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ABSTRACT

AGBOR ANDU EBOT. The asymptotic approximation of the transition probability for
the random walks with heavy tails. (Under the direction of DR. BORIS VAINBERG)

The main result of this dissertation concerns the asymptotics, uniform in ¢ and x, of
the probability distribution of a random walk with heavy tails. The random walk is a
Markov process and thus can be characterized in terms of their generators. We impose
certain conditions on the Fourier transform of the kernel of the generator, which still
allow us to consider rather general class of processes on Z°. The process we consider can
be viewed as a generalization of the simple symmetric walk (in continuous time) for
which both the central limit theorem and large deviation results are well-known.

For problems with heavy tails, the analogue of the central limit theorem is the
convergence of the properly normalized process to the stable laws. In terms of probability
densities, these limit theorems give the asymptotics of p(t, x, 0)hen x is of order i

For the class of random walk under consideration, we obtain the asymptotics of
p(t, x,0) uniformly in ¢ and x for all t > 1, x € R, covering, in particular, the regime of

the central limit theorem and large deviations.
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CHAPTER 1: LITERATURE REVIEW AND INTRODUCTION

1.1 Literature Review

Research in the area of large deviations for random walks with heavy-tailed jumps
began in the second half of the twentieth century. At first the main efforts was, of course,
concentrated on studying the deviations of the sum S,, of r.v's. Here one should first of
all mention the papers by C. Heyde [6,7], S.V. Nagaev [8,9], A.V. Nagaev [10,11], D.H.
Fuk and S.V. Nagaev [12], L.V. Rozovski [13,14] and others. These established the basic
principle by which asymptotics of P(S,, > x) are formed: the main contributions to the
probability of interest comes from trajectories that contain large jumps.

Later on, papers began to appear in which this principle was used to find the
distribution of the maximum S,,of partial sums and also to solve more general boundary
problems for random walks (I.F. Pinelis [15], V.V. Godovanchuk [16], A.A. Borokov
[17,18]. Somewhat aside from this were papers devoted to the probabilities of large
deviations of maximum of a random walk with negative drift. The general first results
were obtain by A.A. Bokorov in [18], while more complete versions (for subexponential

summands) were established by N. Veraverbeke {19] and D.A. Korshunov [20].

A.A. Bokorov [21,22,23] began a systematic study of large deviations for
random walks with regularly distributed jumps. Then the papers [24,25,26,27]
and some others appeared, in which the derived results were extended to semi-exponentia

exponential and regular exponentially decaying distributions, to multivariate random



walks, to the case of non-identically distributed summands and so on. As a result,
a whole range interesting problems arose, unified by the general approach to their
solution and a system of interconnected rather advanced results were, as a rule,
quite close to unimprovable. As these problems and results were, moreover, of
considerable interest for applications, the idea of writing a thesis on all this became
quite natural.

This thesis concerns the asymptotic behaviour of the probabilities of rare events
related to large deviations of the trajectories of random walk whose jump distribu-
tion decays not very fast at infinity and possess some form of 'regular behaviour’.

Random Walks form a classical object of probability theory, the study of which
is of tremendous theoretical interest. They constitute a mathematical model of
great importance for applications in mathematical statistics, risk theory, queueing
theory and so on.

Large deviations and rare events are of great interest in all these applied areas,
since computing the asymptotic of large deviation probabilities enables one to
find for example, small error probabilities in mathematical statistics, small ruin
probabilities in risk theory, small buffer overflow probabilities in queueing theory,
and so on.

Slowly decaying and, in particular, regular distributions present, when one
is studying large deviation probabilities, an alternative to distributions decaying
exponentially fast at infinity (for which cramer’s condition hold). The first classical
results in large deviation theory were obtained for the case of distribution decaying
exponentially fast. However, this condition of exponential decay fails in many
applied problems.

For regular distribution, the large deviation probabilities are mostly formed
by contributions from the distribution tails(on account of the large jumps in the
random walk trajectory).As a result, analytical methods prove to be efficient, and

everything is determined by the behaviour of the laplace transform of the jump



distributions.

1.2 Introduction

The main result of this Thesis concerns the asymptotics, uniform in ¢ and z, of
the probability density of a random walk with heavy tails. The random walks are
Markov Processes (section 2.2) and thus can be characterized in terms of their
generators (section 3.1). We impose certain conditions on the Fourier transform
of the kernel of the generator, which still allow us to consider a rather general class
of process on Z4. The processes we consider can be viewed as a generalization of
the simple symmetric walk (in continuous time) for which both the central limit
theorem and large deviation results are well-known. .

For problems with heavy tails, the analogue of the central limit theorem is the
convergence of the properly normalized process to the stable laws ( section 2.2).
In terms of probability densities, these limit theorems give the asymptotics of
p(t,z,0) when z is of order t!/* [29].

For the class of random walks under consideration, we obtain the asymptotics
of p(t,z,0) uniformly in ¢ and z for all t > 1, x € R?, covering, in particular, the
regime of the limit theorem and large deviations.

In the case of the simple random walk on the lattice Z¢, the transition proba-

bility p(t, z,y) satisfies the standard heat equation

dp(t.x,
p(;‘,t .y) = KAJ,‘p(t, :I,‘, y) ~—1 KAyp(t, x, y)

p(01x7y) :(Sy(x)?

where « is the diffusion coefficient. The generator kA of a simple symmetric walk

is a particular case of the generator



> alz) =1

2#£0

of the process with heavy tails. Here g(z) is the probability of the jump from one

state z, to another state z; + z in time dt, which is described by the relation

a0 with prob. 1 — kdt,
Tigdt = ¥
@, + = with prob. kq(z)dt.
Indeed, £ = kA if
Loif ]z =1

3
9(z) =

() otherwise.
We'll, however, consider ¢ that may be positive everywhere. The precise conditions
on g will be provided below.
The transition probability p(t,z,y) of a random walk with heavy tails is de-
termined by solving the initial value problem

i

dt . a:pl ;()(0,1',y) . 5y(T)

We apply the Fourier transform to obtain

1 (] y—z))—
olazng) = W/[_M]dev(w,(.; D) 4y d> 1,

where

blo) =k S (1 e0g(z), d>1.

2€24



We use these results to determine the asymptotics of the transition probability,
p(t, ), in both the 1-dimensional case (Sect. 4.2) and the n-dimensional case (sect.
4.3). In determining the asymptotics of p, we assumed that g decays slow (heavy-
tail), that is g(z) ~ M, 2700, 0<a<2

In fact, the asymptotics of p in the 1-dimensional case is studied, we assume

that

(2) = qo G 92 ( 1 )
q\z T [t T pre T pjEe 2]+’

Then the following relation is proved for the function ¢(y):

$(p) ~ cole|” + O(lel"), v =0,

where v = min{2, o + 1}, ¢y and gy are constants. This asymptotics is used
to justify the following main result concerning the 1-D case. Without loss of

generality, one may assume that cg = 1. Then the following relations are valid

when d = 1.
1 G
P9 =2 F () A+o), @ +8 e
where

o) = [ ot ap

and w is a neighborhood of the set {¢;}7, of points o; such that
F(O’) =0, |(Ti| < 0Q.

The asymptotics of p(¢,z) in the multidimensional case is similar to the one
above. We use notation L(y) for the function ¢(¢) in the multidimensional case
(to distinguish the cases). We assume that L has an asymptotic behavior at

zero similar to one that was established in the one dimensional case. Namely, we



assume that
M-1
L(p) = lol*h(9) + D lol*Thi() + Olep|**™), ¢ =0,
i=1

for some large enough M, ¢ = T:_I’ h = h(¢) and h; are smooth functions on the
¢ B(e),

-
Dln.li‘l

sphere. The asymptotics of p(, x) is given by
) (1+0(1), |22+t — o0, if

4
1 z
xF (5
p(t, z) = ¢
1 [F (?—f) v 0(1)} . JzP+# 00, if &€ B(o)

\ ¢
where we denoted by B(e) an e-neighborhood of the set of points in R¢ where

F(z) =0 and
F(x)
is shown to be

ta

/ ez‘(w.t—’;)—wwh(@ i
R

The asymptotics of I (y) = [, e#)1¢I*A(#) dp, where ¢ = |—£—|,

F(y) = lyI™f @) + o(lyl ™), Iyl = oo,

where y = |—g—| and f(y) is defined by h(p) as follows:

[ m@llglreredp =~y ss).
R(

The integral here is understood in the sense of the Fourier transform in the space



of distributions. Thus the formula for p can be rewritten in the form

1 s 1 |z|
a) P(fat)—EF <—1)+O<t%ﬁ>, TSA,

ta

where A is arbitrary,

t ) 4 .
b) P(I,t):Wf(x)JrO(W), if —§ — o0,

where the regions in the domain of p(z,t) is described by the figure below




CHAPTER 2: CENTRAL LIMIT THEOREM AND REGULARLY VARYING
FUNCTIONS.

2.1 Central limit Theorem
Theorem 2.1.1 (Central limit Theorem). Suppose X;, X3, ..., are mutually independent and
identically distributed random variables with mean m and finite variancea?. Let

Snyp_ x, 1hen we have

. S._nm 1 (®
lim (a <=z < b) = —f e ¥ /2y
n-oo Vno 2mJg

Uniformly forall —oo < a < b < 00,

Proof: We can without loss of generality assume that m = 0 and g2 = 1 and that if X

and Y be independent random variable, then uy,y = V21 iy * uy. It follows that
n_—1
uS, = (2m) 2 pu*pu*..xu,(ntimes)

Where u denotes the common distribution of the X,s. Let Z,, = S—J% Then,

UZy, (t) = uS, <\/_1?i) = \/—;—7; [\/ﬁ 1 (\%)]n :
We get

t2 t

12,0 = =15+ a() |
Consequently,

t2

im0 2y, (t) = \/—:_Ee_ = ®),

SR
@

Where g is the Gaussian.



