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ABSTRACT

The advent of next-generation sequencing has resulted in transcriptome-based ap-
proaches to investigate functionally significant biological components in a variety
of non-model organism. This has resulted in the area of “venomics™: a rapidly
growing field using combined transcriptomic and proteomic datasets to characterize
toxin diversity in a variety of venomous taxa. Ultimately, the transcriptomic portion
of these analyses follows very similar pathways after transcriptome assembly often
including candidate toxin identification using BLAST, expression level screening,
protein sequence alignment, gene tree reconstruction, and characterization of potential
toxin function. Here we describe the Python package Venomix, which streamlines
these processes using common bioinformatic tools along with ToxProt, a publicly
available annotated database comprised of characterized venom proteins. In this
study, we use the Venomix pipeline to characterize candidate venom diversity in
four phylogenetically distinct organisms, a cone snail (Conidae; Conus sponsalis), a
snake (Viperidae; Echis coloratus), an ant (Formicidae; Tetramorium bicarinatum),
and a scorpion (Scorpionidae; Urodacus yaschenkoi). Data on these organisms were
sampled from public databases, with each original analysis using different approaches
for transcriptome assembly, toxin identification, or gene expression quantification.
Venomix recovered numerically more candidate toxin transcripts for three of the
four transcriptomes than the original analyses and identified new toxin candidates. In
summary, we show that the Venomix package is a useful tool to identify and characterize
the diversity of toxin-like transcripts derived from transcriptomic datasets. Venomix is
available at: https://bitbucket.org/JasonMacrander/Venomix/.
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INTRODUCTION

Throughout the animal kingdom, venom has evolved independently multiple times

to be used in prey capture, predatory defense, and intraspecific competition (Casewell
etal, 2013). Venoms are toxic cocktails with remarkable diversity in protein action
and specificity across animals. The evolutionary and ecological processes shaping this
diversity are of major interest (Fry et al., 2009; Wong & Belov, 2012; Casewell, Huttley

& Wiister, 2012; Sunagar et al., 2016; Rodriguez de la Vega & Giraud, 2016), with much
of this focusing on characterizing the composition of proteins and mRNAs expressed
in the venom gland (Ménez, Stocklin ¢» Mebs, 2006). As sequencing costs decrease, the
number of venom-focused studies is increasing at a dramatic rate. For some of the
better studied venomous lineages (e.g., Colubroidea), comparative transcriptome and
genome sequencing approaches are being used to investigate processes involved with
toxin gene recruitment and tissue specific gene expression (Vonk et al., 2013; Hargreaves
et al., 2014; Reyes-Velasco et al., 2015; Junqueira-de Azevedo et al., 2015). For other more
poorly studied taxonomic lineages, similar techniques are being used to evaluate venom
diversity using bioinformatic pipelines for a particular species or taxonomic group (7a,
Khan & Brusic, 2003; Reumont et al., 2014; Macrander, Brugler ¢ Daly, 2015; Kaas ¢ Craik,
2015; Prashanth ¢ Lewis, 2015). Although these take similar approaches to study diverse
venoms across animal lineages, a streamlined systematic pipeline does not exist for rapid
identification of candidate toxin genes from transcriptomic datasets regardless of their
taxonomic lineage.

Bioinformatic tools that use transcriptomic, proteomic, and genomic data sets have
emerged for a variety venomous taxa. Among these, programs founded in machine
learning appear to be the most abundant tools currently available; these use a combination
of lineage specific annotation datasets (Kaplan, Morpurgo ¢ Linial, 2007; Fan et al., 2011,
Wong et al., 2013) and identifiers based on residue frequency and protein domains of
interest (Gupta et al., 2013). Although taxonomic and tissue specific application of these
programs vary, the pipelines follow a similar mechanical path (Haney et al., 2014; Zhang
et al., 2014; Junior et al., 2016; Macrander, Broe & Daly, 2016; Durban et al., 2017; Verdes,
Simpson & Holford, 2018; Rivera-de Torre, Martinez-del-Pozo & Garb, 2018). First, they
begin with millions of raw reads assembled de novo using Trinity (Grabherr et al., 2011)
or similar (Archer et al., 2014). Next, expression values for each transcript are calculated
using RSEM (Li & Dewey, 2011) or similar programs, like BWA (Li & Durbin, 2009).
Ultimately the resulting transcriptome assembly is searched for toxin candidates by some
component of BLAST (Camacho et al., 2009; Neumann, Kumar & Shalchian-Tabrizi, 2014)
or other motif-searching algorithms (Kozlov & Grishin, 2011; Finn, Clements ¢ Eddy,
2011). For many of the pipelines, these outputs are then screened using custom query
datasets comprised of lineage specific toxin genes (Tan et al., 2006; Kaas et al., 2012; Pineda
et al., 2018) or the manually curated ToxProt dataset (Jungo et al., 2012), which includes
all characterized/annotated animal venom proteins. Following candidate toxin gene
identification, downstream analyses often involve predicting open-reading frames using
Transdecoder (Haas et al., 2013) or similar, in combination with signal region prediction
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using SignalP (Petersen et al., 2011). These types of data are sometimes complemented
with genome and proteome datasets (see Sunagar et al., 2016). However, the majority of
studies that are exploratory in nature use transcriptomic approaches to describe overall
toxin diversity for a variety of poorly studied taxa (Reumont et al., 2014; Macrander,
Brugler & Daly, 2015; Barghi et al., 2015; Luna-Ramirez et al., 2015; Macrander, Broe ¢
Daly, 2016; Lewis Ames et al., 2016). One major drawback to this approach, and using these
self-constructed pipelines, is that downstream analyses begin to become quite cumbersome
when trying to identify and characterize multiple toxin gene families for diverse toxin genes
found within a large transcriptome.

Here we present Venomix, a bioinformatic pipeline written in the programming
languages Python and R that follows commonly used methods for identifying and
characterizing toxin-like genes from transcriptomic datasets. In this study, we use
Venomix to characterize the toxin-like diversity from venom gland transcriptomes for
a cone snail (Conus sponsalis), a snake (Echis coloratus), an ant (Tetramorium bicarinatum),
and a scorpion (Urodacus yaschenkoi). Venomix incorporates widely used programs
into its pipeline, including BLAST (Camacho et al., 2009) for initial toxin-like transcript
identification; Transdecoder (Haas et al., 2013) to translate transcripts into their proper
reading frame, SignalP (Petersen et al., 2011) to predict toxin gene signaling regions, MAFFT
(Katoh ¢ Standley, 2013) for protein sequence alignment, and the R package APE (Paradis,
Claude & Strimmer, 2004) to construct gene trees. Candidate toxin genes are grouped based
on sequence similarity, with each directory corresponding to a specific toxin group based
on the ToxProt sequence names (e.g., some variation of conotoxin, Kunitz-type serine
protease, phospholipase A2, zinc metalloproteinase). The Venomix pipeline provides
the user with several output files that can be used to characterize the potential function
of these candidate toxins, compare relevant expression level values across toxin-gene
candidates, evaluate amino acid conservation among functionally important residues in
sequence alignments, and review taxonomic and functional information in combination
with tree reconstructions to further evaluate toxin gene candidates. Although Venomix is
not meant to be a definitive validation pipeline for toxin genes, it can quickly identify, sort,
and characterize transcripts that may be used to further evaluate these toxin candidates.
By abating time required by these processes, researchers can then focus on downstream
proteomic or functional analyses to better understand venom diversity present in the
transcriptome.

