GoodJob.

For the numerical features, each of them contains numerical scores ranging from

1 to 10, and it is needless to analyze the distribution in every single score for each

feature, because the general distribution of decision attribute in positive and nega-

tive responses will meet the intention. Inspired by the categorization of NPS score,

the numerical values are divided into two groups: scores being less than 7 belong to

negative side, and scores from 7 to 10 belong to positive side. By doing this, numer-

ical features can be handled in a similar way as nominal features are handled, and a

new chart in Figure 12 shows the distribution of decision attribute in the categorized

44

Figure 12: Distribution of decision values in numerical candidate features

numerical candidate features. It is interesting that the distribution shown in Fig-

ure 12 is totally different from that in Figure 11. In this figure, blue bars represent

promoter, and red and green are passive and detractor. And the blue bars still stand

extraordinarily high but this time they sit in the positive side of each feature. Take

OverallSatisfaction for example, statistically 93.7% of instances are counted in pos-

itive group in OverallSatisfaction, and 85.7% of these positives (33286 out of 33815)

are matched with promoters, which is within our expectation due to the consistency

in semantic meanings between decision attribute and those numerical features. Not

surprisingly, the situation for all the other numerical features is precisely the same

with OverallSatisfaction, and it completely differs with the situation of nominal

features.

Regarding the opposite outcome from analyzing the distributions of the decision

45

attribute in two groups of features separately, intensive hypothesis concerning the

contradictory in resulting action rules with selecting two groups of candidate features

independently is raised and needed to be cleared. To clarify the speculation, experi-

ments are designed and processed as choosing one group of candidate features a time

as flexible attributes and comparing the resulting sets of action rules extracted with

those two different settings of flexible attribute.

Figure 13: Distribution of changes of state for nominal flexible attributes in the
retrieved set of action rules

Firstly, nominal features, which includeOpportunity, GoodJob, Dispute andReadMe,

are set to be flexible attributes along with other determined settings mentioned previ-

ously, and then program of mining action rules is used to process the dataset. When

doing the analysis on resulting set of action rules, more attention is put on flexi-

ble attributes where the purpose of experiments is derived from, so we mainly focus

on changing status of flexible attributes which includes (No → No), (No → Y es),

Y es → No) and (Y es → Y es). In the resulting set, 448 distinct action rules are

46

generated, and all the flexible attributes are associated with over half of the rules.

To determine which changes in flexible attributes dominate the whole situation, we

look into the appearances of all the possible diversifications for each feature. In Fig-

ure 13, the distribution of changing states for each flexible attribute is presented, the

vertical axis shows the number of rules that are associated with the corresponding

state transformation of certain attributes, and the bars with different color indicate

different state transformation listed in the table on the bottom which also contains

exact number of rules involving each transformation in each feature. As the figure

shows, over 300 action rules are found associated with ReadMe, and by looking into

the distribution of state transformations in Opportunity and GoodJob, we can dis-

cover that the blue bars play a dominating role since 207 out of 245 (84.5%) are

blue in Opportunity while 180 out of 263 (68.4%) are blue in GoodJob. Generally

speaking, blue bar stands for the transformation of state (No→ No), which implies

the state of these two features should stay at negative level if we want to improve

the client’s performance. Thinking more profoundly, this implication from our anal-

ysis is not consistent with what is commonly known, or is not helpful for providing

actionable suggestions at the end, the only explanation left is the influence of these

features seems to be too trivial to affect a client’s performance since the performance

can get improved without changing the states. Therefore, we can conclude that such

attributes are not suitable to be considered as flexible attribute. However, the case

involving Opportunity is more complicated, as “Y es” in Opportunity indicates the

chance that the customer come back for service is high due to unsatisfactory service

last time and future work in need, while “No” doesn’t completely show negativeness.

47

So it should be handled accordingly.

Figure 14: Distribution of changes of state for numerical flexible attributes in the
retrieved set of action rules

Meanwhile, other experiments on mining action rules with numerical features se-

lected as flexible attributes are also completed. But this time, numerical values are

processed as how they originally are without transforming into different clusters, the

reason is the changes in state of numerical features could be very slight, the dis-

tinct transformation could barely be inspected with scores clusters into more general

groups. Compared to the limited number of possible state transformation for nominal

features, there are much more possible state transformation in the case of numerical

features. In our case, all the state transformation of flexible attributes appearing in

the retrieved set of action rules are collected and shown in Figure 14. The general

48

idea of this figure is similar to Figure 13, all the appeared transformation for numeric

features are listed in horizontal axis and the bars in different colors represent features

as introduced in the left bottom legend. The distinguishing characteristic in Figure 14

is those negative number of rules containing certain action sets are listed on the right

side of the chart. Observing these state transformation on the right side of horizontal

axis starting with (10→ 9), the final state of those changes is smaller than the initial

state, which makes the result be negative if using the final state minus initial state,

so such changes can be referred as “negative” transformation. As a result, the num-

ber of rules containing negative transformation for each flexible feature is marked as

negative value, which causes that the bars are listed on the bottom of horizontal axis.

In the figure, more bars in different colors standing in one position implies the corre-

sponding transformation in that position is related to more features than others, so

clearly transformations (10→ 10), (9→ 10) and (8→ 10) are the most popular ones

among all the features. At the same time, the blue bar at the position of (10 → 10)

is the highest in the chart, which indicates this transaction is the most significant

for LikelihoodTobeARepeatCustomer, as well as the red bar in (1 → 10) which

shows the remarkable importance of this transformation for OverallSatisfaction.

However, if carefully comparing the positions of blue and red bars which stand for

LikelihoodTobeARepeatCustomer and OverallSatisfaction respectively, we can see

that their situation completely differ from each other, all the red bars are located at

the positive area while majority of blue bars are located at the opposite side. Under-

standably that transformation standing at positive area is positively correlated with

our goal of improving detractors to promoters, so they are truly useful for building

49

recommender system. However, the interpretation of negative changes is similar to the

case occurring to Opportunity and GoodJob, they are implying damaging the perfor-

mance in certain aspects somehow could achieve the improvement in final result, which

defies our common understanding. So we can comprehend this fact as those features

associating to majority of negative changes, like LikelihoodTobeARepeatCustomer

and FinalInvoiceMatchedExpectation in our analysis, rarely influence the goal of

achieving a more desirable state and they are not appropriate for being flexible at-

tributes in action rule mining.

Until now, we have a clear idea about how to prepare the settings for processing ac-

tion rule extraction, moreover, some features that seem to have potential but actually

fail in providing desirably helpful information are excluded out of our list. Overall,

the basic preparation for further work has been done and the key parts - construction

of hierarchical dendrogram and design an agglomerative algorithm are going to be

illustrated thoroughly in the following chapters.

CHAPTER 5: CLUSTERING CLIENTS SEMANTICALLY

5.1 Analysis of Individual Clients

The hierarchically structured recommender system will be client oriented in the

end, and it should be familiar with detailed information of target clients, such as how

this client performs in serving customers, how consistent its customers’ responses

are, its neighboring competitors and even their performance on services. Considering

all the valuable information, digging deeper in individual clients is inevitable and

worth doing. It has been introduced that NPS rating is used as the key measure for

evaluating a client’s performance and it is calculated as:

NPS[i] =
Num[i, Promoter]

Num[i, ∗]
− Num[i,Detractor]

Num[i, ∗]
(2)

In our following analysis, clients’ name will be replaced by numbers based on their

alphabetical order, rather than using exact actual names due to the confidentiality.

So i in Equation (2) is referring to a certain client who is labeled with this number.

By Num[i, Promoter], we mean the number of Promoter instances in the dataset of

Client i. Similarly, byNum[i,Detractor], we mean the number ofDetractor instances

in the dataset of Client i. And Num[i, ∗] indicates the total number of instances in

dataset of Client i regardless of the class categories. Then the overall NPS rating for

our entire dataset should be calculated as: NPS[∗] = Num[∗,P romoter]
Num[∗,∗] − Num[∗,Detractor]

Num[∗,∗] ,

and the result is 0.7613, which is from percentage of promoters 81.24% (34523 out of

51

42493) minus percentage of detractors 5.11% (2172 out of 42493).

Figure 15: NPS rating of individual clients comparing with overall NPS rating

Apparently, overall NPS rating cannot represent the status of NPS rating for each

client, there could be clients having better or worse NPS ratings. The Figure 15

shows the NPS ratings for each client which is computed based on Equation (2), as

well as the comparison between overall NPS rating and individual NPS rating. In the

figure, blue bars are the NPS ratings corresponding to each client labeled by numbers

at horizontal axis, higher the blue bar is, greater NPS rating the matched client has;

and red horizontal line presents the overall NPS rating. We can observe that there are

20 clients whose NPS rating is greater than the overall rating and three of them are

even over 0.8, while there is one client, Client 9, whose NPS rating is exceptionally

low, barely passes 0.5. Even if NPS rating is fairly good, there is still some space for

improvement.

52

Figure 16: F-score of individual clients comparing with overall F-score

Many efforts have been taken in the third chapter for improving the overall clas-

sification result, namely overall F-score and the overall F-score achieved in the end

of third section is 0.7038 which represents the general situation in our dataset. At

the same time, the curiosity on comparing F-score of individual clients with overall

F-score drives us to perform classification tests with J48 in WEKA to datasets of

every single client. Then Figure 16 is created to present our comparison result. Sim-

ilar as Figure 15, blue bars stand for the F-score of each corresponding client listed

at the bottom and red horizontal line shows the overall F-score. F-score can tell us

the general quality of a dataset in a way that examines the consistency of knowledge

hidden in the dataset. In Figure 16, it is found that most of the clients have better

F-score than overall F-score, except Client 18 and Client 9 again, which suggest that

the knowledge in most of individual datasets is more crucial and worthy, and their

quality could benefit more than combining all of them together. So it helps us confirm

that the idea of building personalized recommender system for every single client is

53

indeed better than building a comprehensive one.

5.2 Introduction of Semantic Similarity

It is believed that clients can collaborate with each other by exchanging knowl-

edge hidden in datasets and they can benefit from others whose hidden knowledge is

similar, so it is necessary to define a distance measure that estimates the difference

of knowledge concerning Promoter, Passive and Detractor between clients. The

following definition of semantic similarity is proposed to fulfil this purpose.

Semantic similarity is firstly mentioned in [28]. In this section, we introduce the

notion of semantic similarity between clients. Assume now that RC[1], RC[2] are the

sets of classification rules extracted from the datasets collected for clients C1, C2.

Also, we assume that

RC[1] = RC[1, P romoter] ∪RC[1, Passive] ∪RC[1, Detractor],

where RC[1, P romoter] = {r[1, P romoter, i] : i ∈ IPr}, RC[1, Passive] =

{r[1, Passive, i] : i ∈ IPs}, RC[1, Detractor] = {r[1, Detractor, i] : i ∈ IDr}, where

{r[1, P romoter, i] : i ∈ IPr} is a collection of classification rules defining ”Promoter”,

{r[1, Passive, i] : i ∈ IPs} is a collection of classification rules defining ”Passive”, and

{r[1, Detractor, i] : i ∈ IDr} is a collection of classification rules defining ”Detractor”.

In a similar way, we define

RC[2] = RC[2, P romoter] ∪RC[2, Passive] ∪RC[2, Detractor],

where RC[2, P romoter] = {r[2, P romoter, i] : i ∈ JPr}, RC[2, Passive]=

{r[2, Passive, i] : i ∈ JPs}, RC[2, Detractor] = {r[2, Detractor, i] : i ∈ JDr}.

By C1[1, P romoter, i], C1[1, Passive, i], C1[1, Detractor, i] we mean confidence of

54

r[1, P romoter, i], r[1, Passive, i], and r[1, Detractor, i] in a dataset for client C1,

respectively.

By C2[1, P romoter, i], C2[1, Passive, i], C2[1, Detractor, i] we mean confidence of

r[1, P romoter, i], r[1, Passive, i], and r[1, Detractor, i] in a dataset for client C2,

respectively.

By C2[2, P romoter, i], C2[2, Passive, i], C2[2, Detractor, i] we mean confidence of

r[2, P romoter, i], r[2, Passive, i], and r[2, Detractor, i] in a dataset for client C2,

respectively.

By C1[2, P romoter, i], C1[2, Passive, i], C1[2, Detractor, i] we mean confidence of

r[2, P romoter, i], r[2, Passive, i], and r[2, Detractor, i] in a dataset for client C1,

respectively.

Then, we can define the concept of semantic similarity between clients C1, C2

denoted by SemSim(C1, C2) in Equation(3).

SemSim(C1, C2) =
Σ{|C1[1, P romoter, k]− C2[1, P romoter, k]| : k ∈ IPr}

card(IPr)

+
Σ{|C1[1, Passive, k]− C2[1, Passive, k]| : k ∈ IPs}

card(IPs)

+
Σ{|C1[1, Detractor, k]− C2[1, Detractor, k]| : k ∈ IDr}

card(IDr)

+
Σ{|C2[2, P romoter, k]− C1[2, P romoter, k]| : k ∈ JPr}

card(JPr)

+
Σ{|C2[2, Passive, k]− C1[2, Passive, k]| : k ∈ JPs}

card(JPs)

+
Σ{|C2[2, Detractor, k]− C1[2, Detractor, k]| : k ∈ JDr}

card(JDr)
.

