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Abstract: We undertake a computational and experimental study of an advanced class of
structured beams, partially coherent radially polarized vortex (PCRPV) beams, on propagation
through atmospheric turbulence. A computational propagation model is established to simulate
this class of beams, and it is used to calculate the average intensity and on-axis scintillation
index of PCRPV beams. On comparison with other classes of structured beams, such as partially
coherent vortex beams and partially coherent radially polarized beams, it is found that the
PCRPV beams, which structure phase, coherence and polarization simultaneously, show marked
improvements in atmospheric propagation. The simulation results agree reasonably well with
the experimental results. These beams will be useful in free-space optical communications and
remote sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In the past several decades, there have been numerous studies on the propagation properties of
laser beams in atmospheric turbulence, owing to their important application in remote sensing,
laser radar and free-space optical communications (FSOC) [1,2]. On propagation through the
atmosphere, the phase of a laser beam will experience random fluctuations due to turbulence,
giving rise to intensity fluctuations (scintillation), beam wander, and increased diffractive
spreading. The scintillation is one of the primary factors that limits the performance of remote
sensing and FSOC, and therefore the ability to reduce scintillation is of utmost importance for
the development of such systems.

It has long been known that partially coherent (PC) beams can have reduced turbulence-induced
scintillation compared to their fully coherent counterparts [3–10]. The physical mechanism for
this increased resistance to atmospheric turbulence can be explained using the coherent mode
representation of optical coherence theory [11, 12]. In this representation, PC beams can always
be expressed as the incoherent superposition of spatially coherent orthogonal modes. A PC beam
therefore sends energy via multiple modes through different propagation channels to the receiver.
Due to mutual incoherence of these modes, they do not produce an interference pattern at the
detector, resulting in a smooth intensity distribution and lower scintillation. Though the earliest
studies of PC beams in turbulence focused on beams with a Gaussian degree of coherence, in
recent years there have been a number of studies of beams with non-Gaussian shapes of the
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degree of coherence [13–15].
The scintillation can also be affected by other initial beam parameters, such as the amplitude,

phase and polarization. In particular, optical fields carrying a vortex phase have been used for
high-data-rate transfer in both optical and quantum free-space communications [16,17]. It was
demonstrated in [18–22] that vortex beams are also less distorted by atmospheric turbulence.
Numerical simulations of vortex beams of topological charge l = +1 in turbulence showed that
the scintillation index (SI) is smaller by a factor of 1.5 compared to the case of a conventional
Gaussian beam, and decreases further with an increase in topological charge [23].

The use of nonuniform polarization can also significantly improve the performance of beams in
turbulence. The effect of polarization on the statistical properties of beams, especially those with
a nonuniform state of polarization (known as vector beams), have been extensively investigated
[24–31]. In paricular, Gu et al. theoretically studied the scintillation of spatially coherent
nonuniformly polarized beams in turbulence [25], and found that such beams can reduce the
scintillation through polarization effects alone; these results were confirmed by experiment [26].
Combining the two aforementioned effects, Cheng et al. studied the scintillation of a vector
vortex beam, i.e. a radially polarized beam, and found that it has a lower scintillation than a
scalar vortex beam under certain conditions [32].

The aforementioned studies considered the atmospheric propagation characteristics of optical
beams with nontrivial coherence, phase, and polarization properties independently, or with two
of the three quantities structured simultaneously. It is natural to wonder whether a beam which
structures all three quantities at the same time will perform even better in the atmosphere. Such
partially coherent radially polarized vortex (PCRPV) beams were recently introduced and studied
both theoretically and experimentally on propagation through free space and through ABCD
optical systems [33]. Those results demonstrated that such beams display peculiar propagation
features in contrast to partially coherent radially polarized (PCRP) beams or pure vortex beams.
However, because the state of polarization and the vortex structure of a beam depend on its phase,
and partial coherence randomizes the phase of the beam, it is not obvious that structuring all
three together will produce additional benefits.
Our aim in this paper is to explore the atmospheric propagation characteristics of PCRPV

beams, which structure phase, coherence and polarization simultaneously. A computational model
is established to take into account both the randomness of the source as well as the atmosphere
it propagates through, and the average intensity and SI of the beam in the receiver plane is
calculated. Furthermore, we carry out an experimental study of the scintillation characteristics of
PCRPV beams passing through turbulence produced by a laboratory hot plate. Our numerical and
experimental results indicate that PCRPV beams are less influenced by atmospheric turbulence
compared with ordinary PC beams, PCRP beams, and partially coherent vortex (PCV) beams
under the same atmospheric conditions, and that beams with all three forms of structuring provide
benefits over those with a fewer number of structures.

