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ABSTRACT 
 
 

MARCUS MICHAEL LAWRENCE. Glycogen Enhancement Augments Overload-
Induced Protein Synthesis, Growth, and Myogenesis in Aged Skeletal Muscle. (Under the 
direction of DR. SCOTT E. GORDON) 
 
 

Age-related skeletal muscle (SkM) wasting is associated with elevated 5’-AMP-

Activated Protein Kinase (AMPK) activity, which inhibits overload-induced (OI) SkM 

protein synthesis (MPS) and growth. Glycogen, an inhibitor of AMPK, is reduced in aged 

SkM. We performed a series of experiments to examine the effects of manipulating 

glycogen on AMPK, MPS and related signaling, and OI-growth in aged SkM. Mutant 

glycogen synthase (GS; designed to enhance SkM glycogen content [GC]) or empty-

vector plasmids were electrotransferred into fast-twitch plantaris muscles prior to 21-day 

synergist ablation-induced unilateral overload in young adult (8 mo.; empty vector; YE) 

and old (33 mo.; empty vector, OE; or mutant GS, OM) male FBN rats. Contralateral 

limbs underwent SHAM ablations with no plasmid. There were significant increases in 

OI-(all vs. SHAM) MPS and hypertrophy in YE and OM groups only. As expected, 

mutant GS expression and GC were significantly higher in OM overloaded muscles (the 

only muscles receiving the mutant GS plasmid) vs. SHAM OM muscles or vs. both 

SHAM or overloaded YE and OE muscles. Markers of AMPK activity and other 

signaling intermediates affecting MPS were largely unaltered by glycogen enhancement. 

Subsequent experiments in which the mutant GS vs. empty-vector plasmid were 

transfected into cultured C2C12 skeletal muscle myotubes also confirmed a positive 

effect of enhanced GC on MPS with little change in underlying signaling intermediates 

affecting MPS. However, there was a strong and significant effect of enhancing GC (via 

mutant GS vs. empty vector plasmid) on myogenic regulatory factors, embryonic myosin 
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heavy chain-positive fibers, and total fiber number in aged muscle under conditions of 

overload in vivo. Thus, enhancing GC may lead to enhanced MPS and OI growth in aged 

SkM. This effect may be due, in part, to an enhanced myogenesis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 v 

DEDICATIONS 
 
 

To my parents, Anne and Mike, fiancé and future wife, Marissa, and sisters, Katie 

and Lucy, this work is dedicated to you. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 vi 

ACKNOWLEDGEMENTS 
 
 

This work was entirely made possible by the expert tutelage and support of Dr. 

Scott Gordon throughout my time at UNC Charlotte.  I want to express my utmost 

gratitude for your valued guidance, knowledge, and critique.  I would also like to thank 

my committee members, Dr. Susan Tsivitse Arthur, Dr. Didier Dréau, Dr. Joseph Marino, 

and Dr. Jeanette Bennett for your important feedback and support.  Thank you to the 

members of the Laboratory of Systems Physiology, Dr. Reuben Howden, Benjamin 

Gordon, Dr. Yvette Huet, Dr. Susan Tsivitse Arthur, Joshua Huot, Dr. Joseph Marino, 

Jonathan Petrocelli, and Bailey Peck for their assistance and camaraderie.  Thank you to 

Dr. Peter Roach and Dr. Alexander Skurat for providing the pCMV4 plasmids.  Thank 

you to Dr. Adam Reitzel and Eric Kane for providing materials and expertise in plasmid 

molecular biology techniques.  I would like to thank The University of North Carolina at 

Charlotte Graduate School for the Graduate Assistant Support award that funded me to 

perform this work and The American College of Sports Medicine for the ACSM Doctoral 

Student Research Award that partially funded this research.  Also, I would like to thank 

the National Institutes of Aging for supplying the animals at no cost for use in this work.  

Lastly, I would like to acknowledge my parents, Anne and Mike, fiancé and future wife, 

Marissa, sisters, Katie and Lucy, and friends for their patience and everlasting support 

throughout my doctoral studies. 

 

 

 

 



 vii 

TABLE OF CONTENTS 
 
 

LIST OF TABLES xi 

LIST OF FIGURES xii 

LIST OF ABBREVIATIONS xv 

CHAPTER 1: PROPOSED RESEARCH 1 

1.1 Background and significance 1 

1.2 Innovation 10 

1.3 Specific Aims 10 

1.4 Approach and Preliminary Data 14  

CHAPTER 2: EFFECTS OF GLYCOGEN ENHANCEMENT ON CHRONIC 
OVERLOAD IN AGED RAT SKELETAL MUSCLE IN VIVO 16 
 

2.1 Introduction 16 

2.2 Experimental Design and Methods 18 

2.2.1 Experimental Animals 18 

2.2.2 Surgical Procedures 18 

2.2.3 Muscle Harvesting and SUnSET Technique 20 

2.2.4 Glycogen Concentration Assay 20 

2.2.5 Homogenization and Protein Concentration Assay 21 

2.2.6 SDS-PAGE, Western Blotting, and Immunodetection 21 

2.2.7 Immunofluorescent eMyHC and Laminin Staining 23 

2.2.8 Immunofluorescent eMyHC and Total Fiber Number Quantification 24 

2.2.9 Statistical Analyses 24 

2.3 Results 24 

2.3.1 Body weights and food consumption 24 



 viii 

2.3.2 Muscle glycogen synthase and glycogen content 25 

2.3.3 Muscle wet weights and total protein contents 26 

2.3.4 Muscle protein synthesis rate 26 

2.3.5 SIGNALING INTERMEDIATES REGULATING MPS 27 

2.3.5.1 AMPK phosphorylation and concentration 27 

2.3.5.2 ACC phosphorylation and concentration 27 

2.3.5.3 Akt phosphorylation and concentration 28 

2.3.5.4 TSC2 phosphorylation and concentration 28 

2.3.5.5 mTOR phosphorylation and concentration 29 

2.3.5.6 p70S6K phosphorylation and concentration 30 

2.3.5.7 4EBP1 phosphorylation and concentration 30 

2.3.6 SIGNALING INTERMEDIATES REGULATING MPB 31 

2.3.6.1 FOXO3A phosphorylation and concentration 31 

2.3.6.2 Lysine-48 Tagged Polyubiquitin concentration 31 

2.3.7 MARKERS OF GLYCOGEN METABOLISM 32 

2.3.7.1 GSK3 phosphorylation and concentration 32 

2.3.7.2 PYGM concentration 33 

2.3.8 MARKERS OF MYOGENESIS AND/OR REMODELING 33 

2.3.8.1 Myogenic regulatory factors concentration 33 

2.3.8.2 Total Fiber Number & eMyHC-Stained Fibers 34 

2.4 Discussion and Conclusions 35 

2.5 Figures 48 

2.6 Tables 65 

 



 ix 

CHAPTER 3: EFFECTS OF GLYCOGEN ENHANCEMENT ON IN VITRO  
PROTEIN SYNTHESIS MANIPULATIONS IN C2C12 MYOTUBES 66 
 

3.1 Introduction 66 

3.2.1 Experimental Cell Culture 68 

3.2.2 Transient Plasmid Transfection in Myotubes 68 

3.2.3 Leucine, Rapamycin, or Leucine and Rapamycin Treatments 69 

3.2.4 Glycogen Concentration Asaay 69 

3.2.5 SDS-PAGE, Western Blotting, and Immunodetection 70 

3.2.6 Statistical Analyses 72 

3.3 Results 73 

3.3.1 Myotube glycogen content and glycogen synthase phosphoorylation and 
concentration 73 

 
3.3.2 Muscle protein synthesis rate 74 

 
3.3.3 AMPK and ACC phosphorylation and concentration 74 

 
3.3.4 SIGNALING INTERMEDIATES REGULATING MPS 75 

 
3.3.4.1 mTOR, p70S6K, and 4EBP1 phosphorylation and concentration 75 

 
3.3.4.2 TSC2 phosphorylation and concentration 77 

 
3.3.5 SIGNALING INTERMEDIATES REGULATING MPB 77 

 
3.3.5.1 FOXO3A phosphorylation and concentration 77 

 
3.3.5.2 Lysine-48 Tagged Polyubiquitin concentration 78 

 
3.3.6 MARKERS OF MYOGENESIS AND/OR REMODELING 78 

 
3.3.6.1 Myogenin concentration 78 

 
3.4 Discussion and Conclusions 78 

3.5 Figures 85 

CHAPTER 4: DISSERTATION SUMMARY 97 

REFERENCES 109 



 x 

APPENDIX 1: INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE 
APPROVAL LETTER  121 
 
APPENDIX 2: INSTITUTIONAL BIOSAFETY COMMITTEE EXEMPTION 
LETTER                 122 
 
APPENDIX 3: AMERICAN COLLEGE OF SPORTS MEDICINE FOUNDATION 
DOCTORAL STUDENT RESEARCH GRANT 123 
 

A3.1 PART A: 123 

A3.1.1 Lay Summary 123 

A3.1.2 Biographical Sketch of Principal Investigator/Student Investigator 124 

A3.1.3 Biographical Sketch of Student Advisor 125 

A3.1.4 List of Related Publications by the Principal Investigator/Student  
Investigator 127 

 
A3.1.5 List of Related Publications by Student Advisor 128 

A3.1.6 Proposed Budget 129 

A3.1.7 Budget Justification 130 

A3.1.8 Institutional Resources and Environment 130 

A3.2 PART B: RESEARCH PLAN 131 

A3.2.1 Introduction 131 

A3.2.2 Specific Aims 132 

A3.2.3 Research Strategy 133 

A3.2.4 Description of Risks for the Protection of Human Subjects or Vertebrate 
Animals 137 

 

 
 
 



 xi 

LIST OF TABLES 
 
 
TABLE 2.6.1:  Muscle wet weighs and protein contents after the 21-day  
overloading protocol.                  65 
 
TABLE 4.1 Comparisons of the Effects of Glycogen Enhancement In Vivo 
And In Vitro.                108 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xii 

LIST OF FIGURES 
 
 
FIGURE 1.1: Overview of potential muscle protein synthesis (MPS) and muscle  
protein breakdown (MPB) regulation by 5’-AMP-activated protein kinase (AMPK).       2 
 
FIGURE 1.2: Effect of Glycogen Concentration on AMPK in Muscle.             8 
 
FIGURE 1.3: Relationship between ACC and Glycogen Content in Young and Old 
Human Subjects Following an Acute Bout of Resistance Exercise.            11 
 
FIGURE 1.4: Relationship between FOXO3A and Glycogen Content in Young and  
Old Human Subjects Following an Acute Bout of Resistance Exercise.           11 
 
FIGURE 1.5: Percent Change in Glycogen Content with a 7-day Overload in Young 
Adult and Old Rats.                  11 
 
FIGURE 1.6: Relationship between AMPK and Percent Change with a 7-day 
 Overload in Young Adult and Old Rats.               12 
 
FIGURE 1.7: Relationship between Percent Hypertrophy and Percent Change in 
Glycogen Content with a 7-day Overload in Young Adult and Old Rats.           12 
 
FIGURE 1.8: Percent Change in Puromycin IOD Protein Synthesis with a 21-day 
Overload in Young Adult Rats.                14 
 
FIGURE 1.9: Percent Change in Wet Weights with a 21-day Overload in Young  
Adult Rats.                    14 
 
FIGURE 1.10: Percent Change in Total Glycogen Synthase after 24 hours of 
Transfection in C2C12 Myoblasts.                15 
 
FIGURE 1.11: Percent Change in Phosphorylation Status of Glycogen Synthase  
after 24 hours of Transfection in C2C12 Myoblasts.             15 
 
FIGURE 2.5.1: Total and phosphorylated GS response to overload in young adult  
and old skeletal muscle.                48 
 
FIGURE 2.5.2: Plantaris glycogen content response to overload in young adult  
and old skeletal muscle.                 49 
 
FIGURE 2.5.3: Plantaris mixed muscle protein synthesis rate response to overload  
in young adult and old skeletal muscle.               50 
 
FIGURE 2.5.4: Total and phosphorylated AMPK response to overload in young  
adult and old skeletal muscle.                51  
 



 xiii 

FIGURE 2.5.5: Total and phosphorylated ACC response to overload in young  
adult and old skeletal muscle.                52 
 
FIGURE 2.5.6: Total and phosphorylated Akt response to overload in young  
adult and old skeletal muscle.                53 
 
FIGURE 2.5.7: Total and phosphorylated TSC2 response to overload in young  
adult and old skeletal muscle.                54 
 
FIGURE 2.5.8: Total and phosphorylated mTOR response to overload in young  
adult and old skeletal muscle.                55 
 
FIGURE 2.5.9: Total and phosphorylated p70S6K response to overload in young  
adult and old skeletal muscle.                56 
 
FIGURE 2.5.10: Total and phosphorylated 4EBP1 response to overload in young  
adult and old skeletal muscle.                57 
 
FIGURE 2.5.11: Total and phosphorylated FOXO3A response to overload in young  
adult and old skeletal muscle.                58 
 
FIGURE 2.5.12: Plantaris K48-polyubiquitin response to overload in young adult 
 and old skeletal muscle.                 59 
 
FIGURE 2.5.13: Total and phosphorylated GSK3 response to overload in young  
adult and old skeletal muscle.                60 
 
FIGURE 2.5.14: Total PYGM response to overload in young adult and old skeletal 
muscle.                              61 
 
FIGURE 2.5.15: Plantaris MyoD and Myogenin response to overload in young  
adult and old skeletal muscle.                62 
 
FIGURE 2.5.16: Plantaris Total Fiber Number and eMyHC Expression response  
to overload in young adult and old skeletal muscle.               63 
 
FIGURE 2.5.17: Plantaris Representative images of Total Fiber Number and eMyHC 
Expression response to overload in young adult and old skeletal muscle.                        64 
 
FIGURE 3.5.1: Glycogen Synthase in Cultured C2C12 Myotubes.                       85 
 
FIGURE 3.5.2: Glycogen Content in Cultured C2C12 Myotubes.            86 
 
FIGURE 3.5.3: Muscle Protein Synthesis Rate (Puromycin) in Cultured C2C12 
Myotubes.                   87 
 
FIGURE 3.5.4: AMPK in Cultured C2C12 Myotubes.             88 



 xiv 

 
FIGURE 3.5.5: ACC in Cultured C2C12 Myotubes.             89 
 
FIGURE 3.5.6: mTOR in Cultured C2C12 Myotubes.             90 
 
FIGURE 3.5.7: p70S6K in Cultured C2C12 Myotubes.             91 
 
FIGURE 3.5.8: 4EBP1 in Cultured C2C12 Myotubes.              92 
 
FIGURE 3.5.9: TSC2 in Cultured C2C12 Myotubes.             93 
 
FIGURE 3.5.10: FOXO3A in Cultured C2C12 Myotubes.              94 
 
FIGURE 3.5.11: K48-polyubiquitin in Cultured C2C12 Myotubes.            95 
 
FIGURE 3.5.12: Myogenin in Cultured C2C12 Myotubes.              96 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xv 

LIST OF ABBREVIATIONS 
 

 
ACC   Acetyl-Coenzyme A Carboxylase 
 
AMP/ADP/ATP Adenosine Monophosphate/Diphosphate/Triphosphate 
 
AMPK   5’-AMP-Activated Protein Kinase 
 
Akt1   Protein Kinase B-1 
 
BCAA   Branched Chain Amino Acid 
 
CMV   Cytomegalovirus promoter 
 
eIF4E   Eukaryotic Initiation Factor 4E 
 
eEF2/eEF2K  Eukaryotic Elongation Factor 2/eEF2 Kinase 
 
eMyHC  Embryonic Myosin Heavy Chain 
 
FOXO3A  Forkhead Box Transcription Factor 3A 
 
GBD   Glycogen Binding Domain 
 
GDP/GTP  Guanidine Diphosphate/Triphosphate  
 
GH   Growth Hormone 
 
GS   Glycogen Synthase 
 
GSK3   Glycogen Synthase Kinase 3 
 
IGF-1   Insulin-like Growth Factor 1 
 
IRS-1   Insulin Receptor Substrate-1 
 
MAFbx  Muscle Atrophy F-box 
 
MPS   Muscle Protein Synthesis 
 
MPB   Muscle Protein Breakdown   
 
mTOR   Mechanistic (formerly mammalian) Target of Rapamycin 
 
MuRF1  Muscle Ring-Finger 1 
 



 xvi 

PA   Phosphatidic Acid 
 
PDK1   3-Phosphoinositide-Dependent Kinase 
 
PI3K   Phosphoinositide 3-Kinase 
 
PIP2   Phosphatidylinositol (3,4)-bisphosphate 
 
PIP3   Phosphatidylinositol (3,4,5)-triphosphate 
 
PYGM   Muscle-specific Glycogen Phosphorylase 
 
p70S6K  70-kDa Ribosomal Protein S6 Kinase 
 
Rag   Ras-related GTP binding 
 
RE   Resistance Exercise 
 
Rheb   Ras homolog enriched in brain 
 
rpS6   Ribosomal Protein S6 
 
TSC1/TSC2  Tuberous Sclerosis Complex 
 
4EBP1   eIF4E Binding Protein 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

CHAPTER 1: PROPOSED RESEARCH 
 

1.1 Background and significance  
 

Skeletal muscle mass and function decline greatly with age; known interventions 

are relatively ineffective in combatting this problem.  Aging is associated with a 

progressive loss of skeletal muscle mass and function (sarcopenia), particularly in fast-

twitch (i.e., type II) skeletal muscle fibers, and leads to an inability to perform activities 

of daily living, reduction in overall quality of life, and significantly increases the risk for 

all-cause mortality (94).  The consequential burden on healthcare costs in our rapidly 

expanding national and global older adult population is large.  Sarcopenia-related 

disabilities were estimated to cost >$18 billion in the year 2000 in the U.S. (90).  As our 

older adult (65+ years of age) population is projected to double to 70 million in the year 

2030 compared to 35 million in the year 2000, this will likely lead to a doubling in the 

prevalence and associated costs of sarcopenia.  Unfortunately, interventions such as 

resistance exercise (RE) training [loading of the muscle; (34, 35)] and amino acid 

supplementation (28, 33, 134) are not completely effective at combatting chronic 

condition.  

Following an acute bout of RE in aged skeletal muscle, there is suppressed muscle 

protein synthesis (MPS) and anabolic protein translational signaling (through the protein 

kinase B (Akt)-mechanistic (formerly mammalian) target of rapamycin (mTOR)-70-kDa 

ribosomal protein S6 kinase (p70S6k); Akt-mTOR-p70S6k pathway; (54); see Figure 1.1 
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below for acronym definitions) with an upregulation in muscle protein breakdown (MPB) 

and catabolic signaling (e.g., “atrogenes” such as forkhead box transcription factor 3A 

(FOXO3A), muscle ring finger-1 (MuRF1), and muscle atrophy f-box (MAFbx); the 

ubiquitin-proteasome system (107); Figure 1.1), resulting in a diminished increase in 

muscle mass (i.e., with RE training) versus young adult muscle (65).  The Gordon 

laboratory has observed highly similar detriments in MPS and anabolic signaling in aged 

vs. young adult rat skeletal muscle (42, 126-129).  This occurs both in response to an 

Figure 1.1 Overview of potential muscle protein synthesis (MPS) and muscle protein breakdown (MPB) 
regulation by 5’-AMP-activated protein kinase (AMPK). Note: red arrows and lines indicate direct effects of 
AMPK. This figure also includes simplistic inputs by branched-chain amino acids (BCAAs); IGF-1, insulin-like 
growth factor 1; GH, growth hormone; androgens; mechanical loading; and metabolic stress. Factors that inhibit 
protein synthesis and/or lead to protein breakdown are in red, whereas, factors involved in protein synthesis 
and/or inhibit protein breakdown are in green. Note: Aging is associated with low muscle [glycogen], which may 
be the cause of the negative energy (high AMP:ATP) balance leading to activation of AMPK. IRS-1, insulin 
receptor substrate 1; PI3k, phosphoinositide 3-kinase; PIP2, phosphatidylinositol (3,4)-bisphosphate; PIP3, 
phosphatidylinositol (3,4,5)-triphosphate; PDK1, 3-phosphoinositide-dependent protein kinase 1; PA; 
phosphatidic acid; Akt1, protein kinase B 1; TSC1/TSC2, tuberous sclerosis complex; Rheb, Ras homolog 
enriched in brain; Rag, Ras-related GTP binding; GATOR, GAP activity toward Rags; FOXO3A, forkhead box 
transcription factor 3A; mTOR, mechanistic (formerly mammalian) target of rapamycin; mTORC1, mTOR 
complex 1; MuRF1, muscle ring-finger 1; MAFbx, muscle atrophy F-box; eIF4E, eukaryotic initiation factor 4E; 
4EBP1, eIF4E binding protein; p70S6k, 70-kDa ribosomal protein S6 (rpS6) kinase; eEF2K, eukaryotic 
elongation factor 2 (eEF2) kinase; 5’ TOP, 5’ terminal oligopyrimidine tract. !
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acute bout of RE via high-frequency electrical stimulation (HFES), a model of acute RE 

(126, 127), and in response to chronic overloading of the muscle via synergistic 

ablation/tenotomy (42, 128, 129) leading to a blunted muscle growth with age.  

Importantly, these findings closely model similar findings in aged humans (34, 65).  

Aged skeletal muscle displays a blunted protein turnover and anabolic response.  

Skeletal muscle mass is maintained by the intricate balance of protein turnover that 

involves MPS and MPB (134).  As discussed above, aged skeletal muscle is associated 

with a reduction in anabolic signaling/MPS and an upregulation in catabolic 

signaling/MPB, leading to a net protein loss (11, 65).  These losses have been 

predominantly found to affect fast-twitch (type II) fibers (42, 69).  Additionally, in 

response to anabolic stimuli (i.e., RE, amino acids, growth factors, etc.) aged muscle has 

a blunted ability to hypertrophy (28, 42, 65).  This diminished ability to maintain or 

increase muscle fiber size/mass occurs both in aged humans (65, 107) and in rats (11, 42).  

Importantly, the Gordon laboratory found that an enzyme within skeletal muscle fibers 

called 5’-AMP-activated protein kinase (AMPK) plays a major role in the suppression of 

acute (31, 126) and chronic MPS/anabolic signaling (42, 128, 129) and thus, impaired 

growth in aged muscle (42, 128, 129).   

Negative energy balance in aged skeletal muscle chronically activates AMPK.  