(3)

55

5.3 Construction of Semantic Similarity-Based Hierarchical Dendrogram

Given the definition of semantic similarity, the distance between any pairs of clients

are quantified in a semantic way and smaller the distance is, more similar the clients

are. Then a semantic similarity-based distance matrix is built above the definition.

With the distance matrix, a hierarchical clustering structure(dendrogram) is gener-

ated by applying an agglomerative clustering algorithm and the dendrogram is shown

in Figure 17.

Figure 17: Hierarchical clustering of 34 clients based on semantic similarity

Figure 17 shows the hierarchical clustering of 34 clients with respect to their se-

mantic similarity calculated by the given Equation(3). With the dendrogram, we can

easily find out the groups of clients which are relatively closer to each other in seman-

56

tic similarity. If describing it using tree structure based terminology, then every leaf

node in the dendrogram represents the corresponding client as the number shown, and

the depth of one node is the length of the path from it to the root, so less difference of

the depth between two leaf nodes, more semantically similar they are to each other.

From this hierarchically structured dendrogram, it is easily discovered that Client 9 is

not near any other clients in terms of semantic similarity since Node 9 is hung in there

in a very high level and has no siblings who are leaf nodes, which makes the minimum

difference of the depth between Node 9 and its most similar node at least 2. While

all the other nodes have options with whom the depth difference is 0 or 1, so this

makes Client 9 special again regarding its poor NPS rating and F-score. Meanwhile,

it is interesting to compare the relationship between clients from semantic similarity

angle or from physical distance angle and it turns out the conclusion is just under our

prediction. The comparison results differ from clients to clients depending on spe-

cific circumstances. On one hand, the correlation between clients based on semantic

similarity could be consistent with the differentiation in their geographical locations.

For example, Client 28, Client 31 and Client 6 are semantically close to each other

in the dendrogram, at the same time, they are actual neighbors in the geographical

map. On the other hand, it is found in several groups of clients that the semantic

distance between them is not necessarily positive correlation with the geographical

distance between them. For example, Client 24 and Client 34 are children nodes of

same parent in the dendrogram shown in Figure 17, it means that the knowledge

hidden in the datasets of Client 24 and Client 34 are similar to some extent and they

are semantically close to each other. However, Client 24 is known to be locating in

57

the west of US while Client 34 is the one at Georgia, from physical point of view, they

are extremely far away from each other and this is the most representative example in

our dataset. The inconsistency between semantic and geographical distance inspires

us to propose the following methodologies for building our recommender system in a

more appropriate way.

CHAPTER 6: HIERARCHICAL AGGLOMERATIVE METHOD FOR
IMPROVING NPS

6.1 Background

Now we firstly explain the background information concerning Hierarchical Ag-

glomerative Method for Improving NPS (HAMIS). Broadly speaking, HAMIS is able

to maximally enlarge the dataset of a specified client by following a bottom-up path in

an existing hierarchically structured dendrogram with respect to semantic similarity.

In the dendrogram, every leaf node represents a dataset of a corresponding client and

every parent node represents the merged dataset of its mergeable children. There-

fore, higher the bottom-up path ends in the dendrogram, larger the resulting merged

dataset is potentially, namely, more generalized dataset is returned by HAMIS. The

bottom-up path formed during the process links all the successfully merged nodes.

Mergeable node means the node that can be used for merging and it is identified by

the following criteria:

• It is the most semantically similar node in current situation.

• Its NPS rating is not less than the targeted client.

Given the definition of semantic similarity in the second section of this thesis, we

are capable to quantify the concept of how similar customers from different clients feel

about the provided service. Therefore, if the semantic distance between two clients

59

is relatively small, in other words, these clients are semantically close, then we could

infer that the customers from these clients think of Promoter, Passive and Detractor

in a more similar way, comparing to customers from clients that are further away

regarding semantic distance. So it is possible that action rules extracted from the

dataset covering all these semantically similar clients are useful for further improving

the NPS rating of individual client. Based on the semantic distance retrieved, we

clustered all the 34 clients using the agglomerative clustering algorithm and generated

a dendrogram as shown in Figure 17 which provides us with very efficient way to

identify the most similar clients. As mentioned previously, each leaf node of the

dendrogram stands for each client correspondingly, so the nodes that are semantically

closest should be all the leaf nodes on the sibling side. For instance, if the sibling

node is a leaf node, then there is only one node available for being the closest; while

the sibling node is a parent node, it complicates the situation since the union set of all

the leaf nodes under this sibling node should be the most semantically similar, then

certainly, all the leaf nodes on the sibling side should be counted in and be checked

one by one in a top down sequence following the depth of these nodes.

However, merging a targeted client with a semantically similar client whose NPS

rating is lower won’t fully match our expectation, since our goal is to improve the

target’s NPS rating, not conversely. But what we can be certain of is that, by merging

a client with other client whose NPS rating is not lower, we get a dataset with higher

or at least the same NPS rating. Let’s assume that NPS[i] and NPS[j] are NPS

ratings of two clients i and j, and both of them can be computed based on Equation

(2).

60

Also we assume NPS[j] ≥ NPS[i] and NPS[i ∪ j] is the NPS rating of the union

set of client i and j, so we can expect NPS[i ∪ j] ≥ NPS[i], because

if NPS[j]−NPS[i] =

(Num[j,Promoter]
Num[j,∗] − Num[j,Detractor]

Num[j,∗])− (Num[i,P romoter]
Num[i,∗] − Num[i,Detractor]

Num[i,∗]) ≥ 0,

then NPS[i ∪ j]−NPS[i] =

(Num[j,Promoter]+Num[i,P romoter]
Num[j,∗]+Num[i,∗] − Num[j,Detractor]+Num[i,Detractor]

Num[j,∗]+Num[i,∗])−

(Num[i,P romoter]
Num[i,∗] − Num[i,Detractor]

Num[i,∗]) ≥ 0.

Thus, we can surely get a joined dataset with non-decreased NPS rating.

In addition, continually keeping tracking the quality of classifiers resulting from the

merged dataset during the entire procedure is advantaging, then we will achieve the

best performance of generalization. Classification results show the quality of datasets

for mining action rules and poor quality classifiers lead to poor confidence of action

rules. Accordingly, we must make sure that the classifiers are under improvement. To

evaluate the classifiers, we use F-score that includes both accuracy and coverage of

classification into consideration. As a popular measure of assessing the classification

performance, F-score offers us a comprehensive and accurate view on our data.

Therefore, the three criteria mentioned above make the foundation of algorithm

HAMIS and the procedure of HAMIS is stated thoroughly in next section.

6.2 Presentation of HAMIS

Technically speaking, the purpose of the algorithm HAMIS is to keep expanding the

targeted client by unionizing it with all the clients satisfying the conditions. Unless

the resulting dataset for chosen client can’t be expanded any further, the algorithm

61

would be repeatedly executed. And the algorithm returns resulting dataset when it

ends. As HAMIS is built on the basis of a hierarchical dendrogram regarding semantic

distance, its procedure will be described using tree structure related terminology. The

algorithm is designed as presented in Algorithm 1.

Algorithm 1 Hierarchical Agglomerative Method for Improving NPS

Input: Ntarget: the target node.
Output: N: the node processed from Ntarget.
N ← Ntarget

repeat
N0 ← N ;
retrieve Nc which is a list of candidates Nc[1], Nc[2], ..., Nc[n];
while Nc 6= ∅ do

get next available candidate Nc[i] ∈ Nc (i ∈ {1, 2, ..., n});
if NPS[Nc[i]] ≥ NPS[Ntarget] then
Nm ← {Nc[i]} ∪N
if Fs[Nm] ≥ Fs[N] then
N ← Nm

end if
end if
Nc ← Nc \ {Nc[i]}

end while
if N0! = N then
N climbs to its parent node in upper level;

end if
until N0 = N
return N

In the procedure HAMIS, the resulting node is defined as N and it is initialized

with the input targeted node Ntarget. Once N has been given, the nodes that are

semantically closest to it are retrieved and stored in a list naming Nc. Accordingly,

Nc contains all the leaf nodes on the sibling side of current N in the dendrogram and

they are the candidates for being mergeable with N . It is apparent that at least one

candidate is required to proceed, otherwise, it means the node N has reached the root

and there are no more nodes available for merging. When proceeding, the following

62

part is the main part in HAMIS and it iterates through all the candidates in Nc on the

foundation of other two merging criteria mentioned above: NPS rating and F-score.

If a candidate Nc[i] is with not less NPS rating than the targeted node Ntarget, then

the candidate is qualified for merging. And the merged result is temporarily stored

as Nm. Nm can’t become the new resulting node N yet unless its F-score is greater

or at least equal to F-score of current N . Thus, if the resulting node N is replaced by

the merged result Nm, it suggests the merging process for current candidate succeeds

and the new N will be used for next candidate in Nc if there are still any. When a

candidate fails merging with N , the same resulting node N will be used for another

generalization attempt with next available candidate. The main part will not end

until all the candidates have been checked. If there are more than one candidate

found in Nc, they will be checked in a top down order based on their depth in the

dendrogram, smaller the depth of a candidate is, earlier the candidate will be checked.

So candidates are stored ascendingly with regards to their depth in dendrogram,

saying that for each candidate Nc[i](i ∈ {1, 2, ..., n}), depth[Nc[i+ 1]] > depth[Nc[i]],

where depth[Nc[i]] is the depth of node Nc[i] in dendrogram and i ∈ {1, 2, ..., n− 1}.

Each candidate is examined in almost the same way, while the only difference would

be a new resulting node iteratively generated by successful merging process. Evey

time a new node is merged with the resulting node, the newly updated resulting node

will be taken to the following parts.

When the main part is completely finished, the resulting node could be updated

with some nodes added in. If this is the case, it implies the resulting node has been

generalized further at current depth, so the resulting node will climb up one level in

63

the dendrogram and become the parent node of previous one. With a new resulting

node at a new depth, HAMIS will continually get all of its candidates and repeat the

main part once more. HAMIS will keep going until the resulting node at certain level

is not changed at all after main part ends or it has reached the root.

6.3 Experiments on HAMIS with Semantic Similarity-Based Dendrogram

To show the running process of algorithm HAMIS in our domain, we are going to

take Client 2 as a target for example, and the relevant data used during this procedure

is shown in Table 2. As the semantic similarity based clustering dendrogram has been

given in Figure 17 and the part of it relating to our example is shown in Figure 18,

we observe that node {2} representing Client 2 is labeled in green at the bottom and

it is the initial resulting node. As a sibling node to node {2}, node {4} is the only

candidate in Nc which is most semantically similar to node {2}, and NPS rating of

node {4} shown in Table 2 is higher. In addition, F-score calculated by J48 in WEKA

for the merged node {2, 4} is also higher than current resulting node {2}, which are

0.788 comparing to 0.783, hence the merged node {2, 4} successfully replaces {2} and

becomes the new resulting node. Meanwhile, there is no more unchecked candidates

in Nc, so HAMIS is done with current depth and will continue with the new resulting

node by climbing up to the parent node which is labeled in blue. At a new position,

because the sibling node of the current resulting node is not a leaf node, leaf nodes

{16}, {8}, {24} and {34} on the sibling side should be included in candidate set as we

defined, and they are labeled in blue as well. According to the depth of each candidate

in dendrogram, they will be checked following the top down sequence which is node

64

Table 2: NPS rating and F-score of relevant nodes in Figure 18

N{2} N{4} N{16} N{8} N{24} N{34}
NPS rating 0.765 0.803 0.767 0.802 0.724 0.779

N{2} N{2, 4} N{2, 4, 16} N{2, 4, 8} N{2, 4, 24} N{2, 4, 34}
F-score 0.783 0.788 0.776 0.786 NA 0.778

{16} first, then node {8} and {24}, and {34} at the end. Then HAMIS attempts to

merge these candidates to resulting node individually, but it turns out none of them

can successfully merge with {2, 4}.

Figure 18: Example of running HAMIS on Client 2 with semantic dendrogram

When it comes to node {16}, although its NPS rating is just a little bit higher

than the targeted node {2}, the F-score of {2, 4, 16} is much lower that {2, 4}, so the

merging of {16} and {2, 4} fails and the main part goes to the next one, which is node

{8}. The case for node {8} is exactly the same as for the node {16}, so {2, 4} is still

the resulting node without being changed and it keeps going to node {24} and {34}.

But neither of them can join {2, 4} due to either low NPS ratings or lower F-score of

joined nodes. Consequently, node {2, 4} has not been replaced with any new merged

node after all the candidates have been checked, which suggests {2, 4} is the most

65

generalized in our program for Client 2. Thus, HAMIS ends here and returns {2, 4}.

