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1. Introduction

Therapeutic nucleic acids (TNAs) have enriched and diversi-
fied the landscape of nanomedicine,[1] and their clinical success 

Nucleic acid nanoparticles, or NANPs, rationally designed to communicate 
with the human immune system, can offer innovative therapeutic strategies 
to overcome the limitations of traditional nucleic acid therapies. Each set of 
NANPs is unique in their architectural parameters and physicochemical proper-
ties, which together with the type of delivery vehicles determine the kind and 
the magnitude of their immune response. Currently, there are no predictive 
tools that would reliably guide the design of NANPs to the desired immunolog-
ical outcome, a step crucial for the success of personalized therapies. Through 
a systematic approach investigating physicochemical and immunological pro-
files of a comprehensive panel of various NANPs, the research team developes 
and experimentally validates a computational model based on the transformer 
architecture able to predict the immune activities of NANPs. It is anticipated 
that the freely accessible computational tool that is called an “artificial immune 
cell,” or AI-cell, will aid in addressing the current critical public health chal-
lenges related to safety criteria of nucleic acid therapies in a timely manner and 
promote the development of novel biomedical tools.

ReseaRch aRticle

brought about the development of a new 
biomolecular platform, based on nucleic 
acid nanoparticles, called NANPs.[2–3] 
NANP technologies aim to advance the 
programmability of TNAs, tune their 
physicochemical and biological properties, 
and optimize their formulation, storage, 
and handling processes. The bottom-up 
assembly of NANPs takes advantage of 
nucleic acids’ folding pathways along with 
several computational tools available for 
precise coordination of sequence design 
and an expanded repertoire of structural 
and interacting motifs.[4–9] A large number 
of NANPs has been engineered to vary in 
chemical composition, sizes, and shapes 
that range from 3D assemblies down to 
linear nanoscaffolds. Individual oligonu-
cleotides in NANP compositions may be 
additionally defined in certain lengths and 
GC content, while also incorporating var-

ious TNAs (e.g., siRNAs, aptamers, and CpG DNAs), proteins, 
small molecules, and imaging agents suitable for biomedical 
applications.[10–14] Consequently, a growing library of functional 
NANPs has been shown to operate in response to other classes 
of biomolecules, or stimuli while executing therapeutic decisions 
based on environmental inputs.[15–17]

While the practicality of NANPs offers new ways to treat a 
broad spectrum of malignancies that span from cancers to infec-
tious and cardiovascular diseases,[18] the intended clinical appli-
cations and routes of administration prioritize NANPs’ interac-
tions with the human immune system to be carefully considered 
and understood for further translation of this technology into the 
clinic.[19–20] The immune recognition of these novel nanomate-
rials is inherent to the natural line of immune defense evolved 
for the detection of nucleic acids associated with pathogen 
invasion and cellular damage.[4,21–24] However, NANPs’ unique 
architectural parameters and chemical compositions define 
their immunorecognition which cannot be extrapolated from 
the immune responses to pathogen- or damaged self-associated 
nucleic acids and conventional TNAs.[21] The ability to predict 
how NANPs interact with the human immune system would 
allow for tailoring their formulations to the specific biomedical 
task with maximized therapeutic effects and controlled immuno-
logical activity, which collectively are required to achieve desired 
therapeutic efficacy and safety. In addition, as was revealed by 
numerous studies,[10–12,21,25–30] NANPs can function not merely as 
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nanoscaffolds for TNAs but also as independent immunostimu-
latory therapeutics with conditional intracellular activation of 
intended functions beneficial for vaccines and immunotherapies. 
Over the last years, our team created a comprehensive library of 
NANPs, designed by our group and others, and subjected them 
to detailed physicochemical characterization, sterility and endo-
toxin assessments, and immunological assays carried out in 
model cell lines and in primary human peripheral blood mono-
nuclear cells (PBMCs).[26] PBMCs were chosen as the most accu-
rate preclinical model that produced the most predictive results 
for cytokine storm toxicity in humans.[31]

Translating NANP materials from bench to the clinic 
requires quick coordination of design principles. The incorpo-
ration of a particular level of immunostimulation and matching 
it to the desired application requires feedback from the experi-
mental analysis to the computational design phase, which in 
turn entails complete recharacterization of NANPs and can 
delay their production. To improve this pipeline, several design 
parameters based around a representative set of NANPs have 
been previously correlated with cytokine production in model 
cell lines to determine trends of the immune response.[29]