MATERIALS AND METHODS

Data acquisition and transcriptome assembly

Raw reads from four different analyses were downloaded from the short read archive
(SRA) on GenBank (C. sponsalis: SRR260951 (Phuong, Mahardika ¢ Alfaro, 2016);

U. yaschenkoi: SRR1557168 (Luna-Ramirez et al., 2015); E. colaratus: ERR216311—
ERR216312 (Hargreaves et al., 2014); T. bicarinatum: SRR1106144—SRR1106145 (Bouzid et
al., 2014)). The previously published transcriptome level analysis for U. yaschenkoi and T.
bicarinatum were restricted to only characterizing the venom gland transcriptome in their
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Figure 1 Venomix Pipeline Outline. Outline showing the stepwise progression of the Venomix pipeline,
including the necessary inputs and files included for every Toxin Group directory. Orange boxes indiciate
programs used.

Full-size &l DOI: 10.7717/peer;j.5361/fig-1

respective species (Bouzid et al., 2014; Luna-Ramirez et al., 2015). While the C. sponsalis
and E. coloratus venom gland transcriptomes were investigated in a comparative framework
alongside closely related taxa (Hargreaves et al., 20145 Phuong, Mahardika & Alfaro, 2016).
In our study, all four transcriptomes were assembled in Trinity (Grabherr et al., 2011; Haas
et al., 2013), using default parameters of its built-in Trimmomatic program to clean up
the sequences (Bolger, Lohse & Usadel, 2014). For each transcriptome, expression values as
transcripts per kilobase million (TPM) and fragments per kilobase million (FKPM) were
calculated in the program RSEM (Li ¢ Dewey, 2011) as part of the Trinity package.

Analysis pipeline and execution

The bioinformatic pipeline for Venomix is outlined in Fig. 1. The program requires
three inputs provided by the user: (1) an assembled transcriptome, (2) gene expression
information in the form of a tab-delimited output with transcript names in the first column,
and (3) tab-delimited BLAST output using the ToxProt as query sequences against the
trainscriptome. Although we used Trinity and RSEM in our study, most assembly and
expression profile programs with these formats should work with Venomix. Following
transcriptome assembly and expression level calculations, the final user provided file is
created using tBLASTn from NCBI BLAST+ version 2.4.0 (Camacho et al., 2009), with
the ToxProt dataset as the search query with the final BLAST alignment results shown
in a tabular format (-outfmt 6). Query sequences from ToxProt are provided within the
Venomix package; however, alternative curations of the ToxProt dataset may be used if the
sequence identifiers are not changed. In our analysis, we implemented two BLAST search
procedures; the first used a more stringent identification algorithm (E-value 1e—20) and
a less stringent identification algorithm (E-value 1e—6).

Venomix was tested on the University of North Carolina at Charlotte COPPERHEAD
Research Computing Cluster, while requesting computational resources that may
mimic most personal laptops/desktops, specifically one processor and 4 GB of RAM.
Using these settings the Venomix completed in less than twenty minutes for each
of the focal transcriptome. The implementation of Venomix requires the scripting
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languages Python 2.7 (http://www.python.org/download/releases/27/) and R 3.1.1
(https://cran.r-project.org/bin/), in addition to other Biopython packages (Cock et al.,
2009) and data from ToxProt and Genbank that are built into the Venomix pipeline
(https://bitbucket.org/JasonMacrander/venomix). We included versions of MAFFT (Katoh
¢ Standley, 2013), NCBI BLAST+ (Camacho et al., 2009), and Transdecoder (Haas et al.,
2013) that can be run locally. Although there are two versions of MAFFT (64 bit and 32
bit), the default is the 64-bit, as this is more common for computers used in bioinformatic
analyses. Modification to the version of MAFFT in the Venomix pipeline can be done in
the support_files/Alignment.py file.

Once the user specifies the input files (transcriptome, expression file, and BLAST output),
the Venomix pipeline automatically produces several potentially useful and informative
files within each of the toxin group directories (Fig. 1). The outputs within each of the
Toxin Group directories are intended to provide the user with curated information to focus
future investigations and analyses. Specifically the outputs are as follows: (1) unaligned
full and partial nucleotide sequences representing candidate toxins, (2) UniProt query
sequences used to identify candidates, (3) taxonomic information associated with query
sequences, (4) Genbank entries from query sequences, (5) translated protein sequences
from full nucleotide sequences (no partial), (6) UniProt toxin and candidate protein
sequences unaligned and (7) in alignment, (8) SignalP information, (9) mature peptides
when signaling regions are present, (10) a neighbor joining tree based on the protein
sequence alignment, and (11) expression information, if provided by the user. All of these
files are contained in directories with representative toxin names retrieved from ToxProt
proteins. As the pipeline does not definitively identify candidate toxins to toxin type,
similar toxin gene families likely have similar candidates in different directories.

Depending on the next step of the analysis, some of the output files may be used
for additional venom related downstream applications or simply a quick reference for
the user. Venomix also creates two ancillary products that may be informative to some
users: TPM.fasta (only transcripts with TPM values >1.0) and a large GenBank file with
information from ToxProt BLAST hits in a format that may lend itself to quick searches or
downstream annotation. The user may choose to rerun Venomix with TPM.fasta instead
of their assembled transcriptome if they would like to characterize only transcripts with a
TPM >1.0, but this is not recommended when looking for rare or extremely diverse toxin
genes.

Venomix evaluation

For each assembled transcriptome, we identified candidate toxin genes using the Venomix
pipeline using a stringent (E-value 1e—20) and less stringent (E-value le—6) search strategy
in BLAST. Venomix outputs were compared for both search parameters in terms of the
number of toxin groups, number of transcripts, and number of “candidate” transcripts
identified by the pipeline. A transcript was considered a “candidate” if the transcript
had significantly better E-value associated with a toxin than with a non-toxin protein

in Uniprot. Candidate transcripts were translated into their protein sequences using
Transdecoder (Haas et al., 2013) and further evaluated in ToxClassifier (Gacesa, Barlow ¢
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Long, 2016). If a predicted protein sequence received a score of >1 it was considered a toxin
candidate. In addition to screening the overall transcriptome analyses, some toxin groups
and candidate toxins identified in our analysis were subjected to additional screening
beyond what is included in the Venomix pipeline representative of what some users may
do in downstream analyses. Sequence alignments for candidate transcripts shown below
were done using MAFFT (v.1.3.3) (Katoh ¢ Standley, 2013) and visualized in Geneious
(Kearse et al., 2012). Toxin gene tree reconstructions were done in Fasttree v2 (Price, Dehal
& Arkin, 2010) using maximum likelihood tree reconstruction methods and bootstrap
supports calculated over 1,000 replicates. For the Bouzid et al. (2014) dataset, Venomix was
used to compare alternative assembly approaches (Oases/Velvet vs. Trinity), in addition
to assessing both transcriptomes for overall completeness in BUSCO (Simdo et al., 2015).
Expression values for each transcriptome were calculated using RSEM (Li ¢ Dewey, 2011)
rather than raw read counts as originally proposed by Bouzid et al. (2014).