By Lévy’s theorem, the sequence {Z,}?_, converges in distribution to a r.v.

having distribution v(B) = —\/12=1r ! = e~*/2dx. We can conclude from here that

n—roo

lim fduzn /Rfdl/, f € Cy(R).

Let 0 <€ < @ Choose a continuous function f; such that 0 < f; < 1,

fi(z) = 0 for z ¢ (a,b) and fi(z) = 1 for z € [a+ €,b — ¢]. And choose a
continuous function f; such that 0 < fo < 1, fo(z) = 1 for z € [a,b], and

fa(z) =0 for z ¢ (a — ¢,b+¢). Then

| 5@z (a) < /(ab] din(@) < [ fole)dana

Thus,
1" ap
— e T < z)dv(z) < lim inf pz ((a,b
vt < [ A@vts) < tim inf pz, (0, 8)
and
b+e 29
lim sup pz,((a,b]) < (x)dv(z <— e T/,
n_)Eolzn ) /f2 ) \/'_‘ _

Because ¢ can be made arbitrarily small, it follows that

1 S
— *L/Qd—lm B) = lim P(a<—=<b),
\/27T~/a : i, pz.((2 1) nihoo \/ﬁ N I

as required. O

We can obtain as a special case of central limit theorem, the following result

known as DeMoivre-Laplace theorem:

. n(E) —np 1 2
lim Pla< ————=<b| = — ez
i ( Vnp(l —p) ) V2 Ja
uniformly for all —co < a < b < co. Xj, Xo,... has a binomial distribution and

are iid and have common mean p and variance p(1 — p). Note that for n(E) =
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X1+ Xy + ... + X,, we obtain the DeMoivre-Laplace theorem from the central

limit theorem.

2.2 Stable Laws

Definition 2.2.1 (slowly varying functions). A positive (Lebesgue) measurable func-
tion L(t) is said to be a slowly varying function(svf) as t — oo if, for any fixed

v >0,
L(vt)
L(t)

—1 as t— o0 (2.1)

Definition 2.2.2 (regularly varying functions). A function V(i) is said to the a
regularly varying function-(of index —a € R) function(rvf) as ¢ — oo if it can be
represented as

V(t) = toL(t), (2.2)

where L(t) is an svf as t — oo.

The definition of an s.v.f(r.v.f) as ¢t | 0 is quite similar. In what follows, the
term s.v.f(r.v.f) will always refer, unless otherwise stipulated, a function which is
slowly(regularly) varying at infinity.

One can easily see that, similarly to (2.1), the convergence

= v as t— oo, (2.3)

for any fixed v > 0 is a characteristic property of regularly varying functions.
Thus, and s.v.f of index 0.

Law of Large Numbers

Let &,£1, &9, ... be independent identically distributed (i.i.d) random variables.

Put Sp =0 and

n

Sa=> & n=L2u

i=1
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The following assertions constitute the fundamental classical limit theorems for
random walks,S,,;n > 1.
The strong law of large numbers states that, if there exists a finite expectations
E¢, then as n — oo,
1S

= — E¢ almost surely (a.s) (2.4)
n

One could call the value nEE the first-order approximation to the sum S,.

The central limit theorem states that if E£? < co then. as n — oo,

S, — nEE

o 2.5

Cn:

where d = Varé = E¢2 — (E€)? is the variance of the r.v. €, the symbol => denotes
weak convergence of the r.v. in distribution and the notation { € ® says that
the r.v. ¢ has the distribution ® which is statndard normal, parameters (0,1).
nE¢ + (v/nd can be considered the second-order approximation of .Sy,.

Since the relation ® is continuous, the relation (2.5) is equivalent to the fol-

lowing one: for any v € R we have
P(¢.>v) = P((>v) as n— oo,

and, moreover, this convergence is uniform in v. In other words, for deviations of

the form z = nE¢ + vv/nd,

x —nEE

P(s,20) P (c2 20

) =1= <I>(v) as n — oo (2.6)

uniformly in v € [vy, ve] where —oo < 11 < vy < oo are fixed numbers and P is
the statndard normal distribution function.
Convergence to stable laws.

If the expectation of the r.v. £ is infinite or does not exist, then the first-order
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approximation for the sum S, can only be found when the sum of the right and

left tails of the distribution of &, that is, the function
Fit)=P((>t)+P(( < —t), t>0,
is regularly varying as t — oo; it can be represented as
F(t) = t7*L(1), (2.7)

where o € (0,1] and L(t) is a slowly varying function(s.v.f) as t — co. The same
can be said about the second-approximation for S, in the case when E|¢] < oo
but E&? = oco. In this case, we have a € [1,2] in (2.7).

For these two cases, we have the following assertion. For simplicity, assume
that o < 2, a # 1; we also assume that E£ = 0 when expectation is finite. We
exclude a = 1 to avoid the necessity of non-trivial centring of sums .S, when
E¢ = +o00 or expectations does exist.

Let F,.(t) =P(£ > t), let (2.7) hold and let there exist the limit

lim (1)
t—o0 F(t)

= P+ € [Ov 1]
Denote by
FHz)=inf{t >0: F() <z}, z>0,
the (generalized) inverse function for F', and put

b(n) = F-L (1> = af L)

n

where L is also and s.v.f. Then, as n — 00,
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s
b(n)

= C(u,ﬂ) € Fa, (2.8)

where F,, , is the standard stable law with parameters o and p = 2p, — 1.
We now state some useful general properties of s.v.f(r.v.f). The proof of these

properties and related theorems can be found on [29].

Theorem 2.2.1 (Uniform convergence theorem). If L(t) is an s.v.f as t — oo,
then the convergence of (2.1) holds uniformly in v on any interval [vi,vs] with
0< v <y <o0.

It follows from the assertion of the theorem that the uniform convergence (2.1)
on an interval [ﬁ, M| will also take place in the case, when as ¢ — 0o, the quantity
M = M(t) increases to infinity slowly enough.

Theorem 2.2.2 (Integral Representation). A positive function L(t) is an s.v.f as
t — oo iff for some tg > 0 one has

L{t) = o{t)ezp ( /tL E—(l)du> it (2.9)

u

where c(t) and £(t) are measurable functions, with ¢(t) — ¢ € R* and £(¢) — 0 as

t — oo.

2.3 Asymptotic properties

Theorem 2.3.1. i) If L; and Ly are s.v.f’s then L, 4+ Lo, LiLs, L} and L(t) =
Lq(at +b), where a > 0 and b € R are also s.v.f’s.

ii) If L is an s.v.f then for any ¢ > 0 there exists a ts > 0 such that
t8 < L(t) <t® forall t >t (2.10)

In other words, L(t) = t°" as t — oo
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i) If L is an s.v.f then for any 6 > 0 and vy > 1 there exists a t5 > 0 such that
for all v > vg and t > 5,

<’ (2.11)

iv) (Karamata’s theorem) If o > 1 then, for the r.v.f V in (2.3), one has

Vi) = / V(u)du ~ @ as t— oo. (2.12)
¢ o=
If @ <1 then
: Vit
Vi(t) :/ V(u)du ~ Q40 as t— oo. (2.13)
0 l-a
If & = 1 then one has the equalities
Vi(t) =tV (t) L1 (). (2.14)
and
Vi) = V() La(t) i / V(w)du < oo, (2.15)
0

where the L;(t) = oo as t = 00, 1 = 1,2 are s.v.f’s,

v) For an r.v.f V of index —a < 0 put

o(t) =V H1/t) = inf{u: V(u) < 1/t}

then o(t) is an r.v.f of index 1/a:

a(t) = tV/*Ly(t),

where L; is an s.v.f. If the function L has property

L(ELM= (1) ~ L(1),
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as t — oo then

Ly(t) ~ LY (£1) .

Similar assertion hold for functions that are slowly or regularly varying ast | 0.
Observe that Theorem 1.1 and the inequality (2.11) we also obtain the following
property of s.v.f's: for any § > 0 there exists a t; > 0 such that for all £ and v

satisfying the inequalities ¢ > t5, vl > t5 one has

(1 — &)min{v®,v™%} < 2t

S0 < (14 &)max{v’, v}, (2.16)

2.4 The convergence of distribution of sums of random variables with regularly

varying tails to stable laws.

As is known, in case E£2 < oo one has the central limit theorem, which states
that the distribution of the norrmalized sums S, = > -, & of independent r.v’s
& = £converge to the normal law as n — co.

If E€2 = oo then the situation noticeably changes. In this case, the convergence
of the distribution of appropriately normalized sums S, to a limiting law will only
take place for r.v's with regularly varying distribution tails.