Deep learning has contributed to major advancements in sev-
eral research fields ranging from computer vision to natural-lan-
guage processing. It is also widely applied in biomedical research 
areas such as drug discovery and genomics.[32] In genomics, 
sequence-based deep learning models outperformed classical 
machine learning[33] and also enabled efficient prediction of the 
function, origin, and properties of DNA and RNA sequences by 
training neural networks on large datasets.[34–39] A robust model 
that can predict immune responses will have an enormous 
benefit in the design of NANPs. Our earlier quantitative struc-
ture–activity relationships (QSAR) modeling utilized a dataset 
collected for 16 NANPs which were assessed in model cell lines, 
and demonstrated that computational prediction of experimen-
tally observed immunomodulatory properties is feasible.[29]

Despite this progress, there is currently no reliable bio-
informatics tool to computationally identify optimal NANP 

structures matched to the desired immunological outcome. 
Such a tool would tremendously accelerate NANPs design and 
selection for personalized immunotherapeutic approaches or 
immunologically safe nanoscaffolds for other indications in 
which the stimulation of the innate immune responses is not 
wanted. Therefore, our present study was conducted to improve 
the communication between biotechnology, immunology, and 
bioinformatics and to create a new tool which would enable the 
prediction of NANPs structure–activity relationships in order 
to better guide the overall designing principles (Figure 1A). In 
particular, we employed random forest (RF) and two different 
neural network architectures (a recurrent neural network and 
a transformer neural network) to develop models that predict 
immunomodulatory activity for a much larger set of 58 repre-
sentative NANPs that had been uniformly characterized using 
previously established, clinically relevant models.[26] Long-short-
term memory (LSTM) architecture was used as the recurrent 
neural network. While the RF models use physicochemical 
properties derived from the constructed NANPs, the neural  
networks learn directly from the NANPs’ sequences. The 
neural network architectures investigated in this study facili-
tate discovery of hidden patterns via nonlinear transformation 
of raw sequence data. These methods may also be applied to 
designing new NANPs (Figure 1B).

The top performing models resulted from this study are 
freely accessible to the research community via the online tool 
that was named an “Artificial Immune cell,” or AI-cell, and that 
now can be applied to predict the immunological responses of 
any novel nucleic acid architecture (https://aicell.ncats.io/).

2. Results

2.1. Representative NANP Database

We designed a library of representative NANPs to study key 
structure–activity relationships that define NANP interactions 

Small 2022, 18, 2204941

Figure 1. Conceptual representation of artificial immune cell (or AI-cell) tool. A) The initial design and synthesis of nucleic acid nanoparticles (NANPs) 
is followed by their physicochemical characterization and assessment of immunostimulatory potential to then be applied for predictive computational 
analysis of the NANPs immune responses. B) The experimental workflow used for the development of AI-cell.

 16136829, 2022, 46, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

ll.202204941, W
iley O

nline L
ibrary on [18/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://aicell.ncats.io/


www.advancedsciencenews.com www.small-journal.com

2204941 (3 of 10) © 2022 The Authors. Small published by Wiley-VCH GmbH

with the cells of the human immune system (Figure 2; and 
Table 1A–D, Supporting Information). Our dataset included 
different functional and nonfunctional NANPs made of either 
DNA or RNA, having planar, globular, or fibrous structures, 
different sizes, flexibilities, thermodynamic stabilities, and con-
nectivity rules. Some of these datasets have already been pub-
lished,[10–40] whereas others were newly generated to support 

the development of the current AI algorithm (all NANPs are 
itemized in Table S1A–D, Supporting Information).