2. Theoretical model for PCRPV beams and the computational model for PCRPV
beams in the atmosphere

In this section, we first briefly review the theoretical model for the PCRPV beams, and then
establish our computational model for simulating such beams in atmospheric turbulence.

2.1. Theoretical model for PCRPV beams

Let us consider a quasi-monochromatic, stochastic electromagnetic beam-like field propagating
along the z-axis. The second-order statistical properties of the beam at z = 0 (source plane) can
be characterized in the space-frequency domain by a 2 × 2 cross-spectral density (CSD) matrix
[34],
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where r1 = (x1, y1) and r2 = (x2, y2) are two independent position vectors in the source plane,
and the elements of the matrix are

W0
αβ (r1, r2) =

〈
E∗0α (r1, 0) E0β (r2, 0)

〉
, (α, β = x, y). (2)

The quantities E0x and E0y in Eq. (2) denote two mutually orthogonal components of the
random electric field vector along the x and y directions, respectively, and perpendicular to the
z-axis. The asterisk and angular brackets respectively represent the complex conjugate and the
ensemble average over the source fluctuations. For PCRPV sources with Gaussian Schell-model
correlations, the elements can be expressed as

W0
αβ (r1, r2) = E∗0α (r1, 0) E0β (r2, 0) µαβ(r2 − r1), (α, β = x, y), (3)

where E0x and E0y are the deterministic components of the beam field, given by

E0x = r1 exp

(
−
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)
cos ϕ1 exp(ilϕ1), E0y = r2 exp

(
−
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)
sin ϕ2 exp(ilϕ2), (4)

and rj =
√

x2
j + y2

j and ϕj = arctan
(
yj/xj

)
, ( j = 1, 2) are the radial distance and azimuthal angle

in a polar coordinate system. Here l is the topological charge of the vortex phase, and w0 denotes
the beam waist size.
The function µαβ (r2 − r1) represents the spectral degree of coherence (SDOC) matrix, a

measure of the strength of correlations between the two orthogonal components of the field at
two points r1 and r2. We consider the Schell-model case, in which the SDOC is only the function
of the separation of two points, and assume a specific Gaussian form for each component,

µαβ (∆r) = |Bαβ | exp

(
−
∆r2

2δ2
αβ

)
, (5)

with ∆r = r2 − r1, and δxx , δyy and δxy
(
δyx

)
are the r.m.s widths of the correlation functions of

the different components of the field.
We further take Bxx = Byy = 1; Bxy is the complex correlation coefficient between the x and y

components of the electric field, and |Bxy | = |Byx |. As was discussed in [35], the realizability
condition of a PCRP beam is that |Bxy | = |Byx | = 1, δxx = δyy = δxy = δyx ≡ δ0, which
indicates that the expressions for the four elements of SDOC of the PCRP beams are identical,
and one can show that the above realizability conditions are also applicable for the PCRPV
beams. By combining Eqs. (3)–(5), the expressions for the four elements of PCRPV beams can
be obtained.

2.2. Computational approach for numerically simulating the PCRPV sources

Though the cross-spectral density matrix satisfies a pair of wave equations and can in principle be
propagated computationally by Fresnel propagation, it is a function of two vector spatial variables,
r1 and r2, or four variables total, and directly propagating this matrix is computationally intensive.
Instead, we introduce an ensemble of random electromagnetic fields whose average produces the
desired CSD, and propagate this ensemble of fields through the system.
There are two methods for numerically creating the ensemble of a partially coherent source,