From the proof of central limit theorem by the method of characteristic func-
tions (ch.f.), it is seen that the nature of the limiting distribution for S, is defined

the behaviour of the ch.f.
f) = Ee”‘g, AeR

of € in the vicinity of zero. If B¢ = 0 and E¢? = d < oo then,as n — oo,

() R ()1, e

It is the relation that defines the asymptotic behaviour of the ch.f. [ <%) of %,
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which leads to the limiting normal law. In case E£? = oo (so that f”(0) does not
exist) we will use the same method, but, in order to obtain the 'right’ asymptotic
of f (B‘(%)) under a suitable scaling b(n), we will have to impose regular variation

conditions on the 'two-sided’ tails
F(t) = F((~o0, ~1)) + F([t,00)) = P(£ ¢ [~1,1)), ¢>0.
As before, the functions
Fi(t) = F(t,00)) = P€ 2 1), F-(t) = F((~00, 1)) = P(¢ < —1)

will be referred to as the right and the left tails of the distribution of £,respectively.
Assume that the following condition holds for some « € (0,2] and p € [-1,1] :
[Rq,p] The two-sided tail F(t) = F_(t) + F(t) is an r.v.f. at infinity, L.e. it

has representation of the form
F(t)=t"*Lp(t), «€(0,2], (2.18)

where Lp(t) is an s.v.f; in addition there exists the limit

i F(®
e ()

1
=p+=5(pt1)€ [0,1]. (2.19)
If p;. > 0 then clearly the right tail F,(t) admits a representation of the form
Folt) = V() = t°L(t), o€ (0,2, L)~ psLrlt)

If p,. = 0 then the right tail Fy(t) = o(F(t)) need not be regularly.
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It follows from (2.19) that there also exists the limit

lim =p_.=1-—p,.

If p-0 the similarly, the left tail F_(/) admits a representation of the form

F_(t) = VV(t) = t_aLVV(t), (eSS (02] Lw(t) ~ p_LF(t>

If p. = 0 then the left tail F_.(t) = o(F(t)) is not assumed to be regularly varying.
The parameters p, are connected to the parameters p from conditions [Rq,p)

by the relations

p=p+—p-=2py — L

Evidently, for p < 2 one has E£2 = 00, so that the representation (2.17) ceases
to hold,and the central limit theorem is inapplicable. In what follows in situation
where E¢ exists and is finite we will always assume, without loss of generality
that,

E¢ = 0.

Since F(t) in non-increasing, the (generalized) inverse function /'~ !(u), understood
as

FHu) =inf{t > 0: F(t) < u},

always exists. If F(t) is strictly monotone and continuous then b = F~!(u) is the

unique solution of the equation

Put
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where the scaling factor b(n) is defined in the case a < 2 by

b(n) = F~! <l> (2.20)

n

It is obvious that in the case p; > 0 the scaling factor b(n) is connected to the
function o(n) = V=1(1/n).
For oo = 2 we put

b(n) = Y~1(1/n), (2.21)

where

v =27 [ yFay

=217? </0t yV (y)dy + /Ot yW(y)dy)

~tTIE[EL —t < € <) =tT2 Ly (1) (2.22)

and Ly is and s.v.f(See Theorem 2.3.1 iv)). From Theorem 2.3.1 v) it follows

also that if (2.18) holds then
b(n) = nt°Ly(n), a <2,

where L, is an s.v.f.

Theorem 2.4.1. Let condition [R,,] be satisfied. Then the following assertions
hold true.

i) For a € (0,2), «a # 1, and the scaling factor (2.20), we have
G= (@ as n— oo

where the distribution [F,,] of all r.v. ¢ () depends only on the parameters a
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and p and has a ch.f. fl?)()) given by
1A () =B = exp{| A" B(a, p, 0)}
where ¢ = signA,

B(a,p,¢) =T(1 — ) (ipd)sin % — cos %71)

r2-a)
I-a °

and for @ € (1,2) we put I'(1 — a) =
ii) When « = 1, for the sequence ¢, with scaling factor (2.20) to converge to a

limiting law the former, generally speeking, needs to be centered. More precisely,

we have
Cn— Ap = C(l”’) as n — 09,
where
n )
Ay = M[V,(b(n)) = Wi(b(n))] — pC,

C =~ 0.5772 is the Euler constant and

e A
f(l,p)(/\) = Eez)\C( o) = exp (—% - Z/))\ In |>\|) .

If n[Vi(b(n)) — Wi(b(n))] = o(b(n)), then p = 0 and one can put A, = 0.
If E¢ =0, then

n

A
" b(n)

[V7(b(n)) = W' (b(n))] — pC.

If B =0, p#0, then pA, —» —0c0 as n — co.

iii) For o = 2 and scaling factor (2.21),

(o= (PP =¢ as nooo, [fEI() =Ee =2
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so that ¢ has the standard normal distribution that is independent of p.

Remark 1
We can easily verify that in extreme cases p = +1 the ch.f’s B(a, p, ¢), fEP(X)
(defined above) of stable distributions with a@ < 2 admit the following simpler

representations:
FAPN) = exp(-T(1 = a)(=iX)*}, «€(0,2), a#l,

FAVO) = exp{(—iN) In(—iN)};  FETIO) = fD(=X), a<2.

Remark 2

From representation of A, (above) for the centring sequence {A,} in the o =1
it follows that if there exists E€ = 0 then the boundedness of the sequence implies
that p = 0. The converse assertion, that in case E€ = 0 the relation p = 0 implies
the boundedness of {A,}, is false.

Indeed, let £ be an r.v. with E¢ = 0 such that for ¢t > ¢, > 0 one has

- 1
2 n?t’

V(t) } ,  Le(t) =Inlnt.

W(t) = V(1) [1 4

Then p=0, F(1)~111In"%;, b(n)~nln~>n and

1 14 0(1)
Vi) = Wiy =v! —_—
O =557 WO=VO+ L 5my
so that
Wi - vi) ~ ———.
Therefore

(1+o(1)) In*n Inn
' — 00 as n — oo.

Al o, B0
" L) nb@m) 77 T nlnn
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Remark 3
If @ < 2 then from the properties of s.v.f (Theorem (2.3.1) iv) we have that,

as n — oo,

t i 1 1
— l1-e ~ ——t272Lp(t) = ——t2F(2).
/0 yF(y)dy /0 y " Le(y)dy ~ 5=t Lr(t) = 5—_t°F (1)

Hence for o < 2 one has Y (t) ~ 2(2 — a) ' F(z),

() ()~ (5) e ()

However, when a = 2 and d = E¢ < oo, we have

n

Y({t) ~t7%d, b(n)=Y"! <1> ~ Vnd.

Thus, scaling (2.21) is ’transitional’ between the scaling of (2.20) (up to the con-
stant factor 2/(2—a)'/*) and the standard scaling v/nd in the central limit theorem
in the case E€? < co. This also means that the scaling (2.21) is 'universal’ and
can be used for all o < 2. However, for a < 2 the scaling (2.20) is simpler and
easier to deal with, and this why it will be used the present exposition.

The proof of Theorem (2.4.1) essentially uses the form of the scaling sequence
b(n) and thereby helps to establish direct connection between the zones of 'normal’
distribution and large deviations. This proof can be found in [29].

Recall that F, , denotes the distribution of ¢(@p) The parameter o assumes
values from the half-interval (0, 2] and the parameter p = p, — p_ can assume any
value from the closed interval [—1,1].

It follows from Theorem (2.4.1)that each Fo,, 0<a <2, -1<p<1
is limiting for distributions of suitably normalized sums of i.i.d. r.v’s. The law

of large numbers implies the the degenerate distribution I, concentrated at some
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point a is also a limiting one. The totality of all these distributions will be denoted
by &,. Further, it is not hard to see that F € &, then the distribution obtained
from F by scale and shift transformation, that is a distribution F 4 given, for

some fixed b > 0 and a, by the relation

B — B—a
F{avb}(B):F< ; a>, where ( ) ”> ={ueR:ub+a€ B},
)

is also limiting(for the distribution of (S, — a,)/b, as n — oo, with suitable {a,}
and {b,}).

Let &, &1, &, ... be independent identically distributed (i.i.d) random variables.
Put Sy = 0 and "

S, &= i;{“ n=12..

The following assertions constitute the fundamental classical limit theorems for

random walks,S,;n > 1.



CHAPTER 3: INFINITESSIMAL MATRIX

3.1 Markov Processes with a finite state Space
3.1.1 Markov Chains

Let Q be the space of sequences (wq @y, ... Wy, ), where w;, € X = {x,x%, .., x"}
0 < k < n. Without loss of generality, we may identify X with the set of the first r
integers, X = {1,2, ..., 7}. Let P be a probability measure on (2. Sometimes we shall
denote by w,, the random variable which assigns the value of the ¥" element to the
sequence @ = (Wq,@y, v Wy )-
It is usually clear from the context whether w;, stands for such a random variable or
simply the #” element of a particular sequence. We shall denote the probability of the
sequence (wg Wy, ... Wy ) by p(wp w4, ... w,). Thus p(i, -- in) =P(wy = iy, ... 0p = ip).
Assume that we are given a probability distribution # = (4, ..., 4y) on X
and a stochastic matrices P(1),...,P(n) with P(k) = (pij (k)).
Definition 3.1.1 The Markov chain with the state space X generated by the initial
distribution z on X and the stochastic matrices P(1),...,P(n) is the probability "
measure P on Q such that
P(wy = ig, w1 = iy, O = i) = pio-Pioia (1) . Piyy_ 1, (M) (3.1

for each igiy, ...i, €X.
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The elements of X are called the states of the Markov chain. Let us check that
(3.1) defines a probability measure on 2. The inequality P(wy = g, ..., wy = i) =

0 is clear. It remains to show that

i Zr: Plwg =10, vy, = 1) = L.

ip=1 in=1

We have

= Z Z Hig '])Z'O'L‘l(l)"'[)infl’in (n)

i0=1 in=1

We now perform the summation over all values of i,. Note that i, is only present
in the last factor in each term of the sum, and the sum 77 _, py, ,4,(n) is equal
to one, since the matrix P(n) is stochastic. We then fix i, ..., 7,2, and sum over
all the values of i,_1, and so on. In the end we obtain 7} _, 1, which is equal
to one, since p is a probability distribution.