Aged skeletal muscle displays a negative energy balance compared to young (i.e., a 

higher ratio of AMP to ATP or AMP:ATP; Figure 1.1), which is known to activate 

AMPK (50), and may do so on a chronic basis in aged muscle (42, 128).  AMPK exists in 

a 3-subunit complex containing 7 isoforms: α1, α2, β1, β2, γ1, γ2, γ3.  In addition to being 

activated allosterically by elevated AMP (on its γ subunit), AMPK is also activated by 
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phosphorylation at Threonine-172 (Thr172; the 172nd amino acid) by upstream kinases 

(e.g., AMPK kinase) on its α subunit (the catalytic subunit; Figure 1.1).  Moreover, 

AMPK can strongly be inhibited by glycogen binding to a glycogen-binding domain 

(GBD) on its β subunit [(50, 77, 78); Figure 1.2 below].  When activated, AMPK acutely 

upregulates pathways to supply short-term energy via glucose uptake and fat oxidation 

(77, 78), and chronic AMPK activation leads to long-term energy supply pathways being 

increased, such as mitochondrial biogenesis (50), to restore cellular energy homeostasis.   

AMPK also inhibits ATP-expensive pathways such as MPS.  Specifically, AMPK 

directly activates (via phosphorylation) TSC2 allowing for the TSC1/TSC2 (TSC) 

complex to form, which in turn inhibits mTOR complex 1 (mTORC1; (114); Figure 1.1).  

AMPK also directly inhibits mTORC1 by phosphorylating and inhibiting the mTORC1 

protein Raptor [(114); Figure 1.1].  mTORC1 inactivation leads to suppression of protein 

translation initiation by not allowing mTORC1 to activate (via phosphorylation) both 

p70S6k and being unable to remove (via phosphorylation) 4E-BP1 inhibitory binding on 

eIF-4E (Figure 1.1).  The inhibition of p70S6k by AMPK also inhibits p70S6k from 

recruiting 5’ TOP mRNA as well as phosphorylating rpS6 (54, 114) further inhibiting 

protein translation initiation (Figure 1.1).  Further, the inhibition of p70S6k by AMPK 

leads to inhibition of protein elongation by not allowing p70S6k to remove eEF2k 

inhibition of eEF2 [(54, 114); Figure 1.1].  AMPK has been found to directly inhibit 

elongation by phosphorylating eEF2k [(129); Figure 1.1].  AMPK also blocks Akt 

inhibition (via phosphorylation) of FOXO3A, allowing for FOXO3A translocation to the 

nucleus and subsequent upregulation of MuRF1 and MAFbx, leading to MPB [(54, 114); 

Figure 1.1].  The Gordon laboratory has observed a similar elevation of AMPK activity 
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and inhibition of protein translation initiation and elongation anabolic (MPS) signaling 

following an acute bout of RE (126, 127) and following chronic muscle overload (42, 

128, 129), in conjunction with a blunted hypertrophy in aged rat skeletal muscle (42, 128, 

129). 

 Several different stimuli that activate MPS, converge on the mTORC1 pathway 

and are all affected with age.  mTOR exists in 2 distinct protein complexes, mTOR 

complex 1 (mTORC1) consists of the proteins mTOR, GβL, and Raptor, whereas, the 

mTOR complex 2 (mTORC2) consists of the proteins mTOR, GβL, and Rictor (41, 55).  

In vivo, rapamycin forms a complex with FK506 binding protein 12 (FKBP12), which 

binds to the FRB domain of mTOR and inhibits its function (41, 55).  mTORC1 contains 

the rapamycin-sensitive protein Raptor, whereas, mTORC2 contains the rapamycin-

insensitive protein Rictor (41, 55).  Because mTORC2 does not seem to be directly 

inhibited by rapamycin, it remains to be seen if it contributes to any muscle growth-

regulated effects seen with protein translation and therefore will not be further reviewed 

(41, 55).  The mTORC1 pathway will be the only one reviewed for the remainder of this 

proposal.      

The mTORC1 pathway regulating protein translation in muscle, can be activated 

via several stimuli including, but not limited to, amino acids and mechanical loading 

(117).  All of these stressors converge on the mTORC1 pathway via several different 

mechanisms (Figure 1.1) to increase MPS and will be summarized briefly.  Signaling 

through the mTORC1 pathway is tightly controlled by its association with various small 

GTPases, mainly Ras homolog enriched in brain (Rheb) and Ras-related GTP binding 

[Rag, Figure 1.1; (57, 62, 117)].  Rheb activates mTORC1 when it is bound to GTP, but 
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not when it is bound to GDP, and this GTP/GDP loading status of Rheb is regulated by a 

GTPase (GAP) complex (57, 62, 117).  The activity of the GAP complex is regulated by 

the TSC1/2 complex, which in turn is influenced by several upstream kinases, namely 

Akt, extracellular-related protein kinases (ERK) 1 and 2, the 90-kDa ribosomal protein 

S6 kinase (p90RSK), and AMPK (57, 62, 117).  Phosphorylation of TSC1/2 by Akt, 

ERK, or p90S6K inhibits the GAP activity leading to an increase in the GTP bound form 

of Rheb which leads an increase in mTORC1 activity, whereas, AMPK has the opposite 

effect (57, 62, 117).  mTORC1 signaling is also controlled by the GTPase RagA or RagB 

(RagA/B) in association with RagC or RagD (RageC/D). When RagA/B is bound to GTP 

and RagC/D is bound to GDP, the activity of mTORC1 is increased, whereas, when 

RagA/B is bound to GDP and RagC/D is bound to GTP mTORC1 is inactive (57, 62, 

117).  Additionally, the RagA/B-RagC/D complex is also associated with an additional 

protein complex called Ragulator that acts as a guanine nucleotide exchange factor (GEF) 

for RagA/B (57, 62, 117).  Ragulator helps to target the RagA/B complex to the late 

endosomal/lysomal [LEL; (57, 62, 117)] membrane that leads to increased mTORC1 

activity. 

 Amino acids, mainly the branched-chain amino acid (BCAA) leucine, have been 

found to be a potent stimulator of mTOR and MPS (26, 36).  Leucine stimulates 

mTORC1 signaling by activating the GEF activity of Ragulator to repress a protein 

complex called GAP activity toward Rags (GATOR), that in turn leads to more RagA/B 

in the GTP bound state (57, 62, 117).  Mechanical loading leads to activation of 

mTORC1 signaling by activating ERK and Akt, leading to suppression of TSC1/2 and 

upregulation of Rheb in the GTP bound form (57, 62, 117).  Also, mechanical activation 
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leads an increase in phosphatidic acid (PA), which is believed to lead to an increase of 

the GTP bound form of Rheb (57, 62, 117).  Importantly, aging muscle displays a blunted 

ability to increase mTORC1 signaling in response to both amino acids (28, 33, 134) and 

mechanical loading (34, 35).  These findings highlight the need for a potent 

countermeasure to restore the ability of aged skeletal muscle to enhance mTORC1 

signaling, MPS, and ultimately growth. 

Glycogen is reduced in aged skeletal muscle and this may underlie the increase in 

AMPK activity.  Glycogen, the stored form of glucose, makes up ~500g of total skeletal 

muscle mass and serves as a critical energy reserve for ATP production during states of 

reduced cellular energy (102).  Glycogen is synthesized into highly organized branched 

tiered granules (where the amount of glucose increases exponentially for each branched 

tier generated) by the main enzyme glycogen synthase (GS) and is degraded by the 

enzyme glycogen phosphorylase, and both work in conjunction with other enzymes 

(109).  GS is the critical regulator of glycogen content in skeletal muscle (109).  The gene 

GSY1 encodes GS in skeletal muscle and mostly all other tissues capable of glycogen 

synthesis; however, GSY2 is specific to the liver form of GS (109).  GS is 

phosphorylated (and thus inhibited) on nine sites (serine residues) on the N- and C-

termini of the enzyme, with 4 sites (2, 2a, 3a and 3b) being identified as the most critical 

for glycogen synthesis [(109); see Figure 1.2 below].  Important to this proposal, 

glycogen content is diminished in aged skeletal muscle at rest in both rats (7, 17, 23, 47) 

and humans (17, 82), although not consistently (53, 83, 85, 103, 108).  Moreover, the 

contraction-induced depletion of glycogen is significantly greater in aged muscle (17, 53, 
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126) and there is a blunted ability to increase glycogen levels with training vs. young 

adult muscle in both rats (17, 53, 126) and humans (17, 82). 

Further, as stated above, AMPK is directly inhibited by glycogen through its β 

subunit containing a GBD [(77, 78); Figure 1.2].  AMPK activity has been found to be 

inversely related with the level of glycogen in muscle in vivo, with its activity being 

dramatically suppressed with high levels of glycogen and an increased AMPK activity 

with low levels of glycogen in both rats (138) and humans (123), however, these findings 

have been recently challenged (122, 140, 141).  These findings of an AMPKβ-glycogen 

interaction have also been supported in vitro, where large synthesized branched 

Figure 1.2. Effect of glycogen concentration ([glycogen]) on 5’-AMP-activated protein kinase (AMPK) 
phosphorylation and activity in muscle without (A) and with (B) muscle glycogen enhancement. A) AMPK is 
phosphorylated on its catalytic (α) subunit on Thr172 by upstream AMPK Kinase, activated by less branched 
glycogen on its β subunit containing the glycogen binding domain, and by low cellular energy (i.e., a high ratio of 
AMP:ATP) on its γ subunit.  When activated AMPK, amongst other functions, inhibits Glycogen Synthase (GS). 
Muscle-specific glycogen synthase is encoded by GSY1 resulting in 9 phosphorylation sites from its amino (NH2) 
to carboxyl (COOH) ends (sites 2, 2a, 3a, 3b, 3c, 4, 5, 1a, 1b corresponding to Ser7, Ser10, Ser640, Ser644, Ser648, 
Ser652, Ser697, and Ser710, respectively). Once phosphorylation of any of the 4 key sites (2, 2a, 3a, 3b) occurs the 
GS enzyme is inactive and therefore inhibits formation of glycogen with increased branching (more branching 
increases glucose). AMPK phosphorylates and thus inhibits the GS enzyme on site 2 (Ser7). B) Introduction of 
plasmid DNA expressing an active GS mutated on sites 2 & 3a (Mutant GS) will produce highly branched glycogen 
(i.e., high [glycogen]) and induce a strong inhibition of AMPK, thereby removing AMPK inhibition of GS. NOTE: It is 
unknown whether the high [glycogen] produced by mutant GS will restore cellular energy (AMP:ATP) in old muscle 
and thereby not activate AMPK, or whether it will inhibit upstream kinases from activating it.$
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oligosaccharides (i.e., large glycogen-mimicking molecules) inhibited AMPK’s activity 

up to 90%, and as the oligosaccharides decreased in their amount of branching (i.e., 

smaller glycogen-mimicking molecules) there were concomitant increases in AMPK’s 

activity as well as suppression of glycogen synthesis (77).  Additionally, AMPK directly 

inhibits GS when activated, thus, the chronic activation of AMPK with age (128) may be 

a critical factor in the diminished ability of aging skeletal muscle to store glycogen 

(Figure 1.1).   

We postulate that the low muscle glycogen content in aged muscle is an important 

factor contributing to the upregulation of AMPK activity and catabolic signaling/MPB 

and suppression of anabolic signaling/MPS and growth.  However, the link(s) between 

glycogen content, MPS, MPB, growth, and associated signaling following chronic 

overload in aged skeletal muscle have not been examined.  We further postulate that 

skeletal muscle glycogen content enhances anabolic signaling/MPS and suppresses 

catabolic signaling/MPB in response to leucine through AMPK in an mTORC1 manner; 

however, the effects of glycogen enhancement on anabolic stimuli, such as amino acids, 

have also never been tested in skeletal muscle.  Here we propose that enhancing 

intramuscular glycogen content via the introduction of plasmid DNA expressing active 

glycogen synthase in aged rat skeletal muscle or cultured C2C12 myotubes will suppress 

AMPK activity, enhance anabolic signaling/MPS, suppress catabolic signaling/MPB, and 

enhance in vivo growth in response to chronic overload in vivo and leucine treatment in 

vitro.  These studies could support the use of enhancing intramuscular glycogen content 

to suppress AMPK, restore the balance of MPS/MPB, and rescue growth in skeletal 

muscle during aging or in other conditions in which muscle mass is compromised. 
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1.2. Innovation 

We plan to test the innovative hypothesis that enhancing glycogen content in aged 

rat skeletal muscle or C2C12 myotubes will suppress AMPK activity in response to both 

chronic overload and acute transfection with leucine treatment, resulting in similar 

responses (i.e., elevated MPS/anabolic signaling, elevated growth in vivo, suppressed 

catabolic [MPB] signaling).  To enhance intramuscular glycogen we plan to inject and 

electroporate mutant GS plasmid DNA that has been mutated from serine to alanine on 

two key sites (2 and 3a) into old rat skeletal muscle (Figure 1.2) and transfect into C2C12 

myotubes.  This plasmid has been shown to enhance glycogen content in both cells (120) 

and rodent muscle (32, 75, 100).  The innovative aspect of our study is that this method 

has never been tested in aged muscle, especially with respect to its potential for rescuing 

growth.  The use of this innovative approach to enhance glycogen, instead of other 

known methods of manipulating muscle glycogen levels (e.g., fasting, exercise, etc.), 

should enable us to elucidate any physiological mechanism(s)/link(s) between muscle 

glycogen levels, AMPK, MPS, MPB, in vivo growth, and associated signaling in aged rat 

muscle or cultured C2C12 myotubes. 

1.3 Specific Aims 

Published and unpublished data from the Gordon laboratory have confirmed aged 

human skeletal muscle to have a significantly lower resting glycogen content vs. young 

adult muscle with a corresponding increase in AMPK activation in old, but not young 

muscle within ≤ 1-2 hours post an acute bout of RE (125).  Similarly, the Gordon 

laboratory has found that aged rat skeletal muscle displays a significantly (3-fold) greater 

glycogen depletion following an acute bout of RE (via HFES), and that the lower 
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glycogen level in aged muscle is associated with a 

greater AMPK activation (126).  Importantly, the 

Gordon laboratory has found that glycogen’s 

influence on AMPK’s activity in rats after HFES 

(31, 126) is a good model for similar observations 

in humans after RE Figures 1.3 and 1.4; (125).  

The Gordon laboratory has demonstrated that 

lower glycogen content during acute RE in human 

skeletal muscle is associated with higher AMPK 

activity (p-ACC Ser79; Figure 1.3).  The same 

study (as Figure 1.3) also found that lower 

glycogen content during acute RE in human 

skeletal muscle was associated with a lower 

anabolic (MPS) signaling (data not shown) and 

higher catabolic (MPB) signaling (Figure 1.4), 

where lower FOXO3A phosphorylation leads to 

greater MPB.   

Additionally, preliminary data (Figures 

1.5-1.7) from our laboratory indicate that 

glycogen content increases in response to chronic 

overload of fast-twitch skeletal muscle (i.e., 

plantaris) in young adult, but not old rats (Figure 

Figure 1.4. Relationship between phospho-
FOXO3A (Ser318/321) and glycogen 
content in the vastus lateralis muscles of 
young adult and old human subjects after an 
acute bout of resistance exercise.!

Figure 1.3. Relationship between phospho-
ACC (Ser79) and glycogen content in the 
vastus lateralis muscles of young adult and 
old human subjects after an acute bout of 
resistance exercise.!
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1.5).  Moreover, this diminished increase in 

glycogen content was associated with higher 

AMPK activity (Figure 1.6), lower protein 

synthesis (data not shown), and reduced muscle 

growth (Figure 1.7) in the old animals.  We 

postulate that the low muscle glycogen content in 

aged muscle is an important factor contributing to 

the upregulation of AMPK activity and catabolic 

signaling/MPB and suppression of anabolic 

signaling/MPS and growth.  However, the link(s) 

between glycogen content, MPS, MPB, growth, 

and associated signaling following chronic 

overload in aged skeletal muscle have not been 

examined.  We further postulate that skeletal 

muscle glycogen content enhances anabolic 

signaling/MPS and suppresses catabolic signaling/MPB in response to leucine through 

AMPK in an mTORC1 manner; however, the effects of glycogen enhancement on 

anabolic stimuli, such as amino acids, have also never been tested in skeletal muscle.  

Therefore, the present study addressed the following aims:   

Specific Aim 1: To determine whether enhancing intramuscular glycogen content in aged 

rat skeletal muscle will suppress AMPK activity in response to chronic overload and thus 

enhance chronic anabolic signaling/MPS and suppress chronic catabolic signaling leading 

to a rescue in muscle growth to levels seen in young adult animals. 
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Hypothesis 1:  Enhancing intramuscular glycogen content via the introduction of plasmid 

DNA expressing active glycogen synthase will suppress AMPK activity, suppress 

catabolic (MPB) signaling, restore anabolic signaling/MPS, and rescue overload-induced 

growth in aged rat skeletal muscle to levels observed in young adult muscle. 

Specific Aim 2 Overall:  To determine whether enhancing intracellular glycogen content 

can enhance anabolic signaling/MPS and decrease catabolic (MPB) signaling in response 

to an anabolic stimulus in skeletal myotubes.  

Specific Aim 2a: To determine whether enhancing intracellular glycogen content acts 

through an AMPK-mTOR dependent pathway to increase anabolic signaling and muscle 

protein synthesis in response to leucine.  

Hypothesis 2a: Glycogen enhancement via the transfection of plasmid DNA expressing 

active glycogen synthase in cultured C2C12 myotubes will enhance the anabolic effect of 

leucine by inhibiting AMPK and increasing anabolic signaling/MPS, and this effect will 

be eliminated by rapamycin-induced mTOR pathway blockade.  

Specific Aim 2b: To determine whether enhancing intracellular glycogen content acts 

through an AMPK-mTOR dependent pathway to decrease catabolic signaling in response 

to leucine. 

Hypothesis 2b: Glycogen enhancement via the transfection of plasmid DNA expressing 

active glycogen synthase in cultured C2C12 myotubes will enhance the anti-catabolic 

effect of leucine by inhibiting AMPK and decrease catabolic signaling, and the effect will 

be eliminated by rapamycin-induced mTOR pathway blockade. 

1.4 Approach and Preliminary Data 
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We employed a series of experiments to test Specific Aims 1 and 2.  In the first 

experiment (Chapter 2) we electrotransferred 

either the empty-vector (empty) or mutant GS 

vector (mutant) plasmid into the fast-twitch 

plantaris muscles of rats prior to a 21-day 

functional overload (unilateral gastrocnemius 

ablation). The contralateral legs received a 

sham-operation with no plasmid. The empty 

vector (pCMV4) was electrotransferred into 

young adult (Young empty, YE) and old (Old 

empty, OE), whereas, the mutant GS vector 

(pCMV4-M2,3a-GS) was electrotransferred 

into old (Old mutant, OM) only.  In the second 

experiment (Chapter 3) we transiently 

transfected C2C12 myotubes to determine 

whether enhancing intracellular glycogen 

content can enhance anabolic signaling/MPS and decrease catabolic (MPB) signaling in 

response to leucine in skeletal myotubes.  Both the in vivo and in vitro experiments were 

successfully employed in pilot work using the exact methodology outlined for glycogen 

enhancement.  The preliminary experiments to enhance in vivo glycogen content led to 

increased protein synthesis (Figure 1.8) and growth (Figure 1.9) in overloaded plantaris 

muscles of young adult (8 mo.) Fischer 344 rats.  Additionally, transient transfection of 

Figure 1.8: Percent (%) change in puromycin IOD protein 
synthesis of 21-day overloaded vs. sham-operated 
plantaris muscles in young adult rats with empty vs. 
mutant glycogen synthase (GS) plasmid treatment.!

Figure 1.9: Percent (%) change in puromycin in plantaris wet 
weight in overloaded vs. sham-operated plantaris muscles in 
young adult rats with empty vs. mutant glycogen synthase (GS) 
plasmid treatment.!
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the mutant GS plasmid in cultured C2C12 

myoblasts led to increases in total GS 

expression (Figure 1.10) with reductions in 

the phosphorylation status (phospho-

GS/total GS) at Ser641 (Figure 1.11) 

compared to empty vector.   
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CHAPTER 2: EFFECTS OF GLYCOGEN ENHANCEMENT ON CHRONIC 
OVERLOAD IN AGED RAT SKELETAL MUSCLE IN VIVO 

 
 

2.1 Introduction 

The age-related loss of muscle mass and function (i.e., sarcopenia) is a significant clinical 

problem and is estimated to affect 20-50% of individuals 65 years of age and older, and 

up to over 50% of individuals over 75 years of age and older (8).  Additionally, the 65+ 

years of age population is estimated to double by the year 2030 (90), undoubtedly leading 

an increase in the prevalence and economic burden associated with sarcopenia.  

Therefore, research is warranted to better understand the pathophysiology of this chronic 

condition in order to advance the efficacy of lifestyle, therapeutic, and pharmacological 

treatment options. 

Our laboratory (42, 126-129) has highlighted the effect of 5’-AMP-activated 

protein kinase (AMPK) in aged skeletal muscle.  Specifically, AMPK phosphorylation 

status (at Thr172) and activity were chronically elevated in aged skeletal muscle (128) 

and this effect is highly correlated with diminished growth in response to 7-days of 

unilateral functional overload (128).  This effect was purported to be due to AMPK’s 

inhibition of signaling intermediates involved in regulation of protein translation (42, 

129).  Further, our laboratory (42) found that 5-Aminoimidazole-4-carboxamide 

ribonucleotide (AICAR), a pharmacological activator of AMPK, blunted the overload-

induced growth of young adult muscle to the level observed in old animals.  Importantly, 
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in the same study (42), a pharmacologic inhibitor of AMPK (Compound C) restored the 

overload-induced growth in aged muscle to the level seen in young adult animals.  

Collectively, these findings indicate that AMPK is a negative regulator of muscle protein 

synthesis (MPS) and growth in aged skeletal muscle and that inhibiting its activity could 

reduce this effect (42). 

 Glycogen, the stored form of glucose, serves as a critical energy reserve and is 

important to many metabolic processes (102, 109).  Glycogen is synthesized into highly 

organized branched tiered granules primarily by glycogen synthase (GS) and degraded 

primarily by glycogen phosphorylase (GP), both working in conjunction with other 

enzymes and proteins (109).  GS is a critical regulator of glycogen content in skeletal 

muscle (109).  GS is phosphorylated (and thus inhibited) on nine sites (serine residues) 

on the N- and C-termini of the enzyme, with 4 sites (2, 2a, 3a and 3b) being identified as 

the most critical for glycogen synthesis (109).  Glycogen content has been found to be 

diminished in aged skeletal muscle at rest in rats (7, 17, 23, 47) and humans (17, 82), 

although not consistently (53, 83, 85, 103, 108).  Moreover, the contraction-induced 

depletion of glycogen is significantly greater in aged muscle (17, 53, 126) and there is a 

blunted ability to increase glycogen levels with training vs. young adult muscle in rats 

(17, 53, 126) and humans (17, 82). 