which we refer to as the phase screen (PS) and complex screen (CS) methods [36]. The former
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employs random phase screens to generate the statistics of the source, while the latter approach
uses random complex screens in which both the amplitude and the phase of the source is modified
on transmission. The PS method is most convenient for experimental implementation through the
use of phase-only spatial light modulators (SLMs). However, only a source with Gaussian-Schell
model (GSM) correlations can be generated or rigorously simulated by this approach. The CS
method does not suffer this shortcoming, which makes it ideal for numerical simulation, although
it is more difficult to implement experimentally.
To synthesize a PCRPV source using the CS method, a single realization of the x or y

component of the electric field in the source plane is taken as

Eα (r, 0) = E0α (r, 0)Tα (r) , (α = x, y) (6)

where Tx(r) and Ty(r) are the random complex transmittance functions (screens) which determine
the characteristics of the spatial coherence of x and y components. E0α is the incident electric
field before the screens. Therefore, the ensemble average over of the first and second-order
moment of Tα(r) should satisfy

〈Tα(r)〉 = 0,
〈
T∗α(r1)Tβ(r2)

〉
= µαβ(4r), (α, β = x, y). (7)

Equation (7) indicates that the first-order moment of the CSmust be zero and that the second-order
moment must be equal to the corresponding SDOC of the source.
To generate a single realization of a CS, we first derive the spatial frequency spectra of the

SDOC functions, which are given by their Fourier transforms,

Sαβ(f) =
∫

µαβ(4r) exp(2πif · ∆r)d2
∆r, (8)

where f is a spatial frequency vector. On substituting Eq. (5) into Eq. (8) and applying the
realizability condition, the elements of the spatial frequency spectra are of the form

Sαβ(f) = 2πδ2
0 exp

(
−2π2δ2

0f2
)
. (9)

In the Fourier domain, the CS can be represented as the square of the power spectrum function
multiplied by a zero-mean, unit-variance, complex Gaussian random function

T̃α(f) = Rα(f)S1/2
αα (f), (α = x, y), (10)

where Rx and Ry stand for the complex Gaussian random function. The function T̃α(f) is now the
Fourier transform of Tα(r), and represents one realization of the field that produces the SDOC of
Eq. (7).
In numerical simulations using MATLAB, these random functions can be written as Rx(y) =

[randn(N) + i∗randn(N)]
√

2, where N is the grid number and randn is the built-in function
returning a pseudorandom, scalar value drawn from a normal distribution with mean 0 and
standard deviation 1. Due to the fact that µxy and µyx are equal to µxx and µyy , the two
components of the random function Rx and Ry in one realization should be the same in the
simulation. By performing the inverse Fourier transform of Eq. (10), the CS is finally synthesized.
Part I of Fig. 1 illustrates the square modulus of three typical CSs through numerical calculation.
It should be noted that other kinds of partially coherent vector sources with correlation functions
whose SDOCs are not Gaussian can also be simulated using the CS method, by replacing the
spatial frequency spectra shown in Eq. (9) with other functions. It is also to be noted that this CS
method is similar to that used to generate phase screens representing the effect of the atmosphere,
to be discussed next.
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2.3. Computational propagation model for the PCRPV beams in atmosphere

One of the most widely used techniques for numerically simulating the propagation of light
waves through atmospheric turbulence is the multiple phase screen method [37], which we briefly
outline here. In this method, the turbulence is modeled as a collection of thin random phase
screens with the desired turbulence statistics. Phase screens are placed along the propagation path
at equal intervals ∆z=z/NT , as shown in part II of Fig. 1. ∆z is the distance between two adjacent
phase screens, z is the overall propagation distance, and NT is the total number of screens.
The scenario for simulating the propagation of PCRPV beams in atmospheric turbulence

is as follows. The incident electric field of the source E (1)
x(y)
(r1) = E0x(y)(r1)Tα(r1) propagates

a distance ∆z in free space, and arrives at the first phase screen. Then, the electric field in
the plane of the phase screen is modified by a random phase that represents the accumulated
turbulence effect over the distance ∆z, E (2)

x(y)
(r2) = Ē (1)0x(y)(r2) exp[iθ1(r2)], where Ē (1)0x(y) is the

incident electric field just before the phase screen; θ1 is the accumulated random phase introduced
by the turbulence over the propagation distance ∆z. The propagation steps which follow just
repeat the first propagation step, until the beam reaches the last phase screen. The incident
electric field is expressed as E (n+1)

x(y)
(rn+1) = Ē (n)0x(y)(rn+1) exp[iθn(rn+1)]. Finally, the light field is

focused by a collecting lens and arrives at the detector in the receiver plane.