RESULTS

Transcriptome assemblies

Transcriptomes reassembled in Trinity (Grabherr et al., 2011) produced similar de novo
assembly outputs when compared to the original studies (Table S1), with the only
notable difference being in the number of transcripts for C. sponsalis, which may be
due to repetitiveness and sequence complexity encountered during their initial assemblies
(Phuong, Mahardika ¢ Alfaro, 2016). The transcriptome for T. bicarinatum was originally
done using Velvet/Oases (Li & Durbin, 2009); however, we compared this to our Trinity
assembly because of its ease of use (Sanders et al., 2018) and frequency in the venom
literature (Macrander, Broe ¢ Daly, 2015), in addition to a lower redundancy and chimera
rate (Yang ¢ Smith, 2013).

Pipeline output

In the original published studies, species-specific transcriptomes of C. sponsalis, E. colaratus
and U. yaschenkoi were not subjected to any BLAST searches using ToxProt, but instead
were screened using taxonomic specific toxin datasets from venom proteins of closely
related species. The Venomix pipeline recovered the majority of these lineage specific
toxins, as well as additional transcripts that resemble toxin genes from other taxa.

It is worth noting that if there were lineage specific toxins that shared high sequence
similarity to other toxins from distantly related taxonomic groups, the toxin group name
may be assigned an incorrect lineage classification, yet remain a toxin candidate. For
example, analyses of the scorpion U. yaschenkoi resulted in four venom groups with “Snake
venom” in the name; however, in these instances, lineage specific toxin names are often
members of larger gene families that may not be lineage specific toxins. The number

of identified toxin groups varied considerably across species and stringency parameters
(Table 1), with the less stringent parameters dramatically increasing the number of toxin
groups. Each species had multiple toxin groups that were separated based on sequence
similarity and correspond to large gene families, including astacin-like metalloproteases,
conotoxins, phospholipases A2s, CRISPs, Kunitz-type serine protease inhibitors, snaclecs,
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Table 1 Species-specific Venomix outputs following different search strategies

Original publication Stringent (e-value 1e-20) Less stringent (e-value le-6)
N Groups Transcripts Evaluated Groups Transcripts Evaluated Groups Transcripts Evaluated
C. sponsalis 401 35 780" 393(363) 22 61 44(13) 75 293 246(45)
E. coloratus 34 8 82 62(35) 72 339 147(116) 130 775 202(143)
T. bicarinatum 69 32 527° 287/625(14) 36 289 95(14) 75 761 201(36)
U. yaschenkoi 111 11° 210 71(6) 50 277 48(34) 117 689 179(38)

Notes.
N, number of candidate toxins identified in original study; Groups, number of toxins types identified based on sequence similarity; ¢, conotoxins only (Phuong, Mahardika ¢
Alfaro, 2016); %, scorpion toxins only (Luna-Ramirez et al., 2015); Transcripts, total number of unique transcripts evaluated; T, includes duplicates as cumulative after three iter-
ations in Trinity [see Phuong, Mahardika & Alfaro, 2016]; B, >100 TPM difference upregulated in the venom gland compared the ant carcass; , number of candidates based on
different E-values 10/1E—3 thresholds; Evaluated, number of unique transcripts retained after using BLAST screening, parenthesis indicates number of transcripts identified us-
ing a Toxclassifier score of 1 or greater.
metalloproteinases, thrombin-like enzymes, and allergens. For each species, there was at
least one toxin group that was not retained following the reciprocal BLASTp search after

the toxin-like transcripts were translated into their open reading frame (Table 1).

Venomix outputs for C. sponsalis

Conotoxins represent some of the best-studied toxin genes across the genus Conus,
comprising of multiple gene families with cysteine rich proteins (Buczek, Bulaj ¢ Olivera,
2005; Kaas et al., 2012). Venomix identified 76 toxin groups comprising of 246 toxin gene
candidates based on our preliminary low stringency BLAST survey; 20 of these groups
cluster with various conotoxins (Fig. 2). In total, there were 179 of the 246 toxin gene
candidates from the 20 conotoxin groups. There were three instances where Venomix
recovered more candidate conotoxins than the original study (O1, conodipine, and
conophysin superfamilies), however, a majority of the conotoxin superfamilies identified
by Phuong, Mahardika & Alfaro (2016) were missing from our analysis (Fig. 2). This
discrepancy is likely due to the different assembly approaches, as iterative assemblies used
by Phuong, Mahardika ¢ Alfaro (2016) were unable to recover known transcripts using
Trinity alone. Beyond the conotoxins, there were 19 candidate toxin genes found within
the Kunitz-type conkuitzin-S1 group, which included characterized toxin proteins from
the venom Kunitz-type family of sea anemones, cone snails, and snakes (Supplemental

Information 1).

Venomix outputs for E. coloratus

Snakes represent one of the best-studied animal lineages and we were able to validate
Venomix’s efficiency with the E. coloratus transcriptome. With a low stringency search
(E-value = 1E—6) Venomix identified 132 toxin groups (Table S2), Among the transcripts
identified, 45 had a TPM value greater than 100, with 39 of these in the venom gland, four
in the scent gland, and two in the skin. The majority of the highly expressed transcripts
in the venom gland (TPM > 100) corresponded with toxin groups previously identified
(Hargreaves et al., 2014), comprising mostly of C-type lectins, cysteine rich venom proteins,
disintegrins, metalloproteinases, and several others (Fig. 3). In addition to these venom
candidates, we found one highly expressed cystatin in the venom gland, although it was
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Figure 2 Comparison of Conotoxin Transcripts for C. sponsalis. Number of candidate toxin transcripts
from each toxin gene family from the original study (Phuong, Mahardika ¢ Alfaro, 2016) and Venomix.
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also highly expressed in other tissues and not thought to be a toxic component of the

E. coloratus venom (Hargreaves et al., 2014). We also identified a peroxiredoxin, ficolin,
and three latroinsectotoxins (Supplemental Information 2), all of which may have some
role during envenomation now well characterized in snakes (Magazanik et al., 1992; Calvete
et al., 2009; OmPraba et al., 2010), but require further investigation.

Venomix outputs for T. bicarinatum

Ants represent a poorly-studied lineage of venomous animals, with T. bicarinatum being
the only transcriptome used in our study which identified toxins using the ToxProt dataset
(Bouzid et al., 2014). The original transcriptome assembly was done in Velvet/Oases (Li
& Durbin, 2009). Despite the alternative approaches, the BUSCO (Simado et al., 2015)
scores were similar, with the Velvet/Oases assembly at 95.9% and Trinity at 92.2%. When
considering TPM (rather than raw counts) the number of candidate genes in the venom
gland following the approach by Bouzid et al. (2014) were similar to what was originally
published (Table 1). Among these 527 candidates, there were only 44 predicted ORFs from
Transdecoder, and only three of these were given a score of 1 or greater in Toxclassifier
(Table 1). The BLAST screening, however, resulted in 62 candidate toxins identified when
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Figure 3 Number of previously predicted toxin compared to those derived from Venomix. Number of
candidate toxin transcripts from each toxin gene family from the original study (Hargreaves et al., 2014)
and Venomix candidates most highly expressed in the venom gland with a TPM >1.0.
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the E-value threshold was set to 1IE—3, but 287 when the E-value threshold was set to 10.
As E-values were not specified by Bouzid et al. (2014) both are reported here (Table 1).
In the less stringent analysis, the largest number candidate toxin genes corresponded to
280 transcripts in the alpha-latroinsectotoxin-Ltla group, but overall expression within
the ant carcass and venom gland across these transcripts were approximately the same.
Among those more highly expressed transcripts in the venom gland, six had TPM scores
greater than 100 in the venom gland; four corresponding to Venom Allergen 3 and two to
cysteine-rich venom protein Mr30. Subsequent BLAST searches against UniProt indicated
that all six of these toxins are likely Venom Allergen 3 toxins, making up ~92% of the
cumulative toxin genes expressed within the transcriptome (Supplemental Information 3).