 AMPK exists in a 3-subunit complex containing 7 isoforms: α1, α2, β1, β2, γ1, γ2, 

γ3.  In addition to being activated allosterically by elevated AMP (on its γ subunit), 

AMPK is also activated by phosphorylation at Thr172 by upstream kinases (e.g., AMPK 

kinase) on its α subunit (the catalytic subunit; Figure 1.1).  Moreover, AMPK can be 

strongly inhibited by glycogen binding to a glycogen-binding domain (GBD) on its β 
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subunit (50, 77, 78), although this interaction has recently been challenged (98, 122, 

140).  We thus postulate that the low muscle glycogen content is an important factor 

contributing to the upregulation of AMPK activity and catabolic signaling/muscle protein 

breakdown (MPB) and suppression of anabolic signaling/MPS and growth in aged 

muscle during overload.  However, the link(s) between glycogen content, MPS, MPB, 

growth, and associated signaling following chronic overload has never been examined in 

aged humans or animals.  Therefore, the goal of this investigation was to determine 

whether enhancing intramuscular glycogen content in aged rat skeletal muscle would 

suppress AMPK activity in response to chronic overload and thus enhance chronic 

anabolic signaling/MPS and suppress chronic catabolic signaling leading to a rescue in 

muscle growth to levels seen in young adult animals.  

2.2 Experimental Design and Methods 

2.2.1 Experimental Animals 

Young adult (8 months) and old (32-34 months) male Fischer344 x Brown Norway F1 

hybrid (FBN) rats (n = 9-13/group, 33 total) were obtained from the National Institutes of 

Aging’s Aged Rodent Colony (Bethesda, MD) and were then singly housed in the 

vivarium at the University of North Carolina at Charlotte, an AAALAC accredited 

facility.  The animals were kept on a 12-hr light-dark cycle and were given food and 

water ad libitum. All procedures were approved by the University of North Carolina at 

Charlotte Animal Care and Use Committee. 

2.2.2 Surgical Procedures 
Under general anesthesia (2-3% isofluorane and supplemental O2), unilateral hindlimb 

surgical ablation of the gastrocnemius muscle in each animal was performed to enable 
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compensatory overload of the synergistic plantaris and soleus muscles for 3 weeks as 

described by Thomson and Gordon (128, 129).  A sham (non-overload) surgery was 

performed on the contralateral control hindlimb.   

We obtained (a kind gift from Dr. Peter Roach and Dr. Alexander Skurat, Indiana 

University, Bloomington, IN, USA) a pCMV4 plasmid that overexpresses a 

constitutively active form of glycogen synthase (pCMV4-M2,3a-GS), a rabbit skeletal 

muscle glycogen synthase having Ser to Ala mutations at sites 2 and 3a (120).  This 

plasmid has been shown in COS cells (120) and rodents (32, 75, 100) to enhance skeletal 

muscle glycogen.   

During the ablation surgery, 120 µL of plasmid DNA (either mutant GS/pCMV4-

M2,3a-GS or empty vector/pCMV4) for each muscle was introduced into the plantaris 

muscle to be overloaded (but not the contralateral sham-operated muscle) using a 27-

gauge needle and syringe following the protocol of Wu and Kandarian (139).  Briefly, the 

needle was inserted near the distal myotendinous junction of the muscles, and slowing 

pushed in ~1cm rostrally to the proximal end of the muscle.  120 µL (at 1.5 µg/µL) of the 

plasmid DNA (in warm sterile half-saline solution) was injected evenly along the 

longitudinal axis of the muscles while slowly withdrawing the syringe. Following a 1-

min wait period, electroporation was performed.  Briefly, the surface of the muscles was 

moistened with sterile saline.  Then, the electrodes (Tweezertrodes, Harvard Apparatus) 

were placed on either side of the muscle.  Next, 5 square-wave electrical pulses at 75-100 

V/cm, 20 ms at 1 Hz, with 200 ms interpulse intervals was applied using a BTX Electro 

Square Porator (Harvard Apparatus).  The empty vector (pCMV4) was electrotransferred 

into young adult (Young empty, YE, n = 9) and old (Old empty, OE, n = 11), whereas, 
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the mutant GS vector (pCMV4-M2,3a-GS) was electrotransferred into old (Old mutant, 

OM, n = 13) only.  

2.2.3 Muscle Harvesting and SUnSET Technique 
Three weeks after ablation surgery, animals were fasted for 5 h to remove any potential 

affects on MPS due to feeding prior to being anesthetized with 2-4% inhaled isofluorane 

with supplemental O2.  During anesthesia, one jugular vein of the animal was exposed by 

incision through the skin of the neck.  The vein was then slowly injected with 0.040 µmol 

puromycin/g BW dissolved in sterile PBS using a 25-gauge needle (61).  Puromycin is 

incorporated into synthesizing proteins within the muscle and can be used in determining 

rate of protein synthesis by western blotting in harvested muscle samples (40).  At 10 min 

after IV injection, the plantaris were very quickly harvested, trimmed of fat and 

connective tissue, weighed, and frozen in liquid N2-chilled isopentane and store at -80°C 

until analyses were performed.  

2.2.4 Glycogen Concentration Assay 

Glycogen concentration was determined in the PLT muscles as previously described (99, 

126), with modifications.  Briefly, a portion of the PLT muscle was ground-glass 

homogenized in 26.67 volumes of ice-cold 0.1M NaOH.  Then, in duplicate, 100 µL of 

homogenate was transferred to a new tube and boiled at 90°C for 20 min in a dry-block 

heater to remove any free glucose.  After 20 min, the solution was neutralized with 100 

µL of 0.2M Acetic Acid.  Then 50 µL of the neutralized solution was transferred to a new 

tube containing 150 µL of 0.1M Sodium Acetate Buffer (0.05M Sodium Acetate, 0.05M 

Acetic Acid, pH 4.6-4.7) and vortexed. Glycogenolysis was then performed by adding 20 

µL of amyloglucosidase (Sigma no. A7420, St. Louis, MO, USA) solution (10 µg/µL in 
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20 mM Tris with 0.02% BSA, pH 7.5) and incubating at 55°C for 1 h. After 1 h, the 

samples were centrifuged at 14,800 x g for 5 min and then loaded in duplicate (4 readings 

per sample) into cuvettes (USA Scientific no. 9090-0460, Ocala, FL, USA).  The amount 

of free glucosyl units in each sample were then determined spectrophotometrically via a 

glucose assay (Sigma no. GAHK20).  Glycogen content (µg/mg wet weight) of the 

original muscle sample was then derived from comparing the reading to a standard curve 

made with type III glycogen from rabbit liver (Sigma no. G8876). 

2.2.5 Homogenization and Protein Concentration Assay 

Homogenization was performed as previously described (128, 129). Briefly, a portion of 

the PLT muscle was ground-glass homogenized in 7 volumes of ice-cold homogenization 

buffer (50 mM HEPES (pH 7.4), 0.1% Triton X-100, 4 mM EGTA, 10 mM EDTA, 15 

mM Na4P2O7�10 H2O, 100 mM β-glycerophosphate, 25 mM NaF, 50 µg/ml leupeptin, 50 

µg/ml pepstatin, 33 µg/ml aprotinin, and 5 mM Na3VO4).  Sample homogenates were 

then diluted 1:7 in homogenization buffer before analysis of protein concentration, which 

was assessed in triplicate using a modified Lowry procedure (DC Protein Assay, Bio-

Rad, Hercules, CA, USA).  Protein assay results were then used to calculate total protein 

per whole muscle as an index of muscle hypertrophy. 

2.2.6 SDS-PAGE, Western Blotting, and Immunodetection 

Standard western blotting protocols were used as previously described (128, 129). 

Briefly, total muscle protein homogenates were solubilized in sample loading buffer (50 

mM Tris-HCl, pH 6.8, 10% glycerol, 2% SDS, 2% β-mercaptoethanol, 0.1% 

bromophenol blue) at a concentration of 1 µg/µl and boiled at 95°C for 5 min.  Proteins 

were then separated by SDS-PAGE using either 4-15% (mTOR, p70S6K, and 4EBP1) or 
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7.5% (all others) Tris-HCl gels (Criterion, Bio-Rad) for 1.5 h at 100V in 4°C and then 

transferred for 1 h at 100V in 4°C onto a PVDF membrane (EMD Millipore, Billerica, 

MA, USA) in Towbin’s buffer (25 mM Tris-base, 192 mM glycine, 20% methanol).  To 

verify transfer and equal loading among lanes, membranes were then stained with 

Ponceau S (Sigma) and imaged.  For immunodetection, membranes were blocked for 1 h 

at room temperature in blocking buffer (5% nonfat dry milk in TBS-T, 20 mM Tris base, 

150 mM NaCl, 0.1% Tween-20, pH 7.6), briefly rinsed in TBS-T, and then incubated 

with primary antibody (in 2% BSA in TBS-T, with 0.02% NaN3, pH 7.5) overnight at 

4°C on a shaker.  Membranes were then serially washed in TBS-T, incubated with 

horseradish peroxidase (HRP)-conjugated secondary in blocking buffer for 1 h, and again 

serially washed in TBS-T.  The HRP activity was detected by enhanced 

chemilumenscence reagent (ECL; EMD Millipore), exposure to autoradiographic film 

(Alkali Scientific no. XR1570, Pompano Beach, FL, USA), and then developed (Konica 

Minolta no. SRX-101A). Antigen concentration was calculated by quantification of the 

integrated optical density (IOD) of the appropriate band and then normalized to total 

protein content from previous Ponceau S staining using a gel analyzer software (Image 

Studio Lite, Licor, Lincoln, NE, USA).  Primary antibody dilutions were as follows: 

phospho-AMPKαThr172 (Cell Signaling Technology, CST, no. 4188, Beverly, MA, USA), 

1:2000; total AMPKα (CST no. 2532), 1:5000; phospho-ACCSer79 (EMD Millipore 

no.07-303) 1:2000; total ACC (Streptavidin-HRP, GE Life Sciences no. RPN1231), 

1:5000; phospho-AktThr308 (CST no. 2965), 1:1000; phosho-AktS473 (CST no. 4060), 

1:1000; total Akt (CST no.4691), 1:2000; phospho-eEF2Thr56 (CST no. 2331), 1:10,000; 

total eEF2 (CST no. 2332), 1:10,000; p-FOXO3ASer318/321 (CST no. 9465), 1:1000; total 
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FOXO3A (CST no. 12829), 1:2000; phospho-GSSer641 (CST no. 3891), 1:5000; total GS 

(CST no.3893), 1:5000; phoshpo-GSK-3α/βSer21/9 (CST no. 8566), 1:4000; total GSK-

3α/β (CST no. 5676), 1:4000; K48-linkage Specific Polyubiquitin (CST no. 8081), 

1:1000; MyoD1 (CST no. 13812), 1:600; Myogenin (Santa Cruz Biotechnology no. sc-

12732, Dallas, TX, USA) 1:200;  phospho-mTORS2448 (CST no. 5536), 1:2000; mTOR 

(CST no. 2983), 1:4000; phospho-p70S6KThr389 (CST no. 9234), 1:750; total p70S6K 

(CST no. 2708), 1:2000; puromycin (EMD Millipore no. MABE343), 1:5000; total 

PYGM (Thermo Fisher no. PA5-11511), 1:1000; phospho-4E-BP1Thr37/46 (CST no. 

2855), 1:6000; total 4E-BP1 (CST no. 9644), 1:15,000; phospho-TSC2Ser1387 (CST no. 

5584), 1:1500; phospho-TSC2Thr1462 (CST no. 3617), 1:1500; total TSC2 (CST no. 3990), 

1:2000.  The appropriate species-specific (goat anti-mouse or anti-rabbit) HRP secondary 

antibodies were from CST, except for puromycin secondary, which was from Jackson 

ImmunoResearch Laboratories (West Grove, PA, USA). 

2.2.7 Immunofluorescent eMyHC and Laminin Staining 

For immunofluorescent staining analyses, a portion of the plantaris muscle that was 

frozen in liquid N2-chilled isopentane was cross-sectioned at 12-µm beginning at the mid-

belly on a cryostat.  To quantify embryonic myosin heavy chain (eMyHC) and total fiber 

number, sections were blocked in 10% normal goat serum (Vector Laboratories, 

Burlingame, CA, USA) in PBS for 1 h and then incubated overnight at 4°C with MyH3 

anti-eMyHC IgG1 (1:25, F1.652, DSHB) and anti-laminin IgG2a (1:50, 2E8, DSHB).  

The following day, sections were serially washed in PBS-T and incubated with goat anti-

mouse Alexa Fluor 350 IgG1 (1:250, A-21120, Thermo Fisher) and Alexa Fluor 555 
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IgG2a (1:500, A-21137, Thermo Fisher) for 1 h, serially washed again, and then mounted 

with ProLong Gold (Thermo Fisher). 

2.2.8 Immunofluorescent eMyHC and Total Fiber Number Quantification 

For IHC, images were captured and analyzed at the University of Kentucky Center for 

Muscle Biology, using previously published methods (89).  Briefly, images were 

captured at x20 magnification at room temperature using a Zeiss upright fluorescent 

microscope (Zeiss AxioImager M1 Oberkochen, Germany).  Whole muscle sections were 

obtained using the mosaic function in Zeiss Zen 2.3 imaging software.  Total fiber 

number and eMyHC proportion were analyzed using custom software, developed by the 

University of Kentucky Center for Muscle Biology.  This robust and highly sensitive 

muscle analysis software has been validated against manual human counts and is both 

accurate and reliable (89).   

2.2.8 Statistical Analyses  

A two-way analysis of variance was used (Experimental Group x Overload, with repeated 

measures for overload between contralateral limbs).  Post-hoc comparisons were 

accomplished via a Fisher’s LSD test, with statistical significance being set apriori at p ≤ 

0.05.  All statistical analyses and graphs were made using Graphpad Prism 7 (GraphPad, 

San Diego, CA, USA). Data are presented as means ± SEM. 

2.3 Results 

2.3.1 Body weights and food consumption 
 
Body weight and food consumption was measured every day throughout the 21-day 

overload period.  There was a significantly (p ≤ 0.05) higher body weight (BW) in OE 

and OM vs. YE, with no significant differences (NSD; p > 0.05) between OE and OM 
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prior to ablation surgery on Day 1 (415g ± 12.21; 492.18g ± 23.73; and 484g ± 14.35; 

YE, OE, and OM, respectively) and at time of sacrifice on Day 21 (393g ± 11.00; 

452.91g ± 21.10; and 441g ± 10.90; YE, OE, and OM, respectively).  Additionally, daily 

food consumption (g food/kg BW) was significantly (p ≤ 0.05) lower across the 21-day 

(average of Day 0 through Day 21) procedure in OE (33.95 g/kg BW ± 1.57) and OM 

(34.82 g/kg BW ± 1.71) vs. YE (40.25 g/kg BW ± 1.43), with NSD (p > 0.05) between 

OE and OM.  

2.3.2 Muscle glycogen synthase and glycogen contents 
 
The phosphorylation status (phospho-GS/total GS) at Ser641 (Figure 2.5.1A) and the 

absolute concentration of phospho-(Ser641) GS (Figure 2.5.1C) was significantly (p ≤ 

0.05) reduced (main effect) in all overloaded muscles compared to SHAM regardless of 

age or plasmid treatment. This decrease was seen despite a significant (p ≤ 0.05) increase 

in the absolute concentration of total GS (Figure 2.5.1B) in the overloaded muscles of 

OM vs. SHAM and vs. overloaded muscles of YE and OE.  This plasmid (mutant GS) 

has been shown in both COS cells (120) and in mouse skeletal muscle (32, 75) to 

enhance glycogen content due to Ser to Ala mutation at two critical sites (sites 2 and 3a) 

for phosphorylation and, thus, decreased activity (120).  Ser641 is site 3a on GS and 

therefore the lack of change in phosphorylation at this site despite an increase in the 

absolute concentration of total GS verifies that the mutant GS-vector was overexpressed 

in the OM overloaded muscles.  As expected, glycogen content (Figure 2.5.2A) was 

significantly (p ≤ 0.05) higher in the overloaded muscles of OM vs. SHAM and vs. 

overloaded muscles of YE and OE.  There were no differences (p > 0.05) in overloaded 

YE or OE muscles vs. SHAM, although OE muscles displayed a non-significant 



 26 

downward trend with overload (p = 0.104) vs. SHAM.  The OM demonstrated a percent 

increase with the overload that was significantly (p ≤ 0.05) higher than both YE and OE 

(Figure 2.5.2B).  

2.3.3 Muscle wet weights and total protein contents 

21-days of overload resulted in significant (p ≤ 0.05) hypertrophy, as measured by wet 

weights and total protein content (Table 2.6.1), of the overloaded plantaris muscles vs. 

SHAM of both the YE and OM groups, with a significant (p ≤ 0.05) atrophy in the OE 

overloaded plantaris muscles vs. SHAM.  Both the overloaded and SHAM muscles of YE 

were significantly (p ≤ 0.05) larger than all OE and OM muscles.  Importantly, the 

percent hypertrophy with overload was similar between YE and OM, both of which had a 

percent hypertrophy significantly (p ≤ 0.05) greater than OE. 

2.3.4 Muscle protein synthesis rate  

Mixed MPS rate was determined via puromycin incorporation using the SUnSET 

technique (40, 61).  MPS rate was significantly (p ≤ 0.05) increased in overloaded 

muscles (main effect) regardless of age or plasmid treatment vs. SHAM muscles (Figure 

2.5.3) with NSD (p > 0.05) between SHAM values of any group.  Further, the increase in 

puromycin incorporation in OM overloaded muscles was significantly (p ≤ 0.05) higher 

than OE overloaded muscles with NSD (p > 0.05) vs. YE overloaded muscles.  

Moreover, the percent MPS rate was NSD (p > 0.05) between YE, OE, and OM (69.9%, 

36.4%, and 45.9%, respectively). 
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2.3.5 SIGNALING INTERMEDIATES REGULATING MPS 

2.3.5.1 AMPK phosphorylation and concentration 

The phosphorylation status (phospho-AMPKα/totalAMPKα) at Thr172 (Figure 2.5.4A) 

and the absolute concentration of phospho-(Thr172) AMPKα (Figure 2.5.4C) were 

significantly (p ≤ 0.05) increased (main effect) in all overloaded muscles compared to 

SHAM regardless of age or plasmid treatment.  The phosphorylation status of AMPKα 

was significantly (p ≤ 0.05) higher in overloaded muscles of OE and OM vs. overloaded 

muscles of YE, with NSD (p > 0.05) between OE and OM.  Further, the absolute 

concentration of phospho-(Thr172) AMPKα in the overloaded muscles of OM was 

significantly (p ≤ 0.05) higher than the overloaded muscles in YE.  Lastly, there was a 

significant (p ≤ 0.05) decrease (main effect) in the absolute concentration of total 

AMPKα (Figure 2.5.4B) with overload regardless of age or plasmid treatment. 

2.3.5.2 ACC phosphorylation and concentration 

Acetyl-CoA Carboxylase (ACC) is a well-established marker of AMPK activity in vivo 

(43).  The phosphorylation status (phospho-ACC/total ACC) at Ser79 (Figure 2.5.5A) 

and the absolute concentration of phospho-(Ser79) ACC (Figure 2.5.5C) were 

significantly (p ≤ 0.05) increased (main effect) in all overloaded muscles compared to 

SHAM regardless of age or plasmids treatment.  The phosphorylation status of ACC was 

significantly (p ≤ 0.05) higher in overloaded muscles of OE only vs. the overloaded 

muscles of YE.  Further, regardless of plasmid treatment or loading status, the muscles of 

OM and OE displayed higher levels of total ACC (Figure 2.5.5B) vs. YE. 
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2.3.5.3 Akt phosphorylation and concentration 

The phosphorylation status (phospho-Akt/total Akt) at Thr308 (Figure 2.5.6A) and at 

Ser473 (Figure 2.5.6B) and the absolute concentration of phospho-(Thr308) Akt (Figure 

2.5.6C) and phospho-(Ser473) Akt (Figure 2.5.6D) were significantly (p ≤ 0.05) 

increased (main effect) in all overloaded muscles compared to SHAM muscles regardless 

of age or plasmid treatment.  The phosphorylation status of Akt at Thr308 was 

significantly (p ≤ 0.05) lower in the overloaded muscles of OE and OM compared to YE, 

with NSD (p > 0.05) between OE and OM.  The absolute concentration of total ACC was 

significantly (p ≤ 0.05) increased in overloaded muscles (main effect) regardless of age or 

plasmid treatment.  Additionally, regardless of plasmid treatment or loading status, the 

muscles of OM and OE displayed higher (p ≤ 0.05) levels of total Akt (Figure 2.5.6E) vs. 

YE. 

2.3.5.4 TSC2 phosphorylation and concentration 

The phosphorylation status (phospho-TSC2/total TSC2) at Ser1387 (Figure 2.5.7A) and 

the absolute concentration of phospho-(Ser1387) TSC2 (Figure 2.5.7C) were 

significantly (p ≤ 0.05) increased (main effect) in all overloaded muscles compared to 

SHAM muscles regardless of age or plasmid treatment.  The absolute concentration of 

phospho-(Ser1387) TSC2 in overloaded muscles of OM was significantly (p ≤ 0.05) 

higher than overloaded muscles of YE, with NSD (p > 0.05) between OE and OM.  The 

overloaded muscles of OE also tended (p = 0.065) to be higher than YE overloaded 

muscles for phospho-(Ser1387) TSC2.  The phosphorylation status (phospho-TSC2/total 

TSC2) at Thr1462 (Figure 2.5.7B) was significantly (p ≤ 0.05) higher in the overloaded 

muscles of YE vs. SHAM and vs. the overloaded muscles of OE and OM, with NSD (p > 
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0.05) between OE and OM overloaded muscles. The absolute concentration of phospho-

(Thr1462) TSC2 (Figure 2.5.7D) was significantly (p ≤ 0.05) increased in overloaded YE 

muscles vs. SHAM.  There was NSD (p > 0.05) between SHAM muscles regardless of 

age or plasmid treatment for any phosphorylation measure, but the SHAM muscles of OE 

tended (p = 0.063) to be higher than YE SHAM muscles for phospho-(Thr1462) TSC2.  

The absolute concentration of total TSC2 was significantly (p ≤ 0.05) increased (main 

effect) in all overloaded muscles compared to SHAM muscles regardless of age or 

plasmid treatment.  Additionally, regardless of loading status, the total TSC2 absolute 

concentration (Figure 2.5.7E) OE and OM muscles was significantly (p ≤ 0.05) higher 

than YE. 

2.3.5.5 mTOR phosphorylation and concentration 

The phosphorylation status (phopho-mTOR/total mTOR) at Ser2448 (Figure 2.5.8A) 

tended (p = 0.073) to be higher in the overloaded muscles of OM vs. OM SHAM muscles 

with NSD (p > 0.05) between any other muscles regardless of loading status or age.  The 

absolute concentration of phospho-(Ser2448) mTOR (Figure 2.5.8C) was significantly (p 

≤ 0.05) increased (main effect) in all overloaded muscles compared to SHAM muscles 

regardless of age or plasmid treatment.  Moreover, the increase in OM overloaded 

muscles was significantly (p ≤ 0.05) higher than YE overloaded muscles with NSD (p > 

0.05) between OE and OM overloaded muscles or SHAM values of any group.  The 

absolute concentration of total mTOR (Figure 2.5.8B) was significantly (p ≤ 0.05) 

increased (main effect) in all overloaded muscles compared to SHAM muscles regardless 

of age or plasmid treatment.  The total mTOR absolute concentration also tended to be 

higher in OE (p = 0.083) and OM (p = 0.057) overloaded muscles vs. YE overloaded 
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muscles, with a significantly (p ≤ 0.05) higher concentration of total mTOR in OE and 

OM SHAM muscles vs. YE SHAM muscles.  There was NSD (p > 0.05) between OE 

and OM regardless of loading status. 