In the same way one can prove the following statement:
P(WO =10y, Wn = ik) & :u’io'pio’il(1)"'pik—1ik(k)

for any 1 < g, ..., i < 7,k < n. This equality shows that the induced. probability
distribution on the space of sequences of the form (wy, ..., wy) is also a Markov chain
generated by the initial distributiony and the stochastic matrices P(1), ..., P(k).
The matrices P(k) are called the transition probability matrices, and the ma-
trix entry p;;(k) is called the transition probability from the state ¢ to the j at
time k. The use of the of these terms is justified by the following calculation.
Assuming that P(wy = ig,...,wk—2 = k-2, w1 = i) > 0. We consider the

conditional probability P(wx = j|wo = o, ..., Wk—2 = ik—2,wg—1 = 1). By definition
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of the measure P,

Plwg = jlwo = to, .-,

Wh—2 = lg-2, Wh—1 = 1)

- P(wo - 1"01 sy Wh-2 = ik727wk771 = i)wk o= .7)

P(wo = ig, ey We—o = ik_g,wk_l =5 ’L)
_ Lo Pigia (1) Pi_pi(k — 1).py; (k)
Lo Pigis (1) - piy_pi(k — 1)

= pi; (k).

The right-hand side here does not depend on 4, ..., ix—2. This property is'some-
times used as a definition of a chain, It is also easy to see that P(wy = jlwx—1 =
i) = pij (k).

Definition 3.1.2. A Markov chain is said to be homogeneous if P(k) = P for a

matrix I” which does not depend on, k, 1 < k < n.

The notion of a homogeneous Markov chain can be understood as a generaliza-
tion of the notion of a sequence of independent identical trials. Indeed, it all the
rows of the stochastic matrix P = (p;;) are equally to (p1, ..., p,), where (p1, ..., pr)
is a probability distribution on X, then the Markov with such a matrix P and the
initial distribution (pi, ..., pr) is a sequence of independent identical trials.

In what follows we consider only homogeneous Markov Chains. Such chains can
be represented with the help of graphs. The vertices of the graph are the elements
of X. The vertices ¢ and j are connected by an oriented edge if p;; > 0. A sequence
of states (i, 41, ..., i) which has a positive probability can be represented as a path
of length n on the graph starting at the point 4y, then going to the point 4;, and
80 on. Therefore, homogeneous Markov chain can be represented as a probability
distribution on the space of paths of length n on the graph.

Let us consider the conditional probabilities P(wsq; = jlw = ¢). It is assumed
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here that P(w, =) > 0. We claim that

Plwsyr = jlon =) = pfy,

(s)

where p;;’ are elements of the matrix P*. Indeed,

Plwgy = Jywy = 1)
Plw; = 1)

P(W-S-H - j’wl = i) =

o Z:():l Z;_lzl Z;‘l+1=1 Z'Z‘s+l~1:1 P(wo . iO) "‘lwl = ',v ---7ws+l . ])
E;ozl Z:,fl=1 P(wo = 1g, ..., w; = 1)

r T r T
Zm=| Zil_l:l ZiHl:l Zis+,_1=1 /’Liopioil"'piz—ﬂpiiul o Piagiag
T T
Zi[,:l Zil_lzl HioPigiy ---Piy_qi

T r T T
. Zlo:l 211421 HioPigiy -+ Piy1i Z'il+1=1 Zi5+l_1=1 HigPigiy -+ Piy_1iPisg - Pigyy_13
_ T T
21‘021 Zil_lzl HigPigiy -~ Piy_yi

Z Z piiHl"-pisH—lj:pg]s')

1=l deyp1=1

Thus the conditional probabilities pl(»;) = P(ws4+; = jlw = ©) do not depend on I.
They are called s-step transition probabilities. A similar calculation shows that

for a homogeneous Markov chain with initial distribution p,

P(w, = 3) = (uP*); = > pply. (3.2)
=1

Note that by considering infinite stochastic matrices, Definition 3.1.2 and the
argument leading to (3.2) can be generalized to the case of Markov chains with a

countable number of states.

Definition 3.1.3. A stochastic matrix P is said to be ergodic if there exists s

such that the s-step transition probabilities pgﬁ) are positive for all 4 and j. A
homogeneous Markov Chain is said to be ergodic if it can be generated by some

initial distribution and an ergodic stochastic matrix.
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3.1.2 Definition of a Markov Process

Here we define a homogeneous Markov process with values in a finite state space.
We can assume that the state space X is the set the first r positive integers, that
is X ={1,2,..7}.

Let P(t) be a family of r x r stochastic matrices indexed by the parameter
t € [0,00). The element of P(t) will be denoted by P;;(t), 1 < 14,5 <r. We
assume that the family P(t) forms a semi-group, that is P(s)P(t) = P(s +t) for
any s,t > 0. Since P(l) are stochastic matrices, the semi-group property implies
P(0) is the identity matrix. Let u be a distribution X.

Let € be the set of all functions @ : Rt — X and B be the o —algebra generated
by all cylindrical sets. Define a family of finite-dimensional distributions P, ;, -

where 0 =1, < i; < ... <, as follows

Pt0~,tl|"'|t,c ((:)(t[)) = ’io,a)(tl) = Iil; ,L:)(tk) = Ik)

= :uiopioil (tl)Pi1i2 (t2 - tl)"'Pik—lik (tk - tk—l)'

It can easily be seen that this family of finite-dimensional distribution satisfies
the consistency conditions. By the Kolmogorov Consistency Theorem, there is
a process X; with values in X with these finite-dimensional distribution. Any
such process will be called a homogeneous Markov process with the family of
transition matrices P(t) and the initial distribution p. (Since we donot consider
non-homogeneous Markov process in this section, we shall refer to X, simply as a

Markov process.)

Lemma 1. Let X; be a Markov process with the family of transition matrices P(t).

Then, for 0 < 51 < ... < s, t >0, and iq,19,...7, J € X, we have

P(Xsk+t = j|X31 = il, ...,Xsk = 'Lk) = P(Xsk—i-t = .jIXSk = Zk) = Plk](t) (33)
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if the conditional probability on the left-hand side is defined.

Proof. Assume P(X,, =11,..., X5, = ix) > 0. The conditional probability

P(Xsk+l, e jIXgl - 7;17 ""X-*'k e 7;[‘;)
P(XL = ili "'1X.S'k_1 - ik*l:XSk = ik‘7XSk+t = J)
P(Xs, =11,y Xspy = k=1, Xop = ix)
_ Hiq Piliz (2) ‘)ik—lik(k - 1)Pikj(l’)
,U‘hpil'iz (2)"’Pik—1‘i»k(k - 1)

= PikJ'(t)

g

Definition 3.1.4. A distribution = is said to be stationary for a semi-group of

Markov transition matrices P(t) if nP(t) = 7 for all t > 0.

Theorem 3.1.1. Let P(t) be a semi-group of Markow Transition matrices such
that for some ¢ all the matrix entries of P(t) are positive. Then there is a unique
stationary distribution 7 for the semi-group of transition matrices. Moreover,

sup; jex | P,j(t) — m;] converges to zero exponentially fast as ¢ € oo.

Proof. For the sake of transparency we’ll prove the theorem in the case of discrete

/

time. Let /' = (py, ..., pl.), " = (uy, ..., prr) be two probability distributions on the

space X. We set d(¢/, p") = £ >°7_, |ui — pf|. Then d can be viewed as a distance

on the space of probability distribution on X, and the space of distributions with

this distance is a complete metric space. We note that

T r r + +
0= = = (ui— ) =Y (s — ) = D (Wi — 1d),
i=1

i=1 i=1

where S°* denotes the summation with respect to those indices ¢ for which the
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terms are positive. Therefore,

+ + +

1 < 1 1
= 5> b=l =5 D (= )+ 5 D — ) = Do - ),
=1

It is clear that d(p’, p”) < 1.
Let ;// and 1" be two probability distributions on X and ¢ = (¢;;) a stochastic
matrix. This implies x'Q and p”@ are also probability distributions. Let us

demonstrate that

d(p'Q, 1" Q) < d(', 1), (3.4)

for all ¢;; > o, then %

d(W'Q,1'Q) < (1 - a)d(p, p"). (3.5)

Let J be the set of indices j for which (¢/Q); — (1"Q); > 0. Then

dQu'Q) = (WQ-p'Q);=Y Z "Vais

jeJ ]EJ i=1

<Zu—u unSZu—u ) = d(, 1",

jeJ

which proves (3.4). We now note that J can not contain all indices of j since
both '@ and p"@Q are probability distributions. Therefore, at least one index j is
missing in the sum 3°,; gi;. Thus, if all g;; > o, then 3, ;g5 <1 — o for all 4,
and

N
e W'Q)<(1-a Z (1= a)d(p, u"),

which implies (3.5).
Let pg be an arbitrary probability distribution on X and p,, = peP". We shall

show that the sequence of probability distribution pu, is a Cauchy sequence, that
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is for ¢ > 0 there exists ng(¢) such that for any k > 0 we kave d(fin, pn4r) < € for

no(€).By (3.4) and (3.5),

A(n, k) = d(poP™, o P™*) < (1 — @)d(poP" ™", uo P 7%) < .