Next step, we are going to generate action rules for both generalized dataset and

original dataset of Client 2. Before the program starts, we need to specify the nec-

essary attributes. Certainly that promoter status should be the decision attributes

and the transitions we are interested in are from Detractor to Promoter. The cus-

tomers’ personal information related attributes should be seen as stable attributes, in

our experiment, attributes like customers’ name, location and contact number are set

as stable attributes. Then the attributes about customers’ feeling and comment are

selected as flexible attributes, and these are the keys for improving NPS ratings since

they tell us about the actions we should adopt. For example, attributes evaluating

if “the job is done correctly” and “the time frame of technician’s arrival” are flexible

attributes. Based on our personal knowledge about the dataset, we expect that a

huge number of action rules will be generated and we only pay attention to the one

with sufficiently high confidence, so we intend to get the action rules with at least

80% confidence.

Figure 19 shows the results of comparing action rules extracted from dataset {2, 4}

to dataset {2} alone. In the figure, blue bars display the number of exact same rules

with same support and confidence extracted from both datasets, red bar represents

the initial rules extracted from dataset {2} which are not found exactly the same as

the ones extracted from dataset {2, 4} but the action sets of these rules are contained

in the action rules from {2, 4} with higher confidence or support, which is marked

using orange bar on the bottom. Last but not the least, green bar and pink bar

show the unique rules in both action rule sets respectively that don’t exist in the

66

Figure 19: Comparison of sets of action rules generated from dataset of Client 2
before/after HAMIS

other action rule set. Firstly, we can easily see that there are twice as many as rules

generated from the expanded dataset. More specifically, we found 12, 715 action rules

from the larger dataset while 6, 026 from the original dataset. At the same time,

nearly 75% of action rules from dataset of Client 2 can be found in the set of action

rules from the more generalized dataset {2, 4} with same support and confidence.

Over 10% of action rules found in original dataset can be found in the set of action

rules from generalized dataset with higher support or confidence. Furthermore, a lot

of new action rules have been discovered and over 70% of the new action rules have

remarkably high confidence.

In order to get more convincing results, we apply HAMIS to all 34 clients individu-

ally and retrieve the generalized datasets. From the results in Figure 20, we get 18 out

of 34 clients who are generalized by HAMIS, and in average, the generalized dataset

for each client is three times as large as the original dataset. The largest generalized

dataset is from Client 7 which is far more larger than other expanded datasets. For

67

Figure 20: Performance of HAMIS on 34 clients with semantic dendrogram

comparing action rules, the results vary with different generalized datasets associated

with clients, and the set of action rules generated from those generalized datasets of

clients is at least two times larger than that from single client alone, which is still

within our expectation.

CHAPTER 7: FURTHER EXPANSION WITH GEOGRAPHICAL DISTANCE

In Section 5, the NPS rating of each client is computed and shown in Figure 15,

and we are provided with the locations of each client, so 34 clients’ approximate

locations along with their NPS ratings are collected and shown in Figure 21.

Figure 21: Approximate locations of 34 clients and their NPS ratings

This figure is a map of U.S. with the regions that clients cover and their NPS

ratings. On the map, the text shows client’s ID number and the state that client

locates, and the color of texts displays clients’ NPS rating. From the color axis on

the bottom, the minimum NPS rating in our domain is 0.503 while the maximum

is 0.86, and all the text markers are labeled by color in the order of yellow, green,

blue and red which indicates NPS rating in an ascending sequence. So Client 23 in

Mississippi has the highest NPS rating and Client 9 in Alberta of Canada has the

69

lowest. Also we can find NPS rating of clients in Canada region relatively lower than

the ones in US. After discussing with our data experts, we have been informed that it

possibly results from high requirement or different thoughts on service from customers

in Canada, or just simply because really bad service was provided.

The fact that clients can collaborate with each other by exchanging their knowledge

hidden in their datasets is our foundation for designing HAMIS, but we still believe

that clients can get helpful recommendations not only from the clients whose knowl-

edge hidden in dataset is similar, but also from those clients who target the same

groups of customers. Thus, we assume that clients locating nearby actually may

target same customers, at least groups of customers who share common thoughts

about how they think of the ideal service and how they are served in real world,

because they are sharing similar neighborhood, similar regional culture and similar

environment, which could affect the way clients deal with customers to some extent.

From the experiments of applying HAMIS with semantic similarity based clustering

dendrogram to all the clients, it turns out that there are still some clients who can’t

benefit from HAMIS due to the failure of generalization. 90% of them are caused

by the lower NPS rating of their most semantically similar clients. For example, as

one of the clients who failed in generalization, Client 5 can’t merge with Client 15

because the NPS of Client 15 is 0.762, which is slightly lower than the NPS of Client

5. However, Client 5’s geographical neighbor Client 17 has been expanded with Client

23. We can’t help thinking that the knowledge hidden in dataset of Client 5 could

be similar to the knowledge hidden in Client 17 to a certain degree. Therefore, it is

an interesting idea to think that Client 5 can benefit with the advices from Client 17

70

and even from Client 23.

Table 3: Classification results from expanded Client 24 with different clients

Clients Location Precision Coverage
Client 24 CA 80.86% 99.03%
Client 34 GA 83.41% 96.95%
Client 16 CA 82.68% 95.42%
Client 24&34 N/A 81.58% 95.74%
Client 24&16 CA 82.17% 99.44%

What’s more, the case that clients are semantically similar is not absolutely equiv-

alent to the case that they are geographically close to each other, sometimes, they

could be even far away from each other. Hence, it is not absolutely true that merging

with the most semantically similar clients is the best option for us. The most repre-

sentative example mentioned previously is Client 24 and Client 34. From figure 21,

we can see that Client 24 is in California while Client 34 stays at Georgia, they are

physically far away, but they are treated as most semantically similar nodes as it is

shown in Figure 17. Although Client 24 can successfully merge with Client 34, it can

also merge with its neighbor Client 16. As the figures show in Table 3, both precision

and coverage of classifiers on union set 24, 34 is lower than the union set 24, 16, which

is 82.17% and 99.44% comparing to 81.58% and 95.74%. Another words, F-score of

classifiers on 24, 34 is lower than F-score of classifiers on 24, 16, so it seems that

merging with Client 16 maybe a better choice for Client 24 than merging with Client

34. Following the same idea, Client 34 can’t be generalized with Client 24 because of

its lower NPS rating in previous experiments. If we want to help Client 34, we need

to offer other options like the clients nearby Client 34.

Additionally, through looking into the neighboring clients around Client 34, we

71

discover another interesting phenomenon, for Client 2, although it has been gener-

alized using semantic similarity, it is surrounded by several clients with higher NPS

ratings, which implies probably customers living in this area are more satisfied with

other clients instead of Client 2. Making a living in such competitive environment,

customers around here could have stricter requirement to clients and be harder to

satisfy, so if Client 2 doesn’t know how to serve its customers’ in a better way, its

situation could get worse and worse. Concerning all the cases above, we believe that

geographical distance could be very helpful for some clients in certain circumstances

and taking geographical distance between clients into our consideration for improving

the hierarchical structure is a promising movement.

7.1 Definition of Geographical Distance Between Clients

To build a geographical distance based hierarchical dendrogram, defining the dis-

tance between two clients is our first step. Besides knowing that each client owns a

few shops, we consulted with our data consultants to get the latest location of shops

for each client. Finally, a list including all the shops for each client is confirmed and it

is used for the estimation of the distribution of shops owned by each client. Figure 22

shows the distribution of shops crossing the entire U.S. as well as parts of Canada,

and each point in it represents one shop and points in same color belong to same

client. And the size of a point tells the NPS rating of its corresponding shop, larger

a point is, higher its NPS rating is. From that figure, we can easily notice that all

the clients own at least five shops respectively, and shops in the east of U.S. locate

more densely than in the west of U.S., shops in U.S. locate more centrally than in

72

Canada. For example, distribution of shops belonging to Client 14 and Client 9 which

are Canada clients is relatively sparser. From the distribution of shops, we can see

that company mainly focuses on the business in US, but probably more efforts are

needed in Canada due to the remarkably lower NPS rating regarding the apparently

smaller size of several points in Canada area.

Figure 22: Approximate locations of shops for 34 clients

As a result, computing the geographical distance between two clients is not as sim-

ple as we thought of computing the distance between two points. All the 34 clients

shown in Figure 22 can be seen as 34 clusters, and non-Euclidean distance is applied

here instead of Euclidean distance. Since the core idea of Euclidean distance is to find

the centroid for each cluster, retrieving the centroid for clusters that are sparsely dis-

tributed can’t suit the purpose of representing the general distance between clusters.

While non-Euclidean distance resolves such issue, it treats each shop as one point

independently and there is no “average” of two points. There are several popular

approaches in the area of calculating non-Euclidean distance and a key concept ap-

73

plied in these approaches is clustroid which is defined as the point “closest” to other

points, and the clustroid is used as a centroid to compute the intercluster distance.

The “closest” point means differentially depending on the actual circumstances, it

could be the smallest maximum distance to other points, smallest average distance

to other points or smallest sum of square of distances to other point [27]. Intercluster

distance is the minimum distance between any two points from two clusters respec-

tively [15]. In order to use a good approach that is most fitting in our situation, basic

ideas from these approaches are borrowed and combined together to develop our fol-

lowing definition. With regards to locations of shops in two clusters, every shop in

both clusters is selected as a clustroid for once during the computation process, and

one cluster are processed at a time, not crossly. The meaning of clustroid is defined

as the minimum distance to points in the other cluster. To compute the minimum

average distance to points in the other cluster, which is defined as the distance from

current cluster to the other one, intercluster distance should be calculated for every

clustroid in current cluster and then the average intercluster distance is what we need.

So the final physical distance between two clusters would be the average distance of

the distance from one cluster to the other and its distance computed in the opposite

direction.

Assume the distance that we are going to compute is the one between clients C1

and C2, and both of them own a few shops. We also assume that {S[1, i] : i ∈ IC1}

is a collection of all the shops belonging to C1, and {S[2, j] : j ∈ IC2} is a collection

of all the shops belonging to C2. Firstly starting with C1, for each shop S[1, i] where

i ∈ IC1, when a shop becomes a clustroid, its intercluster distance - the minimum

74

distance between it and any shop in C2, is calculated and represented as:

d(S[1, i], C2) = min{d(S[1, i], S[2, j]) : j ∈ IC2}, i ∈ IC1. (4)

In Equation(4), d(S[1, i], S[2, j]) is the distance between a shop S[1, i] in C1 and a

shop S[2, j] in C2, where i ∈ IC1 and j ∈ IC2. d(S[1, i], C2) is the minimum distance

from a shop S[1, i] to any shop in C2, which is understood as the distance from this

shop to C2. And the distance from every shop in C1 to C2 should be computed the

same way.

Similarly, when we are done with C1 and shops in C2 are chosen to be clustroids,

we have the distance between any shop S[2, j] in C2 and any shop S[1, i] in C1, where

i ∈ IC1 and j ∈ IC2, and the minimum distance from a shop in C2 to any shop in C1

will be:

d(S[2, j], C1) = min{d(S[2, j], S[1, i]) : i ∈ IC1}, j ∈ IC2. (5)

And distance from every shop in C2 to C1 are computed as shown in Equation(5).

Distance from C1 to C2 is the minimum average distance from C1 to C2 which

is calculated by averaging the total of the distances from shops owned in C1 to

C2. The distance from C2 to C1 is the minimum average distance from C2 to C1

which can be calculated by averaging the total distances from shops owned by C2 to

C1. Finally, the geographical distance between C1 and C2, GeoDist(C1, C2), is a

balanced distance from C1 to C2 and C2 to C1. The complete Equation is:

75

GeoDist(C1, C2) =
1

2
×(

Σ{min{d(S[1, i], S[2, j]) : j ∈ IC2} : i ∈ IC1}
|C1|

+
Σ{min{d(S[2, j], S[1, i]) : i ∈ IC1} : j ∈ IC2}

|C2|
).

(6)

In Equation(6), |C1| and |C2| mean the number of shops owned by C1 and C2

respectively.

7.2 Construction of Geographical Distance-Based Hierarchical Dendrogram

Based on Equation(6) given in last section, geographical distance between any pair

of clients can be retrieved now and a 34 × 34 distance matrix is generated and used

to build our geographical distance based dendrogram. Figure 23 is generated by

applying agglomerative clustering algorithm to the distance matrix. Similarly as the

hierarchical dendrogram based on semantic similarity in Figure 17, greater the depth

of the earliest common ancestor of two clients in the dendrogram, closer they are to

each other in geographical distance. The figure clearly demonstrates the division of

clients from the aspects of physical location in real world.

This dendrogram is another skeleton for the collection of hierarchically structured

recommender systems, and we also run HAMIS with it, exactly like it has been done

with the semantic distance based dendrogram. Same two criteria are still applied:

NPS rating and F-score, so the resulting dataset have the highest NPS rating and

F-score. The only minor difference is that geographical distance replaces semantic

similarity as first key measurement, instead of looking for most semantically similar

clients, geographically closest clients are needed to continue the procedure.