2.3.5.6 p70S6K phosphorylation and concentration 

The phosphorylation status (phospho-p70S6K/total p70S6K) at Thr389 (Figure 2.5.9A) 

and the absolute concentration of phospho-(Thr389) p70S6K (Figure 2.5.9C) was 

significantly (p ≤ 0.05) increased (main effect) in all overloaded muscles compared to 

SHAM muscles regardless of age or plasmid treatment with NSD (p > 0.05) between any 

groups regardless of age or plasmid treatment.  The absolute concentration of total 

p70S6K (Figure 2.5.9B) was significantly (p ≤ 0.05) increased (main effect) in all 

overloaded muscles compared to SHAM muscles regardless of age or plasmid treatment.  

The total p70S6K absolute concentration was also significantly (p ≤ 0.05) higher in the 

overloaded muscles of OE and OM vs. YE overloaded muscles.  Further, the total 

p70S6K concentration was significantly (p ≤ 0.05) higher in SHAM OM muscles vs. YE 

SHAM muscles, and OE SHAM muscles tended (p = 0.060) to be higher vs. YE SHAM 

muscles. 

2.3.5.7 4EBP1 phosphorylation and concentration 

The phosphorylation status (phospho-4EBP1/total 4EBP1) at Thr37/46 (Figure 2.5.10A) 

only tended (p = 0.088) to be higher in OM overloaded muscles vs. OM SHAM muscles 

with NSD (p > 0.05) following overload regardless of loading status, age, or plasmid 

treatment.  The absolute concentration of phospho-(Thr37/46) 4EBP1 (Figure 2.5.10C) 

was significantly (p ≤ 0.05) increased (main effect) in all overloaded muscles compared 

to SHAM muscles regardless of age or plasmid treatment.  Further, the phospho-
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(Thr37/46) 4EBP1 concentration was significantly (p ≤ 0.05) higher in OE and OM 

muscles vs. YE muscles, regardless of loading, with NSD (p > 0.05) between OE or OM.  

Lastly, the absolute concentration of total 4EBP1 (Figure 2.5.10B) was significantly (p ≤ 

0.05) higher in overloaded muscles of OM vs. YE, and in SHAM muscles of OE and OM 

vs. YE, with NSD (p > 0.05) between OE and OM regardless of loading status. 

2.3.6 SIGNALING INTERMEDIATES REGULATING MPB 

2.3.6.1 FOXO3A phosphorylation and concentration 

The phosphorylation status (phospho-FOXO3A/total FOXO3A) at Ser318/321 (Figure 

2.5.11A) was significantly (p ≤ 0.05) higher in OM overloaded muscles vs. OM SHAM 

muscles and vs. YE overloaded muscles, with NSD (p > 0.05) between OE and OM 

regardless of overload status.  Further, the phosphorylation status of FOXO3A at 

Ser318/321 tended (p = 0.077) to be higher in OE SHAM muscles vs. YE SHAM 

muscles, with NSD (p > 0.05) between OM and YE SHAM muscles.  There was NSD (p 

> 0.05) in the absolute concentration of phospho-(Ser318/321) FOXO3A with overload 

regardless of loading status, age, or plasmid treatment (Figure 2.5.11C).  The absolute 

concentration of total FOXO3A (Figure 2.5.11B) was significantly (p ≤ 0.05) decreased 

with overload (main effect) in all overloaded muscles vs. SHAM muscles regardless of 

age or plasmid treatment, with NSD (p > 0.05) between groups regardless of loadings 

status, age, or plasmid treatment. 

2.3.6.2 Lysine-48 Tagged Polyubiquitin concentration 

K48-linked polyubiquitin is used as a marker to assess the degree of proteins being 

tagged for degradation by the ubiquitin-proteasome system (143). The absolute 

concentration of total K48-linked polyubiquitin (Figure 2.5.12) was significantly (p ≤ 
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0.05) increased with overload (main effect) in all overloaded muscles vs. SHAM muscles 

regardless of age or plasmid treatment, with NSD (p > 0.05) between SHAM muscles of 

any group. There was a significantly (p ≤ 0.05) higher concentration of total K48-linked 

polyubiquitin in overloaded muscles of OE and OM vs. YE, with NSD (p > 0.05) 

between OE and OM. 

2.3.7 MARKERS OF GLYCOGEN METABOLISM 

2.3.7.1 GSK3 phosphorylation and concentration 

There was NSD (p > 0.05) between SHAM values of any group for any GSK3 measure.  

The phosphorylation status (phospho-GSK3α/total GSK3α) at Ser21 (Figure 2.5.13A) 

was significantly (p ≤ 0.05) increased in YE overloaded muscles vs. YE SHAM muscles, 

with significantly (p ≤ 0.05) lower levels detected in overloaded muscles of OE and OM 

vs. YE overloaded muscles.  The absolute concentration of phospho-(Ser21) GSK3α 

(Figure 2.5.13C) was significantly (p ≤ 0.05) higher in the overloaded muscles of OM vs. 

YE overloaded muscles.  Further, there was a significant (p ≤ 0.05) reduction with 

overload vs. SHAM muscles for absolute concentration of total GSK3α (Figure 2.5.13E) 

in YE, with significantly (p ≤ 0.05) lower levels than in OE and OM overloaded muscles.  

The phosphorylation status (phospho-GSK3β/total GSK3β) at Ser9 (Figure 2.5.13B) 

displayed NSD (p > 0.05) between any group regardless of loading status, age, or plasmid 

treatment.  The absolute concentration of phospho-(Ser9) GSK3β (Figure 2.5.13D) was 

significantly (p ≤ 0.05) increased (main effect) in all overloaded muscles compared to 

SHAM muscles regardless of age or plasmid treatment.  Additionally, there was a 

significantly (p ≤ 0.05) higher absolute concentration of phospho-(Ser9) GSK3β in 

overloaded muscles of OE vs. YE overloaded muscles, and OM overloaded muscles 
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tended (p = 0.065) to be higher then YE overloaded muscles.  Lastly, there was NSD (p > 

0.05) with overload in absolute concentration of total GSK3β (Figure 2.5.13F) regardless 

of loading status, age, or plasmid treatment. 

2.3.7.2 PYGM concentration 

There was NSD (p > 0.05) in the absolute concentration of total muscle glycogen 

phosphorylase (PYGM; Figure 2.4.14) regardless of loading status, age, or plasmid 

treatment.  However, OM overloaded muscles tended (p = 0.077) to be lower than YE 

overloaded muscles. 

2.3.8 MARKERS OF MYOGENESIS AND/OR REMODELING 

2.3.8.1 Myogenic regulatory factors concentrations 

To assess the effect of overload and plasmid treatment on myogenic regulatory factors, 

we measured the total concentrations of a myogenic regulatory factor responsible for 

proliferation (MyoD) and terminal differentiation (myogenin).  The absolute 

concentration of MyoD (Figure 2.5.15A) was significantly (p ≤ 0.05) higher in 

overloaded OM muscles vs. OM SHAM muscles and vs. OE overloaded muscles, with 

NSD (p > 0.05) between OM and YE overloaded muscles.  The absolute MyoD 

concentration in overloaded OE muscles tended (p = 0.070) to be lower than OE SHAM 

muscles with NSD (p > 0.05) between SHAM values regardless of age or plasmid 

treatment.  The absolute concentration of myogenin (Figure 2.5.15B) was significantly (p 

≤ 0.05) increased with overload (main effect) in all overloaded muscles vs. SHAM 

muscles regardless of age or plasmid treatment.  The myogenin concentration was 

significantly (p ≤ 0.05) higher in OE and OM overloaded muscles vs. YE overloaded 

muscles, with OM overloaded muscles being significantly (p ≤ 0.05) higher than OE 
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overloaded muscles.  Additionally, OM SHAM muscles displayed significantly (p ≤ 0.05) 

higher myogenin concentration than YE SHAM muscles.  

2.3.8.2 Total Fiber Number & eMyHC-Stained Fibers 

To quantify the regenerative response to overload, muscle fiber number and eMyHC-

positive fibers were counted in whole-muscle cross-sections of YE, OE, and OM (Figure 

2.5.16) muscles.  There was significantly (p ≤ 0.05) lower total fiber number (Figure 

2.5.16A) in OE and OM muscles vs. YE regardless of loading status. The overloaded 

muscles of OM had a significant (p ≤ 0.05) increase in total fiber vs. OM SHAM and had 

significantly (p ≤ 0.05) greater fiber number than OE overloaded muscles with NSD (p > 

0.05) between SHAM muscles in OE and OM.  The percent change in total fiber number 

(Figure 2.5.16B) with overload in OE was significantly (p ≤ 0.05) lower than YE, with 

OM displaying a significantly (p ≤ 0.05) higher increase with overload vs. OE.  The 

number of eMyHC-positive fibers (Figure 2.5.16C) was significantly (p ≤ 0.05) increased 

with overload (main effect) in all overloaded muscles vs. SHAM muscles regardless of 

age or plasmid treatment.  There was a significantly (p ≤ 0.05) higher eMyHC expression 

in overloaded muscles of OE and OM, with the increase in OM being significantly (p ≤ 

0.05) higher than OE.  The eMyHC expression was NSD (p > 0.05) between SHAM 

muscles regardless of age or plasmid treatment.  OM also had a significantly (p ≤ 0.05) 

higher percent increase in number of eMyHC-positive fibers with overload vs. both OE 

and YE (Figure 2.15D).  Representative images of eMyHC/laminin stained muscle used 

for total fiber number and eMyHC expression can be seen in Figure 2.5.17. 



 35 

2.4 Discussion and Conclusion 

 Aged skeletal muscle wasting (i.e., sarcopenia) is associated with elevated AMPK 

activity (42, 126-129), which inhibits overload-induced MPS and growth (42, 128, 129).  

Glycogen, an inhibitor of AMPK (77, 78), is also reduced in aged skeletal muscle (7, 16, 

23, 47).  However, the link(s) between glycogen content, MPS, MPB, growth, and 

associated signaling following chronic overload had never been examined in aged 

humans or animals.  The novel findings of this current investigation are that enhancing 

glycogen content in aged skeletal muscle augmented overload-induced MPS and growth 

compared to aged muscle without glycogen enhancement after 21 days.  The effects of 

glycogen enhancement may be independent of changes in AMPK signaling or 

intermediates regulating MPS.  In contrast, glycogen enhancement may suppress factors 

regulating MPB during overload in aged skeletal muscle.  Moreover, glycogen 

enhancement augments increases in MRFs, eMyHC expression, and total fiber number in 

response to overload in aged skeletal muscle. 

Some of the most fascinating findings of the current investigation were that 

glycogen enhancement in aged muscle (OM) in response to overload led to significantly 

greater MPS and growth in fast-twitch plantaris muscle compared to aged muscle with 

empty vector treatment (OE).  Also, the percent increase in growth and MPS with 

overload in glycogen enhanced aged muscle was similar to young adult muscle.  Even 

though the increase in MPS rate with overload was significantly increased across all 

groups (main effect), this increase was obviously driven by the increases observed in YE 

and OM and not a substantial increase in OE, which actually displayed atrophy in 

response to overload.  Our laboratory (42, 128, 129) and others (18) have found a 
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significant, but blunted increase in the growth response to overload of aged rat muscle 

compared to young adult muscle.  To our knowledge, the overload procedure has never 

been employed in aged muscle in conjunction with the modified electroporation method 

utilized (139). 

To examine if glycogen enhancement in aged skeletal muscle under conditions of 

overload potentially affected muscle protein breakdown (MPB) we chose to examine 

FOXO3A signaling, at a specific site (Ser318/321) indicative of inhibition of MPB (135, 

142), as well as a readout of proteins being tagged for degradation by the ubiquitin 

proteasome system [K48-linked polyubiquitin; (143)].  When activated, FOXO3A 

translocates to the nucleus and increases expression of muscle-specific E3 ubiquitin 

ligases, MuRF1 and MAFbx (135, 142), leading to MPB through the ubiquitin 

proteasome system (12, 142).  Glycogen enhancement in aged muscle with overload led 

to an augmented phosphorylation status of FOXO3A at Ser318/321 that was not seen in 

aged muscle with empty vector treatment, which theoretically means less stimulation of 

MPB pathways.  However, this finding did not lead to less K48-linked polyubiquitin 

proteins, so it remains to be determined if there is an effect of glycogen enhancement on 

MPB and associated signaling. 

Although glycogen enhancement augmented MPS and growth with overload in 

aged muscle in this investigation, the hypothesis that glycogen enhancement would elicit 

these effects by inhibiting AMPK was not completely supported.  Although elevated with 

age under overload conditions, AMPK phosphorylation status was not altered by 

glycogen enhancement.  In contrast, the overload-induced increase in ACC 

phosphorylation status [a well-established marker of AMPK activity in vivo (43)] in old 
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muscle with glycogen enhancement was reduced to a level not statistically different than 

young adult animals, an effect that was not seen in old muscle without glycogen 

enhancement.  This finding may suggest that glycogen enhancement in aged muscle 

reduced the allosteric activation of AMPK and led to a decreased activity as assessed by 

ACC phosphorylation (51), independent of changes in overall phosphorylation status of 

AMPK.  An increase in glycogen content is assumed to lead to an increase in inorganic 

phosphate as well as production of ATP (2, 44, 109), which should theoretically reduce 

the AMP/ATP ratio leading to reduced allosteric activation and reduced activity towards 

ACC (51).  However, as AMP, ADP, or ATP levels were not measured in the current 

investigation this would need to be explored further.  Nevertheless, AMPK activity was 

diminished with glycogen enhancement in aged muscle following 21 days of overload, 

but not robustly enough to detect differences compared to aged muscle with empty vector 

treatment.  

Although AMPK activity may have been affected by glycogen enhancement in 

aged muscle, the overall AMPK phosphorylation status did not support this effect.  In the 

current investigation, we confirmed previous findings from our laboratory (42, 128) 

following a 7-day overload procedure that AMPK phosphorylation status was 

significantly elevated in aged muscle compared young muscle.  Even though there was no 

effect of glycogen enhancement on AMPK phosphorylation status, this may be due to a 

number of factors.  Most importantly, the overall AMPK α (i.e., not separating out α1 vs. 

α2) phosphorylation status at Thr172 was measured in the current investigation.  Thus, 

any potential differences between AMPK α1 or α2 phosphorylation status could not be 

determined.  With AMPK α1 being linked to regulating muscle growth (79, 86, 87), and 
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AMPK α2 being thought to be involved in metabolic adaptations (79, 88) this may be a 

needed future measurement to delineate these two subunits phosphorylation status and 

activity in response to glycogen enhancement in aged muscle with overload.  Another 

factor that could explain the absence of an effect of glycogen enhancement on AMPK 

phosphorylation status is the recent work from Stapleton and colleagues (98, 122, 140).  

The AMPKβ-glycogen interaction has been well supported in correlational studies in vivo 

in humans (138) and rats (123) finding an inverse relationship between AMPK activity 

and glycogen content.  These findings were further supported in vitro by the use of 

synthesized oligosaccharides, or glycogen mimics, showing that glycogen can strongly 

inhibit AMPK activity (77).  Collectively, these findings along with the discovery of the 

GBD on the AMPK β subunit (104) led to the hypothesis that AMPK was directly 

influenced by skeletal muscle glycogen content (78).  However, Stapleton and colleagues 

(98, 122, 140) published work in liver (122),  cells and cell-free systems (98), and 

skinned muscle fibers (140, 141) that refuted the direct interaction of glycogen and 

AMPK.  The authors suggested that AMPK may interact with glycogen, but may do so 

indirectly through other glycogen associated proteins (140, 141).  These recent findings 

suggest that glycogen content may affect AMPK activity in vivo, but that it may be 

through an indirect mechanism that was not measured in the current investigation and 

would need to be explored further. 

One curious finding is that phospho-(Thr172) AMPK absolute concentration was 

significantly higher in OM overloaded muscles vs.  YE overloaded muscles, but OE 

overloaded muscles were not higher than YE.  AMPK has been reported to be a negative 

regulator of GS by phosphorylating and inhibiting the enzyme on Site 2 (109).  The 
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mutant GS plasmid is mutated on this specific site and therefore there may have been a 

feedback on AMPK to constantly try to inhibit GS.  However, there was no similar 

increase in AMPK phosphorylation status or its activity as measured via ACC, so it 

remains to be seen if this increase in phospho-(Thr172) AMPK has any significance.  

Also, this increase in the absolute concentration of phospho-(Thr172) AMPK did not lead 

to a similar increase, with no differences compared OE, in the absolute concentration of 

phospho-(Ser79) ACC and the phosphorylation status of ACC at Ser79.  Therefore, the 

overall phosphorylation status of AMPK may be a better readout than just the absolute 

concentration of phospho-(Thr172) AMPK. 

Another novel finding of this investigation is that glycogen enhancement in aged 

muscle led to augmented increases in myogenic regulator factors (MRFs), eMyHC 

expression, and total fiber number under conditions of overload.  Even though muscle 

fiber cross-sectional area was not measured in the current investigation, the augmented 

overload-induced increase with glycogen enhancement in muscle growth that was 

accompanied by total fiber number increases provides insight into the degree of the 

growth response.  While others have reported increases with synergistic ablation alone 

(89), to our knowledge, this is first time de novo fiber formation has been reported in 

aged muscle in response to overload and electroporation.  It is believed that with the 

synergistic ablation model hyperplasia occurs as muscle fibers become too large for 

oxygen diffusion and therefore the fibers split to form new fibers as a protective 

adaptation (89).  In support of the increases in total fiber number with glycogen 

enhancement in old muscle, there were concomitant increases in MRFs, MyoD and 

myogenin, and eMyHC expression.  The increase in MRFs expression with aging is in 
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agreement with others (3, 76, 108), however, this is the first time MRF increases have 

been reported in aged muscle with glycogen enhancement.  The increases in de novo 

fiber formation may be due to greater energy availability, in the form of enhanced 

glycogen content (2, 44, 109), throughout the 21-day overload protocol in addition to the 

potential regenerative response caused by the overload model with electroporation 

procedure.    

A common finding with activities that cause muscle damage (e.g., eccentric 

contractions) is reductions in the amount of glycogen content, and this is seen in rodents 

(52, 59, 131) and humans (22, 97, 137).  The reductions in glycogen content are linked to 

declines in contractile performance of the damaged muscle (19, 105).  While some 

studies have linked these declines to disruption in the structural components of muscle 

(19, 105), others have reported metabolic factors being involved (22, 52, 59, 97, 131, 

137).  Interestingly, in response to damaging eccentric contractions there is an inability to 

replenish glycogen content in humans (97, 137), as well as, diminished glycogen content 

and ATP production in rats (52, 59, 131).  In the current investigation, there were 

increases in the regenerative response when glycogen content was enhanced in old 

muscle after the potentially damaging stimulus (i.e., overload with electroporation).  

Therefore, it is possible that low glycogen may be a limiting factor in the regenerative 

response in aged muscle.  Although it was not an overall goal of this investigation, it 

would be interesting for future work to test the effects of glycogen enhancement in a 

bona fide model of muscle injury, such as damaging eccentric contractions, to see if there 

is an enhancement in regeneration/myogenesis in aged or young muscle. 
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The decrease seen with overload in the phosphorylation status of GS at Ser641 in 

all groups is indicative of removal of inhibition of the enzyme, presumably due to an 

increase in ATP demand (i.e., a need for glycogenolysis) with overload, and occurs 

independent of age.  The lack of differences seen in the SHAM muscles of both YE vs. 

OE and OM in the current investigation is in agreement with previous reports who found 

no differences in the phosphorylation status of GS at Ser641 in the tibialis anterior (TA) 

muscle of 6 mo. vs. 24 mo. fed Fischer 344 male rats (85).  While we did not measure 

activity, some (23) have reported significant reductions in GS and GP activity in aged rat 

fast-twitch skeletal muscle, with some reporting no changes (85).  Further, Garvey et al. 

(37) examined the metabolic profiles in gastrocnemius (GAST) muscles of young adult 

(15 mo.) and old (32 mo.) male sedentary FBN rats and found significant alterations in 

glycolytic intermediates responsible for glucose and glycogen metabolism in aged 

muscle.  The authors also reported that there was an increase in specific oligosaccharides 

that is suggestive of initial debranching from glycogen granules, but that there was 

defects in the ability to catabolize the free oligosaccharides (37).  The authors further 

postulated that the lysosomal compartment, a key site for glycogen degradation (109), 

contains defects that lead to the incomplete digestion of glycogen with age.  This is very 

intriguing, as there are known deficiencies in the ability of aged skeletal muscle to 

process unwanted or damaged proteins, mainly via autophagy deregulation within the 

lysosomal compartment (111), that may also contribute to the defects found in glycogen 

and glucose metabolism.  Collectively, these findings highlight a potential defect in 

glycogen metabolism in aging skeletal muscle.  Importantly, in the current investigation 

when glycogen was enhanced in aged skeletal muscle there were increases in overload-
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induced MPS and growth, suggestive of aged muscle possessing an ability to utilize this 

glycogen in some fashion. 

Although there was no significant decrease in glycogen content of overloaded OE 

muscles vs. OE SHAM muscles or vs. YE SHAM or overloaded muscles, there was a 

trend (p = 0.10) towards a decline.  This finding in normal aged muscle (i.e., OE SHAM) 

is not surprising, as the glycogen content in aged vs. young rat muscle at rest (e.g., 

SHAM) has been equivocal with some reporting decreases (7, 17, 23, 47) and others none 

(53, 83, 85, 103, 108).  What has been fairly consistent in the literature is that in response 

to an increase in contractile activity, typically due to endurance-type exercise, there is a 

greater reduction in glycogen content in aged vs. young muscle in rats (17, 53, 126) and 

humans (17, 82), although again, this has not always been the case (108).  Ribeiro et al. 

(108) found a significant increase in glycogen content in fast-twitch GAST muscles 

following resistance training (progressive loading using ladder climbing, 3 times a week 

for 12 weeks) in both young (3 mo.) and old (20 mo.) male Wistar rats with no 

differences between ages.  However, our laboratory has found an increase (vs. SHAM) at 

7 days of chronic overload in young adult (8 mo.) PLT glycogen content while old (33 

mo.) muscle displayed a trend (p = 0.08) towards a decrease (unpublished data).  The lack 

of changes in glycogen content with overload among young and old muscle with empty 

vector treatment in the current investigation may be due to any changes becoming 

normalized by the 21-day timepoint.  Even though Ribiero et al. (108) found an increase 

in glycogen content with RE in both young and old rats, the methodological differences 

(e.g., timepoint, loading method, and/or strain) between the two investigations makes 

direct comparisons difficult.   
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Because AMPK has been found by our lab (42, 126-129) and others (13, 113, 

114) to regulate multiple protein translational signaling intermediates we chose to 

examine the effect of glycogen enhancement in aged skeletal muscle on these pathways.  