< (1 _ a)md(’uopn—1ns7/LOPn+k—ms) < (1 _ (y)m,

where m is such that 0 < n—ms < s. For sufficiently large n we have (1 -a)™ <,
which implies that 1, is a cauchy sequence.

Let 7 = lim, 0 p4n- Then
7P = lim p,P = lim (uoP™)P = lim (uoP™") ==
n—oo n—o0 n—o

We now show that the distribution 7, such that =P = m, is unique. Let m; and
7o be two distributions with m, = mP and my = mP. Then m = mP° and
79 = myP*. Therefore, d(m,m) = d(m P®, mP®) < (1 — a)d(m,m2) by (3.4). If
follows that d(m,me) = 0, that is m = ma.

We have proved that for any initial distribution g the limit

lim poP" =m
n—o0

exists and does not depend on the choice of pg. Let us take po to be probability
distribution which is concentrated at the point 7. Then, for i fixed, poP™ is the

(")) Therefore, lim, oo p™ = ;. It is easy to show
13 (¥] 7

probability distribution <p
that m; > 0for 1 < j <.

O

We now consider semi-groups of Markov transition matrices which are differ-
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entiable at zero. Namely, assume that there exists the following limits

Pu(t) — I .
Qu=tm BTy ey (3.6)

where | is the identity matrix.

Definition 3.1.5. If the limits in (3.6) exist for all 1 < 4,7 <, then the matrix @

is called the infinitesimal matrix of the semi-group P(t).

Since Py;(t) > 0 and I;; = 0 for i # 3, the off-diagonal elements of () are

non-negative. Moreover,

or equivalently,

Qij = —ZQzJ-

i#j
Lemma 2. If the limits in (3.6) exist, then the transition matrices are differentiable

for t € R* and satisfy the following system of ordinary differential equations.

%Et) =P(t)Q (forward system).
d—]jlgz = QP(t) (backward system).

The derivative at ¢ = 0 should be understood as one-sided derivatives.

Proof. Due to the semi-group property of P(t)

- P
lim Ple+h) ®) = P(1)lim
RJO h hl0

PR =T _ piyo (3.7)

This shows, in particular, that P(t) is right-differentiable. Let us prove that P(t)
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is left-continuous. For £ > 0 and 0 < h < ¢,
P(t)y — P(t — h) = P(t — h)(P(h) — I).

All the elements of (f — 1) are bounded, while all elements of (P(h) — /) — 0 as
h § 0. This establishes the continuity of P(t).
For ¢t > 0,

lim P(t)— P(t - h)
110 h h10 R0

combining (3.7) and (3.8), we obtain the forward system of equations.

Due to the semi-group property of P(t), for ¢ > 0,

. P({t+h)—P() . P(h)—-1 _
Lirn h = P()lim——— = P()Q
and similarly, for ¢t > 0
. P@#)—Pl-h) . , . P(h)—T
l’g{)l h = lﬁg P(t—h) 1'3’,1(’)1 — = P()Q
This justifies the backward systems of equations. O
The systems %ﬁt) = P(t)Q with initial conditions Fy = I has the unique

solution P(t) = €'@. Thus, the transition matrices can be uniquely expressed in
terms of the infinitesimal matrix.
Let us note another property of the infinitesimal matrix. If 7 is a stationary

distribution for the semi-group of transition matrices, then

70 =lmEH =T _4

10 [
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Conversely, if 7() = 0 for some distribution 7, then

t2 2 t3 3]
@ +—Q+._.):7r

— rel@ —
mP(t) =7me'* =nw(l +tQ + o 3

Thus, 7 is a stationary distribution for the family °(1).

3.1.3 Construction of a Markov Process

Let p ba a probability distribution on X and P(t) be differentiable semi-group of
transition matrices with the infinitesimal matrix Q. Assuming that Q; < 0 for all
I

On an intuitive level, a Markov process with the family of transition matrices
P(t) and initial distribution p can be discribed as follows. At time ¢ = 0 the
process is distributed according to u. If at time ¢ the process is in a state ¢, then
it will remain in the same state for time 7, where 7 is a random variable with
exponential distribution. The parameter of the distribution depends on i, but
does not depend on t. After time 7 the process goes to another state, where it
remains for exponential time, and so on. The transition probability depends on ¢,
but not on the moment of time ¢.

Now let us justify the above description and relate the transition times and
transition probabilities to the infinitesimal matrix. Let Q be an r X » matrix with
Qi < 0 for all i. Assume that there are random variables ¢, 7,1 <i <7, n € N,
and n*, 1 < i < r, n € N, defined on a common probability space, with the
following properties:

1. The random variable 1 takes values in X and has distribution p.

2. For any 1 < i < r, the random variable 7*, n € N, are identically distributed
according to the exponential distribution with parameter r; = —Q;;.

3. For any 1 < i < r, the random variable n?, n € N, takes values in X{i} and

are identically distributed with P(n!" = j) = —Qi;/Qu for 7 # 1.
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4. The random variable &, 7", n,1 <1 < r,n € N, are independent.
We inductively define two sequences of random variables: ¢", n > 0, with
values in R*, and 7, n > 0, with values in X. Let ¢° = 0 and ¢° = £. Assume

that ¢” and €™ have been defined for all m < n, where n > 1, and set
ot =" 4 Tgn-1.

We shall treat o™ as the time till the n'" transition takes place, and ¢ as the n'?

state visited by the process. Thus, define
X, =¢" for o"<t<o™! (3.9)

Lemma 3. Assume that the random variable &, 7", 1 <i<rmn €N, and n7, 1 <
t < rn € N, are defined on a common probability space and satisfy assumptions
1 — 4 above. Then the process X; defined by (3.9) is a Markov process with the

family of transition matrices P(t) = me'? and initial distribution p.

Proof. Tt is clear from (3.9) that the initial distribution of X is u. Using properties

7 and nl it is possible to show that, for k£ # j,

P(Xo=14,X, =k, Xpyn = j) = P(Xo =1, X, = k)(P(r{ <h)P(& = ) + o(h))

= P(Xo =1, X; = k)(Qrjh+0(h)) as hlO.

In other words, the main distribution to the probability on the left-hand side
comes from the event that there is exactly one transition between the states k and

4 during the time interval [t,¢ + h).



35

Similarly,

P(Xo=14,X, =k, Xeyn=35) = P(Xo =14, X, = k)(P(rp = h)P(&, = j) + o(h))

:P(Xo=’L,XL=_7)(1+Q]Jh+O(h)) as hJ,O,

that is, the main contribution to the probability on the left-hand side comes from
the event that there are no transitions during the time interval [t,¢ 4 h)].

Therefore,

> P(Xo =i, Xy =k, Xirn = 5) = P(Xo =4, X, = k)+

k=1
r

By P(Xo=1,X: = k)Qu; + o(h).
k=1
Let R;; = P(Xo =14, X: = k). The last equality can be written as
Riyj(t+h) = Riz(t) + B Y Rue(t) Qs + o(h).

k=1

Using Matrix notation,

R({t+h) - R(t
i M = e

The existence of the left derivative is justified similarly. Therefore,

ap(t) _ |

Note that Rijoy=y; for i = j, and R;j(0) = 0 for i # j. These are the same
equation and initial condition that are satisfled by the matrix-valued function

piPij(t). Therefore,

Ry = P(Xo =i, X, = j) = Py (1) (3.10)
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In order to prove that X, is a Markov process with the family of transition matrices

P(t), it is sufficient to demonstrate that

P(Xto = 7;f)a)(t1 = il: "-:th = ’Lk)

- /l‘riopioil (tl)Piliz (tQ - tl)"‘Pik,—lik (f’k - f’k—l)'

for 0 = tg < t; < ... <t). The case k = 1 has been covered by (3.10). The proof

for k > 1 is similar and is based on induction on k. O
A if i=0
Y@) =9 A4ip if 1<i<n-—1,
o it i=n
If the process is in the state 4 = 0, it can only make a transition to the state

¢ = 1, which corresponds to an arrival of a request. From a state 1 <i < n—1 the
process can make a transition either to state i — 1 or to state ¢ + 1. The former
corresponds to completion of one i requests being serviced before the arrival of a
new request. Therefore the probability of transition from 4 to ¢ — 1 is equal to the
probability that the smallest of the i exponential random variable with parameter
L is less than an exponential random variable with parameter A(all random variable
are independent). This probability is equal to —£~. Consequently, the transition

A
probability from i to ¢ 4 1 is equal to ﬁ% Finally, if the process is in the state
n, it can only make a transition to the state n — 1.