When we compared the Venomix outputs for our Trinity assembly to the Velvet/Oases
assembly that was previously published by Bouzid et al. (2014) we recovered some
unexpected results. Although we used RSEM instead of BWA, only 33 of the original
69 candidate toxin sequences recovered from their analysis had higher TPM expression
in the venom gland than in the ant carcass. Of these 33 potential toxins, only 10 had a
1,000 fold higher expression based on expected count values (Table 53). Such a drastic
difference in the reported fold change cross these toxins were unexpected when considering
only the mapping program was different. Further examination revealed that thrombin-like
enzymes from the Velvet/Oases assembly were likely only partial sequences (Supplemental
Information 4), which may have contributed to the larger than 50% discrepancy between
our analyses and is likely the reason why only 47 of the 8,688 transcripts identified in
Venomix were translated into their open reading frame.

Venomix outputs for U. yaschenkoi
Scorpions represent one of the oldest and best-studied venomous lineages, with the original
study by (Luna-Ramirez et al., 2015) using scorpion-specific toxins as query sequences.
Ultimately this original study identified 210 transcripts representing 111 unique scorpion
toxins, venom gland enzymes, and antimicrobial peptides (Luna-Ramirez et al., 2015). By
expanding the query sequences with the ToxProt dataset, we recovered 117 toxin groups
representing 689 unique transcripts (Table 1). Of the 117 identified toxin groups only
10 were from scorpion derived query sequences. Of these 10, the Toxin-like protein 14
had the same number of candidate toxins as the original study, with Venomix recovering
the complete protein sequence, when Luna-Ramirez et al. (2015) did not (Fig. 4A). When
using exclusively scorpion venom proteins from ToxProt as query sequences, the number
of candidate toxins identified by Venomix was approximately the same as that identified
by Luna-Ramirez et al. (2015).

The most abundant toxin-like transcripts within the less stringent search found
190 transcripts within the delta-latroinsectotoxin-Ltla group, the 182 transcripts
alpha latroinsectotoxin-Ltla group, and 91 transcripts within the Neprilysin-1 group
(Supplemental Information 5). Query toxins which are used to form these toxin groups were
previously identified in spiders (Graudins et al., 2012; Garb & Hayashi, 2013; Undheim et
al., 2013; Bhere et al., 2014), and not included in the original transcriptome analysis (Lura-
Ramirez et al., 2015). Preliminary screening based on reciprocal BLAST hits indicated
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that the latroinsectotoxin groups identified in Venomix might not be toxins. Maximum
likelihood gene tree reconstructions were used as post-processing steps to further screen
the Neprilysin-1 group as potential toxin sequences revealing that candidate toxins from
the Neprilysin-1 group formed a well-supported cluster with neprilysin toxins from other
scorpions at high expression levels (Fig. 4B).

DISCUSSION

Venomix presents a less cuambersome, non-taxon specific alternative to any other pipeline
currently being implemented in venom research. The pipeline allows the user to quickly
identify and characterize toxin gene candidates within a transcriptomic dataset. The
outputs provided by this pipeline give necessary information for further evaluation of
their toxin gene candidates when complemented with proteomic or other approaches. We
recommend using Venomix with multiple BLAST searches with varying E-value thresholds
as the variation among characterized toxin genes and those of the focal taxa may be more
accommodating depending on the threshold used. Although Venomix was able to identify
more candidate toxin genes in three out of the four datasets tested here, these results require
further examination to determine which transcripts are viable toxin gene candidates.
Venomix is not intended to be a definitive toxin gene identifier because this determination
should not be made by sequence data alone, especially for poorly studied lineages.

We chose four very different studies to highlight some of the benefits and limitations of
Venomix. Of the taxa used in this study, three of them are from taxonomic groups with
ample representation in the ToxProt dataset (Fig. 5), whereas the ant venom is poorly
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characterized among the diverse venomous insects found within Hexapoda on ToxProt.
Additionally, these datasets represent diverse transcriptome assembly methods, query
datasets, and gene expression quantification approaches. Depending on the focal venom
transcriptome, the assembly method may have a significant impact on how well toxin genes
are recovered (Holding et al., 2018). The original C. sponsalis assembly had a high number
of toxin genes with relatively low variation across gene copies (Phuong, Mahardika &
Alfaro, 2016), which likely resulted in many of these being clumped together in our Trinity
assembly (Macrander, Broe ¢ Daly, 2015). To get around this issue, Phuong, Mahardika
& Alfaro (2016) did three assembly iterations involving toxin gene identification and
subsequent mapping, in addition to downstream analysis incorporating the Assembly by
Reduced Complexity pipeline (https://github.com/ibest/ARC) and manual alignments

in Geneious (Biomatters, Auckland, New Zealand). In contrast to C. sponsalis, the
differences we observed in T. bicarinatum using Venomix was likely due to the alternative
transcriptome assembly and gene expression approaches (Yarng ¢ Smith, 2013; Vijay et al.,
2013; Todd, Black ¢ Gemmell, 2016). Finally, limiting query sequences to only venoms of
that lineage—which was done with the C. sponsalis, E. coloratus, and U. yaschenkoi, but not
for T. bicarinatum—Iikely limited the number of toxin candidates being identified.

Despite having multiple assembly or expression approaches currently available for
comparative venom transcriptome studies, we chose Trinity and RSEM because they
are widely used in these types of analyses (Haney et al., 2014; Zhang et al., 2014; Jinior et
al., 2016; Macrander, Broe & Daly, 2016; Durban et al., 2017; Verdes, Simpson & Holford,
2018; Rivera-de Torre, Martinez-del-Pozo ¢» Garb, 2018). Venomix is capable of producing
similar outputs regardless of assembly or quantification program when the input files
are formatted properly. The Venomix pipeline was designed to sidestep much of the
rigorous analysis used to identify and extract candidate toxin sequences, but is limited
when considering what is actually translated into proteins. Our pipeline will translate full
nucleotide transcripts into their predicted proteins, screen for signaling regions, assess
their similarity through alignment and gene trees, and extract expression information.
Complementing this analysis with proteomic datasets will allow users to identifying toxins
in venoms using existing complementary protein specific tools through HMMs searches
(Finn, Clements ¢ Eddy, 2011) or other protein specific analyses. Venomix is the first
pipeline to provide all these outputs in an easy to use search strategy that is flexible, but
also repeatable, for all venomous taxa, or non-venomous animal to be used in a tissue
specific comparative context (Reumont et al., 2014; Hargreaves et al., 2014; Reyes-Velasco et
al., 2015). The pipeline also provides users with easy to navigate directories and organized
output files (see Supplemental Informations 1-5), allowing the user to sort manually or
quickly pull information for all toxin groups using simple Unix commands (i.e., grep) as
the files within each toxin group directory have the same name.