Specifically, we measured upstream and downstream signaling related to Akt, TSC2, 

mTOR, and AMPK signaling (54).  The current investigation found potential effects of 

glycogen enhancement in aged muscle on overload-induced reductions in AMPK activity 

(via p-ACC), and non-significant increases of phosphorylation status of mTOR and 

4EBP1; however, the effects were not robust at 21 days.  Despite augmented increases in 

MPS and growth in aged muscle with glycogen enhancement, the above-mentioned 

signaling intermediates largely did not support these findings after 21 days of chronic 

overload.  Indeed, recent work (48) has found that with the synergistic ablation model of 

muscle growth in rats, changes that occur in AMPK and MPS signaling intermediates 

happen within the first 3-9 days of overload are largely lost by 12-21 days.  The authors 

proposed this to be due to “molecular brakes” or negative regulators of mTORC1 being 

increased after 9 days with this supraphysiological model of muscle growth (48).  In 

further support of the “molecular brakes” hypothesis, there were increases in total TSC2 

in young adult muscle with overload after 21 days similar to what Hamilton et al. (48) 

found.  An increase in the total amount of TSC2 is suggestive of greater mTORC1 

inhibition.  Even though there was a greater expression of total TSC2 with age in the 

current investigation, there was no attenuated effect of glycogen enhancement after 21 

days of overload.  Collectively, these findings suggest that any changes with glycogen 

enhancement in aged muscle may have been lost by 21 days. 
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The phosphorylation status of Akt at Thr308 in response to overload was 

significantly blunted with age, however this effect was not carried to the phosphorylation 

status of Akt at Ser473.  Phosphorylation at Ser473 (in conjunction with Thr308) has 

been purported to be indicative of full activation of Akt (121), however any differences 

between ages at this site may have been lost with 21-days of overload.  The lack of an 

age effect in phosphorylation status of Akt Ser473 does not support our labs previous 

finding (129).  This is likely due to differences in the time frame of the overload stimulus 

(i.e., 7 vs. 21 days).  In addition, the phosphorylation status of TSC2 at Thr1462, a 

marker of Akt, was also blunted in aged muscle, with NSD with glycogen enhancement.  

Moreover, the phosphorylation status of TSC2 at Ser1387, a marker of AMPK, was 

increased with overload (main effect), with glycogen enhancement not reducing this 

effect below old or young muscle with empty vector treatment.  Again, these effects may 

have been lost by 21 days (48).     

The elevations with age in the absolute concentrations of total Akt, mTOR, and 

p70S6K, with or without loading in aging muscle is interesting, but not unique (18, 72).  

There may be an extra need for greater amounts of protein to achieve the same anabolic 

response as seen in young muscle.  These effects may be due, in part, to a combination of 

dysfunctional mechanotransduction (11) as well as deregulated autophagy (25) leading to 

an inability to remove non-functional proteins and therefore more protein has to be made 

to achieve the same effect as seen in young healthy muscle.  Moreover, glycogen 

enhancement in aged muscle had no effect on these measurements.  Although, as total 

protein does not indicate changes in activity, we further examined phosphorylation status 

of these markers.  The significant increase, due to a main effect, in the absolute 
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concentration of phospho-(Ser2448) mTOR with overload in all groups was carried by 

the increases in YE and OM.  However, only OM displayed a trend towards an increase 

in the phosphorylation status of mTOR at Ser2448 with overload, with the 

phosphorylation status of 4EBP1 at Thr37/46 showing the same trend.  A better readout 

of mTOR activity than the phosphorylation status of mTOR at Ser2448 or 4EBP1 at 

Thr37/46 is p70S6K at Thr389 (6, 119).  Indeed, in response to overload there was a 

significant increase, again driven by the increases in YE and OM only and not OE, in 

both the phosphorylation status and absolute concentration of phospho-(Thr389) p70S6K 

with NSD between old groups.  However, as there was not a significantly accentuated 

effect of MPS signaling through these markers with glycogen enhancement, it remains to 

be determined if the augmented MPS and growth acted through this markers.  With, 

again, the timepoint of the measurements (21 days) potentially being the biggest reason 

for lack of robust differences. 

The electroporation method of Wu and Kandardian (139), has been optimized for 

use in young muscle by minimizing the known damage caused by electroporation (84) 

while maximizing electrotransfer of desired plasmid DNA (139).  The normal 

hypertrophy observed in YE overloaded muscles in the current investigation strengthens 

this notion.  However, as the OE overloaded muscles displayed atrophy, future work may 

be needed to optimize electrotransfer into age muscle, such as using hyaluronidase (39, 

80).  Regardless of the potential damage induced by the methods employed, glycogen 

enhancement in aged fast-twitch muscle still led to enhanced MPS, growth, and certain 

markers of myogenesis at 21 days of overload. 
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 To assess the effects of our protocol on glycogen metabolism markers we chose to 

measure GSK3 and muscle glycogen phosphorylase (PYGM).  There was NSD in total 

PYGM expression, regardless of overload status, age, or plasmid treatment.  As total 

protein expression does not indicate changes in activity we cannot determine if there was 

any effect on this enzyme’s activity.  However, others using the exact mutant GS plasmid 

in mouse muscle (75, 100) have measured glycogenolysis and found increases in factors 

suggestive of enhanced glycogen catabolism such as glycogen phosphorylase (75) and 

glycogen debranching enzyme (100).  Future work would need to explore the activity of 

glycogen phosphorylase with our experimental design.  The NSD in the phosphorylation 

status of GSK3β at Ser9 even with increases in total GS expression with the mutant GS 

plasmid in aged skeletal muscle, as well as the NSD between aged muscle in the 

phosphorylation status of GSK3α at Ser21 is not surprising.  Even though GSK3 has been 

purported to be a potent inhibitor of GS by phosphorylation on numerous sites, including 

Site 3a (109), others have stated that the allosteric activation of GS via glucose-6-

phosphate may be more important (74).  Additionally, GSK3β is inhibited (via 

phosphorylation) by upstream signaling pathways, namely Akt and Wnt signaling (54), 

and is a negative regulator of protein translation initiation (54, 66) and thus muscle 

growth.  The current investigation supported previous findings that found no differences 

in phosphorylation status of GSK3α and GSK3β in young adult vs. old rats following 28 

days of overload (18).  However, as there were no accentuated affects of glycogen 

enhancement in aged muscle this again may be due to the timing of measurements.  

In summary, glycogen enhancement in aged skeletal muscle led to increases in 

overload-induced MPS and growth.  The effects of glycogen enhancement may be largely 
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independent of changes in AMPK signaling or intermediates regulating MPS.   In 

contrast, glycogen enhancement may suppress factors regulating MPB during overload in 

aged skeletal muscle.  Moreover, there was a strong and significant effect of enhancing 

glycogen content on myogenic regulatory factors, eMyHC expression, and total fiber 

number in aged skeletal muscle under conditions of overload.  Thus, enhancing muscle 

glycogen content may lead to enhanced MPS and overload-induced growth in aged 

skeletal muscle. This effect may be due, in part, to enhanced myogenesis/regeneration.   
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2.5 Figures 

 

  

Figure 2.5.1. Total and phosphorylated GS response to overload in young adult and 
old skeletal muscle. A, Plantaris (PLT) phospho-(Ser641)/total glycogen synthase (GS); 
B, PLT absolute concentration of total GS; and C, PLT absolute concentration of 
phospho-(Ser641) GS (Integrated optical density, IOD) after 21 days of functional 
overload (OVLD; unilateral gastrocnemius ablation) compared with sham-operated 
(SHAM) conditions in young adult and old FBN rats. Overload muscles received 
electrotransfer of plasmids containing either an empty vector (empty) or mutated 
glycogen synthase designed to enhance glycogen content (mutant). Young empty: 8 mo., 
n = 9; old empty: 32-34 mo., n = 11; old mutant: 32-34 mo., n = 13. B, PLT total GS 
expression (IOD) and C, phospho-(Ser641) GS expression from A values. a: significantly 
different (p ≤ 0.05) than respective group’s SHAM value; b: significantly different from 
same leg in young empty; c: significantly different from same leg in old empty. 
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Figure 2.5.2. Plantaris glycogen content response to overload in young adult and old 
skeletal muscle. A, Plantaris (PLT) total glycogen content normalized to mg muscle after 
21 days of functional overload (OVLD; unilateral gastrocnemius ablation) compared with 
sham-operated (SHAM) conditions in young adult and old FBN rats. Overload muscles 
received electrotransfer of plasmids containing either an empty vector (empty) or mutated 
glycogen synthase designed to enhance glycogen content (mutant). Young empty: 8 mo., 
n = 9; old empty: 32-34 mo., n = 11; old mutant: 32-34 mo., n = 13. a: significantly (p ≤ 
0.05) different than respective group’s SHAM value; b: significantly different from same 
leg in young empty; c: significantly different from same leg in old empty. B, PLT total 
glycogen content percent (%) change with overload (vs. SHAM). a: significantly 
different from young empty; b: significantly different from old empty. 
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Figure 2.5.3. Plantaris mixed muscle protein synthesis rate response to overload in 
young adult and old skeletal muscle. Plantaris (PLT) mixed muscle protein synthesis 
rate measured via expression of puromycin (Integrated optical density, IOD) after 21 
days of functional overload (OVLD; unilateral gastrocnemius ablation) compared with 
sham-operated (SHAM) conditions in young adult and old FBN rats. Overload muscles 
received electrotransfer of plasmids containing either an empty vector (empty) or mutated 
glycogen synthase designed to enhance glycogen content (mutant). Young empty: 8 mo., 
n = 9; old empty: 32-34 mo., n = 11; old mutant: 32-34 mo., n = 13. a: significant (p ≤ 
0.05) main effect of overload; c: significantly different than same leg in old empty. 
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Figure 2.5.4. Total and phosphorylated AMPK response to overload in young adult 
and old skeletal muscle. A, Plantaris (PLT) phospho-(Thr172)/total 5’-AMP-activated 
protein kinase (AMPK) α expression (Integrated optical density, IOD) after 21 days of 
functional overload (OVLD; unilateral gastrocnemius ablation) compared with sham-
operated (SHAM) conditions in young adult and old FBN rats. Overload muscles 
received electrotransfer of plasmids containing either an empty vector (empty) or mutated 
glycogen synthase designed to enhance glycogen content (mutant). Young empty: 8 mo., 
n = 9; old empty: 32-34 mo., n = 11; old mutant: 32-34 mo., n = 13. B, PLT total AMPKα 
expression (IOD) and C, phospho-(Thr172) GS expression. a: significant (p ≤ 0.05) main 
effect of overload; b: significantly different from same leg in young empty. 
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Figure 2.5.5. Total and phosphorylated ACC response to overload in young adult 
and old skeletal muscle. A, Plantaris (PLT) phospho-(Ser79)/total acetyl-CoA 
carboxylase (ACC) expression (Integrated optical density, IOD) after 21 days of 
functional overload (OVLD; unilateral gastrocnemius ablation) compared with sham-
operated (SHAM) conditions in young adult and old FBN rats. Overload muscles 
received electrotransfer of plasmids containing either an empty vector (empty) or mutated 
glycogen synthase designed to enhance glycogen content (mutant). Young empty: 8 mo., 
n = 9; old empty: 32-34 mo., n = 11; old mutant: 32-34 mo., n = 13. B, PLT total ACC 
expression (IOD) and C, phospho-(Ser79) ACC expression. a: significant (p ≤ 0.05) main 
effect of overload; b: significantly different from same leg in young empty. 
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Figure 2.5.6. Total and phosphorylated Akt response to overload in young adult and 
old skeletal muscle. A, Plantaris (PLT) phospho-(Thr308)/total Akt expression 
(Integrated optical density, IOD) and B, PLT phospho-(Ser473)/total Akt expression after 
21 days of functional overload (OVLD; unilateral gastrocnemius ablation) compared with 
sham-operated (SHAM) conditions in young adult and old FBN rats. Overload muscles 
received electrotransfer of plasmids containing either an empty vector (empty) or mutated 
glycogen synthase designed to enhance glycogen content (mutant). Young empty: 8 mo., 
n = 9; old empty: 32-34 mo., n = 11; old mutant: 32-34 mo., n = 13. C, phospho-(Thr308) 
Akt expression; D, phospho-(Ser473) Akt expression from B values; E, total Akt 
expression. a: significant (p ≤ 0.05) main effect of overload; b: significantly different 
from same leg in young empty. 
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Figure 2.5.7. Total and phosphorylated TSC2 response to overload in young adult 
and old skeletal muscle. A, Plantaris (PLT) phospho-(Ser1387)/total TSC2 expression 
(Integrated optical density, IOD) and B, PLT phospho-(Thr1462)/total TSC2 expression 
after 21 days of functional overload (OVLD; unilateral gastrocnemius ablation) compared 
with sham-operated (SHAM) conditions in young adult and old FBN rats. Overload 
muscles received electrotransfer of plasmids containing either an empty vector (empty) or 
mutated glycogen synthase designed to enhance glycogen content (mutant). Young 
empty: 8 mo., n = 9; old empty: 32-34 mo., n = 11; old mutant: 32-34 mo., n = 13. C, 
phospho-(Ser1387) TSC2 expression from A values; D, phospho-(Thr1462) TSC2 
expression from B values; E, total TSC2 expression. a: significant (p ≤ 0.05) main effect 
of overload; b: significantly different from same leg in young empty. 

Young Empty Old Empty Old Mutant
0

1

2

3

4

PL
T 

 W
et

  W
ei

gh
t

(m
g 

m
us

cl
e/

g 
B

W
)

SHAM

OVLD

a c

b b b ba c

Ponceau!

P-TSC2 !
Ser1387 !

C !

Ponceau!

Total TSC2 !

E!

A! B!

Ponceau!

P-TSC2 !
Thr1462!

D !

Young Empty Old Empty Old Mutant
0.0

0.5

1.0

1.5

2.0

2.5

Ph
os

ph
o-

(S
er

13
87

) T
SC

2
(IO

D,
 A

rb
itr

ar
y 

Un
its

)

a

a

a b
p = 0.065 

vs YE

Young Empty Old Empty Old Mutant
0.0

0.5

1.0

1.5

2.0
Ph

os
ph

o-
(S

er
13

87
)/T

ot
al

 T
SC

2
(IO

D,
 A

rb
itr

ar
y 

Un
its

) a
aa

Young Empty Old Empty Old Mutant
0.0

0.5

1.0

1.5

2.0

2.5

Ph
os

ph
o-

(T
hr

14
62

)/T
ot

al
 T

SC
2 

(IO
D,

 A
rb

itr
ar

y 
Un

its
)

a

b
b

Young Empty Old Empty Old Mutant
0.0

0.5

1.0

1.5

2.0

Ph
os

ph
o-

(T
hr

14
62

) T
SC

2 
(IO

D,
 A

rb
itr

ar
y 

Un
its

)

a
p = 0.063

vs YE

Young Empty Old Empty Old Mutant
0.0

0.5

1.0

1.5

2.0

To
ta

l T
SC

2 
(IO

D,
 A

rb
itr

ar
y 

Un
its

)

a

a b
a

b
b

b



 55 

 

Figure 2.5.8. Total and phosphorylated mTOR response to overload in young adult 
and old skeletal muscle. A, Plantaris (PLT) phospho-(Ser2448)/total mechanistic target 
of rapamycin (mTOR) expression (Integrated optical density, IOD) after 21 days of 
functional overload (OVLD; unilateral gastrocnemius ablation) compared with sham-
operated (SHAM) conditions in young adult and old FBN rats. Overload muscles 
received electrotransfer of plasmids containing either an empty vector (empty) or mutated 
glycogen synthase designed to enhance glycogen content (mutant). Young empty: 8 mo., 
n = 9; old empty: 32-34 mo., n = 11; old mutant: 32-34 mo., n = 13. B, PLT total mTOR 
expression (IOD) and C, phospho-(Ser2448) mTOR expression. a: significant (p ≤ 0.05) 
main effect of overload; b: significantly different from same leg in young empty. 
 

 

 

 

 

Young Empty Old Empty Old Mutant
0

1

2

3

4

PL
T 

 W
et

  W
ei

gh
t

(m
g 

m
us

cl
e/

g 
B

W
)

SHAM

OVLD

a c

b b b ba c

Ponceau!

Total mTOR !

Ponceau!

 p-mTOR !
 Ser2448 !

A!

B! C !
Young Empty Old Empty Old Mutant

0.0

0.5

1.0

1.5

Ph
os

ph
o-

(S
er

24
48

)/T
ot

al
 m

TO
R 

(IO
D,

 A
rb

itr
ar

y 
Un

its
)

p = 0.073 
vs SHAM

Young Empty Old Empty Old Mutant
0.0

0.5

1.0

1.5

2.0

Ph
os

ph
o-

(S
er

24
48

) m
TO

R
 

(IO
D

, A
rb

itr
ar

y 
U

ni
ts

)

a

a

a b

Young Empty Old Empty Old Mutant
0.0

0.5

1.0

1.5

2.0

To
ta

l m
TO

R
 

(IO
D

, A
rb

itr
ar

y 
U

ni
ts

)

b
b

a a

a

p = 0.083
vs YE

p = 0.057
vs YE



 56 

 

Figure 2.5.9. Total and phosphorylated p70S6K response to overload in young adult 
and old skeletal muscle. A, Plantaris (PLT) phospho-(Thr389)/total 70 kDa ribosomal 
protein S6 kinase (p70S6K) expression (Integrated optical density, IOD) after 21 days of 
functional overload (OVLD; unilateral gastrocnemius ablation) compared with sham-
operated (SHAM) conditions in young adult and old FBN rats. Overload muscles 
received electrotransfer of plasmids containing either an empty vector (empty) or mutated 
glycogen synthase designed to enhance glycogen content (mutant). Young empty: 8 mo., 
n = 9; old empty: 32-34 mo., n = 11; old mutant: 32-34 mo., n = 13. B, PLT total p70S6K 
expression (IOD) and C, phospho-(Thr389) p70S6K expression. a: significant (p ≤ 0.05) 
main effect of overload; b: significantly different from same leg in young empty. 
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Figure 2.5.10. Total and phosphorylated 4EBP1 response to overload in young adult 
and old skeletal muscle. A, Plantaris (PLT) phospho-(Thr37/46)/total eIF4E binding 
protein (4EBP1) expression (Integrated optical density, IOD) after 21 days of functional 
overload (OVLD; unilateral gastrocnemius ablation) compared with sham-operated 
(SHAM) conditions in young adult and old FBN rats. Overload muscles received 
electrotransfer of plasmids containing either an empty vector (empty) or mutated 
glycogen synthase designed to enhance glycogen content (mutant). Young empty: 8 mo., 
n = 9; old empty: 32-34 mo., n = 11; old mutant: 32-34 mo., n = 13. B, PLT total 4EBP1 
expression (IOD) and C, phospho-(Thr37/46) 4EBP1 expression. a: significant (p ≤ 0.05) 
main effect of overload; b: significantly different from same leg in young empty. 
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Figure 2.5.11. Total and phosphorylated FOXO3A response to overload in young 
adult and old skeletal muscle. A, Plantaris (PLT) phospho-(Ser318/321)/total forkhead 
box transcription factor 3A (FOXO3A) expression (Integrated optical density, IOD) after 
21 days of functional overload (OVLD; unilateral gastrocnemius ablation) compared with 
sham-operated (SHAM) conditions in young adult and old FBN rats. Overload muscles 
received electrotransfer of plasmids containing either an empty vector (empty) or mutated 
glycogen synthase designed to enhance glycogen content (mutant). Young empty: 8 mo., 
n = 9; old empty: 32-34 mo., n = 11; old mutant: 32-34 mo., n = 13. B, PLT total 
FOXO3A expression (IOD) and C, phospho-(Ser318/321) FOXO3A expression. a: 
significant (p ≤ 0.05) main effect of overload; b: significantly different from same leg in 
young empty. 
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Figure 2.5.12. Plantaris K48-polyubiquitin response to overload in young adult and 
old skeletal muscle. Plantaris total lysine-48 (K48)-tagged polyubiquitin expression 
(Integrated optical density, IOD) after 21 days of functional overload (OVLD; unilateral 
gastrocnemius ablation) compared with sham-operated (SHAM) conditions in young 
adult and old FBN rats. Overload muscles received electrotransfer of plasmids containing 
either an empty vector (empty) or mutated glycogen synthase designed to enhance 
glycogen content (mutant). Young empty: 8 mo., n = 9; old empty: 32-34 mo., n = 11; old 
mutant: 32-34 mo., n = 13. a: significant (p ≤ 0.05) main effect of overload; b: 
significantly different from same leg in young empty. 
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Figure 2.5.13. Total and phosphorylated GSK3α/β response to overload in young 
adult and old skeletal muscle. A, Plantaris (PLT) phospho-(Ser21)/total glycogen 
synthase kinase 3 (GSK3) α expression (Integrated optical density, IOD) and B, PLT 
phospho-(Ser9)/total GSK3β expression after 21 days of functional overload (OVLD; 
unilateral gastrocnemius ablation) compared with sham-operated (SHAM) conditions in 
young adult (8 mo.) and old (32-34 mo.) FBN rats. Overload muscles received 
electrotransfer of plasmids containing either an empty vector (empty) or mutated 
glycogen synthase designed to enhance glycogen content (mutant). Young empty: 8 mo., 
n = 9; old empty: 32-34 mo., n = 11; old mutant: 32-34 mo., n = 13. a: significant (p ≤ 
0.05) main effect of overload; b: significantly different from same leg in young empty. 
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Figure 2.5.14. Plantaris PYGM response to overload in young adult and old skeletal 
muscle. Plantaris total muscle glycogen phosphorylase (PYGM) expression (Integrated 
optical density, IOD) after 21 days of functional overload (OVLD; unilateral 
gastrocnemius ablation) compared with sham-operated (SHAM) conditions in young 
adult and old FBN rats. Overload muscles received electrotransfer of plasmids containing 
either an empty vector (empty) or mutated glycogen synthase designed to enhance 
glycogen content (mutant). Young empty: 8 mo., n = 9; old empty: 32-34 mo., n = 11; old 
mutant: 32-34 mo., n = 13.  
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Figure 2.5.15. Plantaris MyoD and Myogenin response to overload in young adult 
and old skeletal muscle. A, Plantaris (PLT) MyoD and B, PLT Myogenin expression 
(Integrated optical density, IOD) after 21-days of functional overload (OVLD; unilateral 
gastrocnemius ablation) compared with sham-operated (SHAM) conditions in young 
adult (8 mo.) and old (32-34 mo.) FBN rats. Overload muscles received electrotransfer of 
plasmids containing either an empty vector (empty) or mutated glycogen synthase 
designed to enhance glycogen content (mutant). Young empty: 8 mo., n = 9; old empty: 
32-34 mo., n = 11; old mutant: 32-34 mo., n = 13. a: significantly (p ≤ 0.05) different 
than respective group’s SHAM value; b: significantly different from the same leg in 
young empty; c: significantly different from same leg in old empty. 
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Figure 2.5.16. Plantaris Total Fiber Number and eMyHC expression response to 
overload in young adult and old skeletal muscle. A, Plantaris (PLT) total fiber number 
and C, PLT embryonic myosin heavy chain (eMyHC) percentage of total fiber number 
after 21-days of functional overload (OVLD; unilateral gastrocnemius ablation) 
compared with sham-operated (SHAM) conditions in young adult (8 mo.) and old (32-34 
mo.) FBN rats. Overload muscles received electrotransfer of plasmids containing either 
an empty vector (empty) or mutated glycogen synthase designed to enhance glycogen 
content (mutant). Young empty: 8 mo., n = 9; old empty: 32-34 mo., n = 11; old mutant: 
32-34 mo., n = 13. a: significantly (p ≤ 0.05) different than respective group’s SHAM 
value; b: significantly different from same leg in young empty; c: significantly different 
from same leg in old empty. B, PLT total fiber number and C, PLT eMyHC percentage of 
total fiber number percent (%) change with overload (vs. SHAM). a: significantly 
different from young empty; b: significantly different from old empty. 
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Figure 2.5.17. Plantaris representative images of Total Fiber Number and eMyHC 
expression response to overload in young adult and old skeletal muscle. 
Representative Image of Plantaris (PLT) of Young Empty, PLT of Old Empty, and PLT 
of Old Mutant used for determination of total fiber number and eMyHC expression 
(Figure 2.5.14) after 21-days of functional overload (OVLD; unilateral gastrocnemius 
ablation) compared with sham-operated (SHAM) conditions in young adult (8 mo.) and 
old (32-34 mo.) FBN rats. Overload muscles received electrotransfer of plasmids 
containing either an empty vector (empty) or mutated glycogen synthase designed to 
enhance glycogen content (mutant). Young empty: 8 mo., n = 9; old empty: 32-34 mo., n 
= 11; old mutant: 32-34 mo., n = 13.  NOTE: Laminin staining is red (555 nm) and 
eMyHC staining is blue (350 nm). 
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CHAPTER 3: EFFECTS OF GLYCOGEN ENHANCEMENT ON IN VITRO PROTEIN 