Let the initial state of the process X, be independent of the arrival times of the
requests and the times it takes to service the requests. Then the process X, satisfies
the assumptions of Lemma 3. The matrix @ is the (r + 1) x (r 4+ 1) tri-diagonal
matrix with the vectors v(i), 0 <1 < r, on the diagonal, and u(7) :== \,0 <7 <r
above the diagonal, and [(i) = ig, 0 < i < r, below diagonal. By Lemma 3, the

process X; is Markov with the family of transition matrix P(t) = €'“.
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Tt is not difficult to prove that all the entries of e!? are positive for some ¢, and
therefore Ergodic Theorem is applicable. Let us find the stationary distribution
for the family of transition matrices P(t). As noted in a previous section, a
distribution = is stationary for (1) if and only if 7@ = 0. It is easy to verify that
the solution of this linear system,subject to the conditions n(i) > 0, 0<1¢ <7,

and > o =1, is
)i

) = s i 0SS



CHAPTER 4: RANDOM WALK WITH HEAVY TAILS

4.1 Transition Probability
Let Z4 be the cubic lattice in R4, d = 0, equipped with [, norm ||x|); = ¥&, |x; ],
x = (Xq,...,%,) € Z%. Each point x € Z¢ has 2d nearest neighbors of x : %: ||t — x|} = 1.
The symmetric random walk x(t),t > 0 is the Markov process with continuous
time and the generator kA. Here Af(x) = Y 4 1¢—x||=1(f (X) — f (X))
and k > 0 is a constant. It means that
P(x(t + dt) = x|x(t) = x) = kdt, and
P(x(t +dt) = % |x(t) = x) = 1 — 2dkdt, where ||x — x|| = 1.
We call k > 0 the diffusion coefficient or diffusivity. The random walk spends
in each site x € Z%the exponentially distributed time t with parameter 2dk and

jumps at moment T + 0 to one of the nearest neighbours x: |[X — x|| = 1with
equal probability;la .The transition probability p(t, x, y) = P(x(t) = y|x(0) = x)
satisfies the heat equation

dp(tx,
(%=kAxp(t,x,y)=kAxp(t,xJ’)

! 4.1)

\P(0,x,y)=6y(x)

The symmetric random walk is transient in dimensions d = 3 and recurrent
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for d < 2. In this section we consider the processes for which the transition
rates are non-local and have heavy tails.

Let’s define the operator

a(z) = ql-2) > 0, (4.2)

> q(z) =1

2#£0

It is clear that the generator of simple symmetric random walk is a particular case
of such an operator with

L if |z =1

a(z) =
0  otherwise,

We’ll however consider g which may be positive everywhere. The precise conditions
on ¢ will be provided below;

Let p be the solution of % = L,p with initial condition p(0,z,y) = §,(z). As
discussed in section 3.1.3, we can define the Markov process with the generator L.

Its transition density is p(t,z,y) and the process satisfies

Ty with prob. 1 — kdt,
Liydt = (4-3)
xy + z with prob. kq(z)dt.

As discussed in section 3.1.2 this process spends an exponentially distributed time
in each state z before jumping to a new site = + z with probability ¢(z).

Let us note again that the generator of the process is defined by (4.2). Indeed
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since

p(t,xy) e Pl(xt = y) = P(It - nyO = LE),

we have

p(t+dt,z,y) = Po(zga = ¥)

= Z p(dt, z,x+ 2)p(t,z + z,y)

ZeZ{l

= p(dt, z, z)p(t, ) + Y pldt,z, 2+ 2)p(t, @ + 2,9)
z#0

= (1 - kdt)p(t,z,y) + Y _ ka(2)p(t, = + z,y)dt.
z#0

Hence

dp
250

This equation can be solved using the Fourier transform. Define

plt,o,y) = > plt,z,y)e@®).

zeZd

Then
dp

- = ~0@ptey),  B0.py) =Y, (4.4)

where

$lp) =k D (1—e¥I)g(z), d21.

2€Z74

Since q(z) = q(—=z), the latter formula in 1-dimensional case can be re-written in

the form

s 5

$(p) =2k > (1 —cos(p2))q(z) 20, d=1. (4.5)

z=1

If d > 1 is arbitrary, then it follows from (4.4) that

Bt o, y) = eilo) o —tdly)
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and therefore

1

p(t,z,y) = ﬁ/ ellev=aN-t0) g 4> 1. (4.6)
( W) [—m,m]d

We are now going to study asymptotic of p(t,z,y) for cases d = 1 and d > 1.

Since p depends on the difference z — y, we can put y = 0 and consider function

p(t,z) = p(t, x,0).

4.2 Asymptotic approximation of transition probability in the 1-Dimensional

case

First of all note, that if ¢ decays fast enough at infinity, so that > q(z)2* < oo,
then ¢ is twice differentiable and ¢(p) ~ k¢?, ¢ — 0.

After that, one can apply stationary phase method and prove that

1 z—y)?
p(t,z —y) ~ \/me“( w for lz —y| < AVE, t— oo (4.7)

We will assume below that ¢ decays much slower (heavy tails):

4o
q(Z)NW’ z—00, 0<a<2. (4.8)

This section contains two parts. First, we establish an asymptotic behavior
of the function ¢ as ¢ — 0, and then, using the asymptotics of ¢, we will find

behavior of p. We will determine the behavior of ¢ for a specific g first:

Lemma 4. Let ¢(z) = Mﬁ Then the following relation holds for function (4.5):

B) = 263 (1 = cos(p=))a(2) ~ co

z=1

e|*+ O(lel"), ¢ =0,

where v = min{2,1 + a}, c¢o and ap are constants.

In order to prove this statement, we will need the following lemma.:
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Lemma 5. Let J(p) = [ 155822 da.

Then

J(p) = f(*) + clgl®,
where c is a constant and f(-) € C*°.

Proof. If we let z = |¢|z, then

s [ 1—cosa
J = l.,(.‘l / _ITT:\__ da

Jee]
! o0
l —cosx 1—cosz
_ o "o
- |\,¢’.‘] -/|l,9| plto d +]1 plt+a d
—— ~~ -~

Since the integrand in (II) is continuous within the domain of integration, and

therefore integrable, then f1°° I;ffiz dz = c;. Evaluating (I) we obtain,

1]
— 08X
[ : = / ? [l:r
el T

1z z | 1 O( 2N
o == i e x )
:/ - Tfin d$+/ xl+cx dz
|l : [l

= ¢z + a0l + arlg| " + asllt + . O(|pPN ).

Thus
1 o]
= 1—cosx 1 —cosz
J:’50| |:/|¢|—xl+—o‘—dx+/1 Wdfl{l
= |p|* [e1 + a0l + azle]* ™™ + azlp|® ™ + ..O(l@|*N %) + ]
= clel” + f(¥?),
where

F(@%) = ag0® + a10* + ... + O(¢).
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We now proceed to prove Lemma 4 using the results in Lemma 5.

Proof of Lemma 4. We have

21— ¢lem
\I/(QO) = Z nlta
n=1
00 ip(ntT)
Sy Jo S dr ® e
:]CO— 110. 1+ :ko—g(¢)/ ﬁdZ,
f, e dr 1 7]

where g(p) = w25 € C* when ¢ is small, and kg = Y o2 <. Note that

ete—1

limy0 g() = 1. Thus

1 — elen

0
Z nltoa

=1

btole) [ et (49)

T(p)

3

If € [n,n+1],ie., z=n+r7, for 7 € [0,1], then (using the Taylor’s series)

1 1

[t (ot )t

1
gt D B (4.10)

T oplte T op2ia pita

Similarly,

1 1 1 Co C1

nite (z — 1)lte = lfa + 22 +ta + 3ta + (4.11)

Substituting (4.10) and (4.11) in (4.9) we have

- ) 1 C
Vo) =i gle) [ (1= e | S+ 4 hia)| d
1

(4.12)
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where h(z) = O() as z — co. Obviously,
=) .
/ (1-e¥*)h(z)dz = O(¢®), ¢ —0,
1
since the integral converges after the integrand is differentiated twice. Hence

1 Co

(o) = k1 + g(so)/ (1—¢¥) LH& + z2+a] dz+0(¢?), ¢ —0.
1

Note that Lemma 5 remains valid if the cosine function there is replaced by
the exponential function. However, the function f in this case will depend on o,

not 2. It also remains valid if 2!** is replaced by 22t®. Therefore,
U(p) = A+ Aglp] + Aslp|* + O(”), (4.13)

where A; € C are some constants. Since ¢(p) = Re 2k¥(yp), the same relation
(4.13) is valid for ¢(). It remains to note that ¢(0) = 0, and that ¢(y) is an even
function. The latter two properties immediately imply the statement of Lemma

4. O

Lemma 6. Let

( )_ qo q1 q9 ( ]- )
q\z) = [2[tre T[22t T [zppta |2[4+a’"

Then the following relation holds for function (4.5):
() = 2k Y (1 — cos(2))a(z) ~ colp|® + O(ll"), ¢ = 0,
z=1
where v = min{2,a + 1}, ¢y and ay are constants.
Proof. Since ¢ depends on ¢ linearly, one can prove the statement of Lemma 6

for each term of ¢ separately. The validity of the statement of the Lemma for the
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1

Bl

first three terms of ¢ is proved in Lemma 4. If g = O( ), one can differentiate
O

-
formula (4.5) three times, which shows that ¢ = O(p?) as ¢ — 0. Thus the

statement of Lemma 6 is valid in this case also. O

Now we will pass to the second part of this section. Namely, we will use the
asymptotic formula for ¢ in order to obtain the asymptotic be}lavior of p(t, ).
Without loss of generality, we can replace c¢g in Lemma 6 by ¢y = 1 (since one can

make the change of the variable cot — t) and write

™

p(t,x):/ e te9) dp, (4:14)

™

where ¢ has the following properties:

(
If ¢ #0, then ¢(p) € C*° and ¢(p) >0,

Y () = l@l* + O(lel"), v=min{2,1+a}, ¢ =0,

L¢ is 27 - periodic.
Lemma 7. Let F(o) = [*_eire=l¥l" dop.