Venomix can facilitate the process of determining what constitutes a venom protein
and aid in testing future hypotheses of venom diversity and tissue specific expression.
The E. coloratus transcriptome used in our analysis was part of a broader study to test the
early evolution of venom in reptiles, the Toxicofera hypothesis (Hargreaves et al., 2014).
They used tissue specific expression in combination with toxin gene tree reconstruction
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to determine which of the approximately 16 venom toxin gene families that occur across
Toxicofera attribute to the E. coloratus venom transcriptome. Using Venomix, toxin
candidates can be identified using a similar approach as outputs within each toxin group
contain gene expression information allowing for tissue specific comparisons with ease.
Beyond venom candidates identified by Hargreaves et al. (2014), there are also transcripts
highly expressed in the venom gland that are likely not venomous (Terrat ¢ Ducancel,
2013). This was made evident in the U. yaschenkoi analysis, as several transcripts within
the latroinsectotoxins cluster were actually neprilysins in high abundance, but transcripts
resembling neprilysins matched to other neprilysin toxins in a reciprocal BLAST hit.

Regardless of the bioinformatic approach to identifying toxin genes, one major hurdle
using these types of datasets as query sequences is the limited taxonomic diversity present
in the ToxProt dataset. Although the transcriptome for U. yaschenkoi was larger and had
a longer N50 than that of E. coloratus (Table S1), there were more toxin-like transcripts
identified in the E. coloratus transcriptome. This likely reflects the abundance of snake
proteins deposited into ToxProt and is in contrast to the paucity of proteins for other,
poorly studied venomous lineages (Fig. 5). Additionally, Venomix “group” names should
be examined closely because some candidate toxin genes were labeled with lineage-specific
proteins. For example, our analysis recovered a group called conophysin (a cone snail
toxin) for T. bicarinatum, however, the transcripts associated with this appeared to be
neurophysins. This was also observed when Venomix failed to group Venom Allergen 3
and Cysteine-rich venom protein Mr30 groups together for T. bicarinatum, even though
it was apparent that the most highly expressed were all Venom Allergen 3 genes. When
investigating venom diversity for poorly studied taxa, caution is warranted in using these
gene names because the specific classifiers of the Venomix outputs provide a starting point
for toxin gene identification but does not act as a distinct classification system.

In every transcriptome, the machine-learning program ToxClassifier failed to recover all
of the toxins identified in their respective publications (Table 1). Our downstream analysis
of the protein sequences produced by TransDecoder included any candidate toxin with
a score >1, which severely over represents candidate toxins, as ToxClassifier considers a
“potential toxin” score >4. Ultimately this would reduce the number of “toxins” for C.
sponsalis, dropping it to 243 and E. coloratus to seven. Despite this, one major contrast
between ToxClassifier and Venomix is that our pipeline is not meant to be a toxin gene
identifier. Venomix was designed to be useful for preliminary searches for users new
to the command line, or provide a platform that is adaptable for those that are well
versed in the command line. The incorporated alignment and tree building methods are
rudimentary and meant to be used for only initial screenings. This allows users to focus their
efforts on downstream analyses using complementary proteomics and machine learning
to differentiate between functionally toxic and non-toxic venom components (Gacesa,
Barlow ¢ Long, 2016) or to complement their transcriptomic data with functional assays
of proteins or crude venom extracts.

Macrander et al. (2018), PeerJ, DOI 10.7717/peerj.5361 14/21


https://peerj.com
http://dx.doi.org/10.7717/peerj.5361#supp-1
http://dx.doi.org/10.7717/peerj.5361

Peer

ACKNOWLEDGEMENTS

Venomix is a direct byproduct of the training received at Friday Harbor Marine Labs
while attending the Practical Computing for Biologists workshop with Steve Haddock
and Casey Dunn. The authors thank them and other members of the workshop (Aurturo
Alvarez-Aguilar, Jimmy Bernot, Bill Browne, Anela Choy, Zander Fodor, Michelle Gather,
Joel Kingslover, Jasmine Mah, Adelaide Rhodes, Liz Scheimer, Emily Warschefsky, Linda
Wordeman, and Sara Wyckoff) for their continued support and enthusiasm for Venomix.
The authors would also like to thank Edwin Rice for preliminary input on Python scripts,
Daft Punk composing good music to allow for coding, and Tyler Carrier for his Peer]
enthusiasm.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

Support for this project was provided by NSF DEB 1257796 to Marymegan Daly, NSF
DEB 1536530 to Marymegan Daly and Jason Macrander, and NSF OCE 1536530 to Adam
Reitzel. Jyothirmayi Panda was supported by a research assistantship provided by the
University of North Carolina at Charlotte Graduate School under the guidance of Dan
Janies. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:
NSF: DEB 1257796, DEB 1536530, OCE 1536530.

University of North Carolina at Charlotte Graduate School.

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Jason Macrander conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, approved the final draft.

e Jyothirmayi Panda conceived and designed the experiments, performed the experiments,
approved the final draft.

e Daniel Janies and Adam M. Reitzel contributed reagents/materials/analysis tools,
authored or reviewed drafts of the paper, approved the final draft.

e Marymegan Daly conceived and designed the experiments, authored or reviewed drafts
of the paper, approved the final draft.

Data Availability
The following information was supplied regarding data availability:
Venomix Pipeline: https://bitbucket.org/JasonMacrander/venomix.

Macrander et al. (2018), PeerJ, DOI 10.7717/peerj.5361 15/21


https://peerj.com
https://bitbucket.org/JasonMacrander/venomix
http://dx.doi.org/10.7717/peerj.5361

Peer

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.5361#supplemental-information.

REFERENCES

Archer ], Whiteley G, Casewell NR, Harrison RA, Wagstaff SC. 2014. VT Builder: a
tool for the assembly of multi isoform transcriptomes. BMC Bioinformatics 15:389
DOI10.1186/s12859-014-0389-8.

Barghi N, Concepcion GP, Olivera BM, Lluisma AO. 2015. High conopeptide diversity
in Conus tribblei revealed through analysis of venom duct transcriptome using
two high-throughput sequencing platforms. Marine Biotechnology 17:81-98
DOI 10.1007/s10126-014-9595-7.

Bhere KV, Haney RA, Ayoub NA, Garb JE. 2014. Gene structure, regulatory control,
and evolution of black widow venom latrotoxins. FEBS Letters 588:3891-3897
DOI 10.1016/j.febslet.2014.08.034.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics 30:2114-2120 DOI 10.1093/bioinformatics/btul70.

Bouzid W, Verdenaud M, Klopp C, Ducancel F, Noirot C, Vétillard A. 2014. De Novo
sequencing and transcriptome analysis for Tetramorium bicarinatum: a comprehen-
sive venom gland transcriptome analysis from an ant species. BMC Genomics 15:987
DOI10.1186/1471-2164-15-987.