76

Figure 23: Hierarchical clustering of 34 clients based on geographical distance

7.3 Experiments on HAMIS with Geographical Distance-Based Dendrogram

To show the running process of algorithm HAMIS with geographical distance based

dendrogram in our domain detailedly, Client 5 is chosen to become our target client

since it has been mentioned as an example of motivating extension with geographical

distance earlier. Relevant data used during this procedure is shown in Table 4. As

the geographical dendrogram has been given in Figure 23 and the part of it relating

to our example is shown in Figure 24, we observe that node {5} representing Client 5

is labeled in green and it is the initial resulting node. Node {5} will be considered to

be merged with all the leaf nodes on its sibling side, which are nodes {16}, {17} and

{24}. And the strategy of checking these three nodes follows a top down sequence,

the earliest node to be checked is the one with the smallest depth. Accordingly, node

{16} will be checked first, and nodes {17} and {24} follow. It turns out that node

77

{16} fails merging with node {5} due to slightly lower NPS rating, which is 0.767

comparing to 0.77, but node {17} is successfully merged with node {5} because NPS

rating of node{17} is significantly higher than node {5} and the F-score of merged

dataset {5, 17} is also greater than the original node {5}. Thus new resulting node

{5, 17} will be used in the following procedure. Still node {5, 17} stays at the same

hierarchy until the last candidate node {24} for current hierarchy is checked. The case

for node {24} is the same as for the node {16}, thus resulting node {5, 17} climbs to

its parent node and starts the next round of generalization at a new hierarchy level in

the dendrogram. For the node {5, 17} at a new position, there is only one candidate

on the sibling side, which is node {13}. Despite the NPS rating of node {13} is 0.007

over the initial node {5}, the F-score of newly merged dataset {5, 17, 13} is less than

{5, 17}, hence HAMIS stops here with {5, 17} returned since it can’t be expanded

any further.

Figure 24: Example of running HAMIS on Client 5 with geographical dendrogram

HAMIS with geographical distance based dendrogram is also performed on the

datasets of 34 clients respectively. Figure 25 shows the comparison in size of original

78

Table 4: NPS rating and F-score of relevant nodes in Figure 24

N{5} N{16} N{17} N{24} N{13}
NPS rating 0.77 0.767 0.848 0.724 0.777

N{5} N{5, 16} N{5, 17} N{5, 17, 24} N{5, 17, 13}
F-score 0.743 NA 0.794 NA 0.787

dataset, dataset generalized with semantic dendrogram and dataset generalized with

geographical dendrogram which are represented by orange, green and red bars suc-

cessively. Longer the bar is, larger the dataset is. Overall speaking, applying HAMIS

with geographical dendrogram solves the issue left by applying it with semantic den-

drogram to some extent, clients 5, 19, 29, 30, 31, 32, 33, 34 who can not be extended

by following semantic dendrogram, actually get generalized with geographical den-

drogram. It is interesting to find that Client 2 ends with same result of merging

with Client 4 with either distance measure, which could possibly imply that Client 2

is a perfect example of showing consistency in semantic similarity and geographical

distance. For those clients who achieved remarkably larger resulting dataset by either

distance measure, we could speculate that the corresponding distance measure gains

more importance to this client than the other distance measure. For example, these

8 clients who can not be generalized by semantic dendrogram but achieved expansion

by geographical dendrogram, they may all locate in a competitive environment, as

quite a few neighboring clients gain higher NPS rating which is the main reason of

allowing these 8 clients get generalized.

By comparing the number of generalized clients with different distance measures,

we have a more comprehensive view about how they perform in our experiments.

79

Figure 25: Comparison of performance of HAMIS on 34 clients with seman-
tic/geographical dendrogram

Table 5: Number of generalized clients with specified distance measures

With Geo-distance Non-with Geo-distance
21 13

withSemSim Non-withSemSim withSemSim Non-withSemSim
13 8 5 8

Table 5 provides the relevant data to help us do the comparison. It shows that

there are 21 clients being generalized with geographical distance and more than the

number of clients being generalized with semantic similarity, and 13 out of 21 clients

get benefits from both distance measures. Also there are 8 out of 13 clients who failed

in generalization with geographical distance, neither with semantic similarity. This

inspires us to think if it is true that when a client couldn’t get help from neighboring

clients, then it is less likely that he/she can get ideas of how to improve its business

from semantically similar clients. The relationship between semantic similarity and

geographical distance is hard to figure out clearly, but still interesting to look into.

CHAPTER 8: MIXTURE DISTANCE-BASED HIERARCHICAL CLUSTERING

Recommender systems based on semantic similarity and geographical distance have

been built separately for all 34 clients with HAMIS applied, but building only one

comprehensive recommender system covering both semantic and geographical areas

will better meet our goal. To construct such recommender system, a mixture distance

measure combining semantic similarity and geographical distance is proposed to gen-

erate a new hierarchical clustering dendrogram which is the foundation of applying

HAMIS. In order to balance the importance of semantic similarity and geographical

distance in constructing the combined measure, assigning weight factors is used and

the mathematical model of the new weighted distance between any pair of clients is

defined as below:

dnew(C1, C2) = Wsem × SemSim(C1, C2)+Wgeo ×GeoDist(C1, C2),

where Wsem +Wgeo = 1.

(7)

In Equation(7), dnew(C1, C2) is the new distance between clients C1 and C2 that

we want to compute, and SemSim(C1, C2) and GeoDist(C1, C2) are semantic simi-

larity and geographical distance between C1 and C2 respectively. Through assigning

weight factors Wsem and Wgeo that are appointed to weight semantic similarity and

geographical distance respectively, the general distance between C1 and C2 will be

balanced to present the overall difference between them. Traditionally, weight fac-

81

tors are assigned by designers and appropriate factors are not given randomly, but

determined empirically with regards to the actual experiments and experience. As

experiments with HAMIS have been done and shown in previous sections, relevant

figures can give us some ideas about how to develop our own factors.

Since F-score occupies a key position through our whole research, from evaluating

the performance of classification to being a primary condition in designing HAMIS, F-

score has been always used as a measurement for guarding the quality of our process,

higher the F-score is, better the classifier has been built. Additionally, after applying

HAMIS to all 34 clients with either geographical dendrogram or semantic dendrogram,

the extended dataset for each client has not only the highest NPS score, but also the

best F-score, and the final F-scores for each client retrieved in semantic way and

geographical way are not the same which tells us the quality of knowledge hidden in

dataset to some extent. Therefore, using the final F-score provided by the generalized

dataset to build weight factors is our best choice. The following F-score based weight

factors are proposed to calculate the new distance.

Wsem =
FS ′semantic

FS ′semantic + FS ′geographical
; Wgeo =

FS ′geographical
FS ′semantic + FS ′geographical

; (8)

Where

FS ′semantic =
34∑
k=1

FSsemantic(k) and FS ′geographical =
34∑
k=1

FSgeographical(k). (9)

Equation(9) shows FS ′semantic and FS ′geographical, the overall F-score of semantic gen-

eralization and geographical generalization respectively, are computed by summing

up the F-scores from extended datasets of all 34 clients with semantic dendrogram

82

and geographical dendrogram respectively, and the overall F-score FS ′semantic and

FS ′geographical are used to build our weight factors as shown in Equation(8). Generally

speaking, for one single client, if the overall classifiers built from semantic general-

ization are better than from geographical generalization, then its semantic similarity

should occupy more percentage comparing with geographical distance to construct

the new distance between it and all the other clients.

Figure 26: Hierarchical clustering of 34 clients based on mixture distance

Therefore, a new hierarchical dendrogram has been generated based on the pro-

posed mixture distance and it is shown above. Then HAMIS is applied to 34 clients’

datasets based on the new dendrogram and the extended dataset for each client will

be used to extract action rules and meta-actions.

CHAPTER 9: EXTRACTION OF META-ACTIONS

Our ultimate task is to extract useful action rules and meta-actions for helping

clients to improve NPS rating. Meta-actions are the actions that should be executed

by clients to trigger the specific group of action rules, and they can be called triggers

as well [40] [57] [56]. In our domain, comments left by customers are stored as texts

after the questionnaires and they are our resources of generating proper triggers that

are applicable to clients. In this chapter, we mainly focus on mining meta-actions

which are the actual solutions to trigger action rules and ulteriorly improve NPS

ratings, as meta-actions plays the most critical role in our recommender system and

the process of extracting them turns out to be one of the most challenging problems

in the entire project.

The strategies for discovering action rules have been quite mature so far. In early

research, since action rules can be constructed from two classification rules [41], pre-

existing algorithms for discovering classification rules can be used to constructed

action rules, such as LERS [16] and ERID [12]. Later in [18], an algorithm for direct

extraction of action rules from a data table was proposed. However, the area of

mining meta-actions is still blossoming during these years. Although [56] presents

a methodology of mining meta-actions in medical related field, it concentrates on

selecting meta-actions to achieve preferable effect under the assumption that meta-

actions are already known. The process of discovering and identifying proper meta-

84

actions is what we need and have accomplished in this stage.

9.1 Introduction of Meta-Actions

In Chapter 4.1, the concept of action rule has been introduced, and it can be seen

as a set of atomic actions that need to be made happen for achieving the expected

result. Meta-actions are the actions that need to be executed in order to trigger

corresponding atomic actions. The concept of meta-action was initially proposed in

[58].

Table 6: Meta-actions influence matrix for S

a b d
{M1,M2,M3} b1 → b2 d1 → d2
{M1,M3,M4} a2 b2 → b3
{M5} a1 b2 → b1 d2 → d1
{M2,M4} b2 → b3 d1 → d2
{M1,M5,M6} b1 → b3 d1 → d2

Table 6 shows an example of influence matrix which describes the relationships

between the meta-actions and atomic actions influenced by them. In the table, a,

b and d are stable attribute, flexible attribute and decision attribute respectively

in decision system S, and {M1,M2,M3,M4,M5,M6} is a set of meta-actions which

hypothetically trigger action rules generated from S. Each cell in a row tells an atomic

action that can be invoked by the set of meta-actions listed in the first column of that

row. Take the first row for instance, it shows that the atomic actions (b1 → b2) and

(d1 → d2) can be activated by executing meta-actions M1, M2 and M3 together.

Unlike the traditional influence matrix in [57] and [56] which involves only one single

meta-action in each row, here the transaction of atomic actions in our domain relies

on one or more meta-actions.

85

Clearly, an action rule can be triggered with the set of meta-actions in one sin-

gle row in influence matrix as long as all of its atomic actions are listed at the

same row. Otherwise, selecting a proper set of meta-actions combined from multiple

rows becomes necessary. If we would like to activate action rule r assumed as r =

[{(a, a2), (b, b1 → b2)} ⇒ {(d, d1 → d2)}], which is the composition of two association

rules r1 and r2, where r1 = [{(a, a2), (b, b1)} → (d, d1)] and r2 = [{(a, a2), (b, b2)} →

(d, d2)], it is quite obvious that the combination of meta-actions listed in the first

and second row in Table 6 could trigger r, as meta-actions {M1,M2,M3,M4} cover

all required atomic actions (a, a2), (b, b1 → b2) and (d, d1 → d2) in r. On the other

hand, one set of meta-actions could possibly trigger multiple action rules, like the

meta-action set {M1,M2,M3,M4} triggers not only r as mentioned but also action

rule [{(a, a2), (b, b2 → b3)} ⇒ {(d, d1 → d2)}] by following the second and forth row

in Table 6, if such action rule exists in S. Also some action rules can be invoked by

more than one set of meta-actions. By selecting a proper set of meta-actions we could

benefit in triggering larger number of action rules.

Supposing a set of meta-actions M = {M1,M2, ...,Mn : n > 0} can trigger a set of

action rules {r1, r2, ..., rm : m > 0} that covers certain objects in S with no overlap,

so the coverage or support of M is the summation of the support of all covered action

rules, which is the total number of objects at the initial state that are going to be

affected by M in dataset. And the confidence of M is calculated by averaging the

confidence of all covered action rules.

• sup(M) =
∑m

i=1 sup(ri)

86

• conf(M) =
∑m

i=1 sup(ri)·conf(ri)∑m
i=1 sup(ri)

Furthermore, the effect of applying M , that is going to be used in next chapter,

is defined as the product of its support and confidence (sup(M) · conf(M)), and it

represents the number of objects in the system that are expected to be improved

by applying M , which is the foundation of calculating the increment of NPS rating

caused by it. Therefore, greater the effect of M is, more the increment of NPS rating

will be. On the other hand, there could be overlaps in the objects covered by a set of

action rules in reality. In such case, the support (coverage) of a set of meta-actions M

is actually the number of distinct objects involved with triggered action rules, which

requires us to keep tracking the objects invoked by certain meta-actions and keep out

of redundant ones.

9.2 The Process of Generating Meta-Actions

As mentioned earlier, triggers aiming at different action rules should be extracted

from respectively relevant comments which are the sources for generating meta-actions

in our domain. Let’s assume that action rule r = [{(a, a2), (b, b1 → b2)} ⇒ {(d, d1 →

d2)}] mentioned earlier is our target, and two classification rules r1 and r2 have been

used to construct r, so the clues for generating meta-actions are in the comments

stored in database satisfying the description (a, a2), (b, b1) and (d, d1) or (a, a2), (b, b2)

and (d, d2).