Then F is analytic in ¢ and does not vanish

F(o) ~ —ZE 5 s do0, Cy #0. (4.15)

~ Elss

The proof of this lemma is on page 50.

Theorem 4.2.1. The following relation holds for the transition probability p(t, z) =

p(t,z,0):
p(t,z) = tilF <-t%> (L+0(1), as o+ = oo,

o

Proof. Let n(p) € C°, and n(¢) = 1 when |p| <4, § > 0.



46

/ eI (1 — () dp

-4 i
= [ e ) dp+ [ eIy dp.  (416)
)
Estimating (4.16), we have
-4 ?r
[p1(t,z)] < / e 1) dy + / e ) dp < 2, (4.17)
-7 &

where € = ming<),j< 9(p)
The latter estimate is not effective when t is bounded. We can integrate (4.16) by

parts to obtain a better estimate:

If we repeat the integration by parts N times, we will obtain that

N N
1 1

|p1(t,:r)| < CN <_Lt) e_ﬁt < AN (H) e—et/Q‘
z

|z]
By combining the latter formula with (4.17), we obtain

1
1+ |z

N
|p1(t,z)| < Dy < ) 2 241?55 . (4.18)
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From Lemma 7 it follows that estimate (4.18) allows us to consider p; as a part of the
remainder terms in the statement of Theorem 4.2.1.

Now we put

K
p(t,2) = pr(t, ) + pa(t, 2), where pz(t,$)=/ = n(p) dp,

-

and we introduce p3, which is obtained from py by leaving only the main term of the

asymptotics of the function ¢() in the integral defining po:

T N
pa(t,z) = / ool () dy
—T

oo . . o0 . .
= [ et ap— [ et (1 () dy
\—00 — 00

s

B s

I I

The first integral term of ps3, I, can be expressed through F', which is defined in Lemma 7,

and the second term, II, can be evaluated similar to p;. Thus

N
< 1 ) e—et/?
1+ |z|

It remains to justify that |p2 — p3| can be estimated in such a way that allows one to

, x2+t2—>oo.

1 x
p3(t,x) = FF (F) + O

consider it as a part of remainder terms in the statement of the Theorem 4.2.1. This

property of |py — p3| will be proved if we show that the following two relations hold:

t ||
1) Ip2—mpsl=o0 <|$|T+1) , when 2?4 1% = oo, rovrs — 00, (4.19)
and 2) for any A < o0,
1 ||
|p2 —p3| =0 <m) ; —t-l/_oz < A. (420)

Indeed, assume that (4.20) and (4.19) are proved. From Lemma 7 it follows that

1 x ct |z|
= (7%) Y e
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Let us fix an arbitrary e > 0. From (4.19) it follows that there exists Ay = Ap(e) such

that
1
|p2 — p3| < EFF (%) when AL/L > A, 22 +1% = o0 (4.21)
From (4.20) it follows that
1 |z| 2,2
lp2 — p3| < Et—l when Fvs < Ap, z°+1t°— oo. (4.22)

Thus, (4.21) and (4.22) with the fact that F' does not vanish imply that ps — p3 can be
included into the remainder term in the statement in Theorem 4.2.1. Hence, it remains
only to prove (4.19) and (4.20).

Let us prove (4.20). We have
o0
SR / o=t +OUe )y () dig.
—00

pa(t,z) = /Oc> o=t n () dp.
In py, we use the substitution |¥|* = |¢|* + O(|p|"), which implies
o= f(¥) =v+0%?,
dp = f () dy = (1+ O(¥)) dy.

Thus

po(t,z) = / " eI 1) £ () dy
= [ ey )+ O) v

_ /_°° P WHOWD =tV (£ (10)) (1 + O(y)) dep.
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Hence

att, ) Saltal] = /_: eI WO £ (1)) (1 + O()) — e™n(y)] dy

= [ O )1+ O) — ()]

= [ eI+ O ()1 + ()~ n(w)]

= /_O; e O() + O(ay?)| dy

<cC /_ Z vt 4 4 Oy /_ Z VeI 4y

-2+ (4.23)

- 2
ta o

which implies (4.20).

Let us prove (4.19). We have

pa(t,z) = / % cie-tel* 0o M)y (o) dip

= / €72(1— 1(]pl? + O(lio|) + O(]02*))n(v) d:
p3(t, @) =/ e~ () dip

= / 72(1 — tlo]” + O(E2]p2*))n(p) dep.

Thus,

[o 0]
22 o= / O] + ")) dep.

— o0
We assume that the asymptotic expansion of ¢(¢) as ¢ — 0 admits differentiation.

Then, using stationary phase method, we obtain

ges)
. 1
| emotamte)de ~ ik, lel - oo

o

> 1T a C2
| =0l mte) dp ~ iy, lal oo

-
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From the last three formulas it follows that

t t2
b= a1 < (s + e )

_o ¢ Il t
= T e ¥ ) e

This inequality implies (4.20) since |z| — 0o when 22 + t? — oo and t|1+| — oc. O

Proof of Lemma 7. We now determine the asymptotic estimate of F(c). Consider
o0 ; (a3
I(o) = / e?Pe de.
0
We split I(o) in two terms I1(c) + Iz(o), where

I(o) = /0 T (o) do, (o) = /0 " (1 - p(g))e " do,

and () is defined by the following graph

t(0)

@

0

Integrating I»(o) by parts N times we have

B(0) = [ o @ - wle)e )™ ap=0( 5

) ). (4.24)

It remains to estimate I1(c). In order to do this, we deform the contour [0,1] into
contour C = (1 UC5 in the complex plane z = ¢ +ip, where C} is the segment [0, 1] and
Cs is an infinitely smooth contour in the first quadrant, which is given by an equation
p = f(p). We assume that f(p) € C*®[0,00), f(v) >0, f(0) =1, f(v)=0for p > 1.

Thus contour Cy starts at z = i, comes to the point z = 1 and then goes to infinity
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along the real axis. Then

h(o) = [ &7 bl de.

We now estimate the integral along the path C; and Cy respectively.

N

o S 1 (is)e |
7P~ () dp = Z/ e 8o (19)% 4o — 1/ e 9% + h(is)| ds,
/01 (p)dep A b Z n! (is)

n=0

where

N |/ . \na
h(is) = |e” )% — Z %| ~ (s)(NHDe g s 5 0.
n=0 '

Thus, after integrating by parts N + 1 times, we will obtain that

1 1
-x'/ e 7°h(is)ds ~ z/ e~ 7 0(sWHle) gs = O(J—Nlﬁ)<
0 0

Standard Laplace method implies that
! c
/ e 75" ds ~ ——Jn;_H, o— o0, ¢=1,
0

Hence

- 1 C1 1
/C1 TP () dyp = 7 T arl T 0(0-2a+1)'

The asymptotic integral of I; along Cy is estimated by

[ éeruorao= [ e
C2 Ca

_ Gio‘z'(/)(IZ)@’“za |§212 B i/ cio’z('(/)@_za)l dz
C2

10 g

1
(w%

after integrating by parts N times.
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Hence

c1 1

10) = h(o) + halo) = = +

It remains to note that F'(¢) = I(o) + I(0). O

4.3 Asymptotic Approximation of the Transition Probability in n-Dimension

We will find the asymptotics of the transition probability (4.6) in n-dimensional
case. In order to distinguish from the 1-dimensional case (section 4.2) we will use

another notation L for the symbol ¢. Thus, p(t,z) has the form

L >0, for @#0

: A L is 27 — periodic
p(q;, t) — / ez(tp,:c)—L(Lp)t d\p, {
J(—7w,m)1

L ~ |p|*h(¢), ¢ — 0,where ¢ = r:_|

O<a<?2
\

We assume that L has an asymptotic behavior at zero similar to one that was

established in the one dimensional case. Namely, we assume that

L) = oK) + 3 ol h($) + Oiel™™), =0,

for some large enough M. Here, ¢ = I%l’ h = h(¢) and h; are smooth functions
on the sphere. We wish to estimate p(z, t) asymptotically as |z|? + i? — co.

Let

e <£> :/ 61'(%%%)4@%(@ i
to Rd
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Theorem 4.3.1. The following asymptotic expansions hold when |z|? + 2 — oo:
1 T il |z|

a) p(:c,t)—t—gF <t—%>+0<tg+l>. < A,

A s arbitrary

where
L JPp

1

4

b) p(z,t) = M%f(i) +o <W> if

where the two regions in the domain of p(z,t) is described by the figure below

and f(z) is defined by h(p) as follows:

[ Hlpleetedp =~y 1(3).

The integral here is understood in the sense of the Fourier transform in the space

) it @—)oo.
ta

of distributions.
( t

1 T t .
Bl Kol (7) = et @ o e

If f(£) # 0, then statements a) - ¢) can be written in the following form.

Define by B(¢) an e-neighborhood of the set in R? where F'(z) = 0. Then

1
plz,t) = t_iF (fi—) (1+0(1)), |z*+t*— oo, if t—_l ¢ B(e),
and
1
plx,t) = s [F (%) + 0(1)} |z|? + 12 — o0, if t% € Ble)
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The next lemma provides the asymptotics for F'(y) at infinity, which is equiv-

alent to the statement c) above.

Lemma 8. Let F (y) = [n. clev) =¥l @) 4o where p = |—£—|. Then

Fly) = ly|m* @) + o(ly|~**), |y| = oo.

where § = IJyLI and f(y) is defined as follows:

| m@lelerds =~y 1(9).

The integral here is understood in the sense of the Fourier transform in the space

of distributions.