Fig. 1. Computational propagation model for a PCRPV beam generating and propagating
in the turbulent atmosphere. Part I: Three typical realizations of the modulus of CS. RPS:
random phase screen.

As noted, the method for synthesizing θn is similar to that for the synthesis of CS described
above but uses the power spectrum Φn(κ) of the turbulence-induced refractive index fluctuations.
The relationship between the power spectrum of the turbulence and the spectrum Φθ (κ) of the
phase screen induced by turbulence is given by the following formula,

Φθ (κ) = 2π4zk2
Φn(κ), (11)

where k = 2π/λ denotes the wavenumber of a light wave with λ being the wavelength;
κ ≡ 2π( fx, fy) is the spatial frequency vector. Following the same procedure for synthesis of the
CS for partially coherent beams, Eq. (11) is first multiplied by a random function Rn(fn); we
take a Fourier transform of the result. The real or imaginary parts of the result each represent a
valid realization of the turbulence screen phase, e.g. θn(rn+1) = Re{F[Rn(fn)Φθ (fn)]}, where Re
represents the real part and F is the Fourier transform operation.
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In practice, it is important to take into account three characteristic times τs , τt and τd associated
with the system. The time τs is the characteristic time of amplitude and phase fluctuations of the
source; τt represents the characteristic time of phase fluctuations induced by turbulence, and
τd is the integration time of the detector. The relationship between these three characteristic
times plays a significant role in the logic of the numerical simulation. In turbulence theory, it is
commonly assumed that the characteristic time of source fluctuations is much smaller than the
integration time and the time induced by turbulent phase fluctuations, and also that τt is greater
than τd, i.e., τs � τd � τt ; this implies that the detector is only sensitive to the fluctuations
induced by turbulence, and averages over the fluctuations of the source.

Under these circumstances, the procedure for simulating for the PCRPV beams in turbulence is
as follows: (1) The phase screens of turbulence are synthesized and “frozen” in the propagation
link. (2) A number K1 of CS representing the PCRPV source are synthesized, and each of these
source realizations are propagated through the simulated turbulence to the detector plane. (3)
The K1 realizations of the intensity are averaged and this average acts as one realization of the
PCRPV beam in turbulence. (4) We loop over steps (1)–(3) K2 times and finally acquire the
average statistics of the PCRPV beams in turbulence. In summary, we must perform two averages
to get the physical results: one average over the source fluctuations, and one average over the
turbulence flutuations.

3. Experimental generation of PCRPV beams and measurement of their statisti-
cal properties through turbulence

Figure 2 shows the experimental setup for the generation of PCRPV beams and the measurement
of such beams after propagating through thermally-induced turbulence; we divide our description
into a discussion of source generation and then a discussion of propagation and detection.

A Gaussian beam generated from He-Ne laser (λ = 632.8 nm) passes through a beam expander
(BE), a reflecting mirror (RM) and a linear polarizer (LP) whose transmission axis is along the
y-direction, and is then focused onto a rotating ground glass disk (RGGD) by a lens L1 with
focal lens f1 = 150 mm, producing partially coherent light with Gaussian correlations. In the
experiment, the spatial coherence width of the light is controlled through modulation of the beam
spot size on the RGGD. Past the RGGD, the partially coherent light is first collimated by a lens
L2, and then passes through a Gaussian amplitude filter (GAF), radially polarized converter
(RPC) and a spiral phase plate (SPP) with topological charge l = 1 or l = 2, which transforms
the partially coherent linearly polarized light beam into a PCRPV beam. Alignment of the SPP
is done when the incident field is fully coherent. If we remove the RPC, the generated source
becomes a linearly polarized Gaussian Schell-model vortex source, i.e., a PCV beam. If we
remove the RPC and SPP both, the generated source becomes a Guassian-Schell model (GSM)
beam. To compare with simulation, the “source plane” is taken to lie right after the SPP.