To study the influence of architectural parameters, the 
immune responses to 1D fibers were compared to 2D 
planar and to 3D globular NANPs, designed by two different 
approaches that define the connectivity of NANPs. The first 
approach, represented by RNA/DNA fibers and all polygons 

Small 2022, 18, 2204941

Figure 2. Representative NANPs chosen to collectively address the influence of their physicochemical properties and architectural parameters on their 
immunorecognition in human PBMC to further the development of AI-cell.
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and cubes, relies solely on intermolecular canonical Watson–
Crick interactions with all NANP sequences designed to avoid 
any intramolecular structures.[41–42] These design principles are 
characteristic for DNA nanotechnology and DNA origami[43–44] 
and allow for any RNA strand in the NANP's composition to 
be substituted with DNA analog. The second approach, called 
tectoRNA,[45–46] is exemplified by RNA rings and fibers that 
employ naturally occurring structural and long-range inter-
acting motifs (e.g., kissing loops) that are rationally combined, 
similarly to Lego bricks, to achieve topological control in the 
bottom-up assembly of NANPs.[42]

To study the role of chemical composition, origami-like RNA 
NANPs were compared to their DNA and RNA/DNA analogs. 
This compositional blend allowed for changes in NANPs’ phys-
icochemical and biological properties in a highly predictable 
and controlled manner. For example, the responses of indi-
vidual NANPs to heating become different (Tm ≈ 36 °C of the 
DNA cubes vs Tm  ≈ 55.5  °C of the RNA cubes[21]) and a new 
version of Hyperfold[47] can accurately predict the experimental 
results.[10] The chemical makeup also influenced the relative 
chemical stabilities of NANPs in blood serum and toward deg-
radation by different nucleases.[10,21,25,48]

To assess the effect of structural flexibility, we included 
gapped ring structures[49] and cubes with different numbers of 
single-stranded uracils at their corners,[21,50] all designed to con-
trol the dynamic behavior of 2D and 3D NANPs, respectively. 
Both experimental results and MD simulations supported the 
notion that the stability and dynamicity of NANPs can be mod-
ulated by changing the number of single-stranded regions in 
their structures.[30,50]

The effect of functionalization was assessed via the addition 
of Dicer substrate (DS) RNAs[51] to the 1D, 2D, and 3D NANPs 

and for the size contributions, different polygons[29] were 
compared. DS RNAs are widely used for Dicer-assisted intra-
cellular release of siRNAs. The sequence effects were studied 
through the inclusion of several reverse complement structures 
(denoted as “anti-”) for 1D,[11] 2D,[10] and 3D[10] NANPs. All phys-
icochemical properties of NANPs have been assessed under 
the equivalent conditions and their relative immunostimula-
tion was measured in PBMCs isolated from fresh blood drawn 
from healthy donors with at least three donors per each NANP. 
All data have been combined in a single dataset shown in  
Table S1A–D (Supporting Information) with all sources for 
experimental results cited.

2.2. IFN Modeling Results

With a diverse library of NANPs in the dataset, three different 
methods were employed to build models that predict the 
immunological activities of NANPs in PBMCs (Figure 3). First, 
an RF method was applied using the physicochemical descrip-
tors derived from the input sequences. The physicochemical 
properties of the studied NANPs along with their immune 
responses are provided in Table S1A (Supporting Information). 
Next, the neural network architectures LSTM and transformers 
were applied that directly learn on the NANP sequences. In 
both neural network models, the first step involves tokeniza-
tion of the input sequences. Tokenization was performed using 
the “K-mer” representation (K = 3), which is usually employed 
for nucleotide sequences and the encoded sequences can be 
loosely considered as codons. Generating all possible combi-
nations of 3-mers of the individual nucleotide bases (A, T, G, 
C, U) resulted in a total of 125 codon combinations or tokens. 

Small 2022, 18, 2204941

Figure 3. Schematic representation of the quantitative structure–activity relationship (QSAR) methodology used in this project. A) Modeling work-
flow: three machine learning approaches are evaluated using fivefold cross-validation (5-CV) repeated 10 times. B) Overall workflow and the training 
procedure for prediction of nanoparticle sequence using transformer-based approach: tokenization, embedding followed by transformer modeling and 
prediction.
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Each model was evaluated using fivefold cross-validation (5-CV) 
that was repeated 10 times. Figure 4A,B provides a comparison 
of the average performance (R2, RMSE) for different models 

generated in this study. According to the 5-CV results presented 
in Figure 4, the models developed using the transformer archi-
tecture significantly outperformed other models. The detailed 

Small 2022, 18, 2204941

Figure 4. Average performance A) R2 and B) RMSE for different modeling approaches over fivefold cross-validation and repeated 10-times. The error 
bar represents the standard deviation of the average performance over fivefolds cross-validation repeated 10-times (n = 50). Detailed statistical analysis 
is shown in Table S5 (Supporting Information).
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model performance statistics can be found in   Table S2A–D 
(Supporting Information).