SYNTHESIS MANIPULATIONS IN C2C12 MYOTUBES 
 
 
3.1 Introduction 

Leucine, specifically L-leucine, is an essential, branched-chain amino acid 

(BCAA), that has been found to be a potent stimulator of muscle protein synthesis (MPS) 

in muscle cells in vitro (5, 29, 36) and in vivo (26, 36).  Leucine has been shown to affect 

MPS via activation through an increase in the rapamycin-sensitive mechanistic (formerly 

mammalian) target of rapamycin complex 1 (mTORC1) leading to activation of 

downstream effectors regulating protein translation.  Some of the most studied 

downstream markers of mTORC1 activation with leucine treatment have been p70 

ribosomal protein S6 kinase (p70S6K) and eukaryotic initiation factor 4E binding protein 

1 [4EBP1; (26, 36)].   In addition to MPS, leucine has also been found to affect muscle 

protein breakdown (MPB) by inhibiting proteolysis (15, 21, 93).  The growing body of 

evidence for leucine affecting MPS and MPB has made it an increasingly popular 

nutritional supplement to potentially enhance muscle hypertrophy (26, 36).  

Leucine can affect MPS and MPB by activating mTORC1 (26, 36, 62).  In 

addition to mTORC1, another master regulator of MPS and MPB is 5’-AMP-activated 

protein kinase [AMPK; (30, 54, 118)].  In most instances, mTORC1 and AMPK work in 

direct conflict with one another (10, 54).  While increases in mTORC1 activity lead to 

upregulation of MPS and downregulation of MPB (54, 117), AMPK activation leads to 
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inhibition of MPS and mTORC1 (13, 87) and increases in MPB (73, 88, 142).  When 

activated AMPK upregulates catabolic pathways to supply energy (49), and 

downregulates anabolic pathways that are ATP-expensive, such as MPS, by inhibiting 

both directly (114) and indirectly (114) mTORC1 activation.  Moreover, leucine has been 

found to activate MPS through increases in mTORC1, and reduce MPB, in part, by 

indirectly inhibiting AMPK activity in vitro (29) and in vivo (110), although not 

consistently (36).    

AMPK is indirectly inhibited by glycogen through its β subunit containing a 

glycogen-binding domain [GBD; (77, 78)].  AMPK activity has been found to be 

inversely related with the level of glycogen content in muscle in vivo, with its activity 

being dramatically suppressed with high levels of glycogen and an increased AMPK 

activity with low levels of glycogen in rats (138) and humans (123).  However, these 

findings have been recently challenged (98, 122, 140).  Nevertheless, the findings of an 

AMPKβ-glycogen interaction have also been supported in vitro, where synthesized 

branched oligosaccharides (i.e., glycogen mimics) inhibited AMPK’s activity (77).  

The potential links between glycogen, leucine, AMPK, MPS, MPB, and 

associated signaling has never been examined in skeletal muscle in vitro.  Therefore, the 

aim of this investigation was to determine whether enhancing intracellular glycogen 

content could enhance anabolic signaling/MPS and decrease catabolic (MPB) signaling in 

response to an anabolic stimulus in skeletal myotubes.  We hypothesized that glycogen 

enhancement via the transfection of plasmid DNA expressing active glycogen synthase in 

cultured C2C12 myotubes would enhance the anabolic effect of leucine by inhibiting 

AMPK and increasing anabolic signaling/MPS, and this effect would be eliminated by 
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rapamycin-induced mTOR pathway blockade.  We further hypothesized that glycogen 

enhancement via the transfection of plasmid DNA expressing active glycogen synthase in 

cultured C2C12 myotubes would enhance the anti-catabolic effect of leucine by 

inhibiting AMPK and decrease catabolic signaling, and the effect would be eliminated by 

rapamycin-induced mTOR pathway blockade. 

3.2 Experimental Design and Methods 

3.2.1 Experimental Cell Culture 

3.2.2 Transient Plasmid Transfection in Myotubes 

C2C12 myoblasts (ATCC) were seeded at the same density (7.5 x 104) in 12-well plates 

in growth media (GM; high glucose DMEM, 10% Fetal Bovine Serum) without 

antibiotics and grown for ~48 hours with daily media changes until ~95% confluent. At 

~95% confluence, the cells were washed 2x with Dulbecco’s PBS (DPBS; VWR), and 

then switched to differentiation media (DM; high glucose DMEM, 2% Horse Serum) 

without antibiotics and grown for 96 hours to achieve immature muscle fibers (i.e., 

myotubes).  After 96 hours of differentiation, the myotubes were then transfected with 

2.5 µg/well of either pCMV4/empty vector plasmid or pCMV4-M2,3a-GS/mutant GS 

vector plasmid, complexed with DNA transfection reagent (Lipofectamine 3000, Thermo 

Fisher) in Opti-MEM media (Thermo Fisher) and added to each well. The next day (~24 

hours), cells were washed twice with DPBS, and switched to DM with antibiotics (1% 

Pen/Strep) for ~24 hours.  Following ~48 hours of transfection (i.e., ~144 hours of 

differentiation), cells were then ready for treatments as outlined below.  
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3.2.3 Leucine, Rapamycin, or Leucine and Rapamycin Treatments 

After 48 hours of transfection, cells were treated using a previously published protocol 

(5), with modifications. Briefly, cells were deprived of serum by incubation in high 

glucose DMEM only for 4 h followed by 1 DPBS wash, then a 1 h amino acid-

deprivation period in DPBS (137 mM NaCl, 2.7 mM KCl, 10mM Na2HPO4, 1.8 mM 

KH2PO4, 1 mM CaCl2*2H2O, 0.5 mM MgCl2*6H2O, pH 7.4). Cells (3-wells/treatment) 

were then inoculated with vector (control, CT), L-leucine (LEU; Sigma no. L8912, St. 

Louis, MO, USA) at 10 mM (38), rapamycin (RAP; Cayman Chemicals no. 13346, Ann 

Arbor, MI, USA) at 100 nM, or co-treated (LEU+RAP) for 30 min in serum-free DMEM.  

All treatments contained 100 µM Puromycin for measuring protein synthesis using the 

SUnSET technique (40).  Each condition (3-wells/treatment) was performed on a pair of 

12-well plates transfected with pCMV4 & pCMV4-M2,3a-GS, respectively, and then 

replicated on a separate pair of 12-well plates for 6-wells/treatment. 

3.2.4 Glycogen Concentration Assay 

After 30 min treatments in both plasmid conditions were completed as described above, 

plates were placed on ice, media was aspirated off and cells were quickly rinsed twice in 

ice-cold PBS, scrapped, transferred to a new microcentrifuge tube, and spun at 8,000 x g 

for 8 min at 4°C. The supernatant was then removed and cell pellets were stored at -80°C 

until further analyses.  Cell pellets were then thawed on ice before 75 µL of ice-cold 

0.1M NaOH was added to the pellet prior to mechanical lysing with a 25G needle and 

syringe.  50 µL of the homogenate was then transferred to a new tube for glycogen 

concentration analyses and 10 µL of the homogenate was transferred to a separate tube 

containing 60 µL of 0.1M NaOH for protein content.  For each cell pellet protein 
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concentration was determined using a 1:6 dilution, which was assessed in triplicate using 

a modified Lowry procedure (DC Protein Assay, Bio-Rad, Hercules, CA, USA).  

Glycogen concentration was determined as previously described (99, 126), with 

modifications.  Briefly, the 50 µL homogenate was boiled at 90°C for 20 minutes in a 

dry-block heater to remove any free glucose.  After 20 min, the solution was neutralized 

with 50 µL of 0.2M Acetic Acid.  Then 50 µL of the neutralized solution was transferred 

to a new tube containing 150 µL of 0.1M Sodium Acetate Buffer (0.05M Sodium 

Acetate, 0.05M Acetic Acid, pH 4.6-4.7) and vortexed.  Glycogenolysis was then 

performed by adding 15 µL of amyloglucosidase (Sigma no. A7420) solution (10 µg/µL 

in 20 mM Tris with 0.02% BSA, pH 7.5) and incubating at 55°C for 1 h.  After 1 h, the 

samples were centrifuged at 14,800 x g for 5 min and then loaded in triplicate into 

cuvettes (USA Scientific no. 9090-0460, Ocala, FL, USA).  The amount of free glucosyl 

units in each sample were then determined spectrophotometrically via a glucose assay 

(Sigma no. GAHK20).  Glycogen content (µg/µg protein) of the original muscle sample 

was then derived from comparing the reading to a standard curve made with type III 

glycogen from rabbit liver (Sigma no. G8876). 

3.2.5 SDS-PAGE, Western Blotting, and Immunodetection  

After 30 min treatments in both plasmid conditions were completed as described above, 

plates were placed on ice, media was aspirated off and cells were quickly rinsed twice in 

ice-cold PBS. Then ice-cold RIPA homogenization buffer containing protease and 

phosphatase inhibitors (Santa Cruz Biotechnology no. sc-24948, Dallas, TX, USA) with 

3% SDS and 0.1% triton X-100 was quickly added to each well and scrapped prior to 

transferring each wells contents to a new ice-cold microcentrifuge tube.  Each tube was 
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then mechanically lysed using a 25G needle and syringe, followed by 10 min incubation 

on ice with periodic vortexing.  Samples were then spun for 20 min at 21,100 x g at 4°C. 

The supernatant was then transferred to a new tube and were stored at -80°C until further 

analyses. Standard western blotting protocols were used as previously described (128, 

129). Briefly, total myotube protein homogenates were solubilized in sample loading 

buffer (50 mM Tris-HCl, pH 6.8, 10% glycerol, 2% SDS, 2% β-mercaptoethanol, 0.1% 

bromophenol blue) at a concentration of 1 µg/µl and boiled at 95°C for 5 minutes.  

Proteins were then separated by SDS-PAGE using either 4-15% (mTOR, p70S6K, and 

4EBP1) or 7.5% (all others) Tris-HCl gels (Criterion, Bio-Rad) for 1.5 h at 100V in 4°C 

and then transferred for 1 h at 100V in 4°C onto a PVDF membrane (EMD Millipore, 

Billerica, MA, USA) in Towbin’s buffer (25 mM Tris-base, 192 mM glycine, 20% 

methanol).  To verify transfer and equal loading among lanes, membranes were then 

stained with Ponceau S (Sigma) and imaged.  For immunodetection, membranes were 

blocked for 1 h at room temperature in blocking buffer (5% nonfat dry milk in TBS-T, 20 

mM Tris base, 150 mM NaCl, 0.1% Tween-20, pH 7.6), briefly rinsed in TBS-T, and 

then incubated with primary antibody (in 2% BSA in TBS-T, with 0.02% NaN3, pH 7.5) 

overnight at 4°C on a shaker.  Membranes were then serially washed in TBS-T, incubated 

with horseradish peroxidase (HRP)-conjugated secondary in blocking buffer for 1 h, and 

again serially washed in TBS-T.  The HRP activity was detected by enhanced 

chemilumenscence reagent (ECL; EMD Millipore), exposure to autoradiographic film 

(Alkali Scientific no. XR1570, Pompano Beach, FL, USA), and then developed (Konica 

Minolta no. SRX-101A).  Antigen concentration was calculated by quantification of the 

integrated optical density (IOD) of the appropriate band and then normalized to total 
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protein content from previous Ponceau S staining image using a gel analyzer software 

(Image Studio Lite, Licor, Lincoln, NE, USA).  Primary antibody dilutions were as 

follows: phospho-AMPKαThr172 (Cell Signaling Technology, CST, no. 4188, Beverly, 

MA, USA), 1:1000; total AMPK α (CST no. 2532), 1:2500; phospho-ACCSer79 (EMD 

Millipore no.07-303) 1:1000; total ACC (Streptavidin-HRP, GE Life Sciences no. 

RPN1231), 1:4000; p-FOXO3ASer318/321 (CST no. 9465), 1:1000; total FOXO3A (CST 

no. 12829), 1:2000; phospho-GSSer641 (CST no. 3891), 1:5000; total GS (CST no.3893), 

1:5000; K48-linkage Specific Polyubiquitin (CST no. 8081), 1:1000; Myogenin (Santa 

Cruz no. sc-12732, Dallas, TX, USA) 1:200;  phospho-mTORS2448 (CST no. 5536), 

1:2000; mTOR (CST no. 2983), 1:4000; phospho-p70S6KThr389 (CST no. 9234), 1:750; 

total p70S6K (CST no. 2708), 1:2000; puromycin (EMD Millipore no. MABE343), 

1:5000; phospho-4E-BP1Thr37/46 (CST no. 2855), 1:6000; total 4E-BP1 (CST no. 9644), 

1:15,000; phospho-TSC2Ser1387 (CST no. 5584), 1:1500; phospho-TSC2Thr1462 (CST no. 

3617), 1:1500; total TSC2 (CST no. 3990), 1:2000.  The appropriate species-specific 

(goat anti-mouse or anti-rabbit) HRP secondary antibodies were from CST except for 

puromycin secondary, which was from Jackson ImmunoResearch Laboratories (West 

Grove, PA, USA). 

3.2.6 Statistical Analyses 

A two-way analysis of variance was used (Treatment x Plasmid).  Post-hoc comparisons 

were accomplished via a Fisher’s LSD test, with statistical significance being set apriori 

at p ≤ 0.05.  All statistical analyses and graphs were made using Graphpad Prism 7 

(GraphPad, San Diego, CA, USA). Data are presented as means ± SEM.  

 



 73 

3.3 Results 

3.3.1 Myotube glycogen content and glycogen synthase phosphorylation and 
concentration 
 
The phosphorylation status (phospho-GS/total GS) at Ser641 (Figure 3.5.1A) was 

significantly (p ≤ 0.05) lower (main effect) in all mutant GS-transfected myotubes 

regardless of treatment compared to empty-vector.  This effect was seen despite NSD (p 

> 0.05) in the absolute concentration of phospho-(Ser641) GS (Figure 3.5.1B) regardless 

of plasmid or treatment condition.  There was a concomitant significantly (p ≤ 0.05) 

higher (main effect) absolute concentration of total GS (Figure 3.5.1C) in all mutant GS-

transfected myotubes regardless of treatment condition compared to empty-vector.  In 

mutant GS-transfected myotubes, LEU treatment tended (p = 0.06) to induce a higher 

total GS concentration compared to mutant GS CT, whereas RAP or LEU+RAP in 

mutant GS-transfected myotubes induced a significantly (p ≤ 0.05) lower total GS 

concentration vs. mutant GS LEU alone.  There was a significantly (p ≤ 0.05) higher 

(main effect) myotube glycogen content (Figure 3.5.2) in all mutant GS-transfected 

myotubes, compared to empty-vector regardless of treatment.  Further, in mutant GS 

transfected myotubes, LEU treatment had significantly (p ≤ 0.05) higher glycogen 

content compared to mutant GS CT, whereas, RAP and LEU+RAP in mutant GS 

transfected myotubes had significantly (p ≤ 0.05) lower glycogen content vs. mutant GS 

LEU.  This plasmid (mutant GS) has been shown in both COS cells (120) and in mouse 

skeletal muscle (32, 75) to enhance glycogen content due to a Ser to Ala mutation at two 

critical sites (sites 2 and 3a) for phosphorylation and, thus, decreased activity (120).  

Ser641 is site 3a on GS and therefore the lack of change in phosphorylation at this site 

despite an increase in the absolute concentration of total GS verifies that the mutant GS 
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vector was overexpressed in the mutant GS-transfected myotubes.  Moreover, the potent 

increase in myotube glycogen content in the mutant GS-transfected myotubes, regardless 

of treatment condition, compared to empty vector further confirms the correct plasmid 

was overexpressed. 

3.3.2 Muscle protein synthesis rate 

MPS rate was determined via incorporation of puromycin into synthesizing proteins 

using the SUnSET Technique (40).  Compared to CT, regardless of plasmid condition, 

LEU induced significantly (p ≤ 0.05) higher MPS (Figure 3.5.3).  This effect was 

significantly (p ≤ 0.05) lower with RAP and RAP+LEU treatments vs. LEU treatment 

regardless of plasmid condition.  In mutant GS-transfected myotubes, LEU+RAP 

treatment displayed significantly (p ≤ 0.05) higher MPS than RAP alone.  Lastly, MPS 

was significantly (p ≤ 0.05) higher (main effect) in all mutant GS-transfected myotubes 

regardless of treatment condition compared to empty-vector. 

3.3.3 AMPK and ACC phosphorylation and concentration 

There were NSD (p > 0.05) in phosphorylation status (phospho-AMPKα/total AMPKα) 

at Thr172 (Figure 3.5.4A) or absolute concentration of phospho-(Thr172) AMPKα 

(Figure 3.5.4B) regardless of plasmid or treatment condition.  The absolute concentration 

of total AMPKα (Figure 3.5.4C) was significantly (p ≤ 0.05) reduced in mutant GS-

transfected myotubes treated with RAP compared to LEU treatment only.  There was 

NSD (p > 0.05) between any other treatment or between plasmid conditions in total 

AMPKα. 

Acetyl-CoA Carboxylase is a well-established marker of AMPK activity (43).  There 

were NSD (p > 0.05) in phosphorylation status (phospho-ACC/total ACC) at Ser79 
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(Figure 3.5.5A) between any group, regardless of plasmid or treatment condition.  There 

were NSD (p > 0.05) between absolute concentrations of phospho-(Ser79) ACC (Figure 

3.5.5B), regardless of plasmid or treatment condition despite there being a trend towards 

an increase in mutant GS-transfected myotubes treated with RAP compared to mutant GS 

CT treatment (p = 0.07) and mutant GS LEU+RAP compared to mutant GS RAP 

treatment (p = 0.06).  Lastly, there were NSD (p > 0.05) between absolute concentrations 

of total ACC (Figure 3.5.5C), regardless of plasmid or treatment condition. 

3.3.4 SIGNALING INTERMEDIATES REGULATING MPS 

3.3.4.1 mTOR, p70S6K, and 4EBP1 phosphorylation and concentration 

The phosphorylation status (phoshpo-mTOR/total mTOR) at Ser2448 (Figure 3.5.6A) 

was significantly (p ≤ 0.05) increased with LEU treatment compared to CT regardless of 

plasmid condition with NSD (p > 0.05) between plasmid conditions.  There was 

significant (p ≤ 0.05) decrease in mTOR phosphorylation status with RAP or RAP+LEU 

treatment compared to CT or LEU treatments regardless of plasmid condition with NSD 

(p > 0.05) between plasmid conditions.  In general, the absolute concentration of 

phospho-(Ser2448) mTOR followed the same pattern (Figure 3.5.6B) as mTOR 

phosphorylation status at Ser2448.  There was NSD (p > 0.05) between absolute 

concentrations of total mTOR (Figure 3.5.6C) regardless of plasmid or treatment 

conditions, despite there being a trend (p = 0.07) towards of decrease in mutant GS-

transfected myotubes treated with LEU+RAP compared to empty-vector.  

In empty-vector treated myotubes, the phosphorylation status (phospho-p70S6K/total 

p70S6K) at Thr389 (Figure 3.5.7A) was significantly (p ≤ 0.05) increased with LEU 

treatment compared to CT.  The same effect was evident for p70S6k Thr389 
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phosphorylation status in mutant GS-transfected myotubes with LEU treatment compared 

to mutant GS CT condition, albeit not significant (p = 0.07).  Regardless of plasmid 

condition, both RAP and LEU+RAP treatments significantly (p ≤ 0.05) decreased the 

phosphorylation status of p70S6K at Thr389 compared to CT and LEU treatments; the 

absolute concentration of phospho-(Thr389) p70S6K followed the exact same pattern 

(Figure 3.5.7B).  There was NSD (p > 0.05) between absolute concentrations of total 

p70S6K (Figure 3.5.7C) regardless of plasmid or treatment condition. 

The phosphorylation status (phosho-4EBP1/total 4EBP1) at Thr37/46 (Figure 3.5.8A) 

was significantly (p ≤ 0.05) increased with LEU treatment compared to CT treatment 

regardless of plasmid condition, with NSD (p > 0.05) between plasmid conditions.  In 

empty-vector transfected myotubes, RAP and LEU+RAP treatments significantly (p ≤ 

0.05) reduced the 4EBP1 phosphorylation status vs. LEU and CT treatments. In mutant 

GS-transfected myotubes, RAP tended (p = 0.07) to decrease 4EBP1 phosphorylation 

status compared to CT treatment, and RAP and LEU+RAP treatments were significantly 

(p ≤ 0.05) decreased compared to LEU treatment.  There was NSD (p > 0.05) between 

plasmid conditions for any treatment with 4EBP1 phosphorylation status at Thr37/46.  