To generate meta-actions from a determined set of comments, five steps are de-

signed to accomplish this task: 1) Identifying opinion sentences and the orientation

with localization; 2) Summarizing each opinion sentence using discovered dependency

87

templates; 3) Identifying feature words in opinion summarizations; 4) Aggregating

opinion summarizations based on feature words; 5) Generating meta-actions with re-

gards to given suggestions. There are characteristics differing from others in each step

that will be presented in following sections. The whole process involves not only the

sentiment analysis, text summarization and feature identification, but also generation

of appropriate suggestions as meta-actions, which is more representative for our pur-

pose. Before going to details of each step in the following subsections, adjusting the

order of steps 1-4 is another uniqueness of this approach. This adjustment is based

on two reasons: a) Data is uncleaned. Unlike reviews on particular products or

experience mentioned in other research, quite a number of comments in our domain

are useless due to lack of opinion orientation for our purpose, even though they are

mentioning certain aspects; b) Former steps can benefit latter steps. After comparing

the methods of extracting aspects (features) from different formatted comments, it

turns out that dealing with the reviews in short segments is more efficient without

compromising their effectiveness. Therefore, ordering the first four steps in such way

accelerates the process by eliminating useless information and makes preparing the

data easier to handle for the next step. Most crucially, the accuracy will not be

damaged, but improved.

9.2.1 Identification of Opinion Sentences and the Orientation with Localization

To identify an opinion sentence which expresses customers’ sentiment, the presence

of opinion words is considered as a standard sign. Initially adjectives are usually used

as the main opinion words, like Hu and Liu have used only adjectives in [23], and

88

he has generated two sets of opinion words expressing positive and negative feelings.

Although these sets of opinion words are still growing continually, using them as the

only references to detect opinion words and their orientation is not sufficient due to

its generality. In some local scenarios, the lists of opinion words must be expanded

more broadly concerning some neutral words with implicit polarity. For example, a

comment “the charge was too high” can not be identified with the given lists, since

the adjective “high” is not recognized as a positive nor negative word by them, but

it definitely presents a useful message reflecting customers’ negative opinion about

the price, so the word “high” can be treated as a negative opinion word in this case.

Similarly, other special neutral words or phrases can be added as opinion words if

they reflect oriented meanings under certain circumstances without confusion, but

such addition strongly relies on designers’ knowledge about the domain.

Hence based on our own learning, some extra adjectives and verbs which are not

included in provided lists are added into our library of opinion words with clarified

orientations. Totally speaking, four types of words that could have orientations are

used to filter the appearance of opinion words and they are: verb, adjective, adverb

and noun. As long as a word in a sentence tagged as any one of the four types exists

in either extended list of opinion words, this sentence is an opinion sentence and the

orientation of a tagged opinion word depends on its ascription to which list. The

orientation of a sentence is determined by following the basic principles summarized

in [29]. However, we care more about the orientation of segments summarized in next

step with related opinion words, so only the orientation of opinion word is marked in

this part.

89

9.2.2 Summarization of Opinion Sentence based on Dependency Relationships

With opinion sentences identified, shortening them into segments is an important

procedure for following steps. Relevant research like [61] and [53] construct feature-

opinion pairs with grammatical rules describing the relationships between features

and opinion words. Without pre-identified features in opinion sentences, extracting

summaries from every sentence by following certain grammatical relations associated

with opinion words solely is also applicable and sufficient for two reasons. Firstly,

unlike other relevant works, there is no need of Part-of-Speech (POS) [31] tagging

for us in this step, as the grammatical structure of a sentence is the only factor that

we depend on; Secondly, the grammatical relations of the expected portion most

closely connecting to the opinion words in a sentence can be summarized based on

the knowledge of linguistics and used to extract a short but meaningful segment from

a complete sentence.

The foundation of this step is the grammatical relations defined by Stanford Typed

Dependencies Manual [32] and generated by Stanford Parser. A dependency relation-

ship describes a grammatical relation between a governor word and a dependent word

in a sentence and it is represented as d(G, D), where d is one type of dependency

among approximately 50 defined dependencies in [32], G and D are the governor and

dependent respectively. With the comprehensive representation of dependencies, the

nearest necessary relations associated with opinion words can be identified. Moreover,

the types of dependencies that could link to opinion words straightforwardly rely on

the type of opinion words, and Table 7 demonstrates all the discovered dependency

90

templates for four types of opinion words respectively.

Table 7: Dependency templates for extracting sentence segments

Type of
opinion
words

Dependency template Segment result

Noun
nsubj(op , Wnsubj) Wnsubj + op
prep(op, Wprep) + pobj(Wprep, Wpobj) op + Wprep + Wpobj

dobj(Wdobj, op) Wdobj + op

Adjective

nsubj(op , Wnsubj) Wnsubj + op
amod(op, Wamod) + vmod(Wamod,
Wvmod) + dobj(Wvmod, Wdobj)

op + Wamod+ Wvmod+ Wdobj

xcomp(op, Wxcomp) + dobj(Wxcomp,
Wdobj)

op + Wxcomp + Wdobj

prep(op, Wprep) + pobj(Wprep, Wpobj) op + Wprep + Wpobj

pcomp(op, Wpcomp) + dobj(Wpcomp,
Wdobj)

op + Wpcomp + Wdobj

vmod(op, Wvmod) + dobj(Wvmod,
Wdobj)

op + Wvmod + Wdobj

Adverb advmod(op, Wadvmod) Wadvmod + op

Verb

dobj(op, W) op + W
prep(op, Wprep) + pobj(Wprep, Wpobj) op + Wprep + Wpobj

xcomp(op, Wxcomp) + dobj(Wxcomp,
Wdobj)

op + Wxcomp + Wdobj

advcl(op, Wadvcl) + dobj(Wadvcl, Wdobj) op + Wadvcl + Wdobj

1 op denotes opinion word.

In Table 7, for each type of opinion words, all the other words linked with opinion

words directly or indirectly are labeled as W∗ regarding the dependency type. In one

template, there could be more than one dependency due to the existence of phrases,

and the segment result is the combination of all involved words in a sequence as

shown in the third column. When there are two or more templates associated with

one opinion word, words from all detected templates will be combined sequentially as

the words appear in the sentence. For example, if only dependency nsubj is discovered

in a sentence associated with a noun opinion word, then the final segment is extracted

91

by simply following the first row in Table 7, which gives us “Wnsubj op” with space

between words. If additional dependencies prep and pobj are discovered along with

nsubj for a noun opinion word in a sentence, then the final segment result becomes

“Wnsubj op Wprep Wpobj” by combining the results from both templates and ordering

the words according to their locations in the sentence. During the process of exploring

the dependencies in a sentence, it is extraordinarily necessary to detect the existence

of a negation relation linked to a opinion word, if there is, then the opinion word op

will be changed to not op before being used in the final segment.

9.2.3 Identification of Feature Words in Opinion Summarizations

Identifying feature words from opinion summarizations is a simpler case now, be-

cause there is at most one feature in each segment with one opinion word, sometimes

there is no valid feature existing in invalid segments. As the supervised pattern min-

ing method - label sequential rule mining in [30] and [29] is proposed to handle reviews

formated similarly as our segments, the similar idea has been broadened with our own

observations to fulfill this step.

In the training dataset, the column is used to mark sequence of words in each

segment. For example, the longest segment contains five words, then there are five

columns in training dataset and each of them is assigned name “word#” to indicate

the position of values in segments. In each row, every word in one segment is put

in its corresponding column from the beginning, along with their POS tags. Last

but not the least, every feature word in each segment will be identified and replaced

with label [feature] manually, so a segment like “pleased with attitude” will be finally

92

represented as “pleased VB with IN [feature] NN” in our training dataset, where tags

VB, IN and NN denote for verb, preposition or conjunction and noun respectively.

Then association rules are mined from the training set with assistance of WEKA,

and only the ones with label [feature] at the right hand side are kept and transformed

into patterns. Following the example given above, the association rule generated for it

is: word1=pleased VB ==> word3=[feature] NN and the pattern transformed from

it becomes: <pleased VB> <>< [feature] NN>. Inspiring by summarizing quite a

lot of valid association rules and patterns retrieved from them, we cannot help think-

ing that the tags actually help generalize the recognition of features, especially there

are limited kinds of tags appearing in our segments. For instance, <excellent JJ>

<[feature] NN> and <hard JJ><[feature] NN> (JJ denotes adjective) are two pat-

terns which form a more general one <JJ><[feature] NN> indicating that the noun

appearing right after the adjective could be the feature under certain possibility. With

regards to such observations, we are more inclined to build general patterns with only

tags to predict features, which remarkably decreases the number of useful patterns

and increases the efficiency.

9.2.4 Aggregation of Opinion Summarizations

In many sentiment analysis works, this step is to generate a final review summary

for all discovered information about features and opinions, and also rank them by

their appearances in the reviews. Besides that, more of our attention in this step is

put on avoiding the redundancy of extracted segments and clustering segments into

different classes. To fulfill this task, five feature classes are defined with a list of seed

93

words or phrase as shown in Table 8, and the number of seed words for each class is

consistently growing larger and larger to enlarge its coverage as more learning process

has been done. According to the existing flexible attributes that are introduced

in previous chapters, “Service” and “Communication” classes shown in Table 8 are

quite understandable and obvious. Meanwhile, classes “Staff” and “Technician” are

separated with regards to the suggestions from our consultants from the company,

since “Staff” should be more inclined to represent the administrative personnel or

dealers while “Technician” is more related with the person who is responsible for

fixing machines on the field or in shop. Classes “Invoice” and “Price” are also divided

into two parts concerning the difference between concepts of billing procedures and

the actual amount charged at the end of the service, which is beneficial for more

distinctly distinguishing problem laid in different classes. To cluster a segment into

the corresponding class, its feature word or the base form of its feature word is going

to be checked to see whether it exists in any list of seed words.

Table 8: Feature classes and relevant seed words

Feature Class Feature Seed Words
Service service, experience, performance, job, work, part(s), equip-

ment(s), do, done, complete, completed, fix, fixed, run
Communication communication, communicate, respond, responded, re-

sponse, call, phone, contact, reply, return, returned, re-
ceive, receiving, answer, speak

Staff staff, staffed, dealer, manager, guy, team, employee(s),
friendly, attitude

Technician technician, tech, mechanic, friendly, skill(s), diagnosis, di-
agnosing, misdiagnoses, supervision

Invoice invoice, invoicement, bill, billed, billing, match, account
Price price(s), pricey, pricing, charge, charged, amount, money,

discounts, discount, quote, pay, paid, expensive

94

However, in order to generate meta-actions, each class has been broken into several

subclasses regarding more specific aspects in a class that segments involves and their

are defined based on our common sense and learning of extracted opinion summa-

rizations as Table 9 shown.

Table 9: Feature classes, its subclasses and their seed words

Feature Class Subclasses Examples of Seed Words

Service
completeness correctly, properly, well, completed, fixed
timeliness timely, earlier, time(s), days, weeks, months

Communication

proactiveness would like, respond, heard back
ease of contact difficult, hard, better, poor
timeliness timely, delay, quicker, slow, nobody
quality (effec-
tiveness)

effectively, failed

Staff
kindness good, better, great, nice, friendly, gracious
knowledgeability knowledgeable, clueless, diagnosis, skill, pro-

fessional, trained, inexperienced
resource enough, available, resourceful, staffed

Technician
kindness good, better, great, nice, friendly, gracious
knowledgeability knowledgeable, clueless, diagnosis, skill, pro-

fessional, trained, inexperienced
resource enough, available, resourceful, staffed

Invoice
accuracy wrong, right, correct, incorrectly, correctly,

incorrect, accurate, accurately
expectation match, matching, matched, expected
timeliness quick, quicker, quickly, slow, slowly, late,

timely, time
Price competitiveness high, expensive, outrageous, fair, fairly,

good, competitive, poor, excellent, reason-
able, excessive

9.2.5 Generation of Personalized Meta-Actions

The positive opinions indicate the satisfying behaviors that should be kept doing,

so the meta-actions for them are called keeping actions. While negative opinions show

the undesirable behaviors that should be fixed, so their solutions are referred as fixing

actions. Sometimes it is straightforward to create keeping actions, since the positive

95

segments can be used directly and they are explicit enough for users to understand

and adopt. However, for negative segments, reversing them literally or removing

the negation is not always helping. To provide the most suitable fixing actions,

consulting with company partners who have expertise in this field is necessary and

useful. After detailed discussions, meta-actions targeting positive or negative aspects

in each feature class are determined and shown in Table 10.

In Table 10, two meta-actions have been generated to cover positive and negative

sides of reviews for every subclass in feature classes. By subclasses, we mean the

more specific aspects that could be designated by segments and have been intro-

duced in last section. For example, staff’s attitude is one of the subclasses in class

“Staff”, and the keeping meta-action for positive reviews and fixing meta-action for

negative reviews concerning staff’s attitude are “nice staff” and “staff show care and

respect to customers”, which reaches our goal of suggesting the shop what to do for

improvements.