Each NANP is represented by multiple sequences or strands: 
for example, dA, dB, dC, dD, dE, and dF are the individual 
sequences that form DNA cube. By default, these sequences 
were joined in a sequential manner for the purpose of learning. 
However, it is uncertain if this is the only possible configura-
tion (i.e., arrangement of sequences) for DNA cube. To avoid 
any bias during learning, the best performing models based 
on the transformer architecture were evaluated on all possible 
combinations based on the different strands present in each 
NANP. This data augmentation step led to a significant increase 
in the training dataset size. The models generated using this 
approach are referred to as Transformer_M1. The model per-
formance improved, particularly in the case of IFN-α, where 
the R2 improved from 0.53 to 0.87. Using this approach (Trans-
former_M1), all models provided an R2 > 0.80 and RMSE < 0.03 
(Figure  4).). The difference between the model performance 
(R2 and RMSE) was evaluated using the Friedman nonpara-
metric statistical test. Table S5A–D (Supporting Information)  
provides the pairwise comparison between the different 
machine learning methods to compare if one approach signifi-
cantly outperforms the other.

It is also known that the physicochemical properties of 
NANPs are important for their immune response.[29] There-
fore, to evaluate the contribution of the physicochemical prop-
erties to model performance, we pursued a third approach in 
which the physicochemical properties were combined with the 
sequence data to build sequence-based models. To achieve this, 
the numerical descriptors were converted into categories and 
added as tokens to the vocabulary. Tokenization was performed 
in the same manner on triplets. The models generated using 
this approach are referred to as Transformer_M2. As shown 
in Figure  4A,B, inclusion of the descriptors to the sequence-
based models further improved the model performance  
(R2 > 0.85). The best prediction performance was obtained using 
a model that combined physicochemical properties together 
with sequence-based models. As seen from Figure  4A,B, the 
sequence information alone demonstrated high predictivity 
using transformer models (Transformer_M1), especially for 
IFN-β responses, and thus might play a significant role in pre-
dicting the behavior of polygons with more diverse shapes and 
structures.

2.3. Model Interpretability and Implementation

Since the best-performing model developed in this study 
involves generating all possible combinations of the input 
NANP strands and using the K-mer representation (K = 3) for 
tokenization (cf. Experimental Section for details), it is not fea-
sible to determine the importance of individual tokens (K-mer) 
and thus to obtain the interpretability of our best performing 
model (Transformer_M1). However, to help the research com-
munity to better guide the overall designing principles for the 
NANPs, and to overcome this limitation, we provide online 
tool with implementation of the best developed model (https://
aicell.ncats.io/). This implementation helps the user to predict 
the immunological responses of novel nucleic acid architec-

tures while enabling alteration of nucleic acid. Depending on 
the number of input strands, their sequences and lengths, it 
takes on average between two and four seconds to predict the 
immune responses (induction of IFN-α, IFN-β, IFN-ω, and 
IFN-λ). In contrast, evaluation of the IFN responses using 
human immune cells takes at the minimum 3 days; this further 
emphasizes the convenience and cost-benefit for researchers 
to use the newly developed on-line model. In addition, our 
implementation also provides an uncertainty of prediction in 
terms of the standard deviation calculated from the prediction 
of all possible combinations of the input nanoparticles strands  
(cf. the Experimental Section for details). Thus, the online tool 
can be used for NANPs design to achieve the desired immuno-
logical outcome.