Buczek O, Bulaj G, Olivera BM. 2005. Conotoxins and the posttranslational modifica-
tion of secreted gene products. Cellular and Molecular Life Sciences 62:3067—-3079
DOI 10.1007/s00018-005-5283-0.

Calvete JJ, Fasoli E, Sanz L, Boschetti E, Righetti PG. 2009. Exploring the venom pro-
teome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics
and combinatorial peptide ligand library approaches. Journal of Proteome Research
8:3055-3067 DOI 10.1021/pr900249q.

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden
TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421
DOI10.1186/1471-2105-10-421.

Casewell NR, Huttley GA, Wiister W. 2012. Dynamic evolution of venom proteins in
squamate reptiles. Nature Communications 3:Article 1066 DOT 10.1038/ncomms2065.

Casewell NR, Wiister W, Vonk FJ, Harrison RA, Fry BG. 2013. Complex cocktails:
the evolutionary novelty of venoms. Trends in Ecology ¢ Evolution 28:219-229
DOI10.1016/j.tree.2012.10.020.

Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck
T, Kauff F, Wilczynski B, Hoon MJL de. 2009. Biopython: freely available Python
tools for computational molecular biology and bioinformatics. Bioinformatics
25:1422-1423 DOI 10.1093/bioinformatics/btp163.

Durban J, Sanz L, Trevisan-Silva D, Neri-Castro E, Alagén A, Calvete JJ. 2017.
Integrated venomics and venom gland transcriptome analysis of juvenile and

Macrander et al. (2018), PeerdJ, DOI 10.7717/peerj.5361 16/21


https://peerj.com
http://dx.doi.org/10.7717/peerj.5361#supplemental-information
http://dx.doi.org/10.7717/peerj.5361#supplemental-information
http://dx.doi.org/10.1186/s12859-014-0389-8
http://dx.doi.org/10.1007/s10126-014-9595-7
http://dx.doi.org/10.1016/j.febslet.2014.08.034
http://dx.doi.org/10.1093/bioinformatics/btu170
http://dx.doi.org/10.1186/1471-2164-15-987
http://dx.doi.org/10.1007/s00018-005-5283-0
http://dx.doi.org/10.1021/pr900249q
http://dx.doi.org/10.1186/1471-2105-10-421
http://dx.doi.org/10.1038/ncomms2065
http://dx.doi.org/10.1016/j.tree.2012.10.020
http://dx.doi.org/10.1093/bioinformatics/btp163
http://dx.doi.org/10.7717/peerj.5361

Peer

adult mexican rattlesnakes Crotalus simus, C. tzabcan, and C. culminatus revealed
miRNA-modulated ontogenetic shifts. Journal of Proteome Research 16:3370-3390
DOI 10.1021/acs.jproteome.7b00414.

Fan Y-X, Song J, Shen H-B, Kong X. 2011. PredCSF: an integrated feature-based ap-
proach for predicting conotoxin superfamily. Protein and Peptide Letters 18:261-267
DOI10.2174/092986611794578341.

Finn RD, Clements J, Eddy SR. 2011. HMMER web server: interactive sequence
similarity searching. Nucleic Acids Research 39:W29-W37 DOI 10.1093/nar/gkr367.

Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JDA, King GF, Nevalainen
TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, Vega RCR de la. 2009.

The toxicogenomic multiverse: convergent recruitment of proteins into an-
imal venoms. Annual Review of Genomics and Human Genetics 10:483-511
DOI 10.1146/annurev.genom.9.081307.164356.

Gacesa R, Barlow DJ, Long PF. 2016. Machine learning can differentiate venom toxins
from other proteins having non-toxic physiological functions. Peer] Computer
Science 2:¢90 DOI 10.7717/peerj-cs.90.

Garb JE, Hayashi CY. 2013. Molecular evolution of «-latrotoxin, the exceptionally
potent vertebrate neurotoxin in black widow spider venom. Molecular Biology and
Evolution 30:999—1014 DOI 10.1093/molbev/mst011.

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan
L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N,
di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. 2011.
Full-length transcriptome assembly from RNA-Seq data without a reference genome.
Nature Biotechnology 29:644-652 DOT 10.1038/nbt.1883.

Graudins A, Little MJ, Pineda SS, Hains PG, King GF, Broady KW, Nicholson GM.
2012. Cloning and activity of a novel «-latrotoxin from red-back spider venom.
Biochemical Pharmacology 83:170-183 DOI 10.1016/j.bcp.2011.09.024.

Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Consortium OSDD, Raghava
GPS. 2013. In silico approach for predicting toxicity of peptides and proteins. PLOS
ONE 8:273957 DOI 10.1371/journal.pone.0073957.

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden ], Couger MB,
Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F,
Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman
N, Regev A. 2013. De novo transcript sequence reconstruction from RNA-Seq:
reference generation and analysis with Trinity. Nature Protocols 8:1494—1512
DOI 10.1038/nprot.2013.084.

Haney RA, Ayoub NA, Clarke TH, Hayashi CY, Garb JE. 2014. Dramatic expansion of
the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom
proteomics. BMC Genomics 15:366 DOI 10.1186/1471-2164-15-366.

Hargreaves AD, Swain MT, Logan DW, Mulley JF. 2014. Testing the Toxicofera:
comparative transcriptomics casts doubt on the single, early evolution of the reptile
venom system. Toxicon 92:140-156 DOI 10.1016/j.toxicon.2014.10.004.

Macrander et al. (2018), PeerdJ, DOI 10.7717/peerj.5361 17/21


https://peerj.com
http://dx.doi.org/10.1021/acs.jproteome.7b00414
http://dx.doi.org/10.2174/092986611794578341
http://dx.doi.org/10.1093/nar/gkr367
http://dx.doi.org/10.1146/annurev.genom.9.081307.164356
http://dx.doi.org/10.7717/peerj-cs.90
http://dx.doi.org/10.1093/molbev/mst011
http://dx.doi.org/10.1038/nbt.1883
http://dx.doi.org/10.1016/j.bcp.2011.09.024
http://dx.doi.org/10.1371/journal.pone.0073957
http://dx.doi.org/10.1038/nprot.2013.084
http://dx.doi.org/10.1186/1471-2164-15-366
http://dx.doi.org/10.1016/j.toxicon.2014.10.004
http://dx.doi.org/10.7717/peerj.5361

Peer

Holding ML, Margres MJ, Mason AJ, Parkinson CL, Rokyta DR. 2018. Evaluating the
performance of de novo assembly methods for venom-gland transcriptomics. Toxins
10:Article 249 DOI 10.3390/toxins10060249.

Jungo F, Bougueleret L, Xenarios I, Poux S. 2012. The UniProtKB/Swiss-Prot Tox-
Prot program: a central hub of integrated venom protein data. Toxicon 60:551-557
DOI10.1016/j.toxicon.2012.03.010.

Junior NG de O, Fernandes G da R, Cardoso MH, Costa FF, Candido E de S, Neto DG,
Mortari MR, Schwartz EF, Franco OL, Alencar SA de. 2016. Venom gland tran-
scriptome analyses of two freshwater stingrays (Myliobatiformes: Potamotrygonidae)
from Brazil. Scientific Reports 6:21935 DOI 10.1038/srep21935.