9.3 Experiments

To implement our system for mining meta-actions, several existing tools from other

projects have been used. Stanford NLP part-of-speech tagger and lexicalized parser

are used for generating POS tags [31] and identifying the dependency relations [32].

The lists containing positive and negative words respectively from Liu [30] are applied

to detect opinion words and their polarities, ulteriorly the orientation of the segments.

The system is built on JAVA and the sample used to test our approach contains

116 sentences which are manually labeled with relevant information including all the

96

Table 10: Feature classes, its subclasses and their meta-actions

Feature Class Subclasses Meta-Actions

Service

completeness (k) service done correctly
(f) ensure service done correctly

timeliness (k) service done timely
(f) complete service in timely manner

Communication

proactiveness (k) keep proactive communication
(f) improve proactive communication

ease of contact (k) keep ease of contact
(f) improve ease of contact

timeliness (k) keep responding to customers timely
(f) decrease dealer response time

quality (k) keep quality of communication
(effectiveness) (f) improve quality of communication

Staff

attitude (k) nice staff
(f) staff show care and respect to customers

knowledgeability (k) knowledgeable staff
(f) improve staff’s knowledge

resource (k) sufficient staff
(f) have a proper number of staff

Technician

attitude (k) nice technician
(f) show care and respect from technician

knowledgeability (k) knowledgeable technician
(f) improve technicians’ knowledge

resource (k) sufficient technician
(f) need more technicians

Invoice

accuracy (k) accurate invoice
(f) make invoice accurate and clear

expectation (k) reasonable invoice
(f) properly set invoice expectations

timeliness (k) invoice billed timely
(f) more timely invoicing

Price
competitiveness (k) competitive price

(f) justify price
1 k: keeping action.
2 f : fixing action.

expected results for each step, such as opinion sentence (or not) and opinion words

orientation for the first step, and so on. In order to evaluate the performance, three

common measurements are defined as shown below, where Num(*) represents the

97

number of records as ∗ described.

precision =
Num(generated results matching our expectation)

Num(all generated results)
(10)

recall =
Num(generated results matching our expectation)

Num(all expected results)
(11)

F − score =
2× precision× recall
precision+ recall

(12)

Table 11: Experiment results of major steps

Precision Recall F-score
Opinion Sentence Identifier 0.833 0.696 0.758
Opinion Sentence Summarizer 0.883 0.8 0.839
Feature-Opinion Pair Mining in [61] using
method in [23]

0.403 0.617 0.488

Feature-Opinion Pair Mining in [61] using
method in [61]

0.483 0.585 0.529

Feature Words Identifier 0.81 0.71 0.757
Feature Mining in [61] using method in [23] 0.457 0.708 0.555
Feature Mining in [61] using method in [61] 0.595 0.682 0.636
Feature Aggregator 0.78 0.733 0.753
Meta-Action Generator 0.78 0.75 0.764

After the sample data is processed with the proposed procedures, precision, recall

and F-score are computed and shown in Table 11, and also some data from other

work are included. Firstly, although there is no other comparable results for Opinion

Sentence Identifier, its performance is very satisfying, its F-score is over 0.75 and

the precision is over 0.8. Secondly, if comparing the performance of Opinion Sentence

Summarizer and Feature Words Identifier in our work to the average results of feature-

opinion pair mining and feature mining in [61] using approaches from [23] and [61]

respectively, it is quite obvious that our approach achieves much better results in

98

all three measurements, F-score of our Summarizer reaches as high as 0.839 while

F-score of aspect identifier is over 0.75. The accuracy of Feature Aggregator shown in

the last row of Table 11 is very optimistic. For Meta-Action Generator, there are 30

fixing actions provided in the list, and the performance of mapping them to specific

segments is very acceptable, and its F-score is 0.764. Thus, the experiments confirm

our expectation concerning the proposed method.

Generally speaking, the typical procedure of feature-based sentiment analysis in

[23], [24] and [7] proceeds without opinion sentence summarization. Later, although

[61] and [53] have completed some work on opinion summarization by mining feature-

opinion pairs, our approach accomplishes opinion summarization by following the dis-

covered templates of dependency relations involving expanded opinion words solely,

and features in the summarized opinion segments are recognized by applying tag-

dominated patterns transformed from association rules. Compared with other rel-

evant work, our Sentence Summarizer and Feature Words Identifier achieve higher

accuracy in the experiments, which proves the effectiveness of the atypically ordered

and accordingly adjusted procedures. Besides adapting the traditional sentiment anal-

ysis into our project, designing the unique procedure - generation of meta-actions -

resolves the demands for providing proper solutions to exposed problems, and the

experiments also demonstrate its impressive effect. Moreover, we believe this pro-

cess can be applied to other areas for solving the discovered problems with their

personalizations.

CHAPTER 10: IN SEARCH FOR BEST META-ACTIONS TO BOOST
BUSINESS REVENUE

In previous chapter, the method of mining meta-actions from customers’ reviews in

text format has been proposed and implemented. However, it turns out that the dis-

covered action rules need more than one meta-action to be triggered, and each action

rule is triggered by different groups of meta-actions. In the ideal scenario, all discov-

ered action rules should be triggered. The way and the order of executing triggers

causes new problems due to the commonness, differential benefit and applicability

among sets of meta-actions, so finding the smallest sets of meta-actions triggering all

action rules becomes important. Each meta-action has some parameters assigned to

it covering its effect and so on, but the applicability or feasibility of meta-actions in

practice should be judged by professionals in the field, our concentration is put on

designing a strategy to hierarchically sort and arrange so called meta-nodes (used to

represent action rules and their triggers in a tree structure) in a certain way as well

as to compute the effect of each meta-node. Based on that, users will have more

concrete clues for adopting groups of meta-actions in reality by following the paths

in trees built from these mate-nodes, as long as the increment of NPS by triggering

them is above certain threshold. In another word, some meta-actions may not be

executed at all due to their unsatisfying impact.

100

10.1 Background

The importance of a well organized and informative result is mentioned briefly

earlier. Now, the detailed reasons for pursuing that are explained below:

1. The commonness between sets of meta-actions tells about an enhancement.

Although actions rules are triggered by different sets of meta-actions, there are

some meta-actions which exist in different sets. The commonness between two

sets of meta-actions is defined as the percentage of the common meta-actions

both sets occupy in the smaller set. If the commonness between two sets equals

to 1, then the smaller set belongs to the larger one. In this case, with the larger

set of meta-actions applied, besides the action rules covered by it, the action

rules covered by the smaller set are also invoked. So the effect of executing the

larger set of meta-actions is expected to be enhanced with the effect of smaller

one added.

2. The effect of sets of meta-actions tells about a preference. Generally speaking,

in contrast to the smaller set of meta-actions, it is understandable that the

larger set to which a smaller one belongs is more preferable to clients due to its

greater effect. On the other hand, for disjoint sets of meta-actions, the selection

preference is no longer built on the commonness, but to some extent directly on

their effect. Another word, the ones with more significant effect are certainly

more preferable to clients.

3. The applicability of certain meta-actions tells about a rejection. In our domain,

101

an action rule will not be effective unless all required meta-actions have been

taken. So, clients are encouraged to perform all given meta-actions to achieve

the expected improvement. But in real life, we can foresee that some of meta-

actions would be rejected by clients under great possibility as they are more

difficult or pricey to be executed than other ones and they are not worth it in

clients’ opinion. For example, if clients are recommended with a set of meta-

actions in which lowering the price is included, clients will not like it according

to our consultants, even though they are advised by the system to do so for

pleasing the customers who complain about the charge. So meta-actions with

poor applicability will lead to rejections from clients.

Considering these three reasons together, the decision of choosing meta-actions to

apply does not solely depend on us any more, as our system can calculate the effect

of sets of meta-actions, but we are not the experts in estimating the difficulty or cost

of adopting certain meta-actions in the field. The decision must be done by clients

and technicians who have professional knowledge about this practice. Also, it should

be mentioned that clients probably would ignore a set of meta-actions if its effect

and cost are remarkably unbalanced and there is an alternative. So the final decision

should be determined by our clients who weight the effect and cost of applying some

actions with their experience and expertise, which proves the necessity of developing

this strategy.

The strategy aims to create actionable paths that are well classified from groups

of meta-actions and lead to certain increment of NPS rating. These actionable paths

102

can be seen as a forest of trees where each tree is made of one or more meta-nodes

that are hierarchically structured regarding their relation. A meta-node is a potential

choice for clients to consider and it represents a set of action rules and their triggers.

So, the effect of a meta-node is the effect of the group of meta-actions in it. In a

tree (or path), the connection between two nodes is a parent-child relationship and

it indicates that the commonness between the groups of meta-actions contained in

them equals to 1. So the node with smaller set of meta-actions is defined as the

parent of the node with larger set and it is put on an upper level. Lower a meta-node

is located in a tree, greater its effect is. The parent-child relationship is a many to

many mapping, as one node can have more than one parent, and a parent node can

have more than one child. Details concerning the process of generating these trees

are illustrated thoroughly in the following sections.

10.2 Advanced Matrix: Transformation of Influence Matrix

To find triggers for action rules, influence matrix introduced in Section 9.1 is a

semi-product for us and it should be transformed into an advanced representation to

demonstrate the triggers for each rule straightforwardly. Table 12 is an example of

advanced matrix. In the table, there are n meta-actions in total and Mi represents

every single meta-action, where 0 < i < n + 1. There are m action rules and rule j

denotes every generated action rule, where 0 < j < m + 1. For each row, each cell

corresponding to the meta-action that is responsible for triggering rule j is filled with

1, while other cells are filled with 0.

Advanced matrix is transformed from influence matrix. Based on advanced matrix,

103

Table 12: Advanced matrix: action rules and their triggers (meta-actions)

M1 M2 M3 ... Mn

rule 1 0 1 1 ... 1
rule 2 1 0 1 ... 1
rule 3 0 0 1 ... 1
rule 4 0 1 0 ... 1

...
rule m 0 0 1 ... 1

the association between meta-actions and action rules becomes more apparent and

it is easy to sort all the meta-actions by their popularity, which is the basis of the

following procedures.

10.3 Presentation of the Strategy

As mentioned earlier, the goal of our strategy is to build a forest of trees where

each tree is composited by meta-nodes that are linked via a parent-child relationship.

Algorithm 2 is designed to organize the advanced matrix in a hierarchical manner and

generate a list of meta-nodes T, so it is obvious that an advanced matrix M should

be given. At the beginning of Algorithm 2, meta-list and rules are prepared, which

are a list of meta-actions descendingly sorted by their popularity in M and a set of all

action rules in M respectively. Meanwhile, a map MetaMap and a list T are initialized

as well. MetaMap is created to store the mappings (entries) from sets of meta-actions

to their sets of action rules during the entire process. Generally speaking, the content

in an entry or mapping in MetaMap is identical to a meta-node at the end of the

algorithm and each action rule can be involved with only one mapping. The list T

will be used to store the continually generated meta-nodes and it will be our final

product.

104

Algorithm 2 Hierarchically Organize Triggers Algorithm

Input: M: advanced matrix containing action rules and their corresponding triggers.
Output: T: a list containing all generated meta-nodes.

Generate meta-list: a list of meta-actions that are descendingly sorted by their
popularity in M ;
Generate rules: a set of all action rules in M ;
Initialize MetaSets (meta-action-set, mapped-rules);
Initialize a list T for storing all generated meta-nodes;
for meta ∈ meta-list do
for r ∈ rules do
if meta is one of r’s triggers then

retrieve entry E (meta-action-set, mapped-rules) for r ∈ mapped-rules from
MetaSets;

if E is valid then
add a new entry E′(meta-action-set ∪ {meta}, {r}) to MetaSets;
mapped-rules = mapped-rules \ {r};
if mapped-rules is empty then

remove entry E (meta-action-set, mapped-rules) from MetaSets;
else

keep entry E (meta-action-set, mapped-rules) in MetaSets;
end if

else
retrieve entry E′ ({meta}, mapped-rules);
put entry E′ ({meta}, mapped-rules ∪ {r}) to MetaSets;

end if
if meta-action-set ∪ {meta} trigger r completely then
T = TreeEditor(meta, r, meta-action-set, T);

end if
end if

end for
end for
Sort meta-nodes in T by their size ascendingly and effect descendingly.
return T ;

With a sorted list of meta-actions, the algorithm repeatedly runs the main part

with one meta-action at a time from the most frequent to least frequent one. Given

a meta-action (which is represented as meta) in each round, all the action rules are

iterated one by one and only the ones associated with meta in M will be continued to

the following procedures. For each continued action rule (which is denoted as r), the

105

existence of a mapping established in MetaMap involving r differs the way of handling

it and we can easily tell its existence by attempting to retrieve a mapping E associated

with r from MetaMap. If the mapping is valid, it indicates that other triggers for r

have been processed and stored in E before meta, so a non-empty set of meta-actions

(which is denoted as meta-action-set) is retrieved along with its mapped-rules set

from E; Otherwise, a new mapping from meta to r should be established instead. In

terms of a valid mapping, it is defined as a mapping with a non-empty key (set of

meta-actions) in our domain, so an empty entry will be found if a mapping is invalid.