3. Discussion

Machine learning and artificial intelligence (AI) have been 
increasingly applied in various domain such as computer 
vision,[52–53] natural language processing,[54–56] drug dis-
covery,[57–58] QSAR,[59–61] and genomics.[62–64] AI methods such 
as convolutional neural networks (CNNs)[65] and recurrent 
neural networks (RNNs)[66] that are extensively used in com-
puter vision and natural language processing have been inves-
tigated for identifying protein binding sites in DNA and RNA 
sequences, and achieved state-of-the-art performance.[67–68] 
More recently, transformer neural networks were reported to 
provide superior performance in the field of drug discovery 
and QSAR[69–71] and demonstrated state-of-the-art results on 
neural machine translation task[72–73] including direct and 
single-step retrosynthesis of chemical compounds.[74] The 
Transformer architecture incorporates the mechanism of self-
attention together with positional embedding,[75] which makes 
them heavily successful in the field of natural language pro-
cessing (NLP) tasks.[76–77] Transformer-based models have also 
been effective in predicting novel drug–target interactions from 
sequence data and significantly outperformed existing methods 
like DeepConvDTI,[78] DeepDTA,[79] and DeepDTI[80] on their 
test data set for drug–target interaction (DTI).[81] Another attrac-
tive task that remarkably benefits from the transformer archi-
tecture is generative molecular design. It was recently shown 
that transformer-based generative models demonstrated state-
of-the-art performance when compared to previous approaches 
based on recurrent neural networks.[82] Additionally, a recent 
study demonstrated the application of a transformer architec-
ture is development of a SMILES canonicalization approach 
that extracts information-rich embedding and exposes them 
for further use in QSAR studies;[74] however, the applicability 
of this approach to therapeutic nucleic acids and NANPs is 
unknown. Given the importance of nanoparticles in the field 
of drug delivery and the ability of NANPs to act as active phar-
maceutical ingredients; offering innovative therapeutic strate-
gies and overcoming the limitations of traditional nucleic acid 
therapies and the lack of predictive tools that would reliably 
guide NANPs design to the desired immunological outcome, 
we adopted transformer-based models to predict the immu-
nological activities of the nanoparticles. An earlier study by 
Johnson et  al.[29] reports the use of random forest (RF) based 

Small 2022, 18, 2204941
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QSAR models; however, considering that the nature of input 
data is sequence/text, transformer neural networks are able 
better learn the patterns within the data in comparison to other 
methods used in this study such as random forests.

To the best of our knowledge, this is the first study to eval-
uate and implement the use of state-of-the-art transformer 
neural networks to predict immunological activity and thus 
advance the current understanding of the NANP properties 
that contribute to the observed immunomodulatory activity 
and establish corresponding designing principles. Our results 
demonstrate the benefit (significant improvement in prediction 
statistics; R2 and RMSE) of using a transformer framework that 
is solely based on sequence data versus RF models (Figure  4; 
and Table S2A–D, Supporting Information). The data augmen-
tation (Transformer_M1) led to a further increase of the model 
performance. In the case of QSAR modeling, the importance 
of data augmentation has been shown to be critical for the 
Transformer models to achieve their high performance.[83–84] 
Transformer models extract semantic information in NLP 
tasks by jointly conditioning on both left and right contexts in 
all layers.[73] This is particularly an essential feature in context 
to biological sequences, which are multidirectional in nature. 
The inclusion of robust sequence embeddings facilitated the 
proposed models to score well with the performance metrics 
(Figure  4). We expect this hybrid architecture will be continu-
ally explored for the purpose of studying NANPs.

In summary, we applied a systematic approach to connect 
physicochemical and immunological properties of a com-
prehensive panel of various NANPs and developed a compu-
tational model based on the transformer architecture. The 
resulting AI-cell tool predicts the immune responses of NANPs 
based on the input of their physicochemical properties. This 
model overcomes the limitations of the previous QSAR model 
and is imperative for responding timely to critical public health 
challenges related to drug overdose and the safety of nucleic 
acid therapies by streamlining the selection of optimal NANP 
designs for personalized therapies.

4. Experimental Section
Preparation of NANP Training Set: All sequences of tested NANPs 

are available in Table S1C,D (Supporting Information). A database 
was compiled from previously published NANPs adhering to standard 
methods of characterization as described below. For each NANP, 
the sequences of all strands included in the assembly along with the 
composition (DNA or RNA), quantity, and length (nts) of each strand 
were recorded. For each fully assembled NANP, the overall composition 
(DNA, RNA, or hybrid of the two), mass (g mol−1), GC content (%), total 
number of strands in the assembly, number of helices in the structure, 
number of single-stranded bases, number of RNA bases, number of 
DNA bases, dimensionality (1D, 2D, or 3D), connectivity (origami or 
tectoRNA[1]), diameter (nm), melting temperature (°C), and production 
of IFN-α, IFN-β, IFN-ω, and IFN-λ (pg mL−1) were denoted.