Junqueira-de Azevedo ILM, Bastos CMV, Ho PL, Luna MS, Yamanouye N, Casewell
NR. 2015. Venom-related transcripts from bothrops jararaca tissues provide novel
molecular insights into the production and evolution of snake venom. Molecular
Biology and Evolution 32:754-766 DOI 10.1093/molbev/msu337.

Kaas Q, Craik DJ. 2015. Bioinformatics-aided venomics. Toxins 7:2159-2187
DOI 10.3390/toxins7062159.

Kaas Q, Yu R, Jin A-H, Dutertre S, Craik DJ. 2012. ConoServer: updated content,
knowledge, and discovery tools in the conopeptide database. Nucleic Acids Research
40:D325-D330 DOI 10.1093/nar/gkr886.

Kaplan N, Morpurgo N, Linial M. 2007. Novel families of toxin-like peptides in insects
and mammals: a computational approach. Journal of Molecular Biology 369:553—566
DOI 10.1016/j.jmb.2007.02.106.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version
7: improvements in performance and usability. Molecular Biology and Evolution
30:772-780 DOI 10.1093/molbev/mst010.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S,
Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond
A. 2012. Geneious basic: an integrated and extendable desktop software platform
for the organization and analysis of sequence data. Bioinformatics 28:1647—1649
DOI 10.1093/bioinformatics/bts199.

Kozlov S, Grishin E. 2011. The mining of toxin-like polypeptides from EST database by
single residue distribution analysis. BMC Genomics 12:88
DOI10.1186/1471-2164-12-88.

Lewis Ames C, Ryan JF, Bely AE, Cartwright P, Collins AG. 2016. A new transcriptome
and transcriptome profiling of adult and larval tissue in the box jellyfish Alatina
alata: an emerging model for studying venom, vision and sex. BMC Genomics
17:Article 650 DOI 10.1186/s12864-016-2944-3.

Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-

Seq data with or without a reference genome. BMC Bioinformatics 12:323
DOI10.1186/1471-2105-12-323.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows—Wheeler

transform. Bioinformatics 25:1754-1760 DOI 10.1093/bioinformatics/btp324.

Macrander et al. (2018), PeerdJ, DOI 10.7717/peerj.5361 18/21


https://peerj.com
http://dx.doi.org/10.3390/toxins10060249
http://dx.doi.org/10.1016/j.toxicon.2012.03.010
http://dx.doi.org/10.1038/srep21935
http://dx.doi.org/10.1093/molbev/msu337
http://dx.doi.org/10.3390/toxins7062159
http://dx.doi.org/10.1093/nar/gkr886
http://dx.doi.org/10.1016/j.jmb.2007.02.106
http://dx.doi.org/10.1093/molbev/mst010
http://dx.doi.org/10.1093/bioinformatics/bts199
http://dx.doi.org/10.1186/1471-2164-12-88
http://dx.doi.org/10.1186/s12864-016-2944-3
http://dx.doi.org/10.1186/1471-2105-12-323
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.7717/peerj.5361

Peer

Luna-Ramirez K, Quintero-Hernandez V, Juarez-Gonzalez VR, Possani LD. 2015.
Whole transcriptome of the venom gland from Urodacus yaschenkoi scorpion. PLOS
ONE 10:e0127883 DOI 10.1371/journal.pone.0127883.

Macrander J, Broe M, Daly M. 2015. Multi-copy venom genes hidden in de novo
transcriptome assemblies, a cautionary tale with the snakelocks sea anemone
Anemonia sulcata (Pennant, 1977). Toxicon 108:184—188
DOI 10.1016/j.toxicon.2015.09.038.

Macrander J, Broe M, Daly M. 2016. Tissue-specific venom composition and differ-
ential gene expression in sea anemones. Genome Biology and Evolution evw155
DOI 10.1093/gbe/evw155.

Macrander J, Brugler MR, Daly M. 2015. A RNA-seq approach to identify putative
toxins from acrorhagi in aggressive and non-aggressive Anthopleura elegantissima
polyps. BMC Genomics 16:Article 221 DOT 10.1186/s12864-015-1417-4.

Magazanik LG, Fedorova IM, Kovalevskaya GI, Pashkov VN, Bulgakov OV, Grishin
EV. 1992. Selective presynaptic insectotoxin («-latroinsectotoxin) isolated from
black widow spider venom. Neuroscience 46:181-188
DOI10.1016/0306-4522(92)90017-V.

Ménez A, Stocklin R, Mebs D. 2006. ‘Venomics’ or: the venomous systems genome
project. Toxicon 47:255-259 DOI 10.1016/j.toxicon.2005.12.010.

Neumann RS, Kumar S, Shalchian-Tabrizi K. 2014. BLAST output visualization in the
new sequencing era. Briefings in Bioinformatics 15:484-503 DOI 10.1093/bib/bbt009.

OmPraba G, Chapeaurouge A, Doley R, Devi KR, Padmanaban P, Venkatraman C,
Velmurugan D, Lin Q, Kini RM. 2010. Identification of a novel family of snake
venom proteins veficolins from Cerberus rynchops using a venom gland tran-
scriptomics and proteomics approach. Journal of Proteome Research 9:1882—-1893
DOI10.1021/pr901044x.

Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and evolution in
R language. Bioinformatics 20:289-290 DOI 10.1093/bioinformatics/btg412.

Petersen TN, Brunak S, Von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminat-
ing signal peptides from transmembrane regions. Nature Methods 8:785-786
DOI 10.1038/nmeth.1701.

Phuong MA, Mahardika GN, Alfaro ME. 2016. Dietary breadth is positively
correlated with venom complexity in cone snails. BMC Genomics 17:401
DOI10.1186/s12864-016-2755-6.

Pineda SS, Chaumeil P-A, Kunert A, Kaas Q, Thang MWC, Le L, Nuhn M, Herzig
V, Saez NJ, Cristofori-Armstrong B, Anangi R, Senff S, Gorse D, King GF,

Birol I. 2018. ArachnoServer 3.0: an online resource for automated discov-
ery, analysis and annotation of spider toxins. Bioinformatics 34:1074-1076
DOI 10.1093/bioinformatics/btx661.

Prashanth JR, Lewis RJ. 2015. An efficient transcriptome analysis pipeline to accelerate
venom peptide discovery and characterisation. Toxicon 107(Part B):282-289
DOI10.1016/j.toxicon.2015.09.012.

Macrander et al. (2018), PeerdJ, DOI 10.7717/peerj.5361 19/21


https://peerj.com
http://dx.doi.org/10.1371/journal.pone.0127883
http://dx.doi.org/10.1016/j.toxicon.2015.09.038
http://dx.doi.org/10.1093/gbe/evw155
http://dx.doi.org/10.1186/s12864-015-1417-4
http://dx.doi.org/10.1016/0306-4522(92)90017-V
http://dx.doi.org/10.1016/j.toxicon.2005.12.010
http://dx.doi.org/10.1093/bib/bbt009
http://dx.doi.org/10.1021/pr901044x
http://dx.doi.org/10.1093/bioinformatics/btg412
http://dx.doi.org/10.1038/nmeth.1701
http://dx.doi.org/10.1186/s12864-016-2755-6
http://dx.doi.org/10.1093/bioinformatics/btx661
http://dx.doi.org/10.1016/j.toxicon.2015.09.012
http://dx.doi.org/10.7717/peerj.5361

Peer

Price MN, Dehal PS, Arkin AP. 2010. FastTree 2—approximately maximum-likelihood
trees for large alignments. PLOS ONE 5:¢9490 DOI 10.1371/journal.pone.0009490.