The generated source is split into two components by a beam splitter (BS). The reflected part
passes through a thin lens L4 with focal length f4, then arrives at CCD2 which is used to measure
the spatial coherence width of the generated source. Both the distance from the source plane to L4
and from L4 to CCD2 is 2 f4 (i.e., it is a 4 f imaging system). In this case, the spatial coherence
width in the image plane of the CCD2 is the same as that in the source plane. The procedure for
measuring the spatial coherence width and the degree of coherence can be found in [38]. The
transmitted beam passes over an 35 cm × 50 cm electric hot plate and through a collecting lens
L3 with focal length f3 = 400 mm, then arrives at CCD1 (pixel size 4.4 µm × 4.4 µm) located in
the focal plane of L3. The CCD1 records the instantaneous intensity distribution and the output
signal is sent to a computer to calculate the average intensity distribution and on-axis scintillation
index. The electric hot plate produces turbulence through convection, and the strength of the
turbulence is controlled by the temperature T of the hot plate. The beam center is about 2.5 cm
above the hot plate surface, and the distance from the SPP to L3 is about 1.5 m.
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Fig. 2. Experimental setup for generating a PCRPV beam, measuring its spatial coherence
width and the statistical properties of the beam propagating through thermally induced
turbulence.The acronyms used in the figure are beam expander (BE); reflecting mirror (RM);
linear polarizer (LP); Lens (L1–L4); rotating ground glass disk (RGGD); Gaussian amplitude
filter (GAF); radially polarized converter (RPC); spiral phase plate (SPP); beam splitter
(BS); charge coupled device (CCD1; CCD2).

In our experiment, the characteristic time τs of the partially coherent source fluctuations is
primarily determined by the rotation speed of the RGGD, and is in the range from 5.0–10.0µs
measured by the digital correlator when the spatial coherence width of the source is from 0.1 mm
to 0.4 mm. The characteristic time τt of turbulence-induced phase fluctuations is 50ms when the
temperature of hot plate is 160◦C, and the integration time of the CCD1 is set as 5.0ms. Thus,
the detector satisfies the “slow” detector condition, i.e., τs � τd � τt .

4. Numerical simulation and experimental results

The numerical simulation is taken to match the propagation stage of the generated beam from
the source plane to the observation plane (CCD1 plane) shown in Fig. 2. Ten (NT = 10) phase
screens are distributed between the source plane and the plane of L3 to simulate the atmospheric
turbulence. The physical size of each phase screen is 40 mm × 40 mm and the sample number is
256×256. The power spectrum density of the turbulence used in the simulation is the Kolmogorov
spectrum, given by

Φn(κ) = 0.033C2
nκ
−11/3, (12)

where C2
n is the refractive-index structure parameter. From the plane of L3 to the observation

plane, we assume that the turbulence is absent and a two-step propagation algorithm is used to
compute the wave field in the observation plane. Thus, a scaling parameter is introduced and the
grid size of the observation screen is set as 4.4µm×4.4µm to match the pixel size of the CCD1
used in the experiment. The instantaneous intensity of partially coherent beams is constructed in
the observation plane by taking an average over K1=400 screens under a frozen realization of
turbulence. The number of turbulence realizations is taken to be K2=600. The other parameters
such as beam width, coherence width and propagation length used in the simulation are same as
those in the experiment.
In order to demonstrate the validity of our computational approach, we first determine the

intensity distribution of a GSM beam, a PCV beam with l=1 and a PCRPV beam with l=1 in the
plane of CCD1 both numerically and experimentally. Figures 3(a)–3(f) are experimental and
numerical density plots of the intensity distribution of the three type beams at the detector in
free space (C2