NANP Preparation: All DNA sequences were purchased from 
Integrated DNA Technologies, Inc. All RNA sequences were purchased 
as DNA templates and primers which were PCR-amplified via MyTaq 
Mix, 2x (Bioline), and purified using DNA Clean & Concentrator (Zymo 
Research) for the preparation of double-stranded DNA templates 
containing a T7 RNA polymerase promotor. Templates underwent in 
vitro transcription with T7 RNA polymerase in 80 mm HEPES-KOH 
(pH 7.5), 2.5 mm spermidine, 50 mm DTT, 25 mm MgCl2, and 5 mm 

each rNTP for 3.5 h at 37 °C and was stopped with the addition of RQ1 
RNase-Free DNase (Promega, 3u/50 µL) for 30 min at 37  °C. Strands 
were purified via denaturing polyacrylamide gel electrophoresis (PAGE, 
8%) in 8 m urea in 89 mm tris-borate, 2 mm ethylenediaminetetraacetic 
acid or EDTA (Tris-borateEDTA, or TBE buffer, pH 8.2) run at  
85 mA for 1.5 h. Bands in the gel were visualized by UV shadowing, cut, 
and eluted overnight in 300 mm NaCl, TBE at 4  °C. Precipitation was 
performed in 2.5 volumes of 100% EtOH at −20 °C for 3 h, followed by 
centrifugation at 10.0 G for 30 min with two 90% EtOH washes between 
10 min centrifugations at 10.0 G. The pelleted samples were dried in a 
CentriVap micro IR vacuum concentrator (Labconco) at 55  °C. Pellets 
were dissolved in HyClone Water, Molecular Biology Grade (Cytiva), and 
concentrations were determined by measuring the A260 on a NanoDrop 
2000 (ThermoFisher). NANPs were assembled in HyClone Water, 
Molecular Biology Grade (Cytiva), by adding strands in an equimolar 
ratio. Each NANP assembly followed previously published respective 
steps.[2–5]

Assessment of Immunostimulation in Human PBMCs: Research Donor 
Blood was obtained under the Institutional Review Boar-approved NCI-
Frederick protocol OH99CN046. Each donor was assigned a random 
number. Vacutainers containing Li-heparin as an anticoagulant were 
used for blood collection. Research donor blood was processed to isolate 
PBMC within 2 h after donation according to the protocol described 
earlier.[6] All NANPs were complexed with Lipofectamine 2000 (L2K) 
before addition to the cells as described earlier.[7] Culture supernatants 
were collected 24 h after addition of NANPs-L2K, and stored at −80 °C 
before analysis for the presence of type I and type II I interferons using 
multiplex ELISA. The procedure for the interferon detection along 
with materials’ sources has been described earlier.[7] Some NANPs 
have been previously characterized and reported, whereas others were 
synthesized and tested de novo to support the computational modeling 
of the present study (e.g., Figures S1–S4, Supporting Information). More 
details about new and previously studied NANPs are available in Table 
S1A–D (Supporting Information).

Dataset for Modeling: In this study, NANP sequences were used to 
construct computational models that predict their immune responses. 
Based on the levels of IFN- α, IFN-β, IFN- ω, and IFN- λ, four types 
of immune responses were identified and were used as target variables 
in the development of models. The complete list of the associated IFN 
activities and their physicochemical properties are provided in Table 
S1A–D (Supporting Information). 58 NANPs were employed to train 
the models; evaluated by fivefold cross-validation procedure repeated 10 
times.

Tokenization: Tokenization is considered the first step that processes 
the input sequence data when building a sequence-to-sequence model. 
It involves transformation of text input into a sequence of tokens 
that generally correspond to “words.” The nanoparticle sequences 
were tokenized using the K-mer representation (K = 3). The K-mer 
representation incorporates rich contextual information for each 
nucleotide base by loosely encoding triplets as codons, i.e., all possible 
combinations of 3-mers of the individual nucleotide bases (A, T, G, C, 
U). This resulted in a total of 125 codon combinations or tokens, which 
were then used to create a vocabulary. Each input sequence in the 
training dataset was then tokenized and passed through an embedding 
layer, which maps the 3-mers to vector representations.