The absolute concentration of phospho-(Thr37/46) 4EBP1 (Figure 3.5.8B) was 

significantly (p ≤ 0.05) increased with LEU treatment compared to CT treatment 

regardless of plasmid condition.  In empty-vector transfected myotubes, RAP tended (p = 

0.08) to decrease the concentration of phospho-(Thr37/46) 4EBP1 compared to empty-

vector CT.  Regardless of plasmid condition, RAP or LEU+RAP treatments significantly 

(p ≤ 0.05) decreased the concentration of phospho-(Thr37/46) 4EBP1 compared to LEU 

treatments.  There was a significant (p ≤ 0.05) increase (main effect) in absolute 
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concentration of phospho-(Thr37/46) 4EBP1 in all mutant GS-transfected myotubes, 

regardless of treatment compared to empty-vector. There was NSD (p > 0.05) between 

absolute concentrations of total 4EBP1 (Figure 3.5.8C) regardless of plasmid or treatment 

conditions.  

3.3.4.2 TSC2 phosphorylation and concentration 

There were NSD (p > 0.05) in phosphorylation status (phospho-TSC2/total TSC2) at 

Ser1387 (Figure 3.5.9A) between any group regardless of plasmid or treatment condition 

despite a trend towards an increase in empty-vector transfected myotubes treated with 

LEU (p = 0.08), RAP (p = 0.07), or LEU+RAP (p = 0.07) compared to empty-vector CT. 

The absolute concentration of phospho-(Ser1387) TSC2 (Figure 3.5.9C) was significantly 

(p ≤ 0.05) higher in empty-vector transfected myotubes treated with RAP or LEU+RAP 

compared to empty vector CT treatment. There was NSD (p > 0.05) between any other 

treatment or between plasmid condition.  There were NSD (p > 0.05) in phosphorylation 

status (phospho-TSC2/total TSC2) at Thr1462 (Figure 3.5.9B), absolute concentration of 

phospho-(Thr1462) TSC2 (Figure 3.5.9D), or absolute concentration of total TSC2 

(Figure 3.5.9E) regardless of treatment or plasmid condition. 

3.3.5 SIGNALING INTERMEDIATES REGULATING MPB 

3.3.5.1 FOXO3A phosphorylation and concentration 

There were NSD (p > 0.05) in the phosphorylation status (phospho-FOXO3A/total 

FOXO3A) at Ser318/321(Figure 3.5.10A), the absolute concentration of phospho-

(Ser318/321) FOXO3A (Figure 3.5.10B), or the absolute concentration of total FOXO3A 

(Figure 3.5.10C), regardless of plasmid or treatment condition.  
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3.3.5.2 Lysine48-Linked Polyubiquitin concentration   
 
There was a significant (p ≤ 0.05) decrease (main effect) in absolute concentration of 

total K48-linked polyubiquitin (Figure 3.5.11) in all mutant GS-transfected myotubes, 

regardless of treatment compared to empty-vector.  Additionally, in mutant GS-

transfected myotubes there was a trend (p = 0.06) towards an increase in the absolute 

concentration of total K48-linked polyubiquitin with RAP treatment compared to mutant 

GS CT treatment. 

3.3.6 MARKERS OF MYOGENESIS AND/OR REMODELING 

3.3.6.1 Myogenin concentration 
 
As this investigation was conducted on Day 7 myotube lysates, we only assessed a 

myogenic regulatory factor (MRF) responsible for differentiation, myogenin. There were 

NSD (p > 0.05) in the concentration of total Myogenin regardless of plasmid or treatment 

condition (Figure 3.5.12).  As these were fully differentiated myotubes (i.e., Day 7), the 

lack of changes in this specific MRF at this stage of the myogenic program is not 

unexpected.  

3.4 Discussion and Conclusions 

In most instances, mTORC1 and AMPK work in direct conflict with one another 

(10, 54).  While increases in mTORC1 activity lead to upregulation of MPS and 

downregulation of MPB (54, 117), AMPK activation leads to inhibition of MPS and 

mTORC1 (13, 87) and increases in MPB (73, 88, 142).  Leucine has been found to 

activate MPS through increases in mTORC1, and reduce MPB, in part, by indirectly 

inhibiting AMPK activity in vitro (29) and in vivo (110), although not consistently (36).  

Further, AMPK is directly inhibited by glycogen through its β subunit containing a GBD 
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(77, 78).  However, the potential links between glycogen, leucine, AMPK, MPS, MPB, 

and associated signaling had never been examined in skeletal muscle in vitro.  The novel 

findings of this investigation are that enhancing glycogen content augments basal and 

leucine-stimulated MPS in cultured C2C12 skeletal myotubes.  Although the effect of 

leucine treatment on MPS is mTOR-dependent regardless of plasmid condition, glycogen 

enhancement augments MPS independent of changes in AMPK or mTOR signaling.  In 

contrast, glycogen enhancement led to reductions in the amount of K48-linked 

polyubiquinated proteins, theoretically indicating less MPB, however, this was not 

carried to other MPB signaling markers assessed. 

The most fascinating finding of the current investigation was that enhancing 

glycogen content augments basal and leucine-stimulated MPS in cultured C2C12 skeletal 

myotubes.  We confirmed the findings of others who found a significant increase in 

mTORC1 signaling in either myoblasts or myotubes as measured via increases in the 

phosphorylation or phosphorylation status of mTOR, p70S6K, or 4EBP1 in response to 

leucine treatment (5, 24, 29, 45, 92) that also lead to increases in MPS (5, 29) and this 

effect was blocked by rapamycin treatment (5, 92, 101).  We expanded upon these 

previous findings in showing that enhanced intracellular glycogen content in myotubes 

led to significant increases in MPS regardless of treatment, and this effect was augmented 

with leucine treatment.  Although, the effect of leucine treatment is mTOR-dependent, 

glycogen enhancement augmented MPS independent of changes in mTOR or AMPK 

signaling when compared to empty vector.  Therefore, other potential signaling 

mechanisms that were not assessed may be involved (discussed below).   
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To examine if intracellular glycogen enhancement in cultured myotubes had an 

effect on muscle protein breakdown (MPB) we chose to examine FOXO3A signaling, at 

a specific site (Ser318/321) indicative of inhibition of MPB (135, 142) as well as a 

readout of proteins being tagged for degradation by the ubiquitin proteasome system 

[K48-linked polyubiquitin; (143)].  When activated, FOXO3A translocates to the nucleus 

and increases expression of muscle-specific E3 ubiquitin ligases, MuRF1 and MAFbx 

(135, 142), leading to MPB through the ubiquitin proteasome system (12, 142).  There 

was NSD regardless of treatment or plasmid condition in the phosphorylation status of 

FOXO3A at Ser318/321 in this investigation.  This finding with glycogen enhancement 

may be explained by the lack of a loading stimulus (e.g., stretch or electrical stimulation) 

in the cultured myotubes transfected with mutant GS.  In support of this, our lab found 

that young and old humans who had greater levels of intramuscular glycogen content 

displayed a higher phosphorylation status of FOXO3A at Ser318/321 following (within ≤ 

1-2 h) an acute bout of resistance exercise [i.e., muscle loading; (125), unpublished data].  

Therefore, the addition of a loading stimulus (e.g., stretch or electrical stimulation) to 

future work may be required to determine the effect of glycogen enhancement on MPB 

signaling.  Although enhancement to intracellular glycogen content had no effect on 

FOXO3A signaling at the site assessed, there was a significant decrease (main effect) of 

the amount of K48-linked polyubiquitin proteins in the mutant GS-transfected myotubes, 

theoretically meaning less MPB.  To our knowledge, this is the first time it has been 

reported that enhanced intracellular glycogen content in cultured myotubes led to 

reductions in a marker of MPB via the ubiquitin proteasome system.  Because only one 
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marker (of the two assessed) of MPB was changed with glycogen enhancement more 

work is needed to clarify these findings. 

The findings that intracellular glycogen content had no effect on AMPK 

phosphorylation status or activity in myotubes, even with leucine and/or rapamycin 

treatments, did not support our hypothesis.  However, the literature has been inconsistent 

with some finding increases (14, 70), decreases (29), or no changes (24) with AMPK 

phosphorylation status and/or activity in response to leucine treatment.  These 

inconsistencies may be due to the various doses of leucine used, the treatment time frame 

with leucine, myoblasts vs. myotubes, or the treatment method [i.e., starved vs. non-

starved; (26, 36)].  Additionally, as this investigation measured overall AMPK α 

phosphorylation status at Thr172 (i.e., not separating out AMPK α1 or α2) we cannot 

isolate the effects of glycogen enhancement and/or leucine treatment on AMPK specific 

isoforms in cultured myotubes.  AMPK α1 is considered to control muscle growth (79) 

through regulating MPS (86, 87).  AMPK α1 has been found both in vitro (87) and in vivo 

(86) to regulate MPS through mTORC1, whereas AMPK α2 is involved in metabolic 

adaptations (79, 88).  Also, recent work in vivo (51) has found overall AMPK α 

phosphorylation status to reflect AMPK α2, and not AMPK α1 phosphorylation.  

Therefore, the lack of differences in the current investigation may be explained by the 

inability to delineate between the two AMPK α isoforms.  However, as there were also no 

changes in AMPK activity (via p-ACC) regardless of plasmid or treatment condition, it 

remains to be determined if the effects seen work through AMPK at all.  In addition to 

other potential markers needing to be assessed the lack of effects in markers measured 

could also be due to the starvation model employed to enhance leucine stimulation (5, 
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101).  Future work should examine the effect of enhanced intracellular glycogen in a non-

amino acid starved state, which is considered more physiologically relevant (38). 

Although the effect of glycogen enhancement in cultured myotubes augmented 

basal and leucine-stimulated MPS, the lack of an effect on AMPK and MPS signaling 

markers may be explained by alternative signaling pathways or factors that were not 

measured.  An increase in glycogen content is assumed to lead to an increase in inorganic 

phosphate, glucose, as well as production of ATP through glycolysis and downstream 

metabolic pathways (2, 44, 109).  Although there was an increase in glycogen content in 

this investigation, glycogen degradation was not determined.  However, others using the 

exact mutant GS plasmid in mouse muscle (75, 100) have measured glycogenolysis and 

found increases in factors suggestive of enhanced glycogen catabolism, such as glycogen 

phosphorylase (75) and glycogen debranching enzyme (100).  Therefore, greater 

glycogen content in the current investigation should mean greater glycogenolysis, 

increases in glycolysis and glycolytic intermediates, and thus more ATP production (2).  

In addition, glycogen has been linked to providing substrates or ATP for biosynthetic 

pathways, such as nucleotide (115, 133) or non-essential amino acid (115, 133) synthesis.  

These findings may explain the increases seen in MPS with glycogen enhancement in the 

current investigation.  Nevertheless, as none of these factors or signaling pathways were 

measured in this investigation more work is clearly need to elucidate the effects of 

glycogen enhancement on augmented MPS in cultured myotubes.     

To further test the potential effects of other signaling pathways influencing 

AMPK and MPS, we measured TSC2 phosphorylation at a site for Akt (Thr1462) and 

AMPK (Ser1387).  Although there was a trend for an increase in the phosphorylation 
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status of TSC2 at Ser1387 in leucine, rapamycin, and co-treatment in empty vector-

transfected myotubes, there was NSD between any treatments regardless of plasmid 

condition.  This falls in line with the NSD observed in AMPK phosphorylation status and 

activity as discussed above.  Additionally, the NSD in the phosphorylation status of 

TSC2 at Thr1462 is in agreement with previous reports that found leucine had no effect 

on Akt signaling (5, 24, 38, 63, 92, 101).  Although leucine (36) and glycogen content 

(58) can feedback to influence insulin/growth signaling (e.g., Akt), there was no effect on 

either pathway in the current investigation.  Again, future work needs to elucidate the 

effect of glycogen enhancement on AMPK and MPS related signaling in a more 

physiologically relevant, non-starved state. 

The elevation in glycogen content with leucine treatment in mutant GS-

transfected myotubes was an interesting finding.  As previously mentioned, leucine can 

influence insulin signaling (36).  Specifically, leucine can enhance insulin sensitivity and 

glycogen synthesis (36).  Moreover, as this was not anticipated in the current 

investigation we did not explore this phenomenon further.  Although, this is not the first 

time that leucine has been reported to enhance glycogen content in myotubes (27), it is in 

response to a constitutively active GS.  Although, Doi et al. (27) found increases in 

glycogen content with leucine treatment, there was no starvation period employed, such 

as the serum and amino acid starvation of the current investigation, and therefore this 

may be the reason for the lack of a response in the empty vector-transfected myotubes.  

Nevertheless, the glycogen enhancement in mutant GS-transfected myotubes regardless 

of treatment with the starvation period indicates that the mutant GS plasmid may have 

had even higher glycogen content that was lost following the starvation period.  
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Regardless, the mutant-GS transfected myotubes still had significantly higher glycogen 

content, independent of treatment, compared to empty vector at collection and allows for 

direct comparisons of the effects glycogen enhancement on MPS and signaling assessed.  

In summary, glycogen enhancement in cultured C2C12 myotubes augments basal 

and leucine-stimulated MPS.  Although the effect of leucine treatment on MPS is mTOR-

dependent regardless of plasmid condition, glycogen enhancement augments MPS 

independent of changes in AMPK, mTOR, or MPS signaling markers assessed.  In 

contrast, glycogen enhancement led to reductions in the amount proteins tagged for 

degradation by the ubiquitin proteasome system, theoretically indicating less MPB, 

however, this was not found in other MPB signaling.  Future work should examine the 

effect of intracellular glycogen enhancement on MPS and associated signaling in a more 

physiologically relevant state (i.e., not amino acid starved) and in conjunction with a 

loading stimulus (e.g., stretch or electrical stimulation).  
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3.5 Figures 

 

 
 
Figure 3.5.1 Glycogen Synthase in Cultured C2C12 Myotubes. A, Phospho-
(Ser641)/Total Glycogen Synthase (GS); B, Phospho-(Ser641) GS; and C, Total GS 
expression (integrated optical density, IOD) in cultured C2C12 myotubes. At Day 4 post-
differentiation, myotubes were transfected for 48 hours with plasmids containing either 
an empty vector (Empty) or mutated glycogen synthase vector designed to enhance 
glycogen content (Mutant GS).  At Day 6 post-differentiation, myotubes were serum-
starved for 4 hours, prior to an amino acid starvation for 1 hour. Myotubes were then 
treated with either a treatment control (CT), 10 mM leucine (LEU), 100 nM rapamycin 
(RAP), or leucine/rapamycin co-treatment (LEU+RAP) for 30 minutes. All treatments 
contained 100 µM puromycin. All values were normalized to Empty CT. a: significantly 
(p ≤ 0.05) different than CT group within same plasmid condition; b: significantly 
different than LEU group within same plasmid condition; c: significantly different than 
RAP group within same plasmid condition; d: significant main effect of Mutant GS 
vector vs. Empty vector. 
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Figure 3.5.2 Glycogen Content in Cultured C2C12 Myotubes. Glycogen content 
normalized to total protein content cultured C2C12 myotubes.  At Day 4 post-
differentiation, myotubes were transfected for 48 hours with plasmids containing either 
an empty vector (Empty) or mutated glycogen synthase vector designed to enhance 
glycogen content (Mutant GS).  At Day 6 post-differentiation, myotubes were serum-
starved for 4 hours, prior to an amino acid starvation for 1 hour. Myotubes were then 
treated with either a treatment control (CT), 10 mM leucine (LEU), 100 nM rapamycin 
(RAP), or leucine/rapamycin co-treatment (LEU+RAP) for 30 minutes. All treatments 
contained 100 µM puromycin. All values were normalized to Empty CT. a: significantly 
(p ≤ 0.05) different than CT group within same plasmid condition; b: significantly 
different than LEU group within same plasmid condition; c: significantly different than 
RAP group within same plasmid condition; d: significant main effect of Mutant GS 
vector vs. Empty vector. 
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Figure 3.5.3. Muscle Protein Synthesis Rate (Puromycin) in Cultured C2C12 
Myotubes.  Total puromycin (integrated optical density, IOD) expression in cultured 
C2C12 myotubes. At Day 4 post-differentiation, myotubes were transfected for 48 hours 
with plasmids containing either an empty vector (Empty) or mutated glycogen synthase 
vector designed to enhance glycogen content (Mutant GS).  At Day 6 post-differentiation, 
myotubes were serum-starved for 4 hours, prior to an amino acid starvation for 1 hour. 
Myotubes were then treated with either a treatment control (CT), 10 mM leucine (LEU), 
100 nM rapamycin (RAP), or leucine/rapamycin co-treatment (LEU+RAP) for 30 
minutes. All treatments contained 100 µM puromycin. All values were normalized to 
Empty CT. a: significantly (p ≤ 0.05) different than CT group within same plasmid 
condition; b: significantly different than LEU group within same plasmid condition; c: 
significantly different than RAP group within same plasmid condition; d: significant main 
effect of Mutant GS vector vs. Empty vector. 
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Figure 3.5.4 AMPK in Cultured C2C12 Myotubes. A, Phospho-(Thr172)/Total 5’-
AMP-Activated Protein Kinase (AMPK) α; B, Phospho-(Thr172) AMPKα; C, Total 
AMPKα expression (integrated optical density, IOD) in cultured C2C12 myotubes. At 
Day 4 post-differentiation, myotubes were transfected for 48 hours with plasmids 
containing either an empty vector (Empty) or mutated glycogen synthase vector designed 
to enhance glycogen content (Mutant GS).  At Day 6 post-differentiation, myotubes were 
serum-starved for 4 hours, prior to an amino acid starvation for 1 hour. Myotubes were 
then treated with either a treatment control (CT), 10 mM leucine (LEU), 100 nM 
rapamycin (RAP), or leucine/rapamycin co-treatment (LEU+RAP) for 30 minutes. All 
treatments contained 100 µM puromycin. All values were normalized to Empty CT. b: 
significantly (p ≤ 0.05) different than LEU group within same plasmid condition. 
 
 
 
 
 
 
 
 
 
 
 
 

Ponceau!

p-AMPKα!
Thr172!

B!

A!

Ponceau!

Total AMPKα!

C !
Empty Mutant GS

0.0

0.5

1.0

1.5

Ph
os

ph
o-

(T
hr

17
2)

/T
ot

al
 A

M
PK

α
(IO

D,
 A

rb
itr

ar
y 

Un
its

)
No

rm
al

iz
ed

 to
 E

m
pt

y 
CT

Empty Mutant GS
0.0

0.5

1.0

1.5

2.0

Ph
os

ph
o-

(S
er

21
) G

SK
3α

(IO
D

, A
rb

itr
ar

y 
U

ni
ts

)
N

or
m

al
iz

ed
 to

 E
m

pt
y 

C
T CT

LEU
RAP
LEU+RAP

Empty Mutant GS 
0.0

0.5

1.0

1.5

2.0

To
ta

l A
M

PK
α

(IO
D

, A
rb

itr
ar

y 
U

ni
ts

)
N

or
m

al
iz

ed
 to

 E
m

pt
y 

C
T

b

Empty Mutant GS
0.0

0.5

1.0

1.5

Ph
os

ph
o-

(T
hr

17
2)