n=0). For comparison, the corresponding cross-lines of three beams at ρy=0 are
also plotted in Figs. 3(g)–3(i). The beam waist size and the transverse coherence width in the
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source plane measured in the experiment are 2.0 mm and 0.38 mm, respectively. One finds from
Figs. 3(a)–3(f) that the average intensity of the three types of beams all display Gaussian-like
profiles in the observation plane (far field). As we know, the transverse profile of the PCV beam
or the PCRPV beam near the source plane is a doughnut shape due to the phase or polarization
singularity in its center, while in the far field the beam shape degenerates to a Gaussian-like
profile due to the random fluctuations of the source. As shown in Figs. 3(g)–3(i), the simulation
results of three types of the beams agree reasonable well with the experimental results, implying
that our computational model is valid in the case of free-space propagation.
Figure 4 illustrates the experimental and corresponding simulation results for the average

intensity distribution for the three beam classes in the detector plane after passing through
turbulence. It can be seen that the average intensities of the type beams are still Gaussian-like
profiles in the observation plane, as expected. The beam widths, defined as the FWHM of the
profile, are 0.21 mm, 0.23 mm, 0.21 mm for the GSM beam, PCV beam and PCRPV beam with
l=1, respectively, compared to 0.17 mm, 0.19 mm, and 0.18 mm in the absence of turbulence
(free space). As expected, the beam widths have increased in the presence of turbulence.
Comparing the cross-lines of the average intensity for the experimental and simulation results, as
shown in Figs. 4(g)–4(i), we also see that there is good agreement.

Fig. 3. (a)–(f) Density plot of the average intensity distribution of the GSM beam, PCV
beam with l=1 and PCRPV beam with l=1 in the observation plane with C2

n=0, (a)–(c)
simulation results; (d)–(f) experimental results. (g)–(i) the corresponding simulation and
experimental results of the cross-lines of the average intensity distribution at ρy=0.

We now turn to the study of the scintillation properties of PCRPV beams in thermally-induced
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Fig. 4. (a)–(f) Density plot of the average intensity distribution of the GSM beam, PCV
beam with l=1 and PCRPV beam with l=1 in the observation plane with C2

n=2×10−9m−2/3,
(a)–(c) simulation results; (d)–(f) experimental results. (g)–(i) the corresponding simulation
and experimental results of the cross-lines of the average intensity distribution at ρy=0.

turbulence. The scintillation of light beams is characterized by the scintillation index (SI), defined
as the normalized variance of the intensity fluctuations [1]

σ2(x, y) =
〈
I2(x, y)

〉
/〈I(x, y)〉2 − 1, (13)

where I(x, y) is the instantaneous intensity distribution in the observation plane. The angle
brackets denote the ensemble average over the realizations of intensity distribution induced by
turbulence. In the experiment, the CCD1 first recorded 1000 frames of instantaneous intensity
distribution and stored them in the computer memory. Then, all the frames were imported into
MATLAB for data processing as follows: each frame represents one realization of the intensity
distribution, and each realization can be represented as a matrix In(x, y), where x and y are the
pixel spatial coordinates, and n denotes the realization number, ranging from 1 to 1000. The
total intensity distribution It (x, y) is obtained by just summing over the 1000 realizations, and
dividing by 1000. We assume that the on-axis point is the centroid point of the average intensity,
which is calculated using the following formula

x̄c =
∑
i

∑
j

xi It
(
xi, yj

)
/
∑
i

∑
j

It
(
xi, yj

)
, (14)

ȳc =
∑
i

∑
j

yj It
(
xi, yj

)
/
∑
i

∑
j

It
(
xi, yj

)
. (15)
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With the help of MATLAB, the coordinate of the on-axis point (x̄c, ȳc) can be determined, and
the on-axis SI in the receiver plane is acquired via the following formula,

σ2
c (x̄c, ȳc) =

∑
N

NI2
n (x̄c, ȳc) /I

2
t (x̄c, ȳc) − 1, (16)

where N denotes the number of total frames.
Figure 5(a) presents the experimental results of the on-axis SI versus initial coherence width for

a GSM beam, a PCV beam (scalar partially coherent vortex beam) with l=1, and a PCRP beam
(partially coherent radially polarized beam, no vortex). One can see that the on-axis SI decreases
as the coherence width decreases, agreeing with the general observation that partially coherent
beams with smaller coherence width are less affected by turbulence. When the coherence width
is relatively large (δ0 > 0.12 mm), the phase or polarization state has a strong impact on the axial
SI. For the same coherence width, the PCRP beam has the lowest value of on-axis SI among
the three type beams. For example, the value of on-axis SI is 0.010, 0.080 and 0.068 for the
GSM beam, the PCV beam and the PCRP beam when δ0 = 0.38 mm, indicating that the PCRP
beam reduces the SI 30.9% relative to the GSM beam and 15.3% relative to the PCV beam. This
advantage is lessened as the coherence width decreases.
There is almost no difference in the on-axis SI between the three type beams when the