Generating All Possible Combination of NANPs: It has been widely 
acknowledged that different NANP compositions be engineered to 
produce desired immune responses.[5,8] When translating biological 
activity (in this case an immune response) to sequence-based learning, it 
is impossible to be certain about the order in which individual strands of 
each nanoparticle should be connected to achieve a particular immune 
response. Thus, to address this limitation, all possible configurations 
using the individual strands for each nanoparticle were generated. For a 
nanoparticle with “n” strands, a total of “n!” different combinations can 
be generated. IFN activity values for each combination were assigned 
as observed for the respective nanoparticle. This process resulted in 
a significantly larger training dataset. The augmented dataset was 
used for the training the final models. The models generated using 
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this approach are referred to as Transformer_M1. When partitioning 
the augmented dataset during the fivefold external cross-validation, 
to prevent the leakage of information from the training dataset to the 
validation dataset, all generated combination of a particular NANP were 
either present in the training set or the validation set during. Thus, the 
individual cross-validation runs had no overlap of NANP between the 
two set. In this scenario, the model statistics were calculated based on 
the “mean prediction values” across each NANP.

Combining Physicochemical Properties with Sequence-Based 
Models: Physicochemical descriptors derived from the constructures 
nanoparticles were previously reported to improved model performance 
due to their importance and relevance to the IFN activity (i.e., immune 
response) of nanoparticles.[2] Therefore, the physicochemical properties 
were used together with sequence data in development of sequence-
based neural network models. For this purpose, the numerical descriptors 
were transformed into categories or bins (i.e., each bin encodes a value 
range) and added as tokens to the vocabulary previously described in 
the tokenization section. Table S3 (Supporting Information) provides 
the complete list of categories for each of the eight physicochemical 
descriptors. Further, when generating a numerical vector for the 
transformer model, the tokens related to the physicochemical properties 
were added to the original vector after converting the input sequence 
to a numerical vector. The models generated using this approach are 
referred to as Transformer_M2.

Modeling Approaches: Two different modeling approaches were 
employed for the development of prediction models. In the first 
approach, the physicochemical properties of constructed nanoparticles 
were used as descriptors for creating a regression model using Random 
Forest (RF). RF is an ensemble of decision trees[9] and is widely used 
in both classification and regression tasks. The number of trees was 
arbitrarily set to 100, and due to the robustness of RF,[10] no parameter 
optimization was performed. In the second approach, two different 
neural network architectures: LSTM and transformers; were employed to 
build prediction models that use nanoparticle sequences as input data. 
LSTM (long short-term memory) networks are specialized recurrent 
neural networks that are designed to avoid long-term dependency 
problem by remembering information for an extended period of time 
using a gating mechanism.[11] The readers are encourage to refer to 
the literature for further reading on LSTM networks.[12] Transformer 
networks have been recently introduced in the field of natural language 
processing[13] and were reported to outperform recurrent neural networks 
architectures, such as LSTM and Gated Recurrent Unit (GRU) in several 
NLP benchmarks on automatic speech recognition, speech translation, 
and text-to-speech.[14] Transformers use attention mechanism and 
positional embeddings and facilitate encoding of multiple relationships 
within a sentence and process complete sentences by learning 
relationships between the words. The neural network architecture and 
the parameters used for training each of these models is provided in 
Table S4A,B (Supporting Information).

Evaluation of Model Statistics: To evaluate the predictive performance 
of the developed models, a fivefold external cross-validation procedure 
(5-CV)[15] was employed. In this procedure, the initial data set was 
randomly divided into five parts. In each fold, four parts of the data were 
used as training set for model building and the fifth part was used as 
test set for assessment of external predictive performance. To be more 
robust and ensure that the performance obtained is not due to chance 
correlations, the 5-CV procedure was repeated for a total of 10 times. 
The performance of each model was assessed on the basis of root mean 
squared error (RMSE) (Equation  (1)), and determination coefficient R2 
(Equation (2))

1 2RMSE
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Y Y
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−
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Yi(cap) is the predicted value for each particular sequence; Yi is the 
observed value for each particular sequence; Y(bar) is the mean activity 
value from all the sequences; n is the number of sequences.

Statistical Analysis: Statistical analysis was performed using GraphPad 
Prism software version 9.0.0 for Windows, GraphPad Software, 
San Diego, CA (www.graphpad.com). The difference between the 
model performances was evaluated using a nonparametric statistical 
test (Friedman) to compare pairwise, if one approach significantly 
outperforms the other. All data were presented as mean of several 
repeats with the sample size (n) specified for each dataset and error 
bars denoted mean ± SD; p values of less than 0.05 were considered 
statistically significant.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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