For the former situation with a valid existing mapping discovered, it is apparent that

a new mapping E to r has to be built due to the enlargement of its triggers, and the

existing mapping E has to be updated accordingly to keep the distinctness of action

rules. Building a new mapping in MetaMap by creating a new entry E with meta

added into the retrieved meta-action-set and mapped to r is straightforward, so is the

removal of r from mapped-rules in the existing entry E. But there is no necessity of

keeping E if its action rule set becomes empty after the removal, with regards to the

definition of a valid mapping. Similarly, building a new entry E with only {meta}

mapped to {r} in MetaMap for the latter situation is simple as well. However, it is

possible that a mapping from meta already exists. If this is the case, which implies

another set of actions rules that can be triggered by meta have already been stored,

then r should be added into the existing set of action rules mapped from meta, instead

of creating a new mapping.

Every time a new mapping (or entry) E′ is put into MetaMap, no matter if it is from

an existing mapping or not, Algorithm 3 will be called on the condition that current

106

Algorithm 3 TreeEditor

Input: meta: a single meta-action.
r: an action rule.
meta-action-set: a set of meta-actions.
T: a tree storing the current added meta-nodes and their relationship.

Output: T
retrieve meta-node N (meta-action-set ∪ {meta}, *) from T;
if N is valid then

set N as (meta-action-set ∪ {meta}, * ∪{r});
set effect(N) = effect(N) + num(new objects triggered by r) · conf(r);
if N is someone’s parent then

update N’s children’s effect.
end if

else
set N as (meta-action-set ∪ {meta}, {r});
set effect(N) = num(distinct objects triggered by r) · conf(r);
add N into T;
attempt to retrieve N’s parent meta-nodes P in T;
if P is not empty then

set every one of P as N’s parent;
set effect(N) = effect(N) +

∑|P |
i=1 num(new objects from Pi) · conf(∗);

end if
end if
return T ;

action rule r is fulfilled. By r is fulfilled, we mean that the set of meta-actions in the

new entry E′ is all we need to trigger r according to advanced matrix M. Algorithm

3 is responsible for two tasks: constructing meta-nodes and building trees by linking

meta-nodes regarding their relation, which requires relevant information including

current meta-action meta, current action rule r, meta-action-set from E and of course

T for storing meta-nodes. To construct a meta-node for a most recently fulfilled rule

r, the first step is to check whether there is a meta-node in T which contains the

same set of meta-actions as r does but fulfilling other rules. Since every meta-node

can be seen as a mapping in MetaMap, the validity of a meta-node is evaluated in a

similar way as we did for validating a mapping previously. As shown in Algorithm

107

3, if the meta-node N retrieved for the purpose of validation from T is non-empty,

then r should be added into the action rule set along with other rules represented as

* that have already been stored in N. Otherwise, it means that N is empty, so a new

entry (meta-action-set ∪ {meta}, {r}) should be assigned to N and added into T as

a new meta-node. With a newborn meta-node N, the last but not least step is to

set up the parent-child relationship through looking for its parent nodes. The parent

nodes will not exist unless the mapping E′ is extended from an existing mapping with

one meta-action less in previous procedures in Algorithm 2. Therefore, as long as

the meta-nodes retrieved by looking for meta-nodes each of which has a set of meta-

actions with any one meta-action dropped from (meta-action-set ∪ {meta}), they are

N’s parents. On the other hand, it is unnecessary to set up the relationship for a

newly updated meta-node because its parent must be found when it was made.

Besides organizing sets of meta-nodes hierarchically as a tree, computing the ex-

pected effect of each meta-node during the process is another characteristic step in

our strategy. It provides clients with concrete clues to evaluate the worth of those

meta-actions. Since the effect of triggering a single action rule is defined as the prod-

uct of its support and confidence, the effect of a meta-node is the summation of the

effect of triggering all action rules in it, in another word, it is the product of the num-

ber of distinct objects without duplicate ones and their respective confidence from

related action rules. So whenever a new action rule is activated and added into an

existing meta-node, its effect must be assigned into the meta-node by tracking the

newly triggered objects and their confidence. Additionally, if this existing meta-node

has any children, its children’s effect need to be updated with the same amount as its

108

parent does. And for a newborn meta-node, besides its own influence computed on

the basis of our regulations, its effect is strengthened with each of its parent’s help

unless its parents do not exist. Similarly, the portion of effect inherited from parent

meta-nodes that enhance current meta-node’s performance should be caused by the

number of objects from each parent node which are new to current meta-node and

their corresponding confidence.

The size of a meta-node implies the number of meta-actions stored in it. Ultimately

Algorithm 2 will sort the meta-nodes in T by their size ascendingly and their effect

descendingly, and then return T after all the meta-actions in meta-list have been

processed. An example of printed result will be shown in the next section.

10.4 Experiments

To test its performance, experiments are carried out with the implementation of the

proposed algorithm in JAVA. Firstly, we take a small sample of data as an example

to show the procedures in Algorithm 2 and the representation of final results. Table

13 is the advanced matrix in our example, and there are six action rules and four

meta-actions involved in it. These four meta-actions are descendingly sorted by their

popularity in meta-list as {M3, M4, M2, M1} and they will be checked one by one in

such order.

Hence, with M3 as the most frequent meta-action in the list, all the action rules

associated with it will be stored in an entry in MetaMap at the first round, which is

({M3}, {r1, r2, r3, r4, r6}). There is no action rule that has been fulfilled, so no meta-

node will be made yet. When it comes to M4, the action rules involving it are handled

109

Table 13: Advanced matrix for the sample data

M1 M2 M3 M4

r1 0 1 1 1
r2 1 0 1 1
r3 0 0 1 1
r4 0 1 0 1
r5 1 1 1 0
r6 0 0 1 1

in different ways. Action rules that have already been stored in MetaMap, like r1, r2,

r3 and r6, should be moved to another mapping with {M3, M4}, and the previous

mapping becomes ({M3}, {r4}). For action rules that are new to MetaMap, a new

entry is built and it is ({M4}, {r5}) in this example. In terms of building meta-nodes,

when iterating action rules top down, we would find that r3 is fulfilled with {M3,

M4}. Obviously a meta-node ({M3, M4}, {r3}) should be built and it parent who is

suppose to be ({M3}, *) doesn’t exist, so no parent is affiliated and its effect is sup(r3)·

conf(r3). And the same meta-actions trigger r6 as well, so the meta-node becomes

({M3, M4}, {r3, r6}), and its effect is updated as sup(r3)·conf(r3)+sup(r6)·conf(r6).

We should take care of its children’s effect as well, but there isn’t any, so nothing

needs to be done. As all the action rules are appeared in MetaMap now, we focus

on creating new mappings from existing ones and updating the existing mappings

by following the requirements. Along with the same procedures being performed to

the rest meta-actions, more meta-nodes will be built, such as ({M3, M4, M2}, {r1}),

({M2, M4}, {r4}) and so on. Whenever a new meta-node is made, it is necessary

to look for its parent. For instance, meta-node ({M3, M4, M2}, {r1}) is a mapping

extended from {M3, M4}, and meta-node ({M3, M4}, {r3, r6}) does exist, thus these

110

Figure 27: Experiment result with given example

two meta-nodes should be connected with a parent-child relationship as the former is

a child of the latter. Meanwhile, the effect of the children node is potentially its own

effect plus its parent’s effect.

When the algorithm comes to the end, a list of meta-nodes will be printed as Figure

27 shows. There are five meta-nodes generated and they are listed in an descending

order according to their effect in a group of nodes with same size, which is basically

the priority that clients follow to judge them. In the group of meta-nodes involving

two meta-actions, meta-node0 has the greatest effect and it has two children with size

3 who are meta-node2 and meta-node3. In the group of meta-nodes involving three

111

Figure 28: Partial experiment result with a larger sampling

meta-actions, meta-node2 has the greatest effect 8.15, which is also the greatest effect

among all generated meta-nodes.

Similar as running the program with the example, we run it for a larger sample

data with 802 action rules generated and 5 meta-actions extracted, and the program

sorted the result in a format as shown in Figure 27, which consists of 19 meta-nodes,

their relations and their effect. Figure 28 shows the simplest meta-node that has the

greatest effect. From Figure 28, it is clear that meta-node0’s effect is 11.17 and it

have four children including meta-node5, meta-node6, meta-node7 and meta-node9.

Among its children, meta-node5 has the most significant effect, which indicates that

the effect will be doubled with one more meta-action improve price competitiveness

applied, in contrast to applying meta-node0 only. However, meta-node6 is probably

more preferred by clients in reality, because it has almost the same effect as meta-

node5, and the second meta-action in meta-node6 nice technician is more applicable

and acceptable by clients than improve price competitiveness in meta-node5. From

112

the example result shown in Figure 28, it is clear that the strategy helps clients select

actions at top priority by considering the predicted effect as a partial reason for the

final decision. What’s more, the experiment with larger dataset proves the efficiency

of organizing the meta-actions in the proposed way, because the number of generated

meta-nodes is much less than the number of action rules or the possible subsets of

meta-actions for triggering action rules. On the other hand, the effect of applying sets

of meta-actions is calculated in a more accurate way with the definition of parent-

children relationship. Therefore, this strategy absolutely provides a more effective

way for clients to make the maximum profit out of the generated suggestions, and

conclusively fits our anticipation.

CHAPTER 11: CONCLUSION

In this dissertation, a hierarchically structured recommender system driven by ac-

tion rules and meta-actions has been designed to improve customers’ satisfaction, in

another word, improve clients’ NPS scores by applying proper actions. During the

process of building the system, we have confronted following issues: 1) The given

dataset contains human made mistakes and inconsistently formatted features with

poor representation; 2) Initial classification result is too weak for further analysis;

3) It is useful to find similar clients and merge them together because they can learn

from each other to improve their service; 4) Suggestions to clients need to be built

from the valuable information hidden in customers’ reviews stored in text format;

5) Selecting proper set of meta-actions is needed for better performance of applying

them. To respectively address different problems, following procedures have been pro-

posed and realized: a) Data preprocessing procedures involving data transformation,

feature construction and feature selection have been conducted to result in better

data representation and quality; b) Proper classification methods and experiments

have been deployed to handle the issue of poor classification result, and experiments

of mining action rules have been designed to prepare the settings for future purpose;

c) Hierarchical structure has been built based on the mixture distance and used as the

foundation of proposed hierarchical agglomerative algorithm HAMIS which follows a

bottom-up path in the dendrogram and merges similar clients’ datasets under certain

114

conditions. d) A new strategy for extracting meta-actions from customers’ comments

in text format has been designed and implemented. e) A method for boosting the

performance of applying generated meta-actions has been developed and achieved

satisfying results.

11.1 Initial Work for Data Analysis

To provide a well represented dataset with high quality and get ready for our future

analysis, the original dataset has been preprocessed with three major steps:

1. Important features in various types have been transformed into consistent and

more convenient formats with better representation, new features have been

created to present extended information derived from existing ones, and the

most representative features have been selected to build our dataset;

2. The classification algorithm in WEKA that achieved the best result in our

domain has been selected. Based on that, construction of hierarchical features,

normalization, discretization and addition of new features have been used to

improve the classification performance.

3. To get prepared for mining action rules for each client in the future, initial

experiments have been conducted and the setting for mining action rules has

been determined.

Through the analysis work that is done afterwards, it is proved that the preparation

work has built a firm foundation for our subsequent work, which makes it more

efficient and smooth.

115

11.2 Hierarchical Agglomerative Method for Improving NPS

We know the fact that clients can learn from others who are similar and have

better performance in NPS. To evaluate the similarity between clients, semantic sim-

ilarity and geographical distance have been calculated. Semantic similarity measures

the difference of knowledge hidden in datasets concerning Promoter, Passive and

Detractor between clients. Beyond that, weight factors have been assigned to se-

mantic similarity and geographical distance for balancing them and resulting in a

mixture distance. Given the mixture distance between clients, an agglomerative clus-

tering algorithm has been applied to generate a hierarchical clustering dendrogram,

which forms the fundamental architecture built in our system.

Based on the hierarchical dendrogram, Hierarchical Agglomerative Method for Im-

proving NPS (HAMIS) has been proposed to maximally enlarge a client’s dataset by

merging it with other clients who are clustered closely in dendrogram and have better

performance in NPS and classification. Through our experiments on processing all

clients with HAMIS, we conclude that more action rules with high confidence have

been extracted from the extended dataset.

11.3 Extraction of Meta-Actions and Performance Boost

Action rules and meta-actions are used to advise clients for improving their perfor-

mance, as the area of mining meta-actions is quite mature so far, but the method for

extracting meta-actions is still under development, therefore, we mainly concentrate

on designing strategies for mining meta-actions as the actual solutions returned to

clients. To mine meta-actions from customers’ comments in text format, a strategy

116

involving sentiment analysis, opinion summarization, feature identification and ag-

gregation and most characteristically meta-action generation have been developed,

and the experiments have been accomplished to prove its effectiveness and flexibility.