coherence width is smaller than 0.12 mm. This observation can be explained by the fact that the
spatial coherence becomes the dominant factor in determining the on-axis SI when the coherence
width is small. The experimental results of the on-axis SI of the PCRPV beam with l=1 and
l=2 as a function of coherence width are shown in Fig. 5(b). For comparison, the on-axis SI of
the PCRP beam (l=0) is also plotted in Fig. 5(b). One finds that for a relatively large coherence
width, the PCRPV beam can further reduce the turbulence-induced scintillation, compared to
the PCRP beam, which means that the PCRPV beam has an advantage over the PCRP beam for
reducing turbulence-induced scintillation. The advantage is further enhanced with the increase
of the topological charge.
The corresponding simulation results of the on-axis SI of the GSM beam, PCV beam and

PCRPV beam with l = 0, 1, 2 versus the initial coherence width are illustrated in Figs. 5(c) and
5(d). Compared to Figs. 5(a) and 5(b), the numerical results for the variation of the on-axis SI
of these beams with the coherence width are consistent with those of the experimental results,
which demonstrate that the PCRPV beams indeed are less affected by the turbulence than a PCRP
beam. However, in the simulation results, when the coherence width is smaller than 0.22 mm,
the value of the SI is almost the same for the the GSM beam and the PCV beam [see in Fig. 5(c)],
and almost the same for a PCRPV beam with l = 0, 1, 2 [see in Fig. 5(d)]. Experimentally, the
threshold at which the beams had indistinguishable SI was 0.12 mm. This discrepancy between
the experimental and theoretical results may be caused by the theoretical turbulence model not
agreeing with the actual experimental turbulence. In the experiment, the exact model for the
power density spectrum is unknown, and we adopted the widely used Kolmogorov spectrum for
the simulations. Furthermore, we modeled the turbulence as a set of discrete phase screens in the
simulations, while in actual turbulence it is continuously distributed along the propagation path.
However, the simulation results agree reasonably well with the experimental results for larger
values of coherence width.

5. Conclusion

PCRPV beams combine three distinct turbulence-resistance beam features – partial coherence,
nonuniform polarization, and vortex structure – into a single beam. Our results indicate that they
provide an efficient way to reduce/overcome the detrimental effects of atmospheric turbulence
through simultaneous modulation of fluctuations, polarization, and phase. These beams are
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Fig. 5. Experimental (a) and simulation (c) results of the variation of the on-axis scintillation
of the GSM beams, PCV beams and PCRP beams with the transverse coherence width.
Experimental (b) and simulation (d) results of the on-axis SI of the PCRP beams and PCRPV
beams with l = 1 and l = 2 against the coherence width.

relatively straightforward to implement, and will be potentially advantageous in laser radar,
free-space optical communications and remote sensing.
To study such beams, we introduced a computational propagation model which can account

for both the random vector vortex beam as well as the random atmospheric turbulence. A
multi-complex screen approach and a multi-phase screen approach were combined to model the
partially coherent vector source and atmospheric turbulence, respectively. The average intensity
and scintillation of GSM beams, PCV beams and PCRPV beams on propagation through free
space and turbulence was studied both through numerical simulation and experiment. It was
shown that the simulation results are reasonably consistent with the experimental results, which
demonstrates the validity of the computational propagation model. The PCRPV beams showed a
consistent advantage over PCRP beams for reducing turbulence-induced scintillation.

Our results indicate that there is much potential in this three-fold structuring of beams for use
in atmospheric applications, and that the three types of structuring complement each other to
provide the benefits of all three. The PCRPV beams presented here are just one possible class
of beams that have this structuring, and our simulation method can be extended to explore the
properties of beams with other configurations of coherence, polarization, and phase.
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