Remark: Function f is defined by h.

Proof. Let 1(p) be defined by

Then

Fi(y) = /R | (i —Tol7h(0) (1 _ y(,5)) dep
1 R AT SN
— _W/Rd (Ael(w.-y)) el h(w)(l —(p)) de

1 ‘ lol®h (s
=: _W /d PACEOIN (e Il h(w)(l = 1/)(90))) dee.
R



1 ’ (. —lo|*h(g
RO = |- [, 98 (9 - p(e) dp
v o
i T
< I-y_IQ/Rd |A (7™M (1~ (p)))| de
_ G
ly>

We can repeat the integration by parts N times to obtain Fi(y) ~ O If
Fy = I — [}, then

Fy(y) = / ei(wzy)—lwl“h(@w((p) dy

lol<2

. IsOI"‘h
— eile) | o—lel*n(e i Y(p) do+
/|W|<2 ( =54 ) () dy

Jj=1

[‘: ) 1(‘Py)z ltp‘ah ) 1/)(30) dcp

The first integrand can be made as smooth as we please if M is large enough.

Thus we can integrate by parts and prove that the first integral has order O (l |N)
if M = M(N) is large enough.

Hence,

F(y) = /llp‘<2 ez‘(%y) Z (_|<p|:f7‘((p))7 ( )d +0 <|y]|'N> (425)

j=1

for |y] = oo, M = M(N).

Denote by ® the Fourier transform in the space of distributions &’. Consider

R = [ gl de

This function can be written as

Fi(y) = @(l¢l*9(2)) = 2(lel*9(2) (1 = % (p)))- (4.26)
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The first term on the right is a homogeneous function of order —d — s, ie.,

d(l¢l*g(¢)) = |y|~**q(y). The second term can be written in the form

1

O(lelg(2)(1 = ¥(0))) = (&Pl

& (AN (el g(0)(1 — 9())))

If N > s+ d, then the function u = AT (|¢|°g(¢)(1 — (w))) is integrable, and

therefore |®u| < ¢y. Thus the second term does not exceed P~ - Hence

—d—s 1
R =0+ 0 (i )+ Il o0
This and (4.25) proves the lemma. O

We will obtain the following two lemmas before we start proving Theorem

4.3.1. We need to study

p(_’L’_‘ f,) = /f )d ei(g&,.‘l})—L(Lp)t dso’ |(p| — 0’

where L > 0 for |¢| # 0, L is 2m-periodic and

L) = lpl*h(g) + Z B h(@) + O(gl™™), h>0.  (427)
Recall that Df = S L S°¢ | k;. The next statement is obvious.

k k kg
3Lp113<p22...8<pdd

Lemma 9. There is v > 0 such that for ¢ € (—7,7)%, and k < M,

). L > el
i). |V L] <clpl*™,

iti). |DEL| < Cilp* ¥,
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Lemma 10.

| =

|DL’;e_L(‘P)t‘ < th%e—gwm when t>1, |o| >

R~

13

Proof. Applying Lemma 9 i)& ii), and the fact that 27e™* is bounded for z > 1,

we have

oLl

B = [te™

’ e,

IN

c|<p|a-1te—'vlwl”t

IA

ct!/e=21¢1 tmax [(|(p|°‘t) o e—%lﬂ"t}

— ¢itae 3ot

For the second derivative we’ll have

Lot

B IL%%te—L(w)w + |L%L%t26—L(«p)t‘

82
| ;05

< CQIQD|O(_1t€_’Y|‘p|at + 02t2|80|2a—26—’y|<p|°‘t

2 )l a=2 _ |,
= cytae 3ol tmaxlwlﬂtzl [(|‘P|at) e e 3l t]

2 _dy e 20—2 _ ¥ @
-l-CQt“e el tmaxhﬁl“‘tzl [(|50|at) = e 3ol t]

2
< Ctw ezl

Other higher order derivatives can be estimated similarly, and this completes

the proof of the lemma. O

Proof of Theorem 4.8.1. Statement ¢) was established in Lemma 8. Statements
a) can be proved by the same arguments that were used to prove the similar

statement in the one dimensional case. We are going to prove b) now.
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Let us introduce functions

Iy(z,t) = / PO y(|pfta)) dp
(_Wvﬂ-)

and

Is(x,t) = / D HOy ([t ) dep,
<|Lp|t%)<2

where the cut off function ¢ is defined on page 54. Then p(t,z) = I, + I3. We
will show that I has an estimate that allows us to consider it as a part of the
remainder terms in the statement b) of the theorem, and I3 has the asymptotics

that has to be proved in b) for p. Our next step is to prove the estimate on /5.

Lemma 11. For each N, the following estimate is valid:

1 2\
I(z,t) < 5 Cwn (—> .

t kd
Proof.
[+ [«3 ].
|L2(z,t)] < c/ e el dy < c/d e~ dy = clr—i
(—m,m)d R o
Further using Lemma 9, we obtain
g
1 i{p,x - 1
a0 = gl | (B (02)) e=H (1= y(lplt?)) ) dl
1 | o _ 1
=l B (O i) al
Cta . Cta 1 te
= el 3 < / “el®t Qo = oy — —— . 4.98
A ) R

We can apply A any number of times to prove the lemma. 1
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We represent

Is(z, 1) = /| S0~ (ol ) dyp

in the form
_ j )
BlEdIS o &5 (EEE % Wl do
"°|<2_£ 7
J
+/ )Z (=) dp. (4.29)
il <2 —1%— =0 !

Function f = (e‘L(‘P)t - Zj:o (_LE%) ¥(|i|t=) is smooth, and from Lemma

9 it follows that |D§f| < ckt%l if o] < 2t~=. Thus, each integration by parts of

the first integral term in (4.29) will provide the factor, which can be estimated by

-

L= We integrate by parts N times, and we choose J > Jy(N) large enough. If

x|

we also take into account that the domain of integration does not exceed Ct=%¢,
we will arrive to the following bound on the the first integral term in (4.29): this

term does not exceed

LA N
a [ 1w

Gyt~ (l—l) if J> Jo(N) is large enough.
be R

Thus

13<m,t>=/||<2t_ *”)Z P(lplth) dio + o(ﬂ).

We substitute here expression (4.27) for L with M >> 1 and add together

terms with the same powers of t and |¢|. This implies that

Iy = / %’”Ztﬂ (Zl»or“”s%] +0(!<p|“]+’“)>wdso
<2t~
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N
+—1 (f“|> , (4.30)

Here qoo = 1, q10 = —h(¢), | will be chosen later. By integrating by parts

[aj] + 1+ 1 times (where [aj] is the integer part) we get that

. ) . I
L. T) 1 aj+i+ly, v
/ g L P O(|ol )Wd%@‘ <C || [T / nee
lp|<2t™ = 15T

|3 DL Ol DEb(elts)| de,
where summation is taken over all ky, ko, k1| + |ko| = [aj] + 1+ 1
Since D24( l|ta) < ot , the latter expression does not exceed

;)+“‘ al -+Ik1|+lk2I _[eg)+i+14d

¥ aj+i+1-|k1| 3, . _ i i N
PIEEE _/; 5= ] de = () ||l ++1
['i lag]+i+1

SQ<EO - (4.31)

We needed the integrability here, i.e. we needed aj + 1+ 1 — |k;| > —d, but

this is always true since aj — [aj] > —d. We'll take | = d. Then (4.31) implies
= in ]3.

d
a

d+a
that the remainder terms in (4.30) contribute o ([ |>
t

Other terms in formula (4.30) for I3 can be reduced to the Fourier transform

® of homogeneous functions. The arguments similar to those used in the proof of

lemma 8, lead the following formula for these terms I ;

aN dtajts 1/
i t1/ _d_ 2
Fo:=t" i t

. <M) Joal®) ¥ <M>

where N is arbitrary large. The main contributions to I3 comes from s =0, =1
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(since [y = 0) and this gives

1 tl/a d+a ) 1 tl/a d+a
Iy = — <—> flz) +—o <—>
ta \ |z [ ||

l

] l
= |(L.’(l+a'f(l‘> UG <‘$’d+(\'>

Since p(z, 1) = Iy + I3 we now have the asymptotics of p(z,t) in the case b), and

this completes the proof of the theorem.



CHAPTER 5: CONCLUSION

This thesis is concerned with the asymptotics behavior of the probability of
rare events related to large deviations of the trajectories of random walks, whose jump
distributions decay not too fast at infinity and possesses some form of "regular behavior”.
Typically we consider regularly varying distribution. The first classical results in large
deviation theory were obtained for the case of distributions decaying exponentially fast.
However, this condition of fast (exponential) decay fails in many applied problems.
Consequently, we presented the asymptotic approximation of the transition probability of
random walks with heavy tails. We examine the asymptotic probability in both the 1-
dimension and n-dimensional cases respectively.

The transition probability p(t, x, y) = P(x(t) = y|x(0) = x)satis_es the heat
equation (4.1). We obtained p(t, x, y)s an integral function (4.6) from (4.1) by applying
the Fourier transform. We used the asymptotic approximation of (4.5) as a power series
to establish the asymptotic behavior of p(t, x, y). Random walks form a classical object
of probability theory, the study of which is of tremendous theoretical interest. They
constitute a mathematical model of great importance for applications in mathematical
statistics. Computing large deviation probabilities enables one to find, for example, small
error probabilities in mathematical statistics, small ruin probabilities in risk theory, small

buffer overflow probabilities in queuing theory and so on.
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