Besides generating meta-actions, providing clients with more concrete suggestions

concerning the order, effect and applicability of executing them is also an important

topic in our work. In our strategy of boosting the performance, we aims to create

actionable paths that are well classified from groups of meta-actions and lead to

certain increment of NPS rating, these actionable paths are a forest of trees where

each tree consists of one or more meta-nodes which are hierarchically structured

regarding the parent-child relationship between them. In the end, a list of meta-nodes

containing sets of meta-actions will be returned and they are sorted ascendingly by

the number of meta-actions in it and descendingly by their effect.

11.4 Future Work

From the perspective of applications, our recommender system has great potential

and continuing our work in following aspects makes it more adaptive and feasible:

1. The extraction of meta-actions can be improved continually with no doubt.

Currently, our strategy greatly relies on our knowledge about the domain and in

natural language processing, as more learning process is achieved in the future,

more opinions will be identified and extracted for generating meta-actions. On

the other hand, regardless of the limitation on manually proposing meta-actions

to respective features, there is great possibility that more meta-actions will be

designed when new features are discovered.

117

2. Our dataset is continually growing over the years, and it is inevitable that new

datasets will be collected and expected to show new insights on the most recent

performance. However, current system is not capable of processing new datasets

without loading it into the dendrogram. Constructing a new dendrogram when-

ever retrieving a new dataset is not an ideal solution due to low efficiency and

time issue, so developing an advanced adaptive module to handle new datasets

seems to be a better choice.

3. For the best usage of our system, building a program with intuitive interface

which allows clients to use it in reality becomes a crucial part on our way of

proving the effectiveness and applicability of our system, and the system is

now under construction. To build our recommender system in an user-friendly

way, we keep discussing with our partners from the company and modifying the

frame as advised. Currently the system prototype has been completed and it

will become more powerful with the newly embedded or enhanced modules.

118

REFERENCES

[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. Knowledge
and Data Engineering, IEEE Transactions, 17(6):734 – 749, 2005.

[2] M. Balabanovic and Y. Shoham. Fab: Content-Based, Collaborative Recommen-
dation. Communications of the ACM, 40(3):66 – 72, 1997.

[3] C. Basu, H. Hirsh, W. Cohen, et al. Recommendation as classification: using
social and content-based information in recommendation. In AAAI/IAAI, pages
714–720, 1998.

[4] J. Bazan. A comparison of dynamic and non-dynamic rough set methods for
extracting laws from decision table. Rough sets in knowledge discovery, 1:321–
365, 1998.

[5] J. G. Bazan, M. S. Szczuka, and J. Wroblewski. A new version of rough set
exploration system. In Rough Sets and Current Trends in Computing, pages
397–404. Springer, 2002.

[6] D. Billsus and M. J. Pazzani. User modeling for adaptive news access. User
modeling and user-adapted interaction, 10(2-3):147 – 180, 2000.

[7] S. Blair-Goldensohn, K. Hannan, R. McDonald, T. Neylon, G. A. Reis, and
J. Reynar. Building a sentiment summarizer for local service reviews. In WWW
Workshop on NLP in the Information Explosion Era, volume 14, 2008.

[8] L. Breiman. Random forests. Machine learning, 45(1):5 – 32, 2001.

[9] R. Burke. Knowledge-based recommender systems. Encyclopedia of Library and
Information Science, 69, 2000.

[10] Y. H. Cho, J. K. Kim, and S. H. Kim. A personalized recommender system
based on web usage mining and decision tree induction. Expert Systems with
Applications, 23(3):329 – 342, 2002.

[11] M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, and M. S. D. Netes. Combin-
ing content-based and collaborative filters in an online newspaper. In Proceedings
of ACM SIGIR workshop on recommender systems, volume 60. Citeseer, 1999.

[12] A. Dardzinska and Z. Ras. Extracting rules from incomplete decision systems.
In Foundations and Novel Approaches in Data Mining, pages 143–153. Springer,
2006.

[13] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised dis-
cretization of continuous features. In Machine learning: proceedings of the twelfth
international conference, volume 12, pages 194–202, 1995.

119

[14] U. Fayyad and K. Irani. Multi-interval discretization of continuous-valued at-
tributes for classification learning. In Proceedings of the Thirteenth International
Join Conference on Artificial Intelligence, 1993.

[15] V. Ganti, R. Ramakrishnan, J. Gehrke, A. Powell, and J. French. Clustering large
datasets in arbitrary metric spaces. In Data Engineering, 1999. Proceedings.,
15th International Conference on, pages 502–511. IEEE, 1999.

[16] J. Grzymala-Busse. A new version of the rule induction system LERS. Funda-
menta Informaticae, 31(1):27–39, 1997.

[17] R. Gutierrez-Osuna and H. T. Nagle. A method for evaluating data-preprocessing
techniques for odor classification with an array of gas sensors. Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 29(5):626 – 632,
1999.

[18] A. Hajja, Z. Ras, and A. Wieczorkowska. Hierarchical object-driven action rules.
Journal of Intelligent Information Systems, 42(2):207 – 232, 2014.

[19] M. A. Hall. Correlation-based feature selection for machine learning. PhD thesis,
The University of Waikato, 1999.

[20] M. A. Hall and G. Holmes. Benchmarking attribute selection techniques for
discrete class data mining. Knowledge and Data Engineering, IEEE Transactions
on, 15(6):1437–1447, 2003.

[21] Z. He, X. Xu, S. Deng, and R. Ma. Mining action rules from scratch. Expert
Systems with Applications, 29(3):691 – 699, 2005.

[22] W. Hill, L. Stead, M. Rosenstein, and G. Furnas. Recommending and evaluating
choices in a virtual community of use. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 194–201. ACM Press/Addison-
Wesley Publishing Co., 1995.

[23] M. Hu and B. Liu. Mining and summarizing customer reviews. In Proceedings of
the tenth ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 168–177. ACM, 2004.

[24] M. Hu and B. Liu. Mining opinion features in customer reviews. In AAAI,
volume 4, pages 755 – 760, 2004.

[25] R. Jensen and Q. Shen. Fuzzy-rough sets assisted attribute selection. IEEE
Transactions on Fuzzy Systems, 15(1):73 – 89, 2007.

[26] S. B. Kotsiantis, D. Kanellopoulos, and P. Pintelas. Data preprocessing for
supervised leaning. International Journal of Computer Science, 1(2):111 – 117,
2006.

120

[27] S. Krolak-Schwerdt, P. Orlik, and A. Kohler. A regression analytic modification
of Wards method: A contribution to the relation between cluster analysis and
factor analysis. In Classification, Data Analysis, and Knowledge Organization,
pages 23–27. Springer, 1991.

[28] J. Kuang, A. Daniel, J. Johnston, and Z. Ras. Hierarchically structured recom-
mender system for improving NPS for a company. In Rough Sets and Current
Trends in Computing, pages 347–357. Springer, 2014.

[29] B. Liu. Sentiment analysis and subjectivity. Handbook of natural language pro-
cessing, 2:627–666, 2010.

[30] B. Liu, M. Hu, and J. Cheng. Opinion observer: analyzing and comparing
opinions on the web. In Proceedings of the 14th international conference on
World Wide Web, pages 342–351. ACM, 2005.

[31] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2), 1993.

[32] M. D. Marneffe and C. Manning. Stanford typed dependencies manual. Technical
report, Technical report, Stanford University, 2008.

[33] W. N. H. W. Mohamed, M. N. M. Salleh, and A. H. Omar. A comparative study
of Reduced Error Pruning method in decision tree algorithms. In Control System,
Computing and Engineering (ICCSCE), 2012 IEEE International Conference on,
pages 392–397. IEEE, 2012.

[34] H. S. Nguyen and S. H. Nguyen. Discretization methods in data mining. Rough
sets in knowledge discovery, 1:451 – 482, 1998.

[35] M. F. Othman and T. M. S. Yau. Comparison of different classification techniques
using WEKA for breast cancer. In 3rd Kuala Lumpur International Conference
on Biomedical Engineering 2006, pages 520–523. Springer, 2007.

[36] R. Paul and A. Hoque. Mining irregular association rules based on action and
non-action type data. In Digital Information Management (ICDIM), 2010 Fifth
International Conference on, pages 63–68. IEEE, 2010.

[37] Z. Pawlak. Information systems theoretical foundations. Information Systems,
6(3):205 – 218, 1981.

[38] M. Pazzani. A Framework for Collaborative, Content-Based, and Demographic
Filtering. Artificial Intelligence Review, 13(5-6):393 – 408, 1999.

[39] Y. Qiao, K. Zhong, H. Wang, and X. Li. Developing event-condition-action rules
in real time active database. In Proceedings of the 2007 ACM symposium on
Applied computing, pages 511–516. ACM, 2007.

121

[40] Z. Ras and A. Dardzinska. Action rules discovery based on tree classifiers and
meta-actions. In Foundations of Intelligent Systems, pages 66–75. Springer, 2009.

[41] Z. Ras and A. Dardzinska. From data to classification rules and actions. Inter-
national Journal of Intelligent Systems, 26(6):572–590, 2011.

[42] Z. Ras and A. Wieczorkowska. Action-rules: how to increase profit of a company.
In Principles of Data Mining and Knowledge Discovery, pages 587–592. Springer,
2000.

[43] Z. Ras, E. Wyrzykowska, and H. Wasyluk. ARAS: Action rules discovery based
on agglomerative strategy. In Mining Complex Data, pages 196–208. Springer,
2008.

[44] J. Rauch and M. Simunek. Action rules and the GUHA method: Preliminary
considerations and results. In Foundations of Intelligent Systems, pages 76–87.
Springer, 2009.

[45] F. Reichheld. The one number you need to grow. Harvard Business Review,
81(12):46–55, 2003.

[46] P. Resnick, N. Iakovou, M. Sushak, P. Bergstrom, and J. Riedl. GroupLens: an
open architecture for collaborative filtering of netnews. In Proceedings of the
1994 ACM conference on Computer supported cooperative work, pages 175–186.
ACM, 1994.

[47] SATMETRIX. Improving your net promoter scores through strategic account
management. White paper, 2012.

[48] A. Schein, A. Popescul, L. Ungar, and D. Pennock. Methods and metrics for
cold-start recommendations. In Proceedings of the 25th annual international
ACM SIGIR conference on Research and development in information retrieval,
pages 253–260. ACM, 2002.

[49] B. Schowe. Feature selection for high-dimensional data with RapidMiner. In Pro-
ceedings of the 2nd RapidMiner Community Meeting And Conference (RCOMM
2011), Aachen, 2011.

[50] M. Shanker, M. Y. Hu, and M. S. Hung. Effect of data standardization on neural
network training. Omega, 24(4):385 – 397, 1996.

[51] U. Shardanand and P. Maes. Social information filtering algorithms for automat-
ing ”word of mouth”. In Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 210–217. ACM Press/Addison-Wesley Publishing
Co., 1995.

[52] I. Soboroff and C. Nicholas. Combining content and collaboration in text filtering.
In Proceedings of the IJCAI, volume 99, pages 86–91, 1999.

122

[53] G. Somprasertsri and P. Lalitrojwong. Mining feature-opinion in online customer
reviews for opinion summarization. J. UCS, 16(6):938–955, 2010.

[54] V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, and B. P. Feuston.
Random forest: a classification and regression tool for compound classification
and QSAR modeling. Journal of Chemical Information and Computer Sciences,
43(6):1947 – 1958, 2003.

[55] M. Tiwari, M. Jha, and O. Yadav. Performance analysis of data mining algo-
rithms in Weka. IOSR Journal of Computer Engineering, 6(3):32 – 41, 2012.

[56] H. Touati, J. Kuang, and A. H. Z. W. Ras. Personalized action rules for side
effects object grouping. International Journal of Intelligence Science, 3(1A):24
– 33, 2013.

[57] A. Tzacheva and Z. Ras. Association action rules and action paths triggered by
meta-actions. In Granular Computing (GrC), 2010 IEEE International Confer-
ence on, pages 772–776. IEEE, 2010.

[58] K. Wang, Y. Jiang, and A. Tuzhilin. Mining actionable patterns by role mod-
els. In Data Engineering, 2006. ICDE’06. Proceedings of the 22nd International
Conference on, pages 16 – 16. IEEE, 2006.

[59] Y. Yang and J. O. Pedersen. A comparative study on feature selection in text
categorization. In ICML, volume 97, pages 412–420, 1997.

[60] H. Zhang, Y. Zhao, L. Cao, and C. Zhang. Combined association rule mining. In
Advances in Knowledge Discovery and Data Mining, pages 1069–1074. Springer,
2008.

[61] L. Zhuang, F. Jing, and X. Y. Zhu. Movie review mining and summarization.
In Proceedings of the 15th ACM international conference on Information and
knowledge management, pages 43–50. ACM, 2006.