Reumont BM von, Blanke A, Richter S, Alvarez F, Bleidorn C, Jenner RA. 2014. The
first venomous crustacean revealed by transcriptomics and functional morphology:
remipede venom glands express a unique toxin cocktail dominated by enzymes and a
neurotoxin. Molecular Biology and Evolution 31:48-58 DOI 10.1093/molbev/mst199.

Reyes-Velasco J, Card DC, Andrew AL, Shaney KJ, Adams RH, Schield DR, Casewell
NR, Mackessy SP, Castoe TA. 2015. Expression of venom gene homologs in diverse
python tissues suggests a new model for the evolution of snake venom. Molecular
Biology and Evolution 32:173—183 DOI 10.1093/molbev/msu294.

Rivera-de Torre E, Martinez-del-Pozo A, Garb JE. 2018. Stichodactyla helianthus’ de
novo transcriptome assembly: discovery of a new actinoporin isoform. Toxicon
150:105-114 DOI 10.1016/j.toxicon.2018.05.014.

Rodriguez de la Vega RC, Giraud T. 2016. Intragenome diversity of gene families
encoding toxin-like proteins in venomous animals. Integrative and Comparative
Biology 56:938-949 DOI 10.1093/icb/icw097.

Sanders S, Ganote C, Papudeshi B, Mockaitis K, Doak T. 2018. NCGAS makes robust
transcriptome analysis easier with a readily usable workflow following de novo assembly
best practices. San Diego: Plant and Animal Genomics 2018.

Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO:
assessing genome assembly and annotation completeness with single-copy orthologs.
Bioinformatics 31:3210-3212 DOI 10.1093/bioinformatics/btv351.

Sunagar K, Morgenstern D, Reitzel AM, Moran Y. 2016. Ecological venomics: how ge-
nomics, transcriptomics and proteomics can shed new light on the ecology and evo-
lution of venom. Journal of Proteomics 135:62—-72 DOI 10.1016/j.jprot.2015.09.015.

Tan PTJ, Khan AM, Brusic V. 2003. Bioinformatics for venom and toxin sciences.
Briefings in Bioinformatics 4:53—62 DOI 10.1093/bib/4.1.53.

Tan PTJ, Veeramani A, Srinivasan KN, Ranganathan S, Brusic V. 2006. SCORPION?2:

a database for structure—function analysis of scorpion toxins. Toxicon 47:356—363
DOI 10.1016/j.toxicon.2005.12.001.

Terrat Y, Ducancel F. 2013. Are there unequivocal criteria to label a given protein
as a toxin? Permissive versus conservative annotation processes. Genome Biology
14:Article 406 DOI 10.1186/gb-2013-14-9-406.

Todd EV, Black MA, Gemmell NJ. 2016. The power and promise of RNA-seq in ecology
and evolution. Molecular Ecology 25:1224-1241 DOI 10.1111/mec.13526.

Undheim EAB, Sunagar K, Herzig V, Kely L, Low DHW, Jackson TNW, Jones A,
Kurniawan N, King GF, Ali SA, Antunes A, Ruder T, Fry BG. 2013. A proteomics
and transcriptomics investigation of the venom from the barychelid spider trittame
loki (brush-foot trapdoor). Toxins 5:2488-2503 DOI 10.3390/toxins5122488.

Verdes A, Simpson D, Holford M. 2018. Are fireworms venomous? evidence for the con-
vergent evolution of toxin homologs in three species of fireworms (Annelida, Am-
phinomidae). Genome Biology and Evolution 10:249-268 DOI 10.1093/gbe/evx279.

Macrander et al. (2018), PeerdJ, DOI 10.7717/peerj.5361 20/21


https://peerj.com
http://dx.doi.org/10.1371/journal.pone.0009490
http://dx.doi.org/10.1093/molbev/mst199
http://dx.doi.org/10.1093/molbev/msu294
http://dx.doi.org/10.1016/j.toxicon.2018.05.014
http://dx.doi.org/10.1093/icb/icw097
http://dx.doi.org/10.1093/bioinformatics/btv351
http://dx.doi.org/10.1016/j.jprot.2015.09.015
http://dx.doi.org/10.1093/bib/4.1.53
http://dx.doi.org/10.1016/j.toxicon.2005.12.001
http://dx.doi.org/10.1186/gb-2013-14-9-406
http://dx.doi.org/10.1111/mec.13526
http://dx.doi.org/10.3390/toxins5122488
http://dx.doi.org/10.1093/gbe/evx279
http://dx.doi.org/10.7717/peerj.5361

Peer

Vijay N, Poelstra JW, Kiinstner A, Wolf JBW. 2013. Challenges and strategies in tran-
scriptome assembly and differential gene expression quantification. A comprehensive
in silico assessment of RNA-seq experiments. Molecular Ecology 22:620—634
DOI10.1111/mec.12014.

Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ, McCleary RJR,
Kerkkamp HME, Vos RA, Guerreiro I, Calvete JJ, Wiister W, Woods AE, Logan
JM, Harrison RA, Castoe TA, Koning AP] de, Pollock DD, Yandell M, Calderon
D, Renjifo C, Currier RB, Salgado D, Pla D, Sanz L, Hyder AS, Ribeiro JMC,
Arntzen JW, Van den Thillart GEEJM, Boetzer M, Pirovano W, Dirks RP, Spaink
HP, Duboule D, McGlinn E, Kini RM, Richardson MK. 2013. The king cobra
genome reveals dynamic gene evolution and adaptation in the snake venom system.
Proceedings of the National Academy of Sciences of the United States of America
110:20651-20656 DOI 10.1073/pnas.1314702110.

Wong ESW, Belov K. 2012. Venom evolution through gene duplications. Gene 496:1-7
DOI 10.1016/j.gene.2012.01.0009.

Wong ESW, Hardy MC, Wood D, Bailey T, King GF. 2013. SVM-based prediction of
propeptide cleavage sites in spider toxins identifies toxin innovation in an australian
tarantula. PLOS ONE 8:¢66279 DOI 10.1371/journal.pone.0066279.

Yang Y, Smith SA. 2013. Optimizing de novo assembly of short-read RNA-seq data for
phylogenomics. BMC Genomics 14:328 DOI 10.1186/1471-2164-14-328.

Zhang Y, Zhang S-F, Lin L, Wang D-Z. 2014. Comparative transcriptome analysis of
a toxin-producing dinoflagellate Alexandrium catenella and its non-toxic mutant.
Marine Drugs 12:5698-5718 DOI 10.3390/md12115698.

Macrander et al. (2018), PeerJ, DOI 10.7717/peerj.5361 21/21


https://peerj.com
http://dx.doi.org/10.1111/mec.12014
http://dx.doi.org/10.1073/pnas.1314702110
http://dx.doi.org/10.1016/j.gene.2012.01.009
http://dx.doi.org/10.1371/journal.pone.0066279
http://dx.doi.org/10.1186/1471-2164-14-328
http://dx.doi.org/10.3390/md12115698
http://dx.doi.org/10.7717/peerj.5361