 A
M

PK
α

(IO
D

, A
rb

itr
ar

y 
U

ni
ts

)
N

or
m

al
iz

ed
 to

 E
m

pt
y 

C
T



 89 

 
Figure 3.5.5 ACC in Cultured C2C12 Myotubes. A, Phospho-(Ser79)/Total Acetyl-
CoA Carboxylase (ACC); B, Phospho-(Ser79) ACC; C, Total ACC expression 
(integrated optical density, IOD) in cultured C2C12 myotubes. At Day 4 post-
differentiation, myotubes were transfected for 48 hours with plasmids containing either 
an empty vector (Empty) or mutated glycogen synthase vector designed to enhance 
glycogen content (Mutant GS).  At Day 6 post-differentiation, myotubes were serum-
starved for 4 hours, prior to an amino acid starvation for 1 hour. Myotubes were then 
treated with either a treatment control (CT), 10 mM leucine (LEU), 100 nM rapamycin 
(RAP), or leucine/rapamycin co-treatment (LEU+RAP) for 30 minutes. All treatments 
contained 100 µM puromycin. All values were normalized to Empty CT. 
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Figure 3.5.6 mTOR in Cultured C2C12 Myotubes. A, Phospho-(Ser2448)/Total 
mechanistic target of rapamycin (mTOR); B, Phospho-(Ser2448) mTOR; C, Total mTOR 
expression (integrated optical density, IOD) in cultured C2C12 myotubes. At Day 4 post-
differentiation, myotubes were transfected for 48 hours with plasmids containing either 
an empty vector (Empty) or mutated glycogen synthase vector designed to enhance 
glycogen content (Mutant GS).  At Day 6 post-differentiation, myotubes were serum-
starved for 4 hours, prior to an amino acid starvation for 1 hour. Myotubes were then 
treated with either a treatment control (CT), 10 mM leucine (LEU), 100 nM rapamycin 
(RAP), or leucine/rapamycin co-treatment (LEU+RAP) for 30 minutes. All treatments 
contained 100 µM puromycin. All values were normalized to Empty CT. a: significantly 
(p ≤ 0.05) different than CT group within same plasmid condition; b: significantly 
different than LEU group within same plasmid condition. 
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Figure 3.5.7 p70S6K in Cultured C2C12 Myotubes. A, Phospho-(Thr389)/Total 70 
kDa ribosomal protein S6 kinase (p70S6K); B, Phospho-(Thr389) p70S6K; C, Total 
p70S6K expression (integrated optical density, IOD) in cultured C2C12 myotubes. At 
Day 4 post-differentiation, myotubes were transfected for 48 hours with plasmids 
containing either an empty vector (Empty) or mutated glycogen synthase vector designed 
to enhance glycogen content (Mutant GS).  At Day 6 post-differentiation, myotubes were 
serum-starved for 4 hours, prior to an amino acid starvation for 1 hour. Myotubes were 
then treated with either a treatment control (CT), 10 mM leucine (LEU), 100 nM 
rapamycin (RAP), or leucine/rapamycin co-treatment (LEU+RAP) for 30 minutes. All 
treatments contained 100 µM puromycin. All values were normalized to Empty CT. a: 
significantly (p ≤ 0.05) different than CT group within same plasmid condition; b: 
significantly different than LEU group within same plasmid condition. 
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Figure 3.5.8 4EBP1 in Cultured C2C12 Myotubes. A, Phospho-(Thr37/46)/Total 
eukaryotic initiation factor 4E binding protein (4EBP1); B, Phospho-(Thr37/46) 4EBP1; 
C, Total 4EBP1 expression (integrated optical density, IOD) in cultured C2C12 
myotubes. At Day 4 post-differentiation, myotubes were transfected for 48 hours with 
plasmids containing either an empty vector (Empty) or mutated glycogen synthase vector 
designed to enhance glycogen content (Mutant GS).  At Day 6 post-differentiation, 
myotubes were serum-starved for 4 hours, prior to an amino acid starvation for 1 hour. 
Myotubes were then treated with either a treatment control (CT), 10 mM leucine (LEU), 
100 nM rapamycin (RAP), or leucine/rapamycin co-treatment (LEU+RAP) for 30 
minutes. All treatments contained 100 µM puromycin. All values were normalized to 
Empty CT. a: significantly (p ≤ 0.05) different than CT group within same plasmid 
condition; b: significantly different than LEU group within same plasmid condition; d: 
significant main effect of Mutant GS vector vs. Empty vector. 
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Figure 3.5.9 TSC2 in Cultured C2C12 Myotubes. A, Phospho-(Ser1387)/Total 
tuberous sclerosis complex 2 (TSC2); B, Phospho-(Thr1462)/Total TSC2; C, Phospho-
(Ser1387) TSC2; D, Phospho-(Thr1462) TSC2; E, Total TSC2 expression (integrated 
optical density, IOD) in cultured C2C12 myotubes. At Day 4 post-differentiation, 
myotubes were transfected for 48 hours with plasmids containing either an empty vector 
(Empty) or mutated glycogen synthase vector designed to enhance glycogen content 
(Mutant GS).  At Day 6 post-differentiation, myotubes were serum-starved for 4 hours, 
prior to an amino acid starvation for 1 hour. Myotubes were then treated with either a 
treatment control (CT), 10 mM leucine (LEU), 100 nM rapamycin (RAP), or 
leucine/rapamycin co-treatment (LEU+RAP) for 30 minutes. All treatments contained 
100 µM puromycin. All values were normalized to Empty CT. a: significantly (p ≤ 0.05) 
different than CT group within same plasmid condition. 
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Figure 3.5.10 FOXO3A in Cultured C2C12 Myotubes. A, Phospho-(Ser318/321)/Total 
Forkhead box Transcription Factor 3A (FOXO3A); B, Phospho-(Ser318/321) FOXO3A; 
C, Total FOXO3A expression (integrated optical density, IOD) in cultured C2C12 
myotubes. At Day 4 post-differentiation, myotubes were transfected for 48 hours with 
plasmids containing either an empty vector (Empty) or mutated glycogen synthase vector 
designed to enhance glycogen content (Mutant GS).  At Day 6 post-differentiation, 
myotubes were serum-starved for 4 hours, prior to an amino acid starvation for 1 hour. 
Myotubes were then treated with either a treatment control (CT), 10 mM leucine (LEU), 
100 nM rapamycin (RAP), or leucine/rapamycin co-treatment (LEU+RAP) for 30 
minutes. All treatments contained 100 µM puromycin. All values were normalized to 
Empty CT.  
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Figure 3.5.11 K48 Polyubiquitin in Cultured C2C12 Myotubes. Total Lysine -48 
(K48) tagged polyubiquitin expression (integrated optical density, IOD) in cultured 
C2C12 myotubes. At Day 4 post-differentiation, myotubes were transfected for 48 hours 
with plasmids containing either an empty vector (Empty) or mutated glycogen synthase 
vector designed to enhance glycogen content (Mutant GS).  At Day 6 post-differentiation, 
myotubes were serum-starved for 4 hours, prior to an amino acid starvation for 1 hour. 
Myotubes were then treated with either a treatment control (CT), 10 mM leucine (LEU), 
100 nM rapamycin (RAP), or leucine/rapamycin co-treatment (LEU+RAP) for 30 
minutes. All treatments contained 100 µM puromycin. All values were normalized to 
Empty CT.  d: significant (p ≤ 0.05) main effect of Mutant GS vector vs. Empty vector. 
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Figure 3.5.12 Myogenin in Cultured C2C12 Myotubes. Total Myogenin expression 
(integrated optical density, IOD) in cultured C2C12 myotubes. At Day 4 post-
differentiation, myotubes were transfected for 48 hours with plasmids containing either 
an empty vector (Empty) or mutated glycogen synthase vector designed to enhance 
glycogen content (Mutant GS).  At Day 6 post-differentiation, myotubes were serum-
starved for 4 hours, prior to an amino acid starvation for 1 hour. Myotubes were then 
treated with either a treatment control (CT), 10 mM leucine (LEU), 100 nM rapamycin 
(RAP), or leucine/rapamycin co-treatment (LEU+RAP) for 30 minutes. All treatments 
contained 100 µM puromycin. All values were normalized to Empty CT.   
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CHAPTER 4: DISSERTATION SUMMARY 
 
 

Aging is associated with a progressive loss of skeletal muscle mass and function 

(sarcopenia), particularly in fast-twitch (i.e., type II) skeletal muscle fibers, and leads to 

an inability to perform activities of daily living, reduction in overall quality of life, and 

significantly increases the risk for all-cause mortality (94).  Additionally, in response to 

anabolic stimuli (i.e., RE, amino acids, growth factors, etc.) aged muscle has a blunted 

ability to hypertrophy (42, 65).  This diminished ability to maintain or increase muscle 

fiber size/mass occurs both in aged humans (65, 107) and in rats (11, 42).  Importantly, 

the Gordon laboratory found that an enzyme within skeletal muscle fibers called AMPK 

plays a major role in the suppression of acute (31, 126) and chronic MPS/anabolic 

signaling (42, 128, 129) and thus, impaired growth in aged muscle (42, 128, 129). 

Therefore, any mechanism than can inhibit AMPK in aged skeletal muscle, may be able 

to rescue MPS and growth.  One such mechanism is glycogen.  Glycogen content has 

been found to be diminished in aged skeletal muscle at rest in both rats (7, 17, 23, 47) and 

humans (17, 82), although not consistently (53, 83, 85, 103, 108).  Moreover, the 

contraction-induced depletion of glycogen is significantly greater in aged muscle (17, 53, 

126) and there is a blunted ability to increase glycogen levels with training vs. young 

adult muscle in both rats (17, 53, 126) and humans (17, 82).   

We postulated that the low muscle glycogen content in aged muscle is an 

important factor contributing to the upregulation of AMPK activity and catabolic 
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signaling/MPB and suppression of anabolic signaling/MPS and growth.  However, the 

link(s) between glycogen content, MPS, MPB, growth, and associated signaling 

following chronic overload in aged skeletal muscle had not been examined.  We further 

postulated that skeletal muscle glycogen content enhances anabolic signaling/MPS and 

suppresses catabolic signaling/MPB in response to leucine through AMPK in an 

mTORC1 manner; however, the effects of glycogen enhancement on anabolic stimuli, 

such as amino acids, had also never been tested in skeletal muscle.  We performed a 

series of experiments to test whether enhancing intramuscular glycogen content via the 

introduction of plasmid DNA expressing active glycogen synthase in aged rat skeletal 

muscle or cultured C2C12 myotubes would suppress AMPK activity, enhance anabolic 

signaling/MPS, suppress catabolic signaling/MPB, and enhance in vivo growth in 

response to chronic overload in vivo and leucine treatment in vitro. 

The main findings from these experiments (summarized in Table 4.1) were that 

glycogen enhancement in aged skeletal muscle in vivo augmented overload-induced 

growth compared to aged skeletal muscle without glycogen manipulation (Chapter 2). 

Associated with this effect was an increase in MPS, an effect that was also confirmed 

with intracellular glycogen enhancement in cultured myotubes (Chapter 3).  However, 

these increases occurred mostly independent of changes in AMPK signaling, and other 

signaling intermediates affecting MPS were also largely unaltered with glycogen 

enhancement.  In contrast, glycogen enhancement may suppress factors regulating MPB 

during overload in aged skeletal muscle and in cultured myotubes, even though all MPB 

markers measured did not support this finding.  The discrepancies between in vivo and in 

vitro MPB markers affected may have been due to an absence of a loading stimulus in the 
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cultured C2C12 myotubes.  Hence, more work is needed utilizing a loading stimulus (i.e., 

stretch or electrical stimulation) with glycogen enhancement in cultured myotubes.  

Further, we found glycogen enhancement augments basal and leucine-stimulated MPS in 

cultured C2C12 myotubes (Chapter 3).  Although the effect of leucine treatment on MPS 

was mTOR-dependent regardless of plasmid condition, glycogen enhancement 

augmented MPS independent of changes in AMPK or mTOR signaling in cultured 

myotubes.   

Further exploration of the effects of glycogen enhancement in aged skeletal 

muscle in vivo led us to discover increases in markers of myogenesis and regeneration in 

response to overload.  Even though muscle fiber cross-sectional area was not measured in 

the current work, the augmented overload-induced increase with glycogen enhancement 

in muscle growth that was accompanied by increases in total fiber number and may 

provide some insight into the degree of the growth response.  While others have reported 

increases with synergistic ablation alone (89), to our knowledge, this is first time de novo 

fiber formation has been reported in aged muscle in response to overload and 

electroporation.  It is believed that with the synergistic ablation model hyperplasia occurs 

as muscle fibers become too large for oxygen diffusion and therefore the fibers split to 

form new fibers as a protective adaptation (89).   In support of the increases in total fiber 

number with glycogen enhancement in old muscle, there were concomitant increases in 

MRFs, MyoD and myogenin, and eMyHC expression.  The increase in MRF expression 

with aging is in agreement with others (3, 76, 108), however, this is the first time MRF 

increases have been reported in aged muscle with glycogen enhancement.   The increases 

in de novo fiber formation may be due to greater energy availability, in the form of 
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enhanced glycogen content (2, 44, 109), throughout the 21-day overload protocol in 

addition to the potential regenerative response caused by the overload model with 

electroporation procedure.    

A common finding with activities that cause muscle damage (e.g., eccentric 

contractions) is reductions in the amount of glycogen content, and this is seen in both 

rodents (52, 59, 131) and humans (22, 97, 137).  The reductions in glycogen content are 

linked to declines in contractile performance of the damaged muscle (19, 105).  While 

some studies have linked these declines to disruptions in the structural components of 

muscle (19, 105), others have reported metabolic factors being involved (22, 52, 59, 97, 

131, 137).  Interestingly, in response to damaging eccentric contractions there is an 

inability to replenish glycogen content in humans (97, 137) as well as diminished 

glycogen content and ATP production in rats (52, 59, 131).  In the current investigation 

when glycogen content was enhanced in aged muscle, in potentially a damaging stimulus 

(i.e., overload with electroporation), there was a greater regenerative response.  Although 

it was not an overall goal of this investigation, it would be interesting for future work to 

test the effects of glycogen enhancement in a bona fide model of muscle injury, such as 

damaging eccentric contractions, to see if there is an enhancement in 

regeneration/myogenesis in aged or young muscle.  While we did not observe enhanced 

markers of myogenesis with glycogen enhancement in vitro, this was likely due to the 

fact that we transfected (and thus enhanced intracellular glycogen) in myotubes that were 

already fully differentiated.  Given that myogenesis was stimulated by enhanced 

glycogen levels in aged muscle with overload in vivo, future experiments elucidating the 

effects of glycogen enhancement at the onset of differentiation or during more 
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proliferative stages of myogenesis in vitro will be important to delineate this 

phenomenon.   

Although we found strong and significant effects of augmented MPS (in vivo and 

in vitro), growth (in vivo), and myogenesis markers (in vivo) with glycogen enhancement 

in skeletal muscle, the assessed signaling intermediates regulating MPS and AMPK 

activity were largely unaltered.  There are a number of possible alternative mechanisms 

or limitations that may explain these findings.  For instance, other signaling pathways or 

markers that were not assessed may have been altered.  We hypothesized that enhancing 

glycogen content in skeletal muscle either in vivo or in vitro would suppress AMPK 

signaling, and thus restore MPS signaling intermediates, leading to the enhanced MPS 

and in vivo growth.  While we measured upstream and downstream signaling related to 

Akt, TSC2, mTOR, AMPK signaling, we were unable to detect robust differences in 

these pathways with glycogen enhancement follow 21 days of chronic overload in vivo or 

with acute transfection in vitro.  Although we assessed very well established markers 

regulating MPS translational signaling (30, 54, 119), there are numerous other potential 

pathways that could have been affected.   

 A number of alternative mechanisms could relate to the fact that overload and/or 

leucine treatment can be influenced by Insulin/Insulin-like Growth Factor 1 (IGF-1)- 

related signaling, G-Protein Coupled Receptor (GPCR)-mediated signaling, Mitogen 

Activated Protein Kinase (MAPK)-signaling, TGFβ superfamily-related signaling 

(namely myostatin and activin), Glucocorticoid-mediated signaling, transcriptional 

coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α)-related 

signaling, nuclear factor kappa B (NF-kB)-related signaling, as well as many others (30, 
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41, 54, 62).  Moreover, many of these pathways have been found to affect aged skeletal 

muscle (111, 116).  Also, several aforementioned pathways are associated with glycogen 

metabolism (64, 102).  For instance, the amount of glycogen in muscle is known to 

influence PGC-1α-related signaling and can affect mitochondrial biogenesis (64, 102), 

which is considered a major factor affecting aged skeletal muscle’s ability to maintain 

protein turnover (91).  Additionally, myostatin, a negative regulator of muscle growth, 

has been found to affect glycogen storage and glucose uptake in skeletal muscle (20).  

Myostatin expression increases in differing states of muscles atrophy (111, 112, 136) and 

downstream signaling of myostatin is suggested to contribute to sarcopenia (111).  

Insulin/IGF-1-related signaling is also implicated in glycogen metabolism (58, 64, 132) 

and is influenced by leucine (26, 36) and aging muscle (111, 116).  Moreover, high 

glucocorticoid expression in skeletal muscle influences glycogenolysis and insulin-

stimulated glycogen synthesis (67).  High glucocorticoid expression is also connected to 

upregulation of MuRF1 and MAFbx leading to MPB and thus muscle atrophy (30).  

Lastly, many of the aforementioned pathways can also interact with one another (30, 36, 

58, 62, 64, 102, 118), further adding to the complexity of glycogen metabolism and 

skeletal muscle plasticity.     

There are numerous other factors involved with aging of all physiological 

systems, not just the muscular system (71).  The nine common factors affecting aging 

have been named the “hallmarks of aging” and include genomic instability, telomere 

attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, 

mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered 

intracellular communication (71).  While the current work investigated some aspects of 
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these hallmarks of aging, such as loss of proteostasis, deregulated nutrient sensing, and 

altered intracellular communication, there are numerous others that could have been 

influenced by glycogen enhancement.  Additionally, there are other factors known to 

affect skeletal muscle that also fall under one of the nine hallmarks.  For example, there 

are reductions in sex hormones (testosterone and estradiol) with age (68, 124) and these 

reductions contribute to processes involved with sarcopenia (68) and can influence many 

of the hallmarks of aging (95).  Testosterone and estradiol levels can also impact 

glycogen metabolism in muscle (106, 130).  Aged skeletal muscle also displays high 

levels of factors responsible for chronic inflammation (e.g., cytokines) and oxidative 

damage [e.g. reactive oxygen and nitrogen species (56, 81)] that contribute to sarcopenia 

(25, 94) and effect different hallmarks of aging (95).  Additionally, circulating cytokines 

(46, 96) and reactive oxygen species (60) have been found to influence glycogen 

metabolism.  Collectively, even though we largely found no affect of glycogen 

enhancement on MPS and AMPK related signaling intermediates assessed in aged 

skeletal muscle under conditions of overload and cultured C2C12 myotubes with leucine 

treatment, the potential signaling pathways or factors that could be affected are vast.  

Clearly, more work is needed to further examine the above-mentioned factors with 

regards to glycogen enhancement.  

Our hypothesis that glycogen enhancement would inhibit AMPK activity was 

based on previous findings in vivo (123) and in vitro (138) that found glycogen 

interacting with AMPK, which is thought to work through its GBD within the β subunit 

(77, 78).  However, the AMPKβ-glycogen interaction has been challenged (98, 122, 140).  

Using a proteomics approach, Stapleton and colleagues (122) first found that highly 
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purified glycogen had no interaction with AMPK in vivo.  This group then discovered a 

novel phosphorylation site at Thr148 on the AMPK β subunit that regulates glycogen 

binding (98).  Thr148 is found in the GBD of the β subunit and was found to 

autophosphorylate itself and this led to an inability of AMPK to interact with glycogen in 

vitro (98).  Also, this inhibitory autophosphorylation at Thr148 on the β subunit was 

found to occur independent of changes in phosphorylation at Thr172 on the catalytic α 

subunit (98).  Lastly, this group (140) found in skinned rat skeletal muscle fibers, that β2-

AMPK was not associated with glycogen and that activation of AMPK at Thr172 via 

stimulation did not dephosphorylate Thr148 on the β subunit.  The authors concluded that 

any regulation of AMPK via glycogen most likely occurs in an indirect way through 

other glycogen associated proteins (140, 141).  As we did not measure Thr148 on the β 

subunit in the current work we cannot determine if the AMPKβ-glycogen was affected at 

this site and if this could explain our largely unaffected AMPK signaling.  Additionally, 

as there are numerous other glycogen associated proteins (109, 141) that could potentially 

mediate the glycogen-AMPK interaction more work is needed in this regard. 

Another aspect that was not explored in the current investigation is the emerging 

role of AMPK structure, specifically the heterotrimer composition, in skeletal muscle 

plasticity (88).  In mammals, AMPK exists as an obligatory 3-subunit heterotrimer 

containing 7 isoforms that are encoded by separate genes, enabling the formation of a 

diverse collection of the αβγ heterotrimer (88).  In human fast-twitch skeletal muscle, 

only three heterotrimer complexes have been found: (in order of most to least abundant) 

α2β2γ1, α2β2γ3, and α1β2γ1 (9, 88).  Whereas, in rodent fast-twitch skeletal muscle, up to 5 

heterotrimer complexes have been found: (again, in order of most to least abundant) 
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α2β2γ1, α2β2γ3, α1β1γ1, α2β1γ1, and α1β1γ1 (88).  While there is still much to be discovered 

about AMPK heterotrimer composition in various physiological states in skeletal muscle, 

Hardman et al. (51) found that there was age-related differences in expression of 

heterotrimer subunits in young adult vs. old rat fast-twitch muscle.  The same study also 

found age-related differences in specific subunits that associated with (using 

immunoprecipitation) AMPK α1 or α2, as well as differences in AMPK α1 or α2 activity 

with age in response to endurance type ex vivo stimulation (51).  Specifically, there was 

depressed AMPK α2 activity and enhanced AMPK α1 in old vs. young adult muscle 

following stimulation (51).  The authors postulated that the enhanced AMPK α1 activity 

in old fast-twitch skeletal muscle may underlie the depressed MPS seen through 

mTORC1, contributing to sarcopenia (51).  In support of this notion, Mounier and 

colleagues (86, 87) found that AMPK α1, but not α2, inhibited MPS through mTORC1 

both in vitro (87) and in vivo (86).  In addition, Baar and colleagues (79) found that 

overload-induced hypertrophy was regulated by AMPK α1, but not α2.  The authors of 

this study therefore postulated that AMPK α1 regulates growth, and AMPK α2 is 

necessary for metabolic adaptations (79).  As the current investigation measured overall 

AMPK α phosphorylation at Thr172 (i.e., not separating out α1 vs. α2), any differences 

between the two with glycogen enhancement could not be delineated either in vivo or in 

vitro.  Also, Hardman et al. (51) found that the overall AMPK α phosphorylation at 

Thr172 reflected AMPK α2 activity and not α1 in both young and old rat muscle after 

stimulation, which they postulated to be due AMPK α2 being the predominant isoform in 

skeletal muscle.   Therefore, any differences that could have occurred in AMPK α1 

activity with glycogen enhancement could have been washed out by AMPK α2 changes 
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due to the measurement of overall AMPK α phosphorylation at Thr172.  Future work 

should determine if glycogen enhancement differentially affects AMPK α1 and α2 

activity, as well as heterotrimer composition.        

A limitation of our in vivo experimental design was that we measured the effects 

of glycogen enhancement in aged muscle after 21 days of overload.  Although MPS and 

growth were different at that timepoint, potential AMPK or MPS signaling differences 

may have normalized by this timepoint.  An overload period of 21 days was chosen based 

on pilot work from our laboratory (Figure 1.8 and 1.9) as well as the reported reductions 

in the inflammatory response associated with this procedure by ~10-14 days (1, 4).  Our 

findings that there were largely NSD with overload in young adult vs. old rat muscle in 

mTORC1 signaling intermediates support previous literature after 28 days of overload 

(18).  In fact, recent work using the synergistic ablation model of muscle growth in rats 

(48) found that AMPK and MPS signaling changes occur within the first 3-9 days of 

overload and are largely lost by 12-21 days.  The authors proposed this to be due to 

“molecular brakes” or negative regulators of mTORC1 being increased after 9 days with 

this supraphysiological model of muscle hypertrophy.  Interestingly, the authors also 

reported that AMPK α1 activity changes occurred within the first 3-9 days of overload 

and were lost by days 12-21.  Therefore, although overall AMPK phosphorylation and 

activity (as assessed by ACC phosphorylation) were elevated at 21 days in all groups, any 

changes in AMPK α1-specific activity in vivo in the current investigation may have been 

lost by day 21 of overload.  However, again, as we did not delineate between AMPK α1 

and α2 we cannot determine if differences did exist at this timepoint.    
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 In summary, glycogen enhancement in aged skeletal muscle augmented overload-

induced growth.  The greater growth with glycogen enhancement was accompanied by 

greater MPS response in aged muscle, an effect that was further confirmed in response to 

enhanced intracellular glycogen content in cultured myotubes.  Moreover, enhancing 

glycogen content augments not only basal, but leucine-stimulated MPS in cultured 

myotubes.  Although the effect of leucine treatment on MPS is mTOR-dependent in all 

cultured myotubes (regardless of plasmid condition/glycogen manipulation), glycogen 

enhancement augments MPS in vivo and in vitro largely independent of changes in 

AMPK or mTOR signaling.  In contrast, glycogen enhancement led to reductions in 

markers of MPB both in vivo and in vitro, although this effect was not seen in all markers 

assessed.  Further, there was a strong and significant effect of enhancing glycogen 

content on markers of myogenesis and regeneration in aged muscle under conditions of 

overload in vivo.  These findings may support the need to enhance glycogen content in 

aged skeletal muscle of humans to augment MPS and growth under conditions of 

overload (i.e., resistance exercise training).  Because of the potential impact of glycogen 

enhancement on growth in aging muscle, more exploration is thus warranted regarding 

more applied methods (namely diet) to enhance glycogen in young and old muscle with 

or without loading.  Lastly, these findings also indicate the need for further research to 

examine the effect(s) of glycogen enhancement in rat and human muscle in: conditions 

requiring regeneration or myogenesis; young muscle with or without loading; and old 

muscle under normal conditions (i.e., without loading).